xref: /titanic_51/usr/src/uts/common/fs/proc/prsubr.c (revision c1cfefcd3c8e9683298eb4cf78b39472780a2e54)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #include <sys/types.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/cmn_err.h>
34 #include <sys/cred.h>
35 #include <sys/priv.h>
36 #include <sys/debug.h>
37 #include <sys/errno.h>
38 #include <sys/inline.h>
39 #include <sys/kmem.h>
40 #include <sys/mman.h>
41 #include <sys/proc.h>
42 #include <sys/brand.h>
43 #include <sys/sobject.h>
44 #include <sys/sysmacros.h>
45 #include <sys/systm.h>
46 #include <sys/uio.h>
47 #include <sys/var.h>
48 #include <sys/vfs.h>
49 #include <sys/vnode.h>
50 #include <sys/session.h>
51 #include <sys/pcb.h>
52 #include <sys/signal.h>
53 #include <sys/user.h>
54 #include <sys/disp.h>
55 #include <sys/class.h>
56 #include <sys/ts.h>
57 #include <sys/bitmap.h>
58 #include <sys/poll.h>
59 #include <sys/shm_impl.h>
60 #include <sys/fault.h>
61 #include <sys/syscall.h>
62 #include <sys/procfs.h>
63 #include <sys/processor.h>
64 #include <sys/cpuvar.h>
65 #include <sys/copyops.h>
66 #include <sys/time.h>
67 #include <sys/msacct.h>
68 #include <vm/as.h>
69 #include <vm/rm.h>
70 #include <vm/seg.h>
71 #include <vm/seg_vn.h>
72 #include <vm/seg_dev.h>
73 #include <vm/seg_spt.h>
74 #include <vm/page.h>
75 #include <sys/vmparam.h>
76 #include <sys/swap.h>
77 #include <fs/proc/prdata.h>
78 #include <sys/task.h>
79 #include <sys/project.h>
80 #include <sys/contract_impl.h>
81 #include <sys/contract/process.h>
82 #include <sys/contract/process_impl.h>
83 #include <sys/schedctl.h>
84 #include <sys/pool.h>
85 #include <sys/zone.h>
86 #include <sys/atomic.h>
87 #include <sys/sdt.h>
88 
89 #define	MAX_ITERS_SPIN	5
90 
91 typedef struct prpagev {
92 	uint_t *pg_protv;	/* vector of page permissions */
93 	char *pg_incore;	/* vector of incore flags */
94 	size_t pg_npages;	/* number of pages in protv and incore */
95 	ulong_t pg_pnbase;	/* pn within segment of first protv element */
96 } prpagev_t;
97 
98 size_t pagev_lim = 256 * 1024;	/* limit on number of pages in prpagev_t */
99 
100 extern struct seg_ops segdev_ops;	/* needs a header file */
101 extern struct seg_ops segspt_shmops;	/* needs a header file */
102 
103 static	int	set_watched_page(proc_t *, caddr_t, caddr_t, ulong_t, ulong_t);
104 static	void	clear_watched_page(proc_t *, caddr_t, caddr_t, ulong_t);
105 
106 /*
107  * Choose an lwp from the complete set of lwps for the process.
108  * This is called for any operation applied to the process
109  * file descriptor that requires an lwp to operate upon.
110  *
111  * Returns a pointer to the thread for the selected LWP,
112  * and with the dispatcher lock held for the thread.
113  *
114  * The algorithm for choosing an lwp is critical for /proc semantics;
115  * don't touch this code unless you know all of the implications.
116  */
117 kthread_t *
118 prchoose(proc_t *p)
119 {
120 	kthread_t *t;
121 	kthread_t *t_onproc = NULL;	/* running on processor */
122 	kthread_t *t_run = NULL;	/* runnable, on disp queue */
123 	kthread_t *t_sleep = NULL;	/* sleeping */
124 	kthread_t *t_hold = NULL;	/* sleeping, performing hold */
125 	kthread_t *t_susp = NULL;	/* suspended stop */
126 	kthread_t *t_jstop = NULL;	/* jobcontrol stop, w/o directed stop */
127 	kthread_t *t_jdstop = NULL;	/* jobcontrol stop with directed stop */
128 	kthread_t *t_req = NULL;	/* requested stop */
129 	kthread_t *t_istop = NULL;	/* event-of-interest stop */
130 	kthread_t *t_dtrace = NULL;	/* DTrace stop */
131 
132 	ASSERT(MUTEX_HELD(&p->p_lock));
133 
134 	/*
135 	 * If the agent lwp exists, it takes precedence over all others.
136 	 */
137 	if ((t = p->p_agenttp) != NULL) {
138 		thread_lock(t);
139 		return (t);
140 	}
141 
142 	if ((t = p->p_tlist) == NULL)	/* start at the head of the list */
143 		return (t);
144 	do {		/* for eacn lwp in the process */
145 		if (VSTOPPED(t)) {	/* virtually stopped */
146 			if (t_req == NULL)
147 				t_req = t;
148 			continue;
149 		}
150 
151 		thread_lock(t);		/* make sure thread is in good state */
152 		switch (t->t_state) {
153 		default:
154 			panic("prchoose: bad thread state %d, thread 0x%p",
155 			    t->t_state, (void *)t);
156 			/*NOTREACHED*/
157 		case TS_SLEEP:
158 			/* this is filthy */
159 			if (t->t_wchan == (caddr_t)&p->p_holdlwps &&
160 			    t->t_wchan0 == NULL) {
161 				if (t_hold == NULL)
162 					t_hold = t;
163 			} else {
164 				if (t_sleep == NULL)
165 					t_sleep = t;
166 			}
167 			break;
168 		case TS_RUN:
169 		case TS_WAIT:
170 			if (t_run == NULL)
171 				t_run = t;
172 			break;
173 		case TS_ONPROC:
174 			if (t_onproc == NULL)
175 				t_onproc = t;
176 			break;
177 		case TS_ZOMB:		/* last possible choice */
178 			break;
179 		case TS_STOPPED:
180 			switch (t->t_whystop) {
181 			case PR_SUSPENDED:
182 				if (t_susp == NULL)
183 					t_susp = t;
184 				break;
185 			case PR_JOBCONTROL:
186 				if (t->t_proc_flag & TP_PRSTOP) {
187 					if (t_jdstop == NULL)
188 						t_jdstop = t;
189 				} else {
190 					if (t_jstop == NULL)
191 						t_jstop = t;
192 				}
193 				break;
194 			case PR_REQUESTED:
195 				if (t->t_dtrace_stop && t_dtrace == NULL)
196 					t_dtrace = t;
197 				else if (t_req == NULL)
198 					t_req = t;
199 				break;
200 			case PR_SYSENTRY:
201 			case PR_SYSEXIT:
202 			case PR_SIGNALLED:
203 			case PR_FAULTED:
204 				/*
205 				 * Make an lwp calling exit() be the
206 				 * last lwp seen in the process.
