1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/vfs_opreg.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 87 #include <vm/page.h> 88 89 #include <fs/fs_subr.h> 90 91 /* Private interfaces to create vopstats-related data structures */ 92 extern void initialize_vopstats(vopstats_t *); 93 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 94 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 95 96 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 97 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 98 const char *, int, int); 99 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 100 static void vfs_freemnttab(struct vfs *); 101 static void vfs_freeopt(mntopt_t *); 102 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 103 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 104 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 105 static void vfs_createopttbl_extend(mntopts_t *, const char *, 106 const mntopts_t *); 107 static char **vfs_copycancelopt_extend(char **const, int); 108 static void vfs_freecancelopt(char **); 109 static char *getrootfs(void); 110 static int getmacpath(dev_info_t *, void *); 111 112 struct ipmnt { 113 struct ipmnt *mip_next; 114 dev_t mip_dev; 115 struct vfs *mip_vfsp; 116 }; 117 118 static kmutex_t vfs_miplist_mutex; 119 static struct ipmnt *vfs_miplist = NULL; 120 static struct ipmnt *vfs_miplist_end = NULL; 121 122 /* 123 * VFS global data. 124 */ 125 vnode_t *rootdir; /* pointer to root inode vnode. */ 126 vnode_t *devicesdir; /* pointer to inode of devices root */ 127 vnode_t *devdir; /* pointer to inode of dev root */ 128 129 char *server_rootpath; /* root path for diskless clients */ 130 char *server_hostname; /* hostname of diskless server */ 131 132 static struct vfs root; 133 static struct vfs devices; 134 static struct vfs dev; 135 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 136 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 137 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 138 /* must be power of 2! */ 139 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 140 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 141 char *vfs_dummyfstype = "\0"; 142 struct pollhead vfs_pollhd; /* for mnttab pollers */ 143 144 /* 145 * Table for generic options recognized in the VFS layer and acted 146 * on at this level before parsing file system specific options. 147 * The nosuid option is stronger than any of the devices and setuid 148 * options, so those are canceled when nosuid is seen. 149 * 150 * All options which are added here need to be added to the 151 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 152 */ 153 /* 154 * VFS Mount options table 155 */ 156 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 157 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 158 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 159 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 160 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 161 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 162 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 163 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 164 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 165 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 166 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 167 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 168 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 169 170 static const mntopt_t mntopts[] = { 171 /* 172 * option name cancel options default arg flags 173 */ 174 { MNTOPT_REMOUNT, NULL, NULL, 175 MO_NODISPLAY, (void *)0 }, 176 { MNTOPT_RO, ro_cancel, NULL, 0, 177 (void *)0 }, 178 { MNTOPT_RW, rw_cancel, NULL, 0, 179 (void *)0 }, 180 { MNTOPT_SUID, suid_cancel, NULL, 0, 181 (void *)0 }, 182 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_EXEC, exec_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 199 (void *)0 }, 200 }; 201 202 const mntopts_t vfs_mntopts = { 203 sizeof (mntopts) / sizeof (mntopt_t), 204 (mntopt_t *)&mntopts[0] 205 }; 206 207 /* 208 * File system operation dispatch functions. 209 */ 210 211 int 212 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 213 { 214 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 215 } 216 217 int 218 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 219 { 220 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 221 } 222 223 int 224 fsop_root(vfs_t *vfsp, vnode_t **vpp) 225 { 226 refstr_t *mntpt; 227 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 228 /* 229 * Make sure this root has a path. With lofs, it is possible to have 230 * a NULL mountpoint. 231 */ 232 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 233 mntpt = vfs_getmntpoint(vfsp); 234 vn_setpath_str(*vpp, refstr_value(mntpt), 235 strlen(refstr_value(mntpt))); 236 refstr_rele(mntpt); 237 } 238 239 return (ret); 240 } 241 242 int 243 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 244 { 245 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 246 } 247 248 int 249 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 250 { 251 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 252 } 253 254 int 255 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 256 { 257 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 258 } 259 260 int 261 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 262 { 263 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 264 } 265 266 void 267 fsop_freefs(vfs_t *vfsp) 268 { 269 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 270 } 271 272 int 273 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 274 { 275 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 276 } 277 278 int 279 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 280 { 281 ASSERT((fstype >= 0) && (fstype < nfstype)); 282 283 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 284 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 285 else 286 return (ENOTSUP); 287 } 288 289 /* 290 * File system initialization. vfs_setfsops() must be called from a file 291 * system's init routine. 292 */ 293 294 static int 295 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 296 int *unused_ops) 297 { 298 static const fs_operation_trans_def_t vfs_ops_table[] = { 299 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 300 fs_nosys, fs_nosys, 301 302 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 303 fs_nosys, fs_nosys, 304 305 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 306 fs_nosys, fs_nosys, 307 308 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 309 fs_nosys, fs_nosys, 310 311 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 312 (fs_generic_func_p) fs_sync, 313 (fs_generic_func_p) fs_sync, /* No errors allowed */ 314 315 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 316 fs_nosys, fs_nosys, 317 318 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 319 fs_nosys, fs_nosys, 320 321 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 322 (fs_generic_func_p)fs_freevfs, 323 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 324 325 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 326 (fs_generic_func_p)fs_nosys, 327 (fs_generic_func_p)fs_nosys, 328 329 NULL, 0, NULL, NULL 330 }; 331 332 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 333 } 334 335 int 336 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 337 { 338 int error; 339 int unused_ops; 340 341 /* 342 * Verify that fstype refers to a valid fs. Note that 343 * 0 is valid since it's used to set "stray" ops. 344 */ 345 if ((fstype < 0) || (fstype >= nfstype)) 346 return (EINVAL); 347 348 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 349 return (EINVAL); 350 351 /* Set up the operations vector. */ 352 353 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 354 355 if (error != 0) 356 return (error); 357 358 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 359 360 if (actual != NULL) 361 *actual = &vfssw[fstype].vsw_vfsops; 362 363 #if DEBUG 364 if (unused_ops != 0) 365 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 366 "but not used", vfssw[fstype].vsw_name, unused_ops); 367 #endif 368 369 return (0); 370 } 371 372 int 373 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 374 { 375 int error; 376 int unused_ops; 377 378 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 379 380 error = fs_copyfsops(template, *actual, &unused_ops); 381 if (error != 0) { 382 kmem_free(*actual, sizeof (vfsops_t)); 383 *actual = NULL; 384 return (error); 385 } 386 387 return (0); 388 } 389 390 /* 391 * Free a vfsops structure created as a result of vfs_makefsops(). 392 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 393 * vfs_freevfsops_by_type(). 394 */ 395 void 396 vfs_freevfsops(vfsops_t *vfsops) 397 { 398 kmem_free(vfsops, sizeof (vfsops_t)); 399 } 400 401 /* 402 * Since the vfsops structure is part of the vfssw table and wasn't 403 * really allocated, we're not really freeing anything. We keep 404 * the name for consistency with vfs_freevfsops(). We do, however, 405 * need to take care of a little bookkeeping. 406 * NOTE: For a vfsops structure created by vfs_setfsops(), use 407 * vfs_freevfsops_by_type(). 408 */ 409 int 410 vfs_freevfsops_by_type(int fstype) 411 { 412 413 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 414 if ((fstype <= 0) || (fstype >= nfstype)) 415 return (EINVAL); 416 417 WLOCK_VFSSW(); 418 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 419 WUNLOCK_VFSSW(); 420 return (EINVAL); 421 } 422 423 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 424 WUNLOCK_VFSSW(); 425 426 return (0); 427 } 428 429 /* Support routines used to reference vfs_op */ 430 431 /* Set the operations vector for a vfs */ 432 void 433 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 434 { 435 vfsops_t *op; 436 437 ASSERT(vfsp != NULL); 438 ASSERT(vfsops != NULL); 439 440 op = vfsp->vfs_op; 441 membar_consumer(); 442 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 443 casptr(&vfsp->vfs_op, op, vfsops) == op) { 444 return; 445 } 446 fsem_setvfsops(vfsp, vfsops); 447 } 448 449 /* Retrieve the operations vector for a vfs */ 450 vfsops_t * 451 vfs_getops(vfs_t *vfsp) 452 { 453 vfsops_t *op; 454 455 ASSERT(vfsp != NULL); 456 457 op = vfsp->vfs_op; 458 membar_consumer(); 459 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 460 op == vfsp->vfs_op) { 461 return (op); 462 } else { 463 return (fsem_getvfsops(vfsp)); 464 } 465 } 466 467 /* 468 * Returns non-zero (1) if the vfsops matches that of the vfs. 469 * Returns zero (0) if not. 470 */ 471 int 472 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 473 { 474 return (vfs_getops(vfsp) == vfsops); 475 } 476 477 /* 478 * Returns non-zero (1) if the file system has installed a non-default, 479 * non-error vfs_sync routine. Returns zero (0) otherwise. 480 */ 481 int 482 vfs_can_sync(vfs_t *vfsp) 483 { 484 /* vfs_sync() routine is not the default/error function */ 485 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 486 } 487 488 /* 489 * Initialize a vfs structure. 490 */ 491 void 492 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 493 { 494 vfsp->vfs_count = 0; 495 vfsp->vfs_next = vfsp; 496 vfsp->vfs_prev = vfsp; 497 vfsp->vfs_zone_next = vfsp; 498 vfsp->vfs_zone_prev = vfsp; 499 vfsp->vfs_flag = 0; 500 vfsp->vfs_data = (data); 501 vfsp->vfs_resource = NULL; 502 vfsp->vfs_mntpt = NULL; 503 vfsp->vfs_mntopts.mo_count = 0; 504 vfsp->vfs_mntopts.mo_list = NULL; 505 vfsp->vfs_implp = NULL; 506 vfsp->vfs_zone = NULL; 507 /* 508 * Note: Don't initialize any member of the vfs_impl_t structure 509 * here as it could be a problem for unbundled file systems. 510 */ 511 vfs_setops((vfsp), (op)); 512 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 513 } 514 515 /* 516 * Allocate and initialize the vfs implementation private data 517 * structure, vfs_impl_t. 518 */ 519 void 520 vfsimpl_setup(vfs_t *vfsp) 521 { 522 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 523 /* Note that this are #define'd in vfs.h */ 524 vfsp->vfs_femhead = NULL; 525 vfsp->vfs_vskap = NULL; 526 vfsp->vfs_fstypevsp = NULL; 527 } 528 529 /* 530 * Release the vfs_impl_t structure, if it exists. Some unbundled 531 * filesystems may not use the newer version of vfs and thus 532 * would not contain this implementation private data structure. 533 */ 534 void 535 vfsimpl_teardown(vfs_t *vfsp) 536 { 537 vfs_impl_t *vip = vfsp->vfs_implp; 538 539 if (vip == NULL) 540 return; 541 542 if (vip->vi_femhead) { 543 ASSERT(vip->vi_femhead->femh_list == NULL); 544 mutex_destroy(&vip->vi_femhead->femh_lock); 545 kmem_free(vip->vi_femhead, sizeof (*(vip->vi_femhead))); 546 vip->vi_femhead = NULL; 547 } 548 549 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 550 vfsp->vfs_implp = NULL; 551 } 552 553 /* 554 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 555 * fstatvfs, and sysfs moved to common/syscall. 556 */ 557 558 /* 559 * Update every mounted file system. We call the vfs_sync operation of 560 * each file system type, passing it a NULL vfsp to indicate that all 561 * mounted file systems of that type should be updated. 562 */ 563 void 564 vfs_sync(int flag) 565 { 566 struct vfssw *vswp; 567 RLOCK_VFSSW(); 568 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 569 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 570 vfs_refvfssw(vswp); 571 RUNLOCK_VFSSW(); 572 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 573 CRED()); 574 vfs_unrefvfssw(vswp); 575 RLOCK_VFSSW(); 576 } 577 } 578 RUNLOCK_VFSSW(); 579 } 580 581 void 582 sync(void) 583 { 584 vfs_sync(0); 585 } 586 587 /* 588 * External routines. 