1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/t_lock.h> 41 #include <sys/param.h> 42 #include <sys/errno.h> 43 #include <sys/user.h> 44 #include <sys/fstyp.h> 45 #include <sys/kmem.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/mount.h> 49 #include <sys/vfs.h> 50 #include <sys/vfs_opreg.h> 51 #include <sys/fem.h> 52 #include <sys/mntent.h> 53 #include <sys/stat.h> 54 #include <sys/statvfs.h> 55 #include <sys/statfs.h> 56 #include <sys/cred.h> 57 #include <sys/vnode.h> 58 #include <sys/rwstlock.h> 59 #include <sys/dnlc.h> 60 #include <sys/file.h> 61 #include <sys/time.h> 62 #include <sys/atomic.h> 63 #include <sys/cmn_err.h> 64 #include <sys/buf.h> 65 #include <sys/swap.h> 66 #include <sys/debug.h> 67 #include <sys/vnode.h> 68 #include <sys/modctl.h> 69 #include <sys/ddi.h> 70 #include <sys/pathname.h> 71 #include <sys/bootconf.h> 72 #include <sys/dumphdr.h> 73 #include <sys/dc_ki.h> 74 #include <sys/poll.h> 75 #include <sys/sunddi.h> 76 #include <sys/sysmacros.h> 77 #include <sys/zone.h> 78 #include <sys/policy.h> 79 #include <sys/ctfs.h> 80 #include <sys/objfs.h> 81 #include <sys/console.h> 82 #include <sys/reboot.h> 83 #include <sys/attr.h> 84 #include <sys/spa.h> 85 #include <sys/lofi.h> 86 #include <sys/bootprops.h> 87 88 #include <vm/page.h> 89 90 #include <fs/fs_subr.h> 91 /* Private interfaces to create vopstats-related data structures */ 92 extern void initialize_vopstats(vopstats_t *); 93 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 94 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 95 96 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 97 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 98 const char *, int, int); 99 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 100 static void vfs_freemnttab(struct vfs *); 101 static void vfs_freeopt(mntopt_t *); 102 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 103 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 104 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 105 static void vfs_createopttbl_extend(mntopts_t *, const char *, 106 const mntopts_t *); 107 static char **vfs_copycancelopt_extend(char **const, int); 108 static void vfs_freecancelopt(char **); 109 static void getrootfs(char **, char **); 110 static int getmacpath(dev_info_t *, void *); 111 static void vfs_mnttabvp_setup(void); 112 113 struct ipmnt { 114 struct ipmnt *mip_next; 115 dev_t mip_dev; 116 struct vfs *mip_vfsp; 117 }; 118 119 static kmutex_t vfs_miplist_mutex; 120 static struct ipmnt *vfs_miplist = NULL; 121 static struct ipmnt *vfs_miplist_end = NULL; 122 123 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 124 125 /* 126 * VFS global data. 127 */ 128 vnode_t *rootdir; /* pointer to root inode vnode. */ 129 vnode_t *devicesdir; /* pointer to inode of devices root */ 130 vnode_t *devdir; /* pointer to inode of dev root */ 131 132 char *server_rootpath; /* root path for diskless clients */ 133 char *server_hostname; /* hostname of diskless server */ 134 135 static struct vfs root; 136 static struct vfs devices; 137 static struct vfs dev; 138 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 139 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 140 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 141 /* must be power of 2! */ 142 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 143 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 144 char *vfs_dummyfstype = "\0"; 145 struct pollhead vfs_pollhd; /* for mnttab pollers */ 146 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 147 int mntfstype; /* will be set once mnt fs is mounted */ 148 149 /* 150 * Table for generic options recognized in the VFS layer and acted 151 * on at this level before parsing file system specific options. 152 * The nosuid option is stronger than any of the devices and setuid 153 * options, so those are canceled when nosuid is seen. 154 * 155 * All options which are added here need to be added to the 156 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 157 */ 158 /* 159 * VFS Mount options table 160 */ 161 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 162 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 163 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 164 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 165 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 166 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 167 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 168 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 169 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 170 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 171 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 172 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 173 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 174 175 static const mntopt_t mntopts[] = { 176 /* 177 * option name cancel options default arg flags 178 */ 179 { MNTOPT_REMOUNT, NULL, NULL, 180 MO_NODISPLAY, (void *)0 }, 181 { MNTOPT_RO, ro_cancel, NULL, 0, 182 (void *)0 }, 183 { MNTOPT_RW, rw_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_SUID, suid_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 200 (void *)0 }, 201 { MNTOPT_EXEC, exec_cancel, NULL, 0, 202 (void *)0 }, 203 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 204 (void *)0 }, 205 }; 206 207 const mntopts_t vfs_mntopts = { 208 sizeof (mntopts) / sizeof (mntopt_t), 209 (mntopt_t *)&mntopts[0] 210 }; 211 212 /* 213 * File system operation dispatch functions. 214 */ 215 216 int 217 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 218 { 219 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 220 } 221 222 int 223 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 224 { 225 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 226 } 227 228 int 229 fsop_root(vfs_t *vfsp, vnode_t **vpp) 230 { 231 refstr_t *mntpt; 232 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 233 /* 234 * Make sure this root has a path. With lofs, it is possible to have 235 * a NULL mountpoint. 236 */ 237 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 238 mntpt = vfs_getmntpoint(vfsp); 239 vn_setpath_str(*vpp, refstr_value(mntpt), 240 strlen(refstr_value(mntpt))); 241 refstr_rele(mntpt); 242 } 243 244 return (ret); 245 } 246 247 int 248 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 249 { 250 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 251 } 252 253 int 254 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 255 { 256 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 257 } 258 259 int 260 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 261 { 262 /* 263 * In order to handle system attribute fids in a manner 264 * transparent to the underlying fs, we embed the fid for 265 * the sysattr parent object in the sysattr fid and tack on 266 * some extra bytes that only the sysattr layer knows about. 267 * 268 * This guarantees that sysattr fids are larger than other fids 269 * for this vfs. If the vfs supports the sysattr view interface 270 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 271 * collision with XATTR_FIDSZ. 272 */ 273 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 274 fidp->fid_len == XATTR_FIDSZ) 275 return (xattr_dir_vget(vfsp, vpp, fidp)); 276 277 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 278 } 279 280 int 281 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 282 { 283 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 284 } 285 286 void 287 fsop_freefs(vfs_t *vfsp) 288 { 289 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 290 } 291 292 int 293 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 294 { 295 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 296 } 297 298 int 299 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 300 { 301 ASSERT((fstype >= 0) && (fstype < nfstype)); 302 303 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 304 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 305 else 306 return (ENOTSUP); 307 } 308 309 /* 310 * File system initialization. vfs_setfsops() must be called from a file 311 * system's init routine. 312 */ 313 314 static int 315 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 316 int *unused_ops) 317 { 318 static const fs_operation_trans_def_t vfs_ops_table[] = { 319 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 320 fs_nosys, fs_nosys, 321 322 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 323 fs_nosys, fs_nosys, 324 325 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 326 fs_nosys, fs_nosys, 327 328 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 332 (fs_generic_func_p) fs_sync, 333 (fs_generic_func_p) fs_sync, /* No errors allowed */ 334 335 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 336 fs_nosys, fs_nosys, 337 338 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 339 fs_nosys, fs_nosys, 340 341 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 342 (fs_generic_func_p)fs_freevfs, 343 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 344 345 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 346 (fs_generic_func_p)fs_nosys, 347 (fs_generic_func_p)fs_nosys, 348 349 NULL, 0, NULL, NULL 350 }; 351 352 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 353 } 354 355 void 356 zfs_boot_init() { 357 358 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 359 spa_boot_init(); 360 } 361 362 int 363 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 364 { 365 int error; 366 int unused_ops; 367 368 /* 369 * Verify that fstype refers to a valid fs. Note that 370 * 0 is valid since it's used to set "stray" ops. 371 */ 372 if ((fstype < 0) || (fstype >= nfstype)) 373 return (EINVAL); 374 375 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 376 return (EINVAL); 377 378 /* Set up the operations vector. */ 379 380 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 381 382 if (error != 0) 383 return (error); 384 385 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 386 387 if (actual != NULL) 388 *actual = &vfssw[fstype].vsw_vfsops; 389 390 #if DEBUG 391 if (unused_ops != 0) 392 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 393 "but not used", vfssw[fstype].vsw_name, unused_ops); 394 #endif 395 396 return (0); 397 } 398 399 int 400 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 401 { 402 int error; 403 int unused_ops; 404 405 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 406 407 error = fs_copyfsops(template, *actual, &unused_ops); 408 if (error != 0) { 409 kmem_free(*actual, sizeof (vfsops_t)); 410 *actual = NULL; 411 return (error); 412 } 413 414 return (0); 415 } 416 417 /* 418 * Free a vfsops structure created as a result of vfs_makefsops(). 419 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 420 * vfs_freevfsops_by_type(). 421 */ 422 void 423 vfs_freevfsops(vfsops_t *vfsops) 424 { 425 kmem_free(vfsops, sizeof (vfsops_t)); 426 } 427 428 /* 429 * Since the vfsops structure is part of the vfssw table and wasn't 430 * really allocated, we're not really freeing anything. We keep 431 * the name for consistency with vfs_freevfsops(). We do, however, 432 * need to take care of a little bookkeeping. 433 * NOTE: For a vfsops structure created by vfs_setfsops(), use 434 * vfs_freevfsops_by_type(). 435 */ 436 int 437 vfs_freevfsops_by_type(int fstype) 438 { 439 440 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 441 if ((fstype <= 0) || (fstype >= nfstype)) 442 return (EINVAL); 443 444 WLOCK_VFSSW(); 445 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 446 WUNLOCK_VFSSW(); 447 return (EINVAL); 448 } 449 450 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 451 WUNLOCK_VFSSW(); 452 453 return (0); 454 } 455 456 /* Support routines used to reference vfs_op */ 457 458 /* Set the operations vector for a vfs */ 459 void 460 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 461 { 462 vfsops_t *op; 463 464 ASSERT(vfsp != NULL); 465 ASSERT(vfsops != NULL); 466 467 op = vfsp->vfs_op; 468 membar_consumer(); 469 if (vfsp->vfs_femhead == NULL && 470 casptr(&vfsp->vfs_op, op, vfsops) == op) { 471 return; 472 } 473 fsem_setvfsops(vfsp, vfsops); 474 } 475 476 /* Retrieve the operations vector for a vfs */ 477 vfsops_t * 478 vfs_getops(vfs_t *vfsp) 479 { 480 vfsops_t *op; 481 482 ASSERT(vfsp != NULL); 483 484 op = vfsp->vfs_op; 485 membar_consumer(); 486 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 487 return (op); 488 } else { 489 return (fsem_getvfsops(vfsp)); 490 } 491 } 492 493 /* 494 * Returns non-zero (1) if the vfsops matches that of the vfs. 495 * Returns zero (0) if not. 496 */ 497 int 498 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 499 { 500 return (vfs_getops(vfsp) == vfsops); 501 } 502 503 /* 504 * Returns non-zero (1) if the file system has installed a non-default, 505 * non-error vfs_sync routine. Returns zero (0) otherwise. 506 */ 507 int 508 vfs_can_sync(vfs_t *vfsp) 509 { 510 /* vfs_sync() routine is not the default/error function */ 511 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 512 } 513 514 /* 515 * Initialize a vfs structure. 516 */ 517 void 518 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 519 { 520 /* Other initialization has been moved to vfs_alloc() */ 521 vfsp->vfs_count = 0; 522 vfsp->vfs_next = vfsp; 523 vfsp->vfs_prev = vfsp; 524 vfsp->vfs_zone_next = vfsp; 525 vfsp->vfs_zone_prev = vfsp; 526 vfsp->vfs_lofi_minor = 0; 527 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 528 vfsimpl_setup(vfsp); 529 vfsp->vfs_data = (data); 530 vfs_setops((vfsp), (op)); 531 } 532 533 /* 534 * Allocate and initialize the vfs implementation private data 535 * structure, vfs_impl_t. 536 */ 537 void 538 vfsimpl_setup(vfs_t *vfsp) 539 { 540 int i; 541 542 if (vfsp->vfs_implp != NULL) { 543 return; 544 } 545 546 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 547 /* Note that these are #define'd in vfs.h */ 548 vfsp->vfs_vskap = NULL; 549 vfsp->vfs_fstypevsp = NULL; 550 551 /* Set size of counted array, then zero the array */ 552 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 553 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 554 vfsp->vfs_featureset[i] = 0; 555 } 556 } 557 558 /* 559 * Release the vfs_impl_t structure, if it exists. Some unbundled 560 * filesystems may not use the newer version of vfs and thus 561 * would not contain this implementation private data structure. 562 */ 563 void 564 vfsimpl_teardown(vfs_t *vfsp) 565 { 566 vfs_impl_t *vip = vfsp->vfs_implp; 567 568 if (vip == NULL) 569 return; 570 571 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 572 vfsp->vfs_implp = NULL; 573 } 574 575 /* 576 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 577 * fstatvfs, and sysfs moved to common/syscall. 578 */ 579 580 /* 581 * Update every mounted file system. We call the vfs_sync operation of 582 * each file system type, passing it a NULL vfsp to indicate that all 583 * mounted file systems of that type should be updated. 584 */ 585 void 586 vfs_sync(int flag) 587 { 588 struct vfssw *vswp; 589 RLOCK_VFSSW(); 590 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 591 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 592 vfs_refvfssw(vswp); 593 RUNLOCK_VFSSW(); 594 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 595 CRED()); 596 vfs_unrefvfssw(vswp); 597 RLOCK_VFSSW(); 598 } 599 } 600 RUNLOCK_VFSSW(); 601 } 602 603 void 604 sync(void) 605 { 606 vfs_sync(0); 607 } 608 609 /* 610 * External routines. 