207 				 */
208 				if (t_istop == NULL ||
209 				    (t_istop->t_whystop == PR_SYSENTRY &&
210 				    t_istop->t_whatstop == SYS_exit))
211 					t_istop = t;
212 				break;
213 			case PR_CHECKPOINT:	/* can't happen? */
214 				break;
215 			default:
216 				panic("prchoose: bad t_whystop %d, thread 0x%p",
217 				    t->t_whystop, (void *)t);
218 				/*NOTREACHED*/
219 			}
220 			break;
221 		}
222 		thread_unlock(t);
223 	} while ((t = t->t_forw) != p->p_tlist);
224 
225 	if (t_onproc)
226 		t = t_onproc;
227 	else if (t_run)
228 		t = t_run;
229 	else if (t_sleep)
230 		t = t_sleep;
231 	else if (t_jstop)
232 		t = t_jstop;
233 	else if (t_jdstop)
234 		t = t_jdstop;
235 	else if (t_istop)
236 		t = t_istop;
237 	else if (t_dtrace)
238 		t = t_dtrace;
239 	else if (t_req)
240 		t = t_req;
241 	else if (t_hold)
242 		t = t_hold;
243 	else if (t_susp)
244 		t = t_susp;
245 	else			/* TS_ZOMB */
246 		t = p->p_tlist;
247 
248 	if (t != NULL)
249 		thread_lock(t);
250 	return (t);
251 }
252 
253 /*
254  * Wakeup anyone sleeping on the /proc vnode for the process/lwp to stop.
255  * Also call pollwakeup() if any lwps are waiting in poll() for POLLPRI
256  * on the /proc file descriptor.  Called from stop() when a traced
257  * process stops on an event of interest.  Also called from exit()
258  * and prinvalidate() to indicate POLLHUP and POLLERR respectively.
259  */
260 void
261 prnotify(struct vnode *vp)
262 {
263 	prcommon_t *pcp = VTOP(vp)->pr_common;
264 
265 	mutex_enter(&pcp->prc_mutex);
266 	cv_broadcast(&pcp->prc_wait);
267 	mutex_exit(&pcp->prc_mutex);
268 	if (pcp->prc_flags & PRC_POLL) {
269 		/*
270 		 * We call pollwakeup() with POLLHUP to ensure that
271 		 * the pollers are awakened even if they are polling
272 		 * for nothing (i.e., waiting for the process to exit).
273 		 * This enables the use of the PRC_POLL flag for optimization
274 		 * (we can turn off PRC_POLL only if we know no pollers remain).
275 		 */
276 		pcp->prc_flags &= ~PRC_POLL;
277 		pollwakeup(&pcp->prc_pollhead, POLLHUP);
278 	}
279 }
280 
281 /* called immediately below, in prfree() */
282 static void
283 prfreenotify(vnode_t *vp)
284 {
285 	prnode_t *pnp;
286 	prcommon_t *pcp;
287 
288 	while (vp != NULL) {
289 		pnp = VTOP(vp);
290 		pcp = pnp->pr_common;
291 		ASSERT(pcp->prc_thread == NULL);
292 		pcp->prc_proc = NULL;
293 		/*
294 		 * We can't call prnotify() here because we are holding
295 		 * pidlock.  We assert that there is no need to.
296 		 */
297 		mutex_enter(&pcp->prc_mutex);
298 		cv_broadcast(&pcp->prc_wait);
299 		mutex_exit(&pcp->prc_mutex);
300 		ASSERT(!(pcp->prc_flags & PRC_POLL));
301 
302 		vp = pnp->pr_next;
303 		pnp->pr_next = NULL;
304 	}
305 }
306 
307 /*
308  * Called from a hook in freeproc() when a traced process is removed
309  * from the process table.  The proc-table pointers of all associated
310  * /proc vnodes are cleared to indicate that the process has gone away.
311  */
312 void
313 prfree(proc_t *p)
314 {
315 	uint_t slot = p->p_slot;
316 
317 	ASSERT(MUTEX_HELD(&pidlock));
318 
319 	/*
320 	 * Block the process against /proc so it can be freed.
321 	 * It cannot be freed while locked by some controlling process.
322 	 * Lock ordering:
323 	 *	pidlock -> pr_pidlock -> p->p_lock -> pcp->prc_mutex
324 	 */
325 	mutex_enter(&pr_pidlock);	/* protects pcp->prc_proc */
326 	mutex_enter(&p->p_lock);
327 	while (p->p_proc_flag & P_PR_LOCK) {
328 		mutex_exit(&pr_pidlock);
329 		cv_wait(&pr_pid_cv[slot], &p->p_lock);
330 		mutex_exit(&p->p_lock);
331 		mutex_enter(&pr_pidlock);
332 		mutex_enter(&p->p_lock);
333 	}
334 
335 	ASSERT(p->p_tlist == NULL);
336 
337 	prfreenotify(p->p_plist);
338 	p->p_plist = NULL;
339 
340 	prfreenotify(p->p_trace);
341 	p->p_trace = NULL;
342 
343 	/*
344 	 * We broadcast to wake up everyone waiting for this process.
345 	 * No one can reach this process from this point on.
346 	 */
347 	cv_broadcast(&pr_pid_cv[slot]);
348 
349 	mutex_exit(&p->p_lock);
350 	mutex_exit(&pr_pidlock);
351 }
352 
353 /*
354  * Called from a hook in exit() when a traced process is becoming a zombie.
355  */
356 void
357 prexit(proc_t *p)
358 {
359 	ASSERT(MUTEX_HELD(&p->p_lock));
360 
361 	if (pr_watch_active(p)) {
362 		pr_free_watchpoints(p);
363 		watch_disable(curthread);
364 	}
365 	/* pr_free_watched_pages() is called in exit(), after dropping p_lock */
366 	if (p->p_trace) {
367 		VTOP(p->p_trace)->pr_common->prc_flags |= PRC_DESTROY;
368 		prnotify(p->p_trace);
369 	}
370 	cv_broadcast(&pr_pid_cv[p->p_slot]);	/* pauselwps() */
371 }
372 
373 /*
374  * Called when a thread calls lwp_exit().
375  */
376 void
377 prlwpexit(kthread_t *t)
378 {
379 	vnode_t *vp;
380 	prnode_t *pnp;
381 	prcommon_t *pcp;
382 	proc_t *p = ttoproc(t);
383 	lwpent_t *lep = p->p_lwpdir[t->t_dslot].ld_entry;
384 
385 	ASSERT(t == curthread);
386 	ASSERT(MUTEX_HELD(&p->p_lock));
387 
388 	/*
389 	 * The process must be blocked against /proc to do this safely.
390 	 * The lwp must not disappear while the process is marked P_PR_LOCK.
391 	 * It is the caller's responsibility to have called prbarrier(p).