589 */ 590 591 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 592 593 /* 594 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 595 * but otherwise should be accessed only via vfs_list_lock() and 596 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 597 */ 598 static krwlock_t vfslist; 599 600 /* 601 * Mount devfs on /devices. This is done right after root is mounted 602 * to provide device access support for the system 603 */ 604 static void 605 vfs_mountdevices(void) 606 { 607 struct vfssw *vsw; 608 struct vnode *mvp; 609 struct mounta mounta = { /* fake mounta for devfs_mount() */ 610 NULL, 611 NULL, 612 MS_SYSSPACE, 613 NULL, 614 NULL, 615 0, 616 NULL, 617 0 618 }; 619 620 /* 621 * _init devfs module to fill in the vfssw 622 */ 623 if (modload("fs", "devfs") == -1) 624 panic("Cannot _init devfs module"); 625 626 /* 627 * Hold vfs 628 */ 629 RLOCK_VFSSW(); 630 vsw = vfs_getvfsswbyname("devfs"); 631 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 632 VFS_HOLD(&devices); 633 634 /* 635 * Locate mount point 636 */ 637 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 638 panic("Cannot find /devices"); 639 640 /* 641 * Perform the mount of /devices 642 */ 643 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 644 panic("Cannot mount /devices"); 645 646 RUNLOCK_VFSSW(); 647 648 /* 649 * Set appropriate members and add to vfs list for mnttab display 650 */ 651 vfs_setresource(&devices, "/devices"); 652 vfs_setmntpoint(&devices, "/devices"); 653 654 /* 655 * Hold the root of /devices so it won't go away 656 */ 657 if (VFS_ROOT(&devices, &devicesdir)) 658 panic("vfs_mountdevices: not devices root"); 659 660 if (vfs_lock(&devices) != 0) { 661 VN_RELE(devicesdir); 662 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 663 return; 664 } 665 666 if (vn_vfswlock(mvp) != 0) { 667 vfs_unlock(&devices); 668 VN_RELE(devicesdir); 669 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 670 return; 671 } 672 673 vfs_add(mvp, &devices, 0); 674 vn_vfsunlock(mvp); 675 vfs_unlock(&devices); 676 VN_RELE(devicesdir); 677 } 678 679 /* 680 * mount the first instance of /dev to root and remain mounted 681 */ 682 static void 683 vfs_mountdev1(void) 684 { 685 struct vfssw *vsw; 686 struct vnode *mvp; 687 struct mounta mounta = { /* fake mounta for sdev_mount() */ 688 NULL, 689 NULL, 690 MS_SYSSPACE | MS_OVERLAY, 691 NULL, 692 NULL, 693 0, 694 NULL, 695 0 696 }; 697 698 /* 699 * _init dev module to fill in the vfssw 700 */ 701 if (modload("fs", "dev") == -1) 702 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 703 704 /* 705 * Hold vfs 706 */ 707 RLOCK_VFSSW(); 708 vsw = vfs_getvfsswbyname("dev"); 709 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 710 VFS_HOLD(&dev); 711 712 /* 713 * Locate mount point 714 */ 715 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 716 cmn_err(CE_PANIC, "Cannot find /dev\n"); 717 718 /* 719 * Perform the mount of /dev 720 */ 721 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 722 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 723 724 RUNLOCK_VFSSW(); 725 726 /* 727 * Set appropriate members and add to vfs list for mnttab display 728 */ 729 vfs_setresource(&dev, "/dev"); 730 vfs_setmntpoint(&dev, "/dev"); 731 732 /* 733 * Hold the root of /dev so it won't go away 734 */ 735 if (VFS_ROOT(&dev, &devdir)) 736 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 737 738 if (vfs_lock(&dev) != 0) { 739 VN_RELE(devdir); 740 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 741 return; 742 } 743 744 if (vn_vfswlock(mvp) != 0) { 745 vfs_unlock(&dev); 746 VN_RELE(devdir); 747 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 748 return; 749 } 750 751 vfs_add(mvp, &dev, 0); 752 vn_vfsunlock(mvp); 753 vfs_unlock(&dev); 754 VN_RELE(devdir); 755 } 756 757 /* 758 * Mount required filesystem. This is done right after root is mounted. 759 */ 760 static void 761 vfs_mountfs(char *module, char *spec, char *path) 762 { 763 struct vnode *mvp; 764 struct mounta mounta; 765 vfs_t *vfsp; 766 767 mounta.flags = MS_SYSSPACE | MS_DATA; 768 mounta.fstype = module; 769 mounta.spec = spec; 770 mounta.dir = path; 771 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 772 cmn_err(CE_WARN, "Cannot find %s", path); 773 return; 774 } 775 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 776 cmn_err(CE_WARN, "Cannot mount %s", path); 777 else 778 VFS_RELE(vfsp); 779 VN_RELE(mvp); 780 } 781 782 /* 783 * vfs_mountroot is called by main() to mount the root filesystem. 784 */ 785 void 786 vfs_mountroot(void) 787 { 788 struct vnode *rvp = NULL; 789 char *path; 790 size_t plen; 791 struct vfssw *vswp; 792 793 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 794 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 795 796 /* 797 * Alloc the vfs hash bucket array and locks 798 */ 799 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 800 801 /* 802 * Call machine-dependent routine "rootconf" to choose a root 803 * file system type. 804 */ 805 if (rootconf()) 806 panic("vfs_mountroot: cannot mount root"); 807 /* 808 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 809 * to point to it. These are used by lookuppn() so that it 810 * knows where to start from ('/' or '.'). 811 */ 812 vfs_setmntpoint(rootvfs, "/"); 813 if (VFS_ROOT(rootvfs, &rootdir)) 814 panic("vfs_mountroot: no root vnode"); 815 PTOU(curproc)->u_cdir = rootdir; 816 VN_HOLD(PTOU(curproc)->u_cdir); 817 PTOU(curproc)->u_rdir = NULL; 818 819 /* 820 * Setup the global zone's rootvp, now that it exists. 821 */ 822 global_zone->zone_rootvp = rootdir; 823 VN_HOLD(global_zone->zone_rootvp); 824 825 /* 826 * Notify the module code that it can begin using the 827 * root filesystem instead of the boot program's services. 828 */ 829 modrootloaded = 1; 830 /* 831 * Set up mnttab information for root 832 */ 833 vfs_setresource(rootvfs, rootfs.bo_name); 834 835 /* 836 * Notify cluster software that the root filesystem is available. 837 */ 838 clboot_mountroot(); 839 840 /* Now that we're all done with the root FS, set up its vopstats */ 841 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 842 /* Set flag for statistics collection */ 843 if (vswp->vsw_flag & VSW_STATS) { 844 initialize_vopstats(&rootvfs->vfs_vopstats); 845 rootvfs->vfs_flag |= VFS_STATS; 846 rootvfs->vfs_fstypevsp = 847 get_fstype_vopstats(rootvfs, vswp); 848 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 849 } 850 vfs_unrefvfssw(vswp); 851 } 852 853 /* 854 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 855 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 856 */ 857 vfs_mountdevices(); 858 vfs_mountdev1(); 859 860 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 861 vfs_mountfs("proc", "/proc", "/proc"); 862 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 863 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 864 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 865 866 if (getzoneid() == GLOBAL_ZONEID) { 867 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 868 } 869 870 #ifdef __sparc 871 /* 872 * This bit of magic can go away when we convert sparc to 873 * the new boot architecture based on ramdisk. 874 * 875 * Booting off a mirrored root volume: 876 * At this point, we have booted and mounted root on a 877 * single component of the mirror. Complete the boot 878 * by configuring SVM and converting the root to the 879 * dev_t of the mirrored root device. This dev_t conversion 880 * only works because the underlying device doesn't change. 881 */ 882 if (root_is_svm) { 883 if (svm_rootconf()) { 884 panic("vfs_mountroot: cannot remount root"); 885 } 886 887 /* 888 * mnttab should reflect the new root device 889 */ 890 vfs_lock_wait(rootvfs); 891 vfs_setresource(rootvfs, rootfs.bo_name); 892 vfs_unlock(rootvfs); 893 } 894 #endif /* __sparc */ 895 896 /* 897 * Look up the root device via devfs so that a dv_node is 898 * created for it. The vnode is never VN_RELE()ed. 899 * We allocate more than MAXPATHLEN so that the 900 * buffer passed to i_ddi_prompath_to_devfspath() is 901 * exactly MAXPATHLEN (the function expects a buffer 902 * of that length). 903 */ 904 plen = strlen("/devices"); 905 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 906 (void) strcpy(path, "/devices"); 907 908 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 909 != DDI_SUCCESS || 910 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 911 912 /* NUL terminate in case "path" has garbage */ 913 path[plen + MAXPATHLEN - 1] = '\0'; 914 #ifdef DEBUG 915 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 916 #endif 917 } 918 kmem_free(path, plen + MAXPATHLEN); 919 } 920 921 /* 922 * If remount failed and we're in a zone we need to check for the zone 923 * root path and strip it before the call to vfs_setpath(). 924 * 925 * If strpath doesn't begin with the zone_rootpath the original 926 * strpath is returned unchanged. 927 */ 928 static const char * 929 stripzonepath(const char *strpath) 930 { 931 char *str1, *str2; 932 int i; 933 zone_t *zonep = curproc->p_zone; 934 935 if (zonep->zone_rootpath == NULL || strpath == NULL) { 936 return (NULL); 937 } 938 939 /* 940 * we check for the end of the string at one past the 941 * current position because the zone_rootpath always 942 * ends with "/" but we don't want to strip that off. 943 */ 944 str1 = zonep->zone_rootpath; 945 str2 = (char *)strpath; 946 ASSERT(str1[0] != '\0'); 947 for (i = 0; str1[i + 1] != '\0'; i++) { 948 if (str1[i] != str2[i]) 949 return ((char *)strpath); 950 } 951 return (&str2[i]); 952 } 953 954 /* 955 * Common mount code. Called from the system call entry point, from autofs, 956 * and from pxfs. 957 * 958 * Takes the effective file system type, mount arguments, the mount point 959 * vnode, flags specifying whether the mount is a remount and whether it 960 * should be entered into the vfs list, and credentials. Fills in its vfspp 961 * parameter with the mounted file system instance's vfs. 962 * 963 * Note that the effective file system type is specified as a string. It may 964 * be null, in which case it's determined from the mount arguments, and may 965 * differ from the type specified in the mount arguments; this is a hook to 966 * allow interposition when instantiating file system instances. 967 * 968 * The caller is responsible for releasing its own hold on the mount point 969 * vp (this routine does its own hold when necessary). 970 * Also note that for remounts, the mount point vp should be the vnode for 971 * the root of the file system rather than the vnode that the file system 972 * is mounted on top of. 973 */ 974 int 975 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 976 struct vfs **vfspp) 977 { 978 struct vfssw *vswp; 979 vfsops_t *vfsops; 980 struct vfs *vfsp; 981 struct vnode *bvp; 982 dev_t bdev = 0; 983 mntopts_t mnt_mntopts; 984 int error = 0; 985 int copyout_error = 0; 986 int ovflags; 987 char *opts = uap->optptr; 988 char *inargs = opts; 989 int optlen = uap->optlen; 990 int remount; 991 int rdonly; 992 int nbmand = 0; 993 int delmip = 0; 994 int addmip = 0; 995 int splice = ((uap->flags & MS_NOSPLICE) == 0); 996 int fromspace = (uap->flags & MS_SYSSPACE) ? 997 UIO_SYSSPACE : UIO_USERSPACE; 998 char *resource = NULL, *mountpt = NULL; 999 refstr_t *oldresource, *oldmntpt; 1000 struct pathname pn, rpn; 1001 vsk_anchor_t *vskap; 1002 1003 /* 1004 * The v_flag value for the mount point vp is permanently set 1005 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1006 * for mount point locking. 1007 */ 1008 mutex_enter(&vp->v_lock); 1009 vp->v_flag |= VVFSLOCK; 1010 mutex_exit(&vp->v_lock); 1011 1012 mnt_mntopts.mo_count = 0; 1013 /* 1014 * Find the ops vector to use to invoke the file system-specific mount 1015 * method. If the fsname argument is non-NULL, use it directly. 1016 * Otherwise, dig the file system type information out of the mount 1017 * arguments. 1018 * 1019 * A side effect is to hold the vfssw entry. 1020 * 1021 * Mount arguments can be specified in several ways, which are 1022 * distinguished by flag bit settings. The preferred way is to set 1023 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1024 * type supplied as a character string and the last two arguments 1025 * being a pointer to a character buffer and the size of the buffer. 1026 * On entry, the buffer holds a null terminated list of options; on 1027 * return, the string is the list of options the file system 1028 * recognized. If MS_DATA is set arguments five and six point to a 1029 * block of binary data which the file system interprets. 1030 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1031 * consistently with these conventions. To handle them, we check to 1032 * see whether the pointer to the file system name has a numeric value 1033 * less than 256. If so, we treat it as an index. 1034 */ 1035 if (fsname != NULL) { 1036 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1037 return (EINVAL); 1038 } 1039 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1040 size_t n; 1041 uint_t fstype; 1042 char name[FSTYPSZ]; 1043 1044 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1045 RLOCK_VFSSW(); 1046 if (fstype == 0 || fstype >= nfstype || 1047 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1048 RUNLOCK_VFSSW(); 1049 return (EINVAL); 1050 } 1051 (void) strcpy(name, vfssw[fstype].vsw_name); 1052 RUNLOCK_VFSSW(); 1053 if ((vswp = vfs_getvfssw(name)) == NULL) 1054 return (EINVAL); 1055 } else { 1056 /* 1057 * Handle either kernel or user address space. 1058 */ 1059 if (uap->flags & MS_SYSSPACE) { 1060 error = copystr(uap->fstype, name, 1061 FSTYPSZ, &n); 1062 } else { 1063 error = copyinstr(uap->fstype, name, 1064 FSTYPSZ, &n); 1065 } 1066 if (error) { 1067 if (error == ENAMETOOLONG) 1068 return (EINVAL); 1069 return (error); 1070 } 1071 if ((vswp = vfs_getvfssw(name)) == NULL) 1072 return (EINVAL); 1073 } 1074 } else { 1075 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1076 return (EINVAL); 1077 } 1078 if (!VFS_INSTALLED(vswp)) 1079 return (EINVAL); 1080 vfsops = &vswp->vsw_vfsops; 1081 1082 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1083 /* 1084 * Fetch mount options and parse them for generic vfs options 1085 */ 1086 if (uap->flags & MS_OPTIONSTR) { 1087 /* 1088 * Limit the buffer size 1089 */ 1090 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1091 error = EINVAL; 1092 goto errout; 1093 } 1094 if ((uap->flags & MS_SYSSPACE) == 0) { 1095 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1096 inargs[0] = '\0'; 1097 if (optlen) { 1098 error = copyinstr(opts, inargs, (size_t)optlen, 1099 NULL); 1100 if (error) { 1101 goto errout; 1102 } 1103 } 1104 } 1105 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1106 } 1107 /* 1108 * Flag bits override the options string. 