1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 #pragma ident "%Z%%M% %I% %E% SMI" 35 36 #include <sys/types.h> 37 #include <sys/t_lock.h> 38 #include <sys/ksynch.h> 39 #include <sys/param.h> 40 #include <sys/time.h> 41 #include <sys/systm.h> 42 #include <sys/sysmacros.h> 43 #include <sys/resource.h> 44 #include <sys/signal.h> 45 #include <sys/cred.h> 46 #include <sys/user.h> 47 #include <sys/buf.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/vnode.h> 51 #include <sys/proc.h> 52 #include <sys/disp.h> 53 #include <sys/file.h> 54 #include <sys/fcntl.h> 55 #include <sys/flock.h> 56 #include <sys/atomic.h> 57 #include <sys/kmem.h> 58 #include <sys/uio.h> 59 #include <sys/dnlc.h> 60 #include <sys/conf.h> 61 #include <sys/mman.h> 62 #include <sys/pathname.h> 63 #include <sys/debug.h> 64 #include <sys/vmsystm.h> 65 #include <sys/cmn_err.h> 66 #include <sys/filio.h> 67 #include <sys/policy.h> 68 69 #include <sys/fs/ufs_fs.h> 70 #include <sys/fs/ufs_lockfs.h> 71 #include <sys/fs/ufs_filio.h> 72 #include <sys/fs/ufs_inode.h> 73 #include <sys/fs/ufs_fsdir.h> 74 #include <sys/fs/ufs_quota.h> 75 #include <sys/fs/ufs_log.h> 76 #include <sys/fs/ufs_snap.h> 77 #include <sys/fs/ufs_trans.h> 78 #include <sys/fs/ufs_panic.h> 79 #include <sys/fs/ufs_bio.h> 80 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 81 #include <sys/errno.h> 82 #include <sys/fssnap_if.h> 83 #include <sys/unistd.h> 84 #include <sys/sunddi.h> 85 86 #include <sys/filio.h> /* _FIOIO */ 87 88 #include <vm/hat.h> 89 #include <vm/page.h> 90 #include <vm/pvn.h> 91 #include <vm/as.h> 92 #include <vm/seg.h> 93 #include <vm/seg_map.h> 94 #include <vm/seg_vn.h> 95 #include <vm/seg_kmem.h> 96 #include <vm/rm.h> 97 #include <sys/swap.h> 98 99 #include <fs/fs_subr.h> 100 101 static struct instats ins; 102 103 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 104 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 105 caddr_t, struct page **, size_t, enum seg_rw, int); 106 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *); 107 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *, 108 caller_context_t *); 109 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 110 struct caller_context *); 111 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 112 struct caller_context *); 113 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, 114 int *, caller_context_t *); 115 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *, 116 caller_context_t *); 117 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 118 caller_context_t *); 119 static int ufs_access(struct vnode *, int, int, struct cred *, 120 caller_context_t *); 121 static int ufs_lookup(struct vnode *, char *, struct vnode **, 122 struct pathname *, int, struct vnode *, struct cred *, 123 caller_context_t *, int *, pathname_t *); 124 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 125 int, struct vnode **, struct cred *, int, 126 caller_context_t *, vsecattr_t *); 127 static int ufs_remove(struct vnode *, char *, struct cred *, 128 caller_context_t *, int); 129 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *, 130 caller_context_t *, int); 131 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 132 struct cred *, caller_context_t *, int); 133 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 134 struct cred *, caller_context_t *, int, vsecattr_t *); 135 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *, 136 caller_context_t *, int); 137 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *, 138 caller_context_t *, int); 139 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 140 struct cred *, caller_context_t *, int); 141 static int ufs_readlink(struct vnode *, struct uio *, struct cred *, 142 caller_context_t *); 143 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *); 144 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *); 145 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *); 146 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 147 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 148 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 149 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 150 struct flk_callback *, struct cred *, 151 caller_context_t *); 152 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 153 cred_t *, caller_context_t *); 154 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 155 struct page **, size_t, struct seg *, caddr_t, 156 enum seg_rw, struct cred *, caller_context_t *); 157 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *, 158 caller_context_t *); 159 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 160 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 161 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 162 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 163 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 164 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 165 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 166 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **, 167 caller_context_t *); 168 static int ufs_dump(vnode_t *, caddr_t, int, int, caller_context_t *); 169 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *, 170 caller_context_t *); 171 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 172 struct cred *, caller_context_t *); 173 static int ufs_dumpctl(vnode_t *, int, int *, caller_context_t *); 174 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 175 daddr32_t *, int, int); 176 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 177 caller_context_t *); 178 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 179 caller_context_t *); 180 181 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 182 183 /* 184 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 185 * 186 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 187 */ 188 struct vnodeops *ufs_vnodeops; 189 190 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */ 191 const fs_operation_def_t ufs_vnodeops_template[] = { 192 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */ 193 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */ 194 VOPNAME_READ, { .vop_read = ufs_read }, 195 VOPNAME_WRITE, { .vop_write = ufs_write }, 196 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl }, 197 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr }, 198 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr }, 199 VOPNAME_ACCESS, { .vop_access = ufs_access }, 200 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup }, 201 VOPNAME_CREATE, { .vop_create = ufs_create }, 202 VOPNAME_REMOVE, { .vop_remove = ufs_remove }, 203 VOPNAME_LINK, { .vop_link = ufs_link }, 204 VOPNAME_RENAME, { .vop_rename = ufs_rename }, 205 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir }, 206 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir }, 207 VOPNAME_READDIR, { .vop_readdir = ufs_readdir }, 208 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink }, 209 VOPNAME_READLINK, { .vop_readlink = ufs_readlink }, 210 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync }, 211 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */ 212 VOPNAME_FID, { .vop_fid = ufs_fid }, 213 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */ 214 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */ 215 VOPNAME_SEEK, { .vop_seek = ufs_seek }, 216 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock }, 217 VOPNAME_SPACE, { .vop_space = ufs_space }, 218 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage }, 219 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage }, 220 VOPNAME_MAP, { .vop_map = ufs_map }, 221 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */ 222 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */ 223 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */ 224 VOPNAME_DUMP, { .vop_dump = ufs_dump }, 225 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf }, 226 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio }, 227 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl }, 228 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr }, 229 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr }, 230 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 231 NULL, NULL 232 }; 233 234 #define MAX_BACKFILE_COUNT 9999 235 236 /* 237 * Created by ufs_dumpctl() to store a file's disk block info into memory. 238 * Used by ufs_dump() to dump data to disk directly. 239 */ 240 struct dump { 241 struct inode *ip; /* the file we contain */ 242 daddr_t fsbs; /* number of blocks stored */ 243 struct timeval32 time; /* time stamp for the struct */ 244 daddr32_t dblk[1]; /* place holder for block info */ 245 }; 246 247 static struct dump *dump_info = NULL; 248 249 /* 250 * Previously there was no special action required for ordinary files. 251 * (Devices are handled through the device file system.) 252 * Now we support Large Files and Large File API requires open to 253 * fail if file is large. 254 * We could take care to prevent data corruption 255 * by doing an atomic check of size and truncate if file is opened with 256 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 257 * layers. So taking care of truncation here is a change in the existing 258 * semantics of VOP_OPEN and therefore we chose not to implement any thing 259 * here. The check for the size of the file > 2GB is being done at the 260 * vfs layer in routine vn_open(). 261 */ 262 263 /* ARGSUSED */ 264 static int 265 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct) 266 { 267 return (0); 268 } 269 270 /*ARGSUSED*/ 271 static int 272 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 273 struct cred *cr, caller_context_t *ct) 274 { 275 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 276 cleanshares(vp, ttoproc(curthread)->p_pid); 277 278 /* 279 * Push partially filled cluster at last close. 280 * ``last close'' is approximated because the dnlc 281 * may have a hold on the vnode. 282 * Checking for VBAD here will also act as a forced umount check. 283 */ 284 if (vp->v_count <= 2 && vp->v_type != VBAD) { 285 struct inode *ip = VTOI(vp); 286 if (ip->i_delaylen) { 287 ins.in_poc.value.ul++; 288 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 289 B_ASYNC | B_FREE, cr); 290 ip->i_delaylen = 0; 291 } 292 } 293 294 return (0); 295 } 296 297 /*ARGSUSED*/ 298 static int 299 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 300 struct caller_context *ct) 301 { 302 struct inode *ip = VTOI(vp); 303 struct ufsvfs *ufsvfsp; 304 struct ulockfs *ulp = NULL; 305 int error = 0; 306 int intrans = 0; 307 308 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 309 310 /* 311 * Mandatory locking needs to be done before ufs_lockfs_begin() 312 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 313 */ 314 if (MANDLOCK(vp, ip->i_mode)) { 315 /* 316 * ufs_getattr ends up being called by chklock 317 */ 318 error = chklock(vp, FREAD, uiop->uio_loffset, 319 uiop->uio_resid, uiop->uio_fmode, ct); 320 if (error) 321 goto out; 322 } 323 324 ufsvfsp = ip->i_ufsvfs; 325 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 326 if (error) 327 goto out; 328 329 /* 330 * In the case that a directory is opened for reading as a file 331 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 332 * The locking order had to be changed to avoid a deadlock with 333 * an update taking place on that directory at the same time. 334 */ 335 if ((ip->i_mode & IFMT) == IFDIR) { 336 337 rw_enter(&ip->i_contents, RW_READER); 338 error = rdip(ip, uiop, ioflag, cr); 339 rw_exit(&ip->i_contents); 340 341 if (error) { 342 if (ulp) 343 ufs_lockfs_end(ulp); 344 goto out; 345 } 346 347 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 348 TRANS_ISTRANS(ufsvfsp)) { 349 rw_exit(&ip->i_rwlock); 350 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 351 error); 352 ASSERT(!error); 353 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 354 TOP_READ_SIZE); 355 rw_enter(&ip->i_rwlock, RW_READER); 356 } 357 } else { 358 /* 359 * Only transact reads to files opened for sync-read and 360 * sync-write on a file system that is not write locked. 361 * 362 * The ``not write locked'' check prevents problems with 363 * enabling/disabling logging on a busy file system. E.g., 364 * logging exists at the beginning of the read but does not 365 * at the end. 366 * 367 */ 368 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 369 TRANS_ISTRANS(ufsvfsp)) { 370 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 371 error); 372 ASSERT(!error); 373 intrans = 1; 374 } 375 376 rw_enter(&ip->i_contents, RW_READER); 377 error = rdip(ip, uiop, ioflag, cr); 378 rw_exit(&ip->i_contents); 379 380 if (intrans) { 381 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 382 TOP_READ_SIZE); 383 } 384 } 385 386 if (ulp) { 387 ufs_lockfs_end(ulp); 388 } 389 out: 390 391 return (error); 392 } 393 394 extern int ufs_HW; /* high water mark */ 395 extern int ufs_LW; /* low water mark */ 396 int ufs_WRITES = 1; /* XXX - enable/disable */ 397 int ufs_throttles = 0; /* throttling count */ 398 int ufs_allow_shared_writes = 1; /* directio shared writes */ 399 400 static int 401 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 402 { 403 int shared_write; 404 405 /* 406 * If the FDSYNC flag is set then ignore the global 407 * ufs_allow_shared_writes in this case. 408 */ 409 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes; 410 411 /* 412 * Filter to determine if this request is suitable as a 413 * concurrent rewrite. This write must not allocate blocks 414 * by extending the file or filling in holes. No use trying 415 * through FSYNC descriptors as the inode will be synchronously 416 * updated after the write. The uio structure has not yet been 417 * checked for sanity, so assume nothing. 418 */ 419 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 420 (uiop->uio_loffset >= (offset_t)0) && 421 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 422 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 423 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 424 shared_write); 425 } 426 427 /*ARGSUSED*/ 428 static int 429 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 430 caller_context_t *ct) 431 { 432 struct inode *ip = VTOI(vp); 433 struct ufsvfs *ufsvfsp; 434 struct ulockfs *ulp; 435 int retry = 1; 436 int error, resv, resid = 0; 437 int directio_status; 438 int exclusive; 439 int rewriteflg; 440 long start_resid = uiop->uio_resid; 441 442 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 443 444 retry_mandlock: 445 /* 446 * Mandatory locking needs to be done before ufs_lockfs_begin() 447 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 448 * Check for forced unmounts normally done in ufs_lockfs_begin(). 449 */ 450 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 451 error = EIO; 452 goto out; 453 } 454 if (MANDLOCK(vp, ip->i_mode)) { 455 456 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 457 458 /* 459 * ufs_getattr ends up being called by chklock 460 */ 461 error = chklock(vp, FWRITE, uiop->uio_loffset, 462 uiop->uio_resid, uiop->uio_fmode, ct); 463 if (error) 464 goto out; 465 } 466 467 /* i_rwlock can change in chklock */ 468 exclusive = rw_write_held(&ip->i_rwlock); 469 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag); 470 471 /* 472 * Check for fast-path special case of directio re-writes. 473 */ 474 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 475 !exclusive && rewriteflg) { 476 477 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 478 if (error) 479 goto out; 480 481 rw_enter(&ip->i_contents, RW_READER); 482 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 483 &directio_status); 484 if (directio_status == DIRECTIO_SUCCESS) { 485 uint_t i_flag_save; 486 487 if (start_resid != uiop->uio_resid) 488 error = 0; 489 /* 490 * Special treatment of access times for re-writes. 491 * If IMOD is not already set, then convert it 492 * to IMODACC for this operation. This defers 493 * entering a delta into the log until the inode 494 * is flushed. This mimics what is done for read 495 * operations and inode access time. 496 */ 497 mutex_enter(&ip->i_tlock); 498 i_flag_save = ip->i_flag; 499 ip->i_flag |= IUPD | ICHG; 500 ip->i_seq++; 501 ITIMES_NOLOCK(ip); 502 if ((i_flag_save & IMOD) == 0) { 503 ip->i_flag &= ~IMOD; 504 ip->i_flag |= IMODACC; 505 } 506 mutex_exit(&ip->i_tlock); 507 rw_exit(&ip->i_contents); 508 if (ulp) 509 ufs_lockfs_end(ulp); 510 goto out; 511 } 512 rw_exit(&ip->i_contents); 513 if (ulp) 514 ufs_lockfs_end(ulp); 515 } 516 517 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 518 rw_exit(&ip->i_rwlock); 519 rw_enter(&ip->i_rwlock, RW_WRITER); 520 /* 521 * Mandatory locking could have been enabled 522 * after dropping the i_rwlock. 523 */ 524 if (MANDLOCK(vp, ip->i_mode)) 525 goto retry_mandlock; 526 } 527 528 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 529 if (error) 530 goto out; 531 532 /* 533 * Amount of log space needed for this write 534 */ 535 if (!rewriteflg || !(ioflag & FDSYNC)) 536 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 537 538 /* 539 * Throttle writes. 540 */ 541 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 542 mutex_enter(&ip->i_tlock); 543 while (ip->i_writes > ufs_HW) { 544 ufs_throttles++; 545 cv_wait(&ip->i_wrcv, &ip->i_tlock); 546 } 547 mutex_exit(&ip->i_tlock); 548 } 549 550 /* 551 * Enter Transaction 552 * 553 * If the write is a rewrite there is no need to open a transaction 554 * if the FDSYNC flag is set and not the FSYNC. In this case just 555 * set the IMODACC flag to modify do the update at a later time 556 * thus avoiding the overhead of the logging transaction that is 557 * not required. 558 */ 559 if (ioflag & (FSYNC|FDSYNC)) { 560 if (ulp) { 561 if (rewriteflg) { 562 uint_t i_flag_save; 563 564 rw_enter(&ip->i_contents, RW_READER); 565 mutex_enter(&ip->i_tlock); 566 i_flag_save = ip->i_flag; 567 ip->i_flag |= IUPD | ICHG; 568 ip->i_seq++; 569 ITIMES_NOLOCK(ip); 570 if ((i_flag_save & IMOD) == 0) { 571 ip->i_flag &= ~IMOD; 572 ip->i_flag |= IMODACC; 573 } 574 mutex_exit(&ip->i_tlock); 575 rw_exit(&ip->i_contents); 576 } else { 577 int terr = 0; 578 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, 579 terr); 580 ASSERT(!terr); 581 } 582 } 583 } else { 584 if (ulp) 585 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 586 } 587 588 /* 589 * Write the file 590 */ 591 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 592 rw_enter(&ip->i_contents, RW_WRITER); 593 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 594 /* 595 * In append mode start at end of file. 596 */ 597 uiop->uio_loffset = ip->i_size; 598 } 599 600 /* 601 * Mild optimisation, don't call ufs_trans_write() unless we have to 602 * Also, suppress file system full messages if we will retry. 603 */ 604 if (retry) 605 ip->i_flag |= IQUIET; 606 if (resid) { 607 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 608 } else { 609 error = wrip(ip, uiop, ioflag, cr); 610 } 611 ip->i_flag &= ~IQUIET; 612 613 rw_exit(&ip->i_contents); 614 rw_exit(&ufsvfsp->vfs_dqrwlock); 615 616 /* 617 * Leave Transaction 618 */ 619 if (ulp) { 620 if (ioflag & (FSYNC|FDSYNC)) { 621 if (!rewriteflg) { 622 int terr = 0; 623 624 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, 625 resv); 626 if (error == 0) 627 error = terr; 628 } 629 } else { 630 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 631 } 632 ufs_lockfs_end(ulp); 633 } 634 out: 635 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 636 /* 637 * Any blocks tied up in pending deletes? 638 */ 639 ufs_delete_drain_wait(ufsvfsp, 1); 640 retry = 0; 641 goto retry_mandlock; 642 } 643 644 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 645 error = 0; 646 647 return (error); 648 } 649 650 /* 651 * Don't cache write blocks to files with the sticky bit set. 652 * Used to keep swap files from blowing the page cache on a server. 653 */ 654 int stickyhack = 1; 655 656 /* 657 * Free behind hacks. The pager is busted. 658 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 659 * or B_FREE_IF_TIGHT_ON_MEMORY. 660 */ 661 int freebehind = 1; 662 int smallfile = 0; 663 u_offset_t smallfile64 = 32 * 1024; 664 665 /* 666 * While we should, in most cases, cache the pages for write, we 667 * may also want to cache the pages for read as long as they are 668 * frequently re-usable. 669 * 670 * If cache_read_ahead = 1, the pages for read will go to the tail 671 * of the cache list when they are released, otherwise go to the head. 672 */ 673 int cache_read_ahead = 0; 674 675 /* 676 * Freebehind exists so that as we read large files sequentially we 677 * don't consume most of memory with pages from a few files. It takes 678 * longer to re-read from disk multiple small files as it does reading 679 * one large one sequentially. As system memory grows customers need 680 * to retain bigger chunks of files in memory. The advent of the 681 * cachelist opens up of the possibility freeing pages to the head or 682 * tail of the list. 683 * 684 * Not freeing a page is a bet that the page will be read again before 685 * it's segmap slot is needed for something else. If we loose the bet, 686 * it means some other thread is burdened with the page free we did 687 * not do. If we win we save a free and reclaim. 688 * 689 * Freeing it at the tail vs the head of cachelist is a bet that the 690 * page will survive until the next read. It's also saying that this 691 * page is more likely to be re-used than a page freed some time ago 692 * and never reclaimed. 693 * 694 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 695 * 696 * 0 < offset < smallfile1 : pages are not freed. 697 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 698 * smallfile2 < offset : pages freed to head of cachelist. 699 * 700 * The range is computed at most once per second and depends on 701 * freemem and ncpus_online. Both parameters are bounded to be 702 * >= smallfile && >= smallfile64. 