1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/t_lock.h> 42 #include <sys/param.h> 43 #include <sys/errno.h> 44 #include <sys/user.h> 45 #include <sys/fstyp.h> 46 #include <sys/kmem.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/mount.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/fem.h> 53 #include <sys/mntent.h> 54 #include <sys/stat.h> 55 #include <sys/statvfs.h> 56 #include <sys/statfs.h> 57 #include <sys/cred.h> 58 #include <sys/vnode.h> 59 #include <sys/rwstlock.h> 60 #include <sys/dnlc.h> 61 #include <sys/file.h> 62 #include <sys/time.h> 63 #include <sys/atomic.h> 64 #include <sys/cmn_err.h> 65 #include <sys/buf.h> 66 #include <sys/swap.h> 67 #include <sys/debug.h> 68 #include <sys/vnode.h> 69 #include <sys/modctl.h> 70 #include <sys/ddi.h> 71 #include <sys/pathname.h> 72 #include <sys/bootconf.h> 73 #include <sys/dumphdr.h> 74 #include <sys/dc_ki.h> 75 #include <sys/poll.h> 76 #include <sys/sunddi.h> 77 #include <sys/sysmacros.h> 78 #include <sys/zone.h> 79 #include <sys/policy.h> 80 #include <sys/ctfs.h> 81 #include <sys/objfs.h> 82 #include <sys/console.h> 83 #include <sys/reboot.h> 84 #include <sys/attr.h> 85 #include <sys/zio.h> 86 #include <sys/spa.h> 87 #include <sys/lofi.h> 88 #include <sys/bootprops.h> 89 90 #include <vm/page.h> 91 92 #include <fs/fs_subr.h> 93 /* Private interfaces to create vopstats-related data structures */ 94 extern void initialize_vopstats(vopstats_t *); 95 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 96 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 97 98 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 99 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 100 const char *, int, int); 101 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 102 static void vfs_freemnttab(struct vfs *); 103 static void vfs_freeopt(mntopt_t *); 104 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 105 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 106 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 107 static void vfs_createopttbl_extend(mntopts_t *, const char *, 108 const mntopts_t *); 109 static char **vfs_copycancelopt_extend(char **const, int); 110 static void vfs_freecancelopt(char **); 111 static void getrootfs(char **, char **); 112 static int getmacpath(dev_info_t *, void *); 113 static void vfs_mnttabvp_setup(void); 114 115 struct ipmnt { 116 struct ipmnt *mip_next; 117 dev_t mip_dev; 118 struct vfs *mip_vfsp; 119 }; 120 121 static kmutex_t vfs_miplist_mutex; 122 static struct ipmnt *vfs_miplist = NULL; 123 static struct ipmnt *vfs_miplist_end = NULL; 124 125 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 126 127 /* 128 * VFS global data. 129 */ 130 vnode_t *rootdir; /* pointer to root inode vnode. */ 131 vnode_t *devicesdir; /* pointer to inode of devices root */ 132 vnode_t *devdir; /* pointer to inode of dev root */ 133 134 char *server_rootpath; /* root path for diskless clients */ 135 char *server_hostname; /* hostname of diskless server */ 136 137 static struct vfs root; 138 static struct vfs devices; 139 static struct vfs dev; 140 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 141 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 142 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 143 /* must be power of 2! */ 144 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 145 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 146 char *vfs_dummyfstype = "\0"; 147 struct pollhead vfs_pollhd; /* for mnttab pollers */ 148 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 149 int mntfstype; /* will be set once mnt fs is mounted */ 150 151 /* 152 * Table for generic options recognized in the VFS layer and acted 153 * on at this level before parsing file system specific options. 154 * The nosuid option is stronger than any of the devices and setuid 155 * options, so those are canceled when nosuid is seen. 156 * 157 * All options which are added here need to be added to the 158 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 159 */ 160 /* 161 * VFS Mount options table 162 */ 163 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 164 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 165 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 166 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 167 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 168 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 169 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 170 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 171 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 172 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 173 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 174 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 175 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 176 177 static const mntopt_t mntopts[] = { 178 /* 179 * option name cancel options default arg flags 180 */ 181 { MNTOPT_REMOUNT, NULL, NULL, 182 MO_NODISPLAY, (void *)0 }, 183 { MNTOPT_RO, ro_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_RW, rw_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_SUID, suid_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 200 (void *)0 }, 201 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 202 (void *)0 }, 203 { MNTOPT_EXEC, exec_cancel, NULL, 0, 204 (void *)0 }, 205 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 206 (void *)0 }, 207 }; 208 209 const mntopts_t vfs_mntopts = { 210 sizeof (mntopts) / sizeof (mntopt_t), 211 (mntopt_t *)&mntopts[0] 212 }; 213 214 /* 215 * File system operation dispatch functions. 216 */ 217 218 int 219 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 220 { 221 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 222 } 223 224 int 225 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 226 { 227 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 228 } 229 230 int 231 fsop_root(vfs_t *vfsp, vnode_t **vpp) 232 { 233 refstr_t *mntpt; 234 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 235 /* 236 * Make sure this root has a path. With lofs, it is possible to have 237 * a NULL mountpoint. 238 */ 239 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 240 mntpt = vfs_getmntpoint(vfsp); 241 vn_setpath_str(*vpp, refstr_value(mntpt), 242 strlen(refstr_value(mntpt))); 243 refstr_rele(mntpt); 244 } 245 246 return (ret); 247 } 248 249 int 250 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 251 { 252 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 253 } 254 255 int 256 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 257 { 258 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 259 } 260 261 int 262 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 263 { 264 /* 265 * In order to handle system attribute fids in a manner 266 * transparent to the underlying fs, we embed the fid for 267 * the sysattr parent object in the sysattr fid and tack on 268 * some extra bytes that only the sysattr layer knows about. 269 * 270 * This guarantees that sysattr fids are larger than other fids 271 * for this vfs. If the vfs supports the sysattr view interface 272 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 273 * collision with XATTR_FIDSZ. 274 */ 275 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 276 fidp->fid_len == XATTR_FIDSZ) 277 return (xattr_dir_vget(vfsp, vpp, fidp)); 278 279 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 280 } 281 282 int 283 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 284 { 285 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 286 } 287 288 void 289 fsop_freefs(vfs_t *vfsp) 290 { 291 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 292 } 293 294 int 295 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 296 { 297 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 298 } 299 300 int 301 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 302 { 303 ASSERT((fstype >= 0) && (fstype < nfstype)); 304 305 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 306 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 307 else 308 return (ENOTSUP); 309 } 310 311 /* 312 * File system initialization. vfs_setfsops() must be called from a file 313 * system's init routine. 314 */ 315 316 static int 317 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 318 int *unused_ops) 319 { 320 static const fs_operation_trans_def_t vfs_ops_table[] = { 321 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 322 fs_nosys, fs_nosys, 323 324 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 325 fs_nosys, fs_nosys, 326 327 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 328 fs_nosys, fs_nosys, 329 330 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 331 fs_nosys, fs_nosys, 332 333 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 334 (fs_generic_func_p) fs_sync, 335 (fs_generic_func_p) fs_sync, /* No errors allowed */ 336 337 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 338 fs_nosys, fs_nosys, 339 340 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 341 fs_nosys, fs_nosys, 342 343 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 344 (fs_generic_func_p)fs_freevfs, 345 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 346 347 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 348 (fs_generic_func_p)fs_nosys, 349 (fs_generic_func_p)fs_nosys, 350 351 NULL, 0, NULL, NULL 352 }; 353 354 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 355 } 356 357 void 358 zfs_boot_init() { 359 360 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 361 spa_boot_init(); 362 } 363 364 int 365 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 366 { 367 int error; 368 int unused_ops; 369 370 /* 371 * Verify that fstype refers to a valid fs. Note that 372 * 0 is valid since it's used to set "stray" ops. 373 */ 374 if ((fstype < 0) || (fstype >= nfstype)) 375 return (EINVAL); 376 377 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 378 return (EINVAL); 379 380 /* Set up the operations vector. */ 381 382 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 383 384 if (error != 0) 385 return (error); 386 387 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 388 389 if (actual != NULL) 390 *actual = &vfssw[fstype].vsw_vfsops; 391 392 #if DEBUG 393 if (unused_ops != 0) 394 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 395 "but not used", vfssw[fstype].vsw_name, unused_ops); 396 #endif 397 398 return (0); 399 } 400 401 int 402 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 403 { 404 int error; 405 int unused_ops; 406 407 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 408 409 error = fs_copyfsops(template, *actual, &unused_ops); 410 if (error != 0) { 411 kmem_free(*actual, sizeof (vfsops_t)); 412 *actual = NULL; 413 return (error); 414 } 415 416 return (0); 417 } 418 419 /* 420 * Free a vfsops structure created as a result of vfs_makefsops(). 421 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 422 * vfs_freevfsops_by_type(). 423 */ 424 void 425 vfs_freevfsops(vfsops_t *vfsops) 426 { 427 kmem_free(vfsops, sizeof (vfsops_t)); 428 } 429 430 /* 431 * Since the vfsops structure is part of the vfssw table and wasn't 432 * really allocated, we're not really freeing anything. We keep 433 * the name for consistency with vfs_freevfsops(). We do, however, 434 * need to take care of a little bookkeeping. 435 * NOTE: For a vfsops structure created by vfs_setfsops(), use 436 * vfs_freevfsops_by_type(). 437 */ 438 int 439 vfs_freevfsops_by_type(int fstype) 440 { 441 442 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 443 if ((fstype <= 0) || (fstype >= nfstype)) 444 return (EINVAL); 445 446 WLOCK_VFSSW(); 447 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 448 WUNLOCK_VFSSW(); 449 return (EINVAL); 450 } 451 452 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 453 WUNLOCK_VFSSW(); 454 455 return (0); 456 } 457 458 /* Support routines used to reference vfs_op */ 459 460 /* Set the operations vector for a vfs */ 461 void 462 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 463 { 464 vfsops_t *op; 465 466 ASSERT(vfsp != NULL); 467 ASSERT(vfsops != NULL); 468 469 op = vfsp->vfs_op; 470 membar_consumer(); 471 if (vfsp->vfs_femhead == NULL && 472 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 473 return; 474 } 475 fsem_setvfsops(vfsp, vfsops); 476 } 477 478 /* Retrieve the operations vector for a vfs */ 479 vfsops_t * 480 vfs_getops(vfs_t *vfsp) 481 { 482 vfsops_t *op; 483 484 ASSERT(vfsp != NULL); 485 486 op = vfsp->vfs_op; 487 membar_consumer(); 488 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 489 return (op); 490 } else { 491 return (fsem_getvfsops(vfsp)); 492 } 493 } 494 495 /* 496 * Returns non-zero (1) if the vfsops matches that of the vfs. 497 * Returns zero (0) if not. 498 */ 499 int 500 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 501 { 502 return (vfs_getops(vfsp) == vfsops); 503 } 504 505 /* 506 * Returns non-zero (1) if the file system has installed a non-default, 507 * non-error vfs_sync routine. Returns zero (0) otherwise. 508 */ 509 int 510 vfs_can_sync(vfs_t *vfsp) 511 { 512 /* vfs_sync() routine is not the default/error function */ 513 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 514 } 515 516 /* 517 * Initialize a vfs structure. 518 */ 519 void 520 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 521 { 522 /* Other initialization has been moved to vfs_alloc() */ 523 vfsp->vfs_count = 0; 524 vfsp->vfs_next = vfsp; 525 vfsp->vfs_prev = vfsp; 526 vfsp->vfs_zone_next = vfsp; 527 vfsp->vfs_zone_prev = vfsp; 528 vfsp->vfs_lofi_minor = 0; 529 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 530 vfsimpl_setup(vfsp); 531 vfsp->vfs_data = (data); 532 vfs_setops((vfsp), (op)); 533 } 534 535 /* 536 * Allocate and initialize the vfs implementation private data 537 * structure, vfs_impl_t. 538 */ 539 void 540 vfsimpl_setup(vfs_t *vfsp) 541 { 542 int i; 543 544 if (vfsp->vfs_implp != NULL) { 545 return; 546 } 547 548 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 549 /* Note that these are #define'd in vfs.h */ 550 vfsp->vfs_vskap = NULL; 551 vfsp->vfs_fstypevsp = NULL; 552 553 /* Set size of counted array, then zero the array */ 554 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 555 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 556 vfsp->vfs_featureset[i] = 0; 557 } 558 } 559 560 /* 561 * Release the vfs_impl_t structure, if it exists. Some unbundled 562 * filesystems may not use the newer version of vfs and thus 563 * would not contain this implementation private data structure. 564 */ 565 void 566 vfsimpl_teardown(vfs_t *vfsp) 567 { 568 vfs_impl_t *vip = vfsp->vfs_implp; 569 570 if (vip == NULL) 571 return; 572 573 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 574 vfsp->vfs_implp = NULL; 575 } 576 577 /* 578 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 579 * fstatvfs, and sysfs moved to common/syscall. 580 */ 581 582 /* 583 * Update every mounted file system. We call the vfs_sync operation of 584 * each file system type, passing it a NULL vfsp to indicate that all 585 * mounted file systems of that type should be updated. 586 */ 587 void 588 vfs_sync(int flag) 589 { 590 struct vfssw *vswp; 591 RLOCK_VFSSW(); 592 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 593 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 594 vfs_refvfssw(vswp); 595 RUNLOCK_VFSSW(); 596 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 597 CRED()); 598 vfs_unrefvfssw(vswp); 599 RLOCK_VFSSW(); 600 } 601 } 602 RUNLOCK_VFSSW(); 603 } 604 605 void 606 sync(void) 607 { 608 vfs_sync(0); 609 } 610 611 /* 612 * External routines. 