1109 */ 1110 if (uap->flags & MS_REMOUNT) 1111 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1112 if (uap->flags & MS_RDONLY) 1113 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1114 if (uap->flags & MS_NOSUID) 1115 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1116 1117 /* 1118 * Check if this is a remount; must be set in the option string and 1119 * the file system must support a remount option. 1120 */ 1121 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1122 MNTOPT_REMOUNT, NULL)) { 1123 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1124 error = ENOTSUP; 1125 goto errout; 1126 } 1127 uap->flags |= MS_REMOUNT; 1128 } 1129 1130 /* 1131 * uap->flags and vfs_optionisset() should agree. 1132 */ 1133 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1134 uap->flags |= MS_RDONLY; 1135 } 1136 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1137 uap->flags |= MS_NOSUID; 1138 } 1139 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1140 ASSERT(splice || !remount); 1141 /* 1142 * If we are splicing the fs into the namespace, 1143 * perform mount point checks. 1144 * 1145 * We want to resolve the path for the mount point to eliminate 1146 * '.' and ".." and symlinks in mount points; we can't do the 1147 * same for the resource string, since it would turn 1148 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1149 * this before grabbing vn_vfswlock(), because otherwise we 1150 * would deadlock with lookuppn(). 1151 */ 1152 if (splice) { 1153 ASSERT(vp->v_count > 0); 1154 1155 /* 1156 * Pick up mount point and device from appropriate space. 1157 */ 1158 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1159 resource = kmem_alloc(pn.pn_pathlen + 1, 1160 KM_SLEEP); 1161 (void) strcpy(resource, pn.pn_path); 1162 pn_free(&pn); 1163 } 1164 /* 1165 * Do a lookupname prior to taking the 1166 * writelock. Mark this as completed if 1167 * successful for later cleanup and addition to 1168 * the mount in progress table. 1169 */ 1170 if ((uap->flags & MS_GLOBAL) == 0 && 1171 lookupname(uap->spec, fromspace, 1172 FOLLOW, NULL, &bvp) == 0) { 1173 addmip = 1; 1174 } 1175 1176 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1177 pathname_t *pnp; 1178 1179 if (*pn.pn_path != '/') { 1180 error = EINVAL; 1181 pn_free(&pn); 1182 goto errout; 1183 } 1184 pn_alloc(&rpn); 1185 /* 1186 * Kludge to prevent autofs from deadlocking with 1187 * itself when it calls domount(). 1188 * 1189 * If autofs is calling, it is because it is doing 1190 * (autofs) mounts in the process of an NFS mount. A 1191 * lookuppn() here would cause us to block waiting for 1192 * said NFS mount to complete, which can't since this 1193 * is the thread that was supposed to doing it. 1194 */ 1195 if (fromspace == UIO_USERSPACE) { 1196 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1197 NULL)) == 0) { 1198 pnp = &rpn; 1199 } else { 1200 /* 1201 * The file disappeared or otherwise 1202 * became inaccessible since we opened 1203 * it; might as well fail the mount 1204 * since the mount point is no longer 1205 * accessible. 1206 */ 1207 pn_free(&rpn); 1208 pn_free(&pn); 1209 goto errout; 1210 } 1211 } else { 1212 pnp = &pn; 1213 } 1214 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1215 (void) strcpy(mountpt, pnp->pn_path); 1216 1217 /* 1218 * If the addition of the zone's rootpath 1219 * would push us over a total path length 1220 * of MAXPATHLEN, we fail the mount with 1221 * ENAMETOOLONG, which is what we would have 1222 * gotten if we were trying to perform the same 1223 * mount in the global zone. 1224 * 1225 * strlen() doesn't count the trailing 1226 * '\0', but zone_rootpathlen counts both a 1227 * trailing '/' and the terminating '\0'. 1228 */ 1229 if ((curproc->p_zone->zone_rootpathlen - 1 + 1230 strlen(mountpt)) > MAXPATHLEN || 1231 (resource != NULL && 1232 (curproc->p_zone->zone_rootpathlen - 1 + 1233 strlen(resource)) > MAXPATHLEN)) { 1234 error = ENAMETOOLONG; 1235 } 1236 1237 pn_free(&rpn); 1238 pn_free(&pn); 1239 } 1240 1241 if (error) 1242 goto errout; 1243 1244 /* 1245 * Prevent path name resolution from proceeding past 1246 * the mount point. 1247 */ 1248 if (vn_vfswlock(vp) != 0) { 1249 error = EBUSY; 1250 goto errout; 1251 } 1252 1253 /* 1254 * Verify that it's legitimate to establish a mount on 1255 * the prospective mount point. 1256 */ 1257 if (vn_mountedvfs(vp) != NULL) { 1258 /* 1259 * The mount point lock was obtained after some 1260 * other thread raced through and established a mount. 1261 */ 1262 vn_vfsunlock(vp); 1263 error = EBUSY; 1264 goto errout; 1265 } 1266 if (vp->v_flag & VNOMOUNT) { 1267 vn_vfsunlock(vp); 1268 error = EINVAL; 1269 goto errout; 1270 } 1271 } 1272 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1273 uap->dataptr = NULL; 1274 uap->datalen = 0; 1275 } 1276 1277 /* 1278 * If this is a remount, we don't want to create a new VFS. 1279 * Instead, we pass the existing one with a remount flag. 1280 */ 1281 if (remount) { 1282 /* 1283 * Confirm that the mount point is the root vnode of the 1284 * file system that is being remounted. 1285 * This can happen if the user specifies a different 1286 * mount point directory pathname in the (re)mount command. 1287 * 1288 * Code below can only be reached if splice is true, so it's 1289 * safe to do vn_vfsunlock() here. 1290 */ 1291 if ((vp->v_flag & VROOT) == 0) { 1292 vn_vfsunlock(vp); 1293 error = ENOENT; 1294 goto errout; 1295 } 1296 /* 1297 * Disallow making file systems read-only unless file system 1298 * explicitly allows it in its vfssw. Ignore other flags. 1299 */ 1300 if (rdonly && vn_is_readonly(vp) == 0 && 1301 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1302 vn_vfsunlock(vp); 1303 error = EINVAL; 1304 goto errout; 1305 } 1306 /* 1307 * Changing the NBMAND setting on remounts is permitted 1308 * but logged since it can lead to unexpected behavior. 1309 * We also counsel against using it for / and /usr. 1310 */ 1311 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1312 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1313 cmn_err(CE_WARN, "domount: nbmand turned %s via " 1314 "remounting %s", nbmand ? "on" : "off", 1315 refstr_value(vp->v_vfsp->vfs_mntpt)); 1316 } 1317 vfsp = vp->v_vfsp; 1318 ovflags = vfsp->vfs_flag; 1319 vfsp->vfs_flag |= VFS_REMOUNT; 1320 vfsp->vfs_flag &= ~VFS_RDONLY; 1321 } else { 1322 vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP); 1323 VFS_INIT(vfsp, vfsops, NULL); 1324 } 1325 1326 VFS_HOLD(vfsp); 1327 1328 /* 1329 * The vfs_reflock is not used anymore the code below explicitly 1330 * holds it preventing others accesing it directly. 1331 */ 1332 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1333 !(vfsp->vfs_flag & VFS_REMOUNT)) 1334 cmn_err(CE_WARN, 1335 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1336 1337 /* 1338 * Lock the vfs. If this is a remount we want to avoid spurious umount 1339 * failures that happen as a side-effect of fsflush() and other mount 1340 * and unmount operations that might be going on simultaneously and 1341 * may have locked the vfs currently. To not return EBUSY immediately 1342 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1343 */ 1344 if (!remount) { 1345 if (error = vfs_lock(vfsp)) { 1346 vfsp->vfs_flag = ovflags; 1347 if (splice) 1348 vn_vfsunlock(vp); 1349 if (vfsp->vfs_implp) 1350 vfsimpl_teardown(vfsp); 1351 kmem_free(vfsp, sizeof (struct vfs)); 1352 goto errout; 1353 } 1354 } else { 1355 vfs_lock_wait(vfsp); 1356 } 1357 1358 /* 1359 * Add device to mount in progress table, global mounts require special 1360 * handling. It is possible that we have already done the lookupname 1361 * on a spliced, non-global fs. If so, we don't want to do it again 1362 * since we cannot do a lookupname after taking the 1363 * wlock above. This case is for a non-spliced, non-global filesystem. 1364 */ 1365 if (!addmip) { 1366 if ((uap->flags & MS_GLOBAL) == 0 && 1367 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1368 addmip = 1; 1369 } 1370 } 1371 1372 if (addmip) { 1373 bdev = bvp->v_rdev; 1374 VN_RELE(bvp); 1375 vfs_addmip(bdev, vfsp); 1376 addmip = 0; 1377 delmip = 1; 1378 } 1379 /* 1380 * Invalidate cached entry for the mount point. 1381 */ 1382 if (splice) 1383 dnlc_purge_vp(vp); 1384 1385 /* 1386 * If have an option string but the filesystem doesn't supply a 1387 * prototype options table, create a table with the global 1388 * options and sufficient room to accept all the options in the 1389 * string. Then parse the passed in option string 1390 * accepting all the options in the string. This gives us an 1391 * option table with all the proper cancel properties for the 1392 * global options. 1393 * 1394 * Filesystems that supply a prototype options table are handled 1395 * earlier in this function. 1396 */ 1397 if (uap->flags & MS_OPTIONSTR) { 1398 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1399 mntopts_t tmp_mntopts; 1400 1401 tmp_mntopts.mo_count = 0; 1402 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1403 &mnt_mntopts); 1404 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1405 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1406 vfs_freeopttbl(&tmp_mntopts); 1407 } 1408 } 1409 1410 /* 1411 * Serialize with zone creations. 1412 */ 1413 mount_in_progress(); 1414 /* 1415 * Instantiate (or reinstantiate) the file system. If appropriate, 1416 * splice it into the file system name space. 1417 * 1418 * We want VFS_MOUNT() to be able to override the vfs_resource 1419 * string if necessary (ie, mntfs), and also for a remount to 1420 * change the same (necessary when remounting '/' during boot). 1421 * So we set up vfs_mntpt and vfs_resource to what we think they 1422 * should be, then hand off control to VFS_MOUNT() which can 1423 * override this. 1424 * 1425 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1426 * a vfs which is on the vfs list (i.e. during a remount), we must 1427 * never set those fields to NULL. Several bits of code make 1428 * assumptions that the fields are always valid. 1429 */ 1430 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1431 if (remount) { 1432 if ((oldresource = vfsp->vfs_resource) != NULL) 1433 refstr_hold(oldresource); 1434 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1435 refstr_hold(oldmntpt); 1436 } 1437 vfs_setresource(vfsp, resource); 1438 vfs_setmntpoint(vfsp, mountpt); 1439 1440 error = VFS_MOUNT(vfsp, vp, uap, credp); 1441 1442 if (uap->flags & MS_RDONLY) 1443 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1444 if (uap->flags & MS_NOSUID) 1445 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1446 if (uap->flags & MS_GLOBAL) 1447 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1448 1449 if (error) { 1450 if (remount) { 1451 /* put back pre-remount options */ 1452 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1453 vfs_setmntpoint(vfsp, (stripzonepath( 1454 refstr_value(oldmntpt)))); 1455 if (oldmntpt) 1456 refstr_rele(oldmntpt); 1457 vfs_setresource(vfsp, (stripzonepath( 1458 refstr_value(oldresource)))); 1459 if (oldresource) 1460 refstr_rele(oldresource); 1461 vfsp->vfs_flag = ovflags; 1462 vfs_unlock(vfsp); 1463 VFS_RELE(vfsp); 1464 } else { 1465 vfs_unlock(vfsp); 1466 vfs_freemnttab(vfsp); 1467 if (vfsp->vfs_implp) 1468 vfsimpl_teardown(vfsp); 1469 kmem_free(vfsp, sizeof (struct vfs)); 1470 } 1471 } else { 1472 /* 1473 * Set the mount time to now 1474 */ 1475 vfsp->vfs_mtime = ddi_get_time(); 1476 if (remount) { 1477 vfsp->vfs_flag &= ~VFS_REMOUNT; 1478 if (oldresource) 1479 refstr_rele(oldresource); 1480 if (oldmntpt) 1481 refstr_rele(oldmntpt); 1482 } else if (splice) { 1483 /* 1484 * Link vfsp into the name space at the mount 1485 * point. Vfs_add() is responsible for 1486 * holding the mount point which will be 1487 * released when vfs_remove() is called. 1488 */ 1489 vfs_add(vp, vfsp, uap->flags); 1490 } else { 1491 /* 1492 * Hold the reference to file system which is 1493 * not linked into the name space. 1494 */ 1495 vfsp->vfs_zone = NULL; 1496 VFS_HOLD(vfsp); 1497 vfsp->vfs_vnodecovered = NULL; 1498 } 1499 /* 1500 * Set flags for global options encountered 1501 */ 1502 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1503 vfsp->vfs_flag |= VFS_RDONLY; 1504 else 1505 vfsp->vfs_flag &= ~VFS_RDONLY; 1506 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1507 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1508 } else { 1509 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1510 vfsp->vfs_flag |= VFS_NODEVICES; 1511 else 1512 vfsp->vfs_flag &= ~VFS_NODEVICES; 1513 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1514 vfsp->vfs_flag |= VFS_NOSETUID; 1515 else 1516 vfsp->vfs_flag &= ~VFS_NOSETUID; 1517 } 1518 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1519 vfsp->vfs_flag |= VFS_NBMAND; 1520 else 1521 vfsp->vfs_flag &= ~VFS_NBMAND; 1522 1523 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1524 vfsp->vfs_flag |= VFS_XATTR; 1525 else 1526 vfsp->vfs_flag &= ~VFS_XATTR; 1527 1528 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1529 vfsp->vfs_flag |= VFS_NOEXEC; 1530 else 1531 vfsp->vfs_flag &= ~VFS_NOEXEC; 1532 1533 /* 1534 * Now construct the output option string of options 1535 * we recognized. 1536 */ 1537 if (uap->flags & MS_OPTIONSTR) { 1538 vfs_list_read_lock(); 1539 copyout_error = vfs_buildoptionstr( 1540 &vfsp->vfs_mntopts, inargs, optlen); 1541 vfs_list_unlock(); 1542 if (copyout_error == 0 && 1543 (uap->flags & MS_SYSSPACE) == 0) { 1544 copyout_error = copyoutstr(inargs, opts, 1545 optlen, NULL); 1546 } 1547 } 1548 1549 /* 1550 * If this isn't a remount, set up the vopstats before 1551 * anyone can touch this. We only allow spliced file 1552 * systems (file systems which are in the namespace) to 1553 * have the VFS_STATS flag set. 1554 * NOTE: PxFS mounts the underlying file system with 1555 * MS_NOSPLICE set and copies those vfs_flags to its private 1556 * vfs structure. As a result, PxFS should never have 1557 * the VFS_STATS flag or else we might access the vfs 1558 * statistics-related fields prior to them being 1559 * properly initialized. 1560 */ 1561 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1562 initialize_vopstats(&vfsp->vfs_vopstats); 1563 /* 1564 * We need to set vfs_vskap to NULL because there's 1565 * a chance it won't be set below. This is checked 1566 * in teardown_vopstats() so we can't have garbage. 