xref: /titanic_51/usr/src/uts/common/fs/ufs/ufs_acl.c (revision bfed486ad8de8b8ebc6345a8e10accae08bf2f45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stat.h>
28 #include <sys/errno.h>
29 #include <sys/kmem.h>
30 #include <sys/t_lock.h>
31 #include <sys/ksynch.h>
32 #include <sys/buf.h>
33 #include <sys/vfs.h>
34 #include <sys/vnode.h>
35 #include <sys/mode.h>
36 #include <sys/systm.h>
37 #include <vm/seg.h>
38 #include <sys/file.h>
39 #include <sys/acl.h>
40 #include <sys/fs/ufs_inode.h>
41 #include <sys/fs/ufs_acl.h>
42 #include <sys/fs/ufs_quota.h>
43 #include <sys/sysmacros.h>
44 #include <sys/debug.h>
45 #include <sys/policy.h>
46 
47 /* Cache routines */
48 static int si_signature(si_t *);
49 static int si_cachei_get(struct inode *, si_t **);
50 static int si_cachea_get(struct inode *, si_t *, si_t **);
51 static int si_cmp(si_t *, si_t *);
52 static void si_cache_put(si_t *);
53 void si_cache_del(si_t *, int);
54 void si_cache_init(void);
55 
56 static void ufs_si_free_mem(si_t *);
57 static int ufs_si_store(struct inode *, si_t *, int, cred_t *);
58 static si_t *ufs_acl_cp(si_t *);
59 static int ufs_sectobuf(si_t *, caddr_t *, size_t *);
60 static int acl_count(ufs_ic_acl_t *);
61 static int acl_validate(aclent_t *, int, int);
62 static int vsecattr2aclentry(vsecattr_t *, si_t **);
63 static int aclentry2vsecattr(si_t *, vsecattr_t *);
64 
65 krwlock_t si_cache_lock;		/* Protects si_cache */
66 int	si_cachecnt = 64;		/* # buckets in si_cache[a|i] */
67 si_t	**si_cachea;			/* The 'by acl' cache chains */
68 si_t	**si_cachei;			/* The 'by inode' cache chains */
69 long	si_cachehit = 0;
70 long	si_cachemiss = 0;
71 
72 #define	SI_HASH(S)	((int)(S) & (si_cachecnt - 1))
73 
74 /*
75  * Store the new acls in aclp.  Attempts to make things atomic.
76  * Search the acl cache for an identical sp and, if found, attach
77  * the cache'd acl to ip. If the acl is new (not in the cache),
78  * add it to the cache, then attach it to ip.  Last, remove and
79  * decrement the reference count of any prior acl list attached
80  * to the ip.
81  *
82  * Parameters:
83  * ip - Ptr to inode to receive the acl list
84  * sp - Ptr to in-core acl structure to attach to the inode.
85  * puship - 0 do not push the object inode(ip) 1 push the ip
86  * cr - Ptr to credentials
87  *
88  * Returns:	0 - Success
89  * 		N - From errno.h
90  */
91 static int
92 ufs_si_store(struct inode *ip, si_t *sp, int puship, cred_t *cr)
93 {
94 	struct vfs	*vfsp;
95 	struct inode	*sip;
96 	si_t		*oldsp;
97 	si_t		*csp;
98 	caddr_t		acldata;
99 	ino_t		oldshadow;
100 	size_t		acldatalen;
101 	off_t		offset;
102 	int		shadow;
103 	int		err;
104 	int		refcnt;
105 	int		usecnt;
106 	int		signature;
107 	int		resid;
108 	struct ufsvfs	*ufsvfsp	= ip->i_ufsvfs;
109 	struct fs	*fs		= ufsvfsp->vfs_fs;
110 
111 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
112 	ASSERT(ip->i_ufs_acl != sp);
113 
114 	if (!CHECK_ACL_ALLOWED(ip->i_mode & IFMT))
115 		return (ENOSYS);
116 
117 	/*
118 	 * if there are only the three owner/group/other then do not
119 	 * create a shadow inode.  If there is already a shadow with
120 	 * the file, remove it.
121 	 *
122 	 */
123 	if (!sp->ausers &&
124 	    !sp->agroups &&
125 	    !sp->downer &&
126 	    !sp->dgroup &&
127 	    !sp->dother &&
128 	    sp->dclass.acl_ismask == 0 &&
129 	    !sp->dusers &&
130 	    !sp->dgroups) {
131 		if (ip->i_ufs_acl)
132 			err = ufs_si_free(ip->i_ufs_acl, ITOV(ip)->v_vfsp, cr);
133 		ip->i_ufs_acl = NULL;
134 		ip->i_shadow = 0;
135 		ip->i_flag |= IMOD | IACC;
136 		ip->i_mode = (ip->i_smode & ~0777) |
137 		    ((sp->aowner->acl_ic_perm & 07) << 6) |
138 		    (MASK2MODE(sp)) |
139 		    (sp->aother->acl_ic_perm & 07);
140 		TRANS_INODE(ip->i_ufsvfs, ip);
141 		ufs_iupdat(ip, 1);
142 		ufs_si_free_mem(sp);
143 		return (0);
144 	}
145 
146 loop:
147 
148 	/*
149 	 * Check cache. If in cache, use existing shadow inode.
150 	 * Increment the shadow link count, then attach to the
151 	 * cached ufs_acl_entry struct, and increment it's reference
152 	 * count.  Then discard the passed-in ufs_acl_entry and
153 	 * return.
154 	 */
155 	if (si_cachea_get(ip, sp, &csp) == 0) {
156 		ASSERT(RW_WRITE_HELD(&csp->s_lock));
157 		if (ip->i_ufs_acl == csp) {
158 			rw_exit(&csp->s_lock);
159 			(void) ufs_si_free_mem(sp);
160 			return (0);
161 		}
162 		vfsp = ITOV(ip)->v_vfsp;
163 		ASSERT(csp->s_shadow <= INT_MAX);
164 		shadow = (int)csp->s_shadow;
165 		/*
166 		 * We can't call ufs_iget while holding the csp locked,
167 		 * because we might deadlock.  So we drop the
168 		 * lock on csp, then go search the si_cache again
169 		 * to see if the csp is still there.
170 		 */
171 		rw_exit(&csp->s_lock);
172 		if ((err = ufs_iget(vfsp, shadow, &sip, cr)) != 0) {
173 			(void) ufs_si_free_mem(sp);
174 			return (EIO);
175 		}
176 		rw_enter(&sip->i_contents, RW_WRITER);
177 		if ((sip->i_mode & IFMT) != IFSHAD || sip->i_nlink <= 0) {
178 			rw_exit(&sip->i_contents);
179 			VN_RELE(ITOV(sip));
180 			goto loop;
181 		}
182 		/* Get the csp again */
183 		if (si_cachea_get(ip, sp, &csp) != 0) {
184 			rw_exit(&sip->i_contents);
185 			VN_RELE(ITOV(sip));
186 			goto loop;
187 		}
188 		ASSERT(RW_WRITE_HELD(&csp->s_lock));
189 		/* See if we got the right shadow */
190 		if (csp->s_shadow != shadow) {
191 			rw_exit(&csp->s_lock);
192 			rw_exit(&sip->i_contents);
193 			VN_RELE(ITOV(sip));
194 			goto loop;
195 		}
196 		ASSERT(RW_WRITE_HELD(&sip->i_contents));
197 		ASSERT(sip->i_dquot == 0);
198 		/* Increment link count */
199 		ASSERT(sip->i_nlink > 0);
200 		sip->i_nlink++;
201 		TRANS_INODE(ufsvfsp, sip);
202 		csp->s_use = sip->i_nlink;
203 		csp->s_ref++;
204 		ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use);
205 		sip->i_flag |= ICHG | IMOD;
206 		sip->i_seq++;
207 		ITIMES_NOLOCK(sip);
208 		/*
209 		 * Always release s_lock before both releasing i_contents
210 		 * and calling VN_RELE.
211 		 */
212 		rw_exit(&csp->s_lock);
213 		rw_exit(&sip->i_contents);
214 		VN_RELE(ITOV(sip));
215 		(void) ufs_si_free_mem(sp);
216 		sp = csp;
217 		si_cachehit++;
218 		goto switchshadows;
219 	}
220 
221 	/* Alloc a shadow inode and fill it in */
222 	err = ufs_ialloc(ip, ip->i_number, (mode_t)IFSHAD, &sip, cr);
223 	if (err) {
224 		(void) ufs_si_free_mem(sp);
225 		return (err);
226 	}
227 	rw_enter(&sip->i_contents, RW_WRITER);
228 	sip->i_flag |= IACC | IUPD | ICHG;
229 	sip->i_seq++;
230 	sip->i_mode = (o_mode_t)IFSHAD;
231 	ITOV(sip)->v_type = VREG;
232 	ufs_reset_vnode(ITOV(sip));
233 	sip->i_nlink = 1;
234 	sip->i_uid = crgetuid(cr);
235 	sip->i_suid = (ulong_t)sip->i_uid > (ulong_t)USHRT_MAX ?
236 	    UID_LONG : sip->i_uid;
237 	sip->i_gid = crgetgid(cr);
238 	sip->i_sgid = (ulong_t)sip->i_gid > (ulong_t)USHRT_MAX ?
239 	    GID_LONG : sip->i_gid;
240 	sip->i_shadow = 0;
241 	TRANS_INODE(ufsvfsp, sip);
242 	sip->i_ufs_acl = NULL;
243 	ASSERT(sip->i_size == 0);
244 
245 	sp->s_shadow = sip->i_number;
246 
247 	if ((err = ufs_sectobuf(sp, &acldata, &acldatalen)) != 0)
248 		goto errout;
249 	offset = 0;
250 
251 	/*
252 	 * We don't actually care about the residual count upon failure,
253 	 * but giving ufs_rdwri() the pointer means it won't translate
254 	 * all failures to EIO.  Our caller needs to know when ENOSPC
255 	 * gets hit.