613 */ 614 615 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 616 617 /* 618 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 619 * but otherwise should be accessed only via vfs_list_lock() and 620 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 621 */ 622 static krwlock_t vfslist; 623 624 /* 625 * Mount devfs on /devices. This is done right after root is mounted 626 * to provide device access support for the system 627 */ 628 static void 629 vfs_mountdevices(void) 630 { 631 struct vfssw *vsw; 632 struct vnode *mvp; 633 struct mounta mounta = { /* fake mounta for devfs_mount() */ 634 NULL, 635 NULL, 636 MS_SYSSPACE, 637 NULL, 638 NULL, 639 0, 640 NULL, 641 0 642 }; 643 644 /* 645 * _init devfs module to fill in the vfssw 646 */ 647 if (modload("fs", "devfs") == -1) 648 panic("Cannot _init devfs module"); 649 650 /* 651 * Hold vfs 652 */ 653 RLOCK_VFSSW(); 654 vsw = vfs_getvfsswbyname("devfs"); 655 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 656 VFS_HOLD(&devices); 657 658 /* 659 * Locate mount point 660 */ 661 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 662 panic("Cannot find /devices"); 663 664 /* 665 * Perform the mount of /devices 666 */ 667 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 668 panic("Cannot mount /devices"); 669 670 RUNLOCK_VFSSW(); 671 672 /* 673 * Set appropriate members and add to vfs list for mnttab display 674 */ 675 vfs_setresource(&devices, "/devices", 0); 676 vfs_setmntpoint(&devices, "/devices", 0); 677 678 /* 679 * Hold the root of /devices so it won't go away 680 */ 681 if (VFS_ROOT(&devices, &devicesdir)) 682 panic("vfs_mountdevices: not devices root"); 683 684 if (vfs_lock(&devices) != 0) { 685 VN_RELE(devicesdir); 686 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 687 return; 688 } 689 690 if (vn_vfswlock(mvp) != 0) { 691 vfs_unlock(&devices); 692 VN_RELE(devicesdir); 693 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 694 return; 695 } 696 697 vfs_add(mvp, &devices, 0); 698 vn_vfsunlock(mvp); 699 vfs_unlock(&devices); 700 VN_RELE(devicesdir); 701 } 702 703 /* 704 * mount the first instance of /dev to root and remain mounted 705 */ 706 static void 707 vfs_mountdev1(void) 708 { 709 struct vfssw *vsw; 710 struct vnode *mvp; 711 struct mounta mounta = { /* fake mounta for sdev_mount() */ 712 NULL, 713 NULL, 714 MS_SYSSPACE | MS_OVERLAY, 715 NULL, 716 NULL, 717 0, 718 NULL, 719 0 720 }; 721 722 /* 723 * _init dev module to fill in the vfssw 724 */ 725 if (modload("fs", "dev") == -1) 726 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 727 728 /* 729 * Hold vfs 730 */ 731 RLOCK_VFSSW(); 732 vsw = vfs_getvfsswbyname("dev"); 733 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 734 VFS_HOLD(&dev); 735 736 /* 737 * Locate mount point 738 */ 739 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 740 cmn_err(CE_PANIC, "Cannot find /dev\n"); 741 742 /* 743 * Perform the mount of /dev 744 */ 745 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 746 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 747 748 RUNLOCK_VFSSW(); 749 750 /* 751 * Set appropriate members and add to vfs list for mnttab display 752 */ 753 vfs_setresource(&dev, "/dev", 0); 754 vfs_setmntpoint(&dev, "/dev", 0); 755 756 /* 757 * Hold the root of /dev so it won't go away 758 */ 759 if (VFS_ROOT(&dev, &devdir)) 760 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 761 762 if (vfs_lock(&dev) != 0) { 763 VN_RELE(devdir); 764 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 765 return; 766 } 767 768 if (vn_vfswlock(mvp) != 0) { 769 vfs_unlock(&dev); 770 VN_RELE(devdir); 771 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 772 return; 773 } 774 775 vfs_add(mvp, &dev, 0); 776 vn_vfsunlock(mvp); 777 vfs_unlock(&dev); 778 VN_RELE(devdir); 779 } 780 781 /* 782 * Mount required filesystem. This is done right after root is mounted. 783 */ 784 static void 785 vfs_mountfs(char *module, char *spec, char *path) 786 { 787 struct vnode *mvp; 788 struct mounta mounta; 789 vfs_t *vfsp; 790 791 mounta.flags = MS_SYSSPACE | MS_DATA; 792 mounta.fstype = module; 793 mounta.spec = spec; 794 mounta.dir = path; 795 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 796 cmn_err(CE_WARN, "Cannot find %s", path); 797 return; 798 } 799 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 800 cmn_err(CE_WARN, "Cannot mount %s", path); 801 else 802 VFS_RELE(vfsp); 803 VN_RELE(mvp); 804 } 805 806 /* 807 * vfs_mountroot is called by main() to mount the root filesystem. 808 */ 809 void 810 vfs_mountroot(void) 811 { 812 struct vnode *rvp = NULL; 813 char *path; 814 size_t plen; 815 struct vfssw *vswp; 816 proc_t *p; 817 818 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 819 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 820 821 /* 822 * Alloc the vfs hash bucket array and locks 823 */ 824 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 825 826 /* 827 * Call machine-dependent routine "rootconf" to choose a root 828 * file system type. 829 */ 830 if (rootconf()) 831 panic("vfs_mountroot: cannot mount root"); 832 /* 833 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 834 * to point to it. These are used by lookuppn() so that it 835 * knows where to start from ('/' or '.'). 836 */ 837 vfs_setmntpoint(rootvfs, "/", 0); 838 if (VFS_ROOT(rootvfs, &rootdir)) 839 panic("vfs_mountroot: no root vnode"); 840 841 /* 842 * At this point, the process tree consists of p0 and possibly some 843 * direct children of p0. (i.e. there are no grandchildren) 844 * 845 * Walk through them all, setting their current directory. 846 */ 847 mutex_enter(&pidlock); 848 for (p = practive; p != NULL; p = p->p_next) { 849 ASSERT(p == &p0 || p->p_parent == &p0); 850 851 PTOU(p)->u_cdir = rootdir; 852 VN_HOLD(PTOU(p)->u_cdir); 853 PTOU(p)->u_rdir = NULL; 854 } 855 mutex_exit(&pidlock); 856 857 /* 858 * Setup the global zone's rootvp, now that it exists. 859 */ 860 global_zone->zone_rootvp = rootdir; 861 VN_HOLD(global_zone->zone_rootvp); 862 863 /* 864 * Notify the module code that it can begin using the 865 * root filesystem instead of the boot program's services. 866 */ 867 modrootloaded = 1; 868 869 /* 870 * Special handling for a ZFS root file system. 871 */ 872 zfs_boot_init(); 873 874 /* 875 * Set up mnttab information for root 876 */ 877 vfs_setresource(rootvfs, rootfs.bo_name, 0); 878 879 /* 880 * Notify cluster software that the root filesystem is available. 881 */ 882 clboot_mountroot(); 883 884 /* Now that we're all done with the root FS, set up its vopstats */ 885 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 886 /* Set flag for statistics collection */ 887 if (vswp->vsw_flag & VSW_STATS) { 888 initialize_vopstats(&rootvfs->vfs_vopstats); 889 rootvfs->vfs_flag |= VFS_STATS; 890 rootvfs->vfs_fstypevsp = 891 get_fstype_vopstats(rootvfs, vswp); 892 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 893 } 894 vfs_unrefvfssw(vswp); 895 } 896 897 /* 898 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 899 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 900 */ 901 vfs_mountdevices(); 902 vfs_mountdev1(); 903 904 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 905 vfs_mountfs("proc", "/proc", "/proc"); 906 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 907 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 908 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 909 910 if (getzoneid() == GLOBAL_ZONEID) { 911 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 912 } 913 914 #ifdef __sparc 915 /* 916 * This bit of magic can go away when we convert sparc to 917 * the new boot architecture based on ramdisk. 918 * 919 * Booting off a mirrored root volume: 920 * At this point, we have booted and mounted root on a 921 * single component of the mirror. Complete the boot 922 * by configuring SVM and converting the root to the 923 * dev_t of the mirrored root device. This dev_t conversion 924 * only works because the underlying device doesn't change. 925 */ 926 if (root_is_svm) { 927 if (svm_rootconf()) { 928 panic("vfs_mountroot: cannot remount root"); 929 } 930 931 /* 932 * mnttab should reflect the new root device 933 */ 934 vfs_lock_wait(rootvfs); 935 vfs_setresource(rootvfs, rootfs.bo_name, 0); 936 vfs_unlock(rootvfs); 937 } 938 #endif /* __sparc */ 939 940 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 941 /* 942 * Look up the root device via devfs so that a dv_node is 943 * created for it. The vnode is never VN_RELE()ed. 944 * We allocate more than MAXPATHLEN so that the 945 * buffer passed to i_ddi_prompath_to_devfspath() is 946 * exactly MAXPATHLEN (the function expects a buffer 947 * of that length). 948 */ 949 plen = strlen("/devices"); 950 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 951 (void) strcpy(path, "/devices"); 952 953 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 954 != DDI_SUCCESS || 955 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 956 957 /* NUL terminate in case "path" has garbage */ 958 path[plen + MAXPATHLEN - 1] = '\0'; 959 #ifdef DEBUG 960 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 961 path); 962 #endif 963 } 964 kmem_free(path, plen + MAXPATHLEN); 965 } 966 967 vfs_mnttabvp_setup(); 968 } 969 970 /* 971 * Check to see if our "block device" is actually a file. If so, 972 * automatically add a lofi device, and keep track of this fact. 973 */ 974 static int 975 lofi_add(const char *fsname, struct vfs *vfsp, 976 mntopts_t *mntopts, struct mounta *uap) 977 { 978 int fromspace = (uap->flags & MS_SYSSPACE) ? 979 UIO_SYSSPACE : UIO_USERSPACE; 980 struct lofi_ioctl *li = NULL; 981 struct vnode *vp = NULL; 982 struct pathname pn = { NULL }; 983 ldi_ident_t ldi_id; 984 ldi_handle_t ldi_hdl; 985 vfssw_t *vfssw; 986 int minor; 987 int err = 0; 988 989 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 990 return (0); 991 992 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 993 vfs_unrefvfssw(vfssw); 994 return (0); 995 } 996 997 vfs_unrefvfssw(vfssw); 998 vfssw = NULL; 999 1000 if (pn_get(uap->spec, fromspace, &pn) != 0) 1001 return (0); 1002 1003 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1004 goto out; 1005 1006 if (vp->v_type != VREG) 1007 goto out; 1008 1009 /* OK, this is a lofi mount. */ 1010 1011 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1012 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1013 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1014 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1015 err = EINVAL; 1016 goto out; 1017 } 1018 1019 ldi_id = ldi_ident_from_anon(); 1020 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1021 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1022 1023 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1024 &ldi_hdl, ldi_id); 1025 1026 if (err) 1027 goto out2; 1028 1029 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1030 FREAD | FWRITE | FKIOCTL, kcred, &minor); 1031 1032 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1033 1034 if (!err) 1035 vfsp->vfs_lofi_minor = minor; 1036 1037 out2: 1038 ldi_ident_release(ldi_id); 1039 out: 1040 if (li != NULL) 1041 kmem_free(li, sizeof (*li)); 1042 if (vp != NULL) 1043 VN_RELE(vp); 1044 pn_free(&pn); 1045 return (err); 1046 } 1047 1048 static void 1049 lofi_remove(struct vfs *vfsp) 1050 { 1051 struct lofi_ioctl *li = NULL; 1052 ldi_ident_t ldi_id; 1053 ldi_handle_t ldi_hdl; 1054 int err; 1055 1056 if (vfsp->vfs_lofi_minor == 0) 1057 return; 1058 1059 ldi_id = ldi_ident_from_anon(); 1060 1061 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1062 li->li_minor = vfsp->vfs_lofi_minor; 1063 li->li_cleanup = B_TRUE; 1064 1065 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1066 &ldi_hdl, ldi_id); 1067 1068 if (err) 1069 goto out; 1070 1071 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1072 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1073 1074 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1075 1076 if (!err) 1077 vfsp->vfs_lofi_minor = 0; 1078 1079 out: 1080 ldi_ident_release(ldi_id); 1081 if (li != NULL) 1082 kmem_free(li, sizeof (*li)); 1083 } 1084 1085 /* 1086 * Common mount code. Called from the system call entry point, from autofs, 1087 * nfsv4 trigger mounts, and from pxfs. 1088 * 1089 * Takes the effective file system type, mount arguments, the mount point 1090 * vnode, flags specifying whether the mount is a remount and whether it 1091 * should be entered into the vfs list, and credentials. Fills in its vfspp 1092 * parameter with the mounted file system instance's vfs. 1093 * 1094 * Note that the effective file system type is specified as a string. It may 1095 * be null, in which case it's determined from the mount arguments, and may 1096 * differ from the type specified in the mount arguments; this is a hook to 1097 * allow interposition when instantiating file system instances. 1098 * 1099 * The caller is responsible for releasing its own hold on the mount point 1100 * vp (this routine does its own hold when necessary). 1101 * Also note that for remounts, the mount point vp should be the vnode for 1102 * the root of the file system rather than the vnode that the file system 1103 * is mounted on top of. 1104 */ 1105 int 1106 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1107 struct vfs **vfspp) 1108 { 1109 struct vfssw *vswp; 1110 vfsops_t *vfsops; 1111 struct vfs *vfsp; 1112 struct vnode *bvp; 1113 dev_t bdev = 0; 1114 mntopts_t mnt_mntopts; 1115 int error = 0; 1116 int copyout_error = 0; 1117 int ovflags; 1118 char *opts = uap->optptr; 1119 char *inargs = opts; 1120 int optlen = uap->optlen; 1121 int remount; 1122 int rdonly; 1123 int nbmand = 0; 1124 int delmip = 0; 1125 int addmip = 0; 1126 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1127 int fromspace = (uap->flags & MS_SYSSPACE) ? 1128 UIO_SYSSPACE : UIO_USERSPACE; 1129 char *resource = NULL, *mountpt = NULL; 1130 refstr_t *oldresource, *oldmntpt; 1131 struct pathname pn, rpn; 1132 vsk_anchor_t *vskap; 1133 char fstname[FSTYPSZ]; 1134 zone_t *zone; 1135 1136 /* 1137 * The v_flag value for the mount point vp is permanently set 1138 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1139 * for mount point locking. 1140 */ 1141 mutex_enter(&vp->v_lock); 1142 vp->v_flag |= VVFSLOCK; 1143 mutex_exit(&vp->v_lock); 1144 1145 mnt_mntopts.mo_count = 0; 1146 /* 1147 * Find the ops vector to use to invoke the file system-specific mount 1148 * method. If the fsname argument is non-NULL, use it directly. 1149 * Otherwise, dig the file system type information out of the mount 1150 * arguments. 1151 * 1152 * A side effect is to hold the vfssw entry. 1153 * 1154 * Mount arguments can be specified in several ways, which are 1155 * distinguished by flag bit settings. The preferred way is to set 1156 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1157 * type supplied as a character string and the last two arguments 1158 * being a pointer to a character buffer and the size of the buffer. 1159 * On entry, the buffer holds a null terminated list of options; on 1160 * return, the string is the list of options the file system 1161 * recognized. If MS_DATA is set arguments five and six point to a 1162 * block of binary data which the file system interprets. 1163 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1164 * consistently with these conventions. To handle them, we check to 1165 * see whether the pointer to the file system name has a numeric value 1166 * less than 256. If so, we treat it as an index. 1167 */ 1168 if (fsname != NULL) { 1169 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1170 return (EINVAL); 1171 } 1172 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1173 size_t n; 1174 uint_t fstype; 1175 1176 fsname = fstname; 1177 1178 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1179 RLOCK_VFSSW(); 1180 if (fstype == 0 || fstype >= nfstype || 1181 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1182 RUNLOCK_VFSSW(); 1183 return (EINVAL); 1184 } 1185 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1186 RUNLOCK_VFSSW(); 1187 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1188 return (EINVAL); 1189 } else { 1190 /* 1191 * Handle either kernel or user address space. 1192 */ 1193 if (uap->flags & MS_SYSSPACE) { 1194 error = copystr(uap->fstype, fsname, 1195 FSTYPSZ, &n); 1196 } else { 1197 error = copyinstr(uap->fstype, fsname, 1198 FSTYPSZ, &n); 1199 } 1200 if (error) { 1201 if (error == ENAMETOOLONG) 1202 return (EINVAL); 1203 return (error); 1204 } 1205 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1206 return (EINVAL); 1207 } 1208 } else { 1209 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1210 return (EINVAL); 1211 fsname = vswp->vsw_name; 1212 } 1213 if (!VFS_INSTALLED(vswp)) 1214 return (EINVAL); 1215 1216 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1217 vfs_unrefvfssw(vswp); 1218 return (error); 1219 } 1220 1221 vfsops = &vswp->vsw_vfsops; 1222 1223 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1224 /* 1225 * Fetch mount options and parse them for generic vfs options 1226 */ 1227 if (uap->flags & MS_OPTIONSTR) { 1228 /* 1229 * Limit the buffer size 1230 */ 1231 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1232 error = EINVAL; 1233 goto errout; 1234 } 1235 if ((uap->flags & MS_SYSSPACE) == 0) { 1236 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1237 inargs[0] = '\0'; 1238 if (optlen) { 1239 error = copyinstr(opts, inargs, (size_t)optlen, 1240 NULL); 1241 if (error) { 1242 goto errout; 1243 } 1244 } 1245 } 1246 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1247 } 1248 /* 1249 * Flag bits override the options string. 