392 	 */
393 	ASSERT(!(p->p_proc_flag & P_PR_LOCK));
394 
395 	for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
396 		pnp = VTOP(vp);
397 		pcp = pnp->pr_common;
398 		if (pcp->prc_thread == t) {
399 			pcp->prc_thread = NULL;
400 			pcp->prc_flags |= PRC_DESTROY;
401 		}
402 	}
403 
404 	for (vp = lep->le_trace; vp != NULL; vp = pnp->pr_next) {
405 		pnp = VTOP(vp);
406 		pcp = pnp->pr_common;
407 		pcp->prc_thread = NULL;
408 		pcp->prc_flags |= PRC_DESTROY;
409 		prnotify(vp);
410 	}
411 
412 	if (p->p_trace)
413 		prnotify(p->p_trace);
414 }
415 
416 /*
417  * Called when a zombie thread is joined or when a
418  * detached lwp exits.  Called from lwp_hash_out().
419  */
420 void
421 prlwpfree(proc_t *p, lwpent_t *lep)
422 {
423 	vnode_t *vp;
424 	prnode_t *pnp;
425 	prcommon_t *pcp;
426 
427 	ASSERT(MUTEX_HELD(&p->p_lock));
428 
429 	/*
430 	 * The process must be blocked against /proc to do this safely.
431 	 * The lwp must not disappear while the process is marked P_PR_LOCK.
432 	 * It is the caller's responsibility to have called prbarrier(p).
433 	 */
434 	ASSERT(!(p->p_proc_flag & P_PR_LOCK));
435 
436 	vp = lep->le_trace;
437 	lep->le_trace = NULL;
438 	while (vp) {
439 		prnotify(vp);
440 		pnp = VTOP(vp);
441 		pcp = pnp->pr_common;
442 		ASSERT(pcp->prc_thread == NULL &&
443 		    (pcp->prc_flags & PRC_DESTROY));
444 		pcp->prc_tslot = -1;
445 		vp = pnp->pr_next;
446 		pnp->pr_next = NULL;
447 	}
448 
449 	if (p->p_trace)
450 		prnotify(p->p_trace);
451 }
452 
453 /*
454  * Called from a hook in exec() when a thread starts exec().
455  */
456 void
457 prexecstart(void)
458 {
459 	proc_t *p = ttoproc(curthread);
460 	klwp_t *lwp = ttolwp(curthread);
461 
462 	/*
463 	 * The P_PR_EXEC flag blocks /proc operations for
464 	 * the duration of the exec().
465 	 * We can't start exec() while the process is
466 	 * locked by /proc, so we call prbarrier().
467 	 * lwp_nostop keeps the process from being stopped
468 	 * via job control for the duration of the exec().
469 	 */
470 
471 	ASSERT(MUTEX_HELD(&p->p_lock));
472 	prbarrier(p);
473 	lwp->lwp_nostop++;
474 	p->p_proc_flag |= P_PR_EXEC;
475 }
476 
477 /*
478  * Called from a hook in exec() when a thread finishes exec().
479  * The thread may or may not have succeeded.  Some other thread
480  * may have beat it to the punch.
481  */
482 void
483 prexecend(void)
484 {
485 	proc_t *p = ttoproc(curthread);
486 	klwp_t *lwp = ttolwp(curthread);
487 	vnode_t *vp;
488 	prnode_t *pnp;
489 	prcommon_t *pcp;
490 	model_t model = p->p_model;
491 	id_t tid = curthread->t_tid;
492 	int tslot = curthread->t_dslot;
493 
494 	ASSERT(MUTEX_HELD(&p->p_lock));
495 
496 	lwp->lwp_nostop--;
497 	if (p->p_flag & SEXITLWPS) {
498 		/*
499 		 * We are on our way to exiting because some
500 		 * other thread beat us in the race to exec().
501 		 * Don't clear the P_PR_EXEC flag in this case.
502 		 */
503 		return;
504 	}
505 
506 	/*
507 	 * Wake up anyone waiting in /proc for the process to complete exec().
508 	 */
509 	p->p_proc_flag &= ~P_PR_EXEC;
510 	if ((vp = p->p_trace) != NULL) {
511 		pcp = VTOP(vp)->pr_common;
512 		mutex_enter(&pcp->prc_mutex);
513 		cv_broadcast(&pcp->prc_wait);
514 		mutex_exit(&pcp->prc_mutex);
515 		for (; vp != NULL; vp = pnp->pr_next) {
516 			pnp = VTOP(vp);
517 			pnp->pr_common->prc_datamodel = model;
518 		}
519 	}
520 	if ((vp = p->p_lwpdir[tslot].ld_entry->le_trace) != NULL) {
521 		/*
522 		 * We dealt with the process common above.
523 		 */
524 		ASSERT(p->p_trace != NULL);
525 		pcp = VTOP(vp)->pr_common;
526 		mutex_enter(&pcp->prc_mutex);
527 		cv_broadcast(&pcp->prc_wait);
528 		mutex_exit(&pcp->prc_mutex);
529 		for (; vp != NULL; vp = pnp->pr_next) {
530 			pnp = VTOP(vp);
531 			pcp = pnp->pr_common;
532 			pcp->prc_datamodel = model;
533 			pcp->prc_tid = tid;
534 			pcp->prc_tslot = tslot;
535 		}
536 	}
537 }
538 
539 /*
540  * Called from a hook in relvm() just before freeing the address space.
541  * We free all the watched areas now.
542  */
543 void
544 prrelvm(void)
545 {
546 	proc_t *p = ttoproc(curthread);
547 
548 	mutex_enter(&p->p_lock);
549 	prbarrier(p);	/* block all other /proc operations */
550 	if (pr_watch_active(p)) {
551 		pr_free_watchpoints(p);
552 		watch_disable(curthread);
553 	}
554 	mutex_exit(&p->p_lock);
555 	pr_free_watched_pages(p);
556 }
557 
558 /*
559  * Called from hooks in exec-related code when a traced process
560  * attempts to exec(2) a setuid/setgid program or an unreadable
561  * file.  Rather than fail the exec we invalidate the associated
562  * /proc vnodes so that subsequent attempts to use them will fail.
563  *
564  * All /proc vnodes, except directory vnodes, are retained on a linked
565  * list (rooted at p_plist in the process structure) until last close.
566  *
567  * A controlling process must re-open the /proc files in order to
568  * regain control.
569  */
570 void
571 prinvalidate(struct user *up)
572 {
573 	kthread_t *t = curthread;
574 	proc_t *p = ttoproc(t);
575 	vnode_t *vp;
576 	prnode_t *pnp;
577 	int writers = 0;
578 
579 	mutex_enter(&p->p_lock);
580 	prbarrier(p);	/* block all other /proc operations */
581 
582 	/*
583 	 * At this moment, there can be only one lwp in the process.
584 	 */
585 	ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0);
586 
587 	/*
588 	 * Invalidate any currently active /proc vnodes.
589 	 */
590 	for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) {
591 		pnp = VTOP(vp);
592 		switch (pnp->pr_type) {
593 		case PR_PSINFO:		/* these files can read by anyone */
594 		case PR_LPSINFO:
595 		case PR_LWPSINFO:
596 		case PR_LWPDIR:
597 		case PR_LWPIDDIR:
598 		case PR_USAGE:
599 		case PR_LUSAGE:
600 		case PR_LWPUSAGE:
601 			break;
602 		default:
603 			pnp->pr_flags |= PR_INVAL;
604 			break;
605 		}
606 	}
607 	/*
608 	 * Wake up anyone waiting for the process or lwp.
