xref: /titanic_51/usr/src/uts/common/fs/sockfs/socksubr.c (revision e61a481d2b9ca0c0f387e11b15dcabfc982bb464)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/buf.h>
34 #include <sys/conf.h>
35 #include <sys/cred.h>
36 #include <sys/kmem.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/vnode.h>
41 #include <sys/debug.h>
42 #include <sys/errno.h>
43 #include <sys/time.h>
44 #include <sys/file.h>
45 #include <sys/open.h>
46 #include <sys/user.h>
47 #include <sys/uio.h>
48 #include <sys/termios.h>
49 #include <sys/stream.h>
50 #include <sys/strsubr.h>
51 #include <sys/strsun.h>
52 #include <sys/esunddi.h>
53 #include <sys/flock.h>
54 #include <sys/modctl.h>
55 #include <sys/cmn_err.h>
56 #include <sys/mkdev.h>
57 #include <sys/pathname.h>
58 #include <sys/ddi.h>
59 #include <sys/stat.h>
60 #include <sys/fs/snode.h>
61 #include <sys/fs/dv_node.h>
62 #include <sys/zone.h>
63 
64 #include <sys/socket.h>
65 #include <sys/socketvar.h>
66 #include <netinet/in.h>
67 #include <sys/un.h>
68 
69 #include <sys/ucred.h>
70 
71 #include <sys/tiuser.h>
72 #define	_SUN_TPI_VERSION	2
73 #include <sys/tihdr.h>
74 
75 #include <c2/audit.h>
76 
77 #include <fs/sockfs/nl7c.h>
78 
79 /*
80  * Macros that operate on struct cmsghdr.
81  * The CMSG_VALID macro does not assume that the last option buffer is padded.
82  */
83 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
84 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
85 #define	CMSG_VALID(cmsg, start, end)					\
86 	(ISALIGNED_cmsghdr(cmsg) &&					\
87 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
88 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
89 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
90 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
91 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
92 
93 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache;
94 struct kmem_cache *socktpi_sod_cache;
95 
96 dev_t sockdev;	/* For fsid in getattr */
97 
98 struct sockparams *sphead;
99 krwlock_t splist_lock;
100 
101 struct socklist socklist;
102 
103 static int sockfs_update(kstat_t *, int);
104 static int sockfs_snapshot(kstat_t *, void *, int);
105 
106 extern void sendfile_init();
107 
108 extern void nl7c_init(void);
109 
110 extern int sostr_init();
111 
112 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
113 /*
114  * kernel structure for passing the sockinfo data back up to the user.
115  * the strings array allows us to convert AF_UNIX addresses into strings
116  * with a common method regardless of which n-bit kernel we're running.
117  */
118 struct k_sockinfo {
119 	struct sockinfo	ks_si;
120 	char		ks_straddr[3][ADRSTRLEN];
121 };
122 
123 /*
124  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
125  * Returns with the vnode held.
126  */
127 static int
128 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
129 {
130 	struct snode *csp;
131 	vnode_t *vp, *dvp;
132 	major_t maj;
133 	int error;
134 
135 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
136 	/*
137 	 * Lookup the underlying filesystem vnode.
138 	 */
139 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
140 	if (error)
141 		return (error);
142 
143 	/* Check that it is the correct vnode */
144 	if (vp->v_type != VCHR) {
145 		VN_RELE(vp);
146 		return (ENOTSOCK);
147 	}
148 
149 	/*
150 	 * If devpath went through devfs, the device should already
151 	 * be configured. If devpath is a mknod file, however, we
152 	 * need to make sure the device is properly configured.
153 	 * To do this, we do something similar to spec_open()
154 	 * except that we resolve to the minor/leaf level since
155 	 * we need to return a vnode.
156 	 */
157 	csp = VTOS(VTOS(vp)->s_commonvp);
158 	if (!(csp->s_flag & SDIPSET)) {
159 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
160 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
161 		if (error == 0)
162 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
163 		VN_RELE(vp);
164 		kmem_free(pathname, MAXPATHLEN);
165 		if (error != 0)
166 			return (ENXIO);
167 		vp = dvp;	/* use the devfs vp */
168 	}
169 
170 	/* device is configured at this point */
171 	maj = getmajor(vp->v_rdev);
172 	if (!STREAMSTAB(maj)) {
173 		VN_RELE(vp);
174 		return (ENOSTR);
175 	}
176 
177 	*vpp = vp;
178 	return (0);
179 }
180 
181 /*
182  * Add or delete (latter if devpath is NULL) an enter to the sockparams
183  * table. If devpathlen is zero the devpath with not be kmem_freed. Otherwise
184  * this routine assumes that the caller has kmem_alloced devpath/devpathlen
185  * for this routine to consume.
186  * The zero devpathlen could be used if the kernel wants to create entries
187  * itself by calling sockconfig(1,2,3, "/dev/tcp", 0);
188  */
189 int
190 soconfig(int domain, int type, int protocol,
191     char *devpath, int devpathlen)
192 {
193 	struct sockparams **spp;
194 	struct sockparams *sp;
195 	int error = 0;
196 
197 	dprint(0, ("soconfig(%d,%d,%d,%s,%d)\n",
198 	    domain, type, protocol, devpath, devpathlen));
199 
200 	/*
201 	 * Look for an existing match.
202 	 */
203 	rw_enter(&splist_lock, RW_WRITER);
204 	for (spp = &sphead; (sp = *spp) != NULL; spp = &sp->sp_next) {
205 		if (sp->sp_domain == domain &&
206 		    sp->sp_type == type &&
207 		    sp->sp_protocol == protocol) {
208 			break;
209 		}
210 	}
211 	if (devpath == NULL) {
212 		ASSERT(devpathlen == 0);
213 
214 		/* Delete existing entry */
215 		if (sp == NULL) {
216 			error = ENXIO;
217 			goto done;
218 		}
219 		/* Unlink and free existing entry */
220 		*spp = sp->sp_next;
221 		ASSERT(sp->sp_vnode);
222 		VN_RELE(sp->sp_vnode);
223 		if (sp->sp_devpathlen != 0)
224 			kmem_free(sp->sp_devpath, sp->sp_devpathlen);
225 		kmem_free(sp, sizeof (*sp));
226 	} else {
227 		vnode_t *vp;
228 
229 		/* Add new entry */
230 		if (sp != NULL) {
231 			error = EEXIST;
232 			goto done;
233 		}
234 
235 		error = sogetvp(devpath, &vp, UIO_SYSSPACE);
236 		if (error) {
237 			dprint(0, ("soconfig: vp %s failed with %d\n",
238 			    devpath, error));
239 			goto done;
240 		}
241 
242 		dprint(0, ("soconfig: %s => vp %p, dev 0x%lx\n",
243 		    devpath, (void *)vp, vp->v_rdev));
244 
245 		sp = kmem_alloc(sizeof (*sp), KM_SLEEP);
246 		sp->sp_domain = domain;
247 		sp->sp_type = type;
248 		sp->sp_protocol = protocol;
249 		sp->sp_devpath = devpath;
250 		sp->sp_devpathlen = devpathlen;
251 		sp->sp_vnode = vp;
252 		sp->sp_next = NULL;
253 		*spp = sp;
254 	}
255 done:
256 	rw_exit(&splist_lock);
257 	if (error) {
258 		if (devpath != NULL)
259 			kmem_free(devpath, devpathlen);
260 #ifdef SOCK_DEBUG
261 		eprintline(error);
262 #endif /* SOCK_DEBUG */
263 	}
264 	return (error);
265 }
266 
267 /*
268  * Lookup an entry in the sockparams list based on the triple.
269  * If no entry is found and devpath is not NULL translate devpath to a
270  * vnode. Note that devpath is a pointer to a user address!
271  * Returns with the vnode held.
272  *
273  * When this routine uses devpath it does not create an entry in the sockparams
274  * list since this routine can run on behalf of any user and one user
275  * should not be able to effect the transport used by another user.
276  *
277  * In order to return the correct error this routine has to do wildcard scans
278  * of the list. The errors are (in decreasing precedence):
279  *	EAFNOSUPPORT - address family not in list
280  *	EPROTONOSUPPORT - address family supported but not protocol.
281  *	EPROTOTYPE - address family and protocol supported but not socket type.
282  */
283 vnode_t *
284 solookup(int domain, int type, int protocol, char *devpath, int *errorp)
285 {
286 	struct sockparams *sp;
287 	int error;
288 	vnode_t *vp;
289 
290 	rw_enter(&splist_lock, RW_READER);
291 	for (sp = sphead; sp != NULL; sp = sp->sp_next) {
292 		if (sp->sp_domain == domain &&
293 		    sp->sp_type == type &&
294 		    sp->sp_protocol == protocol) {
295 			break;
296 		}
297 	}
298 	if (sp == NULL) {
299 		dprint(0, ("solookup(%d,%d,%d) not found\n",
300 		    domain, type, protocol));
301 		if (devpath == NULL) {
302 			/* Determine correct error code */
303 			int found = 0;
304 
305 			for (sp = sphead; sp != NULL; sp = sp->sp_next) {
306 				if (sp->sp_domain == domain && found < 1)
307 					found = 1;
308 				if (sp->sp_domain == domain &&
309 				    sp->sp_protocol == protocol && found < 2)
310 					found = 2;
311 			}
312 			rw_exit(&splist_lock);
313 			switch (found) {
314 			case 0:
315 				*errorp = EAFNOSUPPORT;
316 				break;
317 			case 1:
318 				*errorp = EPROTONOSUPPORT;
319 				break;
320 			case 2:
321 				*errorp = EPROTOTYPE;
322 				break;
323 			}
324 			return (NULL);
325 		}
326 		rw_exit(&splist_lock);
327 
328 		/*
329 		 * Return vp based on devpath.
330 		 * Do not enter into table to avoid random users
331 		 * modifying the sockparams list.