1250 */ 1251 if (uap->flags & MS_REMOUNT) 1252 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1253 if (uap->flags & MS_RDONLY) 1254 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1255 if (uap->flags & MS_NOSUID) 1256 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1257 1258 /* 1259 * Check if this is a remount; must be set in the option string and 1260 * the file system must support a remount option. 1261 */ 1262 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1263 MNTOPT_REMOUNT, NULL)) { 1264 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1265 error = ENOTSUP; 1266 goto errout; 1267 } 1268 uap->flags |= MS_REMOUNT; 1269 } 1270 1271 /* 1272 * uap->flags and vfs_optionisset() should agree. 1273 */ 1274 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1275 uap->flags |= MS_RDONLY; 1276 } 1277 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1278 uap->flags |= MS_NOSUID; 1279 } 1280 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1281 ASSERT(splice || !remount); 1282 /* 1283 * If we are splicing the fs into the namespace, 1284 * perform mount point checks. 1285 * 1286 * We want to resolve the path for the mount point to eliminate 1287 * '.' and ".." and symlinks in mount points; we can't do the 1288 * same for the resource string, since it would turn 1289 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1290 * this before grabbing vn_vfswlock(), because otherwise we 1291 * would deadlock with lookuppn(). 1292 */ 1293 if (splice) { 1294 ASSERT(vp->v_count > 0); 1295 1296 /* 1297 * Pick up mount point and device from appropriate space. 1298 */ 1299 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1300 resource = kmem_alloc(pn.pn_pathlen + 1, 1301 KM_SLEEP); 1302 (void) strcpy(resource, pn.pn_path); 1303 pn_free(&pn); 1304 } 1305 /* 1306 * Do a lookupname prior to taking the 1307 * writelock. Mark this as completed if 1308 * successful for later cleanup and addition to 1309 * the mount in progress table. 1310 */ 1311 if ((uap->flags & MS_GLOBAL) == 0 && 1312 lookupname(uap->spec, fromspace, 1313 FOLLOW, NULL, &bvp) == 0) { 1314 addmip = 1; 1315 } 1316 1317 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1318 pathname_t *pnp; 1319 1320 if (*pn.pn_path != '/') { 1321 error = EINVAL; 1322 pn_free(&pn); 1323 goto errout; 1324 } 1325 pn_alloc(&rpn); 1326 /* 1327 * Kludge to prevent autofs from deadlocking with 1328 * itself when it calls domount(). 1329 * 1330 * If autofs is calling, it is because it is doing 1331 * (autofs) mounts in the process of an NFS mount. A 1332 * lookuppn() here would cause us to block waiting for 1333 * said NFS mount to complete, which can't since this 1334 * is the thread that was supposed to doing it. 1335 */ 1336 if (fromspace == UIO_USERSPACE) { 1337 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1338 NULL)) == 0) { 1339 pnp = &rpn; 1340 } else { 1341 /* 1342 * The file disappeared or otherwise 1343 * became inaccessible since we opened 1344 * it; might as well fail the mount 1345 * since the mount point is no longer 1346 * accessible. 1347 */ 1348 pn_free(&rpn); 1349 pn_free(&pn); 1350 goto errout; 1351 } 1352 } else { 1353 pnp = &pn; 1354 } 1355 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1356 (void) strcpy(mountpt, pnp->pn_path); 1357 1358 /* 1359 * If the addition of the zone's rootpath 1360 * would push us over a total path length 1361 * of MAXPATHLEN, we fail the mount with 1362 * ENAMETOOLONG, which is what we would have 1363 * gotten if we were trying to perform the same 1364 * mount in the global zone. 1365 * 1366 * strlen() doesn't count the trailing 1367 * '\0', but zone_rootpathlen counts both a 1368 * trailing '/' and the terminating '\0'. 1369 */ 1370 if ((curproc->p_zone->zone_rootpathlen - 1 + 1371 strlen(mountpt)) > MAXPATHLEN || 1372 (resource != NULL && 1373 (curproc->p_zone->zone_rootpathlen - 1 + 1374 strlen(resource)) > MAXPATHLEN)) { 1375 error = ENAMETOOLONG; 1376 } 1377 1378 pn_free(&rpn); 1379 pn_free(&pn); 1380 } 1381 1382 if (error) 1383 goto errout; 1384 1385 /* 1386 * Prevent path name resolution from proceeding past 1387 * the mount point. 1388 */ 1389 if (vn_vfswlock(vp) != 0) { 1390 error = EBUSY; 1391 goto errout; 1392 } 1393 1394 /* 1395 * Verify that it's legitimate to establish a mount on 1396 * the prospective mount point. 1397 */ 1398 if (vn_mountedvfs(vp) != NULL) { 1399 /* 1400 * The mount point lock was obtained after some 1401 * other thread raced through and established a mount. 1402 */ 1403 vn_vfsunlock(vp); 1404 error = EBUSY; 1405 goto errout; 1406 } 1407 if (vp->v_flag & VNOMOUNT) { 1408 vn_vfsunlock(vp); 1409 error = EINVAL; 1410 goto errout; 1411 } 1412 } 1413 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1414 uap->dataptr = NULL; 1415 uap->datalen = 0; 1416 } 1417 1418 /* 1419 * If this is a remount, we don't want to create a new VFS. 1420 * Instead, we pass the existing one with a remount flag. 1421 */ 1422 if (remount) { 1423 /* 1424 * Confirm that the mount point is the root vnode of the 1425 * file system that is being remounted. 1426 * This can happen if the user specifies a different 1427 * mount point directory pathname in the (re)mount command. 1428 * 1429 * Code below can only be reached if splice is true, so it's 1430 * safe to do vn_vfsunlock() here. 1431 */ 1432 if ((vp->v_flag & VROOT) == 0) { 1433 vn_vfsunlock(vp); 1434 error = ENOENT; 1435 goto errout; 1436 } 1437 /* 1438 * Disallow making file systems read-only unless file system 1439 * explicitly allows it in its vfssw. Ignore other flags. 1440 */ 1441 if (rdonly && vn_is_readonly(vp) == 0 && 1442 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1443 vn_vfsunlock(vp); 1444 error = EINVAL; 1445 goto errout; 1446 } 1447 /* 1448 * Disallow changing the NBMAND disposition of the file 1449 * system on remounts. 1450 */ 1451 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1452 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1453 vn_vfsunlock(vp); 1454 error = EINVAL; 1455 goto errout; 1456 } 1457 vfsp = vp->v_vfsp; 1458 ovflags = vfsp->vfs_flag; 1459 vfsp->vfs_flag |= VFS_REMOUNT; 1460 vfsp->vfs_flag &= ~VFS_RDONLY; 1461 } else { 1462 vfsp = vfs_alloc(KM_SLEEP); 1463 VFS_INIT(vfsp, vfsops, NULL); 1464 } 1465 1466 VFS_HOLD(vfsp); 1467 1468 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1469 if (!remount) { 1470 if (splice) 1471 vn_vfsunlock(vp); 1472 vfs_free(vfsp); 1473 } else { 1474 vn_vfsunlock(vp); 1475 VFS_RELE(vfsp); 1476 } 1477 goto errout; 1478 } 1479 1480 /* 1481 * PRIV_SYS_MOUNT doesn't mean you can become root. 1482 */ 1483 if (vfsp->vfs_lofi_minor != 0) { 1484 uap->flags |= MS_NOSUID; 1485 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1486 } 1487 1488 /* 1489 * The vfs_reflock is not used anymore the code below explicitly 1490 * holds it preventing others accesing it directly. 1491 */ 1492 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1493 !(vfsp->vfs_flag & VFS_REMOUNT)) 1494 cmn_err(CE_WARN, 1495 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1496 1497 /* 1498 * Lock the vfs. If this is a remount we want to avoid spurious umount 1499 * failures that happen as a side-effect of fsflush() and other mount 1500 * and unmount operations that might be going on simultaneously and 1501 * may have locked the vfs currently. To not return EBUSY immediately 1502 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1503 */ 1504 if (!remount) { 1505 if (error = vfs_lock(vfsp)) { 1506 vfsp->vfs_flag = ovflags; 1507 1508 lofi_remove(vfsp); 1509 1510 if (splice) 1511 vn_vfsunlock(vp); 1512 vfs_free(vfsp); 1513 goto errout; 1514 } 1515 } else { 1516 vfs_lock_wait(vfsp); 1517 } 1518 1519 /* 1520 * Add device to mount in progress table, global mounts require special 1521 * handling. It is possible that we have already done the lookupname 1522 * on a spliced, non-global fs. If so, we don't want to do it again 1523 * since we cannot do a lookupname after taking the 1524 * wlock above. This case is for a non-spliced, non-global filesystem. 1525 */ 1526 if (!addmip) { 1527 if ((uap->flags & MS_GLOBAL) == 0 && 1528 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1529 addmip = 1; 1530 } 1531 } 1532 1533 if (addmip) { 1534 vnode_t *lvp = NULL; 1535 1536 error = vfs_get_lofi(vfsp, &lvp); 1537 if (error > 0) { 1538 lofi_remove(vfsp); 1539 1540 if (splice) 1541 vn_vfsunlock(vp); 1542 vfs_unlock(vfsp); 1543 1544 if (remount) { 1545 VFS_RELE(vfsp); 1546 } else { 1547 vfs_free(vfsp); 1548 } 1549 1550 goto errout; 1551 } else if (error == -1) { 1552 bdev = bvp->v_rdev; 1553 VN_RELE(bvp); 1554 } else { 1555 bdev = lvp->v_rdev; 1556 VN_RELE(lvp); 1557 VN_RELE(bvp); 1558 } 1559 1560 vfs_addmip(bdev, vfsp); 1561 addmip = 0; 1562 delmip = 1; 1563 } 1564 /* 1565 * Invalidate cached entry for the mount point. 1566 */ 1567 if (splice) 1568 dnlc_purge_vp(vp); 1569 1570 /* 1571 * If have an option string but the filesystem doesn't supply a 1572 * prototype options table, create a table with the global 1573 * options and sufficient room to accept all the options in the 1574 * string. Then parse the passed in option string 1575 * accepting all the options in the string. This gives us an 1576 * option table with all the proper cancel properties for the 1577 * global options. 1578 * 1579 * Filesystems that supply a prototype options table are handled 1580 * earlier in this function. 1581 */ 1582 if (uap->flags & MS_OPTIONSTR) { 1583 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1584 mntopts_t tmp_mntopts; 1585 1586 tmp_mntopts.mo_count = 0; 1587 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1588 &mnt_mntopts); 1589 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1590 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1591 vfs_freeopttbl(&tmp_mntopts); 1592 } 1593 } 1594 1595 /* 1596 * Serialize with zone state transitions. 1597 * See vfs_list_add; zone mounted into is: 1598 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1599 * not the zone doing the mount (curproc->p_zone), but if we're already 1600 * inside a NGZ, then we know what zone we are. 1601 */ 1602 if (INGLOBALZONE(curproc)) { 1603 zone = zone_find_by_path(mountpt); 1604 ASSERT(zone != NULL); 1605 } else { 1606 zone = curproc->p_zone; 1607 /* 1608 * zone_find_by_path does a hold, so do one here too so that 1609 * we can do a zone_rele after mount_completed. 1610 */ 1611 zone_hold(zone); 1612 } 1613 mount_in_progress(zone); 1614 /* 1615 * Instantiate (or reinstantiate) the file system. If appropriate, 1616 * splice it into the file system name space. 1617 * 1618 * We want VFS_MOUNT() to be able to override the vfs_resource 1619 * string if necessary (ie, mntfs), and also for a remount to 1620 * change the same (necessary when remounting '/' during boot). 1621 * So we set up vfs_mntpt and vfs_resource to what we think they 1622 * should be, then hand off control to VFS_MOUNT() which can 1623 * override this. 1624 * 1625 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1626 * a vfs which is on the vfs list (i.e. during a remount), we must 1627 * never set those fields to NULL. Several bits of code make 1628 * assumptions that the fields are always valid. 1629 */ 1630 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1631 if (remount) { 1632 if ((oldresource = vfsp->vfs_resource) != NULL) 1633 refstr_hold(oldresource); 1634 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1635 refstr_hold(oldmntpt); 1636 } 1637 vfs_setresource(vfsp, resource, 0); 1638 vfs_setmntpoint(vfsp, mountpt, 0); 1639 1640 /* 1641 * going to mount on this vnode, so notify. 1642 */ 1643 vnevent_mountedover(vp, NULL); 1644 error = VFS_MOUNT(vfsp, vp, uap, credp); 1645 1646 if (uap->flags & MS_RDONLY) 1647 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1648 if (uap->flags & MS_NOSUID) 1649 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1650 if (uap->flags & MS_GLOBAL) 1651 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1652 1653 if (error) { 1654 lofi_remove(vfsp); 1655 1656 if (remount) { 1657 /* put back pre-remount options */ 1658 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1659 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1660 VFSSP_VERBATIM); 1661 if (oldmntpt) 1662 refstr_rele(oldmntpt); 1663 vfs_setresource(vfsp, refstr_value(oldresource), 1664 VFSSP_VERBATIM); 1665 if (oldresource) 1666 refstr_rele(oldresource); 1667 vfsp->vfs_flag = ovflags; 1668 vfs_unlock(vfsp); 1669 VFS_RELE(vfsp); 1670 } else { 1671 vfs_unlock(vfsp); 1672 vfs_freemnttab(vfsp); 1673 vfs_free(vfsp); 1674 } 1675 } else { 1676 /* 1677 * Set the mount time to now 1678 */ 1679 vfsp->vfs_mtime = ddi_get_time(); 1680 if (remount) { 1681 vfsp->vfs_flag &= ~VFS_REMOUNT; 1682 if (oldresource) 1683 refstr_rele(oldresource); 1684 if (oldmntpt) 1685 refstr_rele(oldmntpt); 1686 } else if (splice) { 1687 /* 1688 * Link vfsp into the name space at the mount 1689 * point. Vfs_add() is responsible for 1690 * holding the mount point which will be 1691 * released when vfs_remove() is called. 1692 */ 1693 vfs_add(vp, vfsp, uap->flags); 1694 } else { 1695 /* 1696 * Hold the reference to file system which is 1697 * not linked into the name space. 1698 */ 1699 vfsp->vfs_zone = NULL; 1700 VFS_HOLD(vfsp); 1701 vfsp->vfs_vnodecovered = NULL; 1702 } 1703 /* 1704 * Set flags for global options encountered 1705 */ 1706 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1707 vfsp->vfs_flag |= VFS_RDONLY; 1708 else 1709 vfsp->vfs_flag &= ~VFS_RDONLY; 1710 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1711 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1712 } else { 1713 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1714 vfsp->vfs_flag |= VFS_NODEVICES; 1715 else 1716 vfsp->vfs_flag &= ~VFS_NODEVICES; 1717 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1718 vfsp->vfs_flag |= VFS_NOSETUID; 1719 else 1720 vfsp->vfs_flag &= ~VFS_NOSETUID; 1721 } 1722 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1723 vfsp->vfs_flag |= VFS_NBMAND; 1724 else 1725 vfsp->vfs_flag &= ~VFS_NBMAND; 1726 1727 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1728 vfsp->vfs_flag |= VFS_XATTR; 1729 else 1730 vfsp->vfs_flag &= ~VFS_XATTR; 1731 1732 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1733 vfsp->vfs_flag |= VFS_NOEXEC; 1734 else 1735 vfsp->vfs_flag &= ~VFS_NOEXEC; 1736 1737 /* 1738 * Now construct the output option string of options 1739 * we recognized. 1740 */ 1741 if (uap->flags & MS_OPTIONSTR) { 1742 vfs_list_read_lock(); 1743 copyout_error = vfs_buildoptionstr( 1744 &vfsp->vfs_mntopts, inargs, optlen); 1745 vfs_list_unlock(); 1746 if (copyout_error == 0 && 1747 (uap->flags & MS_SYSSPACE) == 0) { 1748 copyout_error = copyoutstr(inargs, opts, 1749 optlen, NULL); 1750 } 1751 } 1752 1753 /* 1754 * If this isn't a remount, set up the vopstats before 1755 * anyone can touch this. We only allow spliced file 1756 * systems (file systems which are in the namespace) to 1757 * have the VFS_STATS flag set. 1758 * NOTE: PxFS mounts the underlying file system with 1759 * MS_NOSPLICE set and copies those vfs_flags to its private 1760 * vfs structure. As a result, PxFS should never have 1761 * the VFS_STATS flag or else we might access the vfs 1762 * statistics-related fields prior to them being 1763 * properly initialized. 1764 */ 1765 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1766 initialize_vopstats(&vfsp->vfs_vopstats); 1767 /* 1768 * We need to set vfs_vskap to NULL because there's 1769 * a chance it won't be set below. This is checked 1770 * in teardown_vopstats() so we can't have garbage. 1771 */ 1772 vfsp->vfs_vskap = NULL; 1773 vfsp->vfs_flag |= VFS_STATS; 1774 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1775 } 1776 1777 if (vswp->vsw_flag & VSW_XID) 1778 vfsp->vfs_flag |= VFS_XID; 1779 1780 vfs_unlock(vfsp); 1781 } 1782 mount_completed(zone); 1783 zone_rele(zone); 1784 if (splice) 1785 vn_vfsunlock(vp); 1786 1787 if ((error == 0) && (copyout_error == 0)) { 1788 if (!remount) { 1789 /* 1790 * Don't call get_vskstat_anchor() while holding 1791 * locks since it allocates memory and calls 1792 * VFS_STATVFS(). For NFS, the latter can generate 1793 * an over-the-wire call. 1794 */ 1795 vskap = get_vskstat_anchor(vfsp); 1796 /* Only take the lock if we have something to do */ 1797 if (vskap != NULL) { 1798 vfs_lock_wait(vfsp); 1799 if (vfsp->vfs_flag & VFS_STATS) { 1800 vfsp->vfs_vskap = vskap; 1801 } 1802 vfs_unlock(vfsp); 1803 } 1804 } 1805 /* Return vfsp to caller. */ 1806 *vfspp = vfsp; 1807 } 1808 errout: 1809 vfs_freeopttbl(&mnt_mntopts); 1810 if (resource != NULL) 1811 kmem_free(resource, strlen(resource) + 1); 1812 if (mountpt != NULL) 1813 kmem_free(mountpt, strlen(mountpt) + 1); 1814 /* 1815 * It is possible we errored prior to adding to mount in progress 1816 * table. Must free vnode we acquired with successful lookupname. 