256 	 */
257 	resid = 0;
258 	if (((err = ufs_rdwri(UIO_WRITE, FWRITE|FSYNC, sip, acldata,
259 	    acldatalen, (offset_t)0, UIO_SYSSPACE, &resid, cr)) != 0) ||
260 	    (resid != 0)) {
261 		kmem_free(acldata, acldatalen);
262 		if ((resid != 0) && (err == 0))
263 			err = ENOSPC;
264 		goto errout;
265 	}
266 
267 	offset += acldatalen;
268 	if ((acldatalen + fs->fs_bsize) > ufsvfsp->vfs_maxacl)
269 		ufsvfsp->vfs_maxacl = acldatalen + fs->fs_bsize;
270 
271 	kmem_free(acldata, acldatalen);
272 	/* Sync & free the shadow inode */
273 	ufs_iupdat(sip, 1);
274 	rw_exit(&sip->i_contents);
275 	VN_RELE(ITOV(sip));
276 
277 	/* We're committed to using this sp */
278 	sp->s_use = 1;
279 	sp->s_ref = 1;
280 
281 	/* Now put the new acl stuff in the cache */
282 	/* XXX Might make a duplicate */
283 	si_cache_put(sp);
284 	si_cachemiss++;
285 
286 switchshadows:
287 	/* Now switch the parent inode to use the new shadow inode */
288 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
289 	rw_enter(&sp->s_lock, RW_READER);
290 	oldsp = ip->i_ufs_acl;
291 	oldshadow = ip->i_shadow;
292 	ip->i_ufs_acl = sp;
293 	ASSERT(sp->s_shadow <= INT_MAX);
294 	ip->i_shadow = (int32_t)sp->s_shadow;
295 	ASSERT(oldsp != sp);
296 	ASSERT(oldshadow != ip->i_number);
297 	ASSERT(ip->i_number != ip->i_shadow);
298 	/*
299 	 * Change the mode bits to follow the acl list
300 	 *
301 	 * NOTE:	a directory is not required to have a "regular" acl
302 	 *		bug id's 1238908,  1257173, 1263171 and 1263188
303 	 *
304 	 *		but if a "regular" acl is present, it must contain
305 	 *		an "owner", "group", and "other" acl
306 	 *
307 	 *		If an ACL mask exists, the effective group rights are
308 	 *		set to the mask.  Otherwise, the effective group rights
309 	 * 		are set to the object group bits.
310 	 */
311 	if (sp->aowner) {				/* Owner */
312 		ip->i_mode &= ~0700;			/* clear Owner */
313 		ip->i_mode |= (sp->aowner->acl_ic_perm & 07) << 6;
314 		ip->i_uid = sp->aowner->acl_ic_who;
315 	}
316 
317 	if (sp->agroup) {				/* Group */
318 		ip->i_mode &= ~0070;			/* clear Group */
319 		ip->i_mode |= MASK2MODE(sp);		/* apply mask */
320 		ip->i_gid = sp->agroup->acl_ic_who;
321 	}
322 
323 	if (sp->aother) {				/* Other */
324 		ip->i_mode &= ~0007;			/* clear Other */
325 		ip->i_mode |= (sp->aother->acl_ic_perm & 07);
326 	}
327 
328 	if (sp->aclass.acl_ismask)
329 		ip->i_mode = (ip->i_mode & ~070) |
330 		    (((sp->aclass.acl_maskbits & 07) << 3) &
331 		    ip->i_mode);
332 
333 	TRANS_INODE(ufsvfsp, ip);
334 	rw_exit(&sp->s_lock);
335 	ip->i_flag |= ICHG;
336 	ip->i_seq++;
337 	/*
338 	 * when creating a file there is no need to push the inode, it
339 	 * is pushed later
340 	 */
341 	if (puship == 1)
342 		ufs_iupdat(ip, 1);
343 
344 	/*
345 	 * Decrement link count on the old shadow inode,
346 	 * and decrement reference count on the old aclp,
347 	 */
348 	if (oldshadow) {
349 		/* Get the shadow inode */
350 		ASSERT(RW_WRITE_HELD(&ip->i_contents));
351 		vfsp = ITOV(ip)->v_vfsp;
352 		if ((err = ufs_iget_alloced(vfsp, oldshadow, &sip, cr)) != 0) {
353 			return (EIO);
354 		}
355 		/* Decrement link count */
356 		rw_enter(&sip->i_contents, RW_WRITER);
357 		if (oldsp)
358 			rw_enter(&oldsp->s_lock, RW_WRITER);
359 		ASSERT(sip->i_dquot == 0);
360 		ASSERT(sip->i_nlink > 0);
361 		usecnt = --sip->i_nlink;
362 		ufs_setreclaim(sip);
363 		TRANS_INODE(ufsvfsp, sip);
364 		sip->i_flag |= ICHG | IMOD;
365 		sip->i_seq++;
366 		ITIMES_NOLOCK(sip);
367 		if (oldsp) {
368 			oldsp->s_use = usecnt;
369 			refcnt = --oldsp->s_ref;
370 			signature = oldsp->s_signature;
371 			/*
372 			 * Always release s_lock before both releasing
373 			 * i_contents and calling VN_RELE.
374 			 */
375 			rw_exit(&oldsp->s_lock);
376 		}
377 		rw_exit(&sip->i_contents);
378 		VN_RELE(ITOV(sip));
379 		if (oldsp && (refcnt == 0))
380 			si_cache_del(oldsp, signature);
381 	}
382 	return (0);
383 
384 errout:
385 	/* Throw the newly alloc'd inode away */
386 	sip->i_nlink = 0;
387 	ufs_setreclaim(sip);
388 	TRANS_INODE(ufsvfsp, sip);
389 	ITIMES_NOLOCK(sip);
390 	rw_exit(&sip->i_contents);
391 	VN_RELE(ITOV(sip));
392 	ASSERT(!sp->s_use && !sp->s_ref && !(sp->s_flags & SI_CACHED));
393 	(void) ufs_si_free_mem(sp);
394 	return (err);
395 }
396 
397 /*
398  * Load the acls for inode ip either from disk (adding to the cache),
399  * or search the cache and attach the cache'd acl list to the ip.
400  * In either case, maintain the proper reference count on the cached entry.
401  *
402  * Parameters:
403  * ip - Ptr to the inode which needs the acl list loaded
404  * cr - Ptr to credentials
405  *
406  * Returns:	0 - Success
407  * 		N - From errno.h
408  */
409 int
410 ufs_si_load(struct inode *ip, cred_t *cr)
411 /*
412  *	ip	parent inode in
413  *	cr	credentials in
414  */
415 {
416 	struct vfs	*vfsp;
417 	struct inode	*sip;
418 	ufs_fsd_t	*fsdp;
419 	si_t		*sp;
420 	vsecattr_t	vsecattr = {
421 				(uint_t)0,
422 				(int)0,
423 				(void *)NULL,
424 				(int)0,
425 				(void *)NULL};
426 	aclent_t	*aclp;
427 	ufs_acl_t	*ufsaclp;
428 	caddr_t		acldata = NULL;
429 	ino_t		maxino;
430 	int		err;
431 	size_t		acldatalen;
432 	int		numacls;
433 	int		shadow;
434 	int		usecnt;
435 	struct ufsvfs	*ufsvfsp	= ip->i_ufsvfs;
436 	struct fs	*fs		= ufsvfsp->vfs_fs;
437 
438 	ASSERT(ip != NULL);
439 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
440 	ASSERT(ip->i_shadow && ip->i_ufs_acl == NULL);
441 	ASSERT((ip->i_mode & IFMT) != IFSHAD);
442 
443 	if (!CHECK_ACL_ALLOWED(ip->i_mode & IFMT))
444 		return (ENOSYS);
445 
446 	if (ip->i_shadow == ip->i_number)
447 		return (EIO);
448 
449 	maxino = (ino_t)(ITOF(ip)->fs_ncg * ITOF(ip)->fs_ipg);
450 	if (ip->i_shadow < UFSROOTINO || ip->i_shadow > maxino)
451 		return (EIO);
452 
453 	/*
454 	 * XXX Check cache.  If in cache, link to it and increment
455 	 * the reference count, then return.
456 	 */
457 	if (si_cachei_get(ip, &sp) == 0) {
458 		ASSERT(RW_WRITE_HELD(&sp->s_lock));
459 		ip->i_ufs_acl = sp;
460 		sp->s_ref++;
461 		ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use);
462 		rw_exit(&sp->s_lock);
463 		si_cachehit++;
464 		return (0);
465 	}
466 
467 	/* Get the shadow inode */
468 	vfsp = ITOV(ip)->v_vfsp;
469 	shadow = ip->i_shadow;
470 	if ((err = ufs_iget_alloced(vfsp, shadow, &sip, cr)) != 0) {
471 		return (err);
472 	}
473 	rw_enter(&sip->i_contents, RW_WRITER);
474 
475 	if ((sip->i_mode & IFMT) != IFSHAD) {
476 		rw_exit(&sip->i_contents);
477 		err = EINVAL;
478 		goto alldone;
479 	}
480 
481 	ASSERT(sip->i_dquot == 0);
482 	usecnt = sip->i_nlink;
483 	if ((!ULOCKFS_IS_NOIACC(&ufsvfsp->vfs_ulockfs)) &&
484 	    (!(sip)->i_ufsvfs->vfs_noatime)) {
485 		sip->i_flag |= IACC;
486 	}
487 	rw_downgrade(&sip->i_contents);
488 
489 	ASSERT(sip->i_size <= MAXOFF_T);
490 	/* Read the acl's and other stuff from disk */
491 	acldata	 = kmem_zalloc((size_t)sip->i_size, KM_SLEEP);
492 	acldatalen = sip->i_size;
493 
494 	err = ufs_rdwri(UIO_READ, FREAD, sip, acldata, acldatalen, (offset_t)0,
495 	    UIO_SYSSPACE, (int *)0, cr);
496 
497 	rw_exit(&sip->i_contents);
498 
499 	if (err)
500 		goto alldone;
501 
502 	/*
503 	 * Convert from disk format
504 	 * Result is a vsecattr struct which we then convert to the
505 	 * si struct.