611 */ 612 613 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 614 615 /* 616 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 617 * but otherwise should be accessed only via vfs_list_lock() and 618 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 619 */ 620 static krwlock_t vfslist; 621 622 /* 623 * Mount devfs on /devices. This is done right after root is mounted 624 * to provide device access support for the system 625 */ 626 static void 627 vfs_mountdevices(void) 628 { 629 struct vfssw *vsw; 630 struct vnode *mvp; 631 struct mounta mounta = { /* fake mounta for devfs_mount() */ 632 NULL, 633 NULL, 634 MS_SYSSPACE, 635 NULL, 636 NULL, 637 0, 638 NULL, 639 0 640 }; 641 642 /* 643 * _init devfs module to fill in the vfssw 644 */ 645 if (modload("fs", "devfs") == -1) 646 panic("Cannot _init devfs module"); 647 648 /* 649 * Hold vfs 650 */ 651 RLOCK_VFSSW(); 652 vsw = vfs_getvfsswbyname("devfs"); 653 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 654 VFS_HOLD(&devices); 655 656 /* 657 * Locate mount point 658 */ 659 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 660 panic("Cannot find /devices"); 661 662 /* 663 * Perform the mount of /devices 664 */ 665 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 666 panic("Cannot mount /devices"); 667 668 RUNLOCK_VFSSW(); 669 670 /* 671 * Set appropriate members and add to vfs list for mnttab display 672 */ 673 vfs_setresource(&devices, "/devices"); 674 vfs_setmntpoint(&devices, "/devices"); 675 676 /* 677 * Hold the root of /devices so it won't go away 678 */ 679 if (VFS_ROOT(&devices, &devicesdir)) 680 panic("vfs_mountdevices: not devices root"); 681 682 if (vfs_lock(&devices) != 0) { 683 VN_RELE(devicesdir); 684 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 685 return; 686 } 687 688 if (vn_vfswlock(mvp) != 0) { 689 vfs_unlock(&devices); 690 VN_RELE(devicesdir); 691 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 692 return; 693 } 694 695 vfs_add(mvp, &devices, 0); 696 vn_vfsunlock(mvp); 697 vfs_unlock(&devices); 698 VN_RELE(devicesdir); 699 } 700 701 /* 702 * mount the first instance of /dev to root and remain mounted 703 */ 704 static void 705 vfs_mountdev1(void) 706 { 707 struct vfssw *vsw; 708 struct vnode *mvp; 709 struct mounta mounta = { /* fake mounta for sdev_mount() */ 710 NULL, 711 NULL, 712 MS_SYSSPACE | MS_OVERLAY, 713 NULL, 714 NULL, 715 0, 716 NULL, 717 0 718 }; 719 720 /* 721 * _init dev module to fill in the vfssw 722 */ 723 if (modload("fs", "dev") == -1) 724 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 725 726 /* 727 * Hold vfs 728 */ 729 RLOCK_VFSSW(); 730 vsw = vfs_getvfsswbyname("dev"); 731 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 732 VFS_HOLD(&dev); 733 734 /* 735 * Locate mount point 736 */ 737 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 738 cmn_err(CE_PANIC, "Cannot find /dev\n"); 739 740 /* 741 * Perform the mount of /dev 742 */ 743 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 744 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 745 746 RUNLOCK_VFSSW(); 747 748 /* 749 * Set appropriate members and add to vfs list for mnttab display 750 */ 751 vfs_setresource(&dev, "/dev"); 752 vfs_setmntpoint(&dev, "/dev"); 753 754 /* 755 * Hold the root of /dev so it won't go away 756 */ 757 if (VFS_ROOT(&dev, &devdir)) 758 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 759 760 if (vfs_lock(&dev) != 0) { 761 VN_RELE(devdir); 762 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 763 return; 764 } 765 766 if (vn_vfswlock(mvp) != 0) { 767 vfs_unlock(&dev); 768 VN_RELE(devdir); 769 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 770 return; 771 } 772 773 vfs_add(mvp, &dev, 0); 774 vn_vfsunlock(mvp); 775 vfs_unlock(&dev); 776 VN_RELE(devdir); 777 } 778 779 /* 780 * Mount required filesystem. This is done right after root is mounted. 781 */ 782 static void 783 vfs_mountfs(char *module, char *spec, char *path) 784 { 785 struct vnode *mvp; 786 struct mounta mounta; 787 vfs_t *vfsp; 788 789 mounta.flags = MS_SYSSPACE | MS_DATA; 790 mounta.fstype = module; 791 mounta.spec = spec; 792 mounta.dir = path; 793 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 794 cmn_err(CE_WARN, "Cannot find %s", path); 795 return; 796 } 797 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 798 cmn_err(CE_WARN, "Cannot mount %s", path); 799 else 800 VFS_RELE(vfsp); 801 VN_RELE(mvp); 802 } 803 804 /* 805 * vfs_mountroot is called by main() to mount the root filesystem. 806 */ 807 void 808 vfs_mountroot(void) 809 { 810 struct vnode *rvp = NULL; 811 char *path; 812 size_t plen; 813 struct vfssw *vswp; 814 815 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 816 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 817 818 /* 819 * Alloc the vfs hash bucket array and locks 820 */ 821 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 822 823 /* 824 * Call machine-dependent routine "rootconf" to choose a root 825 * file system type. 826 */ 827 if (rootconf()) 828 panic("vfs_mountroot: cannot mount root"); 829 /* 830 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 831 * to point to it. These are used by lookuppn() so that it 832 * knows where to start from ('/' or '.'). 833 */ 834 vfs_setmntpoint(rootvfs, "/"); 835 if (VFS_ROOT(rootvfs, &rootdir)) 836 panic("vfs_mountroot: no root vnode"); 837 PTOU(curproc)->u_cdir = rootdir; 838 VN_HOLD(PTOU(curproc)->u_cdir); 839 PTOU(curproc)->u_rdir = NULL; 840 841 /* 842 * Setup the global zone's rootvp, now that it exists. 843 */ 844 global_zone->zone_rootvp = rootdir; 845 VN_HOLD(global_zone->zone_rootvp); 846 847 /* 848 * Notify the module code that it can begin using the 849 * root filesystem instead of the boot program's services. 850 */ 851 modrootloaded = 1; 852 853 /* 854 * Special handling for a ZFS root file system. 855 */ 856 zfs_boot_init(); 857 858 /* 859 * Set up mnttab information for root 860 */ 861 vfs_setresource(rootvfs, rootfs.bo_name); 862 863 /* 864 * Notify cluster software that the root filesystem is available. 865 */ 866 clboot_mountroot(); 867 868 /* Now that we're all done with the root FS, set up its vopstats */ 869 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 870 /* Set flag for statistics collection */ 871 if (vswp->vsw_flag & VSW_STATS) { 872 initialize_vopstats(&rootvfs->vfs_vopstats); 873 rootvfs->vfs_flag |= VFS_STATS; 874 rootvfs->vfs_fstypevsp = 875 get_fstype_vopstats(rootvfs, vswp); 876 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 877 } 878 vfs_unrefvfssw(vswp); 879 } 880 881 /* 882 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 883 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 884 */ 885 vfs_mountdevices(); 886 vfs_mountdev1(); 887 888 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 889 vfs_mountfs("proc", "/proc", "/proc"); 890 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 891 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 892 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 893 894 if (getzoneid() == GLOBAL_ZONEID) { 895 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 896 } 897 898 #ifdef __sparc 899 /* 900 * This bit of magic can go away when we convert sparc to 901 * the new boot architecture based on ramdisk. 902 * 903 * Booting off a mirrored root volume: 904 * At this point, we have booted and mounted root on a 905 * single component of the mirror. Complete the boot 906 * by configuring SVM and converting the root to the 907 * dev_t of the mirrored root device. This dev_t conversion 908 * only works because the underlying device doesn't change. 909 */ 910 if (root_is_svm) { 911 if (svm_rootconf()) { 912 panic("vfs_mountroot: cannot remount root"); 913 } 914 915 /* 916 * mnttab should reflect the new root device 917 */ 918 vfs_lock_wait(rootvfs); 919 vfs_setresource(rootvfs, rootfs.bo_name); 920 vfs_unlock(rootvfs); 921 } 922 #endif /* __sparc */ 923 924 /* 925 * Look up the root device via devfs so that a dv_node is 926 * created for it. The vnode is never VN_RELE()ed. 927 * We allocate more than MAXPATHLEN so that the 928 * buffer passed to i_ddi_prompath_to_devfspath() is 929 * exactly MAXPATHLEN (the function expects a buffer 930 * of that length). 931 */ 932 plen = strlen("/devices"); 933 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 934 (void) strcpy(path, "/devices"); 935 936 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 937 != DDI_SUCCESS || 938 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 939 940 /* NUL terminate in case "path" has garbage */ 941 path[plen + MAXPATHLEN - 1] = '\0'; 942 #ifdef DEBUG 943 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 944 #endif 945 } 946 kmem_free(path, plen + MAXPATHLEN); 947 vfs_mnttabvp_setup(); 948 } 949 950 /* 951 * If remount failed and we're in a zone we need to check for the zone 952 * root path and strip it before the call to vfs_setpath(). 953 * 954 * If strpath doesn't begin with the zone_rootpath the original 955 * strpath is returned unchanged. 956 */ 957 static const char * 958 stripzonepath(const char *strpath) 959 { 960 char *str1, *str2; 961 int i; 962 zone_t *zonep = curproc->p_zone; 963 964 if (zonep->zone_rootpath == NULL || strpath == NULL) { 965 return (NULL); 966 } 967 968 /* 969 * we check for the end of the string at one past the 970 * current position because the zone_rootpath always 971 * ends with "/" but we don't want to strip that off. 972 */ 973 str1 = zonep->zone_rootpath; 974 str2 = (char *)strpath; 975 ASSERT(str1[0] != '\0'); 976 for (i = 0; str1[i + 1] != '\0'; i++) { 977 if (str1[i] != str2[i]) 978 return ((char *)strpath); 979 } 980 return (&str2[i]); 981 } 982 983 /* 984 * Check to see if our "block device" is actually a file. If so, 985 * automatically add a lofi device, and keep track of this fact. 986 */ 987 static int 988 lofi_add(const char *fsname, struct vfs *vfsp, 989 mntopts_t *mntopts, struct mounta *uap) 990 { 991 int fromspace = (uap->flags & MS_SYSSPACE) ? 992 UIO_SYSSPACE : UIO_USERSPACE; 993 struct lofi_ioctl *li = NULL; 994 struct vnode *vp = NULL; 995 struct pathname pn = { NULL }; 996 ldi_ident_t ldi_id; 997 ldi_handle_t ldi_hdl; 998 vfssw_t *vfssw; 999 int minor; 1000 int err = 0; 1001 1002 if (fsname == NULL || 1003 (vfssw = vfs_getvfssw(fsname)) == NULL) 1004 return (0); 1005 1006 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 1007 vfs_unrefvfssw(vfssw); 1008 return (0); 1009 } 1010 1011 vfs_unrefvfssw(vfssw); 1012 vfssw = NULL; 1013 1014 if (pn_get(uap->spec, fromspace, &pn) != 0) 1015 return (0); 1016 1017 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1018 goto out; 1019 1020 if (vp->v_type != VREG) 1021 goto out; 1022 1023 /* OK, this is a lofi mount. */ 1024 1025 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1026 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1027 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1028 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1029 err = EINVAL; 1030 goto out; 1031 } 1032 1033 ldi_id = ldi_ident_from_anon(); 1034 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1035 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1036 1037 /* 1038 * The lofi control node is currently exclusive-open. We'd like 1039 * to improve this, but in the meantime, we'll loop waiting for 1040 * access. 1041 */ 1042 for (;;) { 1043 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1044 kcred, &ldi_hdl, ldi_id); 1045 1046 if (err != EBUSY) 1047 break; 1048 1049 if ((err = delay_sig(hz / 8)) == EINTR) 1050 break; 1051 } 1052 1053 if (err) 1054 goto out2; 1055 1056 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1057 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor); 1058 1059 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1060 1061 if (!err) 1062 vfsp->vfs_lofi_minor = minor; 1063 1064 out2: 1065 ldi_ident_release(ldi_id); 1066 out: 1067 if (li != NULL) 1068 kmem_free(li, sizeof (*li)); 1069 if (vp != NULL) 1070 VN_RELE(vp); 1071 pn_free(&pn); 1072 return (err); 1073 } 1074 1075 static void 1076 lofi_remove(struct vfs *vfsp) 1077 { 1078 struct lofi_ioctl *li = NULL; 1079 ldi_ident_t ldi_id; 1080 ldi_handle_t ldi_hdl; 1081 int err; 1082 1083 if (vfsp->vfs_lofi_minor == 0) 1084 return; 1085 1086 ldi_id = ldi_ident_from_anon(); 1087 1088 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1089 li->li_minor = vfsp->vfs_lofi_minor; 1090 li->li_cleanup = B_TRUE; 1091 1092 do { 1093 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1094 kcred, &ldi_hdl, ldi_id); 1095 } while (err == EBUSY); 1096 1097 if (err) 1098 goto out; 1099 1100 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1101 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL); 1102 1103 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1104 1105 if (!err) 1106 vfsp->vfs_lofi_minor = 0; 1107 1108 out: 1109 ldi_ident_release(ldi_id); 1110 if (li != NULL) 1111 kmem_free(li, sizeof (*li)); 1112 } 1113 1114 /* 1115 * Common mount code. Called from the system call entry point, from autofs, 1116 * nfsv4 trigger mounts, and from pxfs. 1117 * 1118 * Takes the effective file system type, mount arguments, the mount point 1119 * vnode, flags specifying whether the mount is a remount and whether it 1120 * should be entered into the vfs list, and credentials. Fills in its vfspp 1121 * parameter with the mounted file system instance's vfs. 1122 * 1123 * Note that the effective file system type is specified as a string. It may 1124 * be null, in which case it's determined from the mount arguments, and may 1125 * differ from the type specified in the mount arguments; this is a hook to 1126 * allow interposition when instantiating file system instances. 1127 * 1128 * The caller is responsible for releasing its own hold on the mount point 1129 * vp (this routine does its own hold when necessary). 1130 * Also note that for remounts, the mount point vp should be the vnode for 1131 * the root of the file system rather than the vnode that the file system 1132 * is mounted on top of. 1133 */ 1134 int 1135 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1136 struct vfs **vfspp) 1137 { 1138 struct vfssw *vswp; 1139 vfsops_t *vfsops; 1140 struct vfs *vfsp; 1141 struct vnode *bvp; 1142 dev_t bdev = 0; 1143 mntopts_t mnt_mntopts; 1144 int error = 0; 1145 int copyout_error = 0; 1146 int ovflags; 1147 char *opts = uap->optptr; 1148 char *inargs = opts; 1149 int optlen = uap->optlen; 1150 int remount; 1151 int rdonly; 1152 int nbmand = 0; 1153 int delmip = 0; 1154 int addmip = 0; 1155 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1156 int fromspace = (uap->flags & MS_SYSSPACE) ? 1157 UIO_SYSSPACE : UIO_USERSPACE; 1158 char *resource = NULL, *mountpt = NULL; 1159 refstr_t *oldresource, *oldmntpt; 1160 struct pathname pn, rpn; 1161 vsk_anchor_t *vskap; 1162 char fstname[FSTYPSZ]; 1163 1164 /* 1165 * The v_flag value for the mount point vp is permanently set 1166 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1167 * for mount point locking. 1168 */ 1169 mutex_enter(&vp->v_lock); 1170 vp->v_flag |= VVFSLOCK; 1171 mutex_exit(&vp->v_lock); 1172 1173 mnt_mntopts.mo_count = 0; 1174 /* 1175 * Find the ops vector to use to invoke the file system-specific mount 1176 * method. If the fsname argument is non-NULL, use it directly. 1177 * Otherwise, dig the file system type information out of the mount 1178 * arguments. 1179 * 1180 * A side effect is to hold the vfssw entry. 1181 * 1182 * Mount arguments can be specified in several ways, which are 1183 * distinguished by flag bit settings. The preferred way is to set 1184 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1185 * type supplied as a character string and the last two arguments 1186 * being a pointer to a character buffer and the size of the buffer. 1187 * On entry, the buffer holds a null terminated list of options; on 1188 * return, the string is the list of options the file system 1189 * recognized. If MS_DATA is set arguments five and six point to a 1190 * block of binary data which the file system interprets. 1191 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1192 * consistently with these conventions. To handle them, we check to 1193 * see whether the pointer to the file system name has a numeric value 1194 * less than 256. If so, we treat it as an index. 1195 */ 1196 if (fsname != NULL) { 1197 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1198 return (EINVAL); 1199 } 1200 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1201 size_t n; 1202 uint_t fstype; 1203 1204 fsname = fstname; 1205 1206 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1207 RLOCK_VFSSW(); 1208 if (fstype == 0 || fstype >= nfstype || 1209 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1210 RUNLOCK_VFSSW(); 1211 return (EINVAL); 1212 } 1213 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1214 RUNLOCK_VFSSW(); 1215 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1216 return (EINVAL); 1217 } else { 1218 /* 1219 * Handle either kernel or user address space. 