332 		 */
333 		error = sogetvp(devpath, &vp, UIO_USERSPACE);
334 		if (error) {
335 			dprint(0, ("solookup: vp %p failed with %d\n",
336 			    (void *)devpath, error));
337 			*errorp = EPROTONOSUPPORT;
338 			return (NULL);
339 		}
340 		dprint(0, ("solookup: %p => vp %p, dev 0x%lx\n",
341 		    (void *)devpath, (void *)vp, vp->v_rdev));
342 
343 		return (vp);
344 	}
345 	dprint(0, ("solookup(%d,%d,%d) vp %p devpath %s\n",
346 	    domain, type, protocol, (void *)sp->sp_vnode, sp->sp_devpath));
347 
348 	vp = sp->sp_vnode;
349 	VN_HOLD(vp);
350 	rw_exit(&splist_lock);
351 	return (vp);
352 }
353 
354 /*
355  * Return a socket vnode.
356  *
357  * Assumes that the caller is "passing" an VN_HOLD for accessvp i.e.
358  * when the socket is freed a VN_RELE will take place.
359  *
360  * Note that sockets assume that the driver will clone (either itself
361  * or by using the clone driver) i.e. a socket() call will always
362  * result in a new vnode being created.
363  */
364 struct vnode *
365 makesockvp(struct vnode *accessvp, int domain, int type, int protocol)
366 {
367 	kmem_cache_t *cp;
368 	struct sonode *so;
369 	struct vnode *vp;
370 	time_t now;
371 	dev_t dev;
372 
373 	cp = (domain == AF_UNIX) ? socktpi_unix_cache : socktpi_cache;
374 	so = kmem_cache_alloc(cp, KM_SLEEP);
375 	so->so_cache = cp;
376 	so->so_obj = so;
377 	vp = SOTOV(so);
378 	now = gethrestime_sec();
379 
380 	so->so_flag	= 0;
381 	ASSERT(so->so_accessvp == NULL);
382 	so->so_accessvp	= accessvp;
383 	dev = accessvp->v_rdev;
384 
385 	/*
386 	 * Record in so_flag that it is a clone.
387 	 */
388 	if (getmajor(dev) == clone_major) {
389 		so->so_flag |= SOCLONE;
390 	}
391 	so->so_dev = dev;
392 
393 	so->so_state	= 0;
394 	so->so_mode	= 0;
395 
396 	so->so_fsid	= sockdev;
397 	so->so_atime	= now;
398 	so->so_mtime	= now;
399 	so->so_ctime	= now;		/* Never modified */
400 	so->so_count	= 0;
401 
402 	so->so_family	= (short)domain;
403 	so->so_type	= (short)type;
404 	so->so_protocol	= (short)protocol;
405 	so->so_pushcnt	= 0;
406 
407 	so->so_options	= 0;
408 	so->so_linger.l_onoff	= 0;
409 	so->so_linger.l_linger = 0;
410 	so->so_sndbuf	= 0;
411 	so->so_rcvbuf	= 0;
412 	so->so_sndlowat	= 0;
413 	so->so_rcvlowat	= 0;
414 #ifdef notyet
415 	so->so_sndtimeo	= 0;
416 	so->so_rcvtimeo	= 0;
417 #endif /* notyet */
418 	so->so_error	= 0;
419 	so->so_delayed_error = 0;
420 
421 	ASSERT(so->so_oobmsg == NULL);
422 	so->so_oobcnt	= 0;
423 	so->so_oobsigcnt = 0;
424 	so->so_pgrp	= 0;
425 	so->so_provinfo = NULL;
426 
427 	ASSERT(so->so_laddr_sa == NULL && so->so_faddr_sa == NULL);
428 	so->so_laddr_len = so->so_faddr_len = 0;
429 	so->so_laddr_maxlen = so->so_faddr_maxlen = 0;
430 	so->so_eaddr_mp = NULL;
431 	so->so_priv = NULL;
432 
433 	so->so_peercred = NULL;
434 
435 	ASSERT(so->so_ack_mp == NULL);
436 	ASSERT(so->so_conn_ind_head == NULL);
437 	ASSERT(so->so_conn_ind_tail == NULL);
438 	ASSERT(so->so_ux_bound_vp == NULL);
439 	ASSERT(so->so_unbind_mp == NULL);
440 
441 	vn_reinit(vp);
442 	vp->v_vfsp	= rootvfs;
443 	vp->v_type	= VSOCK;
444 	vp->v_rdev	= so->so_dev;
445 	vn_exists(vp);
446 
447 	return (vp);
448 }
449 
450 void
451 sockfree(struct sonode *so)
452 {
453 	mblk_t *mp;
454 	vnode_t *vp;
455 
456 	ASSERT(so->so_count == 0);
457 	ASSERT(so->so_accessvp);
458 	ASSERT(so->so_discon_ind_mp == NULL);
459 
460 	vp = so->so_accessvp;
461 	VN_RELE(vp);
462 
463 	/*
464 	 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely
465 	 * indirect them.  It also uses so_accessvp as a validity test.
466 	 */
467 	mutex_enter(&so->so_lock);
468 
469 	so->so_accessvp = NULL;
470 
471 	if (so->so_laddr_sa) {
472 		ASSERT((caddr_t)so->so_faddr_sa ==
473 		    (caddr_t)so->so_laddr_sa + so->so_laddr_maxlen);
474 		ASSERT(so->so_faddr_maxlen == so->so_laddr_maxlen);
475 		so->so_state &= ~(SS_LADDR_VALID | SS_FADDR_VALID);
476 		kmem_free(so->so_laddr_sa, so->so_laddr_maxlen * 2);
477 		so->so_laddr_sa = NULL;
478 		so->so_laddr_len = so->so_laddr_maxlen = 0;
479 		so->so_faddr_sa = NULL;
480 		so->so_faddr_len = so->so_faddr_maxlen = 0;
481 	}
482 
483 	mutex_exit(&so->so_lock);
484 
485 	if ((mp = so->so_eaddr_mp) != NULL) {
486 		freemsg(mp);
487 		so->so_eaddr_mp = NULL;
488 		so->so_delayed_error = 0;
489 	}
490 	if ((mp = so->so_ack_mp) != NULL) {
491 		freemsg(mp);
492 		so->so_ack_mp = NULL;
493 	}
494 	if ((mp = so->so_conn_ind_head) != NULL) {
495 		mblk_t *mp1;
496 
497 		while (mp) {
498 			mp1 = mp->b_next;
499 			mp->b_next = NULL;
500 			freemsg(mp);
501 			mp = mp1;
502 		}
503 		so->so_conn_ind_head = so->so_conn_ind_tail = NULL;
504 		so->so_state &= ~SS_HASCONNIND;
505 	}
506 #ifdef DEBUG
507 	mutex_enter(&so->so_lock);
508 	ASSERT(so_verify_oobstate(so));
509 	mutex_exit(&so->so_lock);
510 #endif /* DEBUG */
511 	if ((mp = so->so_oobmsg) != NULL) {
512 		freemsg(mp);
513 		so->so_oobmsg = NULL;
514 		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA);
515 	}
516 
517 	if ((mp = so->so_nl7c_rcv_mp) != NULL) {
518 		so->so_nl7c_rcv_mp = NULL;
519 		freemsg(mp);
520 	}
521 	so->so_nl7c_rcv_rval = 0;
522 	if (so->so_nl7c_uri != NULL) {
523 		nl7c_urifree(so);
524 		/* urifree() cleared nl7c_uri */
525 	}
526 	if (so->so_nl7c_flags) {
527 		so->so_nl7c_flags = 0;
528 	}
529 
530 	if (so->so_direct != NULL) {
531 		sodirect_t *sodp = so->so_direct;
532 
533 		ASSERT(sodp->sod_uioafh == NULL);
534 
535 		so->so_direct = NULL;
536 		kmem_cache_free(socktpi_sod_cache, sodp);
537 	}
538 
539 	ASSERT(so->so_ux_bound_vp == NULL);
540 	if ((mp = so->so_unbind_mp) != NULL) {
541 		freemsg(mp);
542 		so->so_unbind_mp = NULL;
543 	}
544 	vn_invalid(SOTOV(so));
545 
546 	if (so->so_peercred != NULL)
547 		crfree(so->so_peercred);
548 
549 	kmem_cache_free(so->so_cache, so->so_obj);
550 }
551 
552 /*
553  * Update the accessed, updated, or changed times in an sonode
554  * with the current time.
555  *
556  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
557  * attributes in a fstat call. (They return the current time and 0 for
558  * all timestamps, respectively.) We maintain the current timestamps
559  * here primarily so that should sockmod be popped the resulting
560  * file descriptor will behave like a stream w.r.t. the timestamps.