506 	 */
507 	bzero((caddr_t)&vsecattr, sizeof (vsecattr_t));
508 	for (fsdp = (ufs_fsd_t *)acldata;
509 			fsdp < (ufs_fsd_t *)(acldata + acldatalen);
510 			fsdp = (ufs_fsd_t *)((caddr_t)fsdp +
511 				FSD_RECSZ(fsdp, fsdp->fsd_size))) {
512 		if (fsdp->fsd_size <= 0)
513 			break;
514 		switch (fsdp->fsd_type) {
515 		case FSD_ACL:
516 			numacls = vsecattr.vsa_aclcnt =
517 				(int)((fsdp->fsd_size - 2 * sizeof (int)) /
518 							sizeof (ufs_acl_t));
519 			aclp = vsecattr.vsa_aclentp =
520 			kmem_zalloc(numacls * sizeof (aclent_t), KM_SLEEP);
521 			for (ufsaclp = (ufs_acl_t *)fsdp->fsd_data;
522 							numacls; ufsaclp++) {
523 				aclp->a_type = ufsaclp->acl_tag;
524 				aclp->a_id = ufsaclp->acl_who;
525 				aclp->a_perm = ufsaclp->acl_perm;
526 				aclp++;
527 				numacls--;
528 			}
529 			break;
530 		case FSD_DFACL:
531 			numacls = vsecattr.vsa_dfaclcnt =
532 				(int)((fsdp->fsd_size - 2 * sizeof (int)) /
533 							sizeof (ufs_acl_t));
534 			aclp = vsecattr.vsa_dfaclentp =
535 			kmem_zalloc(numacls * sizeof (aclent_t), KM_SLEEP);
536 			for (ufsaclp = (ufs_acl_t *)fsdp->fsd_data;
537 							numacls; ufsaclp++) {
538 				aclp->a_type = ufsaclp->acl_tag;
539 				aclp->a_id = ufsaclp->acl_who;
540 				aclp->a_perm = ufsaclp->acl_perm;
541 				aclp++;
542 				numacls--;
543 			}
544 			break;
545 		}
546 	}
547 	/* Sort the lists */
548 	if (vsecattr.vsa_aclentp) {
549 		ksort((caddr_t)vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt,
550 				sizeof (aclent_t), cmp2acls);
551 		if ((err = acl_validate(vsecattr.vsa_aclentp,
552 				vsecattr.vsa_aclcnt, ACL_CHECK)) != 0) {
553 			goto alldone;
554 		}
555 	}
556 	if (vsecattr.vsa_dfaclentp) {
557 		ksort((caddr_t)vsecattr.vsa_dfaclentp, vsecattr.vsa_dfaclcnt,
558 				sizeof (aclent_t), cmp2acls);
559 		if ((err = acl_validate(vsecattr.vsa_dfaclentp,
560 				vsecattr.vsa_dfaclcnt, DEF_ACL_CHECK)) != 0) {
561 			goto alldone;
562 		}
563 	}
564 
565 	/* ignore shadow inodes without ACLs */
566 	if (!vsecattr.vsa_aclentp && !vsecattr.vsa_dfaclentp) {
567 		err = 0;
568 		goto alldone;
569 	}
570 
571 	/* Convert from vsecattr struct to ufs_acl_entry struct */
572 	if ((err = vsecattr2aclentry(&vsecattr, &sp)) != 0) {
573 		goto alldone;
574 	}
575 
576 	/* There aren't filled in by vsecattr2aclentry */
577 	sp->s_shadow = ip->i_shadow;
578 	sp->s_dev = ip->i_dev;
579 	sp->s_use = usecnt;
580 	sp->s_ref = 1;
581 	ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use);
582 
583 	/* XXX Might make a duplicate */
584 	si_cache_put(sp);
585 
586 	/* Signal anyone waiting on this shadow to be loaded */
587 	ip->i_ufs_acl = sp;
588 	err = 0;
589 	si_cachemiss++;
590 	if ((acldatalen + fs->fs_bsize) > ufsvfsp->vfs_maxacl)
591 		ufsvfsp->vfs_maxacl = acldatalen + fs->fs_bsize;
592 alldone:
593 	/*
594 	 * Common exit point. Mark shadow inode as ISTALE
595 	 * if we detect an internal inconsistency, to
596 	 * prevent stray inodes appearing in the cache.
597 	 */
598 	if (err) {
599 		rw_enter(&sip->i_contents, RW_READER);
600 		mutex_enter(&sip->i_tlock);
601 		sip->i_flag |= ISTALE;
602 		mutex_exit(&sip->i_tlock);
603 		rw_exit(&sip->i_contents);
604 	}
605 	VN_RELE(ITOV(sip));
606 
607 	/*
608 	 * Cleanup of data structures allocated
609 	 * on the fly.
610 	 */
611 	if (acldata)
612 		kmem_free(acldata, acldatalen);
613 
614 	if (vsecattr.vsa_aclentp)
615 		kmem_free(vsecattr.vsa_aclentp,
616 			vsecattr.vsa_aclcnt * sizeof (aclent_t));
617 	if (vsecattr.vsa_dfaclentp)
618 		kmem_free(vsecattr.vsa_dfaclentp,
619 			vsecattr.vsa_dfaclcnt * sizeof (aclent_t));
620 	return (err);
621 }
622 
623 /*
624  * Check the inode's ACL's to see if this mode of access is
625  * allowed; return 0 if allowed, EACCES if not.
626  *
627  * We follow the procedure defined in Sec. 3.3.5, ACL Access
628  * Check Algorithm, of the POSIX 1003.6 Draft Standard.
629  */
630 int
631 ufs_acl_access(struct inode *ip, int mode, cred_t *cr)
632 /*
633  *	ip 	parent inode
634  *	mode 	mode of access read, write, execute/examine
635  *	cr	credentials
636  */
637 {
638 	ufs_ic_acl_t *acl;
639 	int ismask, mask = 0;
640 	int gperm = 0;
641 	int ngroup = 0;
642 	si_t	*sp = NULL;
643 	uid_t uid = crgetuid(cr);
644 	uid_t owner;
645 
646 	ASSERT(ip->i_ufs_acl != NULL);
647 	ASSERT(RW_LOCK_HELD(&ip->i_contents));
648 
649 	sp = ip->i_ufs_acl;
650 
651 	ismask = sp->aclass.acl_ismask ?
652 	    sp->aclass.acl_ismask : NULL;
653 
654 	if (ismask)
655 		mask = sp->aclass.acl_maskbits;
656 	else
657 		mask = -1;
658 
659 	/*
660 	 * (1) If user owns the file, obey user mode bits
661 	 */
662 	owner = sp->aowner->acl_ic_who;
663 	if (uid == owner) {
664 		return (MODE_CHECK(owner, mode, (sp->aowner->acl_ic_perm << 6),
665 							    cr, ip));
666 	}
667 
668 	/*
669 	 * (2) Obey any matching ACL_USER entry
670 	 */
671 	if (sp->ausers)
672 		for (acl = sp->ausers; acl != NULL; acl = acl->acl_ic_next) {
673 			if (acl->acl_ic_who == uid) {
674 				return (MODE_CHECK(owner, mode,
675 				    (mask & acl->acl_ic_perm) << 6, cr, ip));
676 			}
677 		}
678 
679 	/*
680 	 * (3) If user belongs to file's group, obey group mode bits
681 	 * if no ACL mask is defined; if there is an ACL mask, we look
682 	 * at both the group mode bits and any ACL_GROUP entries.
683 	 */
684 	if (groupmember((uid_t)sp->agroup->acl_ic_who, cr)) {
685 		ngroup++;
686 		gperm = (sp->agroup->acl_ic_perm);
687 		if (!ismask)
688 			return (MODE_CHECK(owner, mode, (gperm << 6), cr, ip));
689 	}
690 
691 	/*
692 	 * (4) Accumulate the permissions in matching ACL_GROUP entries
693 	 */
694 	if (sp->agroups)
695 		for (acl = sp->agroups; acl != NULL; acl = acl->acl_ic_next)
696 		{
697 			if (groupmember(acl->acl_ic_who, cr)) {
698 				ngroup++;
699 				gperm |= acl->acl_ic_perm;
700 			}
701 		}
702 
703 	if (ngroup != 0)
704 		return (MODE_CHECK(owner, mode, ((gperm & mask) << 6), cr, ip));
705 
706 	/*
707 	 * (5) Finally, use the "other" mode bits
708 	 */
709 	return (MODE_CHECK(owner, mode, sp->aother->acl_ic_perm << 6, cr, ip));
710 }
711 
712 /*ARGSUSED2*/
713 int
714 ufs_acl_get(struct inode *ip, vsecattr_t *vsap, int flag, cred_t *cr)
715 {
716 	aclent_t	*aclentp;
717 
718 	ASSERT(RW_LOCK_HELD(&ip->i_contents));
719 
720 	/* XXX Range check, sanity check, shadow check */
721 	/* If an ACL is present, get the data from the shadow inode info */
722 	if (ip->i_ufs_acl)
723 		return (aclentry2vsecattr(ip->i_ufs_acl, vsap));
724 
725 	/*
726 	 * If no ACLs are present, fabricate one from the mode bits.
727 	 * This code is almost identical to fs_fab_acl(), but we
728 	 * already have the mode bits handy, so we'll avoid going
729 	 * through VOP_GETATTR() again.
730 	 */
731 
732 	vsap->vsa_aclcnt    = 0;
733 	vsap->vsa_aclentp   = NULL;
734 	vsap->vsa_dfaclcnt  = 0;	/* Default ACLs are not fabricated */
735 	vsap->vsa_dfaclentp = NULL;
736 
737 	if (vsap->vsa_mask & (VSA_ACLCNT | VSA_ACL))
738 		vsap->vsa_aclcnt    = 4;  /* USER, GROUP, OTHER, and CLASS */
739 
740 	if (vsap->vsa_mask & VSA_ACL) {
741 		vsap->vsa_aclentp = kmem_zalloc(4 * sizeof (aclent_t),
742 		    KM_SLEEP);
743 		if (vsap->vsa_aclentp == NULL)
744 			return (ENOMEM);
745 		aclentp = vsap->vsa_aclentp;
746 
747 		/* Owner */
748 		aclentp->a_type = USER_OBJ;
749 		aclentp->a_perm = ((ushort_t)(ip->i_mode & 0700)) >> 6;
750 		aclentp->a_id = ip->i_uid;	/* Really undefined */
751 		aclentp++;
752 
753 		/* Group */
754 		aclentp->a_type = GROUP_OBJ;
755 		aclentp->a_perm = ((ushort_t)(ip->i_mode & 0070)) >> 3;
756 		aclentp->a_id = ip->i_gid; 	/* Really undefined */
757 		aclentp++;
758 
759 		/* Other */
760 		aclentp->a_type = OTHER_OBJ;
761 		aclentp->a_perm = ip->i_mode & 0007;
762 		aclentp->a_id = 0;		/* Really undefined */
763 		aclentp++;
764 
765 		/* Class */
766 		aclentp->a_type = CLASS_OBJ;
767 		aclentp->a_perm = ((ushort_t)(ip->i_mode & 0070)) >> 3;
768 		aclentp->a_id = 0;		/* Really undefined */
769 		ksort((caddr_t)vsap->vsa_aclentp, vsap->vsa_aclcnt,
770 		    sizeof (aclent_t), cmp2acls);
771 	}
772 
773 	return (0);
774 }
775 
776 /*ARGSUSED2*/
777 int
778 ufs_acl_set(struct inode *ip, vsecattr_t *vsap, int flag, cred_t *cr)
779 {
780 	si_t	*sp;
781 	int	err;
782 
783 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
784 
785 	if (!CHECK_ACL_ALLOWED(ip->i_mode & IFMT))
786 		return (ENOSYS);
787 
788 	/*
789 	 * only the owner of the file or privileged users can change the ACLs
790 	 */
791 	if (secpolicy_vnode_setdac(cr, ip->i_uid) != 0)
792 		return (EPERM);
793 
794 	/* Convert from vsecattr struct to ufs_acl_entry struct */
795 	if ((err = vsecattr2aclentry(vsap, &sp)) != 0)
796 		return (err);
797 	sp->s_dev = ip->i_dev;
798 
799 	/*
800 	 * Make the user & group objs in the acl list follow what's
801 	 * in the inode.