703 * 704 * smallfile1 = (free memory / ncpu) / 1000 705 * smallfile2 = (free memory / ncpu) / 10 706 * 707 * A few examples values: 708 * 709 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 710 * ncpus_online = 4 ncpus_online = 64 711 * ------------------ ----------------------- ----------------------- 712 * 1G [256K; 25M] [32K; 1.5M] 713 * 10G [2.5M; 250M] [156K; 15M] 714 * 100G [25M; 2.5G] [1.5M; 150M] 715 * 716 */ 717 718 #define SMALLFILE1_D 1000 719 #define SMALLFILE2_D 10 720 static u_offset_t smallfile1 = 32 * 1024; 721 static u_offset_t smallfile2 = 32 * 1024; 722 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 723 uint_t smallfile1_d = SMALLFILE1_D; 724 uint_t smallfile2_d = SMALLFILE2_D; 725 726 /* 727 * wrip does the real work of write requests for ufs. 728 */ 729 int 730 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 731 { 732 rlim64_t limit = uio->uio_llimit; 733 u_offset_t off; 734 u_offset_t old_i_size; 735 struct fs *fs; 736 struct vnode *vp; 737 struct ufsvfs *ufsvfsp; 738 caddr_t base; 739 long start_resid = uio->uio_resid; /* save starting resid */ 740 long premove_resid; /* resid before uiomove() */ 741 uint_t flags; 742 int newpage; 743 int iupdat_flag, directio_status; 744 int n, on, mapon; 745 int error, pagecreate; 746 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 747 int32_t iblocks; 748 int new_iblocks; 749 750 /* 751 * ip->i_size is incremented before the uiomove 752 * is done on a write. If the move fails (bad user 753 * address) reset ip->i_size. 754 * The better way would be to increment ip->i_size 755 * only if the uiomove succeeds. 756 */ 757 int i_size_changed = 0; 758 o_mode_t type; 759 int i_seq_needed = 0; 760 761 vp = ITOV(ip); 762 763 /* 764 * check for forced unmount - should not happen as 765 * the request passed the lockfs checks. 766 */ 767 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 768 return (EIO); 769 770 fs = ip->i_fs; 771 772 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 773 774 /* check for valid filetype */ 775 type = ip->i_mode & IFMT; 776 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 777 (type != IFLNK) && (type != IFSHAD)) { 778 return (EIO); 779 } 780 781 /* 782 * the actual limit of UFS file size 783 * is UFS_MAXOFFSET_T 784 */ 785 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 786 limit = MAXOFFSET_T; 787 788 if (uio->uio_loffset >= limit) { 789 proc_t *p = ttoproc(curthread); 790 791 mutex_enter(&p->p_lock); 792 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 793 p, RCA_UNSAFE_SIGINFO); 794 mutex_exit(&p->p_lock); 795 return (EFBIG); 796 } 797 798 /* 799 * if largefiles are disallowed, the limit is 800 * the pre-largefiles value of 2GB 801 */ 802 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 803 limit = MIN(UFS_MAXOFFSET_T, limit); 804 else 805 limit = MIN(MAXOFF32_T, limit); 806 807 if (uio->uio_loffset < (offset_t)0) { 808 return (EINVAL); 809 } 810 if (uio->uio_resid == 0) { 811 return (0); 812 } 813 814 if (uio->uio_loffset >= limit) 815 return (EFBIG); 816 817 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 818 819 if (ioflag & (FSYNC|FDSYNC)) { 820 ip->i_flag |= ISYNC; 821 iupdat_flag = 1; 822 } 823 /* 824 * Try to go direct 825 */ 826 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 827 uio->uio_llimit = limit; 828 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 829 &directio_status); 830 /* 831 * If ufs_directio wrote to the file or set the flags, 832 * we need to update i_seq, but it may be deferred. 833 */ 834 if (start_resid != uio->uio_resid || 835 (ip->i_flag & (ICHG|IUPD))) { 836 i_seq_needed = 1; 837 ip->i_flag |= ISEQ; 838 } 839 if (directio_status == DIRECTIO_SUCCESS) 840 goto out; 841 } 842 843 /* 844 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 845 * 846 * o shadow inodes: vfs_dqrwlock is not held at all 847 * o quota updates: vfs_dqrwlock is read or write held 848 * o other updates: vfs_dqrwlock is read held 849 * 850 * The first case is the only one where we do not hold 851 * vfs_dqrwlock at all while entering wrip(). 852 * We must make sure not to downgrade/drop vfs_dqrwlock if we 853 * have it as writer, i.e. if we are updating the quota inode. 854 * There is no potential deadlock scenario in this case as 855 * ufs_getpage() takes care of this and avoids reacquiring 856 * vfs_dqrwlock in that case. 857 * 858 * This check is done here since the above conditions do not change 859 * and we possibly loop below, so save a few cycles. 860 */ 861 if ((type == IFSHAD) || 862 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 863 do_dqrwlock = 0; 864 } else { 865 do_dqrwlock = 1; 866 } 867 868 /* 869 * Large Files: We cast MAXBMASK to offset_t 870 * inorder to mask out the higher bits. Since offset_t 871 * is a signed value, the high order bit set in MAXBMASK 872 * value makes it do the right thing by having all bits 1 873 * in the higher word. May be removed for _SOLARIS64_. 874 */ 875 876 fs = ip->i_fs; 877 do { 878 u_offset_t uoff = uio->uio_loffset; 879 off = uoff & (offset_t)MAXBMASK; 880 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 881 on = (int)blkoff(fs, uoff); 882 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 883 new_iblocks = 1; 884 885 if (type == IFREG && uoff + n >= limit) { 886 if (uoff >= limit) { 887 error = EFBIG; 888 goto out; 889 } 890 /* 891 * since uoff + n >= limit, 892 * therefore n >= limit - uoff, and n is an int 893 * so it is safe to cast it to an int 894 */ 895 n = (int)(limit - (rlim64_t)uoff); 896 } 897 if (uoff + n > ip->i_size) { 898 /* 899 * We are extending the length of the file. 900 * bmap is used so that we are sure that 901 * if we need to allocate new blocks, that it 902 * is done here before we up the file size. 903 */ 904 error = bmap_write(ip, uoff, (int)(on + n), 905 mapon == 0, NULL, cr); 906 /* 907 * bmap_write never drops i_contents so if 908 * the flags are set it changed the file. 909 */ 910 if (ip->i_flag & (ICHG|IUPD)) { 911 i_seq_needed = 1; 912 ip->i_flag |= ISEQ; 913 } 914 if (error) 915 break; 916 /* 917 * There is a window of vulnerability here. 918 * The sequence of operations: allocate file 919 * system blocks, uiomove the data into pages, 920 * and then update the size of the file in the 921 * inode, must happen atomically. However, due 922 * to current locking constraints, this can not 923 * be done. 924 */ 925 ASSERT(ip->i_writer == NULL); 926 ip->i_writer = curthread; 927 i_size_changed = 1; 928 /* 929 * If we are writing from the beginning of 930 * the mapping, we can just create the 931 * pages without having to read them. 932 */ 933 pagecreate = (mapon == 0); 934 } else if (n == MAXBSIZE) { 935 /* 936 * Going to do a whole mappings worth, 937 * so we can just create the pages w/o 938 * having to read them in. But before 939 * we do that, we need to make sure any 940 * needed blocks are allocated first. 941 */ 942 iblocks = ip->i_blocks; 943 error = bmap_write(ip, uoff, (int)(on + n), 944 BI_ALLOC_ONLY, NULL, cr); 945 /* 946 * bmap_write never drops i_contents so if 947 * the flags are set it changed the file. 948 */ 949 if (ip->i_flag & (ICHG|IUPD)) { 950 i_seq_needed = 1; 951 ip->i_flag |= ISEQ; 952 } 953 if (error) 954 break; 955 pagecreate = 1; 956 /* 957 * check if the new created page needed the 958 * allocation of new disk blocks. 959 */ 960 if (iblocks == ip->i_blocks) 961 new_iblocks = 0; /* no new blocks allocated */ 962 } else { 963 pagecreate = 0; 964 /* 965 * In sync mode flush the indirect blocks which 966 * may have been allocated and not written on 967 * disk. In above cases bmap_write will allocate 968 * in sync mode. 969 */ 970 if (ioflag & (FSYNC|FDSYNC)) { 971 error = ufs_indirblk_sync(ip, uoff); 972 if (error) 973 break; 974 } 975 } 976 977 /* 978 * At this point we can enter ufs_getpage() in one 979 * of two ways: 980 * 1) segmap_getmapflt() calls ufs_getpage() when the 981 * forcefault parameter is true (pagecreate == 0) 982 * 2) uiomove() causes a page fault. 983 * 984 * We have to drop the contents lock to prevent the VM 985 * system from trying to reacquire it in ufs_getpage() 986 * should the uiomove cause a pagefault. 987 * 988 * We have to drop the reader vfs_dqrwlock here as well. 989 */ 990 rw_exit(&ip->i_contents); 991 if (do_dqrwlock) { 992 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 993 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 994 rw_exit(&ufsvfsp->vfs_dqrwlock); 995 } 996 997 newpage = 0; 998 premove_resid = uio->uio_resid; 999 if (vpm_enable) { 1000 /* 1001 * Copy data. If new pages are created, part of 1002 * the page that is not written will be initizliazed 1003 * with zeros. 1004 */ 1005 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1006 uio, !pagecreate, &newpage, 0, S_WRITE); 1007 } else { 1008 1009 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1010 (uint_t)n, !pagecreate, S_WRITE); 1011 1012 /* 1013 * segmap_pagecreate() returns 1 if it calls 1014 * page_create_va() to allocate any pages. 1015 */ 1016 1017 if (pagecreate) 1018 newpage = segmap_pagecreate(segkmap, base, 1019 (size_t)n, 0); 1020 1021 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 1022 } 1023 1024 /* 1025 * If "newpage" is set, then a new page was created and it 1026 * does not contain valid data, so it needs to be initialized 1027 * at this point. 1028 * Otherwise the page contains old data, which was overwritten 1029 * partially or as a whole in uiomove. 1030 * If there is only one iovec structure within uio, then 1031 * on error uiomove will not be able to update uio->uio_loffset 1032 * and we would zero the whole page here! 1033 * 1034 * If uiomove fails because of an error, the old valid data 1035 * is kept instead of filling the rest of the page with zero's. 1036 */ 1037 if (!vpm_enable && newpage && 1038 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 1039 /* 1040 * We created pages w/o initializing them completely, 1041 * thus we need to zero the part that wasn't set up. 1042 * This happens on most EOF write cases and if 1043 * we had some sort of error during the uiomove. 1044 */ 1045 int nzero, nmoved; 1046 1047 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1048 ASSERT(nmoved >= 0 && nmoved <= n); 1049 nzero = roundup(on + n, PAGESIZE) - nmoved; 1050 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1051 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1052 } 1053 1054 /* 1055 * Unlock the pages allocated by page_create_va() 1056 * in segmap_pagecreate() 1057 */ 1058 if (!vpm_enable && newpage) 1059 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1060 1061 /* 1062 * If the size of the file changed, then update the 1063 * size field in the inode now. This can't be done 1064 * before the call to segmap_pageunlock or there is 1065 * a potential deadlock with callers to ufs_putpage(). 1066 * They will be holding i_contents and trying to lock 1067 * a page, while this thread is holding a page locked 1068 * and trying to acquire i_contents. 1069 */ 1070 if (i_size_changed) { 1071 rw_enter(&ip->i_contents, RW_WRITER); 1072 old_i_size = ip->i_size; 1073 UFS_SET_ISIZE(uoff + n, ip); 1074 TRANS_INODE(ufsvfsp, ip); 1075 /* 1076 * file has grown larger than 2GB. Set flag 1077 * in superblock to indicate this, if it 1078 * is not already set. 1079 */ 1080 if ((ip->i_size > MAXOFF32_T) && 1081 !(fs->fs_flags & FSLARGEFILES)) { 1082 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1083 mutex_enter(&ufsvfsp->vfs_lock); 1084 fs->fs_flags |= FSLARGEFILES; 1085 ufs_sbwrite(ufsvfsp); 1086 mutex_exit(&ufsvfsp->vfs_lock); 1087 } 1088 mutex_enter(&ip->i_tlock); 1089 ip->i_writer = NULL; 1090 cv_broadcast(&ip->i_wrcv); 1091 mutex_exit(&ip->i_tlock); 1092 rw_exit(&ip->i_contents); 1093 } 1094 1095 if (error) { 1096 /* 1097 * If we failed on a write, we may have already 1098 * allocated file blocks as well as pages. It's 1099 * hard to undo the block allocation, but we must 1100 * be sure to invalidate any pages that may have 1101 * been allocated. 1102 * 1103 * If the page was created without initialization 1104 * then we must check if it should be possible 1105 * to destroy the new page and to keep the old data 1106 * on the disk. 1107 * 1108 * It is possible to destroy the page without 1109 * having to write back its contents only when 1110 * - the size of the file keeps unchanged 1111 * - bmap_write() did not allocate new disk blocks 1112 * it is possible to create big files using "seek" and 1113 * write to the end of the file. A "write" to a 1114 * position before the end of the file would not 1115 * change the size of the file but it would allocate 1116 * new disk blocks. 1117 * - uiomove intended to overwrite the whole page. 1118 * - a new page was created (newpage == 1). 1119 */ 1120 1121 if (i_size_changed == 0 && new_iblocks == 0 && 1122 newpage) { 1123 1124 /* unwind what uiomove eventually last did */ 1125 uio->uio_resid = premove_resid; 1126 1127 /* 1128 * destroy the page, do not write ambiguous 1129 * data to the disk. 1130 */ 1131 flags = SM_DESTROY; 1132 } else { 1133 /* 1134 * write the page back to the disk, if dirty, 1135 * and remove the page from the cache. 1136 */ 1137 flags = SM_INVAL; 1138 } 1139 1140 if (vpm_enable) { 1141 /* 1142 * Flush pages. 1143 */ 1144 (void) vpm_sync_pages(vp, off, n, flags); 1145 } else { 1146 (void) segmap_release(segkmap, base, flags); 1147 } 1148 } else { 1149 flags = 0; 1150 /* 1151 * Force write back for synchronous write cases. 1152 */ 1153 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1154 /* 1155 * If the sticky bit is set but the 1156 * execute bit is not set, we do a 1157 * synchronous write back and free 1158 * the page when done. We set up swap 1159 * files to be handled this way to 1160 * prevent servers from keeping around 1161 * the client's swap pages too long. 1162 * XXX - there ought to be a better way. 1163 */ 1164 if (IS_SWAPVP(vp)) { 1165 flags = SM_WRITE | SM_FREE | 1166 SM_DONTNEED; 1167 iupdat_flag = 0; 1168 } else { 1169 flags = SM_WRITE; 1170 } 1171 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1172 /* 1173 * Have written a whole block. 1174 * Start an asynchronous write and 1175 * mark the buffer to indicate that 1176 * it won't be needed again soon. 1177 */ 1178 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1179 } 1180 if (vpm_enable) { 1181 /* 1182 * Flush pages. 1183 */ 1184 error = vpm_sync_pages(vp, off, n, flags); 1185 } else { 1186 error = segmap_release(segkmap, base, flags); 1187 } 1188 /* 1189 * If the operation failed and is synchronous, 1190 * then we need to unwind what uiomove() last 1191 * did so we can potentially return an error to 1192 * the caller. If this write operation was 1193 * done in two pieces and the first succeeded, 1194 * then we won't return an error for the second 1195 * piece that failed. However, we only want to 1196 * return a resid value that reflects what was 1197 * really done. 1198 * 1199 * Failures for non-synchronous operations can 1200 * be ignored since the page subsystem will 1201 * retry the operation until it succeeds or the 1202 * file system is unmounted. 1203 */ 1204 if (error) { 1205 if ((ioflag & (FSYNC | FDSYNC)) || 1206 type == IFDIR) { 1207 uio->uio_resid = premove_resid; 1208 } else { 1209 error = 0; 1210 } 1211 } 1212 } 1213 1214 /* 1215 * Re-acquire contents lock. 1216 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1217 */ 1218 if (do_dqrwlock) 1219 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1220 rw_enter(&ip->i_contents, RW_WRITER); 1221 1222 /* 1223 * If the uiomove() failed or if a synchronous 1224 * page push failed, fix up i_size. 1225 */ 1226 if (error) { 1227 if (i_size_changed) { 1228 /* 1229 * The uiomove failed, and we 1230 * allocated blocks,so get rid 1231 * of them. 1232 */ 1233 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1234 } 1235 } else { 1236 /* 1237 * XXX - Can this be out of the loop? 1238 */ 1239 ip->i_flag |= IUPD | ICHG; 1240 /* 1241 * Only do one increase of i_seq for multiple 1242 * pieces. Because we drop locks, record 1243 * the fact that we changed the timestamp and 1244 * are deferring the increase in case another thread 1245 * pushes our timestamp update. 1246 */ 1247 i_seq_needed = 1; 1248 ip->i_flag |= ISEQ; 1249 if (i_size_changed) 1250 ip->i_flag |= IATTCHG; 1251 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1252 (IEXEC >> 6))) != 0 && 1253 (ip->i_mode & (ISUID | ISGID)) != 0 && 1254 secpolicy_vnode_setid_retain(cr, 1255 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1256 /* 1257 * Clear Set-UID & Set-GID bits on 1258 * successful write if not privileged 1259 * and at least one of the execute bits 1260 * is set. If we always clear Set-GID, 1261 * mandatory file and record locking is 1262 * unuseable. 1263 */ 1264 ip->i_mode &= ~(ISUID | ISGID); 1265 } 1266 } 1267 /* 1268 * In the case the FDSYNC flag is set and this is a 1269 * "rewrite" we won't log a delta. 1270 * The FSYNC flag overrides all cases. 1271 */ 1272 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) { 1273 TRANS_INODE(ufsvfsp, ip); 1274 } 1275 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1276 1277 out: 1278 /* 1279 * Make sure i_seq is increased at least once per write 1280 */ 1281 if (i_seq_needed) { 1282 ip->i_seq++; 1283 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1284 } 1285 1286 /* 1287 * Inode is updated according to this table - 1288 * 1289 * FSYNC FDSYNC(posix.4) 1290 * -------------------------- 1291 * always@ IATTCHG|IBDWRITE 1292 * 1293 * @ - If we are doing synchronous write the only time we should 1294 * not be sync'ing the ip here is if we have the stickyhack 1295 * activated, the file is marked with the sticky bit and 1296 * no exec bit, the file length has not been changed and 1297 * no new blocks have been allocated during this write. 1298 */ 1299 1300 if ((ip->i_flag & ISYNC) != 0) { 1301 /* 1302 * we have eliminated nosync 1303 */ 1304 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1305 ((ioflag & FSYNC) && iupdat_flag)) { 1306 ufs_iupdat(ip, 1); 1307 } 1308 } 1309 1310 /* 1311 * If we've already done a partial-write, terminate 1312 * the write but return no error unless the error is ENOSPC 1313 * because the caller can detect this and free resources and 1314 * try again. 1315 */ 1316 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1317 error = 0; 1318 1319 ip->i_flag &= ~(INOACC | ISYNC); 1320 ITIMES_NOLOCK(ip); 1321 return (error); 1322 } 1323 1324 /* 1325 * rdip does the real work of read requests for ufs. 1326 */ 1327 int 1328 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1329 { 1330 u_offset_t off; 1331 caddr_t base; 1332 struct fs *fs; 1333 struct ufsvfs *ufsvfsp; 1334 struct vnode *vp; 1335 long oresid = uio->uio_resid; 1336 u_offset_t n, on, mapon; 1337 int error = 0; 1338 int doupdate = 1; 1339 uint_t flags; 1340 int dofree, directio_status; 1341 krw_t rwtype; 1342 o_mode_t type; 1343 1344 vp = ITOV(ip); 1345 1346 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1347 1348 ufsvfsp = ip->i_ufsvfs; 1349 1350 if (ufsvfsp == NULL) 1351 return (EIO); 1352 1353 fs = ufsvfsp->vfs_fs; 1354 1355 /* check for valid filetype */ 1356 type = ip->i_mode & IFMT; 1357 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1358 (type != IFLNK) && (type != IFSHAD)) { 1359 return (EIO); 1360 } 1361 1362 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1363 error = 0; 1364 goto out; 1365 } 1366 if (uio->uio_loffset < (offset_t)0) { 1367 return (EINVAL); 1368 } 1369 if (uio->uio_resid == 0) { 1370 return (0); 1371 } 1372 1373 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1374 (!ufsvfsp->vfs_noatime)) { 1375 mutex_enter(&ip->i_tlock); 1376 ip->i_flag |= IACC; 1377 mutex_exit(&ip->i_tlock); 1378 } 1379 /* 1380 * Try to go direct 1381 */ 1382 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1383 error = ufs_directio_read(ip, uio, cr, &directio_status); 1384 if (directio_status == DIRECTIO_SUCCESS) 1385 goto out; 1386 } 1387 1388 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1389 1390 do { 1391 offset_t diff; 1392 u_offset_t uoff = uio->uio_loffset; 1393 off = uoff & (offset_t)MAXBMASK; 1394 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1395 on = (u_offset_t)blkoff(fs, uoff); 1396 n = MIN((u_offset_t)fs->fs_bsize - on, 1397 (u_offset_t)uio->uio_resid); 1398 1399 diff = ip->i_size - uoff; 1400 1401 if (diff <= (offset_t)0) { 1402 error = 0; 1403 goto out; 1404 } 1405 if (diff < (offset_t)n) 1406 n = (int)diff; 1407 1408 /* 1409 * We update smallfile2 and smallfile1 at most every second. 1410 */ 1411 if (lbolt >= smallfile_update) { 1412 uint64_t percpufreeb; 1413 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1414 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1415 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1416 smallfile1 = percpufreeb / smallfile1_d; 1417 smallfile2 = percpufreeb / smallfile2_d; 1418 smallfile1 = MAX(smallfile1, smallfile); 1419 smallfile1 = MAX(smallfile1, smallfile64); 1420 smallfile2 = MAX(smallfile1, smallfile2); 1421 smallfile_update = lbolt + hz; 1422 } 1423 1424 dofree = freebehind && 1425 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1426 1427 /* 1428 * At this point we can enter ufs_getpage() in one of two 1429 * ways: 1430 * 1) segmap_getmapflt() calls ufs_getpage() when the 1431 * forcefault parameter is true (value of 1 is passed) 1432 * 2) uiomove() causes a page fault. 1433 * 1434 * We cannot hold onto an i_contents reader lock without 1435 * risking deadlock in ufs_getpage() so drop a reader lock. 1436 * The ufs_getpage() dolock logic already allows for a 1437 * thread holding i_contents as writer to work properly 1438 * so we keep a writer lock. 1439 */ 1440 if (rwtype == RW_READER) 1441 rw_exit(&ip->i_contents); 1442 1443 if (vpm_enable) { 1444 /* 1445 * Copy data. 1446 */ 1447 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1448 uio, 1, NULL, 0, S_READ); 1449 } else { 1450 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1451 (uint_t)n, 1, S_READ); 1452 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1453 } 1454 1455 flags = 0; 1456 if (!error) { 1457 /* 1458 * If reading sequential we won't need this 1459 * buffer again soon. For offsets in range 1460 * [smallfile1, smallfile2] release the pages 1461 * at the tail of the cache list, larger 1462 * offsets are released at the head. 1463 */ 1464 if (dofree) { 1465 flags = SM_FREE | SM_ASYNC; 1466 if ((cache_read_ahead == 0) && 1467 (off > smallfile2)) 1468 flags |= SM_DONTNEED; 1469 } 1470 /* 1471 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1472 * we want to make sure that the page which has 1473 * been read, is written on disk if it is dirty. 