1567 */ 1568 vfsp->vfs_vskap = NULL; 1569 vfsp->vfs_flag |= VFS_STATS; 1570 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1571 } 1572 1573 vfs_unlock(vfsp); 1574 } 1575 mount_completed(); 1576 if (splice) 1577 vn_vfsunlock(vp); 1578 1579 if ((error == 0) && (copyout_error == 0)) { 1580 if (!remount) { 1581 /* 1582 * Don't call get_vskstat_anchor() while holding 1583 * locks since it allocates memory and calls 1584 * VFS_STATVFS(). For NFS, the latter can generate 1585 * an over-the-wire call. 1586 */ 1587 vskap = get_vskstat_anchor(vfsp); 1588 /* Only take the lock if we have something to do */ 1589 if (vskap != NULL) { 1590 vfs_lock_wait(vfsp); 1591 if (vfsp->vfs_flag & VFS_STATS) { 1592 vfsp->vfs_vskap = vskap; 1593 } 1594 vfs_unlock(vfsp); 1595 } 1596 } 1597 /* Return vfsp to caller. */ 1598 *vfspp = vfsp; 1599 } 1600 errout: 1601 vfs_freeopttbl(&mnt_mntopts); 1602 if (resource != NULL) 1603 kmem_free(resource, strlen(resource) + 1); 1604 if (mountpt != NULL) 1605 kmem_free(mountpt, strlen(mountpt) + 1); 1606 /* 1607 * It is possible we errored prior to adding to mount in progress 1608 * table. Must free vnode we acquired with successful lookupname. 1609 */ 1610 if (addmip) 1611 VN_RELE(bvp); 1612 if (delmip) 1613 vfs_delmip(vfsp); 1614 ASSERT(vswp != NULL); 1615 vfs_unrefvfssw(vswp); 1616 if (inargs != opts) 1617 kmem_free(inargs, MAX_MNTOPT_STR); 1618 if (copyout_error) { 1619 VFS_RELE(vfsp); 1620 error = copyout_error; 1621 } 1622 return (error); 1623 } 1624 1625 static void 1626 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1627 { 1628 size_t len; 1629 refstr_t *ref; 1630 zone_t *zone = curproc->p_zone; 1631 char *sp; 1632 int have_list_lock = 0; 1633 1634 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1635 1636 /* 1637 * New path must be less than MAXPATHLEN because mntfs 1638 * will only display up to MAXPATHLEN bytes. This is currently 1639 * safe, because domount() uses pn_get(), and other callers 1640 * similarly cap the size to fewer than MAXPATHLEN bytes. 1641 */ 1642 1643 ASSERT(strlen(newpath) < MAXPATHLEN); 1644 1645 /* mntfs requires consistency while vfs list lock is held */ 1646 1647 if (VFS_ON_LIST(vfsp)) { 1648 have_list_lock = 1; 1649 vfs_list_lock(); 1650 } 1651 1652 if (*refp != NULL) 1653 refstr_rele(*refp); 1654 1655 /* Do we need to modify the path? */ 1656 1657 if (zone == global_zone || *newpath != '/') { 1658 ref = refstr_alloc(newpath); 1659 goto out; 1660 } 1661 1662 /* 1663 * Truncate the trailing '/' in the zoneroot, and merge 1664 * in the zone's rootpath with the "newpath" (resource 1665 * or mountpoint) passed in. 1666 * 1667 * The size of the required buffer is thus the size of 1668 * the buffer required for the passed-in newpath 1669 * (strlen(newpath) + 1), plus the size of the buffer 1670 * required to hold zone_rootpath (zone_rootpathlen) 1671 * minus one for one of the now-superfluous NUL 1672 * terminations, minus one for the trailing '/'. 1673 * 1674 * That gives us: 1675 * 1676 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1677 * 1678 * Which is what we have below. 1679 */ 1680 1681 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1682 sp = kmem_alloc(len, KM_SLEEP); 1683 1684 /* 1685 * Copy everything including the trailing slash, which 1686 * we then overwrite with the NUL character. 1687 */ 1688 1689 (void) strcpy(sp, zone->zone_rootpath); 1690 sp[zone->zone_rootpathlen - 2] = '\0'; 1691 (void) strcat(sp, newpath); 1692 1693 ref = refstr_alloc(sp); 1694 kmem_free(sp, len); 1695 out: 1696 *refp = ref; 1697 1698 if (have_list_lock) { 1699 vfs_mnttab_modtimeupd(); 1700 vfs_list_unlock(); 1701 } 1702 } 1703 1704 /* 1705 * Record a mounted resource name in a vfs structure. 1706 * If vfsp is already mounted, caller must hold the vfs lock. 1707 */ 1708 void 1709 vfs_setresource(struct vfs *vfsp, const char *resource) 1710 { 1711 if (resource == NULL || resource[0] == '\0') 1712 resource = VFS_NORESOURCE; 1713 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1714 } 1715 1716 /* 1717 * Record a mount point name in a vfs structure. 1718 * If vfsp is already mounted, caller must hold the vfs lock. 1719 */ 1720 void 1721 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1722 { 1723 if (mntpt == NULL || mntpt[0] == '\0') 1724 mntpt = VFS_NOMNTPT; 1725 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1726 } 1727 1728 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1729 1730 refstr_t * 1731 vfs_getresource(const struct vfs *vfsp) 1732 { 1733 refstr_t *resource; 1734 1735 vfs_list_read_lock(); 1736 resource = vfsp->vfs_resource; 1737 refstr_hold(resource); 1738 vfs_list_unlock(); 1739 1740 return (resource); 1741 } 1742 1743 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1744 1745 refstr_t * 1746 vfs_getmntpoint(const struct vfs *vfsp) 1747 { 1748 refstr_t *mntpt; 1749 1750 vfs_list_read_lock(); 1751 mntpt = vfsp->vfs_mntpt; 1752 refstr_hold(mntpt); 1753 vfs_list_unlock(); 1754 1755 return (mntpt); 1756 } 1757 1758 /* 1759 * Create an empty options table with enough empty slots to hold all 1760 * The options in the options string passed as an argument. 1761 * Potentially prepend another options table. 1762 * 1763 * Note: caller is responsible for locking the vfs list, if needed, 1764 * to protect mops. 1765 */ 1766 static void 1767 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1768 const mntopts_t *mtmpl) 1769 { 1770 const char *s = opts; 1771 uint_t count; 1772 1773 if (opts == NULL || *opts == '\0') { 1774 count = 0; 1775 } else { 1776 count = 1; 1777 1778 /* 1779 * Count number of options in the string 1780 */ 1781 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1782 count++; 1783 s++; 1784 } 1785 } 1786 vfs_copyopttbl_extend(mtmpl, mops, count); 1787 } 1788 1789 /* 1790 * Create an empty options table with enough empty slots to hold all 1791 * The options in the options string passed as an argument. 1792 * 1793 * This function is *not* for general use by filesystems. 1794 * 1795 * Note: caller is responsible for locking the vfs list, if needed, 1796 * to protect mops. 1797 */ 1798 void 1799 vfs_createopttbl(mntopts_t *mops, const char *opts) 1800 { 1801 vfs_createopttbl_extend(mops, opts, NULL); 1802 } 1803 1804 1805 /* 1806 * Swap two mount options tables 1807 */ 1808 static void 1809 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 1810 { 1811 uint_t tmpcnt; 1812 mntopt_t *tmplist; 1813 1814 tmpcnt = optbl2->mo_count; 1815 tmplist = optbl2->mo_list; 1816 optbl2->mo_count = optbl1->mo_count; 1817 optbl2->mo_list = optbl1->mo_list; 1818 optbl1->mo_count = tmpcnt; 1819 optbl1->mo_list = tmplist; 1820 } 1821 1822 static void 1823 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 1824 { 1825 vfs_list_lock(); 1826 vfs_swapopttbl_nolock(optbl1, optbl2); 1827 vfs_mnttab_modtimeupd(); 1828 vfs_list_unlock(); 1829 } 1830 1831 static char ** 1832 vfs_copycancelopt_extend(char **const moc, int extend) 1833 { 1834 int i = 0; 1835 int j; 1836 char **result; 1837 1838 if (moc != NULL) { 1839 for (; moc[i] != NULL; i++) 1840 /* count number of options to cancel */; 1841 } 1842 1843 if (i + extend == 0) 1844 return (NULL); 1845 1846 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 1847 1848 for (j = 0; j < i; j++) { 1849 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 1850 (void) strcpy(result[j], moc[j]); 1851 } 1852 for (; j <= i + extend; j++) 1853 result[j] = NULL; 1854 1855 return (result); 1856 } 1857 1858 static void 1859 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 1860 { 1861 char *sp, *dp; 1862 1863 d->mo_flags = s->mo_flags; 1864 d->mo_data = s->mo_data; 1865 sp = s->mo_name; 1866 if (sp != NULL) { 1867 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1868 (void) strcpy(dp, sp); 1869 d->mo_name = dp; 1870 } else { 1871 d->mo_name = NULL; /* should never happen */ 1872 } 1873 1874 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 1875 1876 sp = s->mo_arg; 1877 if (sp != NULL) { 1878 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1879 (void) strcpy(dp, sp); 1880 d->mo_arg = dp; 1881 } else { 1882 d->mo_arg = NULL; 1883 } 1884 } 1885 1886 /* 1887 * Copy a mount options table, possibly allocating some spare 1888 * slots at the end. It is permissible to copy_extend the NULL table. 1889 */ 1890 static void 1891 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 1892 { 1893 uint_t i, count; 1894 mntopt_t *motbl; 1895 1896 /* 1897 * Clear out any existing stuff in the options table being initialized 1898 */ 1899 vfs_freeopttbl(dmo); 1900 count = (smo == NULL) ? 0 : smo->mo_count; 1901 if ((count + extra) == 0) /* nothing to do */ 1902 return; 1903 dmo->mo_count = count + extra; 1904 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 1905 dmo->mo_list = motbl; 1906 for (i = 0; i < count; i++) { 1907 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 1908 } 1909 for (i = count; i < count + extra; i++) { 1910 motbl[i].mo_flags = MO_EMPTY; 1911 } 1912 } 1913 1914 /* 1915 * Copy a mount options table. 1916 * 1917 * This function is *not* for general use by filesystems. 1918 * 1919 * Note: caller is responsible for locking the vfs list, if needed, 1920 * to protect smo and dmo. 1921 */ 1922 void 1923 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 1924 { 1925 vfs_copyopttbl_extend(smo, dmo, 0); 1926 } 1927 1928 static char ** 1929 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 1930 { 1931 int c1 = 0; 1932 int c2 = 0; 1933 char **result; 1934 char **sp1, **sp2, **dp; 1935 1936 /* 1937 * First we count both lists of cancel options. 1938 * If either is NULL or has no elements, we return a copy of 1939 * the other. 1940 */ 1941 if (mop1->mo_cancel != NULL) { 1942 for (; mop1->mo_cancel[c1] != NULL; c1++) 1943 /* count cancel options in mop1 */; 1944 } 1945 1946 if (c1 == 0) 1947 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 1948 1949 if (mop2->mo_cancel != NULL) { 1950 for (; mop2->mo_cancel[c2] != NULL; c2++) 1951 /* count cancel options in mop2 */; 1952 } 1953 1954 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 1955 1956 if (c2 == 0) 1957 return (result); 1958 1959 /* 1960 * When we get here, we've got two sets of cancel options; 1961 * we need to merge the two sets. We know that the result 1962 * array has "c1+c2+1" entries and in the end we might shrink 1963 * it. 1964 * Result now has a copy of the c1 entries from mop1; we'll 1965 * now lookup all the entries of mop2 in mop1 and copy it if 1966 * it is unique. 1967 * This operation is O(n^2) but it's only called once per 1968 * filesystem per duplicate option. This is a situation 1969 * which doesn't arise with the filesystems in ON and 1970 * n is generally 1. 1971 */ 1972 1973 dp = &result[c1]; 1974 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 1975 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 1976 if (strcmp(*sp1, *sp2) == 0) 1977 break; 1978 } 1979 if (*sp1 == NULL) { 1980 /* 1981 * Option *sp2 not found in mop1, so copy it. 1982 * The calls to vfs_copycancelopt_extend() 1983 * guarantee that there's enough room. 1984 */ 1985 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 1986 (void) strcpy(*dp++, *sp2); 1987 } 1988 } 1989 if (dp != &result[c1+c2]) { 1990 size_t bytes = (dp - result + 1) * sizeof (char *); 1991 char **nres = kmem_alloc(bytes, KM_SLEEP); 1992 1993 bcopy(result, nres, bytes); 1994 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 1995 result = nres; 1996 } 1997 return (result); 1998 } 1999 2000 /* 2001 * Merge two mount option tables (outer and inner) into one. This is very 2002 * similar to "merging" global variables and automatic variables in C. 2003 * 2004 * This isn't (and doesn't have to be) fast. 2005 * 2006 * This function is *not* for general use by filesystems. 2007 * 2008 * Note: caller is responsible for locking the vfs list, if needed, 2009 * to protect omo, imo & dmo. 2010 */ 2011 void 2012 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2013 { 2014 uint_t i, count; 2015 mntopt_t *mop, *motbl; 2016 uint_t freeidx; 2017 2018 /* 2019 * First determine how much space we need to allocate. 2020 */ 2021 count = omo->mo_count; 2022 for (i = 0; i < imo->mo_count; i++) { 2023 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2024 continue; 2025 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2026 count++; 2027 } 2028 ASSERT(count >= omo->mo_count && 2029 count <= omo->mo_count + imo->mo_count); 2030 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2031 for (i = 0; i < omo->mo_count; i++) 2032 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2033 freeidx = omo->mo_count; 2034 for (i = 0; i < imo->mo_count; i++) { 2035 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2036 continue; 2037 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2038 char **newcanp; 2039 uint_t index = mop - omo->mo_list; 2040 2041 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2042 2043 vfs_freeopt(&motbl[index]); 2044 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2045 2046 vfs_freecancelopt(motbl[index].mo_cancel); 2047 motbl[index].mo_cancel = newcanp; 2048 } else { 2049 /* 2050 * If it's a new option, just copy it over to the first 2051 * free location. 2052 */ 2053 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2054 } 2055 } 2056 dmo->mo_count = count; 2057 dmo->mo_list = motbl; 2058 } 2059 2060 /* 2061 * Functions to set and clear mount options in a mount options table. 2062 */ 2063 2064 /* 2065 * Clear a mount option, if it exists. 