802 	 */
803 #ifdef DEBUG
804 	if (vsap->vsa_mask == VSA_ACL) {
805 		ASSERT(sp->aowner);
806 		ASSERT(sp->agroup);
807 		ASSERT(sp->aother);
808 	}
809 #endif	/* DEBUG */
810 
811 	if (sp->aowner)
812 		sp->aowner->acl_ic_who = ip->i_uid;
813 	if (sp->agroup)
814 		sp->agroup->acl_ic_who = ip->i_gid;
815 
816 	/*
817 	 * Write and cache the new acl list
818 	 */
819 	err = ufs_si_store(ip, sp, 1, cr);
820 
821 	return (err);
822 }
823 
824 /*
825  * XXX Scan sorted array of acl's, checking for:
826  * 1) Any duplicate/conflicting entries (same type and id)
827  * 2) More than 1 of USER_OBJ, GROUP_OBJ, OTHER_OBJ, CLASS_OBJ
828  * 3) More than 1 of DEF_USER_OBJ, DEF_GROUP_OBJ, DEF_OTHER_OBJ, DEF_CLASS_OBJ
829  *
830  * Parameters:
831  * aclentp - ptr to sorted list of acl entries.
832  * nentries - # acl entries on the list
833  * flag - Bitmap (ACL_CHECK and/or DEF_ACL_CHECK) indicating whether the
834  * list contains regular acls, default acls, or both.
835  *
836  * Returns:	0 - Success
837  * EINVAL - Invalid list (dups or multiple entries of type USER_OBJ, etc)
838  */
839 static int
840 acl_validate(aclent_t *aclentp, int nentries, int flag)
841 {
842 	int	i;
843 	int	nuser_objs = 0;
844 	int	ngroup_objs = 0;
845 	int	nother_objs = 0;
846 	int	nclass_objs = 0;
847 	int	ndef_user_objs = 0;
848 	int	ndef_group_objs = 0;
849 	int	ndef_other_objs = 0;
850 	int	ndef_class_objs = 0;
851 	int	nusers = 0;
852 	int	ngroups = 0;
853 	int	ndef_users = 0;
854 	int	ndef_groups = 0;
855 	int	numdefs = 0;
856 
857 	/* Null list or list of one */
858 	if (aclentp == NULL)
859 		return (0);
860 
861 	if (nentries <= 0)
862 		return (EINVAL);
863 
864 	for (i = 1; i < nentries; i++) {
865 		if (((aclentp[i - 1].a_type == aclentp[i].a_type) &&
866 		    (aclentp[i - 1].a_id   == aclentp[i].a_id)) ||
867 		    (aclentp[i - 1].a_perm > 07)) {
868 			return (EINVAL);
869 		}
870 	}
871 
872 	if (flag == 0 || (flag != ACL_CHECK && flag != DEF_ACL_CHECK))
873 		return (EINVAL);
874 
875 	/* Count types */
876 	for (i = 0; i < nentries; i++) {
877 		switch (aclentp[i].a_type) {
878 		case USER_OBJ:		/* Owner */
879 			nuser_objs++;
880 			break;
881 		case GROUP_OBJ:		/* Group */
882 			ngroup_objs++;
883 			break;
884 		case OTHER_OBJ:		/* Other */
885 			nother_objs++;
886 			break;
887 		case CLASS_OBJ:		/* Mask */
888 			nclass_objs++;
889 			break;
890 		case DEF_USER_OBJ:	/* Default Owner */
891 			ndef_user_objs++;
892 			break;
893 		case DEF_GROUP_OBJ:	/* Default Group */
894 			ndef_group_objs++;
895 			break;
896 		case DEF_OTHER_OBJ:	/* Default Other */
897 			ndef_other_objs++;
898 			break;
899 		case DEF_CLASS_OBJ:	/* Default Mask */
900 			ndef_class_objs++;
901 			break;
902 		case USER:		/* Users */
903 			nusers++;
904 			break;
905 		case GROUP:		/* Groups */
906 			ngroups++;
907 			break;
908 		case DEF_USER:		/* Default Users */
909 			ndef_users++;
910 			break;
911 		case DEF_GROUP:		/* Default Groups */
912 			ndef_groups++;
913 			break;
914 		default:		/* Unknown type */
915 			return (EINVAL);
916 		}
917 	}
918 
919 	/*
920 	 * For normal acl's, we require there be one (and only one)
921 	 * USER_OBJ, GROUP_OBJ and OTHER_OBJ.  There is either zero
922 	 * or one CLASS_OBJ.
923 	 */
924 	if (flag & ACL_CHECK) {
925 		if (nuser_objs != 1 || ngroup_objs != 1 ||
926 		    nother_objs != 1 || nclass_objs > 1) {
927 			return (EINVAL);
928 		}
929 		/*
930 		 * If there are ANY group acls, there MUST be a
931 		 * class_obj(mask) acl (1003.6/D12 p. 29 lines 75-80).
932 		 */
933 		if (ngroups && !nclass_objs) {
934 			return (EINVAL);
935 		}
936 		if (nuser_objs + ngroup_objs + nother_objs + nclass_objs +
937 		    ngroups + nusers > MAX_ACL_ENTRIES)
938 			return (EINVAL);
939 	}
940 
941 	/*
942 	 * For default acl's, we require that there be either one (and only one)
943 	 * DEF_USER_OBJ, DEF_GROUP_OBJ and DEF_OTHER_OBJ
944 	 * or  there be none of them.
945 	 */
946 	if (flag & DEF_ACL_CHECK) {
947 		if (ndef_other_objs > 1 || ndef_user_objs > 1 ||
948 		    ndef_group_objs > 1 || ndef_class_objs > 1) {
949 			return (EINVAL);
950 		}
951 
952 		numdefs = ndef_other_objs + ndef_user_objs + ndef_group_objs;
953 
954 		if (numdefs != 0 && numdefs != 3) {
955 			return (EINVAL);
956 		}
957 		/*
958 		 * If there are ANY def_group acls, there MUST be a
959 		 * def_class_obj(mask) acl (1003.6/D12 P. 29 lines 75-80).
960 		 * XXX(jimh) This is inferred.
961 		 */
962 		if (ndef_groups && !ndef_class_objs) {
963 			return (EINVAL);
964 		}
965 		if ((ndef_users || ndef_groups) &&
966 		    ((numdefs != 3) && !ndef_class_objs)) {
967 			return (EINVAL);
968 		}
969 		if (ndef_user_objs + ndef_group_objs + ndef_other_objs +
970 		    ndef_class_objs + ndef_users + ndef_groups >
971 		    MAX_ACL_ENTRIES)
972 			return (EINVAL);
973 	}
974 	return (0);
975 }
976 
977 static int
978 formacl(ufs_ic_acl_t **aclpp, aclent_t *aclentp)
979 {
980 	ufs_ic_acl_t *uaclp;
981 
982 	uaclp = kmem_alloc(sizeof (ufs_ic_acl_t), KM_SLEEP);
983 	uaclp->acl_ic_perm = aclentp->a_perm;
984 	uaclp->acl_ic_who = aclentp->a_id;
985 	uaclp->acl_ic_next = *aclpp;
986 	*aclpp = uaclp;
987 	return (0);
988 }
989 
990 /*
991  * XXX - Make more efficient
992  * Convert from the vsecattr struct, used by the VOP interface, to
993  * the ufs_acl_entry struct used for in-core storage of acl's.
994  *
995  * Parameters:
996  * vsap - Ptr to array of security attributes.
997  * spp - Ptr to ptr to si struct for the results
998  *
999  * Returns:	0 - Success
1000  * 		N - From errno.h
1001  */
1002 static int
1003 vsecattr2aclentry(vsecattr_t *vsap, si_t **spp)
1004 {
1005 	aclent_t	*aclentp, *aclp;
1006 	si_t		*sp;
1007 	int		err;
1008 	int		i;
1009 
1010 	/* Sort & validate the lists on the vsap */
1011 	ksort((caddr_t)vsap->vsa_aclentp, vsap->vsa_aclcnt,
1012 	    sizeof (aclent_t), cmp2acls);
1013 	ksort((caddr_t)vsap->vsa_dfaclentp, vsap->vsa_dfaclcnt,
1014 	    sizeof (aclent_t), cmp2acls);
1015 	if ((err = acl_validate(vsap->vsa_aclentp,
1016 	    vsap->vsa_aclcnt, ACL_CHECK)) != 0)
1017 		return (err);
1018 	if ((err = acl_validate(vsap->vsa_dfaclentp,
1019 	    vsap->vsa_dfaclcnt, DEF_ACL_CHECK)) != 0)
1020 		return (err);
1021 
1022 	/* Create new si struct and hang acl's off it */
1023 	sp = kmem_zalloc(sizeof (si_t), KM_SLEEP);
1024 	rw_init(&sp->s_lock, NULL, RW_DEFAULT, NULL);
1025 
1026 	/* Process acl list */
1027 	aclp = (aclent_t *)vsap->vsa_aclentp;
1028 	aclentp = aclp + vsap->vsa_aclcnt - 1;
1029 	for (i = 0; i < vsap->vsa_aclcnt; i++) {
1030 		switch (aclentp->a_type) {
1031 		case USER_OBJ:		/* Owner */
1032 			if (err = formacl(&sp->aowner, aclentp))
1033 				goto error;
1034 			break;
1035 		case GROUP_OBJ:		/* Group */
1036 			if (err = formacl(&sp->agroup, aclentp))
1037 				goto error;
1038 			break;
1039 		case OTHER_OBJ:		/* Other */
1040 			if (err = formacl(&sp->aother, aclentp))
1041 				goto error;
1042 			break;
1043 		case USER:
1044 			if (err = formacl(&sp->ausers, aclentp))
1045 				goto error;
1046 			break;
1047 		case CLASS_OBJ:		/* Mask */
1048 			sp->aclass.acl_ismask = 1;
1049 			sp->aclass.acl_maskbits = aclentp->a_perm;
1050 			break;
1051 		case GROUP:
1052 			if (err = formacl(&sp->agroups, aclentp))
1053 				goto error;
1054 			break;
1055 		default:
1056 			break;
1057 		}
1058 		aclentp--;
1059 	}
1060 
1061 	/* Process default acl list */
1062 	aclp = (aclent_t *)vsap->vsa_dfaclentp;
1063 	aclentp = aclp + vsap->vsa_dfaclcnt - 1;
1064 	for (i = 0; i < vsap->vsa_dfaclcnt; i++) {
1065 		switch (aclentp->a_type) {
1066 		case DEF_USER_OBJ:	/* Default Owner */
1067 			if (err = formacl(&sp->downer, aclentp))
1068 				goto error;
1069 			break;
1070 		case DEF_GROUP_OBJ:	/* Default Group */
1071 			if (err = formacl(&sp->dgroup, aclentp))
1072 				goto error;
1073 			break;
1074 		case DEF_OTHER_OBJ:	/* Default Other */
1075 			if (err = formacl(&sp->dother, aclentp))
1076 				goto error;
1077 			break;
1078 		case DEF_USER:
1079 			if (err = formacl(&sp->dusers, aclentp))
1080 				goto error;
1081 			break;
1082 		case DEF_CLASS_OBJ:	/* Default Mask */
1083 			sp->dclass.acl_ismask = 1;
1084 			sp->dclass.acl_maskbits = aclentp->a_perm;
1085 			break;
1086 		case DEF_GROUP:
1087 			if (err = formacl(&sp->dgroups, aclentp))
1088 				goto error;
1089 			break;
1090 		default:
1091 			break;
1092 		}
1093 		aclentp--;
1094 	}
1095 	*spp = sp;
1096 	return (0);
1097 
1098 error:
1099 	ufs_si_free_mem(sp);
1100 	return (err);
1101 }
1102 
1103 void
1104 formvsec(int obj_type, ufs_ic_acl_t *aclp, aclent_t **aclentpp)
1105 {
1106 	for (; aclp; aclp = aclp->acl_ic_next) {
1107 		(*aclentpp)->a_type = obj_type;
1108 		(*aclentpp)->a_perm = aclp->acl_ic_perm;
1109 		(*aclentpp)->a_id = aclp->acl_ic_who;
1110 		(*aclentpp)++;
1111 	}
1112 }
1113 
1114 /*
1115  * XXX - Make more efficient
1116  * Convert from the ufs_acl_entry struct used for in-core storage of acl's
1117  * to the vsecattr struct,  used by the VOP interface.