1474 * And corresponding indirect blocks should also 1475 * be flushed out. 1476 */ 1477 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1478 flags &= ~SM_ASYNC; 1479 flags |= SM_WRITE; 1480 } 1481 if (vpm_enable) { 1482 error = vpm_sync_pages(vp, off, n, flags); 1483 } else { 1484 error = segmap_release(segkmap, base, flags); 1485 } 1486 } else { 1487 if (vpm_enable) { 1488 (void) vpm_sync_pages(vp, off, n, flags); 1489 } else { 1490 (void) segmap_release(segkmap, base, flags); 1491 } 1492 } 1493 1494 if (rwtype == RW_READER) 1495 rw_enter(&ip->i_contents, rwtype); 1496 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1497 out: 1498 /* 1499 * Inode is updated according to this table if FRSYNC is set. 1500 * 1501 * FSYNC FDSYNC(posix.4) 1502 * -------------------------- 1503 * always IATTCHG|IBDWRITE 1504 */ 1505 /* 1506 * The inode is not updated if we're logging and the inode is a 1507 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1508 */ 1509 if (ioflag & FRSYNC) { 1510 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1511 doupdate = 0; 1512 } 1513 if (doupdate) { 1514 if ((ioflag & FSYNC) || 1515 ((ioflag & FDSYNC) && 1516 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1517 ufs_iupdat(ip, 1); 1518 } 1519 } 1520 } 1521 /* 1522 * If we've already done a partial read, terminate 1523 * the read but return no error. 1524 */ 1525 if (oresid != uio->uio_resid) 1526 error = 0; 1527 ITIMES(ip); 1528 1529 return (error); 1530 } 1531 1532 /* ARGSUSED */ 1533 static int 1534 ufs_ioctl( 1535 struct vnode *vp, 1536 int cmd, 1537 intptr_t arg, 1538 int flag, 1539 struct cred *cr, 1540 int *rvalp, 1541 caller_context_t *ct) 1542 { 1543 struct lockfs lockfs, lockfs_out; 1544 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1545 char *comment, *original_comment; 1546 struct fs *fs; 1547 struct ulockfs *ulp; 1548 offset_t off; 1549 extern int maxphys; 1550 int error; 1551 int issync; 1552 int trans_size; 1553 1554 1555 /* 1556 * forcibly unmounted 1557 */ 1558 if (ufsvfsp == NULL) { 1559 return (EIO); 1560 } 1561 1562 fs = ufsvfsp->vfs_fs; 1563 1564 if (cmd == Q_QUOTACTL) { 1565 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1566 if (error) 1567 return (error); 1568 1569 if (ulp) { 1570 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1571 TOP_SETQUOTA_SIZE(fs)); 1572 } 1573 1574 error = quotactl(vp, arg, flag, cr); 1575 1576 if (ulp) { 1577 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1578 TOP_SETQUOTA_SIZE(fs)); 1579 ufs_lockfs_end(ulp); 1580 } 1581 return (error); 1582 } 1583 1584 switch (cmd) { 1585 case _FIOLFS: 1586 /* 1587 * file system locking 1588 */ 1589 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1590 return (EPERM); 1591 1592 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1593 if (copyin((caddr_t)arg, &lockfs, 1594 sizeof (struct lockfs))) 1595 return (EFAULT); 1596 } 1597 #ifdef _SYSCALL32_IMPL 1598 else { 1599 struct lockfs32 lockfs32; 1600 /* Translate ILP32 lockfs to LP64 lockfs */ 1601 if (copyin((caddr_t)arg, &lockfs32, 1602 sizeof (struct lockfs32))) 1603 return (EFAULT); 1604 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1605 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1606 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1607 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1608 lockfs.lf_comment = 1609 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1610 } 1611 #endif /* _SYSCALL32_IMPL */ 1612 1613 if (lockfs.lf_comlen) { 1614 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1615 return (ENAMETOOLONG); 1616 comment = 1617 kmem_alloc(lockfs.lf_comlen, KM_SLEEP); 1618 if (copyin(lockfs.lf_comment, comment, 1619 lockfs.lf_comlen)) { 1620 kmem_free(comment, lockfs.lf_comlen); 1621 return (EFAULT); 1622 } 1623 original_comment = lockfs.lf_comment; 1624 lockfs.lf_comment = comment; 1625 } 1626 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1627 lockfs.lf_comment = original_comment; 1628 1629 if ((flag & DATAMODEL_MASK) == 1630 DATAMODEL_NATIVE) { 1631 (void) copyout(&lockfs, (caddr_t)arg, 1632 sizeof (struct lockfs)); 1633 } 1634 #ifdef _SYSCALL32_IMPL 1635 else { 1636 struct lockfs32 lockfs32; 1637 /* Translate LP64 to ILP32 lockfs */ 1638 lockfs32.lf_lock = 1639 (uint32_t)lockfs.lf_lock; 1640 lockfs32.lf_flags = 1641 (uint32_t)lockfs.lf_flags; 1642 lockfs32.lf_key = 1643 (uint32_t)lockfs.lf_key; 1644 lockfs32.lf_comlen = 1645 (uint32_t)lockfs.lf_comlen; 1646 lockfs32.lf_comment = 1647 (uint32_t)(uintptr_t) 1648 lockfs.lf_comment; 1649 (void) copyout(&lockfs32, (caddr_t)arg, 1650 sizeof (struct lockfs32)); 1651 } 1652 #endif /* _SYSCALL32_IMPL */ 1653 1654 } else { 1655 if (lockfs.lf_comlen) 1656 kmem_free(comment, lockfs.lf_comlen); 1657 } 1658 return (error); 1659 1660 case _FIOLFSS: 1661 /* 1662 * get file system locking status 1663 */ 1664 1665 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1666 if (copyin((caddr_t)arg, &lockfs, 1667 sizeof (struct lockfs))) 1668 return (EFAULT); 1669 } 1670 #ifdef _SYSCALL32_IMPL 1671 else { 1672 struct lockfs32 lockfs32; 1673 /* Translate ILP32 lockfs to LP64 lockfs */ 1674 if (copyin((caddr_t)arg, &lockfs32, 1675 sizeof (struct lockfs32))) 1676 return (EFAULT); 1677 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1678 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1679 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1680 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1681 lockfs.lf_comment = 1682 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1683 } 1684 #endif /* _SYSCALL32_IMPL */ 1685 1686 if (error = ufs_fiolfss(vp, &lockfs_out)) 1687 return (error); 1688 lockfs.lf_lock = lockfs_out.lf_lock; 1689 lockfs.lf_key = lockfs_out.lf_key; 1690 lockfs.lf_flags = lockfs_out.lf_flags; 1691 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1692 lockfs_out.lf_comlen); 1693 1694 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1695 if (copyout(&lockfs, (caddr_t)arg, 1696 sizeof (struct lockfs))) 1697 return (EFAULT); 1698 } 1699 #ifdef _SYSCALL32_IMPL 1700 else { 1701 /* Translate LP64 to ILP32 lockfs */ 1702 struct lockfs32 lockfs32; 1703 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1704 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1705 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1706 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1707 lockfs32.lf_comment = 1708 (uint32_t)(uintptr_t)lockfs.lf_comment; 1709 if (copyout(&lockfs32, (caddr_t)arg, 1710 sizeof (struct lockfs32))) 1711 return (EFAULT); 1712 } 1713 #endif /* _SYSCALL32_IMPL */ 1714 1715 if (lockfs.lf_comlen && 1716 lockfs.lf_comment && lockfs_out.lf_comment) 1717 if (copyout(lockfs_out.lf_comment, 1718 lockfs.lf_comment, lockfs.lf_comlen)) 1719 return (EFAULT); 1720 return (0); 1721 1722 case _FIOSATIME: 1723 /* 1724 * set access time 1725 */ 1726 1727 /* 1728 * if mounted w/o atime, return quietly. 1729 * I briefly thought about returning ENOSYS, but 1730 * figured that most apps would consider this fatal 1731 * but the idea is to make this as seamless as poss. 1732 */ 1733 if (ufsvfsp->vfs_noatime) 1734 return (0); 1735 1736 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1737 ULOCKFS_SETATTR_MASK); 1738 if (error) 1739 return (error); 1740 1741 if (ulp) { 1742 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1743 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1744 TOP_SETATTR, trans_size); 1745 } 1746 1747 error = ufs_fiosatime(vp, (struct timeval *)arg, 1748 flag, cr); 1749 1750 if (ulp) { 1751 TRANS_END_CSYNC(ufsvfsp, error, issync, 1752 TOP_SETATTR, trans_size); 1753 ufs_lockfs_end(ulp); 1754 } 1755 return (error); 1756 1757 case _FIOSDIO: 1758 /* 1759 * set delayed-io 1760 */ 1761 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1762 1763 case _FIOGDIO: 1764 /* 1765 * get delayed-io 1766 */ 1767 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1768 1769 case _FIOIO: 1770 /* 1771 * inode open 1772 */ 1773 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1774 ULOCKFS_VGET_MASK); 1775 if (error) 1776 return (error); 1777 1778 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1779 1780 if (ulp) { 1781 ufs_lockfs_end(ulp); 1782 } 1783 return (error); 1784 1785 case _FIOFFS: 1786 /* 1787 * file system flush (push w/invalidate) 1788 */ 1789 if ((caddr_t)arg != NULL) 1790 return (EINVAL); 1791 return (ufs_fioffs(vp, NULL, cr)); 1792 1793 case _FIOISBUSY: 1794 /* 1795 * Contract-private interface for Legato 1796 * Purge this vnode from the DNLC and decide 1797 * if this vnode is busy (*arg == 1) or not 1798 * (*arg == 0) 1799 */ 1800 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1801 return (EPERM); 1802 error = ufs_fioisbusy(vp, (int *)arg, cr); 1803 return (error); 1804 1805 case _FIODIRECTIO: 1806 return (ufs_fiodirectio(vp, (int)arg, cr)); 1807 1808 case _FIOTUNE: 1809 /* 1810 * Tune the file system (aka setting fs attributes) 1811 */ 1812 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1813 ULOCKFS_SETATTR_MASK); 1814 if (error) 1815 return (error); 1816 1817 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1818 1819 if (ulp) 1820 ufs_lockfs_end(ulp); 1821 return (error); 1822 1823 case _FIOLOGENABLE: 1824 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1825 return (EPERM); 1826 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1827 1828 case _FIOLOGDISABLE: 1829 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1830 return (EPERM); 1831 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1832 1833 case _FIOISLOG: 1834 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1835 1836 case _FIOSNAPSHOTCREATE_MULTI: 1837 { 1838 struct fiosnapcreate_multi fc, *fcp; 1839 size_t fcm_size; 1840 1841 if (copyin((void *)arg, &fc, sizeof (fc))) 1842 return (EFAULT); 1843 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1844 return (EINVAL); 1845 fcm_size = sizeof (struct fiosnapcreate_multi) + 1846 (fc.backfilecount - 1) * sizeof (int); 1847 fcp = (struct fiosnapcreate_multi *) 1848 kmem_alloc(fcm_size, KM_SLEEP); 1849 if (copyin((void *)arg, fcp, fcm_size)) { 1850 kmem_free(fcp, fcm_size); 1851 return (EFAULT); 1852 } 1853 error = ufs_snap_create(vp, fcp, cr); 1854 /* 1855 * Do copyout even if there is an error because 1856 * the details of error is stored in fcp. 1857 */ 1858 if (copyout(fcp, (void *)arg, fcm_size)) 1859 error = EFAULT; 1860 kmem_free(fcp, fcm_size); 1861 return (error); 1862 } 1863 1864 case _FIOSNAPSHOTDELETE: 1865 { 1866 struct fiosnapdelete fc; 1867 1868 if (copyin((void *)arg, &fc, sizeof (fc))) 1869 return (EFAULT); 1870 error = ufs_snap_delete(vp, &fc, cr); 1871 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1872 error = EFAULT; 1873 return (error); 1874 } 1875 1876 case _FIOGETSUPERBLOCK: 1877 if (copyout(fs, (void *)arg, SBSIZE)) 1878 return (EFAULT); 1879 return (0); 1880 1881 case _FIOGETMAXPHYS: 1882 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1883 return (EFAULT); 1884 return (0); 1885 1886 /* 1887 * The following 3 ioctls are for TSufs support 1888 * although could potentially be used elsewhere 1889 */ 1890 case _FIO_SET_LUFS_DEBUG: 1891 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1892 return (EPERM); 1893 lufs_debug = (uint32_t)arg; 1894 return (0); 1895 1896 case _FIO_SET_LUFS_ERROR: 1897 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1898 return (EPERM); 1899 TRANS_SETERROR(ufsvfsp); 1900 return (0); 1901 1902 case _FIO_GET_TOP_STATS: 1903 { 1904 fio_lufs_stats_t *ls; 1905 ml_unit_t *ul = ufsvfsp->vfs_log; 1906 1907 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1908 ls->ls_debug = ul->un_debug; /* return debug value */ 1909 /* Copy stucture if statistics are being kept */ 1910 if (ul->un_logmap->mtm_tops) { 1911 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1912 } 1913 error = 0; 1914 if (copyout(ls, (void *)arg, sizeof (*ls))) 1915 error = EFAULT; 1916 kmem_free(ls, sizeof (*ls)); 1917 return (error); 1918 } 1919 1920 case _FIO_SEEK_DATA: 1921 case _FIO_SEEK_HOLE: 1922 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1923 return (EFAULT); 1924 /* offset paramater is in/out */ 1925 error = ufs_fio_holey(vp, cmd, &off); 1926 if (error) 1927 return (error); 1928 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1929 return (EFAULT); 1930 return (0); 1931 1932 default: 1933 return (ENOTTY); 1934 } 1935 } 1936 1937 /* ARGSUSED */ 1938 static int 1939 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1940 struct cred *cr, caller_context_t *ct) 1941 { 1942 struct inode *ip = VTOI(vp); 1943 struct ufsvfs *ufsvfsp; 1944 int err; 1945 1946 if (vap->va_mask == AT_SIZE) { 1947 /* 1948 * for performance, if only the size is requested don't bother 1949 * with anything else. 1950 */ 1951 UFS_GET_ISIZE(&vap->va_size, ip); 1952 return (0); 1953 } 1954 1955 /* 1956 * inlined lockfs checks 1957 */ 1958 ufsvfsp = ip->i_ufsvfs; 1959 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 1960 err = EIO; 1961 goto out; 1962 } 1963 1964 rw_enter(&ip->i_contents, RW_READER); 1965 /* 1966 * Return all the attributes. This should be refined so 1967 * that it only returns what's asked for. 1968 */ 1969 1970 /* 1971 * Copy from inode table. 1972 */ 1973 vap->va_type = vp->v_type; 1974 vap->va_mode = ip->i_mode & MODEMASK; 1975 /* 1976 * If there is an ACL and there is a mask entry, then do the 1977 * extra work that completes the equivalent of an acltomode(3) 1978 * call. According to POSIX P1003.1e, the acl mask should be 1979 * returned in the group permissions field. 1980 * 1981 * - start with the original permission and mode bits (from above) 1982 * - clear the group owner bits 1983 * - add in the mask bits. 1984 */ 1985 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 1986 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 1987 vap->va_mode |= 1988 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 1989 } 1990 vap->va_uid = ip->i_uid; 1991 vap->va_gid = ip->i_gid; 1992 vap->va_fsid = ip->i_dev; 1993 vap->va_nodeid = (ino64_t)ip->i_number; 1994 vap->va_nlink = ip->i_nlink; 1995 vap->va_size = ip->i_size; 1996 if (vp->v_type == VCHR || vp->v_type == VBLK) 1997 vap->va_rdev = ip->i_rdev; 1998 else 1999 vap->va_rdev = 0; /* not a b/c spec. */ 2000 mutex_enter(&ip->i_tlock); 2001 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 2002 vap->va_seq = ip->i_seq; 2003 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 2004 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 2005 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 2006 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 2007 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 2008 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 2009 mutex_exit(&ip->i_tlock); 2010 2011 switch (ip->i_mode & IFMT) { 2012 2013 case IFBLK: 2014 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 2015 break; 2016 2017 case IFCHR: 2018 vap->va_blksize = MAXBSIZE; 2019 break; 2020 2021 default: 2022 vap->va_blksize = ip->i_fs->fs_bsize; 2023 break; 2024 } 2025 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 2026 rw_exit(&ip->i_contents); 2027 err = 0; 2028 2029 out: 2030 return (err); 2031 } 2032 2033 /*ARGSUSED4*/ 2034 static int 2035 ufs_setattr( 2036 struct vnode *vp, 2037 struct vattr *vap, 2038 int flags, 2039 struct cred *cr, 2040 caller_context_t *ct) 2041 { 2042 struct inode *ip = VTOI(vp); 2043 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2044 struct fs *fs; 2045 struct ulockfs *ulp; 2046 char *errmsg1; 2047 char *errmsg2; 2048 long blocks; 2049 long int mask = vap->va_mask; 2050 size_t len1, len2; 2051 int issync; 2052 int trans_size; 2053 int dotrans; 2054 int dorwlock; 2055 int error; 2056 int owner_change; 2057 int dodqlock; 2058 timestruc_t now; 2059 vattr_t oldva; 2060 int retry = 1; 2061 int indeadlock; 2062 2063 /* 2064 * Cannot set these attributes. 2065 */ 2066 if ((mask & AT_NOSET) || (mask & AT_XVATTR)) 2067 return (EINVAL); 2068 2069 /* 2070 * check for forced unmount 2071 */ 2072 if (ufsvfsp == NULL) 2073 return (EIO); 2074 2075 fs = ufsvfsp->vfs_fs; 2076 if (fs->fs_ronly != 0) 2077 return (EROFS); 2078 2079 again: 2080 errmsg1 = NULL; 2081 errmsg2 = NULL; 2082 dotrans = 0; 2083 dorwlock = 0; 2084 dodqlock = 0; 2085 2086 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2087 if (error) 2088 goto out; 2089 2090 /* 2091 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2092 * This follows the protocol for read()/write(). 2093 */ 2094 if (vp->v_type != VDIR) { 2095 /* 2096 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to 2097 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2098 * possible, retries the operation. 2099 */ 2100 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file); 2101 if (indeadlock) { 2102 if (ulp) 2103 ufs_lockfs_end(ulp); 2104 goto again; 2105 } 2106 dorwlock = 1; 2107 } 2108 2109 /* 2110 * Truncate file. Must have write permission and not be a directory. 2111 */ 2112 if (mask & AT_SIZE) { 2113 rw_enter(&ip->i_contents, RW_WRITER); 2114 if (vp->v_type == VDIR) { 2115 error = EISDIR; 2116 goto update_inode; 2117 } 2118 if (error = ufs_iaccess(ip, IWRITE, cr)) 2119 goto update_inode; 2120 2121 rw_exit(&ip->i_contents); 2122 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2123 if (error) { 2124 rw_enter(&ip->i_contents, RW_WRITER); 2125 goto update_inode; 2126 } 2127 } 2128 2129 if (ulp) { 2130 trans_size = (int)TOP_SETATTR_SIZE(ip); 2131 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2132 ++dotrans; 2133 } 2134 2135 /* 2136 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2137 * This follows the protocol established by 2138 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2139 */ 2140 if (vp->v_type == VDIR) { 2141 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR, 2142 retry_dir); 2143 if (indeadlock) 2144 goto again; 2145 dorwlock = 1; 2146 } 2147 2148 /* 2149 * Grab quota lock if we are changing the file's owner. 2150 */ 2151 if (mask & AT_UID) { 2152 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2153 dodqlock = 1; 2154 } 2155 rw_enter(&ip->i_contents, RW_WRITER); 2156 2157 oldva.va_mode = ip->i_mode; 2158 oldva.va_uid = ip->i_uid; 2159 oldva.va_gid = ip->i_gid; 2160 2161 vap->va_mask &= ~AT_SIZE; 2162 /* 2163 * ufs_iaccess is "close enough"; that's because it doesn't 2164 * map the defines. 2165 */ 2166 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2167 ufs_iaccess, ip); 2168 if (error) 2169 goto update_inode; 2170 2171 mask = vap->va_mask; 2172 2173 /* 2174 * Change file access modes. 2175 */ 2176 if (mask & AT_MODE) { 2177 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2178 TRANS_INODE(ufsvfsp, ip); 2179 ip->i_flag |= ICHG; 2180 if (stickyhack) { 2181 mutex_enter(&vp->v_lock); 2182 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2183 vp->v_flag |= VSWAPLIKE; 2184 else 2185 vp->v_flag &= ~VSWAPLIKE; 2186 mutex_exit(&vp->v_lock); 2187 } 2188 } 2189 if (mask & (AT_UID|AT_GID)) { 2190 if (mask & AT_UID) { 2191 /* 2192 * Don't change ownership of the quota inode. 2193 */ 2194 if (ufsvfsp->vfs_qinod == ip) { 2195 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2196 error = EINVAL; 2197 goto update_inode; 2198 } 2199 2200 /* 2201 * No real ownership change. 2202 */ 2203 if (ip->i_uid == vap->va_uid) { 2204 blocks = 0; 2205 owner_change = 0; 2206 } 2207 /* 2208 * Remove the blocks and the file, from the old user's 2209 * quota. 2210 */ 2211 else { 2212 blocks = ip->i_blocks; 2213 owner_change = 1; 2214 2215 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2216 (char **)NULL, (size_t *)NULL); 2217 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2218 (uid_t)ip->i_uid, /* force */ 1, cr, 2219 (char **)NULL, (size_t *)NULL); 2220 dqrele(ip->i_dquot); 2221 } 2222 2223 ip->i_uid = vap->va_uid; 2224 2225 /* 2226 * There is a real ownership change. 2227 */ 2228 if (owner_change) { 2229 /* 2230 * Add the blocks and the file to the new 2231 * user's quota. 2232 */ 2233 ip->i_dquot = getinoquota(ip); 2234 (void) chkdq(ip, blocks, /* force */ 1, cr, 2235 &errmsg1, &len1); 2236 (void) chkiq(ufsvfsp, /* change */ 1, 2237 (struct inode *)NULL, (uid_t)ip->i_uid, 2238 /* force */ 1, cr, &errmsg2, &len2); 2239 } 2240 } 2241 if (mask & AT_GID) { 2242 ip->i_gid = vap->va_gid; 2243 } 2244 TRANS_INODE(ufsvfsp, ip); 2245 ip->i_flag |= ICHG; 2246 } 2247 /* 2248 * Change file access or modified times. 2249 */ 2250 if (mask & (AT_ATIME|AT_MTIME)) { 2251 /* Check that the time value is within ufs range */ 2252 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2253 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2254 error = EOVERFLOW; 2255 goto update_inode; 2256 } 2257 2258 /* 2259 * if the "noaccess" mount option is set and only atime 2260 * update is requested, do nothing. No error is returned. 2261 */ 2262 if ((ufsvfsp->vfs_noatime) && 2263 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2264 goto skip_atime; 2265 2266 if (mask & AT_ATIME) { 2267 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2268 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2269 ip->i_flag &= ~IACC; 2270 } 2271 if (mask & AT_MTIME) { 2272 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2273 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2274 gethrestime(&now); 2275 if (now.tv_sec > TIME32_MAX) { 2276 /* 2277 * In 2038, ctime sticks forever.. 2278 */ 2279 ip->i_ctime.tv_sec = TIME32_MAX; 2280 ip->i_ctime.tv_usec = 0; 2281 } else { 2282 ip->i_ctime.tv_sec = now.tv_sec; 2283 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2284 } 2285 ip->i_flag &= ~(IUPD|ICHG); 2286 ip->i_flag |= IMODTIME; 2287 } 2288 TRANS_INODE(ufsvfsp, ip); 2289 ip->i_flag |= IMOD; 2290 } 2291 2292 skip_atime: 2293 /* 2294 * The presence of a shadow inode may indicate an ACL, but does 2295 * not imply an ACL. Future FSD types should be handled here too 2296 * and check for the presence of the attribute-specific data 2297 * before referencing it. 2298 */ 2299 if (ip->i_shadow) { 2300 /* 2301 * XXX if ufs_iupdat is changed to sandbagged write fix 2302 * ufs_acl_setattr to push ip to keep acls consistent 2303 * 2304 * Suppress out of inodes messages if we will retry. 2305 */ 2306 if (retry) 2307 ip->i_flag |= IQUIET; 2308 error = ufs_acl_setattr(ip, vap, cr); 2309 ip->i_flag &= ~IQUIET; 2310 } 2311 2312 update_inode: 2313 /* 2314 * Setattr always increases the sequence number 2315 */ 2316 ip->i_seq++; 2317 2318 /* 2319 * if nfsd and not logging; push synchronously 2320 */ 2321 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2322 ufs_iupdat(ip, 1); 2323 } else { 2324 ITIMES_NOLOCK(ip); 2325 } 2326 2327 rw_exit(&ip->i_contents); 2328 if (dodqlock) { 2329 rw_exit(&ufsvfsp->vfs_dqrwlock); 2330 } 2331 if (dorwlock) 2332 rw_exit(&ip->i_rwlock); 2333 2334 if (ulp) { 2335 if (dotrans) { 2336 int terr = 0; 2337 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2338 trans_size); 2339 if (error == 0) 2340 error = terr; 2341 } 2342 ufs_lockfs_end(ulp); 2343 } 2344 out: 2345 /* 2346 * If out of inodes or blocks, see if we can free something 2347 * up from the delete queue. 