1220 */ 1221 if (uap->flags & MS_SYSSPACE) { 1222 error = copystr(uap->fstype, fsname, 1223 FSTYPSZ, &n); 1224 } else { 1225 error = copyinstr(uap->fstype, fsname, 1226 FSTYPSZ, &n); 1227 } 1228 if (error) { 1229 if (error == ENAMETOOLONG) 1230 return (EINVAL); 1231 return (error); 1232 } 1233 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1234 return (EINVAL); 1235 } 1236 } else { 1237 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1238 return (EINVAL); 1239 } 1240 if (!VFS_INSTALLED(vswp)) 1241 return (EINVAL); 1242 vfsops = &vswp->vsw_vfsops; 1243 1244 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1245 /* 1246 * Fetch mount options and parse them for generic vfs options 1247 */ 1248 if (uap->flags & MS_OPTIONSTR) { 1249 /* 1250 * Limit the buffer size 1251 */ 1252 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1253 error = EINVAL; 1254 goto errout; 1255 } 1256 if ((uap->flags & MS_SYSSPACE) == 0) { 1257 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1258 inargs[0] = '\0'; 1259 if (optlen) { 1260 error = copyinstr(opts, inargs, (size_t)optlen, 1261 NULL); 1262 if (error) { 1263 goto errout; 1264 } 1265 } 1266 } 1267 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1268 } 1269 /* 1270 * Flag bits override the options string. 1271 */ 1272 if (uap->flags & MS_REMOUNT) 1273 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1274 if (uap->flags & MS_RDONLY) 1275 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1276 if (uap->flags & MS_NOSUID) 1277 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1278 1279 /* 1280 * Check if this is a remount; must be set in the option string and 1281 * the file system must support a remount option. 1282 */ 1283 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1284 MNTOPT_REMOUNT, NULL)) { 1285 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1286 error = ENOTSUP; 1287 goto errout; 1288 } 1289 uap->flags |= MS_REMOUNT; 1290 } 1291 1292 /* 1293 * uap->flags and vfs_optionisset() should agree. 1294 */ 1295 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1296 uap->flags |= MS_RDONLY; 1297 } 1298 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1299 uap->flags |= MS_NOSUID; 1300 } 1301 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1302 ASSERT(splice || !remount); 1303 /* 1304 * If we are splicing the fs into the namespace, 1305 * perform mount point checks. 1306 * 1307 * We want to resolve the path for the mount point to eliminate 1308 * '.' and ".." and symlinks in mount points; we can't do the 1309 * same for the resource string, since it would turn 1310 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1311 * this before grabbing vn_vfswlock(), because otherwise we 1312 * would deadlock with lookuppn(). 1313 */ 1314 if (splice) { 1315 ASSERT(vp->v_count > 0); 1316 1317 /* 1318 * Pick up mount point and device from appropriate space. 1319 */ 1320 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1321 resource = kmem_alloc(pn.pn_pathlen + 1, 1322 KM_SLEEP); 1323 (void) strcpy(resource, pn.pn_path); 1324 pn_free(&pn); 1325 } 1326 /* 1327 * Do a lookupname prior to taking the 1328 * writelock. Mark this as completed if 1329 * successful for later cleanup and addition to 1330 * the mount in progress table. 1331 */ 1332 if ((uap->flags & MS_GLOBAL) == 0 && 1333 lookupname(uap->spec, fromspace, 1334 FOLLOW, NULL, &bvp) == 0) { 1335 addmip = 1; 1336 } 1337 1338 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1339 pathname_t *pnp; 1340 1341 if (*pn.pn_path != '/') { 1342 error = EINVAL; 1343 pn_free(&pn); 1344 goto errout; 1345 } 1346 pn_alloc(&rpn); 1347 /* 1348 * Kludge to prevent autofs from deadlocking with 1349 * itself when it calls domount(). 1350 * 1351 * If autofs is calling, it is because it is doing 1352 * (autofs) mounts in the process of an NFS mount. A 1353 * lookuppn() here would cause us to block waiting for 1354 * said NFS mount to complete, which can't since this 1355 * is the thread that was supposed to doing it. 1356 */ 1357 if (fromspace == UIO_USERSPACE) { 1358 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1359 NULL)) == 0) { 1360 pnp = &rpn; 1361 } else { 1362 /* 1363 * The file disappeared or otherwise 1364 * became inaccessible since we opened 1365 * it; might as well fail the mount 1366 * since the mount point is no longer 1367 * accessible. 1368 */ 1369 pn_free(&rpn); 1370 pn_free(&pn); 1371 goto errout; 1372 } 1373 } else { 1374 pnp = &pn; 1375 } 1376 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1377 (void) strcpy(mountpt, pnp->pn_path); 1378 1379 /* 1380 * If the addition of the zone's rootpath 1381 * would push us over a total path length 1382 * of MAXPATHLEN, we fail the mount with 1383 * ENAMETOOLONG, which is what we would have 1384 * gotten if we were trying to perform the same 1385 * mount in the global zone. 1386 * 1387 * strlen() doesn't count the trailing 1388 * '\0', but zone_rootpathlen counts both a 1389 * trailing '/' and the terminating '\0'. 1390 */ 1391 if ((curproc->p_zone->zone_rootpathlen - 1 + 1392 strlen(mountpt)) > MAXPATHLEN || 1393 (resource != NULL && 1394 (curproc->p_zone->zone_rootpathlen - 1 + 1395 strlen(resource)) > MAXPATHLEN)) { 1396 error = ENAMETOOLONG; 1397 } 1398 1399 pn_free(&rpn); 1400 pn_free(&pn); 1401 } 1402 1403 if (error) 1404 goto errout; 1405 1406 /* 1407 * Prevent path name resolution from proceeding past 1408 * the mount point. 1409 */ 1410 if (vn_vfswlock(vp) != 0) { 1411 error = EBUSY; 1412 goto errout; 1413 } 1414 1415 /* 1416 * Verify that it's legitimate to establish a mount on 1417 * the prospective mount point. 1418 */ 1419 if (vn_mountedvfs(vp) != NULL) { 1420 /* 1421 * The mount point lock was obtained after some 1422 * other thread raced through and established a mount. 1423 */ 1424 vn_vfsunlock(vp); 1425 error = EBUSY; 1426 goto errout; 1427 } 1428 if (vp->v_flag & VNOMOUNT) { 1429 vn_vfsunlock(vp); 1430 error = EINVAL; 1431 goto errout; 1432 } 1433 } 1434 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1435 uap->dataptr = NULL; 1436 uap->datalen = 0; 1437 } 1438 1439 /* 1440 * If this is a remount, we don't want to create a new VFS. 1441 * Instead, we pass the existing one with a remount flag. 1442 */ 1443 if (remount) { 1444 /* 1445 * Confirm that the mount point is the root vnode of the 1446 * file system that is being remounted. 1447 * This can happen if the user specifies a different 1448 * mount point directory pathname in the (re)mount command. 1449 * 1450 * Code below can only be reached if splice is true, so it's 1451 * safe to do vn_vfsunlock() here. 1452 */ 1453 if ((vp->v_flag & VROOT) == 0) { 1454 vn_vfsunlock(vp); 1455 error = ENOENT; 1456 goto errout; 1457 } 1458 /* 1459 * Disallow making file systems read-only unless file system 1460 * explicitly allows it in its vfssw. Ignore other flags. 1461 */ 1462 if (rdonly && vn_is_readonly(vp) == 0 && 1463 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1464 vn_vfsunlock(vp); 1465 error = EINVAL; 1466 goto errout; 1467 } 1468 /* 1469 * Disallow changing the NBMAND disposition of the file 1470 * system on remounts. 1471 */ 1472 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1473 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1474 vn_vfsunlock(vp); 1475 error = EINVAL; 1476 goto errout; 1477 } 1478 vfsp = vp->v_vfsp; 1479 ovflags = vfsp->vfs_flag; 1480 vfsp->vfs_flag |= VFS_REMOUNT; 1481 vfsp->vfs_flag &= ~VFS_RDONLY; 1482 } else { 1483 vfsp = vfs_alloc(KM_SLEEP); 1484 VFS_INIT(vfsp, vfsops, NULL); 1485 } 1486 1487 VFS_HOLD(vfsp); 1488 1489 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1490 if (!remount) { 1491 if (splice) 1492 vn_vfsunlock(vp); 1493 vfs_free(vfsp); 1494 } else { 1495 vn_vfsunlock(vp); 1496 VFS_RELE(vfsp); 1497 } 1498 goto errout; 1499 } 1500 1501 /* 1502 * PRIV_SYS_MOUNT doesn't mean you can become root. 1503 */ 1504 if (vfsp->vfs_lofi_minor != 0) { 1505 uap->flags |= MS_NOSUID; 1506 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1507 } 1508 1509 /* 1510 * The vfs_reflock is not used anymore the code below explicitly 1511 * holds it preventing others accesing it directly. 1512 */ 1513 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1514 !(vfsp->vfs_flag & VFS_REMOUNT)) 1515 cmn_err(CE_WARN, 1516 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1517 1518 /* 1519 * Lock the vfs. If this is a remount we want to avoid spurious umount 1520 * failures that happen as a side-effect of fsflush() and other mount 1521 * and unmount operations that might be going on simultaneously and 1522 * may have locked the vfs currently. To not return EBUSY immediately 1523 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1524 */ 1525 if (!remount) { 1526 if (error = vfs_lock(vfsp)) { 1527 vfsp->vfs_flag = ovflags; 1528 1529 lofi_remove(vfsp); 1530 1531 if (splice) 1532 vn_vfsunlock(vp); 1533 vfs_free(vfsp); 1534 goto errout; 1535 } 1536 } else { 1537 vfs_lock_wait(vfsp); 1538 } 1539 1540 /* 1541 * Add device to mount in progress table, global mounts require special 1542 * handling. It is possible that we have already done the lookupname 1543 * on a spliced, non-global fs. If so, we don't want to do it again 1544 * since we cannot do a lookupname after taking the 1545 * wlock above. This case is for a non-spliced, non-global filesystem. 1546 */ 1547 if (!addmip) { 1548 if ((uap->flags & MS_GLOBAL) == 0 && 1549 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1550 addmip = 1; 1551 } 1552 } 1553 1554 if (addmip) { 1555 vnode_t *lvp = NULL; 1556 1557 error = vfs_get_lofi(vfsp, &lvp); 1558 if (error > 0) { 1559 lofi_remove(vfsp); 1560 1561 if (splice) 1562 vn_vfsunlock(vp); 1563 vfs_unlock(vfsp); 1564 1565 if (remount) { 1566 VFS_RELE(vfsp); 1567 } else { 1568 vfs_free(vfsp); 1569 } 1570 1571 goto errout; 1572 } else if (error == -1) { 1573 bdev = bvp->v_rdev; 1574 VN_RELE(bvp); 1575 } else { 1576 bdev = lvp->v_rdev; 1577 VN_RELE(lvp); 1578 VN_RELE(bvp); 1579 } 1580 1581 vfs_addmip(bdev, vfsp); 1582 addmip = 0; 1583 delmip = 1; 1584 } 1585 /* 1586 * Invalidate cached entry for the mount point. 1587 */ 1588 if (splice) 1589 dnlc_purge_vp(vp); 1590 1591 /* 1592 * If have an option string but the filesystem doesn't supply a 1593 * prototype options table, create a table with the global 1594 * options and sufficient room to accept all the options in the 1595 * string. Then parse the passed in option string 1596 * accepting all the options in the string. This gives us an 1597 * option table with all the proper cancel properties for the 1598 * global options. 1599 * 1600 * Filesystems that supply a prototype options table are handled 1601 * earlier in this function. 1602 */ 1603 if (uap->flags & MS_OPTIONSTR) { 1604 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1605 mntopts_t tmp_mntopts; 1606 1607 tmp_mntopts.mo_count = 0; 1608 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1609 &mnt_mntopts); 1610 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1611 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1612 vfs_freeopttbl(&tmp_mntopts); 1613 } 1614 } 1615 1616 /* 1617 * Serialize with zone creations. 1618 */ 1619 mount_in_progress(); 1620 /* 1621 * Instantiate (or reinstantiate) the file system. If appropriate, 1622 * splice it into the file system name space. 1623 * 1624 * We want VFS_MOUNT() to be able to override the vfs_resource 1625 * string if necessary (ie, mntfs), and also for a remount to 1626 * change the same (necessary when remounting '/' during boot). 1627 * So we set up vfs_mntpt and vfs_resource to what we think they 1628 * should be, then hand off control to VFS_MOUNT() which can 1629 * override this. 1630 * 1631 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1632 * a vfs which is on the vfs list (i.e. during a remount), we must 1633 * never set those fields to NULL. Several bits of code make 1634 * assumptions that the fields are always valid. 1635 */ 1636 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1637 if (remount) { 1638 if ((oldresource = vfsp->vfs_resource) != NULL) 1639 refstr_hold(oldresource); 1640 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1641 refstr_hold(oldmntpt); 1642 } 1643 vfs_setresource(vfsp, resource); 1644 vfs_setmntpoint(vfsp, mountpt); 1645 1646 /* 1647 * going to mount on this vnode, so notify. 1648 */ 1649 vnevent_mountedover(vp, NULL); 1650 error = VFS_MOUNT(vfsp, vp, uap, credp); 1651 1652 if (uap->flags & MS_RDONLY) 1653 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1654 if (uap->flags & MS_NOSUID) 1655 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1656 if (uap->flags & MS_GLOBAL) 1657 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1658 1659 if (error) { 1660 lofi_remove(vfsp); 1661 1662 if (remount) { 1663 /* put back pre-remount options */ 1664 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1665 vfs_setmntpoint(vfsp, (stripzonepath( 1666 refstr_value(oldmntpt)))); 1667 if (oldmntpt) 1668 refstr_rele(oldmntpt); 1669 vfs_setresource(vfsp, (stripzonepath( 1670 refstr_value(oldresource)))); 1671 if (oldresource) 1672 refstr_rele(oldresource); 1673 vfsp->vfs_flag = ovflags; 1674 vfs_unlock(vfsp); 1675 VFS_RELE(vfsp); 1676 } else { 1677 vfs_unlock(vfsp); 1678 vfs_freemnttab(vfsp); 1679 vfs_free(vfsp); 1680 } 1681 } else { 1682 /* 1683 * Set the mount time to now 1684 */ 1685 vfsp->vfs_mtime = ddi_get_time(); 1686 if (remount) { 1687 vfsp->vfs_flag &= ~VFS_REMOUNT; 1688 if (oldresource) 1689 refstr_rele(oldresource); 1690 if (oldmntpt) 1691 refstr_rele(oldmntpt); 1692 } else if (splice) { 1693 /* 1694 * Link vfsp into the name space at the mount 1695 * point. Vfs_add() is responsible for 1696 * holding the mount point which will be 1697 * released when vfs_remove() is called. 1698 */ 1699 vfs_add(vp, vfsp, uap->flags); 1700 } else { 1701 /* 1702 * Hold the reference to file system which is 1703 * not linked into the name space. 1704 */ 1705 vfsp->vfs_zone = NULL; 1706 VFS_HOLD(vfsp); 1707 vfsp->vfs_vnodecovered = NULL; 1708 } 1709 /* 1710 * Set flags for global options encountered 1711 */ 1712 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1713 vfsp->vfs_flag |= VFS_RDONLY; 1714 else 1715 vfsp->vfs_flag &= ~VFS_RDONLY; 1716 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1717 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1718 } else { 1719 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1720 vfsp->vfs_flag |= VFS_NODEVICES; 1721 else 1722 vfsp->vfs_flag &= ~VFS_NODEVICES; 1723 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1724 vfsp->vfs_flag |= VFS_NOSETUID; 1725 else 1726 vfsp->vfs_flag &= ~VFS_NOSETUID; 1727 } 1728 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1729 vfsp->vfs_flag |= VFS_NBMAND; 1730 else 1731 vfsp->vfs_flag &= ~VFS_NBMAND; 1732 1733 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1734 vfsp->vfs_flag |= VFS_XATTR; 1735 else 1736 vfsp->vfs_flag &= ~VFS_XATTR; 1737 1738 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1739 vfsp->vfs_flag |= VFS_NOEXEC; 1740 else 1741 vfsp->vfs_flag &= ~VFS_NOEXEC; 1742 1743 /* 1744 * Now construct the output option string of options 1745 * we recognized. 1746 */ 1747 if (uap->flags & MS_OPTIONSTR) { 1748 vfs_list_read_lock(); 1749 copyout_error = vfs_buildoptionstr( 1750 &vfsp->vfs_mntopts, inargs, optlen); 1751 vfs_list_unlock(); 1752 if (copyout_error == 0 && 1753 (uap->flags & MS_SYSSPACE) == 0) { 1754 copyout_error = copyoutstr(inargs, opts, 1755 optlen, NULL); 1756 } 1757 } 1758 1759 /* 1760 * If this isn't a remount, set up the vopstats before 1761 * anyone can touch this. We only allow spliced file 1762 * systems (file systems which are in the namespace) to 1763 * have the VFS_STATS flag set. 1764 * NOTE: PxFS mounts the underlying file system with 1765 * MS_NOSPLICE set and copies those vfs_flags to its private 1766 * vfs structure. As a result, PxFS should never have 1767 * the VFS_STATS flag or else we might access the vfs 1768 * statistics-related fields prior to them being 1769 * properly initialized. 