1118  *
1119  * Parameters:
1120  * sp - Ptr to si struct with the acls
1121  * vsap - Ptr to a vsecattr struct which will take the results.
1122  *
1123  * Returns:	0 - Success
1124  *		N - From errno table
1125  */
1126 static int
1127 aclentry2vsecattr(si_t *sp, vsecattr_t *vsap)
1128 {
1129 	aclent_t	*aclentp;
1130 	int		numacls = 0;
1131 	int		err;
1132 
1133 	vsap->vsa_aclentp = vsap->vsa_dfaclentp = NULL;
1134 
1135 	numacls = acl_count(sp->aowner) +
1136 	    acl_count(sp->agroup) +
1137 	    acl_count(sp->aother) +
1138 	    acl_count(sp->ausers) +
1139 	    acl_count(sp->agroups);
1140 	if (sp->aclass.acl_ismask)
1141 		numacls++;
1142 
1143 	if (vsap->vsa_mask & (VSA_ACLCNT | VSA_ACL))
1144 		vsap->vsa_aclcnt = numacls;
1145 
1146 	if (numacls == 0)
1147 		goto do_defaults;
1148 
1149 	if (vsap->vsa_mask & VSA_ACL) {
1150 		vsap->vsa_aclentp = kmem_zalloc(numacls * sizeof (aclent_t),
1151 		    KM_SLEEP);
1152 		aclentp = vsap->vsa_aclentp;
1153 
1154 		formvsec(USER_OBJ, sp->aowner, &aclentp);
1155 		formvsec(USER, sp->ausers, &aclentp);
1156 		formvsec(GROUP_OBJ, sp->agroup, &aclentp);
1157 		formvsec(GROUP, sp->agroups, &aclentp);
1158 		formvsec(OTHER_OBJ, sp->aother, &aclentp);
1159 
1160 		if (sp->aclass.acl_ismask) {
1161 			aclentp->a_type = CLASS_OBJ;		/* Mask */
1162 			aclentp->a_perm = sp->aclass.acl_maskbits;
1163 			aclentp->a_id = 0;
1164 			aclentp++;
1165 		}
1166 
1167 		/* Sort the acl list */
1168 		ksort((caddr_t)vsap->vsa_aclentp, vsap->vsa_aclcnt,
1169 		    sizeof (aclent_t), cmp2acls);
1170 		/* Check the acl list */
1171 		if ((err = acl_validate(vsap->vsa_aclentp,
1172 		    vsap->vsa_aclcnt, ACL_CHECK)) != 0) {
1173 			kmem_free(vsap->vsa_aclentp,
1174 			    numacls * sizeof (aclent_t));
1175 			vsap->vsa_aclentp = NULL;
1176 			return (err);
1177 		}
1178 
1179 	}
1180 do_defaults:
1181 	/* Process Defaults */
1182 
1183 	numacls = acl_count(sp->downer) +
1184 	    acl_count(sp->dgroup) +
1185 	    acl_count(sp->dother) +
1186 	    acl_count(sp->dusers) +
1187 	    acl_count(sp->dgroups);
1188 	if (sp->dclass.acl_ismask)
1189 		numacls++;
1190 
1191 	if (vsap->vsa_mask & (VSA_DFACLCNT | VSA_DFACL))
1192 		vsap->vsa_dfaclcnt = numacls;
1193 
1194 	if (numacls == 0)
1195 		goto do_others;
1196 
1197 	if (vsap->vsa_mask & VSA_DFACL) {
1198 		vsap->vsa_dfaclentp =
1199 		    kmem_zalloc(numacls * sizeof (aclent_t), KM_SLEEP);
1200 		aclentp = vsap->vsa_dfaclentp;
1201 		formvsec(DEF_USER_OBJ, sp->downer, &aclentp);
1202 		formvsec(DEF_USER, sp->dusers, &aclentp);
1203 		formvsec(DEF_GROUP_OBJ, sp->dgroup, &aclentp);
1204 		formvsec(DEF_GROUP, sp->dgroups, &aclentp);
1205 		formvsec(DEF_OTHER_OBJ, sp->dother, &aclentp);
1206 
1207 		if (sp->dclass.acl_ismask) {
1208 			aclentp->a_type = DEF_CLASS_OBJ;	/* Mask */
1209 			aclentp->a_perm = sp->dclass.acl_maskbits;
1210 			aclentp->a_id = 0;
1211 			aclentp++;
1212 		}
1213 
1214 		/* Sort the default acl list */
1215 		ksort((caddr_t)vsap->vsa_dfaclentp, vsap->vsa_dfaclcnt,
1216 		    sizeof (aclent_t), cmp2acls);
1217 		if ((err = acl_validate(vsap->vsa_dfaclentp,
1218 		    vsap->vsa_dfaclcnt, DEF_ACL_CHECK)) != 0) {
1219 			if (vsap->vsa_aclentp != NULL)
1220 				kmem_free(vsap->vsa_aclentp,
1221 				    vsap->vsa_aclcnt * sizeof (aclent_t));
1222 			kmem_free(vsap->vsa_dfaclentp,
1223 			    vsap->vsa_dfaclcnt * sizeof (aclent_t));
1224 			vsap->vsa_aclentp = vsap->vsa_dfaclentp = NULL;
1225 			return (err);
1226 		}
1227 	}
1228 
1229 do_others:
1230 	return (0);
1231 }
1232 
1233 static void
1234 acl_free(ufs_ic_acl_t *aclp)
1235 {
1236 	while (aclp != NULL) {
1237 		ufs_ic_acl_t *nextaclp = aclp->acl_ic_next;
1238 		kmem_free(aclp, sizeof (ufs_ic_acl_t));
1239 		aclp = nextaclp;
1240 	}
1241 }
1242 
1243 /*
1244  * ufs_si_free_mem will discard the sp, and the acl hanging off of the
1245  * sp.  It is required that the sp not be locked, and not be in the
1246  * cache.
1247  *
1248  * input: pointer to sp to discard.
1249  *
1250  * return - nothing.
1251  *
1252  */
1253 static void
1254 ufs_si_free_mem(si_t *sp)
1255 {
1256 	ASSERT(!(sp->s_flags & SI_CACHED));
1257 	ASSERT(!RW_LOCK_HELD(&sp->s_lock));
1258 	/*
1259 	 *	remove from the cache
1260 	 *	free the acl entries
1261 	 */
1262 	acl_free(sp->aowner);
1263 	acl_free(sp->agroup);
1264 	acl_free(sp->aother);
1265 	acl_free(sp->ausers);
1266 	acl_free(sp->agroups);
1267 
1268 	acl_free(sp->downer);
1269 	acl_free(sp->dgroup);
1270 	acl_free(sp->dother);
1271 	acl_free(sp->dusers);
1272 	acl_free(sp->dgroups);
1273 
1274 	rw_destroy(&sp->s_lock);
1275 	kmem_free(sp, sizeof (si_t));
1276 }
1277 
1278 void
1279 acl_cpy(ufs_ic_acl_t *saclp, ufs_ic_acl_t *daclp)
1280 {
1281 	ufs_ic_acl_t  *aclp, *prev_aclp = NULL, *aclp1;
1282 
1283 	if (saclp == NULL) {
1284 		daclp = NULL;
1285 		return;
1286 	}
1287 	prev_aclp = daclp;
1288 
1289 	for (aclp = saclp; aclp != NULL; aclp = aclp->acl_ic_next) {
1290 		aclp1 = kmem_alloc(sizeof (ufs_ic_acl_t), KM_SLEEP);
1291 		aclp1->acl_ic_next = NULL;
1292 		aclp1->acl_ic_who = aclp->acl_ic_who;
1293 		aclp1->acl_ic_perm = aclp->acl_ic_perm;
1294 		prev_aclp->acl_ic_next = aclp1;
1295 		prev_aclp = (ufs_ic_acl_t *)&aclp1->acl_ic_next;
1296 	}
1297 }
1298 
1299 /*
1300  *	ufs_si_inherit takes a parent acl structure (saclp) and the inode
1301  *	of the object that is inheriting an acl and returns the inode
1302  *	with the acl linked to it.  It also writes the acl to disk if
1303  *	it is a unique inode.
1304  *
1305  *	ip - pointer to inode of object inheriting the acl (contents lock)
1306  *	tdp - parent inode (rw_lock and contents lock)
1307  *	mode - creation modes
1308  *	cr - credentials pointer
1309  */
1310 int
1311 ufs_si_inherit(struct inode *ip, struct inode *tdp, o_mode_t mode, cred_t *cr)
1312 {
1313 	si_t *tsp, *sp = tdp->i_ufs_acl;
1314 	int error;
1315 	o_mode_t old_modes, old_uid, old_gid;
1316 	int mask;
1317 
1318 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
1319 	ASSERT(RW_WRITE_HELD(&tdp->i_rwlock));
1320 	ASSERT(RW_WRITE_HELD(&tdp->i_contents));
1321 
1322 	/*
1323 	 * if links/symbolic links, or other invalid acl objects are copied
1324 	 * or moved to a directory with a default acl do not allow inheritance
1325 	 * just return.