2348 */ 2349 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2350 ufs_delete_drain_wait(ufsvfsp, 1); 2351 retry = 0; 2352 if (errmsg1 != NULL) 2353 kmem_free(errmsg1, len1); 2354 if (errmsg2 != NULL) 2355 kmem_free(errmsg2, len2); 2356 goto again; 2357 } 2358 if (errmsg1 != NULL) { 2359 uprintf(errmsg1); 2360 kmem_free(errmsg1, len1); 2361 } 2362 if (errmsg2 != NULL) { 2363 uprintf(errmsg2); 2364 kmem_free(errmsg2, len2); 2365 } 2366 return (error); 2367 } 2368 2369 /*ARGSUSED*/ 2370 static int 2371 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr, 2372 caller_context_t *ct) 2373 { 2374 struct inode *ip = VTOI(vp); 2375 int error; 2376 2377 if (ip->i_ufsvfs == NULL) 2378 return (EIO); 2379 2380 rw_enter(&ip->i_contents, RW_READER); 2381 2382 /* 2383 * The ufs_iaccess function wants to be called with 2384 * mode bits expressed as "ufs specific" bits. 2385 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2386 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2387 * But since they're the same we just pass the vnode mode 2388 * bit but just verify that assumption at compile time. 2389 */ 2390 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2391 #error "ufs_access needs to map Vmodes to Imodes" 2392 #endif 2393 error = ufs_iaccess(ip, mode, cr); 2394 2395 rw_exit(&ip->i_contents); 2396 2397 return (error); 2398 } 2399 2400 /* ARGSUSED */ 2401 static int 2402 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr, 2403 caller_context_t *ct) 2404 { 2405 struct inode *ip = VTOI(vp); 2406 struct ufsvfs *ufsvfsp; 2407 struct ulockfs *ulp; 2408 int error; 2409 int fastsymlink; 2410 2411 if (vp->v_type != VLNK) { 2412 error = EINVAL; 2413 goto nolockout; 2414 } 2415 2416 /* 2417 * If the symbolic link is empty there is nothing to read. 2418 * Fast-track these empty symbolic links 2419 */ 2420 if (ip->i_size == 0) { 2421 error = 0; 2422 goto nolockout; 2423 } 2424 2425 ufsvfsp = ip->i_ufsvfs; 2426 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2427 if (error) 2428 goto nolockout; 2429 /* 2430 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2431 */ 2432 again: 2433 fastsymlink = 0; 2434 if (ip->i_flag & IFASTSYMLNK) { 2435 rw_enter(&ip->i_rwlock, RW_READER); 2436 rw_enter(&ip->i_contents, RW_READER); 2437 if (ip->i_flag & IFASTSYMLNK) { 2438 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2439 (ip->i_fs->fs_ronly == 0) && 2440 (!ufsvfsp->vfs_noatime)) { 2441 mutex_enter(&ip->i_tlock); 2442 ip->i_flag |= IACC; 2443 mutex_exit(&ip->i_tlock); 2444 } 2445 error = uiomove((caddr_t)&ip->i_db[1], 2446 MIN(ip->i_size, uiop->uio_resid), 2447 UIO_READ, uiop); 2448 ITIMES(ip); 2449 ++fastsymlink; 2450 } 2451 rw_exit(&ip->i_contents); 2452 rw_exit(&ip->i_rwlock); 2453 } 2454 if (!fastsymlink) { 2455 ssize_t size; /* number of bytes read */ 2456 caddr_t basep; /* pointer to input data */ 2457 ino_t ino; 2458 long igen; 2459 struct uio tuio; /* temp uio struct */ 2460 struct uio *tuiop; 2461 iovec_t tiov; /* temp iovec struct */ 2462 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2463 int tflag = 0; /* flag to indicate temp vars used */ 2464 2465 ino = ip->i_number; 2466 igen = ip->i_gen; 2467 size = uiop->uio_resid; 2468 basep = uiop->uio_iov->iov_base; 2469 tuiop = uiop; 2470 2471 rw_enter(&ip->i_rwlock, RW_WRITER); 2472 rw_enter(&ip->i_contents, RW_WRITER); 2473 if (ip->i_flag & IFASTSYMLNK) { 2474 rw_exit(&ip->i_contents); 2475 rw_exit(&ip->i_rwlock); 2476 goto again; 2477 } 2478 2479 /* can this be a fast symlink and is it a user buffer? */ 2480 if (ip->i_size <= FSL_SIZE && 2481 (uiop->uio_segflg == UIO_USERSPACE || 2482 uiop->uio_segflg == UIO_USERISPACE)) { 2483 2484 bzero(&tuio, sizeof (struct uio)); 2485 /* 2486 * setup a kernel buffer to read link into. this 2487 * is to fix a race condition where the user buffer 2488 * got corrupted before copying it into the inode. 2489 */ 2490 size = ip->i_size; 2491 tiov.iov_len = size; 2492 tiov.iov_base = kbuf; 2493 tuio.uio_iov = &tiov; 2494 tuio.uio_iovcnt = 1; 2495 tuio.uio_offset = uiop->uio_offset; 2496 tuio.uio_segflg = UIO_SYSSPACE; 2497 tuio.uio_fmode = uiop->uio_fmode; 2498 tuio.uio_extflg = uiop->uio_extflg; 2499 tuio.uio_limit = uiop->uio_limit; 2500 tuio.uio_resid = size; 2501 2502 basep = tuio.uio_iov->iov_base; 2503 tuiop = &tuio; 2504 tflag = 1; 2505 } 2506 2507 error = rdip(ip, tuiop, 0, cr); 2508 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2509 rw_exit(&ip->i_contents); 2510 rw_exit(&ip->i_rwlock); 2511 goto out; 2512 } 2513 2514 if (tflag == 0) 2515 size -= uiop->uio_resid; 2516 2517 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2518 ip->i_size == size) || (tflag == 1 && 2519 tuio.uio_resid == 0)) { 2520 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2521 if (error == 0) { 2522 ip->i_flag |= IFASTSYMLNK; 2523 /* 2524 * free page 2525 */ 2526 (void) VOP_PUTPAGE(ITOV(ip), 2527 (offset_t)0, PAGESIZE, 2528 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2529 cr, ct); 2530 } else { 2531 int i; 2532 /* error, clear garbage left behind */ 2533 for (i = 1; i < NDADDR; i++) 2534 ip->i_db[i] = 0; 2535 for (i = 0; i < NIADDR; i++) 2536 ip->i_ib[i] = 0; 2537 } 2538 } 2539 if (tflag == 1) { 2540 /* now, copy it into the user buffer */ 2541 error = uiomove((caddr_t)kbuf, 2542 MIN(size, uiop->uio_resid), 2543 UIO_READ, uiop); 2544 } 2545 rw_exit(&ip->i_contents); 2546 rw_exit(&ip->i_rwlock); 2547 } 2548 out: 2549 if (ulp) { 2550 ufs_lockfs_end(ulp); 2551 } 2552 nolockout: 2553 return (error); 2554 } 2555 2556 /* ARGSUSED */ 2557 static int 2558 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, 2559 caller_context_t *ct) 2560 { 2561 struct inode *ip = VTOI(vp); 2562 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2563 struct ulockfs *ulp; 2564 int error; 2565 2566 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2567 if (error) 2568 return (error); 2569 2570 if (TRANS_ISTRANS(ufsvfsp)) { 2571 /* 2572 * First push out any data pages 2573 */ 2574 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2575 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2576 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2577 0, CRED(), ct); 2578 if (error) 2579 goto out; 2580 } 2581 2582 /* 2583 * Delta any delayed inode times updates 2584 * and push inode to log. 2585 * All other inode deltas will have already been delta'd 2586 * and will be pushed during the commit. 2587 */ 2588 if (!(syncflag & FDSYNC) && 2589 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2590 if (ulp) { 2591 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2592 TOP_SYNCIP_SIZE); 2593 } 2594 rw_enter(&ip->i_contents, RW_READER); 2595 mutex_enter(&ip->i_tlock); 2596 ip->i_flag &= ~IMODTIME; 2597 mutex_exit(&ip->i_tlock); 2598 ufs_iupdat(ip, I_SYNC); 2599 rw_exit(&ip->i_contents); 2600 if (ulp) { 2601 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2602 TOP_SYNCIP_SIZE); 2603 } 2604 } 2605 2606 /* 2607 * Commit the Moby transaction 2608 * 2609 * Deltas have already been made so we just need to 2610 * commit them with a synchronous transaction. 2611 * TRANS_BEGIN_SYNC() will return an error 2612 * if there are no deltas to commit, for an 2613 * empty transaction. 2614 */ 2615 if (ulp) { 2616 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2617 error); 2618 if (error) { 2619 error = 0; /* commit wasn't needed */ 2620 goto out; 2621 } 2622 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2623 TOP_COMMIT_SIZE); 2624 } 2625 } else { /* not logging */ 2626 if (!(IS_SWAPVP(vp))) 2627 if (syncflag & FNODSYNC) { 2628 /* Just update the inode only */ 2629 TRANS_IUPDAT(ip, 1); 2630 error = 0; 2631 } else if (syncflag & FDSYNC) 2632 /* Do data-synchronous writes */ 2633 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2634 else 2635 /* Do synchronous writes */ 2636 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2637 2638 rw_enter(&ip->i_contents, RW_WRITER); 2639 if (!error) 2640 error = ufs_sync_indir(ip); 2641 rw_exit(&ip->i_contents); 2642 } 2643 out: 2644 if (ulp) { 2645 ufs_lockfs_end(ulp); 2646 } 2647 return (error); 2648 } 2649 2650 /*ARGSUSED*/ 2651 static void 2652 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 2653 { 2654 ufs_iinactive(VTOI(vp)); 2655 } 2656 2657 /* 2658 * Unix file system operations having to do with directory manipulation. 2659 */ 2660 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2661 /* ARGSUSED */ 2662 static int 2663 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2664 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr, 2665 caller_context_t *ct, int *direntflags, pathname_t *realpnp) 2666 { 2667 struct inode *ip; 2668 struct inode *sip; 2669 struct inode *xip; 2670 struct ufsvfs *ufsvfsp; 2671 struct ulockfs *ulp; 2672 struct vnode *vp; 2673 int error; 2674 2675 /* 2676 * Check flags for type of lookup (regular file or attribute file) 2677 */ 2678 2679 ip = VTOI(dvp); 2680 2681 if (flags & LOOKUP_XATTR) { 2682 2683 /* 2684 * If not mounted with XATTR support then return EINVAL 2685 */ 2686 2687 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR)) 2688 return (EINVAL); 2689 /* 2690 * We don't allow recursive attributes... 2691 * Maybe someday we will. 2692 */ 2693 if ((ip->i_cflags & IXATTR)) { 2694 return (EINVAL); 2695 } 2696 2697 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2698 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2699 if (error) { 2700 *vpp = NULL; 2701 goto out; 2702 } 2703 2704 vp = ITOV(sip); 2705 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2706 } 2707 2708 /* 2709 * Check accessibility of directory. 2710 */ 2711 if (vp == DNLC_NO_VNODE) { 2712 VN_RELE(vp); 2713 error = ENOENT; 2714 goto out; 2715 } 2716 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr)) != 0) { 2717 VN_RELE(vp); 2718 goto out; 2719 } 2720 2721 *vpp = vp; 2722 return (0); 2723 } 2724 2725 /* 2726 * Check for a null component, which we should treat as 2727 * looking at dvp from within it's parent, so we don't 2728 * need a call to ufs_iaccess(), as it has already been 2729 * done. 2730 */ 2731 if (nm[0] == 0) { 2732 VN_HOLD(dvp); 2733 error = 0; 2734 *vpp = dvp; 2735 goto out; 2736 } 2737 2738 /* 2739 * Check for "." ie itself. this is a quick check and 2740 * avoids adding "." into the dnlc (which have been seen 2741 * to occupy >10% of the cache). 2742 */ 2743 if ((nm[0] == '.') && (nm[1] == 0)) { 2744 /* 2745 * Don't return without checking accessibility 2746 * of the directory. We only need the lock if 2747 * we are going to return it. 2748 */ 2749 if ((error = ufs_iaccess(ip, IEXEC, cr)) == 0) { 2750 VN_HOLD(dvp); 2751 *vpp = dvp; 2752 } 2753 goto out; 2754 } 2755 2756 /* 2757 * Fast path: Check the directory name lookup cache. 2758 */ 2759 if (vp = dnlc_lookup(dvp, nm)) { 2760 /* 2761 * Check accessibility of directory. 2762 */ 2763 if ((error = ufs_iaccess(ip, IEXEC, cr)) != 0) { 2764 VN_RELE(vp); 2765 goto out; 2766 } 2767 if (vp == DNLC_NO_VNODE) { 2768 VN_RELE(vp); 2769 error = ENOENT; 2770 goto out; 2771 } 2772 xip = VTOI(vp); 2773 ulp = NULL; 2774 goto fastpath; 2775 } 2776 2777 /* 2778 * Keep the idle queue from getting too long by 2779 * idling two inodes before attempting to allocate another. 2780 * This operation must be performed before entering 2781 * lockfs or a transaction. 2782 */ 2783 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2784 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2785 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2786 ufs_idle_some(ufs_lookup_idle_count); 2787 } 2788 2789 retry_lookup: 2790 ufsvfsp = ip->i_ufsvfs; 2791 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2792 if (error) 2793 goto out; 2794 2795 error = ufs_dirlook(ip, nm, &xip, cr, 1); 2796 2797 fastpath: 2798 if (error == 0) { 2799 ip = xip; 2800 *vpp = ITOV(ip); 2801 2802 /* 2803 * If vnode is a device return special vnode instead. 2804 */ 2805 if (IS_DEVVP(*vpp)) { 2806 struct vnode *newvp; 2807 2808 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2809 cr); 2810 VN_RELE(*vpp); 2811 if (newvp == NULL) 2812 error = ENOSYS; 2813 else 2814 *vpp = newvp; 2815 } 2816 } 2817 if (ulp) { 2818 ufs_lockfs_end(ulp); 2819 } 2820 2821 if (error == EAGAIN) 2822 goto retry_lookup; 2823 2824 out: 2825 return (error); 2826 } 2827 2828 /*ARGSUSED*/ 2829 static int 2830 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2831 int mode, struct vnode **vpp, struct cred *cr, int flag, 2832 caller_context_t *ct, vsecattr_t *vsecp) 2833 { 2834 struct inode *ip; 2835 struct inode *xip; 2836 struct inode *dip; 2837 struct vnode *xvp; 2838 struct ufsvfs *ufsvfsp; 2839 struct ulockfs *ulp; 2840 int error; 2841 int issync; 2842 int truncflag; 2843 int trans_size; 2844 int noentry; 2845 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2846 int retry = 1; 2847 int indeadlock; 2848 2849 again: 2850 ip = VTOI(dvp); 2851 ufsvfsp = ip->i_ufsvfs; 2852 truncflag = 0; 2853 2854 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2855 if (error) 2856 goto out; 2857 2858 if (ulp) { 2859 trans_size = (int)TOP_CREATE_SIZE(ip); 2860 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2861 } 2862 2863 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2864 vap->va_mode &= ~VSVTX; 2865 2866 if (*name == '\0') { 2867 /* 2868 * Null component name refers to the directory itself. 2869 */ 2870 VN_HOLD(dvp); 2871 /* 2872 * Even though this is an error case, we need to grab the 2873 * quota lock since the error handling code below is common. 2874 */ 2875 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2876 rw_enter(&ip->i_contents, RW_WRITER); 2877 error = EEXIST; 2878 } else { 2879 xip = NULL; 2880 noentry = 0; 2881 /* 2882 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 2883 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2884 * possible, retries the operation. 2885 */ 2886 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE, 2887 retry_dir); 2888 if (indeadlock) 2889 goto again; 2890 2891 xvp = dnlc_lookup(dvp, name); 2892 if (xvp == DNLC_NO_VNODE) { 2893 noentry = 1; 2894 VN_RELE(xvp); 2895 xvp = NULL; 2896 } 2897 if (xvp) { 2898 rw_exit(&ip->i_rwlock); 2899 if (error = ufs_iaccess(ip, IEXEC, cr)) { 2900 VN_RELE(xvp); 2901 } else { 2902 error = EEXIST; 2903 xip = VTOI(xvp); 2904 } 2905 } else { 2906 /* 2907 * Suppress file system full message if we will retry 2908 */ 2909 error = ufs_direnter_cm(ip, name, DE_CREATE, 2910 vap, &xip, cr, (noentry | (retry ? IQUIET : 0))); 2911 if (error == EAGAIN) { 2912 if (ulp) { 2913 TRANS_END_CSYNC(ufsvfsp, error, issync, 2914 TOP_CREATE, trans_size); 2915 ufs_lockfs_end(ulp); 2916 } 2917 goto again; 2918 } 2919 rw_exit(&ip->i_rwlock); 2920 } 2921 ip = xip; 2922 if (ip != NULL) { 2923 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2924 rw_enter(&ip->i_contents, RW_WRITER); 2925 } 2926 } 2927 2928 /* 2929 * If the file already exists and this is a non-exclusive create, 2930 * check permissions and allow access for non-directories. 2931 * Read-only create of an existing directory is also allowed. 2932 * We fail an exclusive create of anything which already exists. 2933 */ 2934 if (error == EEXIST) { 2935 dip = VTOI(dvp); 2936 if (excl == NONEXCL) { 2937 if ((((ip->i_mode & IFMT) == IFDIR) || 2938 ((ip->i_mode & IFMT) == IFATTRDIR)) && 2939 (mode & IWRITE)) 2940 error = EISDIR; 2941 else if (mode) 2942 error = ufs_iaccess(ip, mode, cr); 2943 else 2944 error = 0; 2945 } 2946 if (error) { 2947 rw_exit(&ip->i_contents); 2948 rw_exit(&ufsvfsp->vfs_dqrwlock); 2949 VN_RELE(ITOV(ip)); 2950 goto unlock; 2951 } 2952 /* 2953 * If the error EEXIST was set, then i_seq can not 2954 * have been updated. The sequence number interface 2955 * is defined such that a non-error VOP_CREATE must 2956 * increase the dir va_seq it by at least one. If we 2957 * have cleared the error, increase i_seq. Note that 2958 * we are increasing the dir i_seq and in rare cases 2959 * ip may actually be from the dvp, so we already have 2960 * the locks and it will not be subject to truncation. 2961 * In case we have to update i_seq of the parent 2962 * directory dip, we have to defer it till we have 2963 * released our locks on ip due to lock ordering requirements. 2964 */ 2965 if (ip != dip) 2966 defer_dip_seq_update = 1; 2967 else 2968 ip->i_seq++; 2969 2970 if (((ip->i_mode & IFMT) == IFREG) && 2971 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 2972 /* 2973 * Truncate regular files, if requested by caller. 2974 * Grab i_rwlock to make sure no one else is 2975 * currently writing to the file (we promised 2976 * bmap we would do this). 2977 * Must get the locks in the correct order. 2978 */ 2979 if (ip->i_size == 0) { 2980 ip->i_flag |= ICHG | IUPD; 2981 ip->i_seq++; 2982 TRANS_INODE(ufsvfsp, ip); 2983 } else { 2984 /* 2985 * Large Files: Why this check here? 2986 * Though we do it in vn_create() we really 2987 * want to guarantee that we do not destroy 2988 * Large file data by atomically checking 2989 * the size while holding the contents 2990 * lock. 2991 */ 2992 if (flag && !(flag & FOFFMAX) && 2993 ((ip->i_mode & IFMT) == IFREG) && 2994 (ip->i_size > (offset_t)MAXOFF32_T)) { 2995 rw_exit(&ip->i_contents); 2996 rw_exit(&ufsvfsp->vfs_dqrwlock); 2997 error = EOVERFLOW; 2998 goto unlock; 2999 } 3000 if (TRANS_ISTRANS(ufsvfsp)) 3001 truncflag++; 3002 else { 3003 rw_exit(&ip->i_contents); 3004 rw_exit(&ufsvfsp->vfs_dqrwlock); 3005 ufs_tryirwlock_trans(&ip->i_rwlock, 3006 RW_WRITER, TOP_CREATE, 3007 retry_file); 3008 if (indeadlock) { 3009 VN_RELE(ITOV(ip)); 3010 goto again; 3011 } 3012 rw_enter(&ufsvfsp->vfs_dqrwlock, 3013 RW_READER); 3014 rw_enter(&ip->i_contents, RW_WRITER); 3015 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 3016 cr); 3017 rw_exit(&ip->i_rwlock); 3018 } 3019 3020 } 3021 if (error == 0) { 3022 vnevent_create(ITOV(ip), ct); 3023 } 3024 } 3025 } 3026 3027 if (error) { 3028 if (ip != NULL) { 3029 rw_exit(&ufsvfsp->vfs_dqrwlock); 3030 rw_exit(&ip->i_contents); 3031 } 3032 goto unlock; 3033 } 3034 3035 *vpp = ITOV(ip); 3036 ITIMES(ip); 3037 rw_exit(&ip->i_contents); 3038 rw_exit(&ufsvfsp->vfs_dqrwlock); 3039 3040 /* 3041 * If vnode is a device return special vnode instead. 3042 */ 3043 if (!error && IS_DEVVP(*vpp)) { 3044 struct vnode *newvp; 3045 3046 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 3047 VN_RELE(*vpp); 3048 if (newvp == NULL) { 3049 error = ENOSYS; 3050 goto unlock; 3051 } 3052 truncflag = 0; 3053 *vpp = newvp; 3054 } 3055 unlock: 3056 3057 /* 3058 * Do the deferred update of the parent directory's sequence 3059 * number now. 3060 */ 3061 if (defer_dip_seq_update == 1) { 3062 rw_enter(&dip->i_contents, RW_READER); 3063 mutex_enter(&dip->i_tlock); 3064 dip->i_seq++; 3065 mutex_exit(&dip->i_tlock); 3066 rw_exit(&dip->i_contents); 3067 } 3068 3069 if (ulp) { 3070 int terr = 0; 3071 3072 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 3073 trans_size); 3074 3075 /* 3076 * If we haven't had a more interesting failure 3077 * already, then anything that might've happened 3078 * here should be reported. 3079 */ 3080 if (error == 0) 3081 error = terr; 3082 } 3083 3084 if (!error && truncflag) { 3085 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc); 3086 if (indeadlock) { 3087 if (ulp) 3088 ufs_lockfs_end(ulp); 3089 VN_RELE(ITOV(ip)); 3090 goto again; 3091 } 3092 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 3093 rw_exit(&ip->i_rwlock); 3094 } 3095 3096 if (ulp) 3097 ufs_lockfs_end(ulp); 3098 3099 /* 3100 * If no inodes available, try to free one up out of the 3101 * pending delete queue. 3102 */ 3103 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3104 ufs_delete_drain_wait(ufsvfsp, 1); 3105 retry = 0; 3106 goto again; 3107 } 3108 3109 out: 3110 return (error); 3111 } 3112 3113 extern int ufs_idle_max; 3114 /*ARGSUSED*/ 3115 static int 3116 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, 3117 caller_context_t *ct, int flags) 3118 { 3119 struct inode *ip = VTOI(vp); 3120 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3121 struct ulockfs *ulp; 3122 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3123 int indeadlock; 3124 int error; 3125 int issync; 3126 int trans_size; 3127 3128 /* 3129 * don't let the delete queue get too long 3130 */ 3131 if (ufsvfsp == NULL) { 3132 error = EIO; 3133 goto out; 3134 } 3135 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3136 ufs_delete_drain(vp->v_vfsp, 1, 1); 3137 3138 retry_remove: 3139 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3140 if (error) 3141 goto out; 3142 3143 if (ulp) 3144 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3145 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3146 3147 /* 3148 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3149 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3150 * possible, retries the operation. 3151 */ 3152 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry); 3153 if (indeadlock) 3154 goto retry_remove; 3155 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3156 DR_REMOVE, cr, &rmvp); 3157 rw_exit(&ip->i_rwlock); 3158 3159 if (ulp) { 3160 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3161 ufs_lockfs_end(ulp); 3162 } 3163 3164 /* 3165 * This must be called after the remove transaction is closed. 3166 */ 3167 if (rmvp != NULL) { 3168 /* Only send the event if there were no errors */ 3169 if (error == 0) 3170 vnevent_remove(rmvp, vp, nm, ct); 3171 VN_RELE(rmvp); 3172 } 3173 out: 3174 return (error); 3175 } 3176 3177 /* 3178 * Link a file or a directory. Only privileged processes are allowed to 3179 * make links to directories. 3180 */ 3181 /*ARGSUSED*/ 3182 static int 3183 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr, 3184 caller_context_t *ct, int flags) 3185 { 3186 struct inode *sip; 3187 struct inode *tdp = VTOI(tdvp); 3188 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3189 struct ulockfs *ulp; 3190 struct vnode *realvp; 3191 int error; 3192 int issync; 3193 int trans_size; 3194 int isdev; 3195 int indeadlock; 3196 3197 retry_link: 3198 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3199 if (error) 3200 goto out; 3201 3202 if (ulp) 3203 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3204 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3205 3206 if (VOP_REALVP(svp, &realvp, ct) == 0) 3207 svp = realvp; 3208 3209 /* 3210 * Make sure link for extended attributes is valid 3211 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3212 * 3213 * Make certain we don't attempt to look at a device node as 3214 * a ufs inode. 