609 	 * p->p_trace is guaranteed to be non-NULL if there
610 	 * are any open /proc files for this process.
611 	 */
612 	if ((vp = p->p_trace) != NULL) {
613 		prcommon_t *pcp = VTOP(vp)->pr_pcommon;
614 
615 		prnotify(vp);
616 		/*
617 		 * Are there any writers?
618 		 */
619 		if ((writers = pcp->prc_writers) != 0) {
620 			/*
621 			 * Clear the exclusive open flag (old /proc interface).
622 			 * Set prc_selfopens equal to prc_writers so that
623 			 * the next O_EXCL|O_WRITE open will succeed
624 			 * even with existing (though invalid) writers.
625 			 * prclose() must decrement prc_selfopens when
626 			 * the invalid files are closed.
627 			 */
628 			pcp->prc_flags &= ~PRC_EXCL;
629 			ASSERT(pcp->prc_selfopens <= writers);
630 			pcp->prc_selfopens = writers;
631 		}
632 	}
633 	vp = p->p_lwpdir[t->t_dslot].ld_entry->le_trace;
634 	while (vp != NULL) {
635 		/*
636 		 * We should not invalidate the lwpiddir vnodes,
637 		 * but the necessities of maintaining the old
638 		 * ioctl()-based version of /proc require it.
639 		 */
640 		pnp = VTOP(vp);
641 		pnp->pr_flags |= PR_INVAL;
642 		prnotify(vp);
643 		vp = pnp->pr_next;
644 	}
645 
646 	/*
647 	 * If any tracing flags are in effect and any vnodes are open for
648 	 * writing then set the requested-stop and run-on-last-close flags.
649 	 * Otherwise, clear all tracing flags.
650 	 */
651 	t->t_proc_flag &= ~TP_PAUSE;
652 	if ((p->p_proc_flag & P_PR_TRACE) && writers) {
653 		t->t_proc_flag |= TP_PRSTOP;
654 		aston(t);		/* so ISSIG will see the flag */
655 		p->p_proc_flag |= P_PR_RUNLCL;
656 	} else {
657 		premptyset(&up->u_entrymask);		/* syscalls */
658 		premptyset(&up->u_exitmask);
659 		up->u_systrap = 0;
660 		premptyset(&p->p_sigmask);		/* signals */
661 		premptyset(&p->p_fltmask);		/* faults */
662 		t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP|TP_STOPPING);
663 		p->p_proc_flag &= ~(P_PR_RUNLCL|P_PR_KILLCL|P_PR_TRACE);
664 		prnostep(ttolwp(t));
665 	}
666 
667 	mutex_exit(&p->p_lock);
668 }
669 
670 /*
671  * Acquire the controlled process's p_lock and mark it P_PR_LOCK.
672  * Return with pr_pidlock held in all cases.
673  * Return with p_lock held if the the process still exists.
674  * Return value is the process pointer if the process still exists, else NULL.
675  * If we lock the process, give ourself kernel priority to avoid deadlocks;
676  * this is undone in prunlock().
677  */
678 proc_t *
679 pr_p_lock(prnode_t *pnp)
680 {
681 	proc_t *p;
682 	prcommon_t *pcp;
683 
684 	mutex_enter(&pr_pidlock);
685 	if ((pcp = pnp->pr_pcommon) == NULL || (p = pcp->prc_proc) == NULL)
686 		return (NULL);
687 	mutex_enter(&p->p_lock);
688 	while (p->p_proc_flag & P_PR_LOCK) {
689 		/*
690 		 * This cv/mutex pair is persistent even if
691 		 * the process disappears while we sleep.
692 		 */
693 		kcondvar_t *cv = &pr_pid_cv[p->p_slot];
694 		kmutex_t *mp = &p->p_lock;
695 
696 		mutex_exit(&pr_pidlock);
697 		cv_wait(cv, mp);
698 		mutex_exit(mp);
699 		mutex_enter(&pr_pidlock);
700 		if (pcp->prc_proc == NULL)
701 			return (NULL);
702 		ASSERT(p == pcp->prc_proc);
703 		mutex_enter(&p->p_lock);
704 	}
705 	p->p_proc_flag |= P_PR_LOCK;
706 	THREAD_KPRI_REQUEST();
707 	return (p);
708 }
709 
710 /*
711  * Lock the target process by setting P_PR_LOCK and grabbing p->p_lock.
712  * This prevents any lwp of the process from disappearing and
713  * blocks most operations that a process can perform on itself.
714  * Returns 0 on success, a non-zero error number on failure.
715  *
716  * 'zdisp' is ZYES or ZNO to indicate whether prlock() should succeed when
717  * the subject process is a zombie (ZYES) or fail for zombies (ZNO).
718  *
719  * error returns:
720  *	ENOENT: process or lwp has disappeared or process is exiting
721  *		(or has become a zombie and zdisp == ZNO).
722  *	EAGAIN: procfs vnode has become invalid.
723  *	EINTR:  signal arrived while waiting for exec to complete.
724  */
725 int
726 prlock(prnode_t *pnp, int zdisp)
727 {
728 	prcommon_t *pcp;
729 	proc_t *p;
730 
731 again:
732 	pcp = pnp->pr_common;
733 	p = pr_p_lock(pnp);
734 	mutex_exit(&pr_pidlock);
735 
736 	/*
737 	 * Return ENOENT immediately if there is no process.
738 	 */
739 	if (p == NULL)
740 		return (ENOENT);
741 
742 	ASSERT(p == pcp->prc_proc && p->p_stat != 0 && p->p_stat != SIDL);
743 
744 	/*
745 	 * Return ENOENT if process entered zombie state or is exiting
746 	 * and the 'zdisp' flag is set to ZNO indicating not to lock zombies.
747 	 */
748 	if (zdisp == ZNO &&
749 	    ((pcp->prc_flags & PRC_DESTROY) || (p->p_flag & SEXITING))) {
750 		prunlock(pnp);
751 		return (ENOENT);
752 	}
753 
754 	/*
755 	 * If lwp-specific, check to see if lwp has disappeared.
756 	 */
757 	if (pcp->prc_flags & PRC_LWP) {
758 		if ((zdisp == ZNO && (pcp->prc_flags & PRC_DESTROY)) ||
759 		    pcp->prc_tslot == -1) {
760 			prunlock(pnp);
761 			return (ENOENT);
762 		}
763 	}
764 
765 	/*
766 	 * Return EAGAIN if we have encountered a security violation.
767 	 * (The process exec'd a set-id or unreadable executable file.)
768 	 */
769 	if (pnp->pr_flags & PR_INVAL) {
770 		prunlock(pnp);
771 		return (EAGAIN);
772 	}
773 
774 	/*
775 	 * If process is undergoing an exec(), wait for
776 	 * completion and then start all over again.