1326 	 */
1327 	if (!CHECK_ACL_ALLOWED(ip->i_mode & IFMT))
1328 		return (0);
1329 
1330 	/* lock the parent security information */
1331 	rw_enter(&sp->s_lock, RW_READER);
1332 
1333 	ASSERT(((tdp->i_mode & IFMT) == IFDIR) ||
1334 	    ((tdp->i_mode & IFMT) == IFATTRDIR));
1335 
1336 	mask = ((sp->downer != NULL) ? 1 : 0) |
1337 	    ((sp->dgroup != NULL) ? 2 : 0) |
1338 	    ((sp->dother != NULL) ? 4 : 0);
1339 
1340 	if (mask == 0) {
1341 		rw_exit(&sp->s_lock);
1342 		return (0);
1343 	}
1344 
1345 	if (mask != 7) {
1346 		rw_exit(&sp->s_lock);
1347 		return (EINVAL);
1348 	}
1349 
1350 	tsp = kmem_zalloc(sizeof (si_t), KM_SLEEP);
1351 	rw_init(&tsp->s_lock, NULL, RW_DEFAULT, NULL);
1352 
1353 	/* copy the default acls */
1354 
1355 	ASSERT(RW_READ_HELD(&sp->s_lock));
1356 	acl_cpy(sp->downer, (ufs_ic_acl_t *)&tsp->aowner);
1357 	acl_cpy(sp->dgroup, (ufs_ic_acl_t *)&tsp->agroup);
1358 	acl_cpy(sp->dother, (ufs_ic_acl_t *)&tsp->aother);
1359 	acl_cpy(sp->dusers, (ufs_ic_acl_t *)&tsp->ausers);
1360 	acl_cpy(sp->dgroups, (ufs_ic_acl_t *)&tsp->agroups);
1361 	tsp->aclass.acl_ismask = sp->dclass.acl_ismask;
1362 	tsp->aclass.acl_maskbits = sp->dclass.acl_maskbits;
1363 
1364 	/*
1365 	 * set the owner, group, and other values from the master
1366 	 * inode.
1367 	 */
1368 
1369 	MODE2ACL(tsp->aowner, (mode >> 6), ip->i_uid);
1370 	MODE2ACL(tsp->agroup, (mode >> 3), ip->i_gid);
1371 	MODE2ACL(tsp->aother, (mode), 0);
1372 
1373 	if (tsp->aclass.acl_ismask) {
1374 		tsp->aclass.acl_maskbits &= mode >> 3;
1375 	}
1376 
1377 
1378 	/* copy default acl if necessary */
1379 
1380 	if (((ip->i_mode & IFMT) == IFDIR) ||
1381 	    ((ip->i_mode & IFMT) == IFATTRDIR)) {
1382 		acl_cpy(sp->downer, (ufs_ic_acl_t *)&tsp->downer);
1383 		acl_cpy(sp->dgroup, (ufs_ic_acl_t *)&tsp->dgroup);
1384 		acl_cpy(sp->dother, (ufs_ic_acl_t *)&tsp->dother);
1385 		acl_cpy(sp->dusers, (ufs_ic_acl_t *)&tsp->dusers);
1386 		acl_cpy(sp->dgroups, (ufs_ic_acl_t *)&tsp->dgroups);
1387 		tsp->dclass.acl_ismask = sp->dclass.acl_ismask;
1388 		tsp->dclass.acl_maskbits = sp->dclass.acl_maskbits;
1389 	}
1390 	/*
1391 	 * save the new 9 mode bits in the inode (ip->ic_smode) for
1392 	 * ufs_getattr.  Be sure the mode can be recovered if the store
1393 	 * fails.
1394 	 */
1395 	old_modes = ip->i_mode;
1396 	old_uid = ip->i_uid;
1397 	old_gid = ip->i_gid;
1398 	/*
1399 	 * store the acl, and get back a new security anchor if
1400 	 * it is a duplicate.
1401 	 */
1402 	rw_exit(&sp->s_lock);
1403 	rw_enter(&ip->i_rwlock, RW_WRITER);
1404 
1405 	/*
1406 	 * Suppress out of inodes messages if instructed in the
1407 	 * tdp inode.
1408 	 */
1409 	ip->i_flag |= tdp->i_flag & IQUIET;
1410 
1411 	if ((error = ufs_si_store(ip, tsp, 0, cr)) != 0) {
1412 		ip->i_mode = old_modes;
1413 		ip->i_uid = old_uid;
1414 		ip->i_gid = old_gid;
1415 	}
1416 	ip->i_flag &= ~IQUIET;
1417 	rw_exit(&ip->i_rwlock);
1418 	return (error);
1419 }
1420 
1421 si_t *
1422 ufs_acl_cp(si_t *sp)
1423 {
1424 
1425 	si_t *dsp;
1426 
1427 	ASSERT(RW_READ_HELD(&sp->s_lock));
1428 	ASSERT(sp->s_ref && sp->s_use);
1429 
1430 	dsp = kmem_zalloc(sizeof (si_t), KM_SLEEP);
1431 	rw_init(&dsp->s_lock, NULL, RW_DEFAULT, NULL);
1432 
1433 	acl_cpy(sp->aowner, (ufs_ic_acl_t *)&dsp->aowner);
1434 	acl_cpy(sp->agroup, (ufs_ic_acl_t *)&dsp->agroup);
1435 	acl_cpy(sp->aother, (ufs_ic_acl_t *)&dsp->aother);
1436 	acl_cpy(sp->ausers, (ufs_ic_acl_t *)&dsp->ausers);
1437 	acl_cpy(sp->agroups, (ufs_ic_acl_t *)&dsp->agroups);
1438 
1439 	dsp->aclass.acl_ismask = sp->aclass.acl_ismask;
1440 	dsp->aclass.acl_maskbits = sp->aclass.acl_maskbits;
1441 
1442 	acl_cpy(sp->downer, (ufs_ic_acl_t *)&dsp->downer);
1443 	acl_cpy(sp->dgroup, (ufs_ic_acl_t *)&dsp->dgroup);
1444 	acl_cpy(sp->dother, (ufs_ic_acl_t *)&dsp->dother);
1445 	acl_cpy(sp->dusers, (ufs_ic_acl_t *)&dsp->dusers);
1446 	acl_cpy(sp->dgroups, (ufs_ic_acl_t *)&dsp->dgroups);
1447 
1448 	dsp->dclass.acl_ismask = sp->dclass.acl_ismask;
1449 	dsp->dclass.acl_maskbits = sp->dclass.acl_maskbits;
1450 
1451 	return (dsp);
1452 
1453 }
1454 
1455 int
1456 ufs_acl_setattr(struct inode *ip, struct vattr *vap, cred_t *cr)
1457 {
1458 
1459 	si_t *sp;
1460 	int mask = vap->va_mask;
1461 	int error = 0;
1462 
1463 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
1464 
1465 	if (!(mask & (AT_MODE|AT_UID|AT_GID)))
1466 		return (0);
1467 
1468 	/*
1469 	 * if no regular acl's, nothing to do, so let's get out
1470 	 */
1471 	if (!(ip->i_ufs_acl) || !(ip->i_ufs_acl->aowner))
1472 		return (0);
1473 
1474 	rw_enter(&ip->i_ufs_acl->s_lock, RW_READER);
1475 	sp = ufs_acl_cp(ip->i_ufs_acl);
1476 	ASSERT(sp != ip->i_ufs_acl);
1477 
1478 	/*
1479 	 * set the mask to the group permissions if a mask entry
1480 	 * exists.  Otherwise, set the group obj bits to the group
1481 	 * permissions.  Since non-trivial ACLs always have a mask,
1482 	 * and the mask is the final arbiter of group permissions,
1483 	 * setting the mask has the effect of changing the effective
1484 	 * group permissions, even if the group_obj permissions in
1485 	 * the ACL aren't changed.  Posix P1003.1e states that when
1486 	 * an ACL mask exists, chmod(2) must set the acl mask (NOT the
1487 	 * group_obj permissions) to the requested group permissions.
1488 	 */
1489 	if (mask & AT_MODE) {
1490 		sp->aowner->acl_ic_perm = (o_mode_t)(ip->i_mode & 0700) >> 6;
1491 		if (sp->aclass.acl_ismask)
1492 			sp->aclass.acl_maskbits =
1493 			    (o_mode_t)(ip->i_mode & 070) >> 3;
1494 		else
1495 			sp->agroup->acl_ic_perm =
1496 			    (o_mode_t)(ip->i_mode & 070) >> 3;
1497 		sp->aother->acl_ic_perm = (o_mode_t)(ip->i_mode & 07);
1498 	}
1499 
1500 	if (mask & AT_UID) {
1501 		/* Caller has verified our privileges */
1502 		sp->aowner->acl_ic_who = ip->i_uid;
1503 	}
1504 
1505 	if (mask & AT_GID) {
1506 		sp->agroup->acl_ic_who = ip->i_gid;
1507 	}
1508 
1509 	rw_exit(&ip->i_ufs_acl->s_lock);
1510 	error = ufs_si_store(ip, sp, 0, cr);
1511 	return (error);
1512 }
1513 
1514 static int
1515 acl_count(ufs_ic_acl_t *p)
1516 {
1517 	ufs_ic_acl_t	*acl;
1518 	int		count;
1519 
1520 	for (count = 0, acl = p; acl; acl = acl->acl_ic_next, count++)
1521 		;
1522 	return (count);
1523 }
1524 
1525 /*
1526  *	Takes as input a security structure and generates a buffer
1527  *	with fsd's in a form which be written to the shadow inode.