561  */
562 void
563 so_update_attrs(struct sonode *so, int flag)
564 {
565 	time_t now = gethrestime_sec();
566 
567 	mutex_enter(&so->so_lock);
568 	so->so_flag |= flag;
569 	if (flag & SOACC)
570 		so->so_atime = now;
571 	if (flag & SOMOD)
572 		so->so_mtime = now;
573 	mutex_exit(&so->so_lock);
574 }
575 
576 /*ARGSUSED*/
577 static int
578 socktpi_constructor(void *buf, void *cdrarg, int kmflags)
579 {
580 	struct sonode *so = buf;
581 	struct vnode *vp;
582 
583 	vp = so->so_vnode = vn_alloc(kmflags);
584 	if (vp == NULL) {
585 		return (-1);
586 	}
587 	vn_setops(vp, socktpi_vnodeops);
588 	vp->v_data = so;
589 
590 	so->so_direct		= NULL;
591 
592 	so->so_nl7c_flags	= 0;
593 	so->so_nl7c_uri		= NULL;
594 	so->so_nl7c_rcv_mp	= NULL;
595 
596 	so->so_oobmsg		= NULL;
597 	so->so_ack_mp		= NULL;
598 	so->so_conn_ind_head	= NULL;
599 	so->so_conn_ind_tail	= NULL;
600 	so->so_discon_ind_mp	= NULL;
601 	so->so_ux_bound_vp	= NULL;
602 	so->so_unbind_mp	= NULL;
603 	so->so_accessvp		= NULL;
604 	so->so_laddr_sa		= NULL;
605 	so->so_faddr_sa		= NULL;
606 	so->so_ops		= &sotpi_sonodeops;
607 
608 	mutex_init(&so->so_lock, NULL, MUTEX_DEFAULT, NULL);
609 	mutex_init(&so->so_plumb_lock, NULL, MUTEX_DEFAULT, NULL);
610 	cv_init(&so->so_state_cv, NULL, CV_DEFAULT, NULL);
611 	cv_init(&so->so_ack_cv, NULL, CV_DEFAULT, NULL);
612 	cv_init(&so->so_connind_cv, NULL, CV_DEFAULT, NULL);
613 	cv_init(&so->so_want_cv, NULL, CV_DEFAULT, NULL);
614 
615 	return (0);
616 }
617 
618 /*ARGSUSED1*/
619 static void
620 socktpi_destructor(void *buf, void *cdrarg)
621 {
622 	struct sonode *so = buf;
623 	struct vnode *vp = SOTOV(so);
624 
625 	ASSERT(so->so_direct == NULL);
626 
627 	ASSERT(so->so_nl7c_flags == 0);
628 	ASSERT(so->so_nl7c_uri == NULL);
629 	ASSERT(so->so_nl7c_rcv_mp == NULL);
630 
631 	ASSERT(so->so_oobmsg == NULL);
632 	ASSERT(so->so_ack_mp == NULL);
633 	ASSERT(so->so_conn_ind_head == NULL);
634 	ASSERT(so->so_conn_ind_tail == NULL);
635 	ASSERT(so->so_discon_ind_mp == NULL);
636 	ASSERT(so->so_ux_bound_vp == NULL);
637 	ASSERT(so->so_unbind_mp == NULL);
638 	ASSERT(so->so_ops == &sotpi_sonodeops);
639 
640 	ASSERT(vn_matchops(vp, socktpi_vnodeops));
641 	ASSERT(vp->v_data == so);
642 
643 	vn_free(vp);
644 
645 	mutex_destroy(&so->so_lock);
646 	mutex_destroy(&so->so_plumb_lock);
647 	cv_destroy(&so->so_state_cv);
648 	cv_destroy(&so->so_ack_cv);
649 	cv_destroy(&so->so_connind_cv);
650 	cv_destroy(&so->so_want_cv);
651 }
652 
653 static int
654 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags)
655 {
656 	int retval;
657 
658 	if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) {
659 		struct sonode *so = (struct sonode *)buf;
660 
661 		mutex_enter(&socklist.sl_lock);
662 
663 		so->so_next = socklist.sl_list;
664 		so->so_prev = NULL;
665 		if (so->so_next != NULL)
666 			so->so_next->so_prev = so;
667 		socklist.sl_list = so;
668 
669 		mutex_exit(&socklist.sl_lock);
670 
671 	}
672 	return (retval);
673 }
674 
675 static void
676 socktpi_unix_destructor(void *buf, void *cdrarg)
677 {
678 	struct sonode	*so	= (struct sonode *)buf;
679 
680 	mutex_enter(&socklist.sl_lock);
681 
682 	if (so->so_next != NULL)
683 		so->so_next->so_prev = so->so_prev;
684 	if (so->so_prev != NULL)
685 		so->so_prev->so_next = so->so_next;
686 	else
687 		socklist.sl_list = so->so_next;
688 
689 	mutex_exit(&socklist.sl_lock);
690 
691 	socktpi_destructor(buf, cdrarg);
692 }
693 
694 /*
695  * Init function called when sockfs is loaded.
696  */
697 int
698 sockinit(int fstype, char *name)
699 {
700 	static const fs_operation_def_t sock_vfsops_template[] = {
701 		NULL, NULL
702 	};
703 	int error;
704 	major_t dev;
705 	char *err_str;
706 
707 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
708 	if (error != 0) {
709 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
710 		    "sockinit: bad vfs ops template");
711 		return (error);
712 	}
713 
714 	error = vn_make_ops(name, socktpi_vnodeops_template, &socktpi_vnodeops);
715 	if (error != 0) {
716 		err_str = "sockinit: bad sock vnode ops template";
717 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
718 		socktpi_vnodeops = NULL;
719 		goto failure;
720 	}
721 
722 	error = sosctp_init();
723 	if (error != 0) {
724 		err_str = NULL;
725 		goto failure;
726 	}
727 
728 	error = sosdp_init();
729 	if (error != 0) {
730 		err_str = NULL;
731 		goto failure;
732 	}
733 
734 	error = sostr_init();
735 	if (error != 0) {
736 		err_str = NULL;
737 		goto failure;
738 	}
739 
740 	/*
741 	 * Create sonode caches.  We create a special one for AF_UNIX so
742 	 * that we can track them for netstat(1m).
743 	 */
744 	socktpi_cache = kmem_cache_create("socktpi_cache",
745 	    sizeof (struct sonode), 0, socktpi_constructor,
746 	    socktpi_destructor, NULL, NULL, NULL, 0);
747 
748 	socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache",
749 	    sizeof (struct sonode), 0, socktpi_unix_constructor,
750 	    socktpi_unix_destructor, NULL, NULL, NULL, 0);
751 
752 	/*
753 	 * Build initial list mapping socket parameters to vnode.
754 	 */
755 	rw_init(&splist_lock, NULL, RW_DEFAULT, NULL);
756 
757 	/*
758 	 * If sockets are needed before init runs /sbin/soconfig
759 	 * it is possible to preload the sockparams list here using
760 	 * calls like:
761 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
762 	 */
763 
764 	/*
765 	 * Create a unique dev_t for use in so_fsid.
766 	 */
767 
768 	if ((dev = getudev()) == (major_t)-1)
769 		dev = 0;
770 	sockdev = makedevice(dev, 0);
771 
772 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
773 	sendfile_init();
774 	nl7c_init();
775 
776 	return (0);
777 
778 failure:
779 	(void) vfs_freevfsops_by_type(fstype);
780 	if (socktpi_vnodeops != NULL)
781 		vn_freevnodeops(socktpi_vnodeops);
782 	if (err_str != NULL)
783 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
784 	return (error);
785 }
786 
787 /*
788  * Caller must hold the mutex. Used to set SOLOCKED.
789  */
790 void
791 so_lock_single(struct sonode *so)
792 {
793 	ASSERT(MUTEX_HELD(&so->so_lock));
794 
795 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
796 		so->so_flag |= SOWANT;
797 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
798 		    SO_LOCK_WAKEUP_TIME);
799 	}
800 	so->so_flag |= SOLOCKED;
801 }
802 
803 /*
804  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
805  * Used to clear SOLOCKED or SOASYNC_UNBIND.
806  */
807 void
808 so_unlock_single(struct sonode *so, int flag)
809 {
810 	ASSERT(MUTEX_HELD(&so->so_lock));
811 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
812 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
813 	ASSERT(so->so_flag & flag);
814 
815 	/*
816 	 * Process the T_DISCON_IND on so_discon_ind_mp.
817 	 *
818 	 * Call to so_drain_discon_ind will result in so_lock
819 	 * being dropped and re-acquired later.
820 	 */
821 	if (so->so_discon_ind_mp != NULL)
822 		so_drain_discon_ind(so);
823 
824 	if (so->so_flag & SOWANT)
825 		cv_broadcast(&so->so_want_cv);
826 	so->so_flag &= ~(SOWANT|flag);
827 }
828 
829 /*
830  * Caller must hold the mutex. Used to set SOREADLOCKED.
831  * If the caller wants nonblocking behavior it should set fmode.
832  */
833 int
834 so_lock_read(struct sonode *so, int fmode)
835 {
836 	ASSERT(MUTEX_HELD(&so->so_lock));
837 
838 	while (so->so_flag & SOREADLOCKED) {
839 		if (fmode & (FNDELAY|FNONBLOCK))
840 			return (EWOULDBLOCK);
841 		so->so_flag |= SOWANT;
842 		cv_wait_stop(&so->so_want_cv, &so->so_lock,
843 		    SO_LOCK_WAKEUP_TIME);
844 	}
845 	so->so_flag |= SOREADLOCKED;
846 	return (0);
847 }
848 
849 /*
850  * Like so_lock_read above but allows signals.
851  */
852 int
853 so_lock_read_intr(struct sonode *so, int fmode)
854 {
855 	ASSERT(MUTEX_HELD(&so->so_lock));
856 
857 	while (so->so_flag & SOREADLOCKED) {
858 		if (fmode & (FNDELAY|FNONBLOCK))
859 			return (EWOULDBLOCK);
860 		so->so_flag |= SOWANT;
861 		if (!cv_wait_sig(&so->so_want_cv, &so->so_lock))
862 			return (EINTR);
863 	}
864 	so->so_flag |= SOREADLOCKED;
865 	return (0);
866 }
867 
868 /*
869  * Caller must hold the mutex. Used to clear SOREADLOCKED,
870  * set in so_lock_read() or so_lock_read_intr().
871  */
872 void
873 so_unlock_read(struct sonode *so)
874 {
875 	ASSERT(MUTEX_HELD(&so->so_lock));
876 	ASSERT(so->so_flag & SOREADLOCKED);
877 
878 	if (so->so_flag & SOWANT)
879 		cv_broadcast(&so->so_want_cv);
880 	so->so_flag &= ~(SOWANT|SOREADLOCKED);
881 }
882 
883 /*
884  * Verify that the specified offset falls within the mblk and
885  * that the resulting pointer is aligned.
886  * Returns NULL if not.