777 	 */
778 	if (p->p_proc_flag & P_PR_EXEC) {
779 		pcp = pnp->pr_pcommon;	/* Put on the correct sleep queue */
780 		mutex_enter(&pcp->prc_mutex);
781 		prunlock(pnp);
782 		if (!cv_wait_sig(&pcp->prc_wait, &pcp->prc_mutex)) {
783 			mutex_exit(&pcp->prc_mutex);
784 			return (EINTR);
785 		}
786 		mutex_exit(&pcp->prc_mutex);
787 		goto again;
788 	}
789 
790 	/*
791 	 * We return holding p->p_lock.
792 	 */
793 	return (0);
794 }
795 
796 /*
797  * Undo prlock() and pr_p_lock().
798  * p->p_lock is still held; pr_pidlock is no longer held.
799  *
800  * prunmark() drops the P_PR_LOCK flag and wakes up another thread,
801  * if any, waiting for the flag to be dropped; it retains p->p_lock.
802  *
803  * prunlock() calls prunmark() and then drops p->p_lock.
804  */
805 void
806 prunmark(proc_t *p)
807 {
808 	ASSERT(p->p_proc_flag & P_PR_LOCK);
809 	ASSERT(MUTEX_HELD(&p->p_lock));
810 
811 	cv_signal(&pr_pid_cv[p->p_slot]);
812 	p->p_proc_flag &= ~P_PR_LOCK;
813 	THREAD_KPRI_RELEASE();
814 }
815 
816 void
817 prunlock(prnode_t *pnp)
818 {
819 	prcommon_t *pcp = pnp->pr_common;
820 	proc_t *p = pcp->prc_proc;
821 
822 	/*
823 	 * If we (or someone) gave it a SIGKILL, and it is not
824 	 * already a zombie, set it running unconditionally.
825 	 */
826 	if ((p->p_flag & SKILLED) &&
827 	    !(p->p_flag & SEXITING) &&
828 	    !(pcp->prc_flags & PRC_DESTROY) &&
829 	    !((pcp->prc_flags & PRC_LWP) && pcp->prc_tslot == -1))
830 		(void) pr_setrun(pnp, 0);
831 	prunmark(p);
832 	mutex_exit(&p->p_lock);
833 }
834 
835 /*
836  * Called while holding p->p_lock to delay until the process is unlocked.
837  * We enter holding p->p_lock; p->p_lock is dropped and reacquired.
838  * The process cannot become locked again until p->p_lock is dropped.
839  */
840 void
841 prbarrier(proc_t *p)
842 {
843 	ASSERT(MUTEX_HELD(&p->p_lock));
844 
845 	if (p->p_proc_flag & P_PR_LOCK) {
846 		/* The process is locked; delay until not locked */
847 		uint_t slot = p->p_slot;
848 
849 		while (p->p_proc_flag & P_PR_LOCK)
850 			cv_wait(&pr_pid_cv[slot], &p->p_lock);
851 		cv_signal(&pr_pid_cv[slot]);
852 	}
853 }
854 
855 /*
856  * Return process/lwp status.
857  * The u-block is mapped in by this routine and unmapped at the end.
858  */
859 void
860 prgetstatus(proc_t *p, pstatus_t *sp, zone_t *zp)
861 {
862 	kthread_t *t;
863 
864 	ASSERT(MUTEX_HELD(&p->p_lock));
865 
866 	t = prchoose(p);	/* returns locked thread */
867 	ASSERT(t != NULL);
868 	thread_unlock(t);
869 
870 	/* just bzero the process part, prgetlwpstatus() does the rest */
871 	bzero(sp, sizeof (pstatus_t) - sizeof (lwpstatus_t));
872 	sp->pr_nlwp = p->p_lwpcnt;
873 	sp->pr_nzomb = p->p_zombcnt;
874 	prassignset(&sp->pr_sigpend, &p->p_sig);
875 	sp->pr_brkbase = (uintptr_t)p->p_brkbase;
876 	sp->pr_brksize = p->p_brksize;
877 	sp->pr_stkbase = (uintptr_t)prgetstackbase(p);
878 	sp->pr_stksize = p->p_stksize;
879 	sp->pr_pid = p->p_pid;
880 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
881 	    (p->p_flag & SZONETOP)) {
882 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
883 		/*
884 		 * Inside local zones, fake zsched's pid as parent pids for
885 		 * processes which reference processes outside of the zone.
886 		 */
887 		sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
888 	} else {
889 		sp->pr_ppid = p->p_ppid;
890 	}
891 	sp->pr_pgid  = p->p_pgrp;
892 	sp->pr_sid   = p->p_sessp->s_sid;
893 	sp->pr_taskid = p->p_task->tk_tkid;
894 	sp->pr_projid = p->p_task->tk_proj->kpj_id;
895 	sp->pr_zoneid = p->p_zone->zone_id;
896 	hrt2ts(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
897 	hrt2ts(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
898 	TICK_TO_TIMESTRUC(p->p_cutime, &sp->pr_cutime);
899 	TICK_TO_TIMESTRUC(p->p_cstime, &sp->pr_cstime);
900 	prassignset(&sp->pr_sigtrace, &p->p_sigmask);
901 	prassignset(&sp->pr_flttrace, &p->p_fltmask);
902 	prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
903 	prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
904 	switch (p->p_model) {
905 	case DATAMODEL_ILP32:
906 		sp->pr_dmodel = PR_MODEL_ILP32;
907 		break;
908 	case DATAMODEL_LP64:
909 		sp->pr_dmodel = PR_MODEL_LP64;
910 		break;
911 	}
912 	if (p->p_agenttp)
913 		sp->pr_agentid = p->p_agenttp->t_tid;
914 
915 	/* get the chosen lwp's status */
916 	prgetlwpstatus(t, &sp->pr_lwp, zp);
917 
918 	/* replicate the flags */
919 	sp->pr_flags = sp->pr_lwp.pr_flags;
920 }
921 
922 #ifdef _SYSCALL32_IMPL
923 void
924 prgetlwpstatus32(kthread_t *t, lwpstatus32_t *sp, zone_t *zp)
925 {
926 	proc_t *p = ttoproc(t);
927 	klwp_t *lwp = ttolwp(t);
928 	struct mstate *ms = &lwp->lwp_mstate;
929 	hrtime_t usr, sys;
930 	int flags;
931 	ulong_t instr;
932 
933 	ASSERT(MUTEX_HELD(&p->p_lock));
934 
935 	bzero(sp, sizeof (*sp));
936 	flags = 0L;
937 	if (t->t_state == TS_STOPPED) {
938 		flags |= PR_STOPPED;
939 		if ((t->t_schedflag & TS_PSTART) == 0)
940 			flags |= PR_ISTOP;
941 	} else if (VSTOPPED(t)) {
942 		flags |= PR_STOPPED|PR_ISTOP;
943 	}
944 	if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
945 		flags |= PR_DSTOP;
946 	if (lwp->lwp_asleep)
947 		flags |= PR_ASLEEP;
948 	if (t == p->p_agenttp)
949 		flags |= PR_AGENT;
950 	if (!(t->t_proc_flag & TP_TWAIT))
951 		flags |= PR_DETACH;
952 	if (t->t_proc_flag & TP_DAEMON)
953 		flags |= PR_DAEMON;
954 	if (p->p_proc_flag & P_PR_FORK)