3215 */ 3216 3217 isdev = IS_DEVVP(svp); 3218 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3219 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3220 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3221 ((tdp->i_mode & IFMT) == IFDIR))) { 3222 error = EINVAL; 3223 goto unlock; 3224 } 3225 3226 sip = VTOI(svp); 3227 if ((svp->v_type == VDIR && 3228 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3229 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3230 error = EPERM; 3231 goto unlock; 3232 } 3233 3234 /* 3235 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3236 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3237 * possible, retries the operation. 3238 */ 3239 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry); 3240 if (indeadlock) 3241 goto retry_link; 3242 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3243 sip, cr, NULL); 3244 rw_exit(&tdp->i_rwlock); 3245 3246 unlock: 3247 if (ulp) { 3248 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3249 ufs_lockfs_end(ulp); 3250 } 3251 3252 if (!error) { 3253 vnevent_link(svp, ct); 3254 } 3255 out: 3256 return (error); 3257 } 3258 3259 uint64_t ufs_rename_retry_cnt; 3260 uint64_t ufs_rename_upgrade_retry_cnt; 3261 uint64_t ufs_rename_dircheck_retry_cnt; 3262 clock_t ufs_rename_backoff_delay = 1; 3263 3264 /* 3265 * Rename a file or directory. 3266 * We are given the vnode and entry string of the source and the 3267 * vnode and entry string of the place we want to move the source 3268 * to (the target). The essential operation is: 3269 * unlink(target); 3270 * link(source, target); 3271 * unlink(source); 3272 * but "atomically". Can't do full commit without saving state in 3273 * the inode on disk, which isn't feasible at this time. Best we 3274 * can do is always guarantee that the TARGET exists. 3275 */ 3276 3277 /*ARGSUSED*/ 3278 static int 3279 ufs_rename( 3280 struct vnode *sdvp, /* old (source) parent vnode */ 3281 char *snm, /* old (source) entry name */ 3282 struct vnode *tdvp, /* new (target) parent vnode */ 3283 char *tnm, /* new (target) entry name */ 3284 struct cred *cr, 3285 caller_context_t *ct, 3286 int flags) 3287 { 3288 struct inode *sip = NULL; /* source inode */ 3289 struct inode *ip = NULL; /* check inode */ 3290 struct inode *sdp; /* old (source) parent inode */ 3291 struct inode *tdp; /* new (target) parent inode */ 3292 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3293 struct vnode *realvp; 3294 struct ufsvfs *ufsvfsp; 3295 struct ulockfs *ulp; 3296 struct ufs_slot slot; 3297 timestruc_t now; 3298 int error; 3299 int issync; 3300 int trans_size; 3301 krwlock_t *first_lock; 3302 krwlock_t *second_lock; 3303 krwlock_t *reverse_lock; 3304 3305 sdp = VTOI(sdvp); 3306 slot.fbp = NULL; 3307 ufsvfsp = sdp->i_ufsvfs; 3308 retry_rename: 3309 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3310 if (error) 3311 goto out; 3312 3313 if (ulp) 3314 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3315 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3316 3317 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3318 tdvp = realvp; 3319 3320 tdp = VTOI(tdvp); 3321 3322 3323 /* 3324 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3325 */ 3326 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3327 error = EINVAL; 3328 goto unlock; 3329 } 3330 3331 /* 3332 * Look up inode of file we're supposed to rename. 3333 */ 3334 gethrestime(&now); 3335 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) { 3336 if (error == EAGAIN) { 3337 if (ulp) { 3338 TRANS_END_CSYNC(ufsvfsp, error, issync, 3339 TOP_RENAME, trans_size); 3340 ufs_lockfs_end(ulp); 3341 } 3342 goto retry_rename; 3343 } 3344 3345 goto unlock; 3346 } 3347 3348 /* 3349 * Lock both the source and target directories (they may be 3350 * the same) to provide the atomicity semantics that was 3351 * previously provided by the per file system vfs_rename_lock 3352 * 3353 * with vfs_rename_lock removed to allow simultaneous renames 3354 * within a file system, ufs_dircheckpath can deadlock while 3355 * traversing back to ensure that source is not a parent directory 3356 * of target parent directory. This is because we get into 3357 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3358 * If the tdp and sdp of the simultaneous renames happen to be 3359 * in the path of each other, it can lead to a deadlock. This 3360 * can be avoided by getting the locks as RW_READER here and then 3361 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3362 * 3363 * We hold the target directory's i_rwlock after calling 3364 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 3365 * VOP_RWLOCK is explicitly called by the filesystem independent code 3366 * before calling the file system operation. In these cases the order 3367 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin 3368 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP 3369 * counter but with ufs_quiesce setting the SLOCK bit this becomes a 3370 * synchronizing object which might lead to a deadlock. So we use 3371 * rw_tryenter instead of rw_enter. If we fail to get this lock and 3372 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the 3373 * operation. 3374 */ 3375 retry: 3376 first_lock = &tdp->i_rwlock; 3377 second_lock = &sdp->i_rwlock; 3378 retry_firstlock: 3379 if (!rw_tryenter(first_lock, RW_READER)) { 3380 /* 3381 * We didn't get the lock. Check if the SLOCK is set in the 3382 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3383 * and wait for SLOCK to be cleared. 3384 */ 3385 3386 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3387 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3388 trans_size); 3389 ufs_lockfs_end(ulp); 3390 goto retry_rename; 3391 3392 } else { 3393 /* 3394 * SLOCK isn't set so this is a genuine synchronization 3395 * case. Let's try again after giving them a breather. 3396 */ 3397 delay(RETRY_LOCK_DELAY); 3398 goto retry_firstlock; 3399 } 3400 } 3401 /* 3402 * Need to check if the tdp and sdp are same !!! 3403 */ 3404 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) { 3405 /* 3406 * We didn't get the lock. Check if the SLOCK is set in the 3407 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3408 * and wait for SLOCK to be cleared. 3409 */ 3410 3411 rw_exit(first_lock); 3412 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3413 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3414 trans_size); 3415 ufs_lockfs_end(ulp); 3416 goto retry_rename; 3417 3418 } else { 3419 /* 3420 * So we couldn't get the second level peer lock *and* 3421 * the SLOCK bit isn't set. Too bad we can be 3422 * contentding with someone wanting these locks otherway 3423 * round. Reverse the locks in case there is a heavy 3424 * contention for the second level lock. 3425 */ 3426 reverse_lock = first_lock; 3427 first_lock = second_lock; 3428 second_lock = reverse_lock; 3429 ufs_rename_retry_cnt++; 3430 goto retry_firstlock; 3431 } 3432 } 3433 3434 if (sip == tdp) { 3435 error = EINVAL; 3436 goto errout; 3437 } 3438 /* 3439 * Make sure we can delete the source entry. This requires 3440 * write permission on the containing directory. 3441 * Check for sticky directories. 3442 */ 3443 rw_enter(&sdp->i_contents, RW_READER); 3444 rw_enter(&sip->i_contents, RW_READER); 3445 if ((error = ufs_iaccess(sdp, IWRITE, cr)) != 0 || 3446 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3447 rw_exit(&sip->i_contents); 3448 rw_exit(&sdp->i_contents); 3449 goto errout; 3450 } 3451 3452 /* 3453 * If this is a rename of a directory and the parent is 3454 * different (".." must be changed), then the source 3455 * directory must not be in the directory hierarchy 3456 * above the target, as this would orphan everything 3457 * below the source directory. Also the user must have 3458 * write permission in the source so as to be able to 3459 * change "..". 3460 */ 3461 if ((((sip->i_mode & IFMT) == IFDIR) || 3462 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3463 ino_t inum; 3464 3465 if ((error = ufs_iaccess(sip, IWRITE, cr))) { 3466 rw_exit(&sip->i_contents); 3467 rw_exit(&sdp->i_contents); 3468 goto errout; 3469 } 3470 inum = sip->i_number; 3471 rw_exit(&sip->i_contents); 3472 rw_exit(&sdp->i_contents); 3473 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3474 /* 3475 * If we got EAGAIN ufs_dircheckpath detected a 3476 * potential deadlock and backed out. We need 3477 * to retry the operation since sdp and tdp have 3478 * to be released to avoid the deadlock. 3479 */ 3480 if (error == EAGAIN) { 3481 rw_exit(&tdp->i_rwlock); 3482 if (tdp != sdp) 3483 rw_exit(&sdp->i_rwlock); 3484 delay(ufs_rename_backoff_delay); 3485 ufs_rename_dircheck_retry_cnt++; 3486 goto retry; 3487 } 3488 goto errout; 3489 } 3490 } else { 3491 rw_exit(&sip->i_contents); 3492 rw_exit(&sdp->i_contents); 3493 } 3494 3495 3496 /* 3497 * Check for renaming '.' or '..' or alias of '.' 3498 */ 3499 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3500 error = EINVAL; 3501 goto errout; 3502 } 3503 3504 /* 3505 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3506 * tries to traverse back the file tree with both tdp and sdp held 3507 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3508 * as RW_READERS till ufs_dircheckpath is done. 3509 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3510 * to RW_WRITER. 3511 */ 3512 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3513 /* 3514 * The upgrade failed. We got to give away the lock 3515 * as to avoid deadlocking with someone else who is 3516 * waiting for writer lock. With the lock gone, we 3517 * cannot be sure the checks done above will hold 3518 * good when we eventually get them back as writer. 3519 * So if we can't upgrade we drop the locks and retry 3520 * everything again. 3521 */ 3522 rw_exit(&tdp->i_rwlock); 3523 if (tdp != sdp) 3524 rw_exit(&sdp->i_rwlock); 3525 delay(ufs_rename_backoff_delay); 3526 ufs_rename_upgrade_retry_cnt++; 3527 goto retry; 3528 } 3529 if (tdp != sdp) { 3530 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3531 /* 3532 * The upgrade failed. We got to give away the lock 3533 * as to avoid deadlocking with someone else who is 3534 * waiting for writer lock. With the lock gone, we 3535 * cannot be sure the checks done above will hold 3536 * good when we eventually get them back as writer. 3537 * So if we can't upgrade we drop the locks and retry 3538 * everything again. 3539 */ 3540 rw_exit(&tdp->i_rwlock); 3541 rw_exit(&sdp->i_rwlock); 3542 delay(ufs_rename_backoff_delay); 3543 ufs_rename_upgrade_retry_cnt++; 3544 goto retry; 3545 } 3546 } 3547 3548 /* 3549 * Now that all the locks are held check to make sure another thread 3550 * didn't slip in and take out the sip. 3551 */ 3552 slot.status = NONE; 3553 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec || 3554 sip->i_ctime.tv_sec > now.tv_sec) { 3555 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER); 3556 rw_enter(&sdp->i_contents, RW_WRITER); 3557 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot, 3558 &ip, cr, 0); 3559 rw_exit(&sdp->i_contents); 3560 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock); 3561 if (error) { 3562 goto errout; 3563 } 3564 if (ip == NULL) { 3565 error = ENOENT; 3566 goto errout; 3567 } else { 3568 /* 3569 * If the inode was found need to drop the v_count 3570 * so as not to keep the filesystem from being 3571 * unmounted at a later time. 3572 */ 3573 VN_RELE(ITOV(ip)); 3574 } 3575 3576 /* 3577 * Release the slot.fbp that has the page mapped and 3578 * locked SE_SHARED, and could be used in in 3579 * ufs_direnter_lr() which needs to get the SE_EXCL lock 3580 * on said page. 3581 */ 3582 if (slot.fbp) { 3583 fbrelse(slot.fbp, S_OTHER); 3584 slot.fbp = NULL; 3585 } 3586 } 3587 3588 /* 3589 * Link source to the target. If a target exists, return its 3590 * vnode pointer in tvp. We'll release it after sending the 3591 * vnevent. 3592 */ 3593 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) { 3594 /* 3595 * ESAME isn't really an error; it indicates that the 3596 * operation should not be done because the source and target 3597 * are the same file, but that no error should be reported. 3598 */ 3599 if (error == ESAME) 3600 error = 0; 3601 goto errout; 3602 } 3603 3604 /* 3605 * Unlink the source. 3606 * Remove the source entry. ufs_dirremove() checks that the entry 3607 * still reflects sip, and returns an error if it doesn't. 3608 * If the entry has changed just forget about it. Release 3609 * the source inode. 3610 */ 3611 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3612 DR_RENAME, cr, NULL)) == ENOENT) 3613 error = 0; 3614 3615 errout: 3616 if (slot.fbp) 3617 fbrelse(slot.fbp, S_OTHER); 3618 3619 rw_exit(&tdp->i_rwlock); 3620 if (sdp != tdp) { 3621 rw_exit(&sdp->i_rwlock); 3622 } 3623 3624 unlock: 3625 if (ulp) { 3626 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3627 ufs_lockfs_end(ulp); 3628 } 3629 3630 /* 3631 * If no errors, send the appropriate events on the source 3632 * and destination (a.k.a, target) vnodes, if they exist. 3633 * This has to be done after the rename transaction has closed. 3634 */ 3635 if (error == 0) { 3636 if (tvp != NULL) 3637 vnevent_rename_dest(tvp, tdvp, tnm, ct); 3638 3639 /* 3640 * Notify the target directory of the rename event 3641 * if source and target directories are not same. 3642 */ 3643 if (sdvp != tdvp) 3644 vnevent_rename_dest_dir(tdvp, ct); 3645 3646 /* 3647 * Note that if ufs_direnter_lr() returned ESAME then 3648 * this event will still be sent. This isn't expected 3649 * to be a problem for anticipated usage by consumers. 3650 */ 3651 if (sip != NULL) 3652 vnevent_rename_src(ITOV(sip), sdvp, snm, ct); 3653 } 3654 3655 if (tvp != NULL) 3656 VN_RELE(tvp); 3657 3658 if (sip != NULL) 3659 VN_RELE(ITOV(sip)); 3660 3661 out: 3662 return (error); 3663 } 3664 3665 /*ARGSUSED*/ 3666 static int 3667 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3668 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags, 3669 vsecattr_t *vsecp) 3670 { 3671 struct inode *ip; 3672 struct inode *xip; 3673 struct ufsvfs *ufsvfsp; 3674 struct ulockfs *ulp; 3675 int error; 3676 int issync; 3677 int trans_size; 3678 int indeadlock; 3679 int retry = 1; 3680 3681 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3682 3683 /* 3684 * Can't make directory in attr hidden dir 3685 */ 3686 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3687 return (EINVAL); 3688 3689 again: 3690 ip = VTOI(dvp); 3691 ufsvfsp = ip->i_ufsvfs; 3692 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3693 if (error) 3694 goto out; 3695 if (ulp) 3696 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3697 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3698 3699 /* 3700 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3701 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3702 * possible, retries the operation. 3703 */ 3704 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry); 3705 if (indeadlock) 3706 goto again; 3707 3708 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3709 (retry ? IQUIET : 0)); 3710 if (error == EAGAIN) { 3711 if (ulp) { 3712 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR, 3713 trans_size); 3714 ufs_lockfs_end(ulp); 3715 } 3716 goto again; 3717 } 3718 3719 rw_exit(&ip->i_rwlock); 3720 if (error == 0) { 3721 ip = xip; 3722 *vpp = ITOV(ip); 3723 } else if (error == EEXIST) 3724 VN_RELE(ITOV(xip)); 3725 3726 if (ulp) { 3727 int terr = 0; 3728 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3729 ufs_lockfs_end(ulp); 3730 if (error == 0) 3731 error = terr; 3732 } 3733 out: 3734 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3735 ufs_delete_drain_wait(ufsvfsp, 1); 3736 retry = 0; 3737 goto again; 3738 } 3739 3740 return (error); 3741 } 3742 3743 /*ARGSUSED*/ 3744 static int 3745 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr, 3746 caller_context_t *ct, int flags) 3747 { 3748 struct inode *ip = VTOI(vp); 3749 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3750 struct ulockfs *ulp; 3751 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3752 int error; 3753 int issync; 3754 int trans_size; 3755 int indeadlock; 3756 3757 /* 3758 * don't let the delete queue get too long 3759 */ 3760 if (ufsvfsp == NULL) { 3761 error = EIO; 3762 goto out; 3763 } 3764 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3765 ufs_delete_drain(vp->v_vfsp, 1, 1); 3766 3767 retry_rmdir: 3768 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3769 if (error) 3770 goto out; 3771 3772 if (ulp) 3773 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, 3774 trans_size = TOP_RMDIR_SIZE); 3775 3776 /* 3777 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3778 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3779 * possible, retries the operation. 3780 */ 3781 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry); 3782 if (indeadlock) 3783 goto retry_rmdir; 3784 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr, 3785 &rmvp); 3786 rw_exit(&ip->i_rwlock); 3787 3788 if (ulp) { 3789 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3790 trans_size); 3791 ufs_lockfs_end(ulp); 3792 } 3793 3794 /* 3795 * This must be done AFTER the rmdir transaction has closed. 3796 */ 3797 if (rmvp != NULL) { 3798 /* Only send the event if there were no errors */ 3799 if (error == 0) 3800 vnevent_rmdir(rmvp, vp, nm, ct); 3801 VN_RELE(rmvp); 3802 } 3803 out: 3804 return (error); 3805 } 3806 3807 /* ARGSUSED */ 3808 static int 3809 ufs_readdir( 3810 struct vnode *vp, 3811 struct uio *uiop, 3812 struct cred *cr, 3813 int *eofp, 3814 caller_context_t *ct, 3815 int flags) 3816 { 3817 struct iovec *iovp; 3818 struct inode *ip; 3819 struct direct *idp; 3820 struct dirent64 *odp; 3821 struct fbuf *fbp; 3822 struct ufsvfs *ufsvfsp; 3823 struct ulockfs *ulp; 3824 caddr_t outbuf; 3825 size_t bufsize; 3826 uint_t offset; 3827 uint_t bytes_wanted, total_bytes_wanted; 3828 int incount = 0; 3829 int outcount = 0; 3830 int error; 3831 3832 ip = VTOI(vp); 3833 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3834 3835 if (uiop->uio_loffset >= MAXOFF32_T) { 3836 if (eofp) 3837 *eofp = 1; 3838 return (0); 3839 } 3840 3841 /* 3842 * Check if we have been called with a valid iov_len 3843 * and bail out if not, otherwise we may potentially loop 3844 * forever further down. 3845 */ 3846 if (uiop->uio_iov->iov_len <= 0) { 3847 error = EINVAL; 3848 goto out; 3849 } 3850 3851 /* 3852 * Large Files: When we come here we are guaranteed that 3853 * uio_offset can be used safely. The high word is zero. 3854 */ 3855 3856 ufsvfsp = ip->i_ufsvfs; 3857 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3858 if (error) 3859 goto out; 3860 3861 iovp = uiop->uio_iov; 3862 total_bytes_wanted = iovp->iov_len; 3863 3864 /* Large Files: directory files should not be "large" */ 3865 3866 ASSERT(ip->i_size <= MAXOFF32_T); 3867 3868 /* Force offset to be valid (to guard against bogus lseek() values) */ 3869 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3870 3871 /* Quit if at end of file or link count of zero (posix) */ 3872 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3873 if (eofp) 3874 *eofp = 1; 3875 error = 0; 3876 goto unlock; 3877 } 3878 3879 /* 3880 * Get space to change directory entries into fs independent format. 3881 * Do fast alloc for the most commonly used-request size (filesystem 3882 * block size). 3883 */ 3884 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3885 bufsize = total_bytes_wanted; 3886 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3887 odp = (struct dirent64 *)outbuf; 3888 } else { 3889 bufsize = total_bytes_wanted; 3890 odp = (struct dirent64 *)iovp->iov_base; 3891 } 3892 3893 nextblk: 3894 bytes_wanted = total_bytes_wanted; 3895 3896 /* Truncate request to file size */ 3897 if (offset + bytes_wanted > (int)ip->i_size) 3898 bytes_wanted = (int)(ip->i_size - offset); 3899 3900 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3901 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3902 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3903 3904 /* 3905 * Read in the next chunk. 3906 * We are still holding the i_rwlock. 3907 */ 3908 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3909 3910 if (error) 3911 goto update_inode; 3912 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3913 (!ufsvfsp->vfs_noatime)) { 3914 ip->i_flag |= IACC; 3915 } 3916 incount = 0; 3917 idp = (struct direct *)fbp->fb_addr; 3918 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) { 3919 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3920 "fs = %s\n", 3921 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 3922 fbrelse(fbp, S_OTHER); 3923 error = ENXIO; 3924 goto update_inode; 3925 } 3926 /* Transform to file-system independent format */ 3927 while (incount < bytes_wanted) { 3928 /* 3929 * If the current directory entry is mangled, then skip 3930 * to the next block. It would be nice to set the FSBAD 3931 * flag in the super-block so that a fsck is forced on 3932 * next reboot, but locking is a problem. 3933 */ 3934 if (idp->d_reclen & 0x3) { 3935 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3936 break; 3937 } 3938 3939 /* Skip to requested offset and skip empty entries */ 3940 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 3941 ushort_t this_reclen = 3942 DIRENT64_RECLEN(idp->d_namlen); 3943 /* Buffer too small for any entries */ 3944 if (!outcount && this_reclen > bufsize) { 3945 fbrelse(fbp, S_OTHER); 3946 error = EINVAL; 3947 goto update_inode; 3948 } 3949 /* If would overrun the buffer, quit */ 3950 if (outcount + this_reclen > bufsize) { 3951 break; 3952 } 3953 /* Take this entry */ 3954 odp->d_ino = (ino64_t)idp->d_ino; 3955 odp->d_reclen = (ushort_t)this_reclen; 3956 odp->d_off = (offset_t)(offset + idp->d_reclen); 3957 3958 /* use strncpy(9f) to zero out uninitialized bytes */ 3959 3960 ASSERT(strlen(idp->d_name) + 1 <= 3961 DIRENT64_NAMELEN(this_reclen)); 3962 (void) strncpy(odp->d_name, idp->d_name, 3963 DIRENT64_NAMELEN(this_reclen)); 3964 outcount += odp->d_reclen; 3965 odp = (struct dirent64 *) 3966 ((intptr_t)odp + odp->d_reclen); 3967 ASSERT(outcount <= bufsize); 3968 } 3969 if (idp->d_reclen) { 3970 incount += idp->d_reclen; 3971 offset += idp->d_reclen; 3972 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 3973 } else { 3974 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3975 break; 3976 } 3977 } 3978 /* Release the chunk */ 3979 fbrelse(fbp, S_OTHER); 3980 3981 /* Read whole block, but got no entries, read another if not eof */ 3982 3983 /* 3984 * Large Files: casting i_size to int here is not a problem 3985 * because directory sizes are always less than MAXOFF32_T. 3986 * See assertion above. 