2066 * 2067 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2068 * the vfs list. 2069 */ 2070 static void 2071 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2072 { 2073 struct mntopt *mop; 2074 uint_t i, count; 2075 2076 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2077 2078 count = mops->mo_count; 2079 for (i = 0; i < count; i++) { 2080 mop = &mops->mo_list[i]; 2081 2082 if (mop->mo_flags & MO_EMPTY) 2083 continue; 2084 if (strcmp(opt, mop->mo_name)) 2085 continue; 2086 mop->mo_flags &= ~MO_SET; 2087 if (mop->mo_arg != NULL) { 2088 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2089 } 2090 mop->mo_arg = NULL; 2091 if (update_mnttab) 2092 vfs_mnttab_modtimeupd(); 2093 break; 2094 } 2095 } 2096 2097 void 2098 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2099 { 2100 int gotlock = 0; 2101 2102 if (VFS_ON_LIST(vfsp)) { 2103 gotlock = 1; 2104 vfs_list_lock(); 2105 } 2106 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2107 if (gotlock) 2108 vfs_list_unlock(); 2109 } 2110 2111 2112 /* 2113 * Set a mount option on. If it's not found in the table, it's silently 2114 * ignored. If the option has MO_IGNORE set, it is still set unless the 2115 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2116 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2117 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2118 * MO_EMPTY set is created as the option passed in. 2119 * 2120 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2121 * the vfs list. 2122 */ 2123 static void 2124 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2125 const char *arg, int flags, int update_mnttab) 2126 { 2127 mntopt_t *mop; 2128 uint_t i, count; 2129 char *sp; 2130 2131 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2132 2133 if (flags & VFS_CREATEOPT) { 2134 if (vfs_hasopt(mops, opt) != NULL) { 2135 flags &= ~VFS_CREATEOPT; 2136 } 2137 } 2138 count = mops->mo_count; 2139 for (i = 0; i < count; i++) { 2140 mop = &mops->mo_list[i]; 2141 2142 if (mop->mo_flags & MO_EMPTY) { 2143 if ((flags & VFS_CREATEOPT) == 0) 2144 continue; 2145 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2146 (void) strcpy(sp, opt); 2147 mop->mo_name = sp; 2148 if (arg != NULL) 2149 mop->mo_flags = MO_HASVALUE; 2150 else 2151 mop->mo_flags = 0; 2152 } else if (strcmp(opt, mop->mo_name)) { 2153 continue; 2154 } 2155 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2156 break; 2157 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2158 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2159 (void) strcpy(sp, arg); 2160 } else { 2161 sp = NULL; 2162 } 2163 if (mop->mo_arg != NULL) 2164 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2165 mop->mo_arg = sp; 2166 if (flags & VFS_DISPLAY) 2167 mop->mo_flags &= ~MO_NODISPLAY; 2168 if (flags & VFS_NODISPLAY) 2169 mop->mo_flags |= MO_NODISPLAY; 2170 mop->mo_flags |= MO_SET; 2171 if (mop->mo_cancel != NULL) { 2172 char **cp; 2173 2174 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2175 vfs_clearmntopt_nolock(mops, *cp, 0); 2176 } 2177 if (update_mnttab) 2178 vfs_mnttab_modtimeupd(); 2179 break; 2180 } 2181 } 2182 2183 void 2184 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2185 { 2186 int gotlock = 0; 2187 2188 if (VFS_ON_LIST(vfsp)) { 2189 gotlock = 1; 2190 vfs_list_lock(); 2191 } 2192 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2193 if (gotlock) 2194 vfs_list_unlock(); 2195 } 2196 2197 2198 /* 2199 * Add a "tag" option to a mounted file system's options list. 2200 * 2201 * Note: caller is responsible for locking the vfs list, if needed, 2202 * to protect mops. 2203 */ 2204 static mntopt_t * 2205 vfs_addtag(mntopts_t *mops, const char *tag) 2206 { 2207 uint_t count; 2208 mntopt_t *mop, *motbl; 2209 2210 count = mops->mo_count + 1; 2211 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2212 if (mops->mo_count) { 2213 size_t len = (count - 1) * sizeof (mntopt_t); 2214 2215 bcopy(mops->mo_list, motbl, len); 2216 kmem_free(mops->mo_list, len); 2217 } 2218 mops->mo_count = count; 2219 mops->mo_list = motbl; 2220 mop = &motbl[count - 1]; 2221 mop->mo_flags = MO_TAG; 2222 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2223 (void) strcpy(mop->mo_name, tag); 2224 return (mop); 2225 } 2226 2227 /* 2228 * Allow users to set arbitrary "tags" in a vfs's mount options. 2229 * Broader use within the kernel is discouraged. 2230 */ 2231 int 2232 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2233 cred_t *cr) 2234 { 2235 vfs_t *vfsp; 2236 mntopts_t *mops; 2237 mntopt_t *mop; 2238 int found = 0; 2239 dev_t dev = makedevice(major, minor); 2240 int err = 0; 2241 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2242 2243 /* 2244 * Find the desired mounted file system 2245 */ 2246 vfs_list_lock(); 2247 vfsp = rootvfs; 2248 do { 2249 if (vfsp->vfs_dev == dev && 2250 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2251 found = 1; 2252 break; 2253 } 2254 vfsp = vfsp->vfs_next; 2255 } while (vfsp != rootvfs); 2256 2257 if (!found) { 2258 err = EINVAL; 2259 goto out; 2260 } 2261 err = secpolicy_fs_config(cr, vfsp); 2262 if (err != 0) 2263 goto out; 2264 2265 mops = &vfsp->vfs_mntopts; 2266 /* 2267 * Add tag if it doesn't already exist 2268 */ 2269 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2270 int len; 2271 2272 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2273 len = strlen(buf); 2274 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2275 err = ENAMETOOLONG; 2276 goto out; 2277 } 2278 mop = vfs_addtag(mops, tag); 2279 } 2280 if ((mop->mo_flags & MO_TAG) == 0) { 2281 err = EINVAL; 2282 goto out; 2283 } 2284 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2285 out: 2286 vfs_list_unlock(); 2287 kmem_free(buf, MAX_MNTOPT_STR); 2288 return (err); 2289 } 2290 2291 /* 2292 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2293 * Broader use within the kernel is discouraged. 2294 */ 2295 int 2296 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2297 cred_t *cr) 2298 { 2299 vfs_t *vfsp; 2300 mntopt_t *mop; 2301 int found = 0; 2302 dev_t dev = makedevice(major, minor); 2303 int err = 0; 2304 2305 /* 2306 * Find the desired mounted file system 2307 */ 2308 vfs_list_lock(); 2309 vfsp = rootvfs; 2310 do { 2311 if (vfsp->vfs_dev == dev && 2312 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2313 found = 1; 2314 break; 2315 } 2316 vfsp = vfsp->vfs_next; 2317 } while (vfsp != rootvfs); 2318 2319 if (!found) { 2320 err = EINVAL; 2321 goto out; 2322 } 2323 err = secpolicy_fs_config(cr, vfsp); 2324 if (err != 0) 2325 goto out; 2326 2327 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2328 err = EINVAL; 2329 goto out; 2330 } 2331 if ((mop->mo_flags & MO_TAG) == 0) { 2332 err = EINVAL; 2333 goto out; 2334 } 2335 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2336 out: 2337 vfs_list_unlock(); 2338 return (err); 2339 } 2340 2341 /* 2342 * Function to parse an option string and fill in a mount options table. 2343 * Unknown options are silently ignored. The input option string is modified 2344 * by replacing separators with nulls. If the create flag is set, options 2345 * not found in the table are just added on the fly. The table must have 2346 * an option slot marked MO_EMPTY to add an option on the fly. 2347 * 2348 * This function is *not* for general use by filesystems. 2349 * 2350 * Note: caller is responsible for locking the vfs list, if needed, 2351 * to protect mops.. 2352 */ 2353 void 2354 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2355 { 2356 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2357 int setflg = VFS_NOFORCEOPT; 2358 2359 if (osp == NULL) 2360 return; 2361 while (*s != '\0') { 2362 p = strchr(s, ','); /* find next option */ 2363 if (p == NULL) { 2364 cp = NULL; 2365 p = s + strlen(s); 2366 } else { 2367 cp = p; /* save location of comma */ 2368 *p++ = '\0'; /* mark end and point to next option */ 2369 } 2370 nextop = p; 2371 p = strchr(s, '='); /* look for value */ 2372 if (p == NULL) { 2373 valp = NULL; /* no value supplied */ 2374 } else { 2375 ep = p; /* save location of equals */ 2376 *p++ = '\0'; /* end option and point to value */ 2377 valp = p; 2378 } 2379 /* 2380 * set option into options table 2381 */ 2382 if (create) 2383 setflg |= VFS_CREATEOPT; 2384 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2385 if (cp != NULL) 2386 *cp = ','; /* restore the comma */ 2387 if (valp != NULL) 2388 *ep = '='; /* restore the equals */ 2389 s = nextop; 2390 } 2391 } 2392 2393 /* 2394 * Function to inquire if an option exists in a mount options table. 2395 * Returns a pointer to the option if it exists, else NULL. 2396 * 2397 * This function is *not* for general use by filesystems. 2398 * 2399 * Note: caller is responsible for locking the vfs list, if needed, 2400 * to protect mops. 2401 */ 2402 struct mntopt * 2403 vfs_hasopt(const mntopts_t *mops, const char *opt) 2404 { 2405 struct mntopt *mop; 2406 uint_t i, count; 2407 2408 count = mops->mo_count; 2409 for (i = 0; i < count; i++) { 2410 mop = &mops->mo_list[i]; 2411 2412 if (mop->mo_flags & MO_EMPTY) 2413 continue; 2414 if (strcmp(opt, mop->mo_name) == 0) 2415 return (mop); 2416 } 2417 return (NULL); 2418 } 2419 2420 /* 2421 * Function to inquire if an option is set in a mount options table. 2422 * Returns non-zero if set and fills in the arg pointer with a pointer to 2423 * the argument string or NULL if there is no argument string. 2424 */ 2425 static int 2426 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2427 { 2428 struct mntopt *mop; 2429 uint_t i, count; 2430 2431 count = mops->mo_count; 2432 for (i = 0; i < count; i++) { 2433 mop = &mops->mo_list[i]; 2434 2435 if (mop->mo_flags & MO_EMPTY) 2436 continue; 2437 if (strcmp(opt, mop->mo_name)) 2438 continue; 2439 if ((mop->mo_flags & MO_SET) == 0) 2440 return (0); 2441 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2442 *argp = mop->mo_arg; 2443 return (1); 2444 } 2445 return (0); 2446 } 2447 2448 2449 int 2450 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2451 { 2452 int ret; 2453 2454 vfs_list_read_lock(); 2455 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2456 vfs_list_unlock(); 2457 return (ret); 2458 } 2459 2460 2461 /* 2462 * Construct a comma separated string of the options set in the given 2463 * mount table, return the string in the given buffer. Return non-zero if 2464 * the buffer would overflow. 2465 * 2466 * This function is *not* for general use by filesystems. 2467 * 2468 * Note: caller is responsible for locking the vfs list, if needed, 2469 * to protect mp. 2470 */ 2471 int 2472 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2473 { 2474 char *cp; 2475 uint_t i; 2476 2477 buf[0] = '\0'; 2478 cp = buf; 2479 for (i = 0; i < mp->mo_count; i++) { 2480 struct mntopt *mop; 2481 2482 mop = &mp->mo_list[i]; 2483 if (mop->mo_flags & MO_SET) { 2484 int optlen, comma = 0; 2485 2486 if (buf[0] != '\0') 2487 comma = 1; 2488 optlen = strlen(mop->mo_name); 2489 if (strlen(buf) + comma + optlen + 1 > len) 2490 goto err; 2491 if (comma) 2492 *cp++ = ','; 2493 (void) strcpy(cp, mop->mo_name); 2494 cp += optlen; 2495 /* 2496 * Append option value if there is one 2497 */ 2498 if (mop->mo_arg != NULL) { 2499 int arglen; 2500 2501 arglen = strlen(mop->mo_arg); 2502 if (strlen(buf) + arglen + 2 > len) 2503 goto err; 2504 *cp++ = '='; 2505 (void) strcpy(cp, mop->mo_arg); 2506 cp += arglen; 2507 } 2508 } 2509 } 2510 return (0); 2511 err: 2512 return (EOVERFLOW); 2513 } 2514 2515 static void 2516 vfs_freecancelopt(char **moc) 2517 { 2518 if (moc != NULL) { 2519 int ccnt = 0; 2520 char **cp; 2521 2522 for (cp = moc; *cp != NULL; cp++) { 2523 kmem_free(*cp, strlen(*cp) + 1); 2524 ccnt++; 2525 } 2526 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2527 } 2528 } 2529 2530 static void 2531 vfs_freeopt(mntopt_t *mop) 2532 { 2533 if (mop->mo_name != NULL) 2534 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2535 2536 vfs_freecancelopt(mop->mo_cancel); 2537 2538 if (mop->mo_arg != NULL) 2539 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2540 } 2541 2542 /* 2543 * Free a mount options table 2544 * 2545 * This function is *not* for general use by filesystems. 2546 * 2547 * Note: caller is responsible for locking the vfs list, if needed, 2548 * to protect mp. 2549 */ 2550 void 2551 vfs_freeopttbl(mntopts_t *mp) 2552 { 2553 uint_t i, count; 2554 2555 count = mp->mo_count; 2556 for (i = 0; i < count; i++) { 2557 vfs_freeopt(&mp->mo_list[i]); 2558 } 2559 if (count) { 2560 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2561 mp->mo_count = 0; 2562 mp->mo_list = NULL; 2563 } 2564 } 2565 2566 /* 2567 * Free any mnttab information recorded in the vfs struct. 2568 * The vfs must not be on the vfs list. 2569 */ 2570 static void 2571 vfs_freemnttab(struct vfs *vfsp) 2572 { 2573 ASSERT(!VFS_ON_LIST(vfsp)); 2574 2575 /* 2576 * Free device and mount point information 2577 */ 2578 if (vfsp->vfs_mntpt != NULL) { 2579 refstr_rele(vfsp->vfs_mntpt); 2580 vfsp->vfs_mntpt = NULL; 2581 } 2582 if (vfsp->vfs_resource != NULL) { 2583 refstr_rele(vfsp->vfs_resource); 2584 vfsp->vfs_resource = NULL; 2585 } 2586 /* 2587 * Now free mount options information 2588 */ 2589 vfs_freeopttbl(&vfsp->vfs_mntopts); 2590 } 2591 2592 /* 2593 * Return the last mnttab modification time 2594 */ 2595 void 2596 vfs_mnttab_modtime(timespec_t *ts) 2597 { 2598 ASSERT(RW_LOCK_HELD(&vfslist)); 2599 *ts = vfs_mnttab_mtime; 2600 } 2601 2602 /* 2603 * See if mnttab is changed 2604 */ 2605 void 2606 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2607 { 2608 int changed; 2609 2610 *phpp = (struct pollhead *)NULL; 2611 2612 /* 2613 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2614 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2615 * to not grab the vfs list lock because tv_sec is monotonically 2616 * increasing. 2617 */ 2618 2619 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2620 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2621 if (!changed) { 2622 *phpp = &vfs_pollhd; 2623 } 2624 } 2625 2626 /* 2627 * Update the mnttab modification time and wake up any waiters for 2628 * mnttab changes 2629 */ 2630 void 2631 vfs_mnttab_modtimeupd() 2632 { 2633 hrtime_t oldhrt, newhrt; 2634 2635 ASSERT(RW_WRITE_HELD(&vfslist)); 2636 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2637 gethrestime(&vfs_mnttab_mtime); 2638 newhrt = ts2hrt(&vfs_mnttab_mtime); 2639 if (oldhrt == (hrtime_t)0) 2640 vfs_mnttab_ctime = vfs_mnttab_mtime; 2641 /* 2642 * Attempt to provide unique mtime (like uniqtime but not). 