1817 */ 1818 if (addmip) 1819 VN_RELE(bvp); 1820 if (delmip) 1821 vfs_delmip(vfsp); 1822 ASSERT(vswp != NULL); 1823 vfs_unrefvfssw(vswp); 1824 if (inargs != opts) 1825 kmem_free(inargs, MAX_MNTOPT_STR); 1826 if (copyout_error) { 1827 lofi_remove(vfsp); 1828 VFS_RELE(vfsp); 1829 error = copyout_error; 1830 } 1831 return (error); 1832 } 1833 1834 static void 1835 vfs_setpath( 1836 struct vfs *vfsp, /* vfs being updated */ 1837 refstr_t **refp, /* Ref-count string to contain the new path */ 1838 const char *newpath, /* Path to add to refp (above) */ 1839 uint32_t flag) /* flag */ 1840 { 1841 size_t len; 1842 refstr_t *ref; 1843 zone_t *zone = curproc->p_zone; 1844 char *sp; 1845 int have_list_lock = 0; 1846 1847 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1848 1849 /* 1850 * New path must be less than MAXPATHLEN because mntfs 1851 * will only display up to MAXPATHLEN bytes. This is currently 1852 * safe, because domount() uses pn_get(), and other callers 1853 * similarly cap the size to fewer than MAXPATHLEN bytes. 1854 */ 1855 1856 ASSERT(strlen(newpath) < MAXPATHLEN); 1857 1858 /* mntfs requires consistency while vfs list lock is held */ 1859 1860 if (VFS_ON_LIST(vfsp)) { 1861 have_list_lock = 1; 1862 vfs_list_lock(); 1863 } 1864 1865 if (*refp != NULL) 1866 refstr_rele(*refp); 1867 1868 /* 1869 * If we are in a non-global zone then we prefix the supplied path, 1870 * newpath, with the zone's root path, with two exceptions. The first 1871 * is where we have been explicitly directed to avoid doing so; this 1872 * will be the case following a failed remount, where the path supplied 1873 * will be a saved version which must now be restored. The second 1874 * exception is where newpath is not a pathname but a descriptive name, 1875 * e.g. "procfs". 1876 */ 1877 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1878 ref = refstr_alloc(newpath); 1879 goto out; 1880 } 1881 1882 /* 1883 * Truncate the trailing '/' in the zoneroot, and merge 1884 * in the zone's rootpath with the "newpath" (resource 1885 * or mountpoint) passed in. 1886 * 1887 * The size of the required buffer is thus the size of 1888 * the buffer required for the passed-in newpath 1889 * (strlen(newpath) + 1), plus the size of the buffer 1890 * required to hold zone_rootpath (zone_rootpathlen) 1891 * minus one for one of the now-superfluous NUL 1892 * terminations, minus one for the trailing '/'. 1893 * 1894 * That gives us: 1895 * 1896 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1897 * 1898 * Which is what we have below. 1899 */ 1900 1901 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1902 sp = kmem_alloc(len, KM_SLEEP); 1903 1904 /* 1905 * Copy everything including the trailing slash, which 1906 * we then overwrite with the NUL character. 1907 */ 1908 1909 (void) strcpy(sp, zone->zone_rootpath); 1910 sp[zone->zone_rootpathlen - 2] = '\0'; 1911 (void) strcat(sp, newpath); 1912 1913 ref = refstr_alloc(sp); 1914 kmem_free(sp, len); 1915 out: 1916 *refp = ref; 1917 1918 if (have_list_lock) { 1919 vfs_mnttab_modtimeupd(); 1920 vfs_list_unlock(); 1921 } 1922 } 1923 1924 /* 1925 * Record a mounted resource name in a vfs structure. 1926 * If vfsp is already mounted, caller must hold the vfs lock. 1927 */ 1928 void 1929 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1930 { 1931 if (resource == NULL || resource[0] == '\0') 1932 resource = VFS_NORESOURCE; 1933 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1934 } 1935 1936 /* 1937 * Record a mount point name in a vfs structure. 1938 * If vfsp is already mounted, caller must hold the vfs lock. 1939 */ 1940 void 1941 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1942 { 1943 if (mntpt == NULL || mntpt[0] == '\0') 1944 mntpt = VFS_NOMNTPT; 1945 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1946 } 1947 1948 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1949 1950 refstr_t * 1951 vfs_getresource(const struct vfs *vfsp) 1952 { 1953 refstr_t *resource; 1954 1955 vfs_list_read_lock(); 1956 resource = vfsp->vfs_resource; 1957 refstr_hold(resource); 1958 vfs_list_unlock(); 1959 1960 return (resource); 1961 } 1962 1963 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1964 1965 refstr_t * 1966 vfs_getmntpoint(const struct vfs *vfsp) 1967 { 1968 refstr_t *mntpt; 1969 1970 vfs_list_read_lock(); 1971 mntpt = vfsp->vfs_mntpt; 1972 refstr_hold(mntpt); 1973 vfs_list_unlock(); 1974 1975 return (mntpt); 1976 } 1977 1978 /* 1979 * Create an empty options table with enough empty slots to hold all 1980 * The options in the options string passed as an argument. 1981 * Potentially prepend another options table. 1982 * 1983 * Note: caller is responsible for locking the vfs list, if needed, 1984 * to protect mops. 1985 */ 1986 static void 1987 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1988 const mntopts_t *mtmpl) 1989 { 1990 const char *s = opts; 1991 uint_t count; 1992 1993 if (opts == NULL || *opts == '\0') { 1994 count = 0; 1995 } else { 1996 count = 1; 1997 1998 /* 1999 * Count number of options in the string 2000 */ 2001 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 2002 count++; 2003 s++; 2004 } 2005 } 2006 vfs_copyopttbl_extend(mtmpl, mops, count); 2007 } 2008 2009 /* 2010 * Create an empty options table with enough empty slots to hold all 2011 * The options in the options string passed as an argument. 2012 * 2013 * This function is *not* for general use by filesystems. 2014 * 2015 * Note: caller is responsible for locking the vfs list, if needed, 2016 * to protect mops. 2017 */ 2018 void 2019 vfs_createopttbl(mntopts_t *mops, const char *opts) 2020 { 2021 vfs_createopttbl_extend(mops, opts, NULL); 2022 } 2023 2024 2025 /* 2026 * Swap two mount options tables 2027 */ 2028 static void 2029 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2030 { 2031 uint_t tmpcnt; 2032 mntopt_t *tmplist; 2033 2034 tmpcnt = optbl2->mo_count; 2035 tmplist = optbl2->mo_list; 2036 optbl2->mo_count = optbl1->mo_count; 2037 optbl2->mo_list = optbl1->mo_list; 2038 optbl1->mo_count = tmpcnt; 2039 optbl1->mo_list = tmplist; 2040 } 2041 2042 static void 2043 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2044 { 2045 vfs_list_lock(); 2046 vfs_swapopttbl_nolock(optbl1, optbl2); 2047 vfs_mnttab_modtimeupd(); 2048 vfs_list_unlock(); 2049 } 2050 2051 static char ** 2052 vfs_copycancelopt_extend(char **const moc, int extend) 2053 { 2054 int i = 0; 2055 int j; 2056 char **result; 2057 2058 if (moc != NULL) { 2059 for (; moc[i] != NULL; i++) 2060 /* count number of options to cancel */; 2061 } 2062 2063 if (i + extend == 0) 2064 return (NULL); 2065 2066 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2067 2068 for (j = 0; j < i; j++) { 2069 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2070 (void) strcpy(result[j], moc[j]); 2071 } 2072 for (; j <= i + extend; j++) 2073 result[j] = NULL; 2074 2075 return (result); 2076 } 2077 2078 static void 2079 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2080 { 2081 char *sp, *dp; 2082 2083 d->mo_flags = s->mo_flags; 2084 d->mo_data = s->mo_data; 2085 sp = s->mo_name; 2086 if (sp != NULL) { 2087 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2088 (void) strcpy(dp, sp); 2089 d->mo_name = dp; 2090 } else { 2091 d->mo_name = NULL; /* should never happen */ 2092 } 2093 2094 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2095 2096 sp = s->mo_arg; 2097 if (sp != NULL) { 2098 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2099 (void) strcpy(dp, sp); 2100 d->mo_arg = dp; 2101 } else { 2102 d->mo_arg = NULL; 2103 } 2104 } 2105 2106 /* 2107 * Copy a mount options table, possibly allocating some spare 2108 * slots at the end. It is permissible to copy_extend the NULL table. 2109 */ 2110 static void 2111 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2112 { 2113 uint_t i, count; 2114 mntopt_t *motbl; 2115 2116 /* 2117 * Clear out any existing stuff in the options table being initialized 2118 */ 2119 vfs_freeopttbl(dmo); 2120 count = (smo == NULL) ? 0 : smo->mo_count; 2121 if ((count + extra) == 0) /* nothing to do */ 2122 return; 2123 dmo->mo_count = count + extra; 2124 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2125 dmo->mo_list = motbl; 2126 for (i = 0; i < count; i++) { 2127 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2128 } 2129 for (i = count; i < count + extra; i++) { 2130 motbl[i].mo_flags = MO_EMPTY; 2131 } 2132 } 2133 2134 /* 2135 * Copy a mount options table. 2136 * 2137 * This function is *not* for general use by filesystems. 2138 * 2139 * Note: caller is responsible for locking the vfs list, if needed, 2140 * to protect smo and dmo. 2141 */ 2142 void 2143 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2144 { 2145 vfs_copyopttbl_extend(smo, dmo, 0); 2146 } 2147 2148 static char ** 2149 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2150 { 2151 int c1 = 0; 2152 int c2 = 0; 2153 char **result; 2154 char **sp1, **sp2, **dp; 2155 2156 /* 2157 * First we count both lists of cancel options. 2158 * If either is NULL or has no elements, we return a copy of 2159 * the other. 2160 */ 2161 if (mop1->mo_cancel != NULL) { 2162 for (; mop1->mo_cancel[c1] != NULL; c1++) 2163 /* count cancel options in mop1 */; 2164 } 2165 2166 if (c1 == 0) 2167 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2168 2169 if (mop2->mo_cancel != NULL) { 2170 for (; mop2->mo_cancel[c2] != NULL; c2++) 2171 /* count cancel options in mop2 */; 2172 } 2173 2174 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2175 2176 if (c2 == 0) 2177 return (result); 2178 2179 /* 2180 * When we get here, we've got two sets of cancel options; 2181 * we need to merge the two sets. We know that the result 2182 * array has "c1+c2+1" entries and in the end we might shrink 2183 * it. 2184 * Result now has a copy of the c1 entries from mop1; we'll 2185 * now lookup all the entries of mop2 in mop1 and copy it if 2186 * it is unique. 2187 * This operation is O(n^2) but it's only called once per 2188 * filesystem per duplicate option. This is a situation 2189 * which doesn't arise with the filesystems in ON and 2190 * n is generally 1. 2191 */ 2192 2193 dp = &result[c1]; 2194 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2195 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2196 if (strcmp(*sp1, *sp2) == 0) 2197 break; 2198 } 2199 if (*sp1 == NULL) { 2200 /* 2201 * Option *sp2 not found in mop1, so copy it. 2202 * The calls to vfs_copycancelopt_extend() 2203 * guarantee that there's enough room. 2204 */ 2205 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2206 (void) strcpy(*dp++, *sp2); 2207 } 2208 } 2209 if (dp != &result[c1+c2]) { 2210 size_t bytes = (dp - result + 1) * sizeof (char *); 2211 char **nres = kmem_alloc(bytes, KM_SLEEP); 2212 2213 bcopy(result, nres, bytes); 2214 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2215 result = nres; 2216 } 2217 return (result); 2218 } 2219 2220 /* 2221 * Merge two mount option tables (outer and inner) into one. This is very 2222 * similar to "merging" global variables and automatic variables in C. 2223 * 2224 * This isn't (and doesn't have to be) fast. 2225 * 2226 * This function is *not* for general use by filesystems. 2227 * 2228 * Note: caller is responsible for locking the vfs list, if needed, 2229 * to protect omo, imo & dmo. 2230 */ 2231 void 2232 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2233 { 2234 uint_t i, count; 2235 mntopt_t *mop, *motbl; 2236 uint_t freeidx; 2237 2238 /* 2239 * First determine how much space we need to allocate. 2240 */ 2241 count = omo->mo_count; 2242 for (i = 0; i < imo->mo_count; i++) { 2243 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2244 continue; 2245 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2246 count++; 2247 } 2248 ASSERT(count >= omo->mo_count && 2249 count <= omo->mo_count + imo->mo_count); 2250 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2251 for (i = 0; i < omo->mo_count; i++) 2252 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2253 freeidx = omo->mo_count; 2254 for (i = 0; i < imo->mo_count; i++) { 2255 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2256 continue; 2257 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2258 char **newcanp; 2259 uint_t index = mop - omo->mo_list; 2260 2261 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2262 2263 vfs_freeopt(&motbl[index]); 2264 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2265 2266 vfs_freecancelopt(motbl[index].mo_cancel); 2267 motbl[index].mo_cancel = newcanp; 2268 } else { 2269 /* 2270 * If it's a new option, just copy it over to the first 2271 * free location. 2272 */ 2273 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2274 } 2275 } 2276 dmo->mo_count = count; 2277 dmo->mo_list = motbl; 2278 } 2279 2280 /* 2281 * Functions to set and clear mount options in a mount options table. 2282 */ 2283 2284 /* 2285 * Clear a mount option, if it exists. 2286 * 2287 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2288 * the vfs list. 2289 */ 2290 static void 2291 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2292 { 2293 struct mntopt *mop; 2294 uint_t i, count; 2295 2296 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2297 2298 count = mops->mo_count; 2299 for (i = 0; i < count; i++) { 2300 mop = &mops->mo_list[i]; 2301 2302 if (mop->mo_flags & MO_EMPTY) 2303 continue; 2304 if (strcmp(opt, mop->mo_name)) 2305 continue; 2306 mop->mo_flags &= ~MO_SET; 2307 if (mop->mo_arg != NULL) { 2308 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2309 } 2310 mop->mo_arg = NULL; 2311 if (update_mnttab) 2312 vfs_mnttab_modtimeupd(); 2313 break; 2314 } 2315 } 2316 2317 void 2318 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2319 { 2320 int gotlock = 0; 2321 2322 if (VFS_ON_LIST(vfsp)) { 2323 gotlock = 1; 2324 vfs_list_lock(); 2325 } 2326 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2327 if (gotlock) 2328 vfs_list_unlock(); 2329 } 2330 2331 2332 /* 2333 * Set a mount option on. If it's not found in the table, it's silently 2334 * ignored. If the option has MO_IGNORE set, it is still set unless the 2335 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2336 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2337 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2338 * MO_EMPTY set is created as the option passed in. 2339 * 2340 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2341 * the vfs list. 2342 */ 2343 static void 2344 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2345 const char *arg, int flags, int update_mnttab) 2346 { 2347 mntopt_t *mop; 2348 uint_t i, count; 2349 char *sp; 2350 2351 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2352 2353 if (flags & VFS_CREATEOPT) { 2354 if (vfs_hasopt(mops, opt) != NULL) { 2355 flags &= ~VFS_CREATEOPT; 2356 } 2357 } 2358 count = mops->mo_count; 2359 for (i = 0; i < count; i++) { 2360 mop = &mops->mo_list[i]; 2361 2362 if (mop->mo_flags & MO_EMPTY) { 2363 if ((flags & VFS_CREATEOPT) == 0) 2364 continue; 2365 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2366 (void) strcpy(sp, opt); 2367 mop->mo_name = sp; 2368 if (arg != NULL) 2369 mop->mo_flags = MO_HASVALUE; 2370 else 2371 mop->mo_flags = 0; 2372 } else if (strcmp(opt, mop->mo_name)) { 2373 continue; 2374 } 2375 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2376 break; 2377 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2378 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2379 (void) strcpy(sp, arg); 2380 } else { 2381 sp = NULL; 2382 } 2383 if (mop->mo_arg != NULL) 2384 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2385 mop->mo_arg = sp; 2386 if (flags & VFS_DISPLAY) 2387 mop->mo_flags &= ~MO_NODISPLAY; 2388 if (flags & VFS_NODISPLAY) 2389 mop->mo_flags |= MO_NODISPLAY; 2390 mop->mo_flags |= MO_SET; 2391 if (mop->mo_cancel != NULL) { 2392 char **cp; 2393 2394 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2395 vfs_clearmntopt_nolock(mops, *cp, 0); 2396 } 2397 if (update_mnttab) 2398 vfs_mnttab_modtimeupd(); 2399 break; 2400 } 2401 } 2402 2403 void 2404 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2405 { 2406 int gotlock = 0; 2407 2408 if (VFS_ON_LIST(vfsp)) { 2409 gotlock = 1; 2410 vfs_list_lock(); 2411 } 2412 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2413 if (gotlock) 2414 vfs_list_unlock(); 2415 } 2416 2417 2418 /* 2419 * Add a "tag" option to a mounted file system's options list. 2420 * 2421 * Note: caller is responsible for locking the vfs list, if needed, 2422 * to protect mops. 2423 */ 2424 static mntopt_t * 2425 vfs_addtag(mntopts_t *mops, const char *tag) 2426 { 2427 uint_t count; 2428 mntopt_t *mop, *motbl; 2429 2430 count = mops->mo_count + 1; 2431 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2432 if (mops->mo_count) { 2433 size_t len = (count - 1) * sizeof (mntopt_t); 2434 2435 bcopy(mops->mo_list, motbl, len); 2436 kmem_free(mops->mo_list, len); 2437 } 2438 mops->mo_count = count; 2439 mops->mo_list = motbl; 2440 mop = &motbl[count - 1]; 2441 mop->mo_flags = MO_TAG; 2442 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2443 (void) strcpy(mop->mo_name, tag); 2444 return (mop); 2445 } 2446 2447 /* 2448 * Allow users to set arbitrary "tags" in a vfs's mount options. 