3987 */ 3988 3989 if (offset < (int)ip->i_size && !outcount) 3990 goto nextblk; 3991 3992 /* Copy out the entry data */ 3993 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 3994 iovp->iov_base += outcount; 3995 iovp->iov_len -= outcount; 3996 uiop->uio_resid -= outcount; 3997 uiop->uio_offset = offset; 3998 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 3999 uiop)) == 0) 4000 uiop->uio_offset = offset; 4001 update_inode: 4002 ITIMES(ip); 4003 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 4004 kmem_free(outbuf, bufsize); 4005 4006 if (eofp && error == 0) 4007 *eofp = (uiop->uio_offset >= (int)ip->i_size); 4008 unlock: 4009 if (ulp) { 4010 ufs_lockfs_end(ulp); 4011 } 4012 out: 4013 return (error); 4014 } 4015 4016 /*ARGSUSED*/ 4017 static int 4018 ufs_symlink( 4019 struct vnode *dvp, /* ptr to parent dir vnode */ 4020 char *linkname, /* name of symbolic link */ 4021 struct vattr *vap, /* attributes */ 4022 char *target, /* target path */ 4023 struct cred *cr, /* user credentials */ 4024 caller_context_t *ct, 4025 int flags) 4026 { 4027 struct inode *ip, *dip = VTOI(dvp); 4028 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 4029 struct ulockfs *ulp; 4030 int error; 4031 int issync; 4032 int trans_size; 4033 int residual; 4034 int ioflag; 4035 int retry = 1; 4036 4037 /* 4038 * No symlinks in attrdirs at this time 4039 */ 4040 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 4041 return (EINVAL); 4042 4043 again: 4044 ip = (struct inode *)NULL; 4045 vap->va_type = VLNK; 4046 vap->va_rdev = 0; 4047 4048 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 4049 if (error) 4050 goto out; 4051 4052 if (ulp) 4053 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 4054 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 4055 4056 /* 4057 * We must create the inode before the directory entry, to avoid 4058 * racing with readlink(). ufs_dirmakeinode requires that we 4059 * hold the quota lock as reader, and directory locks as writer. 4060 */ 4061 4062 rw_enter(&dip->i_rwlock, RW_WRITER); 4063 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4064 rw_enter(&dip->i_contents, RW_WRITER); 4065 4066 /* 4067 * Suppress any out of inodes messages if we will retry on 4068 * ENOSP 4069 */ 4070 if (retry) 4071 dip->i_flag |= IQUIET; 4072 4073 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 4074 4075 dip->i_flag &= ~IQUIET; 4076 4077 rw_exit(&dip->i_contents); 4078 rw_exit(&ufsvfsp->vfs_dqrwlock); 4079 rw_exit(&dip->i_rwlock); 4080 4081 if (error) 4082 goto unlock; 4083 4084 /* 4085 * OK. The inode has been created. Write out the data of the 4086 * symbolic link. Since symbolic links are metadata, and should 4087 * remain consistent across a system crash, we need to force the 4088 * data out synchronously. 4089 * 4090 * (This is a change from the semantics in earlier releases, which 4091 * only created symbolic links synchronously if the semi-documented 4092 * 'syncdir' option was set, or if we were being invoked by the NFS 4093 * server, which requires symbolic links to be created synchronously.) 4094 * 4095 * We need to pass in a pointer for the residual length; otherwise 4096 * ufs_rdwri() will always return EIO if it can't write the data, 4097 * even if the error was really ENOSPC or EDQUOT. 4098 */ 4099 4100 ioflag = FWRITE | FDSYNC; 4101 residual = 0; 4102 4103 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4104 rw_enter(&ip->i_contents, RW_WRITER); 4105 4106 /* 4107 * Suppress file system full messages if we will retry 4108 */ 4109 if (retry) 4110 ip->i_flag |= IQUIET; 4111 4112 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 4113 (offset_t)0, UIO_SYSSPACE, &residual, cr); 4114 4115 ip->i_flag &= ~IQUIET; 4116 4117 if (error) { 4118 rw_exit(&ip->i_contents); 4119 rw_exit(&ufsvfsp->vfs_dqrwlock); 4120 goto remove; 4121 } 4122 4123 /* 4124 * If the link's data is small enough, we can cache it in the inode. 4125 * This is a "fast symbolic link". We don't use the first direct 4126 * block because that's actually used to point at the symbolic link's 4127 * contents on disk; but we know that none of the other direct or 4128 * indirect blocks can be used because symbolic links are restricted 4129 * to be smaller than a file system block. 4130 */ 4131 4132 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 4133 4134 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 4135 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 4136 ip->i_flag |= IFASTSYMLNK; 4137 } else { 4138 int i; 4139 /* error, clear garbage left behind */ 4140 for (i = 1; i < NDADDR; i++) 4141 ip->i_db[i] = 0; 4142 for (i = 0; i < NIADDR; i++) 4143 ip->i_ib[i] = 0; 4144 } 4145 } 4146 4147 rw_exit(&ip->i_contents); 4148 rw_exit(&ufsvfsp->vfs_dqrwlock); 4149 4150 /* 4151 * OK. We've successfully created the symbolic link. All that 4152 * remains is to insert it into the appropriate directory. 4153 */ 4154 4155 rw_enter(&dip->i_rwlock, RW_WRITER); 4156 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL); 4157 rw_exit(&dip->i_rwlock); 4158 4159 /* 4160 * Fall through into remove-on-error code. We're either done, or we 4161 * need to remove the inode (if we couldn't insert it). 4162 */ 4163 4164 remove: 4165 if (error && (ip != NULL)) { 4166 rw_enter(&ip->i_contents, RW_WRITER); 4167 ip->i_nlink--; 4168 ip->i_flag |= ICHG; 4169 ip->i_seq++; 4170 ufs_setreclaim(ip); 4171 rw_exit(&ip->i_contents); 4172 } 4173 4174 unlock: 4175 if (ip != NULL) 4176 VN_RELE(ITOV(ip)); 4177 4178 if (ulp) { 4179 int terr = 0; 4180 4181 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 4182 trans_size); 4183 ufs_lockfs_end(ulp); 4184 if (error == 0) 4185 error = terr; 4186 } 4187 4188 /* 4189 * We may have failed due to lack of an inode or of a block to 4190 * store the target in. Try flushing the delete queue to free 4191 * logically-available things up and try again. 4192 */ 4193 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 4194 ufs_delete_drain_wait(ufsvfsp, 1); 4195 retry = 0; 4196 goto again; 4197 } 4198 4199 out: 4200 return (error); 4201 } 4202 4203 /* 4204 * Ufs specific routine used to do ufs io. 4205 */ 4206 int 4207 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 4208 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 4209 struct cred *cr) 4210 { 4211 struct uio auio; 4212 struct iovec aiov; 4213 int error; 4214 4215 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4216 4217 bzero((caddr_t)&auio, sizeof (uio_t)); 4218 bzero((caddr_t)&aiov, sizeof (iovec_t)); 4219 4220 aiov.iov_base = base; 4221 aiov.iov_len = len; 4222 auio.uio_iov = &aiov; 4223 auio.uio_iovcnt = 1; 4224 auio.uio_loffset = offset; 4225 auio.uio_segflg = (short)seg; 4226 auio.uio_resid = len; 4227 4228 if (rw == UIO_WRITE) { 4229 auio.uio_fmode = FWRITE; 4230 auio.uio_extflg = UIO_COPY_DEFAULT; 4231 auio.uio_llimit = curproc->p_fsz_ctl; 4232 error = wrip(ip, &auio, ioflag, cr); 4233 } else { 4234 auio.uio_fmode = FREAD; 4235 auio.uio_extflg = UIO_COPY_CACHED; 4236 auio.uio_llimit = MAXOFFSET_T; 4237 error = rdip(ip, &auio, ioflag, cr); 4238 } 4239 4240 if (aresid) { 4241 *aresid = auio.uio_resid; 4242 } else if (auio.uio_resid) { 4243 error = EIO; 4244 } 4245 return (error); 4246 } 4247 4248 /*ARGSUSED*/ 4249 static int 4250 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 4251 { 4252 struct ufid *ufid; 4253 struct inode *ip = VTOI(vp); 4254 4255 if (ip->i_ufsvfs == NULL) 4256 return (EIO); 4257 4258 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4259 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4260 return (ENOSPC); 4261 } 4262 4263 ufid = (struct ufid *)fidp; 4264 bzero((char *)ufid, sizeof (struct ufid)); 4265 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4266 ufid->ufid_ino = ip->i_number; 4267 ufid->ufid_gen = ip->i_gen; 4268 4269 return (0); 4270 } 4271 4272 /* ARGSUSED2 */ 4273 static int 4274 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4275 { 4276 struct inode *ip = VTOI(vp); 4277 struct ufsvfs *ufsvfsp; 4278 int forcedirectio; 4279 4280 /* 4281 * Read case is easy. 4282 */ 4283 if (!write_lock) { 4284 rw_enter(&ip->i_rwlock, RW_READER); 4285 return (V_WRITELOCK_FALSE); 4286 } 4287 4288 /* 4289 * Caller has requested a writer lock, but that inhibits any 4290 * concurrency in the VOPs that follow. Acquire the lock shared 4291 * and defer exclusive access until it is known to be needed in 4292 * other VOP handlers. Some cases can be determined here. 4293 */ 4294 4295 /* 4296 * If directio is not set, there is no chance of concurrency, 4297 * so just acquire the lock exclusive. Beware of a forced 4298 * unmount before looking at the mount option. 4299 */ 4300 ufsvfsp = ip->i_ufsvfs; 4301 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4302 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4303 !ufs_allow_shared_writes) { 4304 rw_enter(&ip->i_rwlock, RW_WRITER); 4305 return (V_WRITELOCK_TRUE); 4306 } 4307 4308 /* 4309 * Mandatory locking forces acquiring i_rwlock exclusive. 4310 */ 4311 if (MANDLOCK(vp, ip->i_mode)) { 4312 rw_enter(&ip->i_rwlock, RW_WRITER); 4313 return (V_WRITELOCK_TRUE); 4314 } 4315 4316 /* 4317 * Acquire the lock shared in case a concurrent write follows. 4318 * Mandatory locking could have become enabled before the lock 4319 * was acquired. Re-check and upgrade if needed. 4320 */ 4321 rw_enter(&ip->i_rwlock, RW_READER); 4322 if (MANDLOCK(vp, ip->i_mode)) { 4323 rw_exit(&ip->i_rwlock); 4324 rw_enter(&ip->i_rwlock, RW_WRITER); 4325 return (V_WRITELOCK_TRUE); 4326 } 4327 return (V_WRITELOCK_FALSE); 4328 } 4329 4330 /*ARGSUSED*/ 4331 static void 4332 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4333 { 4334 struct inode *ip = VTOI(vp); 4335 4336 rw_exit(&ip->i_rwlock); 4337 } 4338 4339 /* ARGSUSED */ 4340 static int 4341 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, 4342 caller_context_t *ct) 4343 { 4344 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4345 } 4346 4347 /* ARGSUSED */ 4348 static int 4349 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4350 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr, 4351 caller_context_t *ct) 4352 { 4353 struct inode *ip = VTOI(vp); 4354 4355 if (ip->i_ufsvfs == NULL) 4356 return (EIO); 4357 4358 /* 4359 * If file is being mapped, disallow frlock. 4360 * XXX I am not holding tlock while checking i_mapcnt because the 4361 * current locking strategy drops all locks before calling fs_frlock. 4362 * So, mapcnt could change before we enter fs_frlock making is 4363 * meaningless to have held tlock in the first place. 4364 */ 4365 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4366 return (EAGAIN); 4367 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4368 } 4369 4370 /* ARGSUSED */ 4371 static int 4372 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4373 offset_t offset, cred_t *cr, caller_context_t *ct) 4374 { 4375 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4376 struct ulockfs *ulp; 4377 int error; 4378 4379 if ((error = convoff(vp, bfp, 0, offset)) == 0) { 4380 if (cmd == F_FREESP) { 4381 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4382 ULOCKFS_SPACE_MASK); 4383 if (error) 4384 return (error); 4385 error = ufs_freesp(vp, bfp, flag, cr); 4386 } else if (cmd == F_ALLOCSP) { 4387 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4388 ULOCKFS_FALLOCATE_MASK); 4389 if (error) 4390 return (error); 4391 error = ufs_allocsp(vp, bfp, cr); 4392 } else 4393 return (EINVAL); /* Command not handled here */ 4394 4395 if (ulp) 4396 ufs_lockfs_end(ulp); 4397 4398 } 4399 return (error); 4400 } 4401 4402 /* 4403 * Used to determine if read ahead should be done. Also used to 4404 * to determine when write back occurs. 4405 */ 4406 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4407 4408 /* 4409 * A faster version of ufs_getpage. 4410 * 4411 * We optimize by inlining the pvn_getpages iterator, eliminating 4412 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4413 * the overhead of page_exists(). 4414 * 4415 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4416 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4417 * victimizes performance when a file with UFS holes is faulted 4418 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4419 * two MMU faults in this case. 4420 * 4421 * XXX - the inode fields which control the sequential mode are not 4422 * protected by any mutex. The read ahead will act wild if 4423 * multiple processes will access the file concurrently and 4424 * some of them in sequential mode. One particulary bad case 4425 * is if another thread will change the value of i_nextrio between 4426 * the time this thread tests the i_nextrio value and then reads it 4427 * again to use it as the offset for the read ahead. 4428 */ 4429 /*ARGSUSED*/ 4430 static int 4431 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4432 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4433 enum seg_rw rw, struct cred *cr, caller_context_t *ct) 4434 { 4435 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4436 u_offset_t pgoff; 4437 u_offset_t eoff; 4438 struct inode *ip = VTOI(vp); 4439 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4440 struct fs *fs; 4441 struct ulockfs *ulp; 4442 page_t **pl; 4443 caddr_t pgaddr; 4444 krw_t rwtype; 4445 int err; 4446 int has_holes; 4447 int beyond_eof; 4448 int seqmode; 4449 int pgsize = PAGESIZE; 4450 int dolock; 4451 int do_qlock; 4452 int trans_size; 4453 4454 ASSERT((uoff & PAGEOFFSET) == 0); 4455 4456 if (protp) 4457 *protp = PROT_ALL; 4458 4459 /* 4460 * Obey the lockfs protocol 4461 */ 4462 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4463 rw == S_READ || rw == S_EXEC, protp); 4464 if (err) 4465 goto out; 4466 4467 fs = ufsvfsp->vfs_fs; 4468 4469 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4470 !(vp->v_flag & VISSWAP)) { 4471 /* 4472 * Try to start a transaction, will return if blocking is 4473 * expected to occur and the address space is not the 4474 * kernel address space. 4475 */ 4476 trans_size = TOP_GETPAGE_SIZE(ip); 4477 if (seg->s_as != &kas) { 4478 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4479 trans_size, err) 4480 if (err == EWOULDBLOCK) { 4481 /* 4482 * Use EDEADLK here because the VM code 4483 * can normally never see this error. 4484 */ 4485 err = EDEADLK; 4486 ufs_lockfs_end(ulp); 4487 goto out; 4488 } 4489 } else { 4490 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4491 } 4492 } 4493 4494 if (vp->v_flag & VNOMAP) { 4495 err = ENOSYS; 4496 goto unlock; 4497 } 4498 4499 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4500 4501 rwtype = RW_READER; /* start as a reader */ 4502 dolock = (rw_owner(&ip->i_contents) != curthread); 4503 /* 4504 * If this thread owns the lock, i.e., this thread grabbed it 4505 * as writer somewhere above, then we don't need to grab the 4506 * lock as reader in this routine. 4507 */ 4508 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4509 4510 retrylock: 4511 if (dolock) { 4512 /* 4513 * Grab the quota lock if we need to call 4514 * bmap_write() below (with i_contents as writer). 4515 */ 4516 if (do_qlock && rwtype == RW_WRITER) 4517 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4518 rw_enter(&ip->i_contents, rwtype); 4519 } 4520 4521 /* 4522 * We may be getting called as a side effect of a bmap using 4523 * fbread() when the blocks might be being allocated and the 4524 * size has not yet been up'ed. In this case we want to be 4525 * able to return zero pages if we get back UFS_HOLE from 4526 * calling bmap for a non write case here. We also might have 4527 * to read some frags from the disk into a page if we are 4528 * extending the number of frags for a given lbn in bmap(). 4529 * Large Files: The read of i_size here is atomic because 4530 * i_contents is held here. If dolock is zero, the lock 4531 * is held in bmap routines. 4532 */ 4533 beyond_eof = uoff + len > ip->i_size + PAGEOFFSET; 4534 if (beyond_eof && seg != segkmap) { 4535 if (dolock) { 4536 rw_exit(&ip->i_contents); 4537 if (do_qlock && rwtype == RW_WRITER) 4538 rw_exit(&ufsvfsp->vfs_dqrwlock); 4539 } 4540 err = EFAULT; 4541 goto unlock; 4542 } 4543 4544 /* 4545 * Must hold i_contents lock throughout the call to pvn_getpages 4546 * since locked pages are returned from each call to ufs_getapage. 4547 * Must *not* return locked pages and then try for contents lock 4548 * due to lock ordering requirements (inode > page) 4549 */ 4550 4551 has_holes = bmap_has_holes(ip); 4552 4553 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4554 int blk_size; 4555 u_offset_t offset; 4556 4557 /* 4558 * We must acquire the RW_WRITER lock in order to 4559 * call bmap_write(). 4560 */ 4561 if (dolock && rwtype == RW_READER) { 4562 rwtype = RW_WRITER; 4563 4564 /* 4565 * Grab the quota lock before 4566 * upgrading i_contents, but if we can't grab it 4567 * don't wait here due to lock order: 4568 * vfs_dqrwlock > i_contents. 4569 */ 4570 if (do_qlock && 4571 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER) 4572 == 0) { 4573 rw_exit(&ip->i_contents); 4574 goto retrylock; 4575 } 4576 if (!rw_tryupgrade(&ip->i_contents)) { 4577 rw_exit(&ip->i_contents); 4578 if (do_qlock) 4579 rw_exit(&ufsvfsp->vfs_dqrwlock); 4580 goto retrylock; 4581 } 4582 } 4583 4584 /* 4585 * May be allocating disk blocks for holes here as 4586 * a result of mmap faults. write(2) does the bmap_write 4587 * in rdip/wrip, not here. We are not dealing with frags 4588 * in this case. 4589 */ 4590 /* 4591 * Large Files: We cast fs_bmask field to offset_t 4592 * just as we do for MAXBMASK because uoff is a 64-bit 4593 * data type. fs_bmask will still be a 32-bit type 4594 * as we cannot change any ondisk data structures. 4595 */ 4596 4597 offset = uoff & (offset_t)fs->fs_bmask; 4598 while (offset < uoff + len) { 4599 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4600 err = bmap_write(ip, offset, blk_size, 4601 BI_NORMAL, NULL, cr); 4602 if (ip->i_flag & (ICHG|IUPD)) 4603 ip->i_seq++; 4604 if (err) 4605 goto update_inode; 4606 offset += blk_size; /* XXX - make this contig */ 4607 } 4608 } 4609 4610 /* 4611 * Can be a reader from now on. 4612 */ 4613 if (dolock && rwtype == RW_WRITER) { 4614 rw_downgrade(&ip->i_contents); 4615 /* 4616 * We can release vfs_dqrwlock early so do it, but make 4617 * sure we don't try to release it again at the bottom. 4618 */ 4619 if (do_qlock) { 4620 rw_exit(&ufsvfsp->vfs_dqrwlock); 4621 do_qlock = 0; 4622 } 4623 } 4624 4625 /* 4626 * We remove PROT_WRITE in cases when the file has UFS holes 4627 * because we don't want to call bmap_read() to check each 4628 * page if it is backed with a disk block. 4629 */ 4630 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4631 *protp &= ~PROT_WRITE; 4632 4633 err = 0; 4634 4635 /* 4636 * The loop looks up pages in the range [off, off + len). 4637 * For each page, we first check if we should initiate an asynchronous 4638 * read ahead before we call page_lookup (we may sleep in page_lookup 4639 * for a previously initiated disk read). 4640 */ 4641 eoff = (uoff + len); 4642 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4643 pgoff < eoff; /* empty */) { 4644 page_t *pp; 4645 u_offset_t nextrio; 4646 se_t se; 4647 int retval; 4648 4649 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4650 4651 /* Handle async getpage (faultahead) */ 4652 if (plarr == NULL) { 4653 ip->i_nextrio = pgoff; 4654 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4655 pgoff += pgsize; 4656 pgaddr += pgsize; 4657 continue; 4658 } 4659 /* 4660 * Check if we should initiate read ahead of next cluster. 4661 * We call page_exists only when we need to confirm that 4662 * we have the current page before we initiate the read ahead. 4663 */ 4664 nextrio = ip->i_nextrio; 4665 if (seqmode && 4666 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4667 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4668 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4669 /* 4670 * We always read ahead the next cluster of data 4671 * starting from i_nextrio. If the page (vp,nextrio) 4672 * is actually in core at this point, the routine 4673 * ufs_getpage_ra() will stop pre-fetching data 4674 * until we read that page in a synchronized manner 4675 * through ufs_getpage_miss(). So, we should increase 4676 * i_nextrio if the page (vp, nextrio) exists. 4677 */ 4678 if ((retval == 0) && page_exists(vp, nextrio)) { 4679 ip->i_nextrio = nextrio + pgsize; 4680 } 4681 } 4682 4683 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4684 /* 4685 * We found the page in the page cache. 4686 */ 4687 *pl++ = pp; 4688 pgoff += pgsize; 4689 pgaddr += pgsize; 4690 len -= pgsize; 4691 plsz -= pgsize; 4692 } else { 4693 /* 4694 * We have to create the page, or read it from disk. 4695 */ 4696 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4697 pl, plsz, rw, seqmode)) 4698 goto error; 4699 4700 while (*pl != NULL) { 4701 pl++; 4702 pgoff += pgsize; 4703 pgaddr += pgsize; 4704 len -= pgsize; 4705 plsz -= pgsize; 4706 } 4707 } 4708 } 4709 4710 /* 4711 * Return pages up to plsz if they are in the page cache. 4712 * We cannot return pages if there is a chance that they are 4713 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4714 */ 4715 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4716 4717 ASSERT((protp == NULL) || 4718 !(has_holes && (*protp & PROT_WRITE))); 4719 4720 eoff = pgoff + plsz; 4721 while (pgoff < eoff) { 4722 page_t *pp; 4723 4724 if ((pp = page_lookup_nowait(vp, pgoff, 4725 SE_SHARED)) == NULL) 4726 break; 4727 4728 *pl++ = pp; 4729 pgoff += pgsize; 4730 plsz -= pgsize; 4731 } 4732 } 4733 4734 if (plarr) 4735 *pl = NULL; /* Terminate page list */ 4736 ip->i_nextr = pgoff; 4737 4738 error: 4739 if (err && plarr) { 4740 /* 4741 * Release any pages we have locked. 4742 */ 4743 while (pl > &plarr[0]) 4744 page_unlock(*--pl); 4745 4746 plarr[0] = NULL; 4747 } 4748 4749 update_inode: 4750 /* 4751 * If the inode is not already marked for IACC (in rdip() for read) 4752 * and the inode is not marked for no access time update (in wrip() 4753 * for write) then update the inode access time and mod time now. 4754 */ 4755 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4756 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4757 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4758 (fs->fs_ronly == 0) && 4759 (!ufsvfsp->vfs_noatime)) { 4760 mutex_enter(&ip->i_tlock); 4761 ip->i_flag |= IACC; 4762 ITIMES_NOLOCK(ip); 4763 mutex_exit(&ip->i_tlock); 4764 } 4765 } 4766 } 4767 4768 if (dolock) { 4769 rw_exit(&ip->i_contents); 4770 if (do_qlock && rwtype == RW_WRITER) 4771 rw_exit(&ufsvfsp->vfs_dqrwlock); 4772 } 4773 4774 unlock: 4775 if (ulp) { 4776 if ((rw == S_CREATE || rw == S_WRITE) && 4777 !