887  */
888 void *
889 sogetoff(mblk_t *mp, t_uscalar_t offset,
890     t_uscalar_t length, uint_t align_size)
891 {
892 	uintptr_t ptr1, ptr2;
893 
894 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
895 	ptr1 = (uintptr_t)mp->b_rptr + offset;
896 	ptr2 = (uintptr_t)ptr1 + length;
897 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
898 		eprintline(0);
899 		return (NULL);
900 	}
901 	if ((ptr1 & (align_size - 1)) != 0) {
902 		eprintline(0);
903 		return (NULL);
904 	}
905 	return ((void *)ptr1);
906 }
907 
908 /*
909  * Return the AF_UNIX underlying filesystem vnode matching a given name.
910  * Makes sure the sending and the destination sonodes are compatible.
911  * The vnode is returned held.
912  *
913  * The underlying filesystem VSOCK vnode has a v_stream pointer that
914  * references the actual stream head (hence indirectly the actual sonode).
915  */
916 static int
917 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
918 		vnode_t **vpp)
919 {
920 	vnode_t		*vp;	/* Underlying filesystem vnode */
921 	vnode_t		*svp;	/* sockfs vnode */
922 	struct sonode	*so2;
923 	int		error;
924 
925 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
926 	    soun->sun_path));
927 
928 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
929 	if (error) {
930 		eprintsoline(so, error);
931 		return (error);
932 	}
933 	if (vp->v_type != VSOCK) {
934 		error = ENOTSOCK;
935 		eprintsoline(so, error);
936 		goto done2;
937 	}
938 
939 	if (checkaccess) {
940 		/*
941 		 * Check that we have permissions to access the destination
942 		 * vnode. This check is not done in BSD but it is required
943 		 * by X/Open.
944 		 */
945 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
946 			eprintsoline(so, error);
947 			goto done2;
948 		}
949 	}
950 
951 	/*
952 	 * Check if the remote socket has been closed.
953 	 *
954 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
955 	 * v_stream->sd_vnode.
956 	 */
957 	mutex_enter(&vp->v_lock);
958 	if (vp->v_stream == NULL) {
959 		mutex_exit(&vp->v_lock);
960 		if (so->so_type == SOCK_DGRAM)
961 			error = EDESTADDRREQ;
962 		else
963 			error = ECONNREFUSED;
964 
965 		eprintsoline(so, error);
966 		goto done2;
967 	}
968 	ASSERT(vp->v_stream->sd_vnode);
969 	svp = vp->v_stream->sd_vnode;
970 	/*
971 	 * holding v_lock on underlying filesystem vnode and acquiring
972 	 * it on sockfs vnode. Assumes that no code ever attempts to
973 	 * acquire these locks in the reverse order.
974 	 */
975 	VN_HOLD(svp);
976 	mutex_exit(&vp->v_lock);
977 
978 	if (svp->v_type != VSOCK) {
979 		error = ENOTSOCK;
980 		eprintsoline(so, error);
981 		goto done;
982 	}
983 
984 	so2 = VTOSO(svp);
985 
986 	if (so->so_type != so2->so_type) {
987 		error = EPROTOTYPE;
988 		eprintsoline(so, error);
989 		goto done;
990 	}
991 
992 	VN_RELE(svp);
993 	*vpp = vp;
994 	return (0);
995 
996 done:
997 	VN_RELE(svp);
998 done2:
999 	VN_RELE(vp);
1000 	return (error);
1001 }
1002 
1003 /*
1004  * Verify peer address for connect and sendto/sendmsg.
1005  * Since sendto/sendmsg would not get synchronous errors from the transport
1006  * provider we have to do these ugly checks in the socket layer to
1007  * preserve compatibility with SunOS 4.X.
1008  */
1009 int
1010 so_addr_verify(struct sonode *so, const struct sockaddr *name,
1011     socklen_t namelen)
1012 {
1013 	int		family;
1014 
1015 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
1016 	    (void *)so, (void *)name, namelen));
1017 
1018 	ASSERT(name != NULL);
1019 
1020 	family = so->so_family;
1021 	switch (family) {
1022 	case AF_INET:
1023 		if (name->sa_family != family) {
1024 			eprintsoline(so, EAFNOSUPPORT);
1025 			return (EAFNOSUPPORT);
1026 		}
1027 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
1028 			eprintsoline(so, EINVAL);
1029 			return (EINVAL);
1030 		}
1031 		break;
1032 	case AF_INET6: {
1033 #ifdef DEBUG
1034 		struct sockaddr_in6 *sin6;
1035 #endif /* DEBUG */
1036 
1037 		if (name->sa_family != family) {
1038 			eprintsoline(so, EAFNOSUPPORT);
1039 			return (EAFNOSUPPORT);
1040 		}
1041 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
1042 			eprintsoline(so, EINVAL);
1043 			return (EINVAL);
1044 		}
1045 #ifdef DEBUG
1046 		/* Verify that apps don't forget to clear sin6_scope_id etc */
1047 		sin6 = (struct sockaddr_in6 *)name;
1048 		if (sin6->sin6_scope_id != 0 &&
1049 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
1050 			zcmn_err(getzoneid(), CE_WARN,
1051 			    "connect/send* with uninitialized sin6_scope_id "
1052 			    "(%d) on socket. Pid = %d\n",
1053 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
1054 		}
1055 #endif /* DEBUG */
1056 		break;
1057 	}
1058 	case AF_UNIX:
1059 		if (so->so_state & SS_FADDR_NOXLATE) {
1060 			return (0);
1061 		}
1062 		if (namelen < (socklen_t)sizeof (short)) {
1063 			eprintsoline(so, ENOENT);
1064 			return (ENOENT);
1065 		}
1066 		if (name->sa_family != family) {
1067 			eprintsoline(so, EAFNOSUPPORT);
1068 			return (EAFNOSUPPORT);
1069 		}
1070 		/* MAXPATHLEN + soun_family + nul termination */
1071 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
1072 			eprintsoline(so, ENAMETOOLONG);
1073 			return (ENAMETOOLONG);
1074 		}
1075 
1076 		break;
1077 
1078 	default:
1079 		/*
1080 		 * Default is don't do any length or sa_family check
1081 		 * to allow non-sockaddr style addresses.
1082 		 */
1083 		break;
1084 	}
1085 
1086 	return (0);
1087 }
1088 
1089 
1090 /*
1091  * Translate an AF_UNIX sockaddr_un to the transport internal name.
1092  * Assumes caller has called so_addr_verify first.
1093  */
1094 /*ARGSUSED*/
1095 int
1096 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
1097     socklen_t namelen, int checkaccess,
1098     void **addrp, socklen_t *addrlenp)
1099 {
1100 	int			error;
1101 	struct sockaddr_un	*soun;
1102 	vnode_t			*vp;
1103 	void			*addr;
1104 	socklen_t		addrlen;
1105 
1106 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
1107 	    (void *)so, (void *)name, namelen, checkaccess));
1108 
1109 	ASSERT(name != NULL);
1110 	ASSERT(so->so_family == AF_UNIX);
1111 	ASSERT(!(so->so_state & SS_FADDR_NOXLATE));
1112 	ASSERT(namelen >= (socklen_t)sizeof (short));
1113 	ASSERT(name->sa_family == AF_UNIX);
1114 	soun = (struct sockaddr_un *)name;
1115 	/*
1116 	 * Lookup vnode for the specified path name and verify that
1117 	 * it is a socket.
1118 	 */
1119 	error = so_ux_lookup(so, soun, checkaccess, &vp);
1120 	if (error) {
1121 		eprintsoline(so, error);
1122 		return (error);
1123 	}
1124 	/*
1125 	 * Use the address of the peer vnode as the address to send
1126 	 * to. We release the peer vnode here. In case it has been
1127 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
1128 	 * transport the message will get an error or be dropped.
1129 	 */
1130 	so->so_ux_faddr.soua_vp = vp;
1131 	so->so_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
1132 	addr = &so->so_ux_faddr;
1133 	addrlen = (socklen_t)sizeof (so->so_ux_faddr);
1134 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
1135 	    addrlen, (void *)vp));
1136 	VN_RELE(vp);
1137 	*addrp = addr;
1138 	*addrlenp = (socklen_t)addrlen;
1139 	return (0);
1140 }
1141 
1142 /*
1143  * Esballoc free function for messages that contain SO_FILEP option.
1144  * Decrement the reference count on the file pointers using closef.
1145  */
1146 void
1147 fdbuf_free(struct fdbuf *fdbuf)
1148 {
1149 	int	i;
1150 	struct file *fp;
1151 
1152 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
1153 	for (i = 0; i < fdbuf->fd_numfd; i++) {
1154 		/*
1155 		 * We need pointer size alignment for fd_fds. On a LP64
1156 		 * kernel, the required alignment is 8 bytes while
1157 		 * the option headers and values are only 4 bytes
1158 		 * aligned. So its safer to do a bcopy compared to
1159 		 * assigning fdbuf->fd_fds[i] to fp.
1160 		 */
1161 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1162 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
1163 		(void) closef(fp);
1164 	}
1165 	if (fdbuf->fd_ebuf != NULL)
1166 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
1167 	kmem_free(fdbuf, fdbuf->fd_size);
1168 }
1169 
1170 /*
1171  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
1172  * Waits if memory is not available.
1173  */
1174 mblk_t *
1175 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
1176 {
1177 	uchar_t	*buf;
1178 	mblk_t	*mp;
1179 
1180 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
1181 	buf = kmem_alloc(size, KM_SLEEP);
1182 	fdbuf->fd_ebuf = (caddr_t)buf;
1183 	fdbuf->fd_ebuflen = size;
1184 	fdbuf->fd_frtn.free_func = fdbuf_free;
1185 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
1186 
1187 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
1188 	mp->b_datap->db_type = M_PROTO;
1189 	return (mp);
1190 }
1191 
1192 /*
1193  * Extract file descriptors from a fdbuf.
1194  * Return list in rights/rightslen.