1528  */
1529 static int
1530 ufs_sectobuf(si_t *sp, caddr_t *buf, size_t *len)
1531 {
1532 	size_t		acl_size;
1533 	size_t		def_acl_size;
1534 	caddr_t		buffer;
1535 	struct ufs_fsd	*fsdp;
1536 	ufs_acl_t	*bufaclp;
1537 
1538 	/*
1539 	 * Calc size of buffer to hold all the acls
1540 	 */
1541 	acl_size = acl_count(sp->aowner) +		/* owner */
1542 	    acl_count(sp->agroup) +			/* owner group */
1543 	    acl_count(sp->aother) +			/* owner other */
1544 	    acl_count(sp->ausers) +			/* acl list */
1545 	    acl_count(sp->agroups);			/* group alcs */
1546 	if (sp->aclass.acl_ismask)
1547 		acl_size++;
1548 
1549 	/* Convert to bytes */
1550 	acl_size *= sizeof (ufs_acl_t);
1551 
1552 	/* Add fsd header */
1553 	if (acl_size)
1554 		acl_size += 2 * sizeof (int);
1555 
1556 	/*
1557 	 * Calc size of buffer to hold all the default acls
1558 	 */
1559 	def_acl_size =
1560 	    acl_count(sp->downer) +	/* def owner */
1561 	    acl_count(sp->dgroup) +	/* def owner group */
1562 	    acl_count(sp->dother) +	/* def owner other */
1563 	    acl_count(sp->dusers) +	/* def users  */
1564 	    acl_count(sp->dgroups);	/* def group acls */
1565 	if (sp->dclass.acl_ismask)
1566 		def_acl_size++;
1567 
1568 	/*
1569 	 * Convert to bytes
1570 	 */
1571 	def_acl_size *= sizeof (ufs_acl_t);
1572 
1573 	/*
1574 	 * Add fsd header
1575 	 */
1576 	if (def_acl_size)
1577 		def_acl_size += 2 * sizeof (int);
1578 
1579 	if (acl_size + def_acl_size == 0)
1580 		return (0);
1581 
1582 	buffer = kmem_zalloc((acl_size + def_acl_size), KM_SLEEP);
1583 	bufaclp = (ufs_acl_t *)buffer;
1584 
1585 	if (acl_size == 0)
1586 		goto wrtdefs;
1587 
1588 	/* create fsd and copy acls */
1589 	fsdp = (struct ufs_fsd *)bufaclp;
1590 	fsdp->fsd_type = FSD_ACL;
1591 	bufaclp = (ufs_acl_t *)&fsdp->fsd_data[0];
1592 
1593 	ACL_MOVE(sp->aowner, USER_OBJ, bufaclp);
1594 	ACL_MOVE(sp->agroup, GROUP_OBJ, bufaclp);
1595 	ACL_MOVE(sp->aother, OTHER_OBJ, bufaclp);
1596 	ACL_MOVE(sp->ausers, USER, bufaclp);
1597 	ACL_MOVE(sp->agroups, GROUP, bufaclp);
1598 
1599 	if (sp->aclass.acl_ismask) {
1600 		bufaclp->acl_tag = CLASS_OBJ;
1601 		bufaclp->acl_who = (uid_t)sp->aclass.acl_ismask;
1602 		bufaclp->acl_perm = (o_mode_t)sp->aclass.acl_maskbits;
1603 		bufaclp++;
1604 	}
1605 	ASSERT(acl_size <= INT_MAX);
1606 	fsdp->fsd_size = (int)acl_size;
1607 
1608 wrtdefs:
1609 	if (def_acl_size == 0)
1610 		goto alldone;
1611 
1612 	/* if defaults exist then create fsd and copy default acls */
1613 	fsdp = (struct ufs_fsd *)bufaclp;
1614 	fsdp->fsd_type = FSD_DFACL;
1615 	bufaclp = (ufs_acl_t *)&fsdp->fsd_data[0];
1616 
1617 	ACL_MOVE(sp->downer, DEF_USER_OBJ, bufaclp);
1618 	ACL_MOVE(sp->dgroup, DEF_GROUP_OBJ, bufaclp);
1619 	ACL_MOVE(sp->dother, DEF_OTHER_OBJ, bufaclp);
1620 	ACL_MOVE(sp->dusers, DEF_USER, bufaclp);
1621 	ACL_MOVE(sp->dgroups, DEF_GROUP, bufaclp);
1622 	if (sp->dclass.acl_ismask) {
1623 		bufaclp->acl_tag = DEF_CLASS_OBJ;
1624 		bufaclp->acl_who = (uid_t)sp->dclass.acl_ismask;
1625 		bufaclp->acl_perm = (o_mode_t)sp->dclass.acl_maskbits;
1626 		bufaclp++;
1627 	}
1628 	ASSERT(def_acl_size <= INT_MAX);
1629 	fsdp->fsd_size = (int)def_acl_size;
1630 
1631 alldone:
1632 	*buf = buffer;
1633 	*len = acl_size + def_acl_size;
1634 
1635 	return (0);
1636 }
1637 
1638 /*
1639  *  free a shadow inode  on disk and in memory
1640  */
1641 int
1642 ufs_si_free(si_t *sp, struct vfs *vfsp, cred_t *cr)
1643 {
1644 	struct inode 	*sip;
1645 	int 		shadow;
1646 	int 		err = 0;
1647 	int		refcnt;
1648 	int		signature;
1649 
1650 	ASSERT(vfsp);
1651 	ASSERT(sp);
1652 
1653 	rw_enter(&sp->s_lock, RW_READER);
1654 	ASSERT(sp->s_shadow <= INT_MAX);
1655 	shadow = (int)sp->s_shadow;
1656 	ASSERT(sp->s_ref);
1657 	rw_exit(&sp->s_lock);
1658 
1659 	/*
1660 	 * Decrement link count on the shadow inode,
1661 	 * and decrement reference count on the sip.
1662 	 */
1663 	if ((err = ufs_iget_alloced(vfsp, shadow, &sip, cr)) == 0) {
1664 		rw_enter(&sip->i_contents, RW_WRITER);
1665 		rw_enter(&sp->s_lock, RW_WRITER);
1666 		ASSERT(sp->s_shadow == shadow);
1667 		ASSERT(sip->i_dquot == 0);
1668 		/* Decrement link count */
1669 		ASSERT(sip->i_nlink > 0);
1670 		/*
1671 		 * bug #1264710 assertion failure below
1672 		 */
1673 		sp->s_use = --sip->i_nlink;
1674 		ufs_setreclaim(sip);
1675 		TRANS_INODE(sip->i_ufsvfs, sip);
1676 		sip->i_flag |= ICHG | IMOD;
1677 		sip->i_seq++;
1678 		ITIMES_NOLOCK(sip);
1679 		/* Dec ref counts on si referenced by this ip */
1680 		refcnt = --sp->s_ref;
1681 		signature = sp->s_signature;
1682 		ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use);
1683 		/*
1684 		 * Release s_lock before calling VN_RELE
1685 		 * (which may want to acquire i_contents).
1686 		 */
1687 		rw_exit(&sp->s_lock);
1688 		rw_exit(&sip->i_contents);
1689 		VN_RELE(ITOV(sip));
1690 	} else {
1691 		rw_enter(&sp->s_lock, RW_WRITER);
1692 		/* Dec ref counts on si referenced by this ip */
1693 		refcnt = --sp->s_ref;
1694 		signature = sp->s_signature;
1695 		ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use);
1696 		rw_exit(&sp->s_lock);
1697 	}
1698 
1699 	if (refcnt == 0)
1700 		si_cache_del(sp, signature);
1701 	return (err);
1702 }
1703 
1704 /*
1705  * Seach the si cache for an si structure by inode #.
1706  * Returns a locked si structure.
1707  *
1708  * Parameters:
1709  * ip - Ptr to an inode on this fs
1710  * spp - Ptr to ptr to si struct for the results, if found.
1711  *
1712  * Returns:	0 - Success (results in spp)
1713  *		1 - Failure (spp undefined)
1714  */
1715 static int
1716 si_cachei_get(struct inode *ip, si_t **spp)
1717 {
1718 	si_t	*sp;
1719 
1720 	rw_enter(&si_cache_lock, RW_READER);
1721 loop:
1722 	for (sp = si_cachei[SI_HASH(ip->i_shadow)]; sp; sp = sp->s_forw)
1723 		if (sp->s_shadow == ip->i_shadow && sp->s_dev == ip->i_dev)
1724 			break;
1725 
1726 	if (sp == NULL) {
1727 		/* Not in cache */
1728 		rw_exit(&si_cache_lock);
1729 		return (1);
1730 	}
1731 	/* Found it */
1732 	rw_enter(&sp->s_lock, RW_WRITER);
1733 alldone:
1734 	rw_exit(&si_cache_lock);
1735 	*spp = sp;
1736 	return (0);
1737 }
1738 
1739 /*
1740  * Seach the si cache by si structure (ie duplicate of the one passed in).
1741  * In order for a match the signatures must be the same and
1742  * the devices must be the same, the acls must match and
1743  * link count of the cached shadow must be less than the
1744  * size of ic_nlink - 1.  MAXLINK - 1 is used to allow the count
1745  * to be incremented one more time by the caller.
1746  * Returns a locked si structure.
1747  *
1748  * Parameters:
1749  * ip - Ptr to an inode on this fs
1750  * spi - Ptr to si the struct we're searching the cache for.
1751  * spp - Ptr to ptr to si struct for the results, if found.
1752  *
1753  * Returns:	0 - Success (results in spp)
1754  *		1 - Failure (spp undefined)
1755  */
1756 static int
1757 si_cachea_get(struct inode *ip, si_t *spi, si_t **spp)
1758 {
1759 	si_t	*sp;
1760 
1761 	spi->s_dev = ip->i_dev;
1762 	spi->s_signature = si_signature(spi);
1763 	rw_enter(&si_cache_lock, RW_READER);
1764 loop:
1765 	for (sp = si_cachea[SI_HASH(spi->s_signature)]; sp; sp = sp->s_next) {
1766 		if (sp->s_signature == spi->s_signature &&
1767 		    sp->s_dev == spi->s_dev &&
1768 		    sp->s_use > 0 &&			/* deleting */
1769 		    sp->s_use <= (MAXLINK - 1) &&	/* Too many links */
1770 		    !si_cmp(sp, spi))
1771 			break;
1772 	}
1773 
1774 	if (sp == NULL) {
1775 		/* Cache miss */
1776 		rw_exit(&si_cache_lock);
1777 		return (1);
1778 	}
1779 	/* Found it */
1780 	rw_enter(&sp->s_lock, RW_WRITER);
1781 alldone:
1782 	spi->s_shadow = sp->s_shadow; /* XXX For debugging */
1783 	rw_exit(&si_cache_lock);
1784 	*spp = sp;
1785 	return (0);
1786 }
1787 
1788 /*
1789  * Place an si structure in the si cache.  May cause duplicates.
1790  *
1791  * Parameters:
1792  * sp - Ptr to the si struct to add to the cache.
1793  *
1794  * Returns: Nothing (void)
1795  */
1796 static void
1797 si_cache_put(si_t *sp)
1798 {
1799 	si_t	**tspp;
1800 
1801 	ASSERT(sp->s_fore == NULL);
1802 	rw_enter(&si_cache_lock, RW_WRITER);
1803 	if (!sp->s_signature)
1804 		sp->s_signature = si_signature(sp);
1805 	sp->s_flags |= SI_CACHED;
1806 	sp->s_fore = NULL;
1807 
1808 	/* The 'by acl' chains */
1809 	tspp = &si_cachea[SI_HASH(sp->s_signature)];
1810 	sp->s_next = *tspp;
1811 	*tspp = sp;
1812 
1813 	/* The 'by inode' chains */
1814 	tspp = &si_cachei[SI_HASH(sp->s_shadow)];
1815 	sp->s_forw = *tspp;
1816 	*tspp = sp;
1817 
1818 	rw_exit(&si_cache_lock);
1819 }
1820 
1821 /*
1822  * The sp passed in is a candidate for deletion from the cache.  We acquire
1823  * the cache lock first, so no cache searches can be done.  Then we search
1824  * for the acl in the cache, and if we find it we can lock it and check that
1825  * nobody else attached to it while we were acquiring the locks.  If the acl
1826  * is in the cache and still has a zero reference count, then we remove it
1827  * from the cache and deallocate it.  If the reference count is non-zero or
1828  * it is not found in the cache, then someone else attached to it or has
1829  * already freed it, so we just return.