(vp->v_flag & VISSWAP)) { 4778 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4779 } 4780 ufs_lockfs_end(ulp); 4781 } 4782 out: 4783 return (err); 4784 } 4785 4786 /* 4787 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4788 * cache. The page is either read from the disk, or it's created. 4789 * A page is created (without disk read) if rw == S_CREATE, or if 4790 * the page is not backed with a real disk block (UFS hole). 4791 */ 4792 /* ARGSUSED */ 4793 static int 4794 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4795 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4796 { 4797 struct inode *ip = VTOI(vp); 4798 page_t *pp; 4799 daddr_t bn; 4800 size_t io_len; 4801 int crpage = 0; 4802 int err; 4803 int contig; 4804 int bsize = ip->i_fs->fs_bsize; 4805 4806 /* 4807 * Figure out whether the page can be created, or must be 4808 * must be read from the disk. 4809 */ 4810 if (rw == S_CREATE) 4811 crpage = 1; 4812 else { 4813 contig = 0; 4814 if (err = bmap_read(ip, off, &bn, &contig)) 4815 return (err); 4816 4817 crpage = (bn == UFS_HOLE); 4818 4819 /* 4820 * If its also a fallocated block that hasn't been written to 4821 * yet, we will treat it just like a UFS_HOLE and create 4822 * a zero page for it 4823 */ 4824 if (ISFALLOCBLK(ip, bn)) 4825 crpage = 1; 4826 } 4827 4828 if (crpage) { 4829 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4830 addr)) == NULL) { 4831 return (ufs_fault(vp, 4832 "ufs_getpage_miss: page_create == NULL")); 4833 } 4834 4835 if (rw != S_CREATE) 4836 pagezero(pp, 0, PAGESIZE); 4837 4838 io_len = PAGESIZE; 4839 } else { 4840 u_offset_t io_off; 4841 uint_t xlen; 4842 struct buf *bp; 4843 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4844 4845 /* 4846 * If access is not in sequential order, we read from disk 4847 * in bsize units. 4848 * 4849 * We limit the size of the transfer to bsize if we are reading 4850 * from the beginning of the file. Note in this situation we 4851 * will hedge our bets and initiate an async read ahead of 4852 * the second block. 4853 */ 4854 if (!seq || off == 0) 4855 contig = MIN(contig, bsize); 4856 4857 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4858 &io_len, off, contig, 0); 4859 4860 /* 4861 * Some other thread has entered the page. 4862 * ufs_getpage will retry page_lookup. 4863 */ 4864 if (pp == NULL) { 4865 pl[0] = NULL; 4866 return (0); 4867 } 4868 4869 /* 4870 * Zero part of the page which we are not 4871 * going to read from the disk. 4872 */ 4873 xlen = io_len & PAGEOFFSET; 4874 if (xlen != 0) 4875 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4876 4877 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4878 bp->b_edev = ip->i_dev; 4879 bp->b_dev = cmpdev(ip->i_dev); 4880 bp->b_blkno = bn; 4881 bp->b_un.b_addr = (caddr_t)0; 4882 bp->b_file = ip->i_vnode; 4883 bp->b_offset = off; 4884 4885 if (ufsvfsp->vfs_log) { 4886 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4887 } else if (ufsvfsp->vfs_snapshot) { 4888 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4889 } else { 4890 ufsvfsp->vfs_iotstamp = lbolt; 4891 ub.ub_getpages.value.ul++; 4892 (void) bdev_strategy(bp); 4893 lwp_stat_update(LWP_STAT_INBLK, 1); 4894 } 4895 4896 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4897 4898 /* 4899 * If the file access is sequential, initiate read ahead 4900 * of the next cluster. 4901 */ 4902 if (seq && ip->i_nextrio < ip->i_size) 4903 (void) ufs_getpage_ra(vp, off, seg, addr); 4904 err = biowait(bp); 4905 pageio_done(bp); 4906 4907 if (err) { 4908 pvn_read_done(pp, B_ERROR); 4909 return (err); 4910 } 4911 } 4912 4913 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4914 return (0); 4915 } 4916 4917 /* 4918 * Read ahead a cluster from the disk. Returns the length in bytes. 4919 */ 4920 static int 4921 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 4922 { 4923 struct inode *ip = VTOI(vp); 4924 page_t *pp; 4925 u_offset_t io_off = ip->i_nextrio; 4926 ufsvfs_t *ufsvfsp; 4927 caddr_t addr2 = addr + (io_off - off); 4928 struct buf *bp; 4929 daddr_t bn; 4930 size_t io_len; 4931 int err; 4932 int contig; 4933 int xlen; 4934 int bsize = ip->i_fs->fs_bsize; 4935 4936 /* 4937 * If the directio advisory is in effect on this file, 4938 * then do not do buffered read ahead. Read ahead makes 4939 * it more difficult on threads using directio as they 4940 * will be forced to flush the pages from this vnode. 4941 */ 4942 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 4943 return (0); 4944 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 4945 return (0); 4946 4947 /* 4948 * Is this test needed? 4949 */ 4950 if (addr2 >= seg->s_base + seg->s_size) 4951 return (0); 4952 4953 contig = 0; 4954 err = bmap_read(ip, io_off, &bn, &contig); 4955 /* 4956 * If its a UFS_HOLE or a fallocated block, do not perform 4957 * any read ahead's since there probably is nothing to read ahead 4958 */ 4959 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn)) 4960 return (0); 4961 4962 /* 4963 * Limit the transfer size to bsize if this is the 2nd block. 4964 */ 4965 if (io_off == (u_offset_t)bsize) 4966 contig = MIN(contig, bsize); 4967 4968 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 4969 &io_len, io_off, contig, 1)) == NULL) 4970 return (0); 4971 4972 /* 4973 * Zero part of page which we are not going to read from disk 4974 */ 4975 if ((xlen = (io_len & PAGEOFFSET)) > 0) 4976 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4977 4978 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 4979 4980 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 4981 bp->b_edev = ip->i_dev; 4982 bp->b_dev = cmpdev(ip->i_dev); 4983 bp->b_blkno = bn; 4984 bp->b_un.b_addr = (caddr_t)0; 4985 bp->b_file = ip->i_vnode; 4986 bp->b_offset = off; 4987 4988 if (ufsvfsp->vfs_log) { 4989 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4990 } else if (ufsvfsp->vfs_snapshot) { 4991 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4992 } else { 4993 ufsvfsp->vfs_iotstamp = lbolt; 4994 ub.ub_getras.value.ul++; 4995 (void) bdev_strategy(bp); 4996 lwp_stat_update(LWP_STAT_INBLK, 1); 4997 } 4998 4999 return (io_len); 5000 } 5001 5002 int ufs_delay = 1; 5003 /* 5004 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 5005 * 5006 * LMXXX - the inode really ought to contain a pointer to one of these 5007 * async args. Stuff gunk in there and just hand the whole mess off. 5008 * This would replace i_delaylen, i_delayoff. 5009 */ 5010 /*ARGSUSED*/ 5011 static int 5012 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 5013 struct cred *cr, caller_context_t *ct) 5014 { 5015 struct inode *ip = VTOI(vp); 5016 int err = 0; 5017 5018 if (vp->v_count == 0) { 5019 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 5020 } 5021 5022 /* 5023 * XXX - Why should this check be made here? 5024 */ 5025 if (vp->v_flag & VNOMAP) { 5026 err = ENOSYS; 5027 goto errout; 5028 } 5029 5030 if (ip->i_ufsvfs == NULL) { 5031 err = EIO; 5032 goto errout; 5033 } 5034 5035 if (flags & B_ASYNC) { 5036 if (ufs_delay && len && 5037 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 5038 mutex_enter(&ip->i_tlock); 5039 /* 5040 * If nobody stalled, start a new cluster. 5041 */ 5042 if (ip->i_delaylen == 0) { 5043 ip->i_delayoff = off; 5044 ip->i_delaylen = len; 5045 mutex_exit(&ip->i_tlock); 5046 goto errout; 5047 } 5048 /* 5049 * If we have a full cluster or they are not contig, 5050 * then push last cluster and start over. 5051 */ 5052 if (ip->i_delaylen >= CLUSTSZ(ip) || 5053 ip->i_delayoff + ip->i_delaylen != off) { 5054 u_offset_t doff; 5055 size_t dlen; 5056 5057 doff = ip->i_delayoff; 5058 dlen = ip->i_delaylen; 5059 ip->i_delayoff = off; 5060 ip->i_delaylen = len; 5061 mutex_exit(&ip->i_tlock); 5062 err = ufs_putpages(vp, doff, dlen, 5063 flags, cr); 5064 /* LMXXX - flags are new val, not old */ 5065 goto errout; 5066 } 5067 /* 5068 * There is something there, it's not full, and 5069 * it is contig. 5070 */ 5071 ip->i_delaylen += len; 5072 mutex_exit(&ip->i_tlock); 5073 goto errout; 5074 } 5075 /* 5076 * Must have weird flags or we are not clustering. 5077 */ 5078 } 5079 5080 err = ufs_putpages(vp, off, len, flags, cr); 5081 5082 errout: 5083 return (err); 5084 } 5085 5086 /* 5087 * If len == 0, do from off to EOF. 5088 * 5089 * The normal cases should be len == 0 & off == 0 (entire vp list), 5090 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 5091 * (from pageout). 5092 */ 5093 /*ARGSUSED*/ 5094 static int 5095 ufs_putpages( 5096 struct vnode *vp, 5097 offset_t off, 5098 size_t len, 5099 int flags, 5100 struct cred *cr) 5101 { 5102 u_offset_t io_off; 5103 u_offset_t eoff; 5104 struct inode *ip = VTOI(vp); 5105 page_t *pp; 5106 size_t io_len; 5107 int err = 0; 5108 int dolock; 5109 5110 if (vp->v_count == 0) 5111 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 5112 /* 5113 * Acquire the readers/write inode lock before locking 5114 * any pages in this inode. 5115 * The inode lock is held during i/o. 5116 */ 5117 if (len == 0) { 5118 mutex_enter(&ip->i_tlock); 5119 ip->i_delayoff = ip->i_delaylen = 0; 5120 mutex_exit(&ip->i_tlock); 5121 } 5122 dolock = (rw_owner(&ip->i_contents) != curthread); 5123 if (dolock) { 5124 /* 5125 * Must synchronize this thread and any possible thread 5126 * operating in the window of vulnerability in wrip(). 5127 * It is dangerous to allow both a thread doing a putpage 5128 * and a thread writing, so serialize them. The exception 5129 * is when the thread in wrip() does something which causes 5130 * a putpage operation. Then, the thread must be allowed 5131 * to continue. It may encounter a bmap_read problem in 5132 * ufs_putapage, but that is handled in ufs_putapage. 5133 * Allow async writers to proceed, we don't want to block 5134 * the pageout daemon. 5135 */ 5136 if (ip->i_writer == curthread) 5137 rw_enter(&ip->i_contents, RW_READER); 5138 else { 5139 for (;;) { 5140 rw_enter(&ip->i_contents, RW_READER); 5141 mutex_enter(&ip->i_tlock); 5142 /* 5143 * If there is no thread in the critical 5144 * section of wrip(), then proceed. 5145 * Otherwise, wait until there isn't one. 5146 */ 5147 if (ip->i_writer == NULL) { 5148 mutex_exit(&ip->i_tlock); 5149 break; 5150 } 5151 rw_exit(&ip->i_contents); 5152 /* 5153 * Bounce async writers when we have a writer 5154 * working on this file so we don't deadlock 5155 * the pageout daemon. 5156 */ 5157 if (flags & B_ASYNC) { 5158 mutex_exit(&ip->i_tlock); 5159 return (0); 5160 } 5161 cv_wait(&ip->i_wrcv, &ip->i_tlock); 5162 mutex_exit(&ip->i_tlock); 5163 } 5164 } 5165 } 5166 5167 if (!vn_has_cached_data(vp)) { 5168 if (dolock) 5169 rw_exit(&ip->i_contents); 5170 return (0); 5171 } 5172 5173 if (len == 0) { 5174 /* 5175 * Search the entire vp list for pages >= off. 5176 */ 5177 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 5178 flags, cr); 5179 } else { 5180 /* 5181 * Loop over all offsets in the range looking for 5182 * pages to deal with. 5183 */ 5184 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 5185 eoff = MIN(off + len, eoff); 5186 else 5187 eoff = off + len; 5188 5189 for (io_off = off; io_off < eoff; io_off += io_len) { 5190 /* 5191 * If we are not invalidating, synchronously 5192 * freeing or writing pages, use the routine 5193 * page_lookup_nowait() to prevent reclaiming 5194 * them from the free list. 5195 */ 5196 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 5197 pp = page_lookup(vp, io_off, 5198 (flags & (B_INVAL | B_FREE)) ? 5199 SE_EXCL : SE_SHARED); 5200 } else { 5201 pp = page_lookup_nowait(vp, io_off, 5202 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 5203 } 5204 5205 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 5206 io_len = PAGESIZE; 5207 else { 5208 u_offset_t *io_offp = &io_off; 5209 5210 err = ufs_putapage(vp, pp, io_offp, &io_len, 5211 flags, cr); 5212 if (err != 0) 5213 break; 5214 /* 5215 * "io_off" and "io_len" are returned as 5216 * the range of pages we actually wrote. 5217 * This allows us to skip ahead more quickly 5218 * since several pages may've been dealt 5219 * with by this iteration of the loop. 5220 */ 5221 } 5222 } 5223 } 5224 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 5225 /* 5226 * We have just sync'ed back all the pages on 5227 * the inode, turn off the IMODTIME flag. 5228 */ 5229 mutex_enter(&ip->i_tlock); 5230 ip->i_flag &= ~IMODTIME; 5231 mutex_exit(&ip->i_tlock); 5232 } 5233 if (dolock) 5234 rw_exit(&ip->i_contents); 5235 return (err); 5236 } 5237 5238 static void 5239 ufs_iodone(buf_t *bp) 5240 { 5241 struct inode *ip; 5242 5243 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 5244 5245 bp->b_iodone = NULL; 5246 5247 ip = VTOI(bp->b_pages->p_vnode); 5248 5249 mutex_enter(&ip->i_tlock); 5250 if (ip->i_writes >= ufs_LW) { 5251 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5252 if (ufs_WRITES) 5253 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5254 } else { 5255 ip->i_writes -= bp->b_bcount; 5256 } 5257 5258 mutex_exit(&ip->i_tlock); 5259 iodone(bp); 5260 } 5261 5262 /* 5263 * Write out a single page, possibly klustering adjacent 5264 * dirty pages. The inode lock must be held. 5265 * 5266 * LMXXX - bsize < pagesize not done. 5267 */ 5268 /*ARGSUSED*/ 5269 int 5270 ufs_putapage( 5271 struct vnode *vp, 5272 page_t *pp, 5273 u_offset_t *offp, 5274 size_t *lenp, /* return values */ 5275 int flags, 5276 struct cred *cr) 5277 { 5278 u_offset_t io_off; 5279 u_offset_t off; 5280 struct inode *ip = VTOI(vp); 5281 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5282 struct fs *fs; 5283 struct buf *bp; 5284 size_t io_len; 5285 daddr_t bn; 5286 int err; 5287 int contig; 5288 int dotrans; 5289 5290 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5291 5292 if (ufsvfsp == NULL) { 5293 err = EIO; 5294 goto out_trace; 5295 } 5296 5297 fs = ip->i_fs; 5298 ASSERT(fs->fs_ronly == 0); 5299 5300 /* 5301 * If the modified time on the inode has not already been 5302 * set elsewhere (e.g. for write/setattr) we set the time now. 5303 * This gives us approximate modified times for mmap'ed files 5304 * which are modified via stores in the user address space. 5305 */ 5306 if ((ip->i_flag & IMODTIME) == 0) { 5307 mutex_enter(&ip->i_tlock); 5308 ip->i_flag |= IUPD; 5309 ip->i_seq++; 5310 ITIMES_NOLOCK(ip); 5311 mutex_exit(&ip->i_tlock); 5312 } 5313 5314 /* 5315 * Align the request to a block boundry (for old file systems), 5316 * and go ask bmap() how contiguous things are for this file. 5317 */ 5318 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5319 contig = 0; 5320 err = bmap_read(ip, off, &bn, &contig); 5321 if (err) 5322 goto out; 5323 if (bn == UFS_HOLE) { /* putpage never allocates */ 5324 /* 5325 * logging device is in error mode; simply return EIO 5326 */ 5327 if (TRANS_ISERROR(ufsvfsp)) { 5328 err = EIO; 5329 goto out; 5330 } 5331 /* 5332 * Oops, the thread in the window in wrip() did some 5333 * sort of operation which caused a putpage in the bad 5334 * range. In this case, just return an error which will 5335 * cause the software modified bit on the page to set 5336 * and the page will get written out again later. 5337 */ 5338 if (ip->i_writer == curthread) { 5339 err = EIO; 5340 goto out; 5341 } 5342 /* 5343 * If the pager is trying to push a page in the bad range 5344 * just tell him to try again later when things are better. 5345 */ 5346 if (flags & B_ASYNC) { 5347 err = EAGAIN; 5348 goto out; 5349 } 5350 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5351 goto out; 5352 } 5353 5354 /* 5355 * If it is an fallocate'd block, reverse the negativity since 5356 * we are now writing to it 5357 */ 5358 if (ISFALLOCBLK(ip, bn)) { 5359 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn)); 5360 if (err) 5361 goto out; 5362 5363 bn = -bn; 5364 } 5365 5366 /* 5367 * Take the length (of contiguous bytes) passed back from bmap() 5368 * and _try_ and get a set of pages covering that extent. 5369 */ 5370 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5371 5372 /* 5373 * May have run out of memory and not clustered backwards. 5374 * off p_offset 5375 * [ pp - 1 ][ pp ] 5376 * [ block ] 5377 * We told bmap off, so we have to adjust the bn accordingly. 5378 */ 5379 if (io_off > off) { 5380 bn += btod(io_off - off); 5381 contig -= (io_off - off); 5382 } 5383 5384 /* 5385 * bmap was carefull to tell us the right size so use that. 5386 * There might be unallocated frags at the end. 5387 * LMXXX - bzero the end of the page? We must be writing after EOF. 5388 */ 5389 if (io_len > contig) { 5390 ASSERT(io_len - contig < fs->fs_bsize); 5391 io_len -= (io_len - contig); 5392 } 5393 5394 /* 5395 * Handle the case where we are writing the last page after EOF. 5396 * 5397 * XXX - just a patch for i-mt3. 5398 */ 5399 if (io_len == 0) { 5400 ASSERT(pp->p_offset >= 5401 (u_offset_t)(roundup(ip->i_size, PAGESIZE))); 5402 io_len = PAGESIZE; 5403 } 5404 5405 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5406 5407 ULOCKFS_SET_MOD(ITOUL(ip)); 5408 5409 bp->b_edev = ip->i_dev; 5410 bp->b_dev = cmpdev(ip->i_dev); 5411 bp->b_blkno = bn; 5412 bp->b_un.b_addr = (caddr_t)0; 5413 bp->b_file = ip->i_vnode; 5414 5415 /* 5416 * File contents of shadow or quota inodes are metadata, and updates 5417 * to these need to be put into a logging transaction. All direct 5418 * callers in UFS do that, but fsflush can come here _before_ the 5419 * normal codepath. An example would be updating ACL information, for 5420 * which the normal codepath would be: 5421 * ufs_si_store() 5422 * ufs_rdwri() 5423 * wrip() 5424 * segmap_release() 5425 * VOP_PUTPAGE() 5426 * Here, fsflush can pick up the dirty page before segmap_release() 5427 * forces it out. If that happens, there's no transaction. 5428 * We therefore need to test whether a transaction exists, and if not 5429 * create one - for fsflush. 5430 */ 5431 dotrans = 5432 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) && 5433 ((curthread->t_flag & T_DONTBLOCK) == 0) && 5434 (TRANS_ISTRANS(ufsvfsp))); 5435 5436 if (dotrans) { 5437 curthread->t_flag |= T_DONTBLOCK; 5438 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5439 } 5440 if (TRANS_ISTRANS(ufsvfsp)) { 5441 if ((ip->i_mode & IFMT) == IFSHAD) { 5442 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5443 } else if (ufsvfsp->vfs_qinod == ip) { 5444 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5445 0, 0); 5446 } 5447 } 5448 if (dotrans) { 5449 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5450 curthread->t_flag &= ~T_DONTBLOCK; 5451 } 5452 5453 /* write throttle */ 5454 5455 ASSERT(bp->b_iodone == NULL); 5456 bp->b_iodone = (int (*)())ufs_iodone; 5457 mutex_enter(&ip->i_tlock); 5458 ip->i_writes += bp->b_bcount; 5459 mutex_exit(&ip->i_tlock); 5460 5461 if (bp->b_flags & B_ASYNC) { 5462 if (ufsvfsp->vfs_log) { 5463 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5464 } else if (ufsvfsp->vfs_snapshot) { 5465 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5466 } else { 5467 ufsvfsp->vfs_iotstamp = lbolt; 5468 ub.ub_putasyncs.value.ul++; 5469 (void) bdev_strategy(bp); 5470 lwp_stat_update(LWP_STAT_OUBLK, 1); 5471 } 5472 } else { 5473 if (ufsvfsp->vfs_log) { 5474 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5475 } else if (ufsvfsp->vfs_snapshot) { 5476 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5477 } else { 5478 ufsvfsp->vfs_iotstamp = lbolt; 5479 ub.ub_putsyncs.value.ul++; 5480 (void) bdev_strategy(bp); 5481 lwp_stat_update(LWP_STAT_OUBLK, 1); 5482 } 5483 err = biowait(bp); 5484 pageio_done(bp); 5485 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5486 } 5487 5488 pp = NULL; 5489 5490 out: 5491 if (err != 0 && pp != NULL) 5492 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5493 5494 if (offp) 5495 *offp = io_off; 5496 if (lenp) 5497 *lenp = io_len; 5498 out_trace: 5499 return (err); 5500 } 5501 5502 /* ARGSUSED */ 5503 static int 5504 ufs_map(struct vnode *vp, 5505 offset_t off, 5506 struct as *as, 5507 caddr_t *addrp, 5508 size_t len, 5509 uchar_t prot, 5510 uchar_t maxprot, 5511 uint_t flags, 5512 struct cred *cr, 5513 caller_context_t *ct) 5514 { 5515 struct segvn_crargs vn_a; 5516 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5517 struct ulockfs *ulp; 5518 int error; 5519 5520 retry_map: 5521 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK); 5522 if (error) 5523 goto out; 5524 5525 if (vp->v_flag & VNOMAP) { 5526 error = ENOSYS; 5527 goto unlock; 5528 } 5529 5530 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5531 error = ENXIO; 5532 goto unlock; 5533 } 5534 5535 if (vp->v_type != VREG) { 5536 error = ENODEV; 5537 goto unlock; 5538 } 5539 5540 /* 5541 * If file is being locked, disallow mapping. 5542 */ 5543 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5544 error = EAGAIN; 5545 goto unlock; 5546 } 5547 5548 as_rangelock(as); 5549 if ((flags & MAP_FIXED) == 0) { 5550 map_addr(addrp, len, off, 1, flags); 5551 if (*addrp == NULL) { 5552 as_rangeunlock(as); 5553 error = ENOMEM; 5554 goto unlock; 5555 } 5556 } else { 5557 /* 5558 * User specified address - blow away any previous mappings 5559 */ 5560 (void) as_unmap(as, *addrp, len); 5561 } 5562 5563 vn_a.vp = vp; 5564 vn_a.offset = (u_offset_t)off; 5565 vn_a.type = flags & MAP_TYPE; 5566 vn_a.prot = prot; 5567 vn_a.maxprot = maxprot; 5568 vn_a.cred = cr; 5569 vn_a.amp = NULL; 5570 vn_a.flags = flags & ~MAP_TYPE; 5571 vn_a.szc = 0; 5572 vn_a.lgrp_mem_policy_flags = 0; 5573 5574 retry_lock: 5575 if (!AS_LOCK_TRYENTER(ias, &as->a_lock, RW_WRITER)) { 5576 /* 5577 * We didn't get the lock. Check if the SLOCK is set in the 5578 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 5579 * and wait for SLOCK to be cleared. 5580 */ 5581 5582 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 5583 as_rangeunlock(as); 5584 ufs_lockfs_end(ulp); 5585 goto retry_map; 5586 } else { 5587 /* 5588 * SLOCK isn't set so this is a genuine synchronization 5589 * case. Let's try again after giving them a breather. 