1195  */
1196 /*ARGSUSED*/
1197 static int
1198 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
1199 {
1200 	int	i, fd;
1201 	int	*rp;
1202 	struct file *fp;
1203 	int	numfd;
1204 
1205 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
1206 	    fdbuf->fd_numfd, rightslen));
1207 
1208 	numfd = fdbuf->fd_numfd;
1209 	ASSERT(rightslen == numfd * (int)sizeof (int));
1210 
1211 	/*
1212 	 * Allocate a file descriptor and increment the f_count.
1213 	 * The latter is needed since we always call fdbuf_free
1214 	 * which performs a closef.
1215 	 */
1216 	rp = (int *)rights;
1217 	for (i = 0; i < numfd; i++) {
1218 		if ((fd = ufalloc(0)) == -1)
1219 			goto cleanup;
1220 		/*
1221 		 * We need pointer size alignment for fd_fds. On a LP64
1222 		 * kernel, the required alignment is 8 bytes while
1223 		 * the option headers and values are only 4 bytes
1224 		 * aligned. So its safer to do a bcopy compared to
1225 		 * assigning fdbuf->fd_fds[i] to fp.
1226 		 */
1227 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
1228 		mutex_enter(&fp->f_tlock);
1229 		fp->f_count++;
1230 		mutex_exit(&fp->f_tlock);
1231 		setf(fd, fp);
1232 		*rp++ = fd;
1233 		if (audit_active)
1234 			audit_fdrecv(fd, fp);
1235 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
1236 		    i, fd, (void *)fp, fp->f_count));
1237 	}
1238 	return (0);
1239 
1240 cleanup:
1241 	/*
1242 	 * Undo whatever partial work the loop above has done.
1243 	 */
1244 	{
1245 		int j;
1246 
1247 		rp = (int *)rights;
1248 		for (j = 0; j < i; j++) {
1249 			dprint(0,
1250 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
1251 			(void) closeandsetf(*rp++, NULL);
1252 		}
1253 	}
1254 
1255 	return (EMFILE);
1256 }
1257 
1258 /*
1259  * Insert file descriptors into an fdbuf.
1260  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
1261  * by calling fdbuf_free().
1262  */
1263 int
1264 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
1265 {
1266 	int		numfd, i;
1267 	int		*fds;
1268 	struct file	*fp;
1269 	struct fdbuf	*fdbuf;
1270 	int		fdbufsize;
1271 
1272 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
1273 
1274 	numfd = rightslen / (int)sizeof (int);
1275 
1276 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
1277 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
1278 	fdbuf->fd_size = fdbufsize;
1279 	fdbuf->fd_numfd = 0;
1280 	fdbuf->fd_ebuf = NULL;
1281 	fdbuf->fd_ebuflen = 0;
1282 	fds = (int *)rights;
1283 	for (i = 0; i < numfd; i++) {
1284 		if ((fp = getf(fds[i])) == NULL) {
1285 			fdbuf_free(fdbuf);
1286 			return (EBADF);
1287 		}
1288 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
1289 		    i, fds[i], (void *)fp, fp->f_count));
1290 		mutex_enter(&fp->f_tlock);
1291 		fp->f_count++;
1292 		mutex_exit(&fp->f_tlock);
1293 		/*
1294 		 * The maximum alignment for fdbuf (or any option header
1295 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
1296 		 * is not sufficient for pointers (fd_fds in this case). Since
1297 		 * we just did a kmem_alloc (we get a double word alignment),
1298 		 * we don't need to do anything on the send side (we loose
1299 		 * the double word alignment because fdbuf goes after an
1300 		 * option header (eg T_unitdata_req) which is only 4 byte
1301 		 * aligned). We take care of this when we extract the file
1302 		 * descriptor in fdbuf_extract or fdbuf_free.
1303 		 */
1304 		fdbuf->fd_fds[i] = fp;
1305 		fdbuf->fd_numfd++;
1306 		releasef(fds[i]);
1307 		if (audit_active)
1308 			audit_fdsend(fds[i], fp, 0);
1309 	}
1310 	*fdbufp = fdbuf;
1311 	return (0);
1312 }
1313 
1314 static int
1315 fdbuf_optlen(int rightslen)
1316 {
1317 	int numfd;
1318 
1319 	numfd = rightslen / (int)sizeof (int);
1320 
1321 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
1322 }
1323 
1324 static t_uscalar_t
1325 fdbuf_cmsglen(int fdbuflen)
1326 {
1327 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
1328 	    (int)sizeof (struct file *) * (int)sizeof (int));
1329 }
1330 
1331 
1332 /*
1333  * Return non-zero if the mblk and fdbuf are consistent.
1334  */
1335 static int
1336 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
1337 {
1338 	if (fdbuflen >= FDBUF_HDRSIZE &&
1339 	    fdbuflen == fdbuf->fd_size) {
1340 		frtn_t *frp = mp->b_datap->db_frtnp;
1341 		/*
1342 		 * Check that the SO_FILEP portion of the
1343 		 * message has not been modified by
1344 		 * the loopback transport. The sending sockfs generates
1345 		 * a message that is esballoc'ed with the free function
1346 		 * being fdbuf_free() and where free_arg contains the
1347 		 * identical information as the SO_FILEP content.
1348 		 *
1349 		 * If any of these constraints are not satisfied we
1350 		 * silently ignore the option.
1351 		 */
1352 		ASSERT(mp);
1353 		if (frp != NULL &&
1354 		    frp->free_func == fdbuf_free &&
1355 		    frp->free_arg != NULL &&
1356 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
1357 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
1358 			    (void *)fdbuf, fdbuflen));
1359 			return (1);
1360 		} else {
1361 			zcmn_err(getzoneid(), CE_WARN,
1362 			    "sockfs: mismatched fdbuf content (%p)",
1363 			    (void *)mp);
1364 			return (0);
1365 		}
1366 	} else {
1367 		zcmn_err(getzoneid(), CE_WARN,
1368 		    "sockfs: mismatched fdbuf len %d, %d\n",
1369 		    fdbuflen, fdbuf->fd_size);
1370 		return (0);
1371 	}
1372 }
1373 
1374 /*
1375  * When the file descriptors returned by sorecvmsg can not be passed
1376  * to the application this routine will cleanup the references on
1377  * the files. Start at startoff bytes into the buffer.
1378  */
1379 static void
1380 close_fds(void *fdbuf, int fdbuflen, int startoff)
1381 {
1382 	int *fds = (int *)fdbuf;
1383 	int numfd = fdbuflen / (int)sizeof (int);
1384 	int i;
1385 
1386 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
1387 
1388 	for (i = 0; i < numfd; i++) {
1389 		if (startoff < 0)
1390 			startoff = 0;
1391 		if (startoff < (int)sizeof (int)) {
1392 			/*
1393 			 * This file descriptor is partially or fully after
1394 			 * the offset
1395 			 */
1396 			dprint(0,
1397 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
1398 			(void) closeandsetf(fds[i], NULL);
1399 		}
1400 		startoff -= (int)sizeof (int);
1401 	}
1402 }
1403 
1404 /*
1405  * Close all file descriptors contained in the control part starting at
1406  * the startoffset.
1407  */
1408 void
1409 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
1410     int startoff)
1411 {
1412 	struct cmsghdr *cmsg;
1413 
1414 	if (control == NULL)
1415 		return;
1416 
1417 	if (oldflg) {
1418 		close_fds(control, controllen, startoff);
1419 		return;
1420 	}
1421 	/* Scan control part for file descriptors. */
1422 	for (cmsg = (struct cmsghdr *)control;
1423 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1424 	    cmsg = CMSG_NEXT(cmsg)) {
1425 		if (cmsg->cmsg_level == SOL_SOCKET &&
1426 		    cmsg->cmsg_type == SCM_RIGHTS) {
1427 			close_fds(CMSG_CONTENT(cmsg),
1428 			    (int)CMSG_CONTENTLEN(cmsg),
1429 			    startoff - (int)sizeof (struct cmsghdr));
1430 		}
1431 		startoff -= cmsg->cmsg_len;
1432 	}
1433 }
1434 
1435 /*
1436  * Returns a pointer/length for the file descriptors contained
1437  * in the control buffer. Returns with *fdlenp == -1 if there are no
1438  * file descriptor options present. This is different than there being
1439  * a zero-length file descriptor option.
1440  * Fail if there are multiple SCM_RIGHT cmsgs.
1441  */
1442 int
1443 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
1444     void **fdsp, int *fdlenp)
1445 {
1446 	struct cmsghdr *cmsg;
1447 	void *fds;
1448 	int fdlen;
1449 
1450 	if (control == NULL) {
1451 		*fdsp = NULL;
1452 		*fdlenp = -1;
1453 		return (0);
1454 	}
1455 
1456 	if (oldflg) {
1457 		*fdsp = control;
1458 		if (controllen == 0)
1459 			*fdlenp = -1;
1460 		else
1461 			*fdlenp = controllen;
1462 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
1463 		return (0);
1464 	}
1465 
1466 	fds = NULL;
1467 	fdlen = 0;
1468 
1469 	for (cmsg = (struct cmsghdr *)control;
1470 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1471 	    cmsg = CMSG_NEXT(cmsg)) {
1472 		if (cmsg->cmsg_level == SOL_SOCKET &&
1473 		    cmsg->cmsg_type == SCM_RIGHTS) {
1474 			if (fds != NULL)
1475 				return (EINVAL);
1476 			fds = CMSG_CONTENT(cmsg);
1477 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1478 			dprint(1, ("so_getfdopt: new %lu\n",
1479 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1480 		}
1481 	}
1482 	if (fds == NULL) {
1483 		dprint(1, ("so_getfdopt: NONE\n"));
1484 		*fdlenp = -1;
1485 	} else
1486 		*fdlenp = fdlen;
1487 	*fdsp = fds;
1488 	return (0);
1489 }
1490 
1491 /*
1492  * Return the length of the options including any file descriptor options.