1770 */ 1771 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1772 initialize_vopstats(&vfsp->vfs_vopstats); 1773 /* 1774 * We need to set vfs_vskap to NULL because there's 1775 * a chance it won't be set below. This is checked 1776 * in teardown_vopstats() so we can't have garbage. 1777 */ 1778 vfsp->vfs_vskap = NULL; 1779 vfsp->vfs_flag |= VFS_STATS; 1780 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1781 } 1782 1783 if (vswp->vsw_flag & VSW_XID) 1784 vfsp->vfs_flag |= VFS_XID; 1785 1786 vfs_unlock(vfsp); 1787 } 1788 mount_completed(); 1789 if (splice) 1790 vn_vfsunlock(vp); 1791 1792 if ((error == 0) && (copyout_error == 0)) { 1793 if (!remount) { 1794 /* 1795 * Don't call get_vskstat_anchor() while holding 1796 * locks since it allocates memory and calls 1797 * VFS_STATVFS(). For NFS, the latter can generate 1798 * an over-the-wire call. 1799 */ 1800 vskap = get_vskstat_anchor(vfsp); 1801 /* Only take the lock if we have something to do */ 1802 if (vskap != NULL) { 1803 vfs_lock_wait(vfsp); 1804 if (vfsp->vfs_flag & VFS_STATS) { 1805 vfsp->vfs_vskap = vskap; 1806 } 1807 vfs_unlock(vfsp); 1808 } 1809 } 1810 /* Return vfsp to caller. */ 1811 *vfspp = vfsp; 1812 } 1813 errout: 1814 vfs_freeopttbl(&mnt_mntopts); 1815 if (resource != NULL) 1816 kmem_free(resource, strlen(resource) + 1); 1817 if (mountpt != NULL) 1818 kmem_free(mountpt, strlen(mountpt) + 1); 1819 /* 1820 * It is possible we errored prior to adding to mount in progress 1821 * table. Must free vnode we acquired with successful lookupname. 1822 */ 1823 if (addmip) 1824 VN_RELE(bvp); 1825 if (delmip) 1826 vfs_delmip(vfsp); 1827 ASSERT(vswp != NULL); 1828 vfs_unrefvfssw(vswp); 1829 if (inargs != opts) 1830 kmem_free(inargs, MAX_MNTOPT_STR); 1831 if (copyout_error) { 1832 lofi_remove(vfsp); 1833 VFS_RELE(vfsp); 1834 error = copyout_error; 1835 } 1836 return (error); 1837 } 1838 1839 static void 1840 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1841 { 1842 size_t len; 1843 refstr_t *ref; 1844 zone_t *zone = curproc->p_zone; 1845 char *sp; 1846 int have_list_lock = 0; 1847 1848 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1849 1850 /* 1851 * New path must be less than MAXPATHLEN because mntfs 1852 * will only display up to MAXPATHLEN bytes. This is currently 1853 * safe, because domount() uses pn_get(), and other callers 1854 * similarly cap the size to fewer than MAXPATHLEN bytes. 1855 */ 1856 1857 ASSERT(strlen(newpath) < MAXPATHLEN); 1858 1859 /* mntfs requires consistency while vfs list lock is held */ 1860 1861 if (VFS_ON_LIST(vfsp)) { 1862 have_list_lock = 1; 1863 vfs_list_lock(); 1864 } 1865 1866 if (*refp != NULL) 1867 refstr_rele(*refp); 1868 1869 /* Do we need to modify the path? */ 1870 1871 if (zone == global_zone || *newpath != '/') { 1872 ref = refstr_alloc(newpath); 1873 goto out; 1874 } 1875 1876 /* 1877 * Truncate the trailing '/' in the zoneroot, and merge 1878 * in the zone's rootpath with the "newpath" (resource 1879 * or mountpoint) passed in. 1880 * 1881 * The size of the required buffer is thus the size of 1882 * the buffer required for the passed-in newpath 1883 * (strlen(newpath) + 1), plus the size of the buffer 1884 * required to hold zone_rootpath (zone_rootpathlen) 1885 * minus one for one of the now-superfluous NUL 1886 * terminations, minus one for the trailing '/'. 1887 * 1888 * That gives us: 1889 * 1890 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1891 * 1892 * Which is what we have below. 1893 */ 1894 1895 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1896 sp = kmem_alloc(len, KM_SLEEP); 1897 1898 /* 1899 * Copy everything including the trailing slash, which 1900 * we then overwrite with the NUL character. 1901 */ 1902 1903 (void) strcpy(sp, zone->zone_rootpath); 1904 sp[zone->zone_rootpathlen - 2] = '\0'; 1905 (void) strcat(sp, newpath); 1906 1907 ref = refstr_alloc(sp); 1908 kmem_free(sp, len); 1909 out: 1910 *refp = ref; 1911 1912 if (have_list_lock) { 1913 vfs_mnttab_modtimeupd(); 1914 vfs_list_unlock(); 1915 } 1916 } 1917 1918 /* 1919 * Record a mounted resource name in a vfs structure. 1920 * If vfsp is already mounted, caller must hold the vfs lock. 1921 */ 1922 void 1923 vfs_setresource(struct vfs *vfsp, const char *resource) 1924 { 1925 if (resource == NULL || resource[0] == '\0') 1926 resource = VFS_NORESOURCE; 1927 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1928 } 1929 1930 /* 1931 * Record a mount point name in a vfs structure. 1932 * If vfsp is already mounted, caller must hold the vfs lock. 1933 */ 1934 void 1935 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1936 { 1937 if (mntpt == NULL || mntpt[0] == '\0') 1938 mntpt = VFS_NOMNTPT; 1939 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1940 } 1941 1942 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1943 1944 refstr_t * 1945 vfs_getresource(const struct vfs *vfsp) 1946 { 1947 refstr_t *resource; 1948 1949 vfs_list_read_lock(); 1950 resource = vfsp->vfs_resource; 1951 refstr_hold(resource); 1952 vfs_list_unlock(); 1953 1954 return (resource); 1955 } 1956 1957 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1958 1959 refstr_t * 1960 vfs_getmntpoint(const struct vfs *vfsp) 1961 { 1962 refstr_t *mntpt; 1963 1964 vfs_list_read_lock(); 1965 mntpt = vfsp->vfs_mntpt; 1966 refstr_hold(mntpt); 1967 vfs_list_unlock(); 1968 1969 return (mntpt); 1970 } 1971 1972 /* 1973 * Create an empty options table with enough empty slots to hold all 1974 * The options in the options string passed as an argument. 1975 * Potentially prepend another options table. 1976 * 1977 * Note: caller is responsible for locking the vfs list, if needed, 1978 * to protect mops. 1979 */ 1980 static void 1981 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1982 const mntopts_t *mtmpl) 1983 { 1984 const char *s = opts; 1985 uint_t count; 1986 1987 if (opts == NULL || *opts == '\0') { 1988 count = 0; 1989 } else { 1990 count = 1; 1991 1992 /* 1993 * Count number of options in the string 1994 */ 1995 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1996 count++; 1997 s++; 1998 } 1999 } 2000 vfs_copyopttbl_extend(mtmpl, mops, count); 2001 } 2002 2003 /* 2004 * Create an empty options table with enough empty slots to hold all 2005 * The options in the options string passed as an argument. 2006 * 2007 * This function is *not* for general use by filesystems. 2008 * 2009 * Note: caller is responsible for locking the vfs list, if needed, 2010 * to protect mops. 2011 */ 2012 void 2013 vfs_createopttbl(mntopts_t *mops, const char *opts) 2014 { 2015 vfs_createopttbl_extend(mops, opts, NULL); 2016 } 2017 2018 2019 /* 2020 * Swap two mount options tables 2021 */ 2022 static void 2023 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2024 { 2025 uint_t tmpcnt; 2026 mntopt_t *tmplist; 2027 2028 tmpcnt = optbl2->mo_count; 2029 tmplist = optbl2->mo_list; 2030 optbl2->mo_count = optbl1->mo_count; 2031 optbl2->mo_list = optbl1->mo_list; 2032 optbl1->mo_count = tmpcnt; 2033 optbl1->mo_list = tmplist; 2034 } 2035 2036 static void 2037 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2038 { 2039 vfs_list_lock(); 2040 vfs_swapopttbl_nolock(optbl1, optbl2); 2041 vfs_mnttab_modtimeupd(); 2042 vfs_list_unlock(); 2043 } 2044 2045 static char ** 2046 vfs_copycancelopt_extend(char **const moc, int extend) 2047 { 2048 int i = 0; 2049 int j; 2050 char **result; 2051 2052 if (moc != NULL) { 2053 for (; moc[i] != NULL; i++) 2054 /* count number of options to cancel */; 2055 } 2056 2057 if (i + extend == 0) 2058 return (NULL); 2059 2060 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2061 2062 for (j = 0; j < i; j++) { 2063 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2064 (void) strcpy(result[j], moc[j]); 2065 } 2066 for (; j <= i + extend; j++) 2067 result[j] = NULL; 2068 2069 return (result); 2070 } 2071 2072 static void 2073 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2074 { 2075 char *sp, *dp; 2076 2077 d->mo_flags = s->mo_flags; 2078 d->mo_data = s->mo_data; 2079 sp = s->mo_name; 2080 if (sp != NULL) { 2081 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2082 (void) strcpy(dp, sp); 2083 d->mo_name = dp; 2084 } else { 2085 d->mo_name = NULL; /* should never happen */ 2086 } 2087 2088 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2089 2090 sp = s->mo_arg; 2091 if (sp != NULL) { 2092 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2093 (void) strcpy(dp, sp); 2094 d->mo_arg = dp; 2095 } else { 2096 d->mo_arg = NULL; 2097 } 2098 } 2099 2100 /* 2101 * Copy a mount options table, possibly allocating some spare 2102 * slots at the end. It is permissible to copy_extend the NULL table. 2103 */ 2104 static void 2105 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2106 { 2107 uint_t i, count; 2108 mntopt_t *motbl; 2109 2110 /* 2111 * Clear out any existing stuff in the options table being initialized 2112 */ 2113 vfs_freeopttbl(dmo); 2114 count = (smo == NULL) ? 0 : smo->mo_count; 2115 if ((count + extra) == 0) /* nothing to do */ 2116 return; 2117 dmo->mo_count = count + extra; 2118 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2119 dmo->mo_list = motbl; 2120 for (i = 0; i < count; i++) { 2121 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2122 } 2123 for (i = count; i < count + extra; i++) { 2124 motbl[i].mo_flags = MO_EMPTY; 2125 } 2126 } 2127 2128 /* 2129 * Copy a mount options table. 2130 * 2131 * This function is *not* for general use by filesystems. 2132 * 2133 * Note: caller is responsible for locking the vfs list, if needed, 2134 * to protect smo and dmo. 2135 */ 2136 void 2137 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2138 { 2139 vfs_copyopttbl_extend(smo, dmo, 0); 2140 } 2141 2142 static char ** 2143 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2144 { 2145 int c1 = 0; 2146 int c2 = 0; 2147 char **result; 2148 char **sp1, **sp2, **dp; 2149 2150 /* 2151 * First we count both lists of cancel options. 2152 * If either is NULL or has no elements, we return a copy of 2153 * the other. 2154 */ 2155 if (mop1->mo_cancel != NULL) { 2156 for (; mop1->mo_cancel[c1] != NULL; c1++) 2157 /* count cancel options in mop1 */; 2158 } 2159 2160 if (c1 == 0) 2161 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2162 2163 if (mop2->mo_cancel != NULL) { 2164 for (; mop2->mo_cancel[c2] != NULL; c2++) 2165 /* count cancel options in mop2 */; 2166 } 2167 2168 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2169 2170 if (c2 == 0) 2171 return (result); 2172 2173 /* 2174 * When we get here, we've got two sets of cancel options; 2175 * we need to merge the two sets. We know that the result 2176 * array has "c1+c2+1" entries and in the end we might shrink 2177 * it. 2178 * Result now has a copy of the c1 entries from mop1; we'll 2179 * now lookup all the entries of mop2 in mop1 and copy it if 2180 * it is unique. 2181 * This operation is O(n^2) but it's only called once per 2182 * filesystem per duplicate option. This is a situation 2183 * which doesn't arise with the filesystems in ON and 2184 * n is generally 1. 2185 */ 2186 2187 dp = &result[c1]; 2188 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2189 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2190 if (strcmp(*sp1, *sp2) == 0) 2191 break; 2192 } 2193 if (*sp1 == NULL) { 2194 /* 2195 * Option *sp2 not found in mop1, so copy it. 2196 * The calls to vfs_copycancelopt_extend() 2197 * guarantee that there's enough room. 2198 */ 2199 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2200 (void) strcpy(*dp++, *sp2); 2201 } 2202 } 2203 if (dp != &result[c1+c2]) { 2204 size_t bytes = (dp - result + 1) * sizeof (char *); 2205 char **nres = kmem_alloc(bytes, KM_SLEEP); 2206 2207 bcopy(result, nres, bytes); 2208 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2209 result = nres; 2210 } 2211 return (result); 2212 } 2213 2214 /* 2215 * Merge two mount option tables (outer and inner) into one. This is very 2216 * similar to "merging" global variables and automatic variables in C. 2217 * 2218 * This isn't (and doesn't have to be) fast. 2219 * 2220 * This function is *not* for general use by filesystems. 2221 * 2222 * Note: caller is responsible for locking the vfs list, if needed, 2223 * to protect omo, imo & dmo. 2224 */ 2225 void 2226 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2227 { 2228 uint_t i, count; 2229 mntopt_t *mop, *motbl; 2230 uint_t freeidx; 2231 2232 /* 2233 * First determine how much space we need to allocate. 2234 */ 2235 count = omo->mo_count; 2236 for (i = 0; i < imo->mo_count; i++) { 2237 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2238 continue; 2239 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2240 count++; 2241 } 2242 ASSERT(count >= omo->mo_count && 2243 count <= omo->mo_count + imo->mo_count); 2244 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2245 for (i = 0; i < omo->mo_count; i++) 2246 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2247 freeidx = omo->mo_count; 2248 for (i = 0; i < imo->mo_count; i++) { 2249 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2250 continue; 2251 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2252 char **newcanp; 2253 uint_t index = mop - omo->mo_list; 2254 2255 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2256 2257 vfs_freeopt(&motbl[index]); 2258 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2259 2260 vfs_freecancelopt(motbl[index].mo_cancel); 2261 motbl[index].mo_cancel = newcanp; 2262 } else { 2263 /* 2264 * If it's a new option, just copy it over to the first 2265 * free location. 2266 */ 2267 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2268 } 2269 } 2270 dmo->mo_count = count; 2271 dmo->mo_list = motbl; 2272 } 2273 2274 /* 2275 * Functions to set and clear mount options in a mount options table. 2276 */ 2277 2278 /* 2279 * Clear a mount option, if it exists. 2280 * 2281 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2282 * the vfs list. 2283 */ 2284 static void 2285 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2286 { 2287 struct mntopt *mop; 2288 uint_t i, count; 2289 2290 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2291 2292 count = mops->mo_count; 2293 for (i = 0; i < count; i++) { 2294 mop = &mops->mo_list[i]; 2295 2296 if (mop->mo_flags & MO_EMPTY) 2297 continue; 2298 if (strcmp(opt, mop->mo_name)) 2299 continue; 2300 mop->mo_flags &= ~MO_SET; 2301 if (mop->mo_arg != NULL) { 2302 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2303 } 2304 mop->mo_arg = NULL; 2305 if (update_mnttab) 2306 vfs_mnttab_modtimeupd(); 2307 break; 2308 } 2309 } 2310 2311 void 2312 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2313 { 2314 int gotlock = 0; 2315 2316 if (VFS_ON_LIST(vfsp)) { 2317 gotlock = 1; 2318 vfs_list_lock(); 2319 } 2320 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2321 if (gotlock) 2322 vfs_list_unlock(); 2323 } 2324 2325 2326 /* 2327 * Set a mount option on. If it's not found in the table, it's silently 2328 * ignored. If the option has MO_IGNORE set, it is still set unless the 2329 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2330 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2331 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2332 * MO_EMPTY set is created as the option passed in. 2333 * 2334 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2335 * the vfs list. 2336 */ 2337 static void 2338 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2339 const char *arg, int flags, int update_mnttab) 2340 { 2341 mntopt_t *mop; 2342 uint_t i, count; 2343 char *sp; 2344 2345 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2346 2347 if (flags & VFS_CREATEOPT) { 2348 if (vfs_hasopt(mops, opt) != NULL) { 2349 flags &= ~VFS_CREATEOPT; 2350 } 2351 } 2352 count = mops->mo_count; 2353 for (i = 0; i < count; i++) { 2354 mop = &mops->mo_list[i]; 2355 2356 if (mop->mo_flags & MO_EMPTY) { 2357 if ((flags & VFS_CREATEOPT) == 0) 2358 continue; 2359 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2360 (void) strcpy(sp, opt); 2361 mop->mo_name = sp; 2362 if (arg != NULL) 2363 mop->mo_flags = MO_HASVALUE; 2364 else 2365 mop->mo_flags = 0; 2366 } else if (strcmp(opt, mop->mo_name)) { 2367 continue; 2368 } 2369 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2370 break; 2371 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2372 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2373 (void) strcpy(sp, arg); 2374 } else { 2375 sp = NULL; 2376 } 2377 if (mop->mo_arg != NULL) 2378 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2379 mop->mo_arg = sp; 2380 if (flags & VFS_DISPLAY) 2381 mop->mo_flags &= ~MO_NODISPLAY; 2382 if (flags & VFS_NODISPLAY) 2383 mop->mo_flags |= MO_NODISPLAY; 2384 mop->mo_flags |= MO_SET; 2385 if (mop->mo_cancel != NULL) { 2386 char **cp; 2387 2388 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2389 vfs_clearmntopt_nolock(mops, *cp, 0); 2390 } 2391 if (update_mnttab) 2392 vfs_mnttab_modtimeupd(); 2393 break; 2394 } 2395 } 2396 2397 void 2398 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2399 { 2400 int gotlock = 0; 2401 2402 if (VFS_ON_LIST(vfsp)) { 2403 gotlock = 1; 2404 vfs_list_lock(); 2405 } 2406 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2407 if (gotlock) 2408 vfs_list_unlock(); 2409 } 2410 2411 2412 /* 2413 * Add a "tag" option to a mounted file system's options list. 2414 * 2415 * Note: caller is responsible for locking the vfs list, if needed, 2416 * to protect mops. 2417 */ 2418 static mntopt_t * 2419 vfs_addtag(mntopts_t *mops, const char *tag) 2420 { 2421 uint_t count; 2422 mntopt_t *mop, *motbl; 2423 2424 count = mops->mo_count + 1; 2425 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2426 if (mops->mo_count) { 2427 size_t len = (count - 1) * sizeof (mntopt_t); 2428 2429 bcopy(mops->mo_list, motbl, len); 2430 kmem_free(mops->mo_list, len); 2431 } 2432 mops->mo_count = count; 2433 mops->mo_list = motbl; 2434 mop = &motbl[count - 1]; 2435 mop->mo_flags = MO_TAG; 2436 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2437 (void) strcpy(mop->mo_name, tag); 2438 return (mop); 2439 } 2440 2441 /* 2442 * Allow users to set arbitrary "tags" in a vfs's mount options. 