2449 * Broader use within the kernel is discouraged. 2450 */ 2451 int 2452 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2453 cred_t *cr) 2454 { 2455 vfs_t *vfsp; 2456 mntopts_t *mops; 2457 mntopt_t *mop; 2458 int found = 0; 2459 dev_t dev = makedevice(major, minor); 2460 int err = 0; 2461 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2462 2463 /* 2464 * Find the desired mounted file system 2465 */ 2466 vfs_list_lock(); 2467 vfsp = rootvfs; 2468 do { 2469 if (vfsp->vfs_dev == dev && 2470 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2471 found = 1; 2472 break; 2473 } 2474 vfsp = vfsp->vfs_next; 2475 } while (vfsp != rootvfs); 2476 2477 if (!found) { 2478 err = EINVAL; 2479 goto out; 2480 } 2481 err = secpolicy_fs_config(cr, vfsp); 2482 if (err != 0) 2483 goto out; 2484 2485 mops = &vfsp->vfs_mntopts; 2486 /* 2487 * Add tag if it doesn't already exist 2488 */ 2489 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2490 int len; 2491 2492 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2493 len = strlen(buf); 2494 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2495 err = ENAMETOOLONG; 2496 goto out; 2497 } 2498 mop = vfs_addtag(mops, tag); 2499 } 2500 if ((mop->mo_flags & MO_TAG) == 0) { 2501 err = EINVAL; 2502 goto out; 2503 } 2504 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2505 out: 2506 vfs_list_unlock(); 2507 kmem_free(buf, MAX_MNTOPT_STR); 2508 return (err); 2509 } 2510 2511 /* 2512 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2513 * Broader use within the kernel is discouraged. 2514 */ 2515 int 2516 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2517 cred_t *cr) 2518 { 2519 vfs_t *vfsp; 2520 mntopt_t *mop; 2521 int found = 0; 2522 dev_t dev = makedevice(major, minor); 2523 int err = 0; 2524 2525 /* 2526 * Find the desired mounted file system 2527 */ 2528 vfs_list_lock(); 2529 vfsp = rootvfs; 2530 do { 2531 if (vfsp->vfs_dev == dev && 2532 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2533 found = 1; 2534 break; 2535 } 2536 vfsp = vfsp->vfs_next; 2537 } while (vfsp != rootvfs); 2538 2539 if (!found) { 2540 err = EINVAL; 2541 goto out; 2542 } 2543 err = secpolicy_fs_config(cr, vfsp); 2544 if (err != 0) 2545 goto out; 2546 2547 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2548 err = EINVAL; 2549 goto out; 2550 } 2551 if ((mop->mo_flags & MO_TAG) == 0) { 2552 err = EINVAL; 2553 goto out; 2554 } 2555 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2556 out: 2557 vfs_list_unlock(); 2558 return (err); 2559 } 2560 2561 /* 2562 * Function to parse an option string and fill in a mount options table. 2563 * Unknown options are silently ignored. The input option string is modified 2564 * by replacing separators with nulls. If the create flag is set, options 2565 * not found in the table are just added on the fly. The table must have 2566 * an option slot marked MO_EMPTY to add an option on the fly. 2567 * 2568 * This function is *not* for general use by filesystems. 2569 * 2570 * Note: caller is responsible for locking the vfs list, if needed, 2571 * to protect mops.. 2572 */ 2573 void 2574 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2575 { 2576 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2577 int setflg = VFS_NOFORCEOPT; 2578 2579 if (osp == NULL) 2580 return; 2581 while (*s != '\0') { 2582 p = strchr(s, ','); /* find next option */ 2583 if (p == NULL) { 2584 cp = NULL; 2585 p = s + strlen(s); 2586 } else { 2587 cp = p; /* save location of comma */ 2588 *p++ = '\0'; /* mark end and point to next option */ 2589 } 2590 nextop = p; 2591 p = strchr(s, '='); /* look for value */ 2592 if (p == NULL) { 2593 valp = NULL; /* no value supplied */ 2594 } else { 2595 ep = p; /* save location of equals */ 2596 *p++ = '\0'; /* end option and point to value */ 2597 valp = p; 2598 } 2599 /* 2600 * set option into options table 2601 */ 2602 if (create) 2603 setflg |= VFS_CREATEOPT; 2604 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2605 if (cp != NULL) 2606 *cp = ','; /* restore the comma */ 2607 if (valp != NULL) 2608 *ep = '='; /* restore the equals */ 2609 s = nextop; 2610 } 2611 } 2612 2613 /* 2614 * Function to inquire if an option exists in a mount options table. 2615 * Returns a pointer to the option if it exists, else NULL. 2616 * 2617 * This function is *not* for general use by filesystems. 2618 * 2619 * Note: caller is responsible for locking the vfs list, if needed, 2620 * to protect mops. 2621 */ 2622 struct mntopt * 2623 vfs_hasopt(const mntopts_t *mops, const char *opt) 2624 { 2625 struct mntopt *mop; 2626 uint_t i, count; 2627 2628 count = mops->mo_count; 2629 for (i = 0; i < count; i++) { 2630 mop = &mops->mo_list[i]; 2631 2632 if (mop->mo_flags & MO_EMPTY) 2633 continue; 2634 if (strcmp(opt, mop->mo_name) == 0) 2635 return (mop); 2636 } 2637 return (NULL); 2638 } 2639 2640 /* 2641 * Function to inquire if an option is set in a mount options table. 2642 * Returns non-zero if set and fills in the arg pointer with a pointer to 2643 * the argument string or NULL if there is no argument string. 2644 */ 2645 static int 2646 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2647 { 2648 struct mntopt *mop; 2649 uint_t i, count; 2650 2651 count = mops->mo_count; 2652 for (i = 0; i < count; i++) { 2653 mop = &mops->mo_list[i]; 2654 2655 if (mop->mo_flags & MO_EMPTY) 2656 continue; 2657 if (strcmp(opt, mop->mo_name)) 2658 continue; 2659 if ((mop->mo_flags & MO_SET) == 0) 2660 return (0); 2661 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2662 *argp = mop->mo_arg; 2663 return (1); 2664 } 2665 return (0); 2666 } 2667 2668 2669 int 2670 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2671 { 2672 int ret; 2673 2674 vfs_list_read_lock(); 2675 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2676 vfs_list_unlock(); 2677 return (ret); 2678 } 2679 2680 2681 /* 2682 * Construct a comma separated string of the options set in the given 2683 * mount table, return the string in the given buffer. Return non-zero if 2684 * the buffer would overflow. 2685 * 2686 * This function is *not* for general use by filesystems. 2687 * 2688 * Note: caller is responsible for locking the vfs list, if needed, 2689 * to protect mp. 2690 */ 2691 int 2692 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2693 { 2694 char *cp; 2695 uint_t i; 2696 2697 buf[0] = '\0'; 2698 cp = buf; 2699 for (i = 0; i < mp->mo_count; i++) { 2700 struct mntopt *mop; 2701 2702 mop = &mp->mo_list[i]; 2703 if (mop->mo_flags & MO_SET) { 2704 int optlen, comma = 0; 2705 2706 if (buf[0] != '\0') 2707 comma = 1; 2708 optlen = strlen(mop->mo_name); 2709 if (strlen(buf) + comma + optlen + 1 > len) 2710 goto err; 2711 if (comma) 2712 *cp++ = ','; 2713 (void) strcpy(cp, mop->mo_name); 2714 cp += optlen; 2715 /* 2716 * Append option value if there is one 2717 */ 2718 if (mop->mo_arg != NULL) { 2719 int arglen; 2720 2721 arglen = strlen(mop->mo_arg); 2722 if (strlen(buf) + arglen + 2 > len) 2723 goto err; 2724 *cp++ = '='; 2725 (void) strcpy(cp, mop->mo_arg); 2726 cp += arglen; 2727 } 2728 } 2729 } 2730 return (0); 2731 err: 2732 return (EOVERFLOW); 2733 } 2734 2735 static void 2736 vfs_freecancelopt(char **moc) 2737 { 2738 if (moc != NULL) { 2739 int ccnt = 0; 2740 char **cp; 2741 2742 for (cp = moc; *cp != NULL; cp++) { 2743 kmem_free(*cp, strlen(*cp) + 1); 2744 ccnt++; 2745 } 2746 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2747 } 2748 } 2749 2750 static void 2751 vfs_freeopt(mntopt_t *mop) 2752 { 2753 if (mop->mo_name != NULL) 2754 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2755 2756 vfs_freecancelopt(mop->mo_cancel); 2757 2758 if (mop->mo_arg != NULL) 2759 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2760 } 2761 2762 /* 2763 * Free a mount options table 2764 * 2765 * This function is *not* for general use by filesystems. 2766 * 2767 * Note: caller is responsible for locking the vfs list, if needed, 2768 * to protect mp. 2769 */ 2770 void 2771 vfs_freeopttbl(mntopts_t *mp) 2772 { 2773 uint_t i, count; 2774 2775 count = mp->mo_count; 2776 for (i = 0; i < count; i++) { 2777 vfs_freeopt(&mp->mo_list[i]); 2778 } 2779 if (count) { 2780 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2781 mp->mo_count = 0; 2782 mp->mo_list = NULL; 2783 } 2784 } 2785 2786 2787 /* ARGSUSED */ 2788 static int 2789 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2790 caller_context_t *ct) 2791 { 2792 return (0); 2793 } 2794 2795 /* ARGSUSED */ 2796 static int 2797 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2798 caller_context_t *ct) 2799 { 2800 return (0); 2801 } 2802 2803 /* 2804 * The dummy vnode is currently used only by file events notification 2805 * module which is just interested in the timestamps. 2806 */ 2807 /* ARGSUSED */ 2808 static int 2809 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2810 caller_context_t *ct) 2811 { 2812 bzero(vap, sizeof (vattr_t)); 2813 vap->va_type = VREG; 2814 vap->va_nlink = 1; 2815 vap->va_ctime = vfs_mnttab_ctime; 2816 /* 2817 * it is ok to just copy mtime as the time will be monotonically 2818 * increasing. 2819 */ 2820 vap->va_mtime = vfs_mnttab_mtime; 2821 vap->va_atime = vap->va_mtime; 2822 return (0); 2823 } 2824 2825 static void 2826 vfs_mnttabvp_setup(void) 2827 { 2828 vnode_t *tvp; 2829 vnodeops_t *vfs_mntdummyvnops; 2830 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2831 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2832 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2833 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2834 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2835 NULL, NULL 2836 }; 2837 2838 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2839 &vfs_mntdummyvnops) != 0) { 2840 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2841 /* Shouldn't happen, but not bad enough to panic */ 2842 return; 2843 } 2844 2845 /* 2846 * A global dummy vnode is allocated to represent mntfs files. 2847 * The mntfs file (/etc/mnttab) can be monitored for file events 2848 * and receive an event when mnttab changes. Dummy VOP calls 2849 * will be made on this vnode. The file events notification module 2850 * intercepts this vnode and delivers relevant events. 2851 */ 2852 tvp = vn_alloc(KM_SLEEP); 2853 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2854 vn_setops(tvp, vfs_mntdummyvnops); 2855 tvp->v_type = VREG; 2856 /* 2857 * The mnt dummy ops do not reference v_data. 2858 * No other module intercepting this vnode should either. 2859 * Just set it to point to itself. 2860 */ 2861 tvp->v_data = (caddr_t)tvp; 2862 tvp->v_vfsp = rootvfs; 2863 vfs_mntdummyvp = tvp; 2864 } 2865 2866 /* 2867 * performs fake read/write ops 2868 */ 2869 static void 2870 vfs_mnttab_rwop(int rw) 2871 { 2872 struct uio uio; 2873 struct iovec iov; 2874 char buf[1]; 2875 2876 if (vfs_mntdummyvp == NULL) 2877 return; 2878 2879 bzero(&uio, sizeof (uio)); 2880 bzero(&iov, sizeof (iov)); 2881 iov.iov_base = buf; 2882 iov.iov_len = 0; 2883 uio.uio_iov = &iov; 2884 uio.uio_iovcnt = 1; 2885 uio.uio_loffset = 0; 2886 uio.uio_segflg = UIO_SYSSPACE; 2887 uio.uio_resid = 0; 2888 if (rw) { 2889 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2890 } else { 2891 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2892 } 2893 } 2894 2895 /* 2896 * Generate a write operation. 2897 */ 2898 void 2899 vfs_mnttab_writeop(void) 2900 { 2901 vfs_mnttab_rwop(1); 2902 } 2903 2904 /* 2905 * Generate a read operation. 2906 */ 2907 void 2908 vfs_mnttab_readop(void) 2909 { 2910 vfs_mnttab_rwop(0); 2911 } 2912 2913 /* 2914 * Free any mnttab information recorded in the vfs struct. 2915 * The vfs must not be on the vfs list. 2916 */ 2917 static void 2918 vfs_freemnttab(struct vfs *vfsp) 2919 { 2920 ASSERT(!VFS_ON_LIST(vfsp)); 2921 2922 /* 2923 * Free device and mount point information 2924 */ 2925 if (vfsp->vfs_mntpt != NULL) { 2926 refstr_rele(vfsp->vfs_mntpt); 2927 vfsp->vfs_mntpt = NULL; 2928 } 2929 if (vfsp->vfs_resource != NULL) { 2930 refstr_rele(vfsp->vfs_resource); 2931 vfsp->vfs_resource = NULL; 2932 } 2933 /* 2934 * Now free mount options information 2935 */ 2936 vfs_freeopttbl(&vfsp->vfs_mntopts); 2937 } 2938 2939 /* 2940 * Return the last mnttab modification time 2941 */ 2942 void 2943 vfs_mnttab_modtime(timespec_t *ts) 2944 { 2945 ASSERT(RW_LOCK_HELD(&vfslist)); 2946 *ts = vfs_mnttab_mtime; 2947 } 2948 2949 /* 2950 * See if mnttab is changed 2951 */ 2952 void 2953 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2954 { 2955 int changed; 2956 2957 *phpp = (struct pollhead *)NULL; 2958 2959 /* 2960 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2961 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2962 * to not grab the vfs list lock because tv_sec is monotonically 2963 * increasing. 2964 */ 2965 2966 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2967 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2968 if (!changed) { 2969 *phpp = &vfs_pollhd; 2970 } 2971 } 2972 2973 /* Provide a unique and monotonically-increasing timestamp. */ 2974 void 2975 vfs_mono_time(timespec_t *ts) 2976 { 2977 static volatile hrtime_t hrt; /* The saved time. */ 2978 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2979 timespec_t newts; 2980 2981 /* 2982 * Try gethrestime() first, but be prepared to fabricate a sensible 2983 * answer at the first sign of any trouble. 2984 */ 2985 gethrestime(&newts); 2986 newhrt = ts2hrt(&newts); 2987 for (;;) { 2988 oldhrt = hrt; 2989 if (newhrt <= hrt) 2990 newhrt = hrt + 1; 2991 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2992 break; 2993 } 2994 hrt2ts(newhrt, ts); 2995 } 2996 2997 /* 2998 * Update the mnttab modification time and wake up any waiters for 2999 * mnttab changes 3000 */ 3001 void 3002 vfs_mnttab_modtimeupd() 3003 { 3004 hrtime_t oldhrt, newhrt; 3005 3006 ASSERT(RW_WRITE_HELD(&vfslist)); 3007 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3008 gethrestime(&vfs_mnttab_mtime); 3009 newhrt = ts2hrt(&vfs_mnttab_mtime); 3010 if (oldhrt == (hrtime_t)0) 3011 vfs_mnttab_ctime = vfs_mnttab_mtime; 3012 /* 3013 * Attempt to provide unique mtime (like uniqtime but not). 3014 */ 3015 if (newhrt == oldhrt) { 3016 newhrt++; 3017 hrt2ts(newhrt, &vfs_mnttab_mtime); 3018 } 3019 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3020 vfs_mnttab_writeop(); 3021 } 3022 3023 int 3024 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3025 { 3026 vnode_t *coveredvp; 3027 int error; 3028 extern void teardown_vopstats(vfs_t *); 3029 3030 /* 3031 * Get covered vnode. This will be NULL if the vfs is not linked 3032 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3033 */ 3034 coveredvp = vfsp->vfs_vnodecovered; 3035 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3036 3037 /* 3038 * Purge all dnlc entries for this vfs. 3039 */ 3040 (void) dnlc_purge_vfsp(vfsp, 0); 3041 3042 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3043 if ((flag & MS_FORCE) == 0) 3044 (void) VFS_SYNC(vfsp, 0, cr); 3045 3046 /* 3047 * Lock the vfs to maintain fs status quo during unmount. This 3048 * has to be done after the sync because ufs_update tries to acquire 3049 * the vfs_reflock. 