2643 */ 2644 if (newhrt == oldhrt) { 2645 newhrt++; 2646 hrt2ts(newhrt, &vfs_mnttab_mtime); 2647 } 2648 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2649 } 2650 2651 int 2652 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2653 { 2654 vnode_t *coveredvp; 2655 int error; 2656 extern void teardown_vopstats(vfs_t *); 2657 2658 /* 2659 * Get covered vnode. This will be NULL if the vfs is not linked 2660 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2661 */ 2662 coveredvp = vfsp->vfs_vnodecovered; 2663 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 2664 2665 /* 2666 * Purge all dnlc entries for this vfs. 2667 */ 2668 (void) dnlc_purge_vfsp(vfsp, 0); 2669 2670 /* For forcible umount, skip VFS_SYNC() since it may hang */ 2671 if ((flag & MS_FORCE) == 0) 2672 (void) VFS_SYNC(vfsp, 0, cr); 2673 2674 /* 2675 * Lock the vfs to maintain fs status quo during unmount. This 2676 * has to be done after the sync because ufs_update tries to acquire 2677 * the vfs_reflock. 2678 */ 2679 vfs_lock_wait(vfsp); 2680 2681 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 2682 vfs_unlock(vfsp); 2683 if (coveredvp != NULL) 2684 vn_vfsunlock(coveredvp); 2685 } else if (coveredvp != NULL) { 2686 teardown_vopstats(vfsp); 2687 /* 2688 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 2689 * when it frees vfsp so we do a VN_HOLD() so we can 2690 * continue to use coveredvp afterwards. 2691 */ 2692 VN_HOLD(coveredvp); 2693 vfs_remove(vfsp); 2694 vn_vfsunlock(coveredvp); 2695 VN_RELE(coveredvp); 2696 } else { 2697 teardown_vopstats(vfsp); 2698 /* 2699 * Release the reference to vfs that is not linked 2700 * into the name space. 2701 */ 2702 vfs_unlock(vfsp); 2703 VFS_RELE(vfsp); 2704 } 2705 return (error); 2706 } 2707 2708 2709 /* 2710 * Vfs_unmountall() is called by uadmin() to unmount all 2711 * mounted file systems (except the root file system) during shutdown. 2712 * It follows the existing locking protocol when traversing the vfs list 2713 * to sync and unmount vfses. Even though there should be no 2714 * other thread running while the system is shutting down, it is prudent 2715 * to still follow the locking protocol. 2716 */ 2717 void 2718 vfs_unmountall(void) 2719 { 2720 struct vfs *vfsp; 2721 struct vfs *prev_vfsp = NULL; 2722 int error; 2723 2724 /* 2725 * Toss all dnlc entries now so that the per-vfs sync 2726 * and unmount operations don't have to slog through 2727 * a bunch of uninteresting vnodes over and over again. 2728 */ 2729 dnlc_purge(); 2730 2731 vfs_list_lock(); 2732 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 2733 prev_vfsp = vfsp->vfs_prev; 2734 2735 if (vfs_lock(vfsp) != 0) 2736 continue; 2737 error = vn_vfswlock(vfsp->vfs_vnodecovered); 2738 vfs_unlock(vfsp); 2739 if (error) 2740 continue; 2741 2742 vfs_list_unlock(); 2743 2744 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 2745 (void) dounmount(vfsp, 0, CRED()); 2746 2747 /* 2748 * Since we dropped the vfslist lock above we must 2749 * verify that next_vfsp still exists, else start over. 2750 */ 2751 vfs_list_lock(); 2752 for (vfsp = rootvfs->vfs_prev; 2753 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 2754 if (vfsp == prev_vfsp) 2755 break; 2756 if (vfsp == rootvfs && prev_vfsp != rootvfs) 2757 prev_vfsp = rootvfs->vfs_prev; 2758 } 2759 vfs_list_unlock(); 2760 } 2761 2762 /* 2763 * Called to add an entry to the end of the vfs mount in progress list 2764 */ 2765 void 2766 vfs_addmip(dev_t dev, struct vfs *vfsp) 2767 { 2768 struct ipmnt *mipp; 2769 2770 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 2771 mipp->mip_next = NULL; 2772 mipp->mip_dev = dev; 2773 mipp->mip_vfsp = vfsp; 2774 mutex_enter(&vfs_miplist_mutex); 2775 if (vfs_miplist_end != NULL) 2776 vfs_miplist_end->mip_next = mipp; 2777 else 2778 vfs_miplist = mipp; 2779 vfs_miplist_end = mipp; 2780 mutex_exit(&vfs_miplist_mutex); 2781 } 2782 2783 /* 2784 * Called to remove an entry from the mount in progress list 2785 * Either because the mount completed or it failed. 2786 */ 2787 void 2788 vfs_delmip(struct vfs *vfsp) 2789 { 2790 struct ipmnt *mipp, *mipprev; 2791 2792 mutex_enter(&vfs_miplist_mutex); 2793 mipprev = NULL; 2794 for (mipp = vfs_miplist; 2795 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 2796 mipprev = mipp; 2797 } 2798 if (mipp == NULL) 2799 return; /* shouldn't happen */ 2800 if (mipp == vfs_miplist_end) 2801 vfs_miplist_end = mipprev; 2802 if (mipprev == NULL) 2803 vfs_miplist = mipp->mip_next; 2804 else 2805 mipprev->mip_next = mipp->mip_next; 2806 mutex_exit(&vfs_miplist_mutex); 2807 kmem_free(mipp, sizeof (struct ipmnt)); 2808 } 2809 2810 /* 2811 * vfs_add is called by a specific filesystem's mount routine to add 2812 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 2813 * The vfs should already have been locked by the caller. 2814 * 2815 * coveredvp is NULL if this is the root. 2816 */ 2817 void 2818 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 2819 { 2820 int newflag; 2821 2822 ASSERT(vfs_lock_held(vfsp)); 2823 VFS_HOLD(vfsp); 2824 newflag = vfsp->vfs_flag; 2825 if (mflag & MS_RDONLY) 2826 newflag |= VFS_RDONLY; 2827 else 2828 newflag &= ~VFS_RDONLY; 2829 if (mflag & MS_NOSUID) 2830 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 2831 else 2832 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 2833 if (mflag & MS_NOMNTTAB) 2834 newflag |= VFS_NOMNTTAB; 2835 else 2836 newflag &= ~VFS_NOMNTTAB; 2837 2838 if (coveredvp != NULL) { 2839 ASSERT(vn_vfswlock_held(coveredvp)); 2840 coveredvp->v_vfsmountedhere = vfsp; 2841 VN_HOLD(coveredvp); 2842 } 2843 vfsp->vfs_vnodecovered = coveredvp; 2844 vfsp->vfs_flag = newflag; 2845 2846 vfs_list_add(vfsp); 2847 } 2848 2849 /* 2850 * Remove a vfs from the vfs list, null out the pointer from the 2851 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 2852 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 2853 * reference to the vfs and to the covered vnode. 2854 * 2855 * Called from dounmount after it's confirmed with the file system 2856 * that the unmount is legal. 2857 */ 2858 void 2859 vfs_remove(struct vfs *vfsp) 2860 { 2861 vnode_t *vp; 2862 2863 ASSERT(vfs_lock_held(vfsp)); 2864 2865 /* 2866 * Can't unmount root. Should never happen because fs will 2867 * be busy. 2868 */ 2869 if (vfsp == rootvfs) 2870 panic("vfs_remove: unmounting root"); 2871 2872 vfs_list_remove(vfsp); 2873 2874 /* 2875 * Unhook from the file system name space. 2876 */ 2877 vp = vfsp->vfs_vnodecovered; 2878 ASSERT(vn_vfswlock_held(vp)); 2879 vp->v_vfsmountedhere = NULL; 2880 vfsp->vfs_vnodecovered = NULL; 2881 VN_RELE(vp); 2882 2883 /* 2884 * Release lock and wakeup anybody waiting. 2885 */ 2886 vfs_unlock(vfsp); 2887 VFS_RELE(vfsp); 2888 } 2889 2890 /* 2891 * Lock a filesystem to prevent access to it while mounting, 2892 * unmounting and syncing. Return EBUSY immediately if lock 2893 * can't be acquired. 2894 */ 2895 int 2896 vfs_lock(vfs_t *vfsp) 2897 { 2898 vn_vfslocks_entry_t *vpvfsentry; 2899 2900 vpvfsentry = vn_vfslocks_getlock(vfsp); 2901 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2902 return (0); 2903 2904 vn_vfslocks_rele(vpvfsentry); 2905 return (EBUSY); 2906 } 2907 2908 int 2909 vfs_rlock(vfs_t *vfsp) 2910 { 2911 vn_vfslocks_entry_t *vpvfsentry; 2912 2913 vpvfsentry = vn_vfslocks_getlock(vfsp); 2914 2915 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2916 return (0); 2917 2918 vn_vfslocks_rele(vpvfsentry); 2919 return (EBUSY); 2920 } 2921 2922 void 2923 vfs_lock_wait(vfs_t *vfsp) 2924 { 2925 vn_vfslocks_entry_t *vpvfsentry; 2926 2927 vpvfsentry = vn_vfslocks_getlock(vfsp); 2928 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 2929 } 2930 2931 void 2932 vfs_rlock_wait(vfs_t *vfsp) 2933 { 2934 vn_vfslocks_entry_t *vpvfsentry; 2935 2936 vpvfsentry = vn_vfslocks_getlock(vfsp); 2937 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 2938 } 2939 2940 /* 2941 * Unlock a locked filesystem. 2942 */ 2943 void 2944 vfs_unlock(vfs_t *vfsp) 2945 { 2946 vn_vfslocks_entry_t *vpvfsentry; 2947 2948 /* 2949 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 2950 * And these changes should remain for the patch changes as it is. 2951 */ 2952 if (panicstr) 2953 return; 2954 2955 /* 2956 * ve_refcount needs to be dropped twice here. 2957 * 1. To release refernce after a call to vfs_locks_getlock() 2958 * 2. To release the reference from the locking routines like 2959 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 2960 */ 2961 2962 vpvfsentry = vn_vfslocks_getlock(vfsp); 2963 vn_vfslocks_rele(vpvfsentry); 2964 2965 rwst_exit(&vpvfsentry->ve_lock); 2966 vn_vfslocks_rele(vpvfsentry); 2967 } 2968 2969 /* 2970 * Utility routine that allows a filesystem to construct its 2971 * fsid in "the usual way" - by munging some underlying dev_t and 2972 * the filesystem type number into the 64-bit fsid. Note that 2973 * this implicitly relies on dev_t persistence to make filesystem 2974 * id's persistent. 2975 * 2976 * There's nothing to prevent an individual fs from constructing its 2977 * fsid in a different way, and indeed they should. 2978 * 2979 * Since we want fsids to be 32-bit quantities (so that they can be 2980 * exported identically by either 32-bit or 64-bit APIs, as well as 2981 * the fact that fsid's are "known" to NFS), we compress the device 2982 * number given down to 32-bits, and panic if that isn't possible. 2983 */ 2984 void 2985 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 2986 { 2987 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 2988 panic("device number too big for fsid!"); 2989 fsi->val[1] = val; 2990 } 2991 2992 int 2993 vfs_lock_held(vfs_t *vfsp) 2994 { 2995 int held; 2996 vn_vfslocks_entry_t *vpvfsentry; 2997 2998 /* 2999 * vfs_lock_held will mimic sema_held behaviour 3000 * if panicstr is set. And these changes should remain 3001 * for the patch changes as it is. 3002 */ 3003 if (panicstr) 3004 return (1); 3005 3006 vpvfsentry = vn_vfslocks_getlock(vfsp); 3007 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3008 3009 vn_vfslocks_rele(vpvfsentry); 3010 return (held); 3011 } 3012 3013 struct _kthread * 3014 vfs_lock_owner(vfs_t *vfsp) 3015 { 3016 struct _kthread *owner; 3017 vn_vfslocks_entry_t *vpvfsentry; 3018 3019 /* 3020 * vfs_wlock_held will mimic sema_held behaviour 3021 * if panicstr is set. And these changes should remain 3022 * for the patch changes as it is. 3023 */ 3024 if (panicstr) 3025 return (NULL); 3026 3027 vpvfsentry = vn_vfslocks_getlock(vfsp); 3028 owner = rwst_owner(&vpvfsentry->ve_lock); 3029 3030 vn_vfslocks_rele(vpvfsentry); 3031 return (owner); 3032 } 3033 3034 /* 3035 * vfs list locking. 3036 * 3037 * Rather than manipulate the vfslist lock directly, we abstract into lock 3038 * and unlock routines to allow the locking implementation to be changed for 3039 * clustering. 3040 * 3041 * Whenever the vfs list is modified through its hash links, the overall list 3042 * lock must be obtained before locking the relevant hash bucket. But to see 3043 * whether a given vfs is on the list, it suffices to obtain the lock for the 3044 * hash bucket without getting the overall list lock. (See getvfs() below.) 3045 */ 3046 3047 void 3048 vfs_list_lock() 3049 { 3050 rw_enter(&vfslist, RW_WRITER); 3051 } 3052 3053 void 3054 vfs_list_read_lock() 3055 { 3056 rw_enter(&vfslist, RW_READER); 3057 } 3058 3059 void 3060 vfs_list_unlock() 3061 { 3062 rw_exit(&vfslist); 3063 } 3064 3065 /* 3066 * Low level worker routines for adding entries to and removing entries from 3067 * the vfs list. 3068 */ 3069 3070 static void 3071 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3072 { 3073 int vhno; 3074 struct vfs **hp; 3075 dev_t dev; 3076 3077 ASSERT(RW_WRITE_HELD(&vfslist)); 3078 3079 dev = expldev(vfsp->vfs_fsid.val[0]); 3080 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3081 3082 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3083 3084 /* 3085 * Link into the hash table, inserting it at the end, so that LOFS 3086 * with the same fsid as UFS (or other) file systems will not hide the 3087 * UFS. 3088 */ 3089 if (insert_at_head) { 3090 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3091 rvfs_list[vhno].rvfs_head = vfsp; 3092 } else { 3093 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3094 hp = &(*hp)->vfs_hash) 3095 continue; 3096 /* 3097 * hp now contains the address of the pointer to update 3098 * to effect the insertion. 3099 */ 3100 vfsp->vfs_hash = NULL; 3101 *hp = vfsp; 3102 } 3103 3104 rvfs_list[vhno].rvfs_len++; 3105 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3106 } 3107 3108 3109 static void 3110 vfs_hash_remove(struct vfs *vfsp) 3111 { 3112 int vhno; 3113 struct vfs *tvfsp; 3114 dev_t dev; 3115 3116 ASSERT(RW_WRITE_HELD(&vfslist)); 3117 3118 dev = expldev(vfsp->vfs_fsid.val[0]); 3119 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3120 3121 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3122 3123 /* 3124 * Remove from hash. 3125 */ 3126 if (rvfs_list[vhno].rvfs_head == vfsp) { 3127 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3128 rvfs_list[vhno].rvfs_len--; 3129 goto foundit; 3130 } 3131 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3132 tvfsp = tvfsp->vfs_hash) { 3133 if (tvfsp->vfs_hash == vfsp) { 3134 tvfsp->vfs_hash = vfsp->vfs_hash; 3135 rvfs_list[vhno].rvfs_len--; 3136 goto foundit; 3137 } 3138 } 3139 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3140 3141 foundit: 3142 3143 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3144 } 3145 3146 3147 void 3148 vfs_list_add(struct vfs *vfsp) 3149 { 3150 zone_t *zone; 3151 3152 /* 3153 * The zone that owns the mount is the one that performed the mount. 3154 * Note that this isn't necessarily the same as the zone mounted into. 3155 * The corresponding zone_rele() will be done when the vfs_t is 3156 * being free'd. 3157 */ 3158 vfsp->vfs_zone = curproc->p_zone; 3159 zone_hold(vfsp->vfs_zone); 3160 3161 /* 3162 * Find the zone mounted into, and put this mount on its vfs list. 3163 */ 3164 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3165 ASSERT(zone != NULL); 3166 /* 3167 * Special casing for the root vfs. This structure is allocated 3168 * statically and hooked onto rootvfs at link time. During the 3169 * vfs_mountroot call at system startup time, the root file system's 3170 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3171 * as argument. The code below must detect and handle this special 3172 * case. The only apparent justification for this special casing is 3173 * to ensure that the root file system appears at the head of the 3174 * list. 3175 * 3176 * XXX: I'm assuming that it's ok to do normal list locking when 3177 * adding the entry for the root file system (this used to be 3178 * done with no locks held). 