1493  */
1494 t_uscalar_t
1495 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1496 {
1497 	struct cmsghdr *cmsg;
1498 	t_uscalar_t optlen = 0;
1499 	t_uscalar_t len;
1500 
1501 	if (control == NULL)
1502 		return (0);
1503 
1504 	if (oldflg)
1505 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1506 		    fdbuf_optlen(controllen)));
1507 
1508 	for (cmsg = (struct cmsghdr *)control;
1509 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1510 	    cmsg = CMSG_NEXT(cmsg)) {
1511 		if (cmsg->cmsg_level == SOL_SOCKET &&
1512 		    cmsg->cmsg_type == SCM_RIGHTS) {
1513 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1514 		} else {
1515 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1516 		}
1517 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1518 		    sizeof (struct T_opthdr));
1519 	}
1520 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1521 	    controllen, oldflg, optlen));
1522 	return (optlen);
1523 }
1524 
1525 /*
1526  * Copy options from control to the mblk. Skip any file descriptor options.
1527  */
1528 void
1529 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1530 {
1531 	struct T_opthdr toh;
1532 	struct cmsghdr *cmsg;
1533 
1534 	if (control == NULL)
1535 		return;
1536 
1537 	if (oldflg) {
1538 		/* No real options - caller has handled file descriptors */
1539 		return;
1540 	}
1541 	for (cmsg = (struct cmsghdr *)control;
1542 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1543 	    cmsg = CMSG_NEXT(cmsg)) {
1544 		/*
1545 		 * Note: The caller handles file descriptors prior
1546 		 * to calling this function.
1547 		 */
1548 		t_uscalar_t len;
1549 
1550 		if (cmsg->cmsg_level == SOL_SOCKET &&
1551 		    cmsg->cmsg_type == SCM_RIGHTS)
1552 			continue;
1553 
1554 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1555 		toh.level = cmsg->cmsg_level;
1556 		toh.name = cmsg->cmsg_type;
1557 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1558 		toh.status = 0;
1559 
1560 		soappendmsg(mp, &toh, sizeof (toh));
1561 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1562 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1563 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1564 	}
1565 }
1566 
1567 /*
1568  * Return the length of the control message derived from the options.
1569  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1570  * When oldflg is set only include SO_FILEP.
1571  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1572  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1573  * also be checked for any possible impacts.
1574  */
1575 t_uscalar_t
1576 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1577 {
1578 	t_uscalar_t cmsglen = 0;
1579 	struct T_opthdr *tohp;
1580 	t_uscalar_t len;
1581 	t_uscalar_t last_roundup = 0;
1582 
1583 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1584 
1585 	for (tohp = (struct T_opthdr *)opt;
1586 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1587 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1588 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1589 		    tohp->level, tohp->name, tohp->len));
1590 		if (tohp->level == SOL_SOCKET &&
1591 		    (tohp->name == SO_SRCADDR ||
1592 		    tohp->name == SO_UNIX_CLOSE)) {
1593 			continue;
1594 		}
1595 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1596 			struct fdbuf *fdbuf;
1597 			int fdbuflen;
1598 
1599 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1600 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1601 
1602 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1603 				continue;
1604 			if (oldflg) {
1605 				cmsglen += fdbuf_cmsglen(fdbuflen);
1606 				continue;
1607 			}
1608 			len = fdbuf_cmsglen(fdbuflen);
1609 		} else if (tohp->level == SOL_SOCKET &&
1610 		    tohp->name == SCM_TIMESTAMP) {
1611 			if (oldflg)
1612 				continue;
1613 
1614 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1615 				len = sizeof (struct timeval);
1616 			} else {
1617 				len = sizeof (struct timeval32);
1618 			}
1619 		} else {
1620 			if (oldflg)
1621 				continue;
1622 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1623 		}
1624 		/*
1625 		 * Exclude roundup for last option to not set
1626 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1627 		 */
1628 		last_roundup = (t_uscalar_t)
1629 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1630 		    (len + (int)sizeof (struct cmsghdr)));
1631 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1632 		    last_roundup;
1633 	}
1634 	cmsglen -= last_roundup;
1635 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1636 	    optlen, oldflg, cmsglen));
1637 	return (cmsglen);
1638 }
1639 
1640 /*
1641  * Copy options from options to the control. Convert SO_FILEP to
1642  * file descriptors.
1643  * Returns errno or zero.
1644  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1645  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1646  * also be checked for any possible impacts.
1647  */
1648 int
1649 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1650     void *control, t_uscalar_t controllen)
1651 {
1652 	struct T_opthdr *tohp;
1653 	struct cmsghdr *cmsg;
1654 	struct fdbuf *fdbuf;
1655 	int fdbuflen;
1656 	int error;
1657 #if defined(DEBUG) || defined(__lint)
1658 	struct cmsghdr *cend = (struct cmsghdr *)
1659 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1660 #endif
1661 	cmsg = (struct cmsghdr *)control;
1662 
1663 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1664 
1665 	for (tohp = (struct T_opthdr *)opt;
1666 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1667 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1668 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1669 		    tohp->level, tohp->name, tohp->len));
1670 
1671 		if (tohp->level == SOL_SOCKET &&
1672 		    (tohp->name == SO_SRCADDR ||
1673 		    tohp->name == SO_UNIX_CLOSE)) {
1674 			continue;
1675 		}
1676 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1677 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1678 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1679 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1680 
1681 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1682 				return (EPROTO);
1683 			if (oldflg) {
1684 				error = fdbuf_extract(fdbuf, control,
1685 				    (int)controllen);
1686 				if (error != 0)
1687 					return (error);
1688 				continue;
1689 			} else {
1690 				int fdlen;
1691 
1692 				fdlen = (int)fdbuf_cmsglen(
1693 				    (int)_TPI_TOPT_DATALEN(tohp));
1694 
1695 				cmsg->cmsg_level = tohp->level;
1696 				cmsg->cmsg_type = SCM_RIGHTS;
1697 				cmsg->cmsg_len = (socklen_t)(fdlen +
1698 				    sizeof (struct cmsghdr));
1699 
1700 				error = fdbuf_extract(fdbuf,
1701 				    CMSG_CONTENT(cmsg), fdlen);
1702 				if (error != 0)
1703 					return (error);
1704 			}
1705 		} else if (tohp->level == SOL_SOCKET &&
1706 		    tohp->name == SCM_TIMESTAMP) {
1707 			timestruc_t *timestamp;
1708 
1709 			if (oldflg)
1710 				continue;
1711 
1712 			cmsg->cmsg_level = tohp->level;
1713 			cmsg->cmsg_type = tohp->name;
1714 
1715 			timestamp =
1716 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1717 			    sizeof (intptr_t));
1718 
1719 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1720 				struct timeval tv;
1721 
1722 				cmsg->cmsg_len = sizeof (struct timeval) +
1723 				    sizeof (struct cmsghdr);
1724 				tv.tv_sec = timestamp->tv_sec;
1725 				tv.tv_usec = timestamp->tv_nsec /
1726 				    (NANOSEC / MICROSEC);
1727 				/*
1728 				 * on LP64 systems, the struct timeval in
1729 				 * the destination will not be 8-byte aligned,
1730 				 * so use bcopy to avoid alignment trouble
1731 				 */
1732 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1733 			} else {
1734 				struct timeval32 *time32;
1735 
1736 				cmsg->cmsg_len = sizeof (struct timeval32) +
1737 				    sizeof (struct cmsghdr);
1738 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1739 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1740 				time32->tv_usec =
1741 				    (int32_t)(timestamp->tv_nsec /
1742 				    (NANOSEC / MICROSEC));
1743 			}
1744 
1745 		} else {
1746 			if (oldflg)
1747 				continue;
1748 
1749 			cmsg->cmsg_level = tohp->level;
1750 			cmsg->cmsg_type = tohp->name;
1751 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1752 			    sizeof (struct cmsghdr));
1753 
1754 			/* copy content to control data part */
1755 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1756 			    CMSG_CONTENTLEN(cmsg));
1757 		}
1758 		/* move to next CMSG structure! */
1759 		cmsg = CMSG_NEXT(cmsg);
1760 	}
1761 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1762 	    control, controllen, (void *)cend, (void *)cmsg));
1763 	ASSERT(cmsg <= cend);
1764 	return (0);
1765 }
1766 
1767 /*
1768  * Extract the SO_SRCADDR option value if present.
1769  */
1770 void
1771 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1772     t_uscalar_t *srclenp)
1773 {
1774 	struct T_opthdr		*tohp;
1775 
1776 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1777 
1778 	ASSERT(srcp != NULL && srclenp != NULL);
1779 	*srcp = NULL;
1780 	*srclenp = 0;
1781 
1782 	for (tohp = (struct T_opthdr *)opt;
1783 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1784 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1785 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1786 		    tohp->level, tohp->name, tohp->len));
1787 		if (tohp->level == SOL_SOCKET &&
1788 		    tohp->name == SO_SRCADDR) {
1789 			*srcp = _TPI_TOPT_DATA(tohp);
1790 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1791 		}
1792 	}
1793 }
1794 
1795 /*
1796  * Verify if the SO_UNIX_CLOSE option is present.
1797  */
1798 int
1799 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1800 {
1801 	struct T_opthdr		*tohp;
1802 
1803 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1804 
1805 	for (tohp = (struct T_opthdr *)opt;
1806 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1807 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1808 		dprint(1,
1809 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1810 		    tohp->level, tohp->name, tohp->len));
1811 		if (tohp->level == SOL_SOCKET &&
1812 		    tohp->name == SO_UNIX_CLOSE)
1813 			return (1);
1814 	}
1815 	return (0);
1816 }
1817 
1818 /*
1819  * Allocate an M_PROTO message.