3050 */ 3051 vfs_lock_wait(vfsp); 3052 3053 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3054 vfs_unlock(vfsp); 3055 if (coveredvp != NULL) 3056 vn_vfsunlock(coveredvp); 3057 } else if (coveredvp != NULL) { 3058 teardown_vopstats(vfsp); 3059 /* 3060 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3061 * when it frees vfsp so we do a VN_HOLD() so we can 3062 * continue to use coveredvp afterwards. 3063 */ 3064 VN_HOLD(coveredvp); 3065 vfs_remove(vfsp); 3066 vn_vfsunlock(coveredvp); 3067 VN_RELE(coveredvp); 3068 } else { 3069 teardown_vopstats(vfsp); 3070 /* 3071 * Release the reference to vfs that is not linked 3072 * into the name space. 3073 */ 3074 vfs_unlock(vfsp); 3075 VFS_RELE(vfsp); 3076 } 3077 return (error); 3078 } 3079 3080 3081 /* 3082 * Vfs_unmountall() is called by uadmin() to unmount all 3083 * mounted file systems (except the root file system) during shutdown. 3084 * It follows the existing locking protocol when traversing the vfs list 3085 * to sync and unmount vfses. Even though there should be no 3086 * other thread running while the system is shutting down, it is prudent 3087 * to still follow the locking protocol. 3088 */ 3089 void 3090 vfs_unmountall(void) 3091 { 3092 struct vfs *vfsp; 3093 struct vfs *prev_vfsp = NULL; 3094 int error; 3095 3096 /* 3097 * Toss all dnlc entries now so that the per-vfs sync 3098 * and unmount operations don't have to slog through 3099 * a bunch of uninteresting vnodes over and over again. 3100 */ 3101 dnlc_purge(); 3102 3103 vfs_list_lock(); 3104 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3105 prev_vfsp = vfsp->vfs_prev; 3106 3107 if (vfs_lock(vfsp) != 0) 3108 continue; 3109 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3110 vfs_unlock(vfsp); 3111 if (error) 3112 continue; 3113 3114 vfs_list_unlock(); 3115 3116 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3117 (void) dounmount(vfsp, 0, CRED()); 3118 3119 /* 3120 * Since we dropped the vfslist lock above we must 3121 * verify that next_vfsp still exists, else start over. 3122 */ 3123 vfs_list_lock(); 3124 for (vfsp = rootvfs->vfs_prev; 3125 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3126 if (vfsp == prev_vfsp) 3127 break; 3128 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3129 prev_vfsp = rootvfs->vfs_prev; 3130 } 3131 vfs_list_unlock(); 3132 } 3133 3134 /* 3135 * Called to add an entry to the end of the vfs mount in progress list 3136 */ 3137 void 3138 vfs_addmip(dev_t dev, struct vfs *vfsp) 3139 { 3140 struct ipmnt *mipp; 3141 3142 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3143 mipp->mip_next = NULL; 3144 mipp->mip_dev = dev; 3145 mipp->mip_vfsp = vfsp; 3146 mutex_enter(&vfs_miplist_mutex); 3147 if (vfs_miplist_end != NULL) 3148 vfs_miplist_end->mip_next = mipp; 3149 else 3150 vfs_miplist = mipp; 3151 vfs_miplist_end = mipp; 3152 mutex_exit(&vfs_miplist_mutex); 3153 } 3154 3155 /* 3156 * Called to remove an entry from the mount in progress list 3157 * Either because the mount completed or it failed. 3158 */ 3159 void 3160 vfs_delmip(struct vfs *vfsp) 3161 { 3162 struct ipmnt *mipp, *mipprev; 3163 3164 mutex_enter(&vfs_miplist_mutex); 3165 mipprev = NULL; 3166 for (mipp = vfs_miplist; 3167 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3168 mipprev = mipp; 3169 } 3170 if (mipp == NULL) 3171 return; /* shouldn't happen */ 3172 if (mipp == vfs_miplist_end) 3173 vfs_miplist_end = mipprev; 3174 if (mipprev == NULL) 3175 vfs_miplist = mipp->mip_next; 3176 else 3177 mipprev->mip_next = mipp->mip_next; 3178 mutex_exit(&vfs_miplist_mutex); 3179 kmem_free(mipp, sizeof (struct ipmnt)); 3180 } 3181 3182 /* 3183 * vfs_add is called by a specific filesystem's mount routine to add 3184 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3185 * The vfs should already have been locked by the caller. 3186 * 3187 * coveredvp is NULL if this is the root. 3188 */ 3189 void 3190 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3191 { 3192 int newflag; 3193 3194 ASSERT(vfs_lock_held(vfsp)); 3195 VFS_HOLD(vfsp); 3196 newflag = vfsp->vfs_flag; 3197 if (mflag & MS_RDONLY) 3198 newflag |= VFS_RDONLY; 3199 else 3200 newflag &= ~VFS_RDONLY; 3201 if (mflag & MS_NOSUID) 3202 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3203 else 3204 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3205 if (mflag & MS_NOMNTTAB) 3206 newflag |= VFS_NOMNTTAB; 3207 else 3208 newflag &= ~VFS_NOMNTTAB; 3209 3210 if (coveredvp != NULL) { 3211 ASSERT(vn_vfswlock_held(coveredvp)); 3212 coveredvp->v_vfsmountedhere = vfsp; 3213 VN_HOLD(coveredvp); 3214 } 3215 vfsp->vfs_vnodecovered = coveredvp; 3216 vfsp->vfs_flag = newflag; 3217 3218 vfs_list_add(vfsp); 3219 } 3220 3221 /* 3222 * Remove a vfs from the vfs list, null out the pointer from the 3223 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3224 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3225 * reference to the vfs and to the covered vnode. 3226 * 3227 * Called from dounmount after it's confirmed with the file system 3228 * that the unmount is legal. 3229 */ 3230 void 3231 vfs_remove(struct vfs *vfsp) 3232 { 3233 vnode_t *vp; 3234 3235 ASSERT(vfs_lock_held(vfsp)); 3236 3237 /* 3238 * Can't unmount root. Should never happen because fs will 3239 * be busy. 3240 */ 3241 if (vfsp == rootvfs) 3242 panic("vfs_remove: unmounting root"); 3243 3244 vfs_list_remove(vfsp); 3245 3246 /* 3247 * Unhook from the file system name space. 3248 */ 3249 vp = vfsp->vfs_vnodecovered; 3250 ASSERT(vn_vfswlock_held(vp)); 3251 vp->v_vfsmountedhere = NULL; 3252 vfsp->vfs_vnodecovered = NULL; 3253 VN_RELE(vp); 3254 3255 /* 3256 * Release lock and wakeup anybody waiting. 3257 */ 3258 vfs_unlock(vfsp); 3259 VFS_RELE(vfsp); 3260 } 3261 3262 /* 3263 * Lock a filesystem to prevent access to it while mounting, 3264 * unmounting and syncing. Return EBUSY immediately if lock 3265 * can't be acquired. 3266 */ 3267 int 3268 vfs_lock(vfs_t *vfsp) 3269 { 3270 vn_vfslocks_entry_t *vpvfsentry; 3271 3272 vpvfsentry = vn_vfslocks_getlock(vfsp); 3273 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3274 return (0); 3275 3276 vn_vfslocks_rele(vpvfsentry); 3277 return (EBUSY); 3278 } 3279 3280 int 3281 vfs_rlock(vfs_t *vfsp) 3282 { 3283 vn_vfslocks_entry_t *vpvfsentry; 3284 3285 vpvfsentry = vn_vfslocks_getlock(vfsp); 3286 3287 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3288 return (0); 3289 3290 vn_vfslocks_rele(vpvfsentry); 3291 return (EBUSY); 3292 } 3293 3294 void 3295 vfs_lock_wait(vfs_t *vfsp) 3296 { 3297 vn_vfslocks_entry_t *vpvfsentry; 3298 3299 vpvfsentry = vn_vfslocks_getlock(vfsp); 3300 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3301 } 3302 3303 void 3304 vfs_rlock_wait(vfs_t *vfsp) 3305 { 3306 vn_vfslocks_entry_t *vpvfsentry; 3307 3308 vpvfsentry = vn_vfslocks_getlock(vfsp); 3309 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3310 } 3311 3312 /* 3313 * Unlock a locked filesystem. 3314 */ 3315 void 3316 vfs_unlock(vfs_t *vfsp) 3317 { 3318 vn_vfslocks_entry_t *vpvfsentry; 3319 3320 /* 3321 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3322 * And these changes should remain for the patch changes as it is. 3323 */ 3324 if (panicstr) 3325 return; 3326 3327 /* 3328 * ve_refcount needs to be dropped twice here. 3329 * 1. To release refernce after a call to vfs_locks_getlock() 3330 * 2. To release the reference from the locking routines like 3331 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3332 */ 3333 3334 vpvfsentry = vn_vfslocks_getlock(vfsp); 3335 vn_vfslocks_rele(vpvfsentry); 3336 3337 rwst_exit(&vpvfsentry->ve_lock); 3338 vn_vfslocks_rele(vpvfsentry); 3339 } 3340 3341 /* 3342 * Utility routine that allows a filesystem to construct its 3343 * fsid in "the usual way" - by munging some underlying dev_t and 3344 * the filesystem type number into the 64-bit fsid. Note that 3345 * this implicitly relies on dev_t persistence to make filesystem 3346 * id's persistent. 3347 * 3348 * There's nothing to prevent an individual fs from constructing its 3349 * fsid in a different way, and indeed they should. 3350 * 3351 * Since we want fsids to be 32-bit quantities (so that they can be 3352 * exported identically by either 32-bit or 64-bit APIs, as well as 3353 * the fact that fsid's are "known" to NFS), we compress the device 3354 * number given down to 32-bits, and panic if that isn't possible. 3355 */ 3356 void 3357 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3358 { 3359 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3360 panic("device number too big for fsid!"); 3361 fsi->val[1] = val; 3362 } 3363 3364 int 3365 vfs_lock_held(vfs_t *vfsp) 3366 { 3367 int held; 3368 vn_vfslocks_entry_t *vpvfsentry; 3369 3370 /* 3371 * vfs_lock_held will mimic sema_held behaviour 3372 * if panicstr is set. And these changes should remain 3373 * for the patch changes as it is. 3374 */ 3375 if (panicstr) 3376 return (1); 3377 3378 vpvfsentry = vn_vfslocks_getlock(vfsp); 3379 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3380 3381 vn_vfslocks_rele(vpvfsentry); 3382 return (held); 3383 } 3384 3385 struct _kthread * 3386 vfs_lock_owner(vfs_t *vfsp) 3387 { 3388 struct _kthread *owner; 3389 vn_vfslocks_entry_t *vpvfsentry; 3390 3391 /* 3392 * vfs_wlock_held will mimic sema_held behaviour 3393 * if panicstr is set. And these changes should remain 3394 * for the patch changes as it is. 3395 */ 3396 if (panicstr) 3397 return (NULL); 3398 3399 vpvfsentry = vn_vfslocks_getlock(vfsp); 3400 owner = rwst_owner(&vpvfsentry->ve_lock); 3401 3402 vn_vfslocks_rele(vpvfsentry); 3403 return (owner); 3404 } 3405 3406 /* 3407 * vfs list locking. 3408 * 3409 * Rather than manipulate the vfslist lock directly, we abstract into lock 3410 * and unlock routines to allow the locking implementation to be changed for 3411 * clustering. 3412 * 3413 * Whenever the vfs list is modified through its hash links, the overall list 3414 * lock must be obtained before locking the relevant hash bucket. But to see 3415 * whether a given vfs is on the list, it suffices to obtain the lock for the 3416 * hash bucket without getting the overall list lock. (See getvfs() below.) 3417 */ 3418 3419 void 3420 vfs_list_lock() 3421 { 3422 rw_enter(&vfslist, RW_WRITER); 3423 } 3424 3425 void 3426 vfs_list_read_lock() 3427 { 3428 rw_enter(&vfslist, RW_READER); 3429 } 3430 3431 void 3432 vfs_list_unlock() 3433 { 3434 rw_exit(&vfslist); 3435 } 3436 3437 /* 3438 * Low level worker routines for adding entries to and removing entries from 3439 * the vfs list. 3440 */ 3441 3442 static void 3443 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3444 { 3445 int vhno; 3446 struct vfs **hp; 3447 dev_t dev; 3448 3449 ASSERT(RW_WRITE_HELD(&vfslist)); 3450 3451 dev = expldev(vfsp->vfs_fsid.val[0]); 3452 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3453 3454 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3455 3456 /* 3457 * Link into the hash table, inserting it at the end, so that LOFS 3458 * with the same fsid as UFS (or other) file systems will not hide the 3459 * UFS. 3460 */ 3461 if (insert_at_head) { 3462 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3463 rvfs_list[vhno].rvfs_head = vfsp; 3464 } else { 3465 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3466 hp = &(*hp)->vfs_hash) 3467 continue; 3468 /* 3469 * hp now contains the address of the pointer to update 3470 * to effect the insertion. 3471 */ 3472 vfsp->vfs_hash = NULL; 3473 *hp = vfsp; 3474 } 3475 3476 rvfs_list[vhno].rvfs_len++; 3477 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3478 } 3479 3480 3481 static void 3482 vfs_hash_remove(struct vfs *vfsp) 3483 { 3484 int vhno; 3485 struct vfs *tvfsp; 3486 dev_t dev; 3487 3488 ASSERT(RW_WRITE_HELD(&vfslist)); 3489 3490 dev = expldev(vfsp->vfs_fsid.val[0]); 3491 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3492 3493 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3494 3495 /* 3496 * Remove from hash. 3497 */ 3498 if (rvfs_list[vhno].rvfs_head == vfsp) { 3499 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3500 rvfs_list[vhno].rvfs_len--; 3501 goto foundit; 3502 } 3503 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3504 tvfsp = tvfsp->vfs_hash) { 3505 if (tvfsp->vfs_hash == vfsp) { 3506 tvfsp->vfs_hash = vfsp->vfs_hash; 3507 rvfs_list[vhno].rvfs_len--; 3508 goto foundit; 3509 } 3510 } 3511 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3512 3513 foundit: 3514 3515 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3516 } 3517 3518 3519 void 3520 vfs_list_add(struct vfs *vfsp) 3521 { 3522 zone_t *zone; 3523 3524 /* 3525 * Typically, the vfs_t will have been created on behalf of the file 3526 * system in vfs_init, where it will have been provided with a 3527 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3528 * by an unbundled file system. We therefore check for such an example 3529 * before stamping the vfs_t with its creation time for the benefit of 3530 * mntfs. 3531 */ 3532 if (vfsp->vfs_implp == NULL) 3533 vfsimpl_setup(vfsp); 3534 vfs_mono_time(&vfsp->vfs_hrctime); 3535 3536 /* 3537 * The zone that owns the mount is the one that performed the mount. 3538 * Note that this isn't necessarily the same as the zone mounted into. 3539 * The corresponding zone_rele_ref() will be done when the vfs_t 3540 * is being free'd. 3541 */ 3542 vfsp->vfs_zone = curproc->p_zone; 3543 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3544 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3545 ZONE_REF_VFS); 3546 3547 /* 3548 * Find the zone mounted into, and put this mount on its vfs list. 3549 */ 3550 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3551 ASSERT(zone != NULL); 3552 /* 3553 * Special casing for the root vfs. This structure is allocated 3554 * statically and hooked onto rootvfs at link time. During the 3555 * vfs_mountroot call at system startup time, the root file system's 3556 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3557 * as argument. The code below must detect and handle this special 3558 * case. The only apparent justification for this special casing is 3559 * to ensure that the root file system appears at the head of the 3560 * list. 3561 * 3562 * XXX: I'm assuming that it's ok to do normal list locking when 3563 * adding the entry for the root file system (this used to be 3564 * done with no locks held). 3565 */ 3566 vfs_list_lock(); 3567 /* 3568 * Link into the vfs list proper. 3569 */ 3570 if (vfsp == &root) { 3571 /* 3572 * Assert: This vfs is already on the list as its first entry. 3573 * Thus, there's nothing to do. 3574 */ 3575 ASSERT(rootvfs == vfsp); 3576 /* 3577 * Add it to the head of the global zone's vfslist. 3578 */ 3579 ASSERT(zone == global_zone); 3580 ASSERT(zone->zone_vfslist == NULL); 3581 zone->zone_vfslist = vfsp; 3582 } else { 3583 /* 3584 * Link to end of list using vfs_prev (as rootvfs is now a 3585 * doubly linked circular list) so list is in mount order for 3586 * mnttab use. 3587 */ 3588 rootvfs->vfs_prev->vfs_next = vfsp; 3589 vfsp->vfs_prev = rootvfs->vfs_prev; 3590 rootvfs->vfs_prev = vfsp; 3591 vfsp->vfs_next = rootvfs; 3592 3593 /* 3594 * Do it again for the zone-private list (which may be NULL). 3595 */ 3596 if (zone->zone_vfslist == NULL) { 3597 ASSERT(zone != global_zone); 3598 zone->zone_vfslist = vfsp; 3599 } else { 3600 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3601 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3602 zone->zone_vfslist->vfs_zone_prev = vfsp; 3603 vfsp->vfs_zone_next = zone->zone_vfslist; 3604 } 3605 } 3606 3607 /* 3608 * Link into the hash table, inserting it at the end, so that LOFS 3609 * with the same fsid as UFS (or other) file systems will not hide 3610 * the UFS. 3611 */ 3612 vfs_hash_add(vfsp, 0); 3613 3614 /* 3615 * update the mnttab modification time 3616 */ 3617 vfs_mnttab_modtimeupd(); 3618 vfs_list_unlock(); 3619 zone_rele(zone); 3620 } 3621 3622 void 3623 vfs_list_remove(struct vfs *vfsp) 3624 { 3625 zone_t *zone; 3626 3627 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3628 ASSERT(zone != NULL); 3629 /* 3630 * Callers are responsible for preventing attempts to unmount the 3631 * root. 3632 */ 3633 ASSERT(vfsp != rootvfs); 3634 3635 vfs_list_lock(); 3636 3637 /* 3638 * Remove from hash. 3639 */ 3640 vfs_hash_remove(vfsp); 3641 3642 /* 3643 * Remove from vfs list. 3644 */ 3645 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3646 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3647 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3648 3649 /* 3650 * Remove from zone-specific vfs list. 3651 */ 3652 if (zone->zone_vfslist == vfsp) 3653 zone->zone_vfslist = vfsp->vfs_zone_next; 3654 3655 if (vfsp->vfs_zone_next == vfsp) { 3656 ASSERT(vfsp->vfs_zone_prev == vfsp); 3657 ASSERT(zone->zone_vfslist == vfsp); 3658 zone->zone_vfslist = NULL; 3659 } 3660 3661 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3662 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3663 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3664 3665 /* 3666 * update the mnttab modification time 3667 */ 3668 vfs_mnttab_modtimeupd(); 3669 vfs_list_unlock(); 3670 zone_rele(zone); 3671 } 3672 3673 struct vfs * 3674 getvfs(fsid_t *fsid) 3675 { 3676 struct vfs *vfsp; 3677 int val0 = fsid->val[0]; 3678 int val1 = fsid->val[1]; 3679 dev_t dev = expldev(val0); 3680 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3681 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3682 3683 mutex_enter(hmp); 3684 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3685 if (vfsp->vfs_fsid.val[0] == val0 && 3686 vfsp->vfs_fsid.val[1] == val1) { 3687 VFS_HOLD(vfsp); 3688 mutex_exit(hmp); 3689 return (vfsp); 3690 } 3691 } 3692 mutex_exit(hmp); 3693 return (NULL); 3694 } 3695 3696 /* 3697 * Search the vfs mount in progress list for a specified device/vfs entry. 