2443 * Broader use within the kernel is discouraged. 2444 */ 2445 int 2446 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2447 cred_t *cr) 2448 { 2449 vfs_t *vfsp; 2450 mntopts_t *mops; 2451 mntopt_t *mop; 2452 int found = 0; 2453 dev_t dev = makedevice(major, minor); 2454 int err = 0; 2455 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2456 2457 /* 2458 * Find the desired mounted file system 2459 */ 2460 vfs_list_lock(); 2461 vfsp = rootvfs; 2462 do { 2463 if (vfsp->vfs_dev == dev && 2464 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2465 found = 1; 2466 break; 2467 } 2468 vfsp = vfsp->vfs_next; 2469 } while (vfsp != rootvfs); 2470 2471 if (!found) { 2472 err = EINVAL; 2473 goto out; 2474 } 2475 err = secpolicy_fs_config(cr, vfsp); 2476 if (err != 0) 2477 goto out; 2478 2479 mops = &vfsp->vfs_mntopts; 2480 /* 2481 * Add tag if it doesn't already exist 2482 */ 2483 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2484 int len; 2485 2486 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2487 len = strlen(buf); 2488 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2489 err = ENAMETOOLONG; 2490 goto out; 2491 } 2492 mop = vfs_addtag(mops, tag); 2493 } 2494 if ((mop->mo_flags & MO_TAG) == 0) { 2495 err = EINVAL; 2496 goto out; 2497 } 2498 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2499 out: 2500 vfs_list_unlock(); 2501 kmem_free(buf, MAX_MNTOPT_STR); 2502 return (err); 2503 } 2504 2505 /* 2506 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2507 * Broader use within the kernel is discouraged. 2508 */ 2509 int 2510 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2511 cred_t *cr) 2512 { 2513 vfs_t *vfsp; 2514 mntopt_t *mop; 2515 int found = 0; 2516 dev_t dev = makedevice(major, minor); 2517 int err = 0; 2518 2519 /* 2520 * Find the desired mounted file system 2521 */ 2522 vfs_list_lock(); 2523 vfsp = rootvfs; 2524 do { 2525 if (vfsp->vfs_dev == dev && 2526 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2527 found = 1; 2528 break; 2529 } 2530 vfsp = vfsp->vfs_next; 2531 } while (vfsp != rootvfs); 2532 2533 if (!found) { 2534 err = EINVAL; 2535 goto out; 2536 } 2537 err = secpolicy_fs_config(cr, vfsp); 2538 if (err != 0) 2539 goto out; 2540 2541 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2542 err = EINVAL; 2543 goto out; 2544 } 2545 if ((mop->mo_flags & MO_TAG) == 0) { 2546 err = EINVAL; 2547 goto out; 2548 } 2549 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2550 out: 2551 vfs_list_unlock(); 2552 return (err); 2553 } 2554 2555 /* 2556 * Function to parse an option string and fill in a mount options table. 2557 * Unknown options are silently ignored. The input option string is modified 2558 * by replacing separators with nulls. If the create flag is set, options 2559 * not found in the table are just added on the fly. The table must have 2560 * an option slot marked MO_EMPTY to add an option on the fly. 2561 * 2562 * This function is *not* for general use by filesystems. 2563 * 2564 * Note: caller is responsible for locking the vfs list, if needed, 2565 * to protect mops.. 2566 */ 2567 void 2568 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2569 { 2570 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2571 int setflg = VFS_NOFORCEOPT; 2572 2573 if (osp == NULL) 2574 return; 2575 while (*s != '\0') { 2576 p = strchr(s, ','); /* find next option */ 2577 if (p == NULL) { 2578 cp = NULL; 2579 p = s + strlen(s); 2580 } else { 2581 cp = p; /* save location of comma */ 2582 *p++ = '\0'; /* mark end and point to next option */ 2583 } 2584 nextop = p; 2585 p = strchr(s, '='); /* look for value */ 2586 if (p == NULL) { 2587 valp = NULL; /* no value supplied */ 2588 } else { 2589 ep = p; /* save location of equals */ 2590 *p++ = '\0'; /* end option and point to value */ 2591 valp = p; 2592 } 2593 /* 2594 * set option into options table 2595 */ 2596 if (create) 2597 setflg |= VFS_CREATEOPT; 2598 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2599 if (cp != NULL) 2600 *cp = ','; /* restore the comma */ 2601 if (valp != NULL) 2602 *ep = '='; /* restore the equals */ 2603 s = nextop; 2604 } 2605 } 2606 2607 /* 2608 * Function to inquire if an option exists in a mount options table. 2609 * Returns a pointer to the option if it exists, else NULL. 2610 * 2611 * This function is *not* for general use by filesystems. 2612 * 2613 * Note: caller is responsible for locking the vfs list, if needed, 2614 * to protect mops. 2615 */ 2616 struct mntopt * 2617 vfs_hasopt(const mntopts_t *mops, const char *opt) 2618 { 2619 struct mntopt *mop; 2620 uint_t i, count; 2621 2622 count = mops->mo_count; 2623 for (i = 0; i < count; i++) { 2624 mop = &mops->mo_list[i]; 2625 2626 if (mop->mo_flags & MO_EMPTY) 2627 continue; 2628 if (strcmp(opt, mop->mo_name) == 0) 2629 return (mop); 2630 } 2631 return (NULL); 2632 } 2633 2634 /* 2635 * Function to inquire if an option is set in a mount options table. 2636 * Returns non-zero if set and fills in the arg pointer with a pointer to 2637 * the argument string or NULL if there is no argument string. 2638 */ 2639 static int 2640 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2641 { 2642 struct mntopt *mop; 2643 uint_t i, count; 2644 2645 count = mops->mo_count; 2646 for (i = 0; i < count; i++) { 2647 mop = &mops->mo_list[i]; 2648 2649 if (mop->mo_flags & MO_EMPTY) 2650 continue; 2651 if (strcmp(opt, mop->mo_name)) 2652 continue; 2653 if ((mop->mo_flags & MO_SET) == 0) 2654 return (0); 2655 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2656 *argp = mop->mo_arg; 2657 return (1); 2658 } 2659 return (0); 2660 } 2661 2662 2663 int 2664 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2665 { 2666 int ret; 2667 2668 vfs_list_read_lock(); 2669 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2670 vfs_list_unlock(); 2671 return (ret); 2672 } 2673 2674 2675 /* 2676 * Construct a comma separated string of the options set in the given 2677 * mount table, return the string in the given buffer. Return non-zero if 2678 * the buffer would overflow. 2679 * 2680 * This function is *not* for general use by filesystems. 2681 * 2682 * Note: caller is responsible for locking the vfs list, if needed, 2683 * to protect mp. 2684 */ 2685 int 2686 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2687 { 2688 char *cp; 2689 uint_t i; 2690 2691 buf[0] = '\0'; 2692 cp = buf; 2693 for (i = 0; i < mp->mo_count; i++) { 2694 struct mntopt *mop; 2695 2696 mop = &mp->mo_list[i]; 2697 if (mop->mo_flags & MO_SET) { 2698 int optlen, comma = 0; 2699 2700 if (buf[0] != '\0') 2701 comma = 1; 2702 optlen = strlen(mop->mo_name); 2703 if (strlen(buf) + comma + optlen + 1 > len) 2704 goto err; 2705 if (comma) 2706 *cp++ = ','; 2707 (void) strcpy(cp, mop->mo_name); 2708 cp += optlen; 2709 /* 2710 * Append option value if there is one 2711 */ 2712 if (mop->mo_arg != NULL) { 2713 int arglen; 2714 2715 arglen = strlen(mop->mo_arg); 2716 if (strlen(buf) + arglen + 2 > len) 2717 goto err; 2718 *cp++ = '='; 2719 (void) strcpy(cp, mop->mo_arg); 2720 cp += arglen; 2721 } 2722 } 2723 } 2724 return (0); 2725 err: 2726 return (EOVERFLOW); 2727 } 2728 2729 static void 2730 vfs_freecancelopt(char **moc) 2731 { 2732 if (moc != NULL) { 2733 int ccnt = 0; 2734 char **cp; 2735 2736 for (cp = moc; *cp != NULL; cp++) { 2737 kmem_free(*cp, strlen(*cp) + 1); 2738 ccnt++; 2739 } 2740 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2741 } 2742 } 2743 2744 static void 2745 vfs_freeopt(mntopt_t *mop) 2746 { 2747 if (mop->mo_name != NULL) 2748 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2749 2750 vfs_freecancelopt(mop->mo_cancel); 2751 2752 if (mop->mo_arg != NULL) 2753 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2754 } 2755 2756 /* 2757 * Free a mount options table 2758 * 2759 * This function is *not* for general use by filesystems. 2760 * 2761 * Note: caller is responsible for locking the vfs list, if needed, 2762 * to protect mp. 2763 */ 2764 void 2765 vfs_freeopttbl(mntopts_t *mp) 2766 { 2767 uint_t i, count; 2768 2769 count = mp->mo_count; 2770 for (i = 0; i < count; i++) { 2771 vfs_freeopt(&mp->mo_list[i]); 2772 } 2773 if (count) { 2774 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2775 mp->mo_count = 0; 2776 mp->mo_list = NULL; 2777 } 2778 } 2779 2780 2781 /* ARGSUSED */ 2782 static int 2783 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2784 caller_context_t *ct) 2785 { 2786 return (0); 2787 } 2788 2789 /* ARGSUSED */ 2790 static int 2791 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2792 caller_context_t *ct) 2793 { 2794 return (0); 2795 } 2796 2797 /* 2798 * The dummy vnode is currently used only by file events notification 2799 * module which is just interested in the timestamps. 2800 */ 2801 /* ARGSUSED */ 2802 static int 2803 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2804 caller_context_t *ct) 2805 { 2806 bzero(vap, sizeof (vattr_t)); 2807 vap->va_type = VREG; 2808 vap->va_nlink = 1; 2809 vap->va_ctime = vfs_mnttab_ctime; 2810 /* 2811 * it is ok to just copy mtime as the time will be monotonically 2812 * increasing. 2813 */ 2814 vap->va_mtime = vfs_mnttab_mtime; 2815 vap->va_atime = vap->va_mtime; 2816 return (0); 2817 } 2818 2819 static void 2820 vfs_mnttabvp_setup(void) 2821 { 2822 vnode_t *tvp; 2823 vnodeops_t *vfs_mntdummyvnops; 2824 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2825 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2826 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2827 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2828 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2829 NULL, NULL 2830 }; 2831 2832 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2833 &vfs_mntdummyvnops) != 0) { 2834 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2835 /* Shouldn't happen, but not bad enough to panic */ 2836 return; 2837 } 2838 2839 /* 2840 * A global dummy vnode is allocated to represent mntfs files. 2841 * The mntfs file (/etc/mnttab) can be monitored for file events 2842 * and receive an event when mnttab changes. Dummy VOP calls 2843 * will be made on this vnode. The file events notification module 2844 * intercepts this vnode and delivers relevant events. 2845 */ 2846 tvp = vn_alloc(KM_SLEEP); 2847 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2848 vn_setops(tvp, vfs_mntdummyvnops); 2849 tvp->v_type = VREG; 2850 /* 2851 * The mnt dummy ops do not reference v_data. 2852 * No other module intercepting this vnode should either. 2853 * Just set it to point to itself. 2854 */ 2855 tvp->v_data = (caddr_t)tvp; 2856 tvp->v_vfsp = rootvfs; 2857 vfs_mntdummyvp = tvp; 2858 } 2859 2860 /* 2861 * performs fake read/write ops 2862 */ 2863 static void 2864 vfs_mnttab_rwop(int rw) 2865 { 2866 struct uio uio; 2867 struct iovec iov; 2868 char buf[1]; 2869 2870 if (vfs_mntdummyvp == NULL) 2871 return; 2872 2873 bzero(&uio, sizeof (uio)); 2874 bzero(&iov, sizeof (iov)); 2875 iov.iov_base = buf; 2876 iov.iov_len = 0; 2877 uio.uio_iov = &iov; 2878 uio.uio_iovcnt = 1; 2879 uio.uio_loffset = 0; 2880 uio.uio_segflg = UIO_SYSSPACE; 2881 uio.uio_resid = 0; 2882 if (rw) { 2883 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2884 } else { 2885 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2886 } 2887 } 2888 2889 /* 2890 * Generate a write operation. 2891 */ 2892 void 2893 vfs_mnttab_writeop(void) 2894 { 2895 vfs_mnttab_rwop(1); 2896 } 2897 2898 /* 2899 * Generate a read operation. 2900 */ 2901 void 2902 vfs_mnttab_readop(void) 2903 { 2904 vfs_mnttab_rwop(0); 2905 } 2906 2907 /* 2908 * Free any mnttab information recorded in the vfs struct. 2909 * The vfs must not be on the vfs list. 2910 */ 2911 static void 2912 vfs_freemnttab(struct vfs *vfsp) 2913 { 2914 ASSERT(!VFS_ON_LIST(vfsp)); 2915 2916 /* 2917 * Free device and mount point information 2918 */ 2919 if (vfsp->vfs_mntpt != NULL) { 2920 refstr_rele(vfsp->vfs_mntpt); 2921 vfsp->vfs_mntpt = NULL; 2922 } 2923 if (vfsp->vfs_resource != NULL) { 2924 refstr_rele(vfsp->vfs_resource); 2925 vfsp->vfs_resource = NULL; 2926 } 2927 /* 2928 * Now free mount options information 2929 */ 2930 vfs_freeopttbl(&vfsp->vfs_mntopts); 2931 } 2932 2933 /* 2934 * Return the last mnttab modification time 2935 */ 2936 void 2937 vfs_mnttab_modtime(timespec_t *ts) 2938 { 2939 ASSERT(RW_LOCK_HELD(&vfslist)); 2940 *ts = vfs_mnttab_mtime; 2941 } 2942 2943 /* 2944 * See if mnttab is changed 2945 */ 2946 void 2947 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2948 { 2949 int changed; 2950 2951 *phpp = (struct pollhead *)NULL; 2952 2953 /* 2954 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2955 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2956 * to not grab the vfs list lock because tv_sec is monotonically 2957 * increasing. 2958 */ 2959 2960 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2961 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2962 if (!changed) { 2963 *phpp = &vfs_pollhd; 2964 } 2965 } 2966 2967 /* 2968 * Update the mnttab modification time and wake up any waiters for 2969 * mnttab changes 2970 */ 2971 void 2972 vfs_mnttab_modtimeupd() 2973 { 2974 hrtime_t oldhrt, newhrt; 2975 2976 ASSERT(RW_WRITE_HELD(&vfslist)); 2977 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2978 gethrestime(&vfs_mnttab_mtime); 2979 newhrt = ts2hrt(&vfs_mnttab_mtime); 2980 if (oldhrt == (hrtime_t)0) 2981 vfs_mnttab_ctime = vfs_mnttab_mtime; 2982 /* 2983 * Attempt to provide unique mtime (like uniqtime but not). 2984 */ 2985 if (newhrt == oldhrt) { 2986 newhrt++; 2987 hrt2ts(newhrt, &vfs_mnttab_mtime); 2988 } 2989 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2990 vfs_mnttab_writeop(); 2991 } 2992 2993 int 2994 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2995 { 2996 vnode_t *coveredvp; 2997 int error; 2998 extern void teardown_vopstats(vfs_t *); 2999 3000 /* 3001 * Get covered vnode. This will be NULL if the vfs is not linked 3002 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3003 */ 3004 coveredvp = vfsp->vfs_vnodecovered; 3005 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3006 3007 /* 3008 * Purge all dnlc entries for this vfs. 3009 */ 3010 (void) dnlc_purge_vfsp(vfsp, 0); 3011 3012 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3013 if ((flag & MS_FORCE) == 0) 3014 (void) VFS_SYNC(vfsp, 0, cr); 3015 3016 /* 3017 * Lock the vfs to maintain fs status quo during unmount. This 3018 * has to be done after the sync because ufs_update tries to acquire 3019 * the vfs_reflock. 