5590 */ 5591 delay(RETRY_LOCK_DELAY); 5592 goto retry_lock; 5593 } 5594 } 5595 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a); 5596 as_rangeunlock(as); 5597 5598 unlock: 5599 if (ulp) { 5600 ufs_lockfs_end(ulp); 5601 } 5602 out: 5603 return (error); 5604 } 5605 5606 /* ARGSUSED */ 5607 static int 5608 ufs_addmap(struct vnode *vp, 5609 offset_t off, 5610 struct as *as, 5611 caddr_t addr, 5612 size_t len, 5613 uchar_t prot, 5614 uchar_t maxprot, 5615 uint_t flags, 5616 struct cred *cr, 5617 caller_context_t *ct) 5618 { 5619 struct inode *ip = VTOI(vp); 5620 5621 if (vp->v_flag & VNOMAP) { 5622 return (ENOSYS); 5623 } 5624 5625 mutex_enter(&ip->i_tlock); 5626 ip->i_mapcnt += btopr(len); 5627 mutex_exit(&ip->i_tlock); 5628 return (0); 5629 } 5630 5631 /*ARGSUSED*/ 5632 static int 5633 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5634 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5635 struct cred *cr, caller_context_t *ct) 5636 { 5637 struct inode *ip = VTOI(vp); 5638 5639 if (vp->v_flag & VNOMAP) { 5640 return (ENOSYS); 5641 } 5642 5643 mutex_enter(&ip->i_tlock); 5644 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5645 ASSERT(ip->i_mapcnt >= 0); 5646 mutex_exit(&ip->i_tlock); 5647 return (0); 5648 } 5649 /* 5650 * Return the answer requested to poll() for non-device files 5651 */ 5652 struct pollhead ufs_pollhd; 5653 5654 /* ARGSUSED */ 5655 int 5656 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp, 5657 caller_context_t *ct) 5658 { 5659 struct ufsvfs *ufsvfsp; 5660 5661 *revp = 0; 5662 ufsvfsp = VTOI(vp)->i_ufsvfs; 5663 5664 if (!ufsvfsp) { 5665 *revp = POLLHUP; 5666 goto out; 5667 } 5668 5669 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5670 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5671 *revp |= POLLERR; 5672 5673 } else { 5674 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5675 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5676 *revp |= POLLOUT; 5677 5678 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5679 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5680 *revp |= POLLWRBAND; 5681 5682 if (ev & POLLIN) 5683 *revp |= POLLIN; 5684 5685 if (ev & POLLRDNORM) 5686 *revp |= POLLRDNORM; 5687 5688 if (ev & POLLRDBAND) 5689 *revp |= POLLRDBAND; 5690 } 5691 5692 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5693 *revp |= POLLPRI; 5694 out: 5695 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5696 5697 return (0); 5698 } 5699 5700 /* ARGSUSED */ 5701 static int 5702 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr, 5703 caller_context_t *ct) 5704 { 5705 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5706 struct ulockfs *ulp = NULL; 5707 struct inode *sip = NULL; 5708 int error; 5709 struct inode *ip = VTOI(vp); 5710 int issync; 5711 5712 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5713 if (error) 5714 return (error); 5715 5716 switch (cmd) { 5717 /* 5718 * Have to handle _PC_NAME_MAX here, because the normal way 5719 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5720 * results in a lock ordering reversal between 5721 * ufs_lockfs_{begin,end}() and 5722 * ufs_thread_{suspend,continue}(). 5723 * 5724 * Keep in sync with ufs_statvfs(). 5725 */ 5726 case _PC_NAME_MAX: 5727 *valp = MAXNAMLEN; 5728 break; 5729 5730 case _PC_FILESIZEBITS: 5731 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5732 *valp = UFS_FILESIZE_BITS; 5733 else 5734 *valp = 32; 5735 break; 5736 5737 case _PC_XATTR_EXISTS: 5738 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5739 5740 error = 5741 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr); 5742 if (error == 0 && sip != NULL) { 5743 /* Start transaction */ 5744 if (ulp) { 5745 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5746 TOP_RMDIR, TOP_RMDIR_SIZE); 5747 } 5748 /* 5749 * Is directory empty 5750 */ 5751 rw_enter(&sip->i_rwlock, RW_WRITER); 5752 rw_enter(&sip->i_contents, RW_WRITER); 5753 if (ufs_xattrdirempty(sip, 5754 sip->i_number, CRED())) { 5755 rw_enter(&ip->i_contents, RW_WRITER); 5756 ufs_unhook_shadow(ip, sip); 5757 rw_exit(&ip->i_contents); 5758 5759 *valp = 0; 5760 5761 } else 5762 *valp = 1; 5763 rw_exit(&sip->i_contents); 5764 rw_exit(&sip->i_rwlock); 5765 if (ulp) { 5766 TRANS_END_CSYNC(ufsvfsp, error, issync, 5767 TOP_RMDIR, TOP_RMDIR_SIZE); 5768 } 5769 VN_RELE(ITOV(sip)); 5770 } else if (error == ENOENT) { 5771 *valp = 0; 5772 error = 0; 5773 } 5774 } else { 5775 error = fs_pathconf(vp, cmd, valp, cr, ct); 5776 } 5777 break; 5778 5779 case _PC_ACL_ENABLED: 5780 *valp = _ACL_ACLENT_ENABLED; 5781 break; 5782 5783 case _PC_MIN_HOLE_SIZE: 5784 *valp = (ulong_t)ip->i_fs->fs_bsize; 5785 break; 5786 5787 case _PC_SATTR_ENABLED: 5788 case _PC_SATTR_EXISTS: 5789 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 5790 (vp->v_type == VREG || vp->v_type == VDIR); 5791 break; 5792 5793 default: 5794 error = fs_pathconf(vp, cmd, valp, cr, ct); 5795 } 5796 5797 if (ulp != NULL) { 5798 ufs_lockfs_end(ulp); 5799 } 5800 return (error); 5801 } 5802 5803 int ufs_pageio_writes, ufs_pageio_reads; 5804 5805 /*ARGSUSED*/ 5806 static int 5807 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5808 int flags, struct cred *cr, caller_context_t *ct) 5809 { 5810 struct inode *ip = VTOI(vp); 5811 struct ufsvfs *ufsvfsp; 5812 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5813 struct buf *bp; 5814 daddr_t bn; 5815 size_t done_len = 0, cur_len = 0; 5816 int err = 0; 5817 int contig = 0; 5818 int dolock; 5819 int vmpss = 0; 5820 struct ulockfs *ulp; 5821 5822 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5823 vp->v_mpssdata != NULL) { 5824 vmpss = 1; 5825 } 5826 5827 dolock = (rw_owner(&ip->i_contents) != curthread); 5828 /* 5829 * We need a better check. Ideally, we would use another 5830 * vnodeops so that hlocked and forcibly unmounted file 5831 * systems would return EIO where appropriate and w/o the 5832 * need for these checks. 5833 */ 5834 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5835 return (EIO); 5836 5837 /* 5838 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5839 * ul_lock must be taken before locking pages so we can't use it here 5840 * if pp is non NULL because segvn already locked pages 5841 * SE_EXCL. Instead we rely on the fact that a forced umount or 5842 * applying a filesystem lock via ufs_fiolfs() will block in the 5843 * implicit call to ufs_flush() until we unlock the pages after the 5844 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5845 * above 0 until they are done. We have to be careful not to increment 5846 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5847 * 5848 * If pp is NULL use ul_lock to make sure we don't increment 5849 * ul_vnops_cnt after forceful unmount hlocks the file system. 5850 */ 5851 if (vmpss || pp == NULL) { 5852 ulp = &ufsvfsp->vfs_ulockfs; 5853 if (pp == NULL) 5854 mutex_enter(&ulp->ul_lock); 5855 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5856 if (pp == NULL) { 5857 mutex_exit(&ulp->ul_lock); 5858 } 5859 return (vmpss ? EIO : EINVAL); 5860 } 5861 atomic_add_long(&ulp->ul_vnops_cnt, 1); 5862 if (pp == NULL) 5863 mutex_exit(&ulp->ul_lock); 5864 if (ufs_quiesce_pend) { 5865 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5866 cv_broadcast(&ulp->ul_cv); 5867 return (vmpss ? EIO : EINVAL); 5868 } 5869 } 5870 5871 if (dolock) { 5872 /* 5873 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5874 * handle a fault against a segment that maps vnode pages with 5875 * large mappings. Segvn creates pages and holds them locked 5876 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5877 * use rw_tryenter() to avoid a potential deadlock since in 5878 * lock order i_contents needs to be taken first. 5879 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5880 */ 5881 if (!vmpss) { 5882 rw_enter(&ip->i_contents, RW_READER); 5883 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5884 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5885 cv_broadcast(&ulp->ul_cv); 5886 return (EDEADLK); 5887 } 5888 } 5889 5890 /* 5891 * Return an error to segvn because the pagefault request is beyond 5892 * PAGESIZE rounded EOF. 5893 */ 5894 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 5895 if (dolock) 5896 rw_exit(&ip->i_contents); 5897 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5898 cv_broadcast(&ulp->ul_cv); 5899 return (EFAULT); 5900 } 5901 5902 if (pp == NULL) { 5903 if (bmap_has_holes(ip)) { 5904 err = ENOSYS; 5905 } else { 5906 err = EINVAL; 5907 } 5908 if (dolock) 5909 rw_exit(&ip->i_contents); 5910 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5911 cv_broadcast(&ulp->ul_cv); 5912 return (err); 5913 } 5914 5915 /* 5916 * Break the io request into chunks, one for each contiguous 5917 * stretch of disk blocks in the target file. 5918 */ 5919 while (done_len < io_len) { 5920 ASSERT(cpp); 5921 contig = 0; 5922 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 5923 &bn, &contig)) 5924 break; 5925 5926 if (bn == UFS_HOLE) { /* No holey swapfiles */ 5927 if (vmpss) { 5928 err = EFAULT; 5929 break; 5930 } 5931 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 5932 break; 5933 } 5934 5935 cur_len = MIN(io_len - done_len, contig); 5936 /* 5937 * Zero out a page beyond EOF, when the last block of 5938 * a file is a UFS fragment so that ufs_pageio() can be used 5939 * instead of ufs_getpage() to handle faults against 5940 * segvn segments that use large pages. 5941 */ 5942 page_list_break(&cpp, &npp, btopr(cur_len)); 5943 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 5944 size_t xlen = cur_len & PAGEOFFSET; 5945 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 5946 } 5947 5948 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 5949 ASSERT(bp != NULL); 5950 5951 bp->b_edev = ip->i_dev; 5952 bp->b_dev = cmpdev(ip->i_dev); 5953 bp->b_blkno = bn; 5954 bp->b_un.b_addr = (caddr_t)0; 5955 bp->b_file = ip->i_vnode; 5956 5957 ufsvfsp->vfs_iotstamp = lbolt; 5958 ub.ub_pageios.value.ul++; 5959 if (ufsvfsp->vfs_snapshot) 5960 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 5961 else 5962 (void) bdev_strategy(bp); 5963 5964 if (flags & B_READ) 5965 ufs_pageio_reads++; 5966 else 5967 ufs_pageio_writes++; 5968 if (flags & B_READ) 5969 lwp_stat_update(LWP_STAT_INBLK, 1); 5970 else 5971 lwp_stat_update(LWP_STAT_OUBLK, 1); 5972 /* 5973 * If the request is not B_ASYNC, wait for i/o to complete 5974 * and re-assemble the page list to return to the caller. 5975 * If it is B_ASYNC we leave the page list in pieces and 5976 * cleanup() will dispose of them. 5977 */ 5978 if ((flags & B_ASYNC) == 0) { 5979 err = biowait(bp); 5980 pageio_done(bp); 5981 if (err) 5982 break; 5983 page_list_concat(&opp, &cpp); 5984 } 5985 cpp = npp; 5986 npp = NULL; 5987 if (flags & B_READ) 5988 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 5989 done_len += cur_len; 5990 } 5991 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 5992 if (err) { 5993 if (flags & B_ASYNC) { 5994 /* Cleanup unprocessed parts of list */ 5995 page_list_concat(&cpp, &npp); 5996 if (flags & B_READ) 5997 pvn_read_done(cpp, B_ERROR); 5998 else 5999 pvn_write_done(cpp, B_ERROR); 6000 } else { 6001 /* Re-assemble list and let caller clean up */ 6002 page_list_concat(&opp, &cpp); 6003 page_list_concat(&opp, &npp); 6004 } 6005 } 6006 6007 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 6008 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 6009 mutex_enter(&ip->i_tlock); 6010 ip->i_flag |= IACC; 6011 ITIMES_NOLOCK(ip); 6012 mutex_exit(&ip->i_tlock); 6013 } 6014 6015 if (dolock) 6016 rw_exit(&ip->i_contents); 6017 if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6018 cv_broadcast(&ulp->ul_cv); 6019 return (err); 6020 } 6021 6022 /* 6023 * Called when the kernel is in a frozen state to dump data 6024 * directly to the device. It uses a private dump data structure, 6025 * set up by dump_ctl, to locate the correct disk block to which to dump. 6026 */ 6027 /*ARGSUSED*/ 6028 static int 6029 ufs_dump(vnode_t *vp, caddr_t addr, int ldbn, int dblks, caller_context_t *ct) 6030 { 6031 u_offset_t file_size; 6032 struct inode *ip = VTOI(vp); 6033 struct fs *fs = ip->i_fs; 6034 daddr_t dbn, lfsbn; 6035 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 6036 int error = 0; 6037 int ndbs, nfsbs; 6038 6039 /* 6040 * forced unmount case 6041 */ 6042 if (ip->i_ufsvfs == NULL) 6043 return (EIO); 6044 /* 6045 * Validate the inode that it has not been modified since 6046 * the dump structure is allocated. 6047 */ 6048 mutex_enter(&ip->i_tlock); 6049 if ((dump_info == NULL) || 6050 (dump_info->ip != ip) || 6051 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 6052 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 6053 mutex_exit(&ip->i_tlock); 6054 return (-1); 6055 } 6056 mutex_exit(&ip->i_tlock); 6057 6058 /* 6059 * See that the file has room for this write 6060 */ 6061 UFS_GET_ISIZE(&file_size, ip); 6062 6063 if (ldbtob((offset_t)(ldbn + dblks)) > file_size) 6064 return (ENOSPC); 6065 6066 /* 6067 * Find the physical disk block numbers from the dump 6068 * private data structure directly and write out the data 6069 * in contiguous block lumps 6070 */ 6071 while (dblks > 0 && !error) { 6072 lfsbn = (daddr_t)lblkno(fs, ldbtob((offset_t)ldbn)); 6073 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 6074 nfsbs = 1; 6075 ndbs = disk_blks - ldbn % disk_blks; 6076 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 6077 nfsbs]) == dbn + ndbs) { 6078 nfsbs++; 6079 ndbs += disk_blks; 6080 } 6081 if (ndbs > dblks) 6082 ndbs = dblks; 6083 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 6084 addr += ldbtob((offset_t)ndbs); 6085 dblks -= ndbs; 6086 ldbn += ndbs; 6087 } 6088 return (error); 6089 6090 } 6091 6092 /* 6093 * Prepare the file system before and after the dump operation. 6094 * 6095 * action = DUMP_ALLOC: 6096 * Preparation before dump, allocate dump private data structure 6097 * to hold all the direct and indirect block info for dump. 6098 * 6099 * action = DUMP_FREE: 6100 * Clean up after dump, deallocate the dump private data structure. 6101 * 6102 * action = DUMP_SCAN: 6103 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 6104 * if found, the starting file-relative DEV_BSIZE lbn is written 6105 * to *bklp; that lbn is intended for use with VOP_DUMP() 6106 */ 6107 /*ARGSUSED*/ 6108 static int 6109 ufs_dumpctl(vnode_t *vp, int action, int *blkp, caller_context_t *ct) 6110 { 6111 struct inode *ip = VTOI(vp); 6112 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 6113 struct fs *fs; 6114 daddr32_t *dblk, *storeblk; 6115 daddr32_t *nextblk, *endblk; 6116 struct buf *bp; 6117 int i, entry, entries; 6118 int n, ncontig; 6119 6120 /* 6121 * check for forced unmount 6122 */ 6123 if (ufsvfsp == NULL) 6124 return (EIO); 6125 6126 if (action == DUMP_ALLOC) { 6127 /* 6128 * alloc and record dump_info 6129 */ 6130 if (dump_info != NULL) 6131 return (EINVAL); 6132 6133 ASSERT(vp->v_type == VREG); 6134 fs = ufsvfsp->vfs_fs; 6135 6136 rw_enter(&ip->i_contents, RW_READER); 6137 6138 if (bmap_has_holes(ip)) { 6139 rw_exit(&ip->i_contents); 6140 return (EFAULT); 6141 } 6142 6143 /* 6144 * calculate and allocate space needed according to i_size 6145 */ 6146 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 6147 dump_info = kmem_alloc(sizeof (struct dump) + 6148 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP); 6149 if (dump_info == NULL) { 6150 rw_exit(&ip->i_contents); 6151 return (ENOMEM); 6152 } 6153 6154 /* Start saving the info */ 6155 dump_info->fsbs = entries; 6156 dump_info->ip = ip; 6157 storeblk = &dump_info->dblk[0]; 6158 6159 /* Direct Blocks */ 6160 for (entry = 0; entry < NDADDR && entry < entries; entry++) 6161 *storeblk++ = ip->i_db[entry]; 6162 6163 /* Indirect Blocks */ 6164 for (i = 0; i < NIADDR; i++) { 6165 int error = 0; 6166 6167 bp = UFS_BREAD(ufsvfsp, 6168 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize); 6169 if (bp->b_flags & B_ERROR) 6170 error = EIO; 6171 else { 6172 dblk = bp->b_un.b_daddr; 6173 if ((storeblk = save_dblks(ip, ufsvfsp, 6174 storeblk, dblk, i, entries)) == NULL) 6175 error = EIO; 6176 } 6177 6178 brelse(bp); 6179 6180 if (error != 0) { 6181 kmem_free(dump_info, sizeof (struct dump) + 6182 (entries - 1) * sizeof (daddr32_t)); 6183 rw_exit(&ip->i_contents); 6184 dump_info = NULL; 6185 return (error); 6186 } 6187 } 6188 /* and time stamp the information */ 6189 mutex_enter(&ip->i_tlock); 6190 dump_info->time = ip->i_mtime; 6191 mutex_exit(&ip->i_tlock); 6192 6193 rw_exit(&ip->i_contents); 6194 } else if (action == DUMP_FREE) { 6195 /* 6196 * free dump_info 6197 */ 6198 if (dump_info == NULL) 6199 return (EINVAL); 6200 entries = dump_info->fsbs - 1; 6201 kmem_free(dump_info, sizeof (struct dump) + 6202 entries * sizeof (daddr32_t)); 6203 dump_info = NULL; 6204 } else if (action == DUMP_SCAN) { 6205 /* 6206 * scan dump_info 6207 */ 6208 if (dump_info == NULL) 6209 return (EINVAL); 6210 6211 dblk = dump_info->dblk; 6212 nextblk = dblk + 1; 6213 endblk = dblk + dump_info->fsbs - 1; 6214 fs = ufsvfsp->vfs_fs; 6215 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 6216 6217 /* 6218 * scan dblk[] entries; contig fs space is found when: 6219 * ((current blkno + frags per block) == next blkno) 6220 */ 6221 n = 0; 6222 while (n < ncontig && dblk < endblk) { 6223 if ((*dblk + fs->fs_frag) == *nextblk) 6224 n++; 6225 else 6226 n = 0; 6227 dblk++; 6228 nextblk++; 6229 } 6230 6231 /* 6232 * index is where size bytes of contig space begins; 6233 * conversion from index to the file's DEV_BSIZE lbn 6234 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 6235 */ 6236 if (n == ncontig) { 6237 i = (dblk - dump_info->dblk) - ncontig; 6238 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 6239 } else 6240 return (EFAULT); 6241 } 6242 return (0); 6243 } 6244 6245 /* 6246 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 6247 * system blocks until it reaches the the disk block addresses, which are 6248 * then stored into the given buffer, storeblk. 6249 */ 6250 static daddr32_t * 6251 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 6252 daddr32_t *dblk, int level, int entries) 6253 { 6254 struct fs *fs = ufsvfsp->vfs_fs; 6255 struct buf *bp; 6256 int i; 6257 6258 if (level == 0) { 6259 for (i = 0; i < NINDIR(fs); i++) { 6260 if (storeblk - dump_info->dblk >= entries) 6261 break; 6262 *storeblk++ = dblk[i]; 6263 } 6264 return (storeblk); 6265 } 6266 for (i = 0; i < NINDIR(fs); i++) { 6267 if (storeblk - dump_info->dblk >= entries) 6268 break; 6269 bp = UFS_BREAD(ufsvfsp, 6270 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 6271 if (bp->b_flags & B_ERROR) { 6272 brelse(bp); 6273 return (NULL); 6274 } 6275 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 6276 level - 1, entries); 6277 brelse(bp); 6278 6279 if (storeblk == NULL) 6280 return (NULL); 6281 } 6282 return (storeblk); 6283 } 6284 6285 /* ARGSUSED */ 6286 static int 6287 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 6288 struct cred *cr, caller_context_t *ct) 6289 { 6290 struct inode *ip = VTOI(vp); 6291 struct ulockfs *ulp; 6292 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 6293 ulong_t vsa_mask = vsap->vsa_mask; 6294 int err = EINVAL; 6295 6296 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6297 6298 /* 6299 * Only grab locks if needed - they're not needed to check vsa_mask 6300 * or if the mask contains no acl flags. 6301 */ 6302 if (vsa_mask != 0) { 6303 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 6304 ULOCKFS_GETATTR_MASK)) 6305 return (err); 6306 6307 rw_enter(&ip->i_contents, RW_READER); 6308 err = ufs_acl_get(ip, vsap, flag, cr); 6309 rw_exit(&ip->i_contents); 6310 6311 if (ulp) 6312 ufs_lockfs_end(ulp); 6313 } 6314 return (err); 6315 } 6316 6317 /* ARGSUSED */ 6318 static int 6319 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr, 6320 caller_context_t *ct) 6321 { 6322 struct inode *ip = VTOI(vp); 6323 struct ulockfs *ulp = NULL; 6324 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6325 ulong_t vsa_mask = vsap->vsa_mask; 6326 int err; 6327 int haverwlock = 1; 6328 int trans_size; 6329 int donetrans = 0; 6330 int retry = 1; 6331 6332 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6333 6334 /* Abort now if the request is either empty or invalid. */ 6335 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6336 if ((vsa_mask == 0) || 6337 ((vsap->vsa_aclentp == NULL) && 6338 (vsap->vsa_dfaclentp == NULL))) { 6339 err = EINVAL; 6340 goto out; 6341 } 6342 6343 /* 6344 * Following convention, if this is a directory then we acquire the 6345 * inode's i_rwlock after starting a UFS logging transaction; 6346 * otherwise, we acquire it beforehand. Since we were called (and 6347 * must therefore return) with the lock held, we will have to drop it, 6348 * and later reacquire it, if operating on a directory. 6349 */ 6350 if (vp->v_type == VDIR) { 6351 rw_exit(&ip->i_rwlock); 6352 haverwlock = 0; 6353 } else { 6354 /* Upgrade the lock if required. */ 6355 if (!rw_write_held(&ip->i_rwlock)) { 6356 rw_exit(&ip->i_rwlock); 6357 rw_enter(&ip->i_rwlock, RW_WRITER); 6358 } 6359 } 6360 6361 again: 6362 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6363 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6364 ulp = NULL; 6365 retry = 0; 6366 goto out; 6367 } 6368 6369 /* 6370 * Check that the file system supports this operation. Note that 6371 * ufs_lockfs_begin() will have checked that the file system had 6372 * not been forcibly unmounted. 6373 */ 6374 if (ufsvfsp->vfs_fs->fs_ronly) { 6375 err = EROFS; 6376 goto out; 6377 } 6378 if (ufsvfsp->vfs_nosetsec) { 6379 err = ENOSYS; 6380 goto out; 6381 } 6382 6383 if (ulp) { 6384 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6385 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6386 donetrans = 1; 6387 } 6388 6389 if (vp->v_type == VDIR) { 6390 rw_enter(&ip->i_rwlock, RW_WRITER); 6391 haverwlock = 1; 6392 } 6393 6394 ASSERT(haverwlock); 6395 6396 /* Do the actual work. */ 6397 rw_enter(&ip->i_contents, RW_WRITER); 6398 /* 6399 * Suppress out of inodes messages if we will retry. 6400 */ 6401 if (retry) 6402 ip->i_flag |= IQUIET; 6403 err = ufs_acl_set(ip, vsap, flag, cr); 6404 ip->i_flag &= ~IQUIET; 6405 rw_exit(&ip->i_contents); 6406 6407 out: 6408 if (ulp) { 6409 if (donetrans) { 6410 /* 6411 * top_end_async() can eventually call 6412 * top_end_sync(), which can block. We must 6413 * therefore observe the lock-ordering protocol 6414 * here as well. 6415 */ 6416 if (vp->v_type == VDIR) { 6417 rw_exit(&ip->i_rwlock); 6418 haverwlock = 0; 6419 } 6420 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6421 } 6422 ufs_lockfs_end(ulp); 6423 } 6424 /* 6425 * If no inodes available, try scaring a logically- 6426 * free one out of the delete queue to someplace 6427 * that we can find it. 6428 */ 6429 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6430 ufs_delete_drain_wait(ufsvfsp, 1); 6431 retry = 0; 6432 if (vp->v_type == VDIR && haverwlock) { 6433 rw_exit(&ip->i_rwlock); 6434 haverwlock = 0; 6435 } 6436 goto again; 6437 } 6438 /* 6439 * If we need to reacquire the lock then it is safe to do so 6440 * as a reader. This is because ufs_rwunlock(), which will be 6441 * called by our caller after we return, does not differentiate 6442 * between shared and exclusive locks. 6443 */ 6444 if (!haverwlock) { 6445 ASSERT(vp->v_type == VDIR); 6446 rw_enter(&ip->i_rwlock, RW_READER); 6447 } 6448 6449 return (err); 6450 } 6451