3698 * Returns 0 if the first entry in the list that the device matches has the 3699 * given vfs pointer as well. If the device matches but a different vfs 3700 * pointer is encountered in the list before the given vfs pointer then 3701 * a 1 is returned. 3702 */ 3703 3704 int 3705 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3706 { 3707 int retval = 0; 3708 struct ipmnt *mipp; 3709 3710 mutex_enter(&vfs_miplist_mutex); 3711 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3712 if (mipp->mip_dev == dev) { 3713 if (mipp->mip_vfsp != vfsp) 3714 retval = 1; 3715 break; 3716 } 3717 } 3718 mutex_exit(&vfs_miplist_mutex); 3719 return (retval); 3720 } 3721 3722 /* 3723 * Search the vfs list for a specified device. Returns 1, if entry is found 3724 * or 0 if no suitable entry is found. 3725 */ 3726 3727 int 3728 vfs_devismounted(dev_t dev) 3729 { 3730 struct vfs *vfsp; 3731 int found; 3732 3733 vfs_list_read_lock(); 3734 vfsp = rootvfs; 3735 found = 0; 3736 do { 3737 if (vfsp->vfs_dev == dev) { 3738 found = 1; 3739 break; 3740 } 3741 vfsp = vfsp->vfs_next; 3742 } while (vfsp != rootvfs); 3743 3744 vfs_list_unlock(); 3745 return (found); 3746 } 3747 3748 /* 3749 * Search the vfs list for a specified device. Returns a pointer to it 3750 * or NULL if no suitable entry is found. The caller of this routine 3751 * is responsible for releasing the returned vfs pointer. 3752 */ 3753 struct vfs * 3754 vfs_dev2vfsp(dev_t dev) 3755 { 3756 struct vfs *vfsp; 3757 int found; 3758 3759 vfs_list_read_lock(); 3760 vfsp = rootvfs; 3761 found = 0; 3762 do { 3763 /* 3764 * The following could be made more efficient by making 3765 * the entire loop use vfs_zone_next if the call is from 3766 * a zone. The only callers, however, ustat(2) and 3767 * umount2(2), don't seem to justify the added 3768 * complexity at present. 3769 */ 3770 if (vfsp->vfs_dev == dev && 3771 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3772 curproc->p_zone)) { 3773 VFS_HOLD(vfsp); 3774 found = 1; 3775 break; 3776 } 3777 vfsp = vfsp->vfs_next; 3778 } while (vfsp != rootvfs); 3779 vfs_list_unlock(); 3780 return (found ? vfsp: NULL); 3781 } 3782 3783 /* 3784 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3785 * or NULL if no suitable entry is found. The caller of this routine 3786 * is responsible for releasing the returned vfs pointer. 3787 * 3788 * Note that if multiple mntpoints match, the last one matching is 3789 * returned in an attempt to return the "top" mount when overlay 3790 * mounts are covering the same mount point. This is accomplished by starting 3791 * at the end of the list and working our way backwards, stopping at the first 3792 * matching mount. 3793 */ 3794 struct vfs * 3795 vfs_mntpoint2vfsp(const char *mp) 3796 { 3797 struct vfs *vfsp; 3798 struct vfs *retvfsp = NULL; 3799 zone_t *zone = curproc->p_zone; 3800 struct vfs *list; 3801 3802 vfs_list_read_lock(); 3803 if (getzoneid() == GLOBAL_ZONEID) { 3804 /* 3805 * The global zone may see filesystems in any zone. 3806 */ 3807 vfsp = rootvfs->vfs_prev; 3808 do { 3809 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3810 retvfsp = vfsp; 3811 break; 3812 } 3813 vfsp = vfsp->vfs_prev; 3814 } while (vfsp != rootvfs->vfs_prev); 3815 } else if ((list = zone->zone_vfslist) != NULL) { 3816 const char *mntpt; 3817 3818 vfsp = list->vfs_zone_prev; 3819 do { 3820 mntpt = refstr_value(vfsp->vfs_mntpt); 3821 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3822 if (strcmp(mntpt, mp) == 0) { 3823 retvfsp = vfsp; 3824 break; 3825 } 3826 vfsp = vfsp->vfs_zone_prev; 3827 } while (vfsp != list->vfs_zone_prev); 3828 } 3829 if (retvfsp) 3830 VFS_HOLD(retvfsp); 3831 vfs_list_unlock(); 3832 return (retvfsp); 3833 } 3834 3835 /* 3836 * Search the vfs list for a specified vfsops. 3837 * if vfs entry is found then return 1, else 0. 3838 */ 3839 int 3840 vfs_opsinuse(vfsops_t *ops) 3841 { 3842 struct vfs *vfsp; 3843 int found; 3844 3845 vfs_list_read_lock(); 3846 vfsp = rootvfs; 3847 found = 0; 3848 do { 3849 if (vfs_getops(vfsp) == ops) { 3850 found = 1; 3851 break; 3852 } 3853 vfsp = vfsp->vfs_next; 3854 } while (vfsp != rootvfs); 3855 vfs_list_unlock(); 3856 return (found); 3857 } 3858 3859 /* 3860 * Allocate an entry in vfssw for a file system type 3861 */ 3862 struct vfssw * 3863 allocate_vfssw(const char *type) 3864 { 3865 struct vfssw *vswp; 3866 3867 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3868 /* 3869 * The vfssw table uses the empty string to identify an 3870 * available entry; we cannot add any type which has 3871 * a leading NUL. The string length is limited to 3872 * the size of the st_fstype array in struct stat. 3873 */ 3874 return (NULL); 3875 } 3876 3877 ASSERT(VFSSW_WRITE_LOCKED()); 3878 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3879 if (!ALLOCATED_VFSSW(vswp)) { 3880 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3881 (void) strcpy(vswp->vsw_name, type); 3882 ASSERT(vswp->vsw_count == 0); 3883 vswp->vsw_count = 1; 3884 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3885 return (vswp); 3886 } 3887 return (NULL); 3888 } 3889 3890 /* 3891 * Impose additional layer of translation between vfstype names 3892 * and module names in the filesystem. 3893 */ 3894 static const char * 3895 vfs_to_modname(const char *vfstype) 3896 { 3897 if (strcmp(vfstype, "proc") == 0) { 3898 vfstype = "procfs"; 3899 } else if (strcmp(vfstype, "fd") == 0) { 3900 vfstype = "fdfs"; 3901 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3902 vfstype = "nfs"; 3903 } 3904 3905 return (vfstype); 3906 } 3907 3908 /* 3909 * Find a vfssw entry given a file system type name. 3910 * Try to autoload the filesystem if it's not found. 3911 * If it's installed, return the vfssw locked to prevent unloading. 3912 */ 3913 struct vfssw * 3914 vfs_getvfssw(const char *type) 3915 { 3916 struct vfssw *vswp; 3917 const char *modname; 3918 3919 RLOCK_VFSSW(); 3920 vswp = vfs_getvfsswbyname(type); 3921 modname = vfs_to_modname(type); 3922 3923 if (rootdir == NULL) { 3924 /* 3925 * If we haven't yet loaded the root file system, then our 3926 * _init won't be called until later. Allocate vfssw entry, 3927 * because mod_installfs won't be called. 3928 */ 3929 if (vswp == NULL) { 3930 RUNLOCK_VFSSW(); 3931 WLOCK_VFSSW(); 3932 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3933 if ((vswp = allocate_vfssw(type)) == NULL) { 3934 WUNLOCK_VFSSW(); 3935 return (NULL); 3936 } 3937 } 3938 WUNLOCK_VFSSW(); 3939 RLOCK_VFSSW(); 3940 } 3941 if (!VFS_INSTALLED(vswp)) { 3942 RUNLOCK_VFSSW(); 3943 (void) modloadonly("fs", modname); 3944 } else 3945 RUNLOCK_VFSSW(); 3946 return (vswp); 3947 } 3948 3949 /* 3950 * Try to load the filesystem. Before calling modload(), we drop 3951 * our lock on the VFS switch table, and pick it up after the 3952 * module is loaded. However, there is a potential race: the 3953 * module could be unloaded after the call to modload() completes 3954 * but before we pick up the lock and drive on. Therefore, 3955 * we keep reloading the module until we've loaded the module 3956 * _and_ we have the lock on the VFS switch table. 3957 */ 3958 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3959 RUNLOCK_VFSSW(); 3960 if (modload("fs", modname) == -1) 3961 return (NULL); 3962 RLOCK_VFSSW(); 3963 if (vswp == NULL) 3964 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3965 break; 3966 } 3967 RUNLOCK_VFSSW(); 3968 3969 return (vswp); 3970 } 3971 3972 /* 3973 * Find a vfssw entry given a file system type name. 3974 */ 3975 struct vfssw * 3976 vfs_getvfsswbyname(const char *type) 3977 { 3978 struct vfssw *vswp; 3979 3980 ASSERT(VFSSW_LOCKED()); 3981 if (type == NULL || *type == '\0') 3982 return (NULL); 3983 3984 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3985 if (strcmp(type, vswp->vsw_name) == 0) { 3986 vfs_refvfssw(vswp); 3987 return (vswp); 3988 } 3989 } 3990 3991 return (NULL); 3992 } 3993 3994 /* 3995 * Find a vfssw entry given a set of vfsops. 3996 */ 3997 struct vfssw * 3998 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3999 { 4000 struct vfssw *vswp; 4001 4002 RLOCK_VFSSW(); 4003 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4004 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 4005 vfs_refvfssw(vswp); 4006 RUNLOCK_VFSSW(); 4007 return (vswp); 4008 } 4009 } 4010 RUNLOCK_VFSSW(); 4011 4012 return (NULL); 4013 } 4014 4015 /* 4016 * Reference a vfssw entry. 4017 */ 4018 void 4019 vfs_refvfssw(struct vfssw *vswp) 4020 { 4021 4022 mutex_enter(&vswp->vsw_lock); 4023 vswp->vsw_count++; 4024 mutex_exit(&vswp->vsw_lock); 4025 } 4026 4027 /* 4028 * Unreference a vfssw entry. 4029 */ 4030 void 4031 vfs_unrefvfssw(struct vfssw *vswp) 4032 { 4033 4034 mutex_enter(&vswp->vsw_lock); 4035 vswp->vsw_count--; 4036 mutex_exit(&vswp->vsw_lock); 4037 } 4038 4039 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4040 int sync_timeleft; /* portion of sync_timeout remaining */ 4041 4042 static int sync_retries = 20; /* number of retries when not making progress */ 4043 static int sync_triesleft; /* portion of sync_retries remaining */ 4044 4045 static pgcnt_t old_pgcnt, new_pgcnt; 4046 static int new_bufcnt, old_bufcnt; 4047 4048 /* 4049 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4050 * complete. We wait by counting the number of dirty pages and buffers, 4051 * pushing them out using bio_busy() and page_busy(), and then counting again. 4052 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4053 * the SYNC phase of the panic code (see comments in panic.c). It should only 4054 * be used after some higher-level mechanism has quiesced the system so that 4055 * new writes are not being initiated while we are waiting for completion. 4056 * 4057 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4058 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4059 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4060 * Together these ensure that syncing completes if our i/o paths are stuck. 4061 * The counters are declared above so they can be found easily in the debugger. 4062 * 4063 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4064 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4065 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4066 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4067 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4068 * deadlocking or hanging inside of a broken filesystem or driver routine. 4069 * 4070 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4071 * sync_retries consecutive calls to bio_busy() and page_busy() without 4072 * decreasing either the number of dirty buffers or dirty pages below the 4073 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4074 * 4075 * Each loop iteration ends with a call to delay() one second to allow time for 4076 * i/o completion and to permit the user time to read our progress messages. 4077 */ 4078 void 4079 vfs_syncall(void) 4080 { 4081 if (rootdir == NULL && !modrootloaded) 4082 return; /* panic during boot - no filesystems yet */ 4083 4084 printf("syncing file systems..."); 4085 vfs_syncprogress(); 4086 sync(); 4087 4088 vfs_syncprogress(); 4089 sync_triesleft = sync_retries; 4090 4091 old_bufcnt = new_bufcnt = INT_MAX; 4092 old_pgcnt = new_pgcnt = ULONG_MAX; 4093 4094 while (sync_triesleft > 0) { 4095 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4096 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4097 4098 new_bufcnt = bio_busy(B_TRUE); 4099 new_pgcnt = page_busy(B_TRUE); 4100 vfs_syncprogress(); 4101 4102 if (new_bufcnt == 0 && new_pgcnt == 0) 4103 break; 4104 4105 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4106 sync_triesleft = sync_retries; 4107 else 4108 sync_triesleft--; 4109 4110 if (new_bufcnt) 4111 printf(" [%d]", new_bufcnt); 4112 if (new_pgcnt) 4113 printf(" %lu", new_pgcnt); 4114 4115 delay(hz); 4116 } 4117 4118 if (new_bufcnt != 0 || new_pgcnt != 0) 4119 printf(" done (not all i/o completed)\n"); 4120 else 4121 printf(" done\n"); 4122 4123 sync_timeleft = 0; 4124 delay(hz); 4125 } 4126 4127 /* 4128 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4129 * sync_timeout to indicate that we are making progress and the deadman() 4130 * omnipresent cyclic should not yet time us out. Note that it is safe to 4131 * store to sync_timeleft here since the deadman() is firing at high-level 4132 * on top of us. If we are racing with the deadman(), either the deadman() 4133 * will decrement the old value and then we will reset it, or we will 4134 * reset it and then the deadman() will immediately decrement it. In either 4135 * case, correct behavior results. 4136 */ 4137 void 4138 vfs_syncprogress(void) 4139 { 4140 if (panicstr) 4141 sync_timeleft = sync_timeout; 4142 } 4143 4144 /* 4145 * Map VFS flags to statvfs flags. These shouldn't really be separate 4146 * flags at all. 4147 */ 4148 uint_t 4149 vf_to_stf(uint_t vf) 4150 { 4151 uint_t stf = 0; 4152 4153 if (vf & VFS_RDONLY) 4154 stf |= ST_RDONLY; 4155 if (vf & VFS_NOSETUID) 4156 stf |= ST_NOSUID; 4157 if (vf & VFS_NOTRUNC) 4158 stf |= ST_NOTRUNC; 4159 4160 return (stf); 4161 } 4162 4163 /* 4164 * Entries for (illegal) fstype 0. 4165 */ 4166 /* ARGSUSED */ 4167 int 4168 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4169 { 4170 cmn_err(CE_PANIC, "stray vfs operation"); 4171 return (0); 4172 } 4173 4174 /* 4175 * Entries for (illegal) fstype 0. 4176 */ 4177 int 4178 vfsstray(void) 4179 { 4180 cmn_err(CE_PANIC, "stray vfs operation"); 4181 return (0); 4182 } 4183 4184 /* 4185 * Support for dealing with forced UFS unmount and its interaction with 4186 * LOFS. Could be used by any filesystem. 4187 * See bug 1203132. 4188 */ 4189 int 4190 vfs_EIO(void) 4191 { 4192 return (EIO); 4193 } 4194 4195 /* 4196 * We've gotta define the op for sync separately, since the compiler gets 4197 * confused if we mix and match ANSI and normal style prototypes when 4198 * a "short" argument is present and spits out a warning. 4199 */ 4200 /*ARGSUSED*/ 4201 int 4202 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4203 { 4204 return (EIO); 4205 } 4206 4207 vfs_t EIO_vfs; 4208 vfsops_t *EIO_vfsops; 4209 4210 /* 4211 * Called from startup() to initialize all loaded vfs's 4212 */ 4213 void 4214 vfsinit(void) 4215 { 4216 struct vfssw *vswp; 4217 int error; 4218 extern int vopstats_enabled; 4219 extern void vopstats_startup(); 4220 4221 static const fs_operation_def_t EIO_vfsops_template[] = { 4222 VFSNAME_MOUNT, { .error = vfs_EIO }, 4223 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4224 VFSNAME_ROOT, { .error = vfs_EIO }, 4225 VFSNAME_STATVFS, { .error = vfs_EIO }, 4226 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4227 VFSNAME_VGET, { .error = vfs_EIO }, 4228 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4229 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4230 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4231 NULL, NULL 4232 }; 4233 4234 static const fs_operation_def_t stray_vfsops_template[] = { 4235 VFSNAME_MOUNT, { .error = vfsstray }, 4236 VFSNAME_UNMOUNT, { .error = vfsstray }, 4237 VFSNAME_ROOT, { .error = vfsstray }, 4238 VFSNAME_STATVFS, { .error = vfsstray }, 4239 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4240 VFSNAME_VGET, { .error = vfsstray }, 4241 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4242 VFSNAME_FREEVFS, { .error = vfsstray }, 4243 VFSNAME_VNSTATE, { .error = vfsstray }, 4244 NULL, NULL 4245 }; 4246 4247 /* Create vfs cache */ 4248 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4249 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4250 4251 /* Initialize the vnode cache (file systems may use it during init). */ 4252 vn_create_cache(); 4253 4254 /* Setup event monitor framework */ 4255 fem_init(); 4256 4257 /* Initialize the dummy stray file system type. */ 4258 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4259 4260 /* Initialize the dummy EIO file system. */ 4261 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4262 if (error != 0) { 4263 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4264 /* Shouldn't happen, but not bad enough to panic */ 4265 } 4266 4267 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4268 4269 /* 4270 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4271 * on this vfs can immediately notice it's invalid. 