1820  *
1821  * If allocation fails the behavior depends on sleepflg:
1822  *	_ALLOC_NOSLEEP	fail immediately
1823  *	_ALLOC_INTR	sleep for memory until a signal is caught
1824  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1825  */
1826 mblk_t *
1827 soallocproto(size_t size, int sleepflg)
1828 {
1829 	mblk_t	*mp;
1830 
1831 	/* Round up size for reuse */
1832 	size = MAX(size, 64);
1833 	mp = allocb(size, BPRI_MED);
1834 	if (mp == NULL) {
1835 		int error;	/* Dummy - error not returned to caller */
1836 
1837 		switch (sleepflg) {
1838 		case _ALLOC_SLEEP:
1839 			mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error);
1840 			ASSERT(mp);
1841 			break;
1842 		case _ALLOC_INTR:
1843 			mp = allocb_wait(size, BPRI_MED, 0, &error);
1844 			if (mp == NULL) {
1845 				/* Caught signal while sleeping for memory */
1846 				eprintline(ENOBUFS);
1847 				return (NULL);
1848 			}
1849 			break;
1850 		case _ALLOC_NOSLEEP:
1851 		default:
1852 			eprintline(ENOBUFS);
1853 			return (NULL);
1854 		}
1855 	}
1856 	DB_TYPE(mp) = M_PROTO;
1857 	return (mp);
1858 }
1859 
1860 /*
1861  * Allocate an M_PROTO message with a single component.
1862  * len is the length of buf. size is the amount to allocate.
1863  *
1864  * buf can be NULL with a non-zero len.
1865  * This results in a bzero'ed chunk being placed the message.
1866  */
1867 mblk_t *
1868 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg)
1869 {
1870 	mblk_t	*mp;
1871 
1872 	if (size == 0)
1873 		size = len;
1874 
1875 	ASSERT(size >= len);
1876 	/* Round up size for reuse */
1877 	size = MAX(size, 64);
1878 	mp = soallocproto(size, sleepflg);
1879 	if (mp == NULL)
1880 		return (NULL);
1881 	mp->b_datap->db_type = M_PROTO;
1882 	if (len != 0) {
1883 		if (buf != NULL)
1884 			bcopy(buf, mp->b_wptr, len);
1885 		else
1886 			bzero(mp->b_wptr, len);
1887 		mp->b_wptr += len;
1888 	}
1889 	return (mp);
1890 }
1891 
1892 /*
1893  * Append buf/len to mp.
1894  * The caller has to ensure that there is enough room in the mblk.
1895  *
1896  * buf can be NULL with a non-zero len.
1897  * This results in a bzero'ed chunk being placed the message.
1898  */
1899 void
1900 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1901 {
1902 	ASSERT(mp);
1903 
1904 	if (len != 0) {
1905 		/* Assert for room left */
1906 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1907 		if (buf != NULL)
1908 			bcopy(buf, mp->b_wptr, len);
1909 		else
1910 			bzero(mp->b_wptr, len);
1911 	}
1912 	mp->b_wptr += len;
1913 }
1914 
1915 /*
1916  * Create a message using two kernel buffers.
1917  * If size is set that will determine the allocation size (e.g. for future
1918  * soappendmsg calls). If size is zero it is derived from the buffer
1919  * lengths.
1920  */
1921 mblk_t *
1922 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1923     ssize_t size, int sleepflg)
1924 {
1925 	mblk_t *mp;
1926 
1927 	if (size == 0)
1928 		size = len1 + len2;
1929 	ASSERT(size >= len1 + len2);
1930 
1931 	mp = soallocproto1(buf1, len1, size, sleepflg);
1932 	if (mp)
1933 		soappendmsg(mp, buf2, len2);
1934 	return (mp);
1935 }
1936 
1937 /*
1938  * Create a message using three kernel buffers.
1939  * If size is set that will determine the allocation size (for future
1940  * soappendmsg calls). If size is zero it is derived from the buffer
1941  * lengths.
1942  */
1943 mblk_t *
1944 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1945     const void *buf3, ssize_t len3, ssize_t size, int sleepflg)
1946 {
1947 	mblk_t *mp;
1948 
1949 	if (size == 0)
1950 		size = len1 + len2 +len3;
1951 	ASSERT(size >= len1 + len2 + len3);
1952 
1953 	mp = soallocproto1(buf1, len1, size, sleepflg);
1954 	if (mp != NULL) {
1955 		soappendmsg(mp, buf2, len2);
1956 		soappendmsg(mp, buf3, len3);
1957 	}
1958 	return (mp);
1959 }
1960 
1961 #ifdef DEBUG
1962 char *
1963 pr_state(uint_t state, uint_t mode)
1964 {
1965 	static char buf[1024];
1966 
1967 	buf[0] = 0;
1968 	if (state & SS_ISCONNECTED)
1969 		(void) strcat(buf, "ISCONNECTED ");
1970 	if (state & SS_ISCONNECTING)
1971 		(void) strcat(buf, "ISCONNECTING ");
1972 	if (state & SS_ISDISCONNECTING)
1973 		(void) strcat(buf, "ISDISCONNECTING ");
1974 	if (state & SS_CANTSENDMORE)
1975 		(void) strcat(buf, "CANTSENDMORE ");
1976 
1977 	if (state & SS_CANTRCVMORE)
1978 		(void) strcat(buf, "CANTRCVMORE ");
1979 	if (state & SS_ISBOUND)
1980 		(void) strcat(buf, "ISBOUND ");
1981 	if (state & SS_NDELAY)
1982 		(void) strcat(buf, "NDELAY ");
1983 	if (state & SS_NONBLOCK)
1984 		(void) strcat(buf, "NONBLOCK ");
1985 
1986 	if (state & SS_ASYNC)
1987 		(void) strcat(buf, "ASYNC ");
1988 	if (state & SS_ACCEPTCONN)
1989 		(void) strcat(buf, "ACCEPTCONN ");
1990 	if (state & SS_HASCONNIND)
1991 		(void) strcat(buf, "HASCONNIND ");
1992 	if (state & SS_SAVEDEOR)
1993 		(void) strcat(buf, "SAVEDEOR ");
1994 
1995 	if (state & SS_RCVATMARK)
1996 		(void) strcat(buf, "RCVATMARK ");
1997 	if (state & SS_OOBPEND)
1998 		(void) strcat(buf, "OOBPEND ");
1999 	if (state & SS_HAVEOOBDATA)
2000 		(void) strcat(buf, "HAVEOOBDATA ");
2001 	if (state & SS_HADOOBDATA)
2002 		(void) strcat(buf, "HADOOBDATA ");
2003 
2004 	if (state & SS_FADDR_NOXLATE)
2005 		(void) strcat(buf, "FADDR_NOXLATE ");
2006 
2007 	if (mode & SM_PRIV)
2008 		(void) strcat(buf, "PRIV ");
2009 	if (mode & SM_ATOMIC)
2010 		(void) strcat(buf, "ATOMIC ");
2011 	if (mode & SM_ADDR)
2012 		(void) strcat(buf, "ADDR ");
2013 	if (mode & SM_CONNREQUIRED)
2014 		(void) strcat(buf, "CONNREQUIRED ");
2015 
2016 	if (mode & SM_FDPASSING)
2017 		(void) strcat(buf, "FDPASSING ");
2018 	if (mode & SM_EXDATA)
2019 		(void) strcat(buf, "EXDATA ");
2020 	if (mode & SM_OPTDATA)
2021 		(void) strcat(buf, "OPTDATA ");
2022 	if (mode & SM_BYTESTREAM)
2023 		(void) strcat(buf, "BYTESTREAM ");
2024 	return (buf);
2025 }
2026 
2027 char *
2028 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
2029 {
2030 	static char buf[1024];
2031 
2032 	if (addr == NULL || addrlen == 0) {
2033 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
2034 		return (buf);
2035 	}
2036 	switch (family) {
2037 	case AF_INET: {
2038 		struct sockaddr_in sin;
2039 
2040 		bcopy(addr, &sin, sizeof (sin));
2041 
2042 		(void) sprintf(buf, "(len %d) %x/%d",
2043 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
2044 		break;
2045 	}
2046 	case AF_INET6: {
2047 		struct sockaddr_in6 sin6;
2048 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
2049 
2050 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
2051 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
2052 		    addrlen,
2053 		    ntohs(piece[0]), ntohs(piece[1]),
2054 		    ntohs(piece[2]), ntohs(piece[3]),
2055 		    ntohs(piece[4]), ntohs(piece[5]),
2056 		    ntohs(piece[6]), ntohs(piece[7]),
2057 		    ntohs(sin6.sin6_port));
2058 		break;
2059 	}
2060 	case AF_UNIX: {
2061 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
2062 
2063 		(void) sprintf(buf, "(len %d) %s", addrlen,
2064 		    (soun == NULL) ? "(none)" : soun->sun_path);
2065 		break;
2066 	}
2067 	default:
2068 		(void) sprintf(buf, "(unknown af %d)", family);
2069 		break;
2070 	}
2071 	return (buf);
2072 }
2073 
2074 /* The logical equivalence operator (a if-and-only-if b) */
2075 #define	EQUIV(a, b)	(((a) && (b)) || (!(a) && (!(b))))
2076 
2077 /*
2078  * Verify limitations and invariants on oob state.