3020 */ 3021 vfs_lock_wait(vfsp); 3022 3023 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3024 vfs_unlock(vfsp); 3025 if (coveredvp != NULL) 3026 vn_vfsunlock(coveredvp); 3027 } else if (coveredvp != NULL) { 3028 teardown_vopstats(vfsp); 3029 /* 3030 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3031 * when it frees vfsp so we do a VN_HOLD() so we can 3032 * continue to use coveredvp afterwards. 3033 */ 3034 VN_HOLD(coveredvp); 3035 vfs_remove(vfsp); 3036 vn_vfsunlock(coveredvp); 3037 VN_RELE(coveredvp); 3038 } else { 3039 teardown_vopstats(vfsp); 3040 /* 3041 * Release the reference to vfs that is not linked 3042 * into the name space. 3043 */ 3044 vfs_unlock(vfsp); 3045 VFS_RELE(vfsp); 3046 } 3047 return (error); 3048 } 3049 3050 3051 /* 3052 * Vfs_unmountall() is called by uadmin() to unmount all 3053 * mounted file systems (except the root file system) during shutdown. 3054 * It follows the existing locking protocol when traversing the vfs list 3055 * to sync and unmount vfses. Even though there should be no 3056 * other thread running while the system is shutting down, it is prudent 3057 * to still follow the locking protocol. 3058 */ 3059 void 3060 vfs_unmountall(void) 3061 { 3062 struct vfs *vfsp; 3063 struct vfs *prev_vfsp = NULL; 3064 int error; 3065 3066 /* 3067 * Toss all dnlc entries now so that the per-vfs sync 3068 * and unmount operations don't have to slog through 3069 * a bunch of uninteresting vnodes over and over again. 3070 */ 3071 dnlc_purge(); 3072 3073 vfs_list_lock(); 3074 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3075 prev_vfsp = vfsp->vfs_prev; 3076 3077 if (vfs_lock(vfsp) != 0) 3078 continue; 3079 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3080 vfs_unlock(vfsp); 3081 if (error) 3082 continue; 3083 3084 vfs_list_unlock(); 3085 3086 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3087 (void) dounmount(vfsp, 0, CRED()); 3088 3089 /* 3090 * Since we dropped the vfslist lock above we must 3091 * verify that next_vfsp still exists, else start over. 3092 */ 3093 vfs_list_lock(); 3094 for (vfsp = rootvfs->vfs_prev; 3095 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3096 if (vfsp == prev_vfsp) 3097 break; 3098 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3099 prev_vfsp = rootvfs->vfs_prev; 3100 } 3101 vfs_list_unlock(); 3102 } 3103 3104 /* 3105 * Called to add an entry to the end of the vfs mount in progress list 3106 */ 3107 void 3108 vfs_addmip(dev_t dev, struct vfs *vfsp) 3109 { 3110 struct ipmnt *mipp; 3111 3112 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3113 mipp->mip_next = NULL; 3114 mipp->mip_dev = dev; 3115 mipp->mip_vfsp = vfsp; 3116 mutex_enter(&vfs_miplist_mutex); 3117 if (vfs_miplist_end != NULL) 3118 vfs_miplist_end->mip_next = mipp; 3119 else 3120 vfs_miplist = mipp; 3121 vfs_miplist_end = mipp; 3122 mutex_exit(&vfs_miplist_mutex); 3123 } 3124 3125 /* 3126 * Called to remove an entry from the mount in progress list 3127 * Either because the mount completed or it failed. 3128 */ 3129 void 3130 vfs_delmip(struct vfs *vfsp) 3131 { 3132 struct ipmnt *mipp, *mipprev; 3133 3134 mutex_enter(&vfs_miplist_mutex); 3135 mipprev = NULL; 3136 for (mipp = vfs_miplist; 3137 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3138 mipprev = mipp; 3139 } 3140 if (mipp == NULL) 3141 return; /* shouldn't happen */ 3142 if (mipp == vfs_miplist_end) 3143 vfs_miplist_end = mipprev; 3144 if (mipprev == NULL) 3145 vfs_miplist = mipp->mip_next; 3146 else 3147 mipprev->mip_next = mipp->mip_next; 3148 mutex_exit(&vfs_miplist_mutex); 3149 kmem_free(mipp, sizeof (struct ipmnt)); 3150 } 3151 3152 /* 3153 * vfs_add is called by a specific filesystem's mount routine to add 3154 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3155 * The vfs should already have been locked by the caller. 3156 * 3157 * coveredvp is NULL if this is the root. 3158 */ 3159 void 3160 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3161 { 3162 int newflag; 3163 3164 ASSERT(vfs_lock_held(vfsp)); 3165 VFS_HOLD(vfsp); 3166 newflag = vfsp->vfs_flag; 3167 if (mflag & MS_RDONLY) 3168 newflag |= VFS_RDONLY; 3169 else 3170 newflag &= ~VFS_RDONLY; 3171 if (mflag & MS_NOSUID) 3172 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3173 else 3174 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3175 if (mflag & MS_NOMNTTAB) 3176 newflag |= VFS_NOMNTTAB; 3177 else 3178 newflag &= ~VFS_NOMNTTAB; 3179 3180 if (coveredvp != NULL) { 3181 ASSERT(vn_vfswlock_held(coveredvp)); 3182 coveredvp->v_vfsmountedhere = vfsp; 3183 VN_HOLD(coveredvp); 3184 } 3185 vfsp->vfs_vnodecovered = coveredvp; 3186 vfsp->vfs_flag = newflag; 3187 3188 vfs_list_add(vfsp); 3189 } 3190 3191 /* 3192 * Remove a vfs from the vfs list, null out the pointer from the 3193 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3194 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3195 * reference to the vfs and to the covered vnode. 3196 * 3197 * Called from dounmount after it's confirmed with the file system 3198 * that the unmount is legal. 3199 */ 3200 void 3201 vfs_remove(struct vfs *vfsp) 3202 { 3203 vnode_t *vp; 3204 3205 ASSERT(vfs_lock_held(vfsp)); 3206 3207 /* 3208 * Can't unmount root. Should never happen because fs will 3209 * be busy. 3210 */ 3211 if (vfsp == rootvfs) 3212 panic("vfs_remove: unmounting root"); 3213 3214 vfs_list_remove(vfsp); 3215 3216 /* 3217 * Unhook from the file system name space. 3218 */ 3219 vp = vfsp->vfs_vnodecovered; 3220 ASSERT(vn_vfswlock_held(vp)); 3221 vp->v_vfsmountedhere = NULL; 3222 vfsp->vfs_vnodecovered = NULL; 3223 VN_RELE(vp); 3224 3225 /* 3226 * Release lock and wakeup anybody waiting. 3227 */ 3228 vfs_unlock(vfsp); 3229 VFS_RELE(vfsp); 3230 } 3231 3232 /* 3233 * Lock a filesystem to prevent access to it while mounting, 3234 * unmounting and syncing. Return EBUSY immediately if lock 3235 * can't be acquired. 3236 */ 3237 int 3238 vfs_lock(vfs_t *vfsp) 3239 { 3240 vn_vfslocks_entry_t *vpvfsentry; 3241 3242 vpvfsentry = vn_vfslocks_getlock(vfsp); 3243 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3244 return (0); 3245 3246 vn_vfslocks_rele(vpvfsentry); 3247 return (EBUSY); 3248 } 3249 3250 int 3251 vfs_rlock(vfs_t *vfsp) 3252 { 3253 vn_vfslocks_entry_t *vpvfsentry; 3254 3255 vpvfsentry = vn_vfslocks_getlock(vfsp); 3256 3257 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3258 return (0); 3259 3260 vn_vfslocks_rele(vpvfsentry); 3261 return (EBUSY); 3262 } 3263 3264 void 3265 vfs_lock_wait(vfs_t *vfsp) 3266 { 3267 vn_vfslocks_entry_t *vpvfsentry; 3268 3269 vpvfsentry = vn_vfslocks_getlock(vfsp); 3270 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3271 } 3272 3273 void 3274 vfs_rlock_wait(vfs_t *vfsp) 3275 { 3276 vn_vfslocks_entry_t *vpvfsentry; 3277 3278 vpvfsentry = vn_vfslocks_getlock(vfsp); 3279 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3280 } 3281 3282 /* 3283 * Unlock a locked filesystem. 3284 */ 3285 void 3286 vfs_unlock(vfs_t *vfsp) 3287 { 3288 vn_vfslocks_entry_t *vpvfsentry; 3289 3290 /* 3291 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3292 * And these changes should remain for the patch changes as it is. 3293 */ 3294 if (panicstr) 3295 return; 3296 3297 /* 3298 * ve_refcount needs to be dropped twice here. 3299 * 1. To release refernce after a call to vfs_locks_getlock() 3300 * 2. To release the reference from the locking routines like 3301 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3302 */ 3303 3304 vpvfsentry = vn_vfslocks_getlock(vfsp); 3305 vn_vfslocks_rele(vpvfsentry); 3306 3307 rwst_exit(&vpvfsentry->ve_lock); 3308 vn_vfslocks_rele(vpvfsentry); 3309 } 3310 3311 /* 3312 * Utility routine that allows a filesystem to construct its 3313 * fsid in "the usual way" - by munging some underlying dev_t and 3314 * the filesystem type number into the 64-bit fsid. Note that 3315 * this implicitly relies on dev_t persistence to make filesystem 3316 * id's persistent. 3317 * 3318 * There's nothing to prevent an individual fs from constructing its 3319 * fsid in a different way, and indeed they should. 3320 * 3321 * Since we want fsids to be 32-bit quantities (so that they can be 3322 * exported identically by either 32-bit or 64-bit APIs, as well as 3323 * the fact that fsid's are "known" to NFS), we compress the device 3324 * number given down to 32-bits, and panic if that isn't possible. 3325 */ 3326 void 3327 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3328 { 3329 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3330 panic("device number too big for fsid!"); 3331 fsi->val[1] = val; 3332 } 3333 3334 int 3335 vfs_lock_held(vfs_t *vfsp) 3336 { 3337 int held; 3338 vn_vfslocks_entry_t *vpvfsentry; 3339 3340 /* 3341 * vfs_lock_held will mimic sema_held behaviour 3342 * if panicstr is set. And these changes should remain 3343 * for the patch changes as it is. 3344 */ 3345 if (panicstr) 3346 return (1); 3347 3348 vpvfsentry = vn_vfslocks_getlock(vfsp); 3349 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3350 3351 vn_vfslocks_rele(vpvfsentry); 3352 return (held); 3353 } 3354 3355 struct _kthread * 3356 vfs_lock_owner(vfs_t *vfsp) 3357 { 3358 struct _kthread *owner; 3359 vn_vfslocks_entry_t *vpvfsentry; 3360 3361 /* 3362 * vfs_wlock_held will mimic sema_held behaviour 3363 * if panicstr is set. And these changes should remain 3364 * for the patch changes as it is. 3365 */ 3366 if (panicstr) 3367 return (NULL); 3368 3369 vpvfsentry = vn_vfslocks_getlock(vfsp); 3370 owner = rwst_owner(&vpvfsentry->ve_lock); 3371 3372 vn_vfslocks_rele(vpvfsentry); 3373 return (owner); 3374 } 3375 3376 /* 3377 * vfs list locking. 3378 * 3379 * Rather than manipulate the vfslist lock directly, we abstract into lock 3380 * and unlock routines to allow the locking implementation to be changed for 3381 * clustering. 3382 * 3383 * Whenever the vfs list is modified through its hash links, the overall list 3384 * lock must be obtained before locking the relevant hash bucket. But to see 3385 * whether a given vfs is on the list, it suffices to obtain the lock for the 3386 * hash bucket without getting the overall list lock. (See getvfs() below.) 3387 */ 3388 3389 void 3390 vfs_list_lock() 3391 { 3392 rw_enter(&vfslist, RW_WRITER); 3393 } 3394 3395 void 3396 vfs_list_read_lock() 3397 { 3398 rw_enter(&vfslist, RW_READER); 3399 } 3400 3401 void 3402 vfs_list_unlock() 3403 { 3404 rw_exit(&vfslist); 3405 } 3406 3407 /* 3408 * Low level worker routines for adding entries to and removing entries from 3409 * the vfs list. 3410 */ 3411 3412 static void 3413 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3414 { 3415 int vhno; 3416 struct vfs **hp; 3417 dev_t dev; 3418 3419 ASSERT(RW_WRITE_HELD(&vfslist)); 3420 3421 dev = expldev(vfsp->vfs_fsid.val[0]); 3422 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3423 3424 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3425 3426 /* 3427 * Link into the hash table, inserting it at the end, so that LOFS 3428 * with the same fsid as UFS (or other) file systems will not hide the 3429 * UFS. 3430 */ 3431 if (insert_at_head) { 3432 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3433 rvfs_list[vhno].rvfs_head = vfsp; 3434 } else { 3435 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3436 hp = &(*hp)->vfs_hash) 3437 continue; 3438 /* 3439 * hp now contains the address of the pointer to update 3440 * to effect the insertion. 3441 */ 3442 vfsp->vfs_hash = NULL; 3443 *hp = vfsp; 3444 } 3445 3446 rvfs_list[vhno].rvfs_len++; 3447 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3448 } 3449 3450 3451 static void 3452 vfs_hash_remove(struct vfs *vfsp) 3453 { 3454 int vhno; 3455 struct vfs *tvfsp; 3456 dev_t dev; 3457 3458 ASSERT(RW_WRITE_HELD(&vfslist)); 3459 3460 dev = expldev(vfsp->vfs_fsid.val[0]); 3461 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3462 3463 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3464 3465 /* 3466 * Remove from hash. 3467 */ 3468 if (rvfs_list[vhno].rvfs_head == vfsp) { 3469 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3470 rvfs_list[vhno].rvfs_len--; 3471 goto foundit; 3472 } 3473 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3474 tvfsp = tvfsp->vfs_hash) { 3475 if (tvfsp->vfs_hash == vfsp) { 3476 tvfsp->vfs_hash = vfsp->vfs_hash; 3477 rvfs_list[vhno].rvfs_len--; 3478 goto foundit; 3479 } 3480 } 3481 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3482 3483 foundit: 3484 3485 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3486 } 3487 3488 3489 void 3490 vfs_list_add(struct vfs *vfsp) 3491 { 3492 zone_t *zone; 3493 3494 /* 3495 * The zone that owns the mount is the one that performed the mount. 3496 * Note that this isn't necessarily the same as the zone mounted into. 3497 * The corresponding zone_rele() will be done when the vfs_t is 3498 * being free'd. 3499 */ 3500 vfsp->vfs_zone = curproc->p_zone; 3501 zone_hold(vfsp->vfs_zone); 3502 3503 /* 3504 * Find the zone mounted into, and put this mount on its vfs list. 3505 */ 3506 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3507 ASSERT(zone != NULL); 3508 /* 3509 * Special casing for the root vfs. This structure is allocated 3510 * statically and hooked onto rootvfs at link time. During the 3511 * vfs_mountroot call at system startup time, the root file system's 3512 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3513 * as argument. The code below must detect and handle this special 3514 * case. The only apparent justification for this special casing is 3515 * to ensure that the root file system appears at the head of the 3516 * list. 3517 * 3518 * XXX: I'm assuming that it's ok to do normal list locking when 3519 * adding the entry for the root file system (this used to be 3520 * done with no locks held). 3521 */ 3522 vfs_list_lock(); 3523 /* 3524 * Link into the vfs list proper. 3525 */ 3526 if (vfsp == &root) { 3527 /* 3528 * Assert: This vfs is already on the list as its first entry. 3529 * Thus, there's nothing to do. 3530 */ 3531 ASSERT(rootvfs == vfsp); 3532 /* 3533 * Add it to the head of the global zone's vfslist. 3534 */ 3535 ASSERT(zone == global_zone); 3536 ASSERT(zone->zone_vfslist == NULL); 3537 zone->zone_vfslist = vfsp; 3538 } else { 3539 /* 3540 * Link to end of list using vfs_prev (as rootvfs is now a 3541 * doubly linked circular list) so list is in mount order for 3542 * mnttab use. 3543 */ 3544 rootvfs->vfs_prev->vfs_next = vfsp; 3545 vfsp->vfs_prev = rootvfs->vfs_prev; 3546 rootvfs->vfs_prev = vfsp; 3547 vfsp->vfs_next = rootvfs; 3548 3549 /* 3550 * Do it again for the zone-private list (which may be NULL). 3551 */ 3552 if (zone->zone_vfslist == NULL) { 3553 ASSERT(zone != global_zone); 3554 zone->zone_vfslist = vfsp; 3555 } else { 3556 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3557 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3558 zone->zone_vfslist->vfs_zone_prev = vfsp; 3559 vfsp->vfs_zone_next = zone->zone_vfslist; 3560 } 3561 } 3562 3563 /* 3564 * Link into the hash table, inserting it at the end, so that LOFS 3565 * with the same fsid as UFS (or other) file systems will not hide 3566 * the UFS. 3567 */ 3568 vfs_hash_add(vfsp, 0); 3569 3570 /* 3571 * update the mnttab modification time 3572 */ 3573 vfs_mnttab_modtimeupd(); 3574 vfs_list_unlock(); 3575 zone_rele(zone); 3576 } 3577 3578 void 3579 vfs_list_remove(struct vfs *vfsp) 3580 { 3581 zone_t *zone; 3582 3583 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3584 ASSERT(zone != NULL); 3585 /* 3586 * Callers are responsible for preventing attempts to unmount the 3587 * root. 3588 */ 3589 ASSERT(vfsp != rootvfs); 3590 3591 vfs_list_lock(); 3592 3593 /* 3594 * Remove from hash. 3595 */ 3596 vfs_hash_remove(vfsp); 3597 3598 /* 3599 * Remove from vfs list. 3600 */ 3601 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3602 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3603 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3604 3605 /* 3606 * Remove from zone-specific vfs list. 3607 */ 3608 if (zone->zone_vfslist == vfsp) 3609 zone->zone_vfslist = vfsp->vfs_zone_next; 3610 3611 if (vfsp->vfs_zone_next == vfsp) { 3612 ASSERT(vfsp->vfs_zone_prev == vfsp); 3613 ASSERT(zone->zone_vfslist == vfsp); 3614 zone->zone_vfslist = NULL; 3615 } 3616 3617 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3618 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3619 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3620 3621 /* 3622 * update the mnttab modification time 3623 */ 3624 vfs_mnttab_modtimeupd(); 3625 vfs_list_unlock(); 3626 zone_rele(zone); 3627 } 3628 3629 struct vfs * 3630 getvfs(fsid_t *fsid) 3631 { 3632 struct vfs *vfsp; 3633 int val0 = fsid->val[0]; 3634 int val1 = fsid->val[1]; 3635 dev_t dev = expldev(val0); 3636 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3637 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3638 3639 mutex_enter(hmp); 3640 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3641 if (vfsp->vfs_fsid.val[0] == val0 && 3642 vfsp->vfs_fsid.val[1] == val1) { 3643 VFS_HOLD(vfsp); 3644 mutex_exit(hmp); 3645 return (vfsp); 3646 } 3647 } 3648 mutex_exit(hmp); 3649 return (NULL); 3650 } 3651 3652 /* 3653 * Search the vfs mount in progress list for a specified device/vfs entry. 