3179 */ 3180 vfs_list_lock(); 3181 /* 3182 * Link into the vfs list proper. 3183 */ 3184 if (vfsp == &root) { 3185 /* 3186 * Assert: This vfs is already on the list as its first entry. 3187 * Thus, there's nothing to do. 3188 */ 3189 ASSERT(rootvfs == vfsp); 3190 /* 3191 * Add it to the head of the global zone's vfslist. 3192 */ 3193 ASSERT(zone == global_zone); 3194 ASSERT(zone->zone_vfslist == NULL); 3195 zone->zone_vfslist = vfsp; 3196 } else { 3197 /* 3198 * Link to end of list using vfs_prev (as rootvfs is now a 3199 * doubly linked circular list) so list is in mount order for 3200 * mnttab use. 3201 */ 3202 rootvfs->vfs_prev->vfs_next = vfsp; 3203 vfsp->vfs_prev = rootvfs->vfs_prev; 3204 rootvfs->vfs_prev = vfsp; 3205 vfsp->vfs_next = rootvfs; 3206 3207 /* 3208 * Do it again for the zone-private list (which may be NULL). 3209 */ 3210 if (zone->zone_vfslist == NULL) { 3211 ASSERT(zone != global_zone); 3212 zone->zone_vfslist = vfsp; 3213 } else { 3214 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3215 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3216 zone->zone_vfslist->vfs_zone_prev = vfsp; 3217 vfsp->vfs_zone_next = zone->zone_vfslist; 3218 } 3219 } 3220 3221 /* 3222 * Link into the hash table, inserting it at the end, so that LOFS 3223 * with the same fsid as UFS (or other) file systems will not hide 3224 * the UFS. 3225 */ 3226 vfs_hash_add(vfsp, 0); 3227 3228 /* 3229 * update the mnttab modification time 3230 */ 3231 vfs_mnttab_modtimeupd(); 3232 vfs_list_unlock(); 3233 zone_rele(zone); 3234 } 3235 3236 void 3237 vfs_list_remove(struct vfs *vfsp) 3238 { 3239 zone_t *zone; 3240 3241 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3242 ASSERT(zone != NULL); 3243 /* 3244 * Callers are responsible for preventing attempts to unmount the 3245 * root. 3246 */ 3247 ASSERT(vfsp != rootvfs); 3248 3249 vfs_list_lock(); 3250 3251 /* 3252 * Remove from hash. 3253 */ 3254 vfs_hash_remove(vfsp); 3255 3256 /* 3257 * Remove from vfs list. 3258 */ 3259 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3260 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3261 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3262 3263 /* 3264 * Remove from zone-specific vfs list. 3265 */ 3266 if (zone->zone_vfslist == vfsp) 3267 zone->zone_vfslist = vfsp->vfs_zone_next; 3268 3269 if (vfsp->vfs_zone_next == vfsp) { 3270 ASSERT(vfsp->vfs_zone_prev == vfsp); 3271 ASSERT(zone->zone_vfslist == vfsp); 3272 zone->zone_vfslist = NULL; 3273 } 3274 3275 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3276 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3277 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3278 3279 /* 3280 * update the mnttab modification time 3281 */ 3282 vfs_mnttab_modtimeupd(); 3283 vfs_list_unlock(); 3284 zone_rele(zone); 3285 } 3286 3287 struct vfs * 3288 getvfs(fsid_t *fsid) 3289 { 3290 struct vfs *vfsp; 3291 int val0 = fsid->val[0]; 3292 int val1 = fsid->val[1]; 3293 dev_t dev = expldev(val0); 3294 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3295 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3296 3297 mutex_enter(hmp); 3298 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3299 if (vfsp->vfs_fsid.val[0] == val0 && 3300 vfsp->vfs_fsid.val[1] == val1) { 3301 VFS_HOLD(vfsp); 3302 mutex_exit(hmp); 3303 return (vfsp); 3304 } 3305 } 3306 mutex_exit(hmp); 3307 return (NULL); 3308 } 3309 3310 /* 3311 * Search the vfs mount in progress list for a specified device/vfs entry. 3312 * Returns 0 if the first entry in the list that the device matches has the 3313 * given vfs pointer as well. If the device matches but a different vfs 3314 * pointer is encountered in the list before the given vfs pointer then 3315 * a 1 is returned. 3316 */ 3317 3318 int 3319 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3320 { 3321 int retval = 0; 3322 struct ipmnt *mipp; 3323 3324 mutex_enter(&vfs_miplist_mutex); 3325 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3326 if (mipp->mip_dev == dev) { 3327 if (mipp->mip_vfsp != vfsp) 3328 retval = 1; 3329 break; 3330 } 3331 } 3332 mutex_exit(&vfs_miplist_mutex); 3333 return (retval); 3334 } 3335 3336 /* 3337 * Search the vfs list for a specified device. Returns 1, if entry is found 3338 * or 0 if no suitable entry is found. 3339 */ 3340 3341 int 3342 vfs_devismounted(dev_t dev) 3343 { 3344 struct vfs *vfsp; 3345 int found; 3346 3347 vfs_list_read_lock(); 3348 vfsp = rootvfs; 3349 found = 0; 3350 do { 3351 if (vfsp->vfs_dev == dev) { 3352 found = 1; 3353 break; 3354 } 3355 vfsp = vfsp->vfs_next; 3356 } while (vfsp != rootvfs); 3357 3358 vfs_list_unlock(); 3359 return (found); 3360 } 3361 3362 /* 3363 * Search the vfs list for a specified device. Returns a pointer to it 3364 * or NULL if no suitable entry is found. The caller of this routine 3365 * is responsible for releasing the returned vfs pointer. 3366 */ 3367 struct vfs * 3368 vfs_dev2vfsp(dev_t dev) 3369 { 3370 struct vfs *vfsp; 3371 int found; 3372 3373 vfs_list_read_lock(); 3374 vfsp = rootvfs; 3375 found = 0; 3376 do { 3377 /* 3378 * The following could be made more efficient by making 3379 * the entire loop use vfs_zone_next if the call is from 3380 * a zone. The only callers, however, ustat(2) and 3381 * umount2(2), don't seem to justify the added 3382 * complexity at present. 3383 */ 3384 if (vfsp->vfs_dev == dev && 3385 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3386 curproc->p_zone)) { 3387 VFS_HOLD(vfsp); 3388 found = 1; 3389 break; 3390 } 3391 vfsp = vfsp->vfs_next; 3392 } while (vfsp != rootvfs); 3393 vfs_list_unlock(); 3394 return (found ? vfsp: NULL); 3395 } 3396 3397 /* 3398 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3399 * or NULL if no suitable entry is found. The caller of this routine 3400 * is responsible for releasing the returned vfs pointer. 3401 * 3402 * Note that if multiple mntpoints match, the last one matching is 3403 * returned in an attempt to return the "top" mount when overlay 3404 * mounts are covering the same mount point. This is accomplished by starting 3405 * at the end of the list and working our way backwards, stopping at the first 3406 * matching mount. 3407 */ 3408 struct vfs * 3409 vfs_mntpoint2vfsp(const char *mp) 3410 { 3411 struct vfs *vfsp; 3412 struct vfs *retvfsp = NULL; 3413 zone_t *zone = curproc->p_zone; 3414 struct vfs *list; 3415 3416 vfs_list_read_lock(); 3417 if (getzoneid() == GLOBAL_ZONEID) { 3418 /* 3419 * The global zone may see filesystems in any zone. 3420 */ 3421 vfsp = rootvfs->vfs_prev; 3422 do { 3423 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3424 retvfsp = vfsp; 3425 break; 3426 } 3427 vfsp = vfsp->vfs_prev; 3428 } while (vfsp != rootvfs->vfs_prev); 3429 } else if ((list = zone->zone_vfslist) != NULL) { 3430 const char *mntpt; 3431 3432 vfsp = list->vfs_zone_prev; 3433 do { 3434 mntpt = refstr_value(vfsp->vfs_mntpt); 3435 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3436 if (strcmp(mntpt, mp) == 0) { 3437 retvfsp = vfsp; 3438 break; 3439 } 3440 vfsp = vfsp->vfs_zone_prev; 3441 } while (vfsp != list->vfs_zone_prev); 3442 } 3443 if (retvfsp) 3444 VFS_HOLD(retvfsp); 3445 vfs_list_unlock(); 3446 return (retvfsp); 3447 } 3448 3449 /* 3450 * Search the vfs list for a specified vfsops. 3451 * if vfs entry is found then return 1, else 0. 3452 */ 3453 int 3454 vfs_opsinuse(vfsops_t *ops) 3455 { 3456 struct vfs *vfsp; 3457 int found; 3458 3459 vfs_list_read_lock(); 3460 vfsp = rootvfs; 3461 found = 0; 3462 do { 3463 if (vfs_getops(vfsp) == ops) { 3464 found = 1; 3465 break; 3466 } 3467 vfsp = vfsp->vfs_next; 3468 } while (vfsp != rootvfs); 3469 vfs_list_unlock(); 3470 return (found); 3471 } 3472 3473 /* 3474 * Allocate an entry in vfssw for a file system type 3475 */ 3476 struct vfssw * 3477 allocate_vfssw(char *type) 3478 { 3479 struct vfssw *vswp; 3480 3481 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3482 /* 3483 * The vfssw table uses the empty string to identify an 3484 * available entry; we cannot add any type which has 3485 * a leading NUL. The string length is limited to 3486 * the size of the st_fstype array in struct stat. 3487 */ 3488 return (NULL); 3489 } 3490 3491 ASSERT(VFSSW_WRITE_LOCKED()); 3492 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3493 if (!ALLOCATED_VFSSW(vswp)) { 3494 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3495 (void) strcpy(vswp->vsw_name, type); 3496 ASSERT(vswp->vsw_count == 0); 3497 vswp->vsw_count = 1; 3498 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3499 return (vswp); 3500 } 3501 return (NULL); 3502 } 3503 3504 /* 3505 * Impose additional layer of translation between vfstype names 3506 * and module names in the filesystem. 3507 */ 3508 static char * 3509 vfs_to_modname(char *vfstype) 3510 { 3511 if (strcmp(vfstype, "proc") == 0) { 3512 vfstype = "procfs"; 3513 } else if (strcmp(vfstype, "fd") == 0) { 3514 vfstype = "fdfs"; 3515 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3516 vfstype = "nfs"; 3517 } 3518 3519 return (vfstype); 3520 } 3521 3522 /* 3523 * Find a vfssw entry given a file system type name. 3524 * Try to autoload the filesystem if it's not found. 3525 * If it's installed, return the vfssw locked to prevent unloading. 3526 */ 3527 struct vfssw * 3528 vfs_getvfssw(char *type) 3529 { 3530 struct vfssw *vswp; 3531 char *modname; 3532 3533 RLOCK_VFSSW(); 3534 vswp = vfs_getvfsswbyname(type); 3535 modname = vfs_to_modname(type); 3536 3537 if (rootdir == NULL) { 3538 /* 3539 * If we haven't yet loaded the root file system, then our 3540 * _init won't be called until later. Allocate vfssw entry, 3541 * because mod_installfs won't be called. 3542 */ 3543 if (vswp == NULL) { 3544 RUNLOCK_VFSSW(); 3545 WLOCK_VFSSW(); 3546 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3547 if ((vswp = allocate_vfssw(type)) == NULL) { 3548 WUNLOCK_VFSSW(); 3549 return (NULL); 3550 } 3551 } 3552 WUNLOCK_VFSSW(); 3553 RLOCK_VFSSW(); 3554 } 3555 if (!VFS_INSTALLED(vswp)) { 3556 RUNLOCK_VFSSW(); 3557 (void) modloadonly("fs", modname); 3558 } else 3559 RUNLOCK_VFSSW(); 3560 return (vswp); 3561 } 3562 3563 /* 3564 * Try to load the filesystem. Before calling modload(), we drop 3565 * our lock on the VFS switch table, and pick it up after the 3566 * module is loaded. However, there is a potential race: the 3567 * module could be unloaded after the call to modload() completes 3568 * but before we pick up the lock and drive on. Therefore, 3569 * we keep reloading the module until we've loaded the module 3570 * _and_ we have the lock on the VFS switch table. 3571 */ 3572 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3573 RUNLOCK_VFSSW(); 3574 if (modload("fs", modname) == -1) 3575 return (NULL); 3576 RLOCK_VFSSW(); 3577 if (vswp == NULL) 3578 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3579 break; 3580 } 3581 RUNLOCK_VFSSW(); 3582 3583 return (vswp); 3584 } 3585 3586 /* 3587 * Find a vfssw entry given a file system type name. 3588 */ 3589 struct vfssw * 3590 vfs_getvfsswbyname(char *type) 3591 { 3592 struct vfssw *vswp; 3593 3594 ASSERT(VFSSW_LOCKED()); 3595 if (type == NULL || *type == '\0') 3596 return (NULL); 3597 3598 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3599 if (strcmp(type, vswp->vsw_name) == 0) { 3600 vfs_refvfssw(vswp); 3601 return (vswp); 3602 } 3603 } 3604 3605 return (NULL); 3606 } 3607 3608 /* 3609 * Find a vfssw entry given a set of vfsops. 3610 */ 3611 struct vfssw * 3612 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3613 { 3614 struct vfssw *vswp; 3615 3616 RLOCK_VFSSW(); 3617 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3618 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3619 vfs_refvfssw(vswp); 3620 RUNLOCK_VFSSW(); 3621 return (vswp); 3622 } 3623 } 3624 RUNLOCK_VFSSW(); 3625 3626 return (NULL); 3627 } 3628 3629 /* 3630 * Reference a vfssw entry. 3631 */ 3632 void 3633 vfs_refvfssw(struct vfssw *vswp) 3634 { 3635 3636 mutex_enter(&vswp->vsw_lock); 3637 vswp->vsw_count++; 3638 mutex_exit(&vswp->vsw_lock); 3639 } 3640 3641 /* 3642 * Unreference a vfssw entry. 3643 */ 3644 void 3645 vfs_unrefvfssw(struct vfssw *vswp) 3646 { 3647 3648 mutex_enter(&vswp->vsw_lock); 3649 vswp->vsw_count--; 3650 mutex_exit(&vswp->vsw_lock); 3651 } 3652 3653 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3654 int sync_timeleft; /* portion of sync_timeout remaining */ 3655 3656 static int sync_retries = 20; /* number of retries when not making progress */ 3657 static int sync_triesleft; /* portion of sync_retries remaining */ 3658 3659 static pgcnt_t old_pgcnt, new_pgcnt; 3660 static int new_bufcnt, old_bufcnt; 3661 3662 /* 3663 * Sync all of the mounted filesystems, and then wait for the actual i/o to 3664 * complete. We wait by counting the number of dirty pages and buffers, 3665 * pushing them out using bio_busy() and page_busy(), and then counting again. 3666 * This routine is used during both the uadmin A_SHUTDOWN code as well as 3667 * the SYNC phase of the panic code (see comments in panic.c). It should only 3668 * be used after some higher-level mechanism has quiesced the system so that 3669 * new writes are not being initiated while we are waiting for completion. 3670 * 3671 * To ensure finite running time, our algorithm uses two timeout mechanisms: 3672 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 3673 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 3674 * Together these ensure that syncing completes if our i/o paths are stuck. 3675 * The counters are declared above so they can be found easily in the debugger. 3676 * 3677 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 3678 * vfs_syncprogress() subroutine whenever we make progress through the lists of 3679 * pages and buffers. It is decremented and expired by the deadman() cyclic. 3680 * When vfs_syncall() decides it is done, we disable the deadman() counter by 3681 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 3682 * deadlocking or hanging inside of a broken filesystem or driver routine. 