2079  * Return 1 if OK, otherwise 0 so that it can be used as
2080  *	ASSERT(verify_oobstate(so));
2081  */
2082 int
2083 so_verify_oobstate(struct sonode *so)
2084 {
2085 	ASSERT(MUTEX_HELD(&so->so_lock));
2086 
2087 	/*
2088 	 * The possible state combinations are:
2089 	 *	0
2090 	 *	SS_OOBPEND
2091 	 *	SS_OOBPEND|SS_HAVEOOBDATA
2092 	 *	SS_OOBPEND|SS_HADOOBDATA
2093 	 *	SS_HADOOBDATA
2094 	 */
2095 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
2096 	case 0:
2097 	case SS_OOBPEND:
2098 	case SS_OOBPEND|SS_HAVEOOBDATA:
2099 	case SS_OOBPEND|SS_HADOOBDATA:
2100 	case SS_HADOOBDATA:
2101 		break;
2102 	default:
2103 		printf("Bad oob state 1 (%p): counts %d/%d state %s\n",
2104 		    (void *)so, so->so_oobsigcnt,
2105 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2106 		return (0);
2107 	}
2108 
2109 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
2110 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
2111 		printf("Bad oob state 2 (%p): counts %d/%d state %s\n",
2112 		    (void *)so, so->so_oobsigcnt,
2113 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2114 		return (0);
2115 	}
2116 
2117 	/*
2118 	 * (so_oobsigcnt != 0 or SS_RCVATMARK) iff SS_OOBPEND
2119 	 */
2120 	if (!EQUIV((so->so_oobsigcnt != 0) || (so->so_state & SS_RCVATMARK),
2121 	    so->so_state & SS_OOBPEND)) {
2122 		printf("Bad oob state 3 (%p): counts %d/%d state %s\n",
2123 		    (void *)so, so->so_oobsigcnt,
2124 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2125 		return (0);
2126 	}
2127 
2128 	/*
2129 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
2130 	 */
2131 	if (!(so->so_options & SO_OOBINLINE) &&
2132 	    !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
2133 		printf("Bad oob state 4 (%p): counts %d/%d state %s\n",
2134 		    (void *)so, so->so_oobsigcnt,
2135 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2136 		return (0);
2137 	}
2138 	if (so->so_oobsigcnt < so->so_oobcnt) {
2139 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
2140 		    (void *)so, so->so_oobsigcnt,
2141 		    so->so_oobcnt, pr_state(so->so_state, so->so_mode));
2142 		return (0);
2143 	}
2144 	return (1);
2145 }
2146 #undef	EQUIV
2147 
2148 #endif /* DEBUG */
2149 
2150 /* initialize sockfs zone specific kstat related items			*/
2151 void *
2152 sock_kstat_init(zoneid_t zoneid)
2153 {
2154 	kstat_t	*ksp;
2155 
2156 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
2157 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
2158 
2159 	if (ksp != NULL) {
2160 		ksp->ks_update = sockfs_update;
2161 		ksp->ks_snapshot = sockfs_snapshot;
2162 		ksp->ks_lock = &socklist.sl_lock;
2163 		ksp->ks_private = (void *)(uintptr_t)zoneid;
2164 		kstat_install(ksp);
2165 	}
2166 
2167 	return (ksp);
2168 }
2169 
2170 /* tear down sockfs zone specific kstat related items			*/
2171 /*ARGSUSED*/
2172 void
2173 sock_kstat_fini(zoneid_t zoneid, void *arg)
2174 {
2175 	kstat_t *ksp = (kstat_t *)arg;
2176 
2177 	if (ksp != NULL) {
2178 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
2179 		kstat_delete(ksp);
2180 	}
2181 }
2182 
2183 /*
2184  * Zones:
2185  * Note that nactive is going to be different for each zone.
2186  * This means we require kstat to call sockfs_update and then sockfs_snapshot
2187  * for the same zone, or sockfs_snapshot will be taken into the wrong size
2188  * buffer. This is safe, but if the buffer is too small, user will not be
2189  * given details of all sockets. However, as this kstat has a ks_lock, kstat
2190  * driver will keep it locked between the update and the snapshot, so no
2191  * other process (zone) can currently get inbetween resulting in a wrong size
2192  * buffer allocation.
2193  */
2194 static int
2195 sockfs_update(kstat_t *ksp, int rw)
2196 {
2197 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
2198 	struct sonode	*so;		/* current sonode on socklist	*/
2199 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2200 
2201 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2202 
2203 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2204 		return (EACCES);
2205 	}
2206 
2207 	for (so = socklist.sl_list; so != NULL; so = so->so_next) {
2208 		if (so->so_accessvp != NULL && so->so_zoneid == myzoneid) {
2209 			nactive++;
2210 		}
2211 	}
2212 	ksp->ks_ndata = nactive;
2213 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
2214 
2215 	return (0);
2216 }
2217 
2218 static int
2219 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
2220 {
2221 	int			ns;	/* # of sonodes we've copied	*/
2222 	struct sonode		*so;	/* current sonode on socklist	*/
2223 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
2224 	t_uscalar_t		sn_len;	/* soa_len			*/
2225 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
2226 
2227 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
2228 
2229 	ksp->ks_snaptime = gethrtime();
2230 
2231 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
2232 		return (EACCES);
2233 	}
2234 
2235 	/*
2236 	 * for each sonode on the socklist, we massage the important
2237 	 * info into buf, in k_sockinfo format.
2238 	 */
2239 	pksi = (struct k_sockinfo *)buf;
2240 	for (ns = 0, so = socklist.sl_list; so != NULL; so = so->so_next) {
2241 		/* only stuff active sonodes and the same zone:		*/
2242 		if (so->so_accessvp == NULL || so->so_zoneid != myzoneid) {
2243 			continue;
2244 		}
2245 
2246 		/*
2247 		 * If the sonode was activated between the update and the
2248 		 * snapshot, we're done - as this is only a snapshot.
2249 		 */
2250 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
2251 			break;
2252 		}
2253 
2254 		/* copy important info into buf:			*/
2255 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
2256 		pksi->ks_si.si_family = so->so_family;
2257 		pksi->ks_si.si_type = so->so_type;
2258 		pksi->ks_si.si_flag = so->so_flag;
2259 		pksi->ks_si.si_state = so->so_state;
2260 		pksi->ks_si.si_serv_type = so->so_serv_type;
2261 		pksi->ks_si.si_ux_laddr_sou_magic = so->so_ux_laddr.soua_magic;
2262 		pksi->ks_si.si_ux_faddr_sou_magic = so->so_ux_faddr.soua_magic;
2263 		pksi->ks_si.si_laddr_soa_len = so->so_laddr.soa_len;
2264 		pksi->ks_si.si_faddr_soa_len = so->so_faddr.soa_len;
2265 		pksi->ks_si.si_szoneid = so->so_zoneid;
2266 
2267 		mutex_enter(&so->so_lock);
2268 
2269 		if (so->so_laddr_sa != NULL) {
2270 			ASSERT(so->so_laddr_sa->sa_data != NULL);
2271 			sn_len = so->so_laddr_len;
2272 			ASSERT(sn_len <= sizeof (short) +
2273 			    sizeof (pksi->ks_si.si_laddr_sun_path));
2274 
2275 			pksi->ks_si.si_laddr_family =
2276 			    so->so_laddr_sa->sa_family;
2277 			if (sn_len != 0) {
2278 				/* AF_UNIX socket names are NULL terminated */
2279 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
2280 				    so->so_laddr_sa->sa_data,
2281 				    sizeof (pksi->ks_si.si_laddr_sun_path));
2282 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
2283 			}
2284 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
2285 		}
2286 
2287 		if (so->so_faddr_sa != NULL) {
2288 			ASSERT(so->so_faddr_sa->sa_data != NULL);
2289 			sn_len = so->so_faddr_len;
2290 			ASSERT(sn_len <= sizeof (short) +
2291 			    sizeof (pksi->ks_si.si_faddr_sun_path));
2292 
2293 			pksi->ks_si.si_faddr_family =
2294 			    so->so_faddr_sa->sa_family;
2295 			if (sn_len != 0) {
2296 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
2297 				    so->so_faddr_sa->sa_data,
2298 				    sizeof (pksi->ks_si.si_faddr_sun_path));
2299 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
2300 			}
2301 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
2302 		}
2303 
2304 		mutex_exit(&so->so_lock);
2305 
2306 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
2307 		(void) sprintf(pksi->ks_straddr[1], "%p",
2308 		    (void *)so->so_ux_laddr.soua_vp);
2309 		(void) sprintf(pksi->ks_straddr[2], "%p",
2310 		    (void *)so->so_ux_faddr.soua_vp);
2311 
2312 		ns++;
2313 		pksi++;
2314 	}
2315 
2316 	ksp->ks_ndata = ns;
2317 	return (0);
2318 }
2319 
2320 ssize_t
2321 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
2322 {
2323 	struct uio auio;
2324 	struct iovec aiov[MSG_MAXIOVLEN];
2325 	register vnode_t *vp;
2326 	int ioflag, rwflag;
2327 	ssize_t cnt;
2328 	int error = 0;
2329 	int iovcnt = 0;
2330 	short fflag;
2331 
2332 	vp = fp->f_vnode;
2333 	fflag = fp->f_flag;
2334 
2335 	rwflag = 0;
2336 	aiov[0].iov_base = (caddr_t)buf;
2337 	aiov[0].iov_len = size;
2338 	iovcnt = 1;
2339 	cnt = (ssize_t)size;
2340 	(void) VOP_RWLOCK(vp, rwflag, NULL);
2341 
2342 	auio.uio_loffset = fileoff;
2343 	auio.uio_iov = aiov;
2344 	auio.uio_iovcnt = iovcnt;
2345 	auio.uio_resid = cnt;
2346 	auio.uio_segflg = UIO_SYSSPACE;
2347 	auio.uio_llimit = MAXOFFSET_T;
2348 	auio.uio_fmode = fflag;
2349 	auio.uio_extflg = UIO_COPY_CACHED;
2350 
2351 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
2352 
2353 	/* If read sync is not asked for, filter sync flags */
2354 	if ((ioflag & FRSYNC) == 0)
2355 		ioflag &= ~(FSYNC|FDSYNC);
2356 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
2357 	cnt -= auio.uio_resid;
2358 
2359 	VOP_RWUNLOCK(vp, rwflag, NULL);
2360 
2361 	if (error == EINTR && cnt != 0)
2362 		error = 0;
2363 out:
2364 	if (error != 0) {
2365 		*err = error;
2366 		return (0);
2367 	} else {
2368 		*err = 0;
2369 		return (cnt);
2370 	}
2371 }
2372