3654 * Returns 0 if the first entry in the list that the device matches has the 3655 * given vfs pointer as well. If the device matches but a different vfs 3656 * pointer is encountered in the list before the given vfs pointer then 3657 * a 1 is returned. 3658 */ 3659 3660 int 3661 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3662 { 3663 int retval = 0; 3664 struct ipmnt *mipp; 3665 3666 mutex_enter(&vfs_miplist_mutex); 3667 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3668 if (mipp->mip_dev == dev) { 3669 if (mipp->mip_vfsp != vfsp) 3670 retval = 1; 3671 break; 3672 } 3673 } 3674 mutex_exit(&vfs_miplist_mutex); 3675 return (retval); 3676 } 3677 3678 /* 3679 * Search the vfs list for a specified device. Returns 1, if entry is found 3680 * or 0 if no suitable entry is found. 3681 */ 3682 3683 int 3684 vfs_devismounted(dev_t dev) 3685 { 3686 struct vfs *vfsp; 3687 int found; 3688 3689 vfs_list_read_lock(); 3690 vfsp = rootvfs; 3691 found = 0; 3692 do { 3693 if (vfsp->vfs_dev == dev) { 3694 found = 1; 3695 break; 3696 } 3697 vfsp = vfsp->vfs_next; 3698 } while (vfsp != rootvfs); 3699 3700 vfs_list_unlock(); 3701 return (found); 3702 } 3703 3704 /* 3705 * Search the vfs list for a specified device. Returns a pointer to it 3706 * or NULL if no suitable entry is found. The caller of this routine 3707 * is responsible for releasing the returned vfs pointer. 3708 */ 3709 struct vfs * 3710 vfs_dev2vfsp(dev_t dev) 3711 { 3712 struct vfs *vfsp; 3713 int found; 3714 3715 vfs_list_read_lock(); 3716 vfsp = rootvfs; 3717 found = 0; 3718 do { 3719 /* 3720 * The following could be made more efficient by making 3721 * the entire loop use vfs_zone_next if the call is from 3722 * a zone. The only callers, however, ustat(2) and 3723 * umount2(2), don't seem to justify the added 3724 * complexity at present. 3725 */ 3726 if (vfsp->vfs_dev == dev && 3727 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3728 curproc->p_zone)) { 3729 VFS_HOLD(vfsp); 3730 found = 1; 3731 break; 3732 } 3733 vfsp = vfsp->vfs_next; 3734 } while (vfsp != rootvfs); 3735 vfs_list_unlock(); 3736 return (found ? vfsp: NULL); 3737 } 3738 3739 /* 3740 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3741 * or NULL if no suitable entry is found. The caller of this routine 3742 * is responsible for releasing the returned vfs pointer. 3743 * 3744 * Note that if multiple mntpoints match, the last one matching is 3745 * returned in an attempt to return the "top" mount when overlay 3746 * mounts are covering the same mount point. This is accomplished by starting 3747 * at the end of the list and working our way backwards, stopping at the first 3748 * matching mount. 3749 */ 3750 struct vfs * 3751 vfs_mntpoint2vfsp(const char *mp) 3752 { 3753 struct vfs *vfsp; 3754 struct vfs *retvfsp = NULL; 3755 zone_t *zone = curproc->p_zone; 3756 struct vfs *list; 3757 3758 vfs_list_read_lock(); 3759 if (getzoneid() == GLOBAL_ZONEID) { 3760 /* 3761 * The global zone may see filesystems in any zone. 3762 */ 3763 vfsp = rootvfs->vfs_prev; 3764 do { 3765 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3766 retvfsp = vfsp; 3767 break; 3768 } 3769 vfsp = vfsp->vfs_prev; 3770 } while (vfsp != rootvfs->vfs_prev); 3771 } else if ((list = zone->zone_vfslist) != NULL) { 3772 const char *mntpt; 3773 3774 vfsp = list->vfs_zone_prev; 3775 do { 3776 mntpt = refstr_value(vfsp->vfs_mntpt); 3777 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3778 if (strcmp(mntpt, mp) == 0) { 3779 retvfsp = vfsp; 3780 break; 3781 } 3782 vfsp = vfsp->vfs_zone_prev; 3783 } while (vfsp != list->vfs_zone_prev); 3784 } 3785 if (retvfsp) 3786 VFS_HOLD(retvfsp); 3787 vfs_list_unlock(); 3788 return (retvfsp); 3789 } 3790 3791 /* 3792 * Search the vfs list for a specified vfsops. 3793 * if vfs entry is found then return 1, else 0. 3794 */ 3795 int 3796 vfs_opsinuse(vfsops_t *ops) 3797 { 3798 struct vfs *vfsp; 3799 int found; 3800 3801 vfs_list_read_lock(); 3802 vfsp = rootvfs; 3803 found = 0; 3804 do { 3805 if (vfs_getops(vfsp) == ops) { 3806 found = 1; 3807 break; 3808 } 3809 vfsp = vfsp->vfs_next; 3810 } while (vfsp != rootvfs); 3811 vfs_list_unlock(); 3812 return (found); 3813 } 3814 3815 /* 3816 * Allocate an entry in vfssw for a file system type 3817 */ 3818 struct vfssw * 3819 allocate_vfssw(const char *type) 3820 { 3821 struct vfssw *vswp; 3822 3823 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3824 /* 3825 * The vfssw table uses the empty string to identify an 3826 * available entry; we cannot add any type which has 3827 * a leading NUL. The string length is limited to 3828 * the size of the st_fstype array in struct stat. 3829 */ 3830 return (NULL); 3831 } 3832 3833 ASSERT(VFSSW_WRITE_LOCKED()); 3834 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3835 if (!ALLOCATED_VFSSW(vswp)) { 3836 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3837 (void) strcpy(vswp->vsw_name, type); 3838 ASSERT(vswp->vsw_count == 0); 3839 vswp->vsw_count = 1; 3840 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3841 return (vswp); 3842 } 3843 return (NULL); 3844 } 3845 3846 /* 3847 * Impose additional layer of translation between vfstype names 3848 * and module names in the filesystem. 3849 */ 3850 static const char * 3851 vfs_to_modname(const char *vfstype) 3852 { 3853 if (strcmp(vfstype, "proc") == 0) { 3854 vfstype = "procfs"; 3855 } else if (strcmp(vfstype, "fd") == 0) { 3856 vfstype = "fdfs"; 3857 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3858 vfstype = "nfs"; 3859 } 3860 3861 return (vfstype); 3862 } 3863 3864 /* 3865 * Find a vfssw entry given a file system type name. 3866 * Try to autoload the filesystem if it's not found. 3867 * If it's installed, return the vfssw locked to prevent unloading. 3868 */ 3869 struct vfssw * 3870 vfs_getvfssw(const char *type) 3871 { 3872 struct vfssw *vswp; 3873 const char *modname; 3874 3875 RLOCK_VFSSW(); 3876 vswp = vfs_getvfsswbyname(type); 3877 modname = vfs_to_modname(type); 3878 3879 if (rootdir == NULL) { 3880 /* 3881 * If we haven't yet loaded the root file system, then our 3882 * _init won't be called until later. Allocate vfssw entry, 3883 * because mod_installfs won't be called. 3884 */ 3885 if (vswp == NULL) { 3886 RUNLOCK_VFSSW(); 3887 WLOCK_VFSSW(); 3888 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3889 if ((vswp = allocate_vfssw(type)) == NULL) { 3890 WUNLOCK_VFSSW(); 3891 return (NULL); 3892 } 3893 } 3894 WUNLOCK_VFSSW(); 3895 RLOCK_VFSSW(); 3896 } 3897 if (!VFS_INSTALLED(vswp)) { 3898 RUNLOCK_VFSSW(); 3899 (void) modloadonly("fs", modname); 3900 } else 3901 RUNLOCK_VFSSW(); 3902 return (vswp); 3903 } 3904 3905 /* 3906 * Try to load the filesystem. Before calling modload(), we drop 3907 * our lock on the VFS switch table, and pick it up after the 3908 * module is loaded. However, there is a potential race: the 3909 * module could be unloaded after the call to modload() completes 3910 * but before we pick up the lock and drive on. Therefore, 3911 * we keep reloading the module until we've loaded the module 3912 * _and_ we have the lock on the VFS switch table. 3913 */ 3914 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3915 RUNLOCK_VFSSW(); 3916 if (modload("fs", modname) == -1) 3917 return (NULL); 3918 RLOCK_VFSSW(); 3919 if (vswp == NULL) 3920 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3921 break; 3922 } 3923 RUNLOCK_VFSSW(); 3924 3925 return (vswp); 3926 } 3927 3928 /* 3929 * Find a vfssw entry given a file system type name. 3930 */ 3931 struct vfssw * 3932 vfs_getvfsswbyname(const char *type) 3933 { 3934 struct vfssw *vswp; 3935 3936 ASSERT(VFSSW_LOCKED()); 3937 if (type == NULL || *type == '\0') 3938 return (NULL); 3939 3940 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3941 if (strcmp(type, vswp->vsw_name) == 0) { 3942 vfs_refvfssw(vswp); 3943 return (vswp); 3944 } 3945 } 3946 3947 return (NULL); 3948 } 3949 3950 /* 3951 * Find a vfssw entry given a set of vfsops. 3952 */ 3953 struct vfssw * 3954 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3955 { 3956 struct vfssw *vswp; 3957 3958 RLOCK_VFSSW(); 3959 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3960 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3961 vfs_refvfssw(vswp); 3962 RUNLOCK_VFSSW(); 3963 return (vswp); 3964 } 3965 } 3966 RUNLOCK_VFSSW(); 3967 3968 return (NULL); 3969 } 3970 3971 /* 3972 * Reference a vfssw entry. 3973 */ 3974 void 3975 vfs_refvfssw(struct vfssw *vswp) 3976 { 3977 3978 mutex_enter(&vswp->vsw_lock); 3979 vswp->vsw_count++; 3980 mutex_exit(&vswp->vsw_lock); 3981 } 3982 3983 /* 3984 * Unreference a vfssw entry. 3985 */ 3986 void 3987 vfs_unrefvfssw(struct vfssw *vswp) 3988 { 3989 3990 mutex_enter(&vswp->vsw_lock); 3991 vswp->vsw_count--; 3992 mutex_exit(&vswp->vsw_lock); 3993 } 3994 3995 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3996 int sync_timeleft; /* portion of sync_timeout remaining */ 3997 3998 static int sync_retries = 20; /* number of retries when not making progress */ 3999 static int sync_triesleft; /* portion of sync_retries remaining */ 4000 4001 static pgcnt_t old_pgcnt, new_pgcnt; 4002 static int new_bufcnt, old_bufcnt; 4003 4004 /* 4005 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4006 * complete. We wait by counting the number of dirty pages and buffers, 4007 * pushing them out using bio_busy() and page_busy(), and then counting again. 4008 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4009 * the SYNC phase of the panic code (see comments in panic.c). It should only 4010 * be used after some higher-level mechanism has quiesced the system so that 4011 * new writes are not being initiated while we are waiting for completion. 4012 * 4013 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4014 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4015 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4016 * Together these ensure that syncing completes if our i/o paths are stuck. 4017 * The counters are declared above so they can be found easily in the debugger. 4018 * 4019 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4020 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4021 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4022 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4023 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4024 * deadlocking or hanging inside of a broken filesystem or driver routine. 4025 * 4026 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4027 * sync_retries consecutive calls to bio_busy() and page_busy() without 4028 * decreasing either the number of dirty buffers or dirty pages below the 4029 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4030 * 4031 * Each loop iteration ends with a call to delay() one second to allow time for 4032 * i/o completion and to permit the user time to read our progress messages. 4033 */ 4034 void 4035 vfs_syncall(void) 4036 { 4037 if (rootdir == NULL && !modrootloaded) 4038 return; /* panic during boot - no filesystems yet */ 4039 4040 printf("syncing file systems..."); 4041 vfs_syncprogress(); 4042 sync(); 4043 4044 vfs_syncprogress(); 4045 sync_triesleft = sync_retries; 4046 4047 old_bufcnt = new_bufcnt = INT_MAX; 4048 old_pgcnt = new_pgcnt = ULONG_MAX; 4049 4050 while (sync_triesleft > 0) { 4051 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4052 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4053 4054 new_bufcnt = bio_busy(B_TRUE); 4055 new_pgcnt = page_busy(B_TRUE); 4056 vfs_syncprogress(); 4057 4058 if (new_bufcnt == 0 && new_pgcnt == 0) 4059 break; 4060 4061 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4062 sync_triesleft = sync_retries; 4063 else 4064 sync_triesleft--; 4065 4066 if (new_bufcnt) 4067 printf(" [%d]", new_bufcnt); 4068 if (new_pgcnt) 4069 printf(" %lu", new_pgcnt); 4070 4071 delay(hz); 4072 } 4073 4074 if (new_bufcnt != 0 || new_pgcnt != 0) 4075 printf(" done (not all i/o completed)\n"); 4076 else 4077 printf(" done\n"); 4078 4079 sync_timeleft = 0; 4080 delay(hz); 4081 } 4082 4083 /* 4084 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4085 * sync_timeout to indicate that we are making progress and the deadman() 4086 * omnipresent cyclic should not yet time us out. Note that it is safe to 4087 * store to sync_timeleft here since the deadman() is firing at high-level 4088 * on top of us. If we are racing with the deadman(), either the deadman() 4089 * will decrement the old value and then we will reset it, or we will 4090 * reset it and then the deadman() will immediately decrement it. In either 4091 * case, correct behavior results. 4092 */ 4093 void 4094 vfs_syncprogress(void) 4095 { 4096 if (panicstr) 4097 sync_timeleft = sync_timeout; 4098 } 4099 4100 /* 4101 * Map VFS flags to statvfs flags. These shouldn't really be separate 4102 * flags at all. 4103 */ 4104 uint_t 4105 vf_to_stf(uint_t vf) 4106 { 4107 uint_t stf = 0; 4108 4109 if (vf & VFS_RDONLY) 4110 stf |= ST_RDONLY; 4111 if (vf & VFS_NOSETUID) 4112 stf |= ST_NOSUID; 4113 if (vf & VFS_NOTRUNC) 4114 stf |= ST_NOTRUNC; 4115 4116 return (stf); 4117 } 4118 4119 /* 4120 * Entries for (illegal) fstype 0. 4121 */ 4122 /* ARGSUSED */ 4123 int 4124 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4125 { 4126 cmn_err(CE_PANIC, "stray vfs operation"); 4127 return (0); 4128 } 4129 4130 /* 4131 * Entries for (illegal) fstype 0. 4132 */ 4133 int 4134 vfsstray(void) 4135 { 4136 cmn_err(CE_PANIC, "stray vfs operation"); 4137 return (0); 4138 } 4139 4140 /* 4141 * Support for dealing with forced UFS unmount and its interaction with 4142 * LOFS. Could be used by any filesystem. 4143 * See bug 1203132. 4144 */ 4145 int 4146 vfs_EIO(void) 4147 { 4148 return (EIO); 4149 } 4150 4151 /* 4152 * We've gotta define the op for sync separately, since the compiler gets 4153 * confused if we mix and match ANSI and normal style prototypes when 4154 * a "short" argument is present and spits out a warning. 