3683 * 3684 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 3685 * sync_retries consecutive calls to bio_busy() and page_busy() without 3686 * decreasing either the number of dirty buffers or dirty pages below the 3687 * lowest count we have seen so far, we give up and return from vfs_syncall(). 3688 * 3689 * Each loop iteration ends with a call to delay() one second to allow time for 3690 * i/o completion and to permit the user time to read our progress messages. 3691 */ 3692 void 3693 vfs_syncall(void) 3694 { 3695 if (rootdir == NULL && !modrootloaded) 3696 return; /* panic during boot - no filesystems yet */ 3697 3698 printf("syncing file systems..."); 3699 vfs_syncprogress(); 3700 sync(); 3701 3702 vfs_syncprogress(); 3703 sync_triesleft = sync_retries; 3704 3705 old_bufcnt = new_bufcnt = INT_MAX; 3706 old_pgcnt = new_pgcnt = ULONG_MAX; 3707 3708 while (sync_triesleft > 0) { 3709 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 3710 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 3711 3712 new_bufcnt = bio_busy(B_TRUE); 3713 new_pgcnt = page_busy(B_TRUE); 3714 vfs_syncprogress(); 3715 3716 if (new_bufcnt == 0 && new_pgcnt == 0) 3717 break; 3718 3719 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 3720 sync_triesleft = sync_retries; 3721 else 3722 sync_triesleft--; 3723 3724 if (new_bufcnt) 3725 printf(" [%d]", new_bufcnt); 3726 if (new_pgcnt) 3727 printf(" %lu", new_pgcnt); 3728 3729 delay(hz); 3730 } 3731 3732 if (new_bufcnt != 0 || new_pgcnt != 0) 3733 printf(" done (not all i/o completed)\n"); 3734 else 3735 printf(" done\n"); 3736 3737 sync_timeleft = 0; 3738 delay(hz); 3739 } 3740 3741 /* 3742 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 3743 * sync_timeout to indicate that we are making progress and the deadman() 3744 * omnipresent cyclic should not yet time us out. Note that it is safe to 3745 * store to sync_timeleft here since the deadman() is firing at high-level 3746 * on top of us. If we are racing with the deadman(), either the deadman() 3747 * will decrement the old value and then we will reset it, or we will 3748 * reset it and then the deadman() will immediately decrement it. In either 3749 * case, correct behavior results. 3750 */ 3751 void 3752 vfs_syncprogress(void) 3753 { 3754 if (panicstr) 3755 sync_timeleft = sync_timeout; 3756 } 3757 3758 /* 3759 * Map VFS flags to statvfs flags. These shouldn't really be separate 3760 * flags at all. 3761 */ 3762 uint_t 3763 vf_to_stf(uint_t vf) 3764 { 3765 uint_t stf = 0; 3766 3767 if (vf & VFS_RDONLY) 3768 stf |= ST_RDONLY; 3769 if (vf & VFS_NOSETUID) 3770 stf |= ST_NOSUID; 3771 if (vf & VFS_NOTRUNC) 3772 stf |= ST_NOTRUNC; 3773 3774 return (stf); 3775 } 3776 3777 /* 3778 * Entries for (illegal) fstype 0. 3779 */ 3780 /* ARGSUSED */ 3781 int 3782 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 3783 { 3784 cmn_err(CE_PANIC, "stray vfs operation"); 3785 return (0); 3786 } 3787 3788 /* 3789 * Entries for (illegal) fstype 0. 3790 */ 3791 int 3792 vfsstray(void) 3793 { 3794 cmn_err(CE_PANIC, "stray vfs operation"); 3795 return (0); 3796 } 3797 3798 /* 3799 * Support for dealing with forced UFS unmount and its interaction with 3800 * LOFS. Could be used by any filesystem. 3801 * See bug 1203132. 3802 */ 3803 int 3804 vfs_EIO(void) 3805 { 3806 return (EIO); 3807 } 3808 3809 /* 3810 * We've gotta define the op for sync separately, since the compiler gets 3811 * confused if we mix and match ANSI and normal style prototypes when 3812 * a "short" argument is present and spits out a warning. 3813 */ 3814 /*ARGSUSED*/ 3815 int 3816 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 3817 { 3818 return (EIO); 3819 } 3820 3821 vfs_t EIO_vfs; 3822 vfsops_t *EIO_vfsops; 3823 3824 /* 3825 * Called from startup() to initialize all loaded vfs's 3826 */ 3827 void 3828 vfsinit(void) 3829 { 3830 struct vfssw *vswp; 3831 int error; 3832 extern int vopstats_enabled; 3833 extern void vopstats_startup(); 3834 3835 static const fs_operation_def_t EIO_vfsops_template[] = { 3836 VFSNAME_MOUNT, { .error = vfs_EIO }, 3837 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 3838 VFSNAME_ROOT, { .error = vfs_EIO }, 3839 VFSNAME_STATVFS, { .error = vfs_EIO }, 3840 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 3841 VFSNAME_VGET, { .error = vfs_EIO }, 3842 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 3843 VFSNAME_FREEVFS, { .error = vfs_EIO }, 3844 VFSNAME_VNSTATE, { .error = vfs_EIO }, 3845 NULL, NULL 3846 }; 3847 3848 static const fs_operation_def_t stray_vfsops_template[] = { 3849 VFSNAME_MOUNT, { .error = vfsstray }, 3850 VFSNAME_UNMOUNT, { .error = vfsstray }, 3851 VFSNAME_ROOT, { .error = vfsstray }, 3852 VFSNAME_STATVFS, { .error = vfsstray }, 3853 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 3854 VFSNAME_VGET, { .error = vfsstray }, 3855 VFSNAME_MOUNTROOT, { .error = vfsstray }, 3856 VFSNAME_FREEVFS, { .error = vfsstray }, 3857 VFSNAME_VNSTATE, { .error = vfsstray }, 3858 NULL, NULL 3859 }; 3860 3861 /* Initialize the vnode cache (file systems may use it during init). */ 3862 3863 vn_create_cache(); 3864 3865 /* Setup event monitor framework */ 3866 3867 fem_init(); 3868 3869 /* Initialize the dummy stray file system type. */ 3870 error = vfs_setfsops(0, stray_vfsops_template, NULL); 3871 3872 /* Initialize the dummy EIO file system. */ 3873 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 3874 if (error != 0) { 3875 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 3876 /* Shouldn't happen, but not bad enough to panic */ 3877 } 3878 3879 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 3880 3881 /* 3882 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 3883 * on this vfs can immediately notice it's invalid. 3884 */ 3885 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 3886 3887 /* 3888 * Call the init routines of non-loadable filesystems only. 3889 * Filesystems which are loaded as separate modules will be 3890 * initialized by the module loading code instead. 3891 */ 3892 3893 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3894 RLOCK_VFSSW(); 3895 if (vswp->vsw_init != NULL) 3896 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 3897 RUNLOCK_VFSSW(); 3898 } 3899 3900 vopstats_startup(); 3901 3902 if (vopstats_enabled) { 3903 /* EIO_vfs can collect stats, but we don't retrieve them */ 3904 initialize_vopstats(&EIO_vfs.vfs_vopstats); 3905 EIO_vfs.vfs_fstypevsp = NULL; 3906 EIO_vfs.vfs_vskap = NULL; 3907 EIO_vfs.vfs_flag |= VFS_STATS; 3908 } 3909 } 3910 3911 /* 3912 * Increments the vfs reference count by one atomically. 3913 */ 3914 void 3915 vfs_hold(vfs_t *vfsp) 3916 { 3917 atomic_add_32(&vfsp->vfs_count, 1); 3918 ASSERT(vfsp->vfs_count != 0); 3919 } 3920 3921 /* 3922 * Decrements the vfs reference count by one atomically. When 3923 * vfs reference count becomes zero, it calls the file system 3924 * specific vfs_freevfs() to free up the resources. 3925 */ 3926 void 3927 vfs_rele(vfs_t *vfsp) 3928 { 3929 ASSERT(vfsp->vfs_count != 0); 3930 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 3931 VFS_FREEVFS(vfsp); 3932 if (vfsp->vfs_zone) 3933 zone_rele(vfsp->vfs_zone); 3934 vfs_freemnttab(vfsp); 3935 if (vfsp->vfs_implp) 3936 vfsimpl_teardown(vfsp); 3937 sema_destroy(&vfsp->vfs_reflock); 3938 kmem_free(vfsp, sizeof (*vfsp)); 3939 } 3940 } 3941 3942 /* 3943 * Generic operations vector support. 3944 * 3945 * This is used to build operations vectors for both the vfs and vnode. 3946 * It's normally called only when a file system is loaded. 3947 * 3948 * There are many possible algorithms for this, including the following: 3949 * 3950 * (1) scan the list of known operations; for each, see if the file system 3951 * includes an entry for it, and fill it in as appropriate. 3952 * 3953 * (2) set up defaults for all known operations. scan the list of ops 3954 * supplied by the file system; for each which is both supplied and 3955 * known, fill it in. 3956 * 3957 * (3) sort the lists of known ops & supplied ops; scan the list, filling 3958 * in entries as we go. 3959 * 3960 * we choose (1) for simplicity, and because performance isn't critical here. 3961 * note that (2) could be sped up using a precomputed hash table on known ops. 3962 * (3) could be faster than either, but only if the lists were very large or 3963 * supplied in sorted order. 3964 * 3965 */ 3966 3967 int 3968 fs_build_vector(void *vector, int *unused_ops, 3969 const fs_operation_trans_def_t *translation, 3970 const fs_operation_def_t *operations) 3971 { 3972 int i, num_trans, num_ops, used; 3973 3974 /* 3975 * Count the number of translations and the number of supplied 3976 * operations. 3977 */ 3978 3979 { 3980 const fs_operation_trans_def_t *p; 3981 3982 for (num_trans = 0, p = translation; 3983 p->name != NULL; 3984 num_trans++, p++) 3985 ; 3986 } 3987 3988 { 3989 const fs_operation_def_t *p; 3990 3991 for (num_ops = 0, p = operations; 3992 p->name != NULL; 3993 num_ops++, p++) 3994 ; 3995 } 3996 3997 /* Walk through each operation known to our caller. There will be */ 3998 /* one entry in the supplied "translation table" for each. */ 3999 4000 used = 0; 4001 4002 for (i = 0; i < num_trans; i++) { 4003 int j, found; 4004 char *curname; 4005 fs_generic_func_p result; 4006 fs_generic_func_p *location; 4007 4008 curname = translation[i].name; 4009 4010 /* Look for a matching operation in the list supplied by the */ 4011 /* file system. */ 4012 4013 found = 0; 4014 4015 for (j = 0; j < num_ops; j++) { 4016 if (strcmp(operations[j].name, curname) == 0) { 4017 used++; 4018 found = 1; 4019 break; 4020 } 4021 } 4022 4023 /* 4024 * If the file system is using a "placeholder" for default 4025 * or error functions, grab the appropriate function out of 4026 * the translation table. If the file system didn't supply 4027 * this operation at all, use the default function. 4028 */ 4029 4030 if (found) { 4031 result = operations[j].func.fs_generic; 4032 if (result == fs_default) { 4033 result = translation[i].defaultFunc; 4034 } else if (result == fs_error) { 4035 result = translation[i].errorFunc; 4036 } else if (result == NULL) { 4037 /* Null values are PROHIBITED */ 4038 return (EINVAL); 4039 } 4040 } else { 4041 result = translation[i].defaultFunc; 4042 } 4043 4044 /* Now store the function into the operations vector. */ 4045 4046 location = (fs_generic_func_p *) 4047 (((char *)vector) + translation[i].offset); 4048 4049 *location = result; 4050 } 4051 4052 *unused_ops = num_ops - used; 4053 4054 return (0); 4055 } 4056 4057 /* Placeholder functions, should never be called. */ 4058 4059 int 4060 fs_error(void) 4061 { 4062 cmn_err(CE_PANIC, "fs_error called"); 4063 return (0); 4064 } 4065 4066 int 4067 fs_default(void) 4068 { 4069 cmn_err(CE_PANIC, "fs_default called"); 4070 return (0); 4071 } 4072 4073 #ifdef __sparc 4074 4075 /* 4076 * Part of the implementation of booting off a mirrored root 4077 * involves a change of dev_t for the root device. To 4078 * accomplish this, first remove the existing hash table 4079 * entry for the root device, convert to the new dev_t, 4080 * then re-insert in the hash table at the head of the list. 4081 */ 4082 void 4083 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4084 { 4085 vfs_list_lock(); 4086 4087 vfs_hash_remove(vfsp); 4088 4089 vfsp->vfs_dev = ndev; 4090 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4091 4092 vfs_hash_add(vfsp, 1); 4093 4094 vfs_list_unlock(); 4095 } 4096 4097 #else /* x86 NEWBOOT */ 4098 4099 int 4100 rootconf() 4101 { 4102 int error; 4103 struct vfssw *vsw; 4104 extern void pm_init(); 4105 char *fstyp; 4106 4107 fstyp = getrootfs(); 4108 4109 if (error = clboot_rootconf()) 4110 return (error); 4111 4112 if (modload("fs", fstyp) == -1) 4113 panic("Cannot _init %s module", fstyp); 4114 4115 RLOCK_VFSSW(); 4116 vsw = vfs_getvfsswbyname(fstyp); 4117 RUNLOCK_VFSSW(); 4118 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4119 VFS_HOLD(rootvfs); 4120 4121 /* always mount readonly first */ 4122 rootvfs->vfs_flag |= VFS_RDONLY; 4123 4124 pm_init(); 4125 4126 if (netboot) 4127 (void) strplumb(); 4128 4129 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4130 vfs_unrefvfssw(vsw); 4131 rootdev = rootvfs->vfs_dev; 4132 4133 if (error) 4134 panic("cannot mount root path %s", rootfs.bo_name); 4135 return (error); 4136 } 4137 4138 /* 4139 * XXX this is called by nfs only and should probably be removed 4140 * If booted with ASKNAME, prompt on the console for a filesystem 4141 * name and return it. 4142 */ 4143 void 4144 getfsname(char *askfor, char *name, size_t namelen) 4145 { 4146 if (boothowto & RB_ASKNAME) { 4147 printf("%s name: ", askfor); 4148 console_gets(name, namelen); 4149 } 4150 } 4151 4152 /* 4153 * If server_path exists, then we are booting a diskless 4154 * client. Otherwise, we default to ufs. Zfs should perhaps be 4155 * another property. 4156 */ 4157 static char * 4158 getrootfs(void) 4159 { 4160 extern char *strplumb_get_netdev_path(void); 4161 char *propstr = NULL; 4162 4163 /* check fstype property; it should be nfsdyn for diskless */ 4164 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4165 DDI_PROP_DONTPASS, "fstype", &propstr) 4166 == DDI_SUCCESS) { 4167 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4168 ddi_prop_free(propstr); 4169 4170 /* 4171 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4172 * assume the type of this root filesystem is 'zfs'. 4173 */ 4174 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4175 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4176 == DDI_SUCCESS) { 4177 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4178 ddi_prop_free(propstr); 4179 } 4180 4181 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) 4182 return (rootfs.bo_fstype); 4183 4184 ++netboot; 4185 /* check if path to network interface is specified in bootpath */ 4186 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4187 DDI_PROP_DONTPASS, "bootpath", &propstr) 4188 == DDI_SUCCESS) { 4189 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4190 ddi_prop_free(propstr); 4191 } else { 4192 /* attempt to determine netdev_path via boot_mac address */ 4193 netdev_path = strplumb_get_netdev_path(); 4194 if (netdev_path == NULL) 4195 panic("cannot find boot network interface"); 4196 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4197 } 4198 return ("nfs"); 4199 } 4200 #endif 4201