955 		flags |= PR_FORK;
956 	if (p->p_proc_flag & P_PR_RUNLCL)
957 		flags |= PR_RLC;
958 	if (p->p_proc_flag & P_PR_KILLCL)
959 		flags |= PR_KLC;
960 	if (p->p_proc_flag & P_PR_ASYNC)
961 		flags |= PR_ASYNC;
962 	if (p->p_proc_flag & P_PR_BPTADJ)
963 		flags |= PR_BPTADJ;
964 	if (p->p_proc_flag & P_PR_PTRACE)
965 		flags |= PR_PTRACE;
966 	if (p->p_flag & SMSACCT)
967 		flags |= PR_MSACCT;
968 	if (p->p_flag & SMSFORK)
969 		flags |= PR_MSFORK;
970 	if (p->p_flag & SVFWAIT)
971 		flags |= PR_VFORKP;
972 	sp->pr_flags = flags;
973 	if (VSTOPPED(t)) {
974 		sp->pr_why   = PR_REQUESTED;
975 		sp->pr_what  = 0;
976 	} else {
977 		sp->pr_why   = t->t_whystop;
978 		sp->pr_what  = t->t_whatstop;
979 	}
980 	sp->pr_lwpid = t->t_tid;
981 	sp->pr_cursig  = lwp->lwp_cursig;
982 	prassignset(&sp->pr_lwppend, &t->t_sig);
983 	schedctl_finish_sigblock(t);
984 	prassignset(&sp->pr_lwphold, &t->t_hold);
985 	if (t->t_whystop == PR_FAULTED) {
986 		siginfo_kto32(&lwp->lwp_siginfo, &sp->pr_info);
987 		if (t->t_whatstop == FLTPAGE)
988 			sp->pr_info.si_addr =
989 			    (caddr32_t)(uintptr_t)lwp->lwp_siginfo.si_addr;
990 	} else if (lwp->lwp_curinfo)
991 		siginfo_kto32(&lwp->lwp_curinfo->sq_info, &sp->pr_info);
992 	if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
993 	    sp->pr_info.si_zoneid != zp->zone_id) {
994 		sp->pr_info.si_pid = zp->zone_zsched->p_pid;
995 		sp->pr_info.si_uid = 0;
996 		sp->pr_info.si_ctid = -1;
997 		sp->pr_info.si_zoneid = zp->zone_id;
998 	}
999 	sp->pr_altstack.ss_sp =
1000 	    (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp;
1001 	sp->pr_altstack.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size;
1002 	sp->pr_altstack.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags;
1003 	prgetaction32(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1004 	sp->pr_oldcontext = (caddr32_t)lwp->lwp_oldcontext;
1005 	sp->pr_ustack = (caddr32_t)lwp->lwp_ustack;
1006 	(void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1007 	    sizeof (sp->pr_clname) - 1);
1008 	if (flags & PR_STOPPED)
1009 		hrt2ts32(t->t_stoptime, &sp->pr_tstamp);
1010 	usr = ms->ms_acct[LMS_USER];
1011 	sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1012 	scalehrtime(&usr);
1013 	scalehrtime(&sys);
1014 	hrt2ts32(usr, &sp->pr_utime);
1015 	hrt2ts32(sys, &sp->pr_stime);
1016 
1017 	/*
1018 	 * Fetch the current instruction, if not a system process.
1019 	 * We don't attempt this unless the lwp is stopped.
1020 	 */
1021 	if ((p->p_flag & SSYS) || p->p_as == &kas)
1022 		sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1023 	else if (!(flags & PR_STOPPED))
1024 		sp->pr_flags |= PR_PCINVAL;
1025 	else if (!prfetchinstr(lwp, &instr))
1026 		sp->pr_flags |= PR_PCINVAL;
1027 	else
1028 		sp->pr_instr = (uint32_t)instr;
1029 
1030 	/*
1031 	 * Drop p_lock while touching the lwp's stack.
1032 	 */
1033 	mutex_exit(&p->p_lock);
1034 	if (prisstep(lwp))
1035 		sp->pr_flags |= PR_STEP;
1036 	if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1037 		int i;
1038 
1039 		sp->pr_syscall = get_syscall32_args(lwp,
1040 		    (int *)sp->pr_sysarg, &i);
1041 		sp->pr_nsysarg = (ushort_t)i;
1042 	}
1043 	if ((flags & PR_STOPPED) || t == curthread)
1044 		prgetprregs32(lwp, sp->pr_reg);
1045 	if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1046 	    (flags & PR_VFORKP)) {
1047 		long r1, r2;
1048 		user_t *up;
1049 		auxv_t *auxp;
1050 		int i;
1051 
1052 		sp->pr_errno = prgetrvals(lwp, &r1, &r2);
1053 		if (sp->pr_errno == 0) {
1054 			sp->pr_rval1 = (int32_t)r1;
1055 			sp->pr_rval2 = (int32_t)r2;
1056 			sp->pr_errpriv = PRIV_NONE;
1057 		} else
1058 			sp->pr_errpriv = lwp->lwp_badpriv;
1059 
1060 		if (t->t_sysnum == SYS_execve) {
1061 			up = PTOU(p);
1062 			sp->pr_sysarg[0] = 0;
1063 			sp->pr_sysarg[1] = (caddr32_t)up->u_argv;
1064 			sp->pr_sysarg[2] = (caddr32_t)up->u_envp;
1065 			for (i = 0, auxp = up->u_auxv;
1066 			    i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1067 			    i++, auxp++) {
1068 				if (auxp->a_type == AT_SUN_EXECNAME) {
1069 					sp->pr_sysarg[0] =
1070 					    (caddr32_t)
1071 					    (uintptr_t)auxp->a_un.a_ptr;
1072 					break;
1073 				}
1074 			}
1075 		}
1076 	}
1077 	if (prhasfp())
1078 		prgetprfpregs32(lwp, &sp->pr_fpreg);
1079 	mutex_enter(&p->p_lock);
1080 }
1081 
1082 void
1083 prgetstatus32(proc_t *p, pstatus32_t *sp, zone_t *zp)
1084 {
1085 	kthread_t *t;
1086 
1087 	ASSERT(MUTEX_HELD(&p->p_lock));
1088 
1089 	t = prchoose(p);	/* returns locked thread */
1090 	ASSERT(t != NULL);
1091 	thread_unlock(t);
1092 
1093 	/* just bzero the process part, prgetlwpstatus32() does the rest */
1094 	bzero(sp, sizeof (pstatus32_t) - sizeof (lwpstatus32_t));
1095 	sp->pr_nlwp = p->p_lwpcnt;
1096 	sp->pr_nzomb = p->p_zombcnt;
1097 	prassignset(&sp->pr_sigpend, &p->p_sig);
1098 	sp->pr_brkbase = (uint32_t)(uintptr_t)p->p_brkbase;
1099 	sp->pr_brksize = (uint32_t)p->p_brksize;
1100 	sp->pr_stkbase = (uint32_t)(uintptr_t)prgetstackbase(p);
1101 	sp->pr_stksize = (uint32_t)p->p_stksize;
1102 	sp->pr_pid   = p->p_pid;
1103 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
1104 	    (p->p_flag & SZONETOP)) {
1105 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
1106 		/*
1107 		 * Inside local zones, fake zsched's pid as parent pids for
1108 		 * processes which reference processes outside of the zone.