4272 */ 4273 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4274 4275 /* 4276 * Call the init routines of non-loadable filesystems only. 4277 * Filesystems which are loaded as separate modules will be 4278 * initialized by the module loading code instead. 4279 */ 4280 4281 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4282 RLOCK_VFSSW(); 4283 if (vswp->vsw_init != NULL) 4284 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4285 RUNLOCK_VFSSW(); 4286 } 4287 4288 vopstats_startup(); 4289 4290 if (vopstats_enabled) { 4291 /* EIO_vfs can collect stats, but we don't retrieve them */ 4292 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4293 EIO_vfs.vfs_fstypevsp = NULL; 4294 EIO_vfs.vfs_vskap = NULL; 4295 EIO_vfs.vfs_flag |= VFS_STATS; 4296 } 4297 4298 xattr_init(); 4299 4300 reparse_point_init(); 4301 } 4302 4303 vfs_t * 4304 vfs_alloc(int kmflag) 4305 { 4306 vfs_t *vfsp; 4307 4308 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4309 4310 /* 4311 * Do the simplest initialization here. 4312 * Everything else gets done in vfs_init() 4313 */ 4314 bzero(vfsp, sizeof (vfs_t)); 4315 return (vfsp); 4316 } 4317 4318 void 4319 vfs_free(vfs_t *vfsp) 4320 { 4321 /* 4322 * One would be tempted to assert that "vfsp->vfs_count == 0". 4323 * The problem is that this gets called out of domount() with 4324 * a partially initialized vfs and a vfs_count of 1. This is 4325 * also called from vfs_rele() with a vfs_count of 0. We can't 4326 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4327 * returned. This is because VFS_MOUNT() fully initializes the 4328 * vfs structure and its associated data. VFS_RELE() will call 4329 * VFS_FREEVFS() which may panic the system if the data structures 4330 * aren't fully initialized from a successful VFS_MOUNT()). 4331 */ 4332 4333 /* If FEM was in use, make sure everything gets cleaned up */ 4334 if (vfsp->vfs_femhead) { 4335 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4336 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4337 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4338 vfsp->vfs_femhead = NULL; 4339 } 4340 4341 if (vfsp->vfs_implp) 4342 vfsimpl_teardown(vfsp); 4343 sema_destroy(&vfsp->vfs_reflock); 4344 kmem_cache_free(vfs_cache, vfsp); 4345 } 4346 4347 /* 4348 * Increments the vfs reference count by one atomically. 4349 */ 4350 void 4351 vfs_hold(vfs_t *vfsp) 4352 { 4353 atomic_inc_32(&vfsp->vfs_count); 4354 ASSERT(vfsp->vfs_count != 0); 4355 } 4356 4357 /* 4358 * Decrements the vfs reference count by one atomically. When 4359 * vfs reference count becomes zero, it calls the file system 4360 * specific vfs_freevfs() to free up the resources. 4361 */ 4362 void 4363 vfs_rele(vfs_t *vfsp) 4364 { 4365 ASSERT(vfsp->vfs_count != 0); 4366 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4367 VFS_FREEVFS(vfsp); 4368 lofi_remove(vfsp); 4369 if (vfsp->vfs_zone) 4370 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4371 ZONE_REF_VFS); 4372 vfs_freemnttab(vfsp); 4373 vfs_free(vfsp); 4374 } 4375 } 4376 4377 /* 4378 * Generic operations vector support. 4379 * 4380 * This is used to build operations vectors for both the vfs and vnode. 4381 * It's normally called only when a file system is loaded. 4382 * 4383 * There are many possible algorithms for this, including the following: 4384 * 4385 * (1) scan the list of known operations; for each, see if the file system 4386 * includes an entry for it, and fill it in as appropriate. 4387 * 4388 * (2) set up defaults for all known operations. scan the list of ops 4389 * supplied by the file system; for each which is both supplied and 4390 * known, fill it in. 4391 * 4392 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4393 * in entries as we go. 4394 * 4395 * we choose (1) for simplicity, and because performance isn't critical here. 4396 * note that (2) could be sped up using a precomputed hash table on known ops. 4397 * (3) could be faster than either, but only if the lists were very large or 4398 * supplied in sorted order. 4399 * 4400 */ 4401 4402 int 4403 fs_build_vector(void *vector, int *unused_ops, 4404 const fs_operation_trans_def_t *translation, 4405 const fs_operation_def_t *operations) 4406 { 4407 int i, num_trans, num_ops, used; 4408 4409 /* 4410 * Count the number of translations and the number of supplied 4411 * operations. 4412 */ 4413 4414 { 4415 const fs_operation_trans_def_t *p; 4416 4417 for (num_trans = 0, p = translation; 4418 p->name != NULL; 4419 num_trans++, p++) 4420 ; 4421 } 4422 4423 { 4424 const fs_operation_def_t *p; 4425 4426 for (num_ops = 0, p = operations; 4427 p->name != NULL; 4428 num_ops++, p++) 4429 ; 4430 } 4431 4432 /* Walk through each operation known to our caller. There will be */ 4433 /* one entry in the supplied "translation table" for each. */ 4434 4435 used = 0; 4436 4437 for (i = 0; i < num_trans; i++) { 4438 int j, found; 4439 char *curname; 4440 fs_generic_func_p result; 4441 fs_generic_func_p *location; 4442 4443 curname = translation[i].name; 4444 4445 /* Look for a matching operation in the list supplied by the */ 4446 /* file system. */ 4447 4448 found = 0; 4449 4450 for (j = 0; j < num_ops; j++) { 4451 if (strcmp(operations[j].name, curname) == 0) { 4452 used++; 4453 found = 1; 4454 break; 4455 } 4456 } 4457 4458 /* 4459 * If the file system is using a "placeholder" for default 4460 * or error functions, grab the appropriate function out of 4461 * the translation table. If the file system didn't supply 4462 * this operation at all, use the default function. 4463 */ 4464 4465 if (found) { 4466 result = operations[j].func.fs_generic; 4467 if (result == fs_default) { 4468 result = translation[i].defaultFunc; 4469 } else if (result == fs_error) { 4470 result = translation[i].errorFunc; 4471 } else if (result == NULL) { 4472 /* Null values are PROHIBITED */ 4473 return (EINVAL); 4474 } 4475 } else { 4476 result = translation[i].defaultFunc; 4477 } 4478 4479 /* Now store the function into the operations vector. */ 4480 4481 location = (fs_generic_func_p *) 4482 (((char *)vector) + translation[i].offset); 4483 4484 *location = result; 4485 } 4486 4487 *unused_ops = num_ops - used; 4488 4489 return (0); 4490 } 4491 4492 /* Placeholder functions, should never be called. */ 4493 4494 int 4495 fs_error(void) 4496 { 4497 cmn_err(CE_PANIC, "fs_error called"); 4498 return (0); 4499 } 4500 4501 int 4502 fs_default(void) 4503 { 4504 cmn_err(CE_PANIC, "fs_default called"); 4505 return (0); 4506 } 4507 4508 #ifdef __sparc 4509 4510 /* 4511 * Part of the implementation of booting off a mirrored root 4512 * involves a change of dev_t for the root device. To 4513 * accomplish this, first remove the existing hash table 4514 * entry for the root device, convert to the new dev_t, 4515 * then re-insert in the hash table at the head of the list. 4516 */ 4517 void 4518 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4519 { 4520 vfs_list_lock(); 4521 4522 vfs_hash_remove(vfsp); 4523 4524 vfsp->vfs_dev = ndev; 4525 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4526 4527 vfs_hash_add(vfsp, 1); 4528 4529 vfs_list_unlock(); 4530 } 4531 4532 #else /* x86 NEWBOOT */ 4533 4534 #if defined(__x86) 4535 extern int hvmboot_rootconf(); 4536 #endif /* __x86 */ 4537 4538 extern ib_boot_prop_t *iscsiboot_prop; 4539 4540 int 4541 rootconf() 4542 { 4543 int error; 4544 struct vfssw *vsw; 4545 extern void pm_init(); 4546 char *fstyp, *fsmod; 4547 int ret = -1; 4548 4549 getrootfs(&fstyp, &fsmod); 4550 4551 #if defined(__x86) 4552 /* 4553 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4554 * which lives in /platform/i86hvm, and hence is only available when 4555 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4556 * is not available then the modstub for this function will return 0. 4557 * If the hvm_bootstrap misc module is available it will be loaded 4558 * and hvmboot_rootconf() will be invoked. 4559 */ 4560 if (error = hvmboot_rootconf()) 4561 return (error); 4562 #endif /* __x86 */ 4563 4564 if (error = clboot_rootconf()) 4565 return (error); 4566 4567 if (modload("fs", fsmod) == -1) 4568 panic("Cannot _init %s module", fsmod); 4569 4570 RLOCK_VFSSW(); 4571 vsw = vfs_getvfsswbyname(fstyp); 4572 RUNLOCK_VFSSW(); 4573 if (vsw == NULL) { 4574 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4575 return (ENXIO); 4576 } 4577 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4578 VFS_HOLD(rootvfs); 4579 4580 /* always mount readonly first */ 4581 rootvfs->vfs_flag |= VFS_RDONLY; 4582 4583 pm_init(); 4584 4585 if (netboot && iscsiboot_prop) { 4586 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4587 " shouldn't happen in the same time"); 4588 return (EINVAL); 4589 } 4590 4591 if (netboot || iscsiboot_prop) { 4592 ret = strplumb(); 4593 if (ret != 0) { 4594 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4595 return (EFAULT); 4596 } 4597 } 4598 4599 if ((ret == 0) && iscsiboot_prop) { 4600 ret = modload("drv", "iscsi"); 4601 /* -1 indicates fail */ 4602 if (ret == -1) { 4603 cmn_err(CE_WARN, "Failed to load iscsi module"); 4604 iscsi_boot_prop_free(); 4605 return (EINVAL); 4606 } else { 4607 if (!i_ddi_attach_pseudo_node("iscsi")) { 4608 cmn_err(CE_WARN, 4609 "Failed to attach iscsi driver"); 4610 iscsi_boot_prop_free(); 4611 return (ENODEV); 4612 } 4613 } 4614 } 4615 4616 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4617 vfs_unrefvfssw(vsw); 4618 rootdev = rootvfs->vfs_dev; 4619 4620 if (error) 4621 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4622 rootfs.bo_name, fstyp); 4623 else 4624 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4625 rootfs.bo_name, fstyp); 4626 return (error); 4627 } 4628 4629 /* 4630 * XXX this is called by nfs only and should probably be removed 4631 * If booted with ASKNAME, prompt on the console for a filesystem 4632 * name and return it. 4633 */ 4634 void 4635 getfsname(char *askfor, char *name, size_t namelen) 4636 { 4637 if (boothowto & RB_ASKNAME) { 4638 printf("%s name: ", askfor); 4639 console_gets(name, namelen); 4640 } 4641 } 4642 4643 /* 4644 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4645 * property. 4646 * 4647 * Filesystem types starting with the prefix "nfs" are diskless clients; 4648 * init the root filename name (rootfs.bo_name), too. 4649 * 4650 * If we are booting via NFS we currently have these options: 4651 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4652 * nfs2 - force NFS V2 4653 * nfs3 - force NFS V3 4654 * nfs4 - force NFS V4 4655 * Because we need to maintain backward compatibility with the naming 4656 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4657 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4658 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4659 * This is only for root filesystems, all other uses will expect 4660 * that "nfs" == NFS V2. 4661 */ 4662 static void 4663 getrootfs(char **fstypp, char **fsmodp) 4664 { 4665 extern char *strplumb_get_netdev_path(void); 4666 char *propstr = NULL; 4667 4668 /* 4669 * Check fstype property; for diskless it should be one of "nfs", 4670 * "nfs2", "nfs3" or "nfs4". 4671 */ 4672 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4673 DDI_PROP_DONTPASS, "fstype", &propstr) 4674 == DDI_SUCCESS) { 4675 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4676 ddi_prop_free(propstr); 4677 4678 /* 4679 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4680 * assume the type of this root filesystem is 'zfs'. 4681 */ 4682 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4683 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4684 == DDI_SUCCESS) { 4685 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4686 ddi_prop_free(propstr); 4687 } 4688 4689 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4690 *fstypp = *fsmodp = rootfs.bo_fstype; 4691 return; 4692 } 4693 4694 ++netboot; 4695 4696 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4697 (void) strcpy(rootfs.bo_fstype, "nfs"); 4698 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4699 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4700 4701 /* 4702 * check if path to network interface is specified in bootpath 4703 * or by a hypervisor domain configuration file. 4704 * XXPV - enable strlumb_get_netdev_path() 4705 */ 4706 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4707 "xpv-nfsroot")) { 4708 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4709 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4710 DDI_PROP_DONTPASS, "bootpath", &propstr) 4711 == DDI_SUCCESS) { 4712 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4713 ddi_prop_free(propstr); 4714 } else { 4715 /* attempt to determine netdev_path via boot_mac address */ 4716 netdev_path = strplumb_get_netdev_path(); 4717 if (netdev_path == NULL) 4718 panic("cannot find boot network interface"); 4719 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4720 } 4721 *fstypp = rootfs.bo_fstype; 4722 *fsmodp = "nfs"; 4723 } 4724 #endif 4725 4726 /* 4727 * VFS feature routines 4728 */ 4729 4730 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4731 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4732 4733 /* Register a feature in the vfs */ 4734 void 4735 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4736 { 4737 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4738 if (vfsp->vfs_implp == NULL) 4739 return; 4740 4741 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4742 } 4743 4744 void 4745 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4746 { 4747 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4748 if (vfsp->vfs_implp == NULL) 4749 return; 4750 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4751 } 4752 4753 /* 4754 * Query a vfs for a feature. 4755 * Returns 1 if feature is present, 0 if not 4756 */ 4757 int 4758 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4759 { 4760 int ret = 0; 4761 4762 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4763 if (vfsp->vfs_implp == NULL) 4764 return (ret); 4765 4766 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4767 ret = 1; 4768 4769 return (ret); 4770 } 4771 4772 /* 4773 * Propagate feature set from one vfs to another 4774 */ 4775 void 4776 vfs_propagate_features(vfs_t *from, vfs_t *to) 4777 { 4778 int i; 4779 4780 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4781 return; 4782 4783 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4784 to->vfs_featureset[i] = from->vfs_featureset[i]; 4785 } 4786 } 4787 4788 #define LOFINODE_PATH "/dev/lofi/%d" 4789 4790 /* 4791 * Return the vnode for the lofi node if there's a lofi mount in place. 4792 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4793 * failure. 4794 */ 4795 int 4796 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4797 { 4798 char *path = NULL; 4799 int strsize; 4800 int err; 4801 4802 if (vfsp->vfs_lofi_minor == 0) { 4803 *vpp = NULL; 4804 return (-1); 4805 } 4806 4807 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4808 path = kmem_alloc(strsize + 1, KM_SLEEP); 4809 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4810 4811 /* 4812 * We may be inside a zone, so we need to use the /dev path, but 4813 * it's created asynchronously, so we wait here. 4814 */ 4815 for (;;) { 4816 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4817 4818 if (err != ENOENT) 4819 break; 4820 4821 if ((err = delay_sig(hz / 8)) == EINTR) 4822 break; 4823 } 4824 4825 if (err) 4826 *vpp = NULL; 4827 4828 kmem_free(path, strsize + 1); 4829 return (err); 4830 } 4831