4155 */ 4156 /*ARGSUSED*/ 4157 int 4158 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4159 { 4160 return (EIO); 4161 } 4162 4163 vfs_t EIO_vfs; 4164 vfsops_t *EIO_vfsops; 4165 4166 /* 4167 * Called from startup() to initialize all loaded vfs's 4168 */ 4169 void 4170 vfsinit(void) 4171 { 4172 struct vfssw *vswp; 4173 int error; 4174 extern int vopstats_enabled; 4175 extern void vopstats_startup(); 4176 4177 static const fs_operation_def_t EIO_vfsops_template[] = { 4178 VFSNAME_MOUNT, { .error = vfs_EIO }, 4179 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4180 VFSNAME_ROOT, { .error = vfs_EIO }, 4181 VFSNAME_STATVFS, { .error = vfs_EIO }, 4182 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4183 VFSNAME_VGET, { .error = vfs_EIO }, 4184 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4185 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4186 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4187 NULL, NULL 4188 }; 4189 4190 static const fs_operation_def_t stray_vfsops_template[] = { 4191 VFSNAME_MOUNT, { .error = vfsstray }, 4192 VFSNAME_UNMOUNT, { .error = vfsstray }, 4193 VFSNAME_ROOT, { .error = vfsstray }, 4194 VFSNAME_STATVFS, { .error = vfsstray }, 4195 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4196 VFSNAME_VGET, { .error = vfsstray }, 4197 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4198 VFSNAME_FREEVFS, { .error = vfsstray }, 4199 VFSNAME_VNSTATE, { .error = vfsstray }, 4200 NULL, NULL 4201 }; 4202 4203 /* Create vfs cache */ 4204 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4205 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4206 4207 /* Initialize the vnode cache (file systems may use it during init). */ 4208 vn_create_cache(); 4209 4210 /* Setup event monitor framework */ 4211 fem_init(); 4212 4213 /* Initialize the dummy stray file system type. */ 4214 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4215 4216 /* Initialize the dummy EIO file system. */ 4217 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4218 if (error != 0) { 4219 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4220 /* Shouldn't happen, but not bad enough to panic */ 4221 } 4222 4223 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4224 4225 /* 4226 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4227 * on this vfs can immediately notice it's invalid. 4228 */ 4229 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4230 4231 /* 4232 * Call the init routines of non-loadable filesystems only. 4233 * Filesystems which are loaded as separate modules will be 4234 * initialized by the module loading code instead. 4235 */ 4236 4237 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4238 RLOCK_VFSSW(); 4239 if (vswp->vsw_init != NULL) 4240 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4241 RUNLOCK_VFSSW(); 4242 } 4243 4244 vopstats_startup(); 4245 4246 if (vopstats_enabled) { 4247 /* EIO_vfs can collect stats, but we don't retrieve them */ 4248 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4249 EIO_vfs.vfs_fstypevsp = NULL; 4250 EIO_vfs.vfs_vskap = NULL; 4251 EIO_vfs.vfs_flag |= VFS_STATS; 4252 } 4253 4254 xattr_init(); 4255 4256 reparse_point_init(); 4257 } 4258 4259 vfs_t * 4260 vfs_alloc(int kmflag) 4261 { 4262 vfs_t *vfsp; 4263 4264 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4265 4266 /* 4267 * Do the simplest initialization here. 4268 * Everything else gets done in vfs_init() 4269 */ 4270 bzero(vfsp, sizeof (vfs_t)); 4271 return (vfsp); 4272 } 4273 4274 void 4275 vfs_free(vfs_t *vfsp) 4276 { 4277 /* 4278 * One would be tempted to assert that "vfsp->vfs_count == 0". 4279 * The problem is that this gets called out of domount() with 4280 * a partially initialized vfs and a vfs_count of 1. This is 4281 * also called from vfs_rele() with a vfs_count of 0. We can't 4282 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4283 * returned. This is because VFS_MOUNT() fully initializes the 4284 * vfs structure and its associated data. VFS_RELE() will call 4285 * VFS_FREEVFS() which may panic the system if the data structures 4286 * aren't fully initialized from a successful VFS_MOUNT()). 4287 */ 4288 4289 /* If FEM was in use, make sure everything gets cleaned up */ 4290 if (vfsp->vfs_femhead) { 4291 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4292 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4293 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4294 vfsp->vfs_femhead = NULL; 4295 } 4296 4297 if (vfsp->vfs_implp) 4298 vfsimpl_teardown(vfsp); 4299 sema_destroy(&vfsp->vfs_reflock); 4300 kmem_cache_free(vfs_cache, vfsp); 4301 } 4302 4303 /* 4304 * Increments the vfs reference count by one atomically. 4305 */ 4306 void 4307 vfs_hold(vfs_t *vfsp) 4308 { 4309 atomic_add_32(&vfsp->vfs_count, 1); 4310 ASSERT(vfsp->vfs_count != 0); 4311 } 4312 4313 /* 4314 * Decrements the vfs reference count by one atomically. When 4315 * vfs reference count becomes zero, it calls the file system 4316 * specific vfs_freevfs() to free up the resources. 4317 */ 4318 void 4319 vfs_rele(vfs_t *vfsp) 4320 { 4321 ASSERT(vfsp->vfs_count != 0); 4322 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4323 VFS_FREEVFS(vfsp); 4324 lofi_remove(vfsp); 4325 if (vfsp->vfs_zone) 4326 zone_rele(vfsp->vfs_zone); 4327 vfs_freemnttab(vfsp); 4328 vfs_free(vfsp); 4329 } 4330 } 4331 4332 /* 4333 * Generic operations vector support. 4334 * 4335 * This is used to build operations vectors for both the vfs and vnode. 4336 * It's normally called only when a file system is loaded. 4337 * 4338 * There are many possible algorithms for this, including the following: 4339 * 4340 * (1) scan the list of known operations; for each, see if the file system 4341 * includes an entry for it, and fill it in as appropriate. 4342 * 4343 * (2) set up defaults for all known operations. scan the list of ops 4344 * supplied by the file system; for each which is both supplied and 4345 * known, fill it in. 4346 * 4347 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4348 * in entries as we go. 4349 * 4350 * we choose (1) for simplicity, and because performance isn't critical here. 4351 * note that (2) could be sped up using a precomputed hash table on known ops. 4352 * (3) could be faster than either, but only if the lists were very large or 4353 * supplied in sorted order. 4354 * 4355 */ 4356 4357 int 4358 fs_build_vector(void *vector, int *unused_ops, 4359 const fs_operation_trans_def_t *translation, 4360 const fs_operation_def_t *operations) 4361 { 4362 int i, num_trans, num_ops, used; 4363 4364 /* 4365 * Count the number of translations and the number of supplied 4366 * operations. 4367 */ 4368 4369 { 4370 const fs_operation_trans_def_t *p; 4371 4372 for (num_trans = 0, p = translation; 4373 p->name != NULL; 4374 num_trans++, p++) 4375 ; 4376 } 4377 4378 { 4379 const fs_operation_def_t *p; 4380 4381 for (num_ops = 0, p = operations; 4382 p->name != NULL; 4383 num_ops++, p++) 4384 ; 4385 } 4386 4387 /* Walk through each operation known to our caller. There will be */ 4388 /* one entry in the supplied "translation table" for each. */ 4389 4390 used = 0; 4391 4392 for (i = 0; i < num_trans; i++) { 4393 int j, found; 4394 char *curname; 4395 fs_generic_func_p result; 4396 fs_generic_func_p *location; 4397 4398 curname = translation[i].name; 4399 4400 /* Look for a matching operation in the list supplied by the */ 4401 /* file system. */ 4402 4403 found = 0; 4404 4405 for (j = 0; j < num_ops; j++) { 4406 if (strcmp(operations[j].name, curname) == 0) { 4407 used++; 4408 found = 1; 4409 break; 4410 } 4411 } 4412 4413 /* 4414 * If the file system is using a "placeholder" for default 4415 * or error functions, grab the appropriate function out of 4416 * the translation table. If the file system didn't supply 4417 * this operation at all, use the default function. 4418 */ 4419 4420 if (found) { 4421 result = operations[j].func.fs_generic; 4422 if (result == fs_default) { 4423 result = translation[i].defaultFunc; 4424 } else if (result == fs_error) { 4425 result = translation[i].errorFunc; 4426 } else if (result == NULL) { 4427 /* Null values are PROHIBITED */ 4428 return (EINVAL); 4429 } 4430 } else { 4431 result = translation[i].defaultFunc; 4432 } 4433 4434 /* Now store the function into the operations vector. */ 4435 4436 location = (fs_generic_func_p *) 4437 (((char *)vector) + translation[i].offset); 4438 4439 *location = result; 4440 } 4441 4442 *unused_ops = num_ops - used; 4443 4444 return (0); 4445 } 4446 4447 /* Placeholder functions, should never be called. */ 4448 4449 int 4450 fs_error(void) 4451 { 4452 cmn_err(CE_PANIC, "fs_error called"); 4453 return (0); 4454 } 4455 4456 int 4457 fs_default(void) 4458 { 4459 cmn_err(CE_PANIC, "fs_default called"); 4460 return (0); 4461 } 4462 4463 #ifdef __sparc 4464 4465 /* 4466 * Part of the implementation of booting off a mirrored root 4467 * involves a change of dev_t for the root device. To 4468 * accomplish this, first remove the existing hash table 4469 * entry for the root device, convert to the new dev_t, 4470 * then re-insert in the hash table at the head of the list. 4471 */ 4472 void 4473 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4474 { 4475 vfs_list_lock(); 4476 4477 vfs_hash_remove(vfsp); 4478 4479 vfsp->vfs_dev = ndev; 4480 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4481 4482 vfs_hash_add(vfsp, 1); 4483 4484 vfs_list_unlock(); 4485 } 4486 4487 #else /* x86 NEWBOOT */ 4488 4489 #if defined(__x86) 4490 extern int hvmboot_rootconf(); 4491 #endif /* __x86 */ 4492 4493 extern ib_boot_prop_t *iscsiboot_prop; 4494 4495 int 4496 rootconf() 4497 { 4498 int error; 4499 struct vfssw *vsw; 4500 extern void pm_init(); 4501 char *fstyp, *fsmod; 4502 int ret = -1; 4503 4504 getrootfs(&fstyp, &fsmod); 4505 4506 #if defined(__x86) 4507 /* 4508 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4509 * which lives in /platform/i86hvm, and hence is only available when 4510 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4511 * is not available then the modstub for this function will return 0. 4512 * If the hvm_bootstrap misc module is available it will be loaded 4513 * and hvmboot_rootconf() will be invoked. 4514 */ 4515 if (error = hvmboot_rootconf()) 4516 return (error); 4517 #endif /* __x86 */ 4518 4519 if (error = clboot_rootconf()) 4520 return (error); 4521 4522 if (modload("fs", fsmod) == -1) 4523 panic("Cannot _init %s module", fsmod); 4524 4525 RLOCK_VFSSW(); 4526 vsw = vfs_getvfsswbyname(fstyp); 4527 RUNLOCK_VFSSW(); 4528 if (vsw == NULL) { 4529 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4530 return (ENXIO); 4531 } 4532 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4533 VFS_HOLD(rootvfs); 4534 4535 /* always mount readonly first */ 4536 rootvfs->vfs_flag |= VFS_RDONLY; 4537 4538 pm_init(); 4539 4540 if (netboot && iscsiboot_prop) { 4541 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4542 " shouldn't happen in the same time"); 4543 return (EINVAL); 4544 } 4545 4546 if (netboot || iscsiboot_prop) { 4547 ret = strplumb(); 4548 if (ret != 0) { 4549 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4550 return (EFAULT); 4551 } 4552 } 4553 4554 if ((ret == 0) && iscsiboot_prop) { 4555 ret = modload("drv", "iscsi"); 4556 /* -1 indicates fail */ 4557 if (ret == -1) { 4558 cmn_err(CE_WARN, "Failed to load iscsi module"); 4559 iscsi_boot_prop_free(); 4560 return (EINVAL); 4561 } else { 4562 if (!i_ddi_attach_pseudo_node("iscsi")) { 4563 cmn_err(CE_WARN, 4564 "Failed to attach iscsi driver"); 4565 iscsi_boot_prop_free(); 4566 return (ENODEV); 4567 } 4568 } 4569 } 4570 4571 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4572 vfs_unrefvfssw(vsw); 4573 rootdev = rootvfs->vfs_dev; 4574 4575 if (error) 4576 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4577 rootfs.bo_name, fstyp); 4578 else 4579 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4580 rootfs.bo_name, fstyp); 4581 return (error); 4582 } 4583 4584 /* 4585 * XXX this is called by nfs only and should probably be removed 4586 * If booted with ASKNAME, prompt on the console for a filesystem 4587 * name and return it. 4588 */ 4589 void 4590 getfsname(char *askfor, char *name, size_t namelen) 4591 { 4592 if (boothowto & RB_ASKNAME) { 4593 printf("%s name: ", askfor); 4594 console_gets(name, namelen); 4595 } 4596 } 4597 4598 /* 4599 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4600 * property. 4601 * 4602 * Filesystem types starting with the prefix "nfs" are diskless clients; 4603 * init the root filename name (rootfs.bo_name), too. 4604 * 4605 * If we are booting via NFS we currently have these options: 4606 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4607 * nfs2 - force NFS V2 4608 * nfs3 - force NFS V3 4609 * nfs4 - force NFS V4 4610 * Because we need to maintain backward compatibility with the naming 4611 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4612 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4613 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4614 * This is only for root filesystems, all other uses such as cachefs 4615 * will expect that "nfs" == NFS V2. 4616 */ 4617 static void 4618 getrootfs(char **fstypp, char **fsmodp) 4619 { 4620 extern char *strplumb_get_netdev_path(void); 4621 char *propstr = NULL; 4622 4623 /* 4624 * Check fstype property; for diskless it should be one of "nfs", 4625 * "nfs2", "nfs3" or "nfs4". 4626 */ 4627 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4628 DDI_PROP_DONTPASS, "fstype", &propstr) 4629 == DDI_SUCCESS) { 4630 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4631 ddi_prop_free(propstr); 4632 4633 /* 4634 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4635 * assume the type of this root filesystem is 'zfs'. 4636 */ 4637 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4638 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4639 == DDI_SUCCESS) { 4640 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4641 ddi_prop_free(propstr); 4642 } 4643 4644 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4645 *fstypp = *fsmodp = rootfs.bo_fstype; 4646 return; 4647 } 4648 4649 ++netboot; 4650 4651 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4652 (void) strcpy(rootfs.bo_fstype, "nfs"); 4653 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4654 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4655 4656 /* 4657 * check if path to network interface is specified in bootpath 4658 * or by a hypervisor domain configuration file. 4659 * XXPV - enable strlumb_get_netdev_path() 4660 */ 4661 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4662 "xpv-nfsroot")) { 4663 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4664 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4665 DDI_PROP_DONTPASS, "bootpath", &propstr) 4666 == DDI_SUCCESS) { 4667 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4668 ddi_prop_free(propstr); 4669 } else { 4670 /* attempt to determine netdev_path via boot_mac address */ 4671 netdev_path = strplumb_get_netdev_path(); 4672 if (netdev_path == NULL) 4673 panic("cannot find boot network interface"); 4674 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4675 } 4676 *fstypp = rootfs.bo_fstype; 4677 *fsmodp = "nfs"; 4678 } 4679 #endif 4680 4681 /* 4682 * VFS feature routines 4683 */ 4684 4685 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4686 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4687 4688 /* Register a feature in the vfs */ 4689 void 4690 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4691 { 4692 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4693 if (vfsp->vfs_implp == NULL) 4694 return; 4695 4696 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4697 } 4698 4699 /* 4700 * Query a vfs for a feature. 4701 * Returns 1 if feature is present, 0 if not 4702 */ 4703 int 4704 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4705 { 4706 int ret = 0; 4707 4708 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4709 if (vfsp->vfs_implp == NULL) 4710 return (ret); 4711 4712 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4713 ret = 1; 4714 4715 return (ret); 4716 } 4717 4718 /* 4719 * Propagate feature set from one vfs to another 4720 */ 4721 void 4722 vfs_propagate_features(vfs_t *from, vfs_t *to) 4723 { 4724 int i; 4725 4726 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4727 return; 4728 4729 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4730 to->vfs_featureset[i] = from->vfs_featureset[i]; 4731 } 4732 } 4733 4734 #define LOFICTL_PATH "/devices/pseudo/lofi@0:%d" 4735 4736 /* 4737 * Return the vnode for the lofi node if there's a lofi mount in place. 4738 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4739 * failure. 4740 */ 4741 int 4742 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4743 { 4744 char *path = NULL; 4745 int strsize; 4746 int err; 4747 4748 if (vfsp->vfs_lofi_minor == 0) { 4749 *vpp = NULL; 4750 return (-1); 4751 } 4752 4753 strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4754 path = kmem_alloc(strsize + 1, KM_SLEEP); 4755 (void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4756 4757 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4758 4759 if (err) 4760 *vpp = NULL; 4761 4762 kmem_free(path, strsize + 1); 4763 return (err); 4764 } 4765