1109 		 */
1110 		sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
1111 	} else {
1112 		sp->pr_ppid = p->p_ppid;
1113 	}
1114 	sp->pr_pgid  = p->p_pgrp;
1115 	sp->pr_sid   = p->p_sessp->s_sid;
1116 	sp->pr_taskid = p->p_task->tk_tkid;
1117 	sp->pr_projid = p->p_task->tk_proj->kpj_id;
1118 	sp->pr_zoneid = p->p_zone->zone_id;
1119 	hrt2ts32(mstate_aggr_state(p, LMS_USER), &sp->pr_utime);
1120 	hrt2ts32(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime);
1121 	TICK_TO_TIMESTRUC32(p->p_cutime, &sp->pr_cutime);
1122 	TICK_TO_TIMESTRUC32(p->p_cstime, &sp->pr_cstime);
1123 	prassignset(&sp->pr_sigtrace, &p->p_sigmask);
1124 	prassignset(&sp->pr_flttrace, &p->p_fltmask);
1125 	prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask);
1126 	prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask);
1127 	switch (p->p_model) {
1128 	case DATAMODEL_ILP32:
1129 		sp->pr_dmodel = PR_MODEL_ILP32;
1130 		break;
1131 	case DATAMODEL_LP64:
1132 		sp->pr_dmodel = PR_MODEL_LP64;
1133 		break;
1134 	}
1135 	if (p->p_agenttp)
1136 		sp->pr_agentid = p->p_agenttp->t_tid;
1137 
1138 	/* get the chosen lwp's status */
1139 	prgetlwpstatus32(t, &sp->pr_lwp, zp);
1140 
1141 	/* replicate the flags */
1142 	sp->pr_flags = sp->pr_lwp.pr_flags;
1143 }
1144 #endif	/* _SYSCALL32_IMPL */
1145 
1146 /*
1147  * Return lwp status.
1148  */
1149 void
1150 prgetlwpstatus(kthread_t *t, lwpstatus_t *sp, zone_t *zp)
1151 {
1152 	proc_t *p = ttoproc(t);
1153 	klwp_t *lwp = ttolwp(t);
1154 	struct mstate *ms = &lwp->lwp_mstate;
1155 	hrtime_t usr, sys;
1156 	int flags;
1157 	ulong_t instr;
1158 
1159 	ASSERT(MUTEX_HELD(&p->p_lock));
1160 
1161 	bzero(sp, sizeof (*sp));
1162 	flags = 0L;
1163 	if (t->t_state == TS_STOPPED) {
1164 		flags |= PR_STOPPED;
1165 		if ((t->t_schedflag & TS_PSTART) == 0)
1166 			flags |= PR_ISTOP;
1167 	} else if (VSTOPPED(t)) {
1168 		flags |= PR_STOPPED|PR_ISTOP;
1169 	}
1170 	if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP))
1171 		flags |= PR_DSTOP;
1172 	if (lwp->lwp_asleep)
1173 		flags |= PR_ASLEEP;
1174 	if (t == p->p_agenttp)
1175 		flags |= PR_AGENT;
1176 	if (!(t->t_proc_flag & TP_TWAIT))
1177 		flags |= PR_DETACH;
1178 	if (t->t_proc_flag & TP_DAEMON)
1179 		flags |= PR_DAEMON;
1180 	if (p->p_proc_flag & P_PR_FORK)
1181 		flags |= PR_FORK;
1182 	if (p->p_proc_flag & P_PR_RUNLCL)
1183 		flags |= PR_RLC;
1184 	if (p->p_proc_flag & P_PR_KILLCL)
1185 		flags |= PR_KLC;
1186 	if (p->p_proc_flag & P_PR_ASYNC)
1187 		flags |= PR_ASYNC;
1188 	if (p->p_proc_flag & P_PR_BPTADJ)
1189 		flags |= PR_BPTADJ;
1190 	if (p->p_proc_flag & P_PR_PTRACE)
1191 		flags |= PR_PTRACE;
1192 	if (p->p_flag & SMSACCT)
1193 		flags |= PR_MSACCT;
1194 	if (p->p_flag & SMSFORK)
1195 		flags |= PR_MSFORK;
1196 	if (p->p_flag & SVFWAIT)
1197 		flags |= PR_VFORKP;
1198 	if (p->p_pgidp->pid_pgorphaned)
1199 		flags |= PR_ORPHAN;
1200 	if (p->p_pidflag & CLDNOSIGCHLD)
1201 		flags |= PR_NOSIGCHLD;
1202 	if (p->p_pidflag & CLDWAITPID)
1203 		flags |= PR_WAITPID;
1204 	sp->pr_flags = flags;
1205 	if (VSTOPPED(t)) {
1206 		sp->pr_why   = PR_REQUESTED;
1207 		sp->pr_what  = 0;
1208 	} else {
1209 		sp->pr_why   = t->t_whystop;
1210 		sp->pr_what  = t->t_whatstop;
1211 	}
1212 	sp->pr_lwpid = t->t_tid;
1213 	sp->pr_cursig  = lwp->lwp_cursig;
1214 	prassignset(&sp->pr_lwppend, &t->t_sig);
1215 	schedctl_finish_sigblock(t);
1216 	prassignset(&sp->pr_lwphold, &t->t_hold);
1217 	if (t->t_whystop == PR_FAULTED)
1218 		bcopy(&lwp->lwp_siginfo,
1219 		    &sp->pr_info, sizeof (k_siginfo_t));
1220 	else if (lwp->lwp_curinfo)
1221 		bcopy(&lwp->lwp_curinfo->sq_info,
1222 		    &sp->pr_info, sizeof (k_siginfo_t));
1223 	if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID &&
1224 	    sp->pr_info.si_zoneid != zp->zone_id) {
1225 		sp->pr_info.si_pid = zp->zone_zsched->p_pid;
1226 		sp->pr_info.si_uid = 0;
1227 		sp->pr_info.si_ctid = -1;
1228 		sp->pr_info.si_zoneid = zp->zone_id;
1229 	}
1230 	sp->pr_altstack = lwp->lwp_sigaltstack;
1231 	prgetaction(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action);
1232 	sp->pr_oldcontext = (uintptr_t)lwp->lwp_oldcontext;
1233 	sp->pr_ustack = lwp->lwp_ustack;
1234 	(void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name,
1235 	    sizeof (sp->pr_clname) - 1);
1236 	if (flags & PR_STOPPED)
1237 		hrt2ts(t->t_stoptime, &sp->pr_tstamp);
1238 	usr = ms->ms_acct[LMS_USER];
1239 	sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP];
1240 	scalehrtime(&usr);
1241 	scalehrtime(&sys);
1242 	hrt2ts(usr, &sp->pr_utime);
1243 	hrt2ts(sys, &sp->pr_stime);
1244 
1245 	/*
1246 	 * Fetch the current instruction, if not a system process.