1830  *
1831  * Parameters:
1832  * sp - Ptr to the sp struct which is the candicate for deletion.
1833  * signature - the signature for the acl for lookup in the hash table
1834  *
1835  * Returns: Nothing (void)
1836  */
1837 void
1838 si_cache_del(si_t *sp, int signature)
1839 {
1840 	si_t	**tspp;
1841 	int	hash;
1842 	int	foundacl = 0;
1843 
1844 	/*
1845 	 * Unlink & free the sp from the other queues, then destroy it.
1846 	 * Search the 'by acl' chain first, then the 'by inode' chain
1847 	 * after the acl is locked.
1848 	 */
1849 	rw_enter(&si_cache_lock, RW_WRITER);
1850 	hash = SI_HASH(signature);
1851 	for (tspp = &si_cachea[hash]; *tspp; tspp = &(*tspp)->s_next) {
1852 		if (*tspp == sp) {
1853 			/*
1854 			 * Wait to grab the acl lock until after the acl has
1855 			 * been found in the cache.  Otherwise it might try to
1856 			 * grab a lock that has already been destroyed, or
1857 			 * delete an acl that has already been freed.
1858 			 */
1859 			rw_enter(&sp->s_lock, RW_WRITER);
1860 			/* See if someone else attached to it */
1861 			if (sp->s_ref) {
1862 				rw_exit(&sp->s_lock);
1863 				rw_exit(&si_cache_lock);
1864 				return;
1865 			}
1866 			ASSERT(sp->s_fore == NULL);
1867 			ASSERT(sp->s_flags & SI_CACHED);
1868 			foundacl = 1;
1869 			*tspp = sp->s_next;
1870 			break;
1871 		}
1872 	}
1873 
1874 	/*
1875 	 * If the acl was not in the cache, we assume another thread has
1876 	 * deleted it already. This could happen if another thread attaches to
1877 	 * the acl and then releases it after this thread has already found the
1878 	 * reference count to be zero but has not yet taken the cache lock.
1879 	 * Both threads end up seeing a reference count of zero, and call into
1880 	 * si_cache_del.  See bug 4244827 for details on the race condition.
1881 	 */
1882 	if (foundacl == 0) {
1883 		rw_exit(&si_cache_lock);
1884 		return;
1885 	}
1886 
1887 	/* Now check the 'by inode' chain */
1888 	hash = SI_HASH(sp->s_shadow);
1889 	for (tspp = &si_cachei[hash]; *tspp; tspp = &(*tspp)->s_forw) {
1890 		if (*tspp == sp) {
1891 			*tspp = sp->s_forw;
1892 			break;
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * At this point, we can unlock everything because this si
1898 	 * is no longer in the cache, thus cannot be attached to.
1899 	 */
1900 	rw_exit(&sp->s_lock);
1901 	rw_exit(&si_cache_lock);
1902 	sp->s_flags &= ~SI_CACHED;
1903 	(void) ufs_si_free_mem(sp);
1904 }
1905 
1906 /*
1907  * Alloc the hash buckets for the si cache & initialize
1908  * the unreferenced anchor and the cache lock.
1909  */
1910 void
1911 si_cache_init(void)
1912 {
1913 	rw_init(&si_cache_lock, NULL, RW_DEFAULT, NULL);
1914 
1915 	/* The 'by acl' headers */
1916 	si_cachea = kmem_zalloc(si_cachecnt * sizeof (si_t *), KM_SLEEP);
1917 	/* The 'by inode' headers */
1918 	si_cachei = kmem_zalloc(si_cachecnt * sizeof (si_t *), KM_SLEEP);
1919 }
1920 
1921 /*
1922  *  aclcksum takes an acl and generates a checksum.  It takes as input
1923  *  the acl to start at.
1924  *
1925  *  s_aclp - pointer to starting acl
1926  *
1927  *  returns checksum
1928  */
1929 static int
1930 aclcksum(ufs_ic_acl_t *s_aclp)
1931 {
1932 	ufs_ic_acl_t *aclp;
1933 	int signature = 0;
1934 	for (aclp = s_aclp; aclp; aclp = aclp->acl_ic_next) {
1935 		signature += aclp->acl_ic_perm;
1936 		signature += aclp->acl_ic_who;
1937 	}
1938 	return (signature);
1939 }
1940 
1941 /*
1942  * Generate a unique signature for an si structure.  Used by the
1943  * search routine si_cachea_get() to quickly identify candidates
1944  * prior to calling si_cmp().
1945  * Parameters:
1946  * sp - Ptr to the si struct to generate the signature for.
1947  *
1948  * Returns:  A signature for the si struct (really a checksum)
1949  */
1950 static int
1951 si_signature(si_t *sp)
1952 {
1953 	int signature = sp->s_dev;
1954 
1955 	signature += aclcksum(sp->aowner) + aclcksum(sp->agroup) +
1956 	    aclcksum(sp->aother) + aclcksum(sp->ausers) +
1957 	    aclcksum(sp->agroups) + aclcksum(sp->downer) +
1958 	    aclcksum(sp->dgroup) + aclcksum(sp->dother) +
1959 	    aclcksum(sp->dusers) + aclcksum(sp->dgroups);
1960 	if (sp->aclass.acl_ismask)
1961 		signature += sp->aclass.acl_maskbits;
1962 	if (sp->dclass.acl_ismask)
1963 		signature += sp->dclass.acl_maskbits;
1964 
1965 	return (signature);
1966 }
1967 
1968 /*
1969  * aclcmp compares to acls to see if they are identical.
1970  *
1971  * sp1 is source
1972  * sp2 is sourceb
1973  *
1974  * returns 0 if equal and 1 if not equal
1975  */
1976 static int
1977 aclcmp(ufs_ic_acl_t *aclin1p, ufs_ic_acl_t *aclin2p)
1978 {
1979 	ufs_ic_acl_t *aclp1;
1980 	ufs_ic_acl_t *aclp2;
1981 
1982 	/*
1983 	 * if the starting pointers are equal then they are equal so
1984 	 * just return.
1985 	 */
1986 	if (aclin1p == aclin2p)
1987 		return (0);
1988 	/*
1989 	 * check element by element
1990 	 */
1991 	for (aclp1 = aclin1p, aclp2 = aclin2p; aclp1 && aclp2;
1992 	    aclp1 = aclp1->acl_ic_next, aclp2 = aclp2->acl_ic_next) {
1993 		if (aclp1->acl_ic_perm != aclp2->acl_ic_perm ||
1994 		    aclp1->acl_ic_who != aclp2->acl_ic_who)
1995 			return (1);
1996 	}
1997 	/*
1998 	 * both must be zero (at the end of the acl)
1999 	 */
2000 	if (aclp1 || aclp2)
2001 		return (1);
2002 
2003 	return (0);
2004 }
2005 
2006 /*
2007  * Do extensive, field-by-field compare of two si structures.  Returns
2008  * 0 if they are exactly identical, 1 otherwise.
2009  *
2010  * Paramters:
2011  * sp1 - Ptr to 1st si struct
2012  * sp2 - Ptr to 2nd si struct
2013  *
2014  * Returns:
2015  *		0 - Not identical
2016  * 		1 - Identical
2017  */
2018 static int
2019 si_cmp(si_t *sp1, si_t *sp2)
2020 {
2021 	if (sp1->s_dev != sp2->s_dev)
2022 		return (1);
2023 	if (aclcmp(sp1->aowner, sp2->aowner) ||
2024 	    aclcmp(sp1->agroup, sp2->agroup) ||
2025 	    aclcmp(sp1->aother, sp2->aother) ||
2026 	    aclcmp(sp1->ausers, sp2->ausers) ||
2027 	    aclcmp(sp1->agroups, sp2->agroups) ||
2028 	    aclcmp(sp1->downer, sp2->downer) ||
2029 	    aclcmp(sp1->dgroup, sp2->dgroup) ||
2030 	    aclcmp(sp1->dother, sp2->dother) ||
2031 	    aclcmp(sp1->dusers, sp2->dusers) ||
2032 	    aclcmp(sp1->dgroups, sp2->dgroups))
2033 		return (1);
2034 	if (sp1->aclass.acl_ismask != sp2->aclass.acl_ismask)
2035 		return (1);
2036 	if (sp1->dclass.acl_ismask != sp2->dclass.acl_ismask)
2037 		return (1);
2038 	if (sp1->aclass.acl_ismask &&
2039 	    sp1->aclass.acl_maskbits != sp2->aclass.acl_maskbits)
2040 		return (1);
2041 	if (sp1->dclass.acl_ismask &&
2042 	    sp1->dclass.acl_maskbits != sp2->dclass.acl_maskbits)
2043 		return (1);
2044 
2045 	return (0);
2046 }
2047 
2048 /*
2049  * Remove all acls associated with a device.  All acls must have
2050  * a reference count of zero.
2051  *
2052  * inputs:
2053  *	device - device to remove from the cache
2054  *
2055  * outputs:
2056  *	none
2057  */
2058 void
2059 ufs_si_cache_flush(dev_t dev)
2060 {
2061 	si_t *tsp, **tspp;
2062 	int i;
2063 
2064 	rw_enter(&si_cache_lock, RW_WRITER);
2065 	for (i = 0; i < si_cachecnt; i++) {
2066 		tspp = &si_cachea[i];
2067 		while (*tspp) {
2068 			if ((*tspp)->s_dev == dev) {
2069 				*tspp = (*tspp)->s_next;
2070 			} else {
2071 				tspp = &(*tspp)->s_next;
2072 			}
2073 		}
2074 	}
2075 	for (i = 0; i < si_cachecnt; i++) {
2076 		tspp = &si_cachei[i];
2077 		while (*tspp) {
2078 			if ((*tspp)->s_dev == dev) {
2079 				tsp = *tspp;
2080 				*tspp = (*tspp)->s_forw;
2081 				tsp->s_flags &= ~SI_CACHED;
2082 				ufs_si_free_mem(tsp);
2083 			} else {
2084 				tspp = &(*tspp)->s_forw;
2085 			}
2086 		}
2087 	}
2088 	rw_exit(&si_cache_lock);
2089 }
2090 
2091 /*
2092  * ufs_si_del is used to unhook a sp from a inode in memory
2093  *
2094  * ip is the inode to remove the sp from.
2095  */
2096 void
2097 ufs_si_del(struct inode *ip)
2098 {
2099 	si_t    *sp = ip->i_ufs_acl;
2100 	int	refcnt;
2101 	int	signature;
2102 
2103 	if (sp) {
2104 		rw_enter(&sp->s_lock, RW_WRITER);
2105 		refcnt = --sp->s_ref;
2106 		signature = sp->s_signature;
2107 		ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use);
2108 		rw_exit(&sp->s_lock);
2109 		if (refcnt == 0)
2110 			si_cache_del(sp, signature);
2111 		ip->i_ufs_acl = NULL;
2112 	}
2113 }
2114