1247 	 * We don't attempt this unless the lwp is stopped.
1248 	 */
1249 	if ((p->p_flag & SSYS) || p->p_as == &kas)
1250 		sp->pr_flags |= (PR_ISSYS|PR_PCINVAL);
1251 	else if (!(flags & PR_STOPPED))
1252 		sp->pr_flags |= PR_PCINVAL;
1253 	else if (!prfetchinstr(lwp, &instr))
1254 		sp->pr_flags |= PR_PCINVAL;
1255 	else
1256 		sp->pr_instr = instr;
1257 
1258 	/*
1259 	 * Drop p_lock while touching the lwp's stack.
1260 	 */
1261 	mutex_exit(&p->p_lock);
1262 	if (prisstep(lwp))
1263 		sp->pr_flags |= PR_STEP;
1264 	if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) {
1265 		int i;
1266 
1267 		sp->pr_syscall = get_syscall_args(lwp,
1268 		    (long *)sp->pr_sysarg, &i);
1269 		sp->pr_nsysarg = (ushort_t)i;
1270 	}
1271 	if ((flags & PR_STOPPED) || t == curthread)
1272 		prgetprregs(lwp, sp->pr_reg);
1273 	if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) ||
1274 	    (flags & PR_VFORKP)) {
1275 		user_t *up;
1276 		auxv_t *auxp;
1277 		int i;
1278 
1279 		sp->pr_errno = prgetrvals(lwp, &sp->pr_rval1, &sp->pr_rval2);
1280 		if (sp->pr_errno == 0)
1281 			sp->pr_errpriv = PRIV_NONE;
1282 		else
1283 			sp->pr_errpriv = lwp->lwp_badpriv;
1284 
1285 		if (t->t_sysnum == SYS_execve) {
1286 			up = PTOU(p);
1287 			sp->pr_sysarg[0] = 0;
1288 			sp->pr_sysarg[1] = (uintptr_t)up->u_argv;
1289 			sp->pr_sysarg[2] = (uintptr_t)up->u_envp;
1290 			for (i = 0, auxp = up->u_auxv;
1291 			    i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]);
1292 			    i++, auxp++) {
1293 				if (auxp->a_type == AT_SUN_EXECNAME) {
1294 					sp->pr_sysarg[0] =
1295 					    (uintptr_t)auxp->a_un.a_ptr;
1296 					break;
1297 				}
1298 			}
1299 		}
1300 	}
1301 	if (prhasfp())
1302 		prgetprfpregs(lwp, &sp->pr_fpreg);
1303 	mutex_enter(&p->p_lock);
1304 }
1305 
1306 /*
1307  * Get the sigaction structure for the specified signal.  The u-block
1308  * must already have been mapped in by the caller.
1309  */
1310 void
1311 prgetaction(proc_t *p, user_t *up, uint_t sig, struct sigaction *sp)
1312 {
1313 	int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG;
1314 
1315 	bzero(sp, sizeof (*sp));
1316 
1317 	if (sig != 0 && (unsigned)sig < nsig) {
1318 		sp->sa_handler = up->u_signal[sig-1];
1319 		prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1320 		if (sigismember(&up->u_sigonstack, sig))
1321 			sp->sa_flags |= SA_ONSTACK;
1322 		if (sigismember(&up->u_sigresethand, sig))
1323 			sp->sa_flags |= SA_RESETHAND;
1324 		if (sigismember(&up->u_sigrestart, sig))
1325 			sp->sa_flags |= SA_RESTART;
1326 		if (sigismember(&p->p_siginfo, sig))
1327 			sp->sa_flags |= SA_SIGINFO;
1328 		if (sigismember(&up->u_signodefer, sig))
1329 			sp->sa_flags |= SA_NODEFER;
1330 		if (sig == SIGCLD) {
1331 			if (p->p_flag & SNOWAIT)
1332 				sp->sa_flags |= SA_NOCLDWAIT;
1333 			if ((p->p_flag & SJCTL) == 0)
1334 				sp->sa_flags |= SA_NOCLDSTOP;
1335 		}
1336 	}
1337 }
1338 
1339 #ifdef _SYSCALL32_IMPL
1340 void
1341 prgetaction32(proc_t *p, user_t *up, uint_t sig, struct sigaction32 *sp)
1342 {
1343 	int nsig = PROC_IS_BRANDED(curproc)? BROP(curproc)->b_nsig : NSIG;
1344 
1345 	bzero(sp, sizeof (*sp));
1346 
1347 	if (sig != 0 && (unsigned)sig < nsig) {
1348 		sp->sa_handler = (caddr32_t)(uintptr_t)up->u_signal[sig-1];
1349 		prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]);
1350 		if (sigismember(&up->u_sigonstack, sig))
1351 			sp->sa_flags |= SA_ONSTACK;
1352 		if (sigismember(&up->u_sigresethand, sig))
1353 			sp->sa_flags |= SA_RESETHAND;
1354 		if (sigismember(&up->u_sigrestart, sig))
1355 			sp->sa_flags |= SA_RESTART;
1356 		if (sigismember(&p->p_siginfo, sig))
1357 			sp->sa_flags |= SA_SIGINFO;
1358 		if (sigismember(&up->u_signodefer, sig))
1359 			sp->sa_flags |= SA_NODEFER;
1360 		if (sig == SIGCLD) {
1361 			if (p->p_flag & SNOWAIT)
1362 				sp->sa_flags |= SA_NOCLDWAIT;
1363 			if ((p->p_flag & SJCTL) == 0)
1364 				sp->sa_flags |= SA_NOCLDSTOP;
1365 		}
1366 	}
1367 }
1368 #endif	/* _SYSCALL32_IMPL */
1369 
1370 /*
1371  * Count the number of segments in this process's address space.
1372  */
1373 int
1374 prnsegs(struct as *as, int reserved)
1375 {
1376 	int n = 0;
1377 	struct seg *seg;
1378 
1379 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1380 
1381 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1382 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1383 		caddr_t saddr, naddr;
1384 		void *tmp = NULL;
1385 
1386 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1387 			(void) pr_getprot(seg, reserved, &tmp,
1388 			    &saddr, &naddr, eaddr);
1389 			if (saddr != naddr)
1390 				n++;
1391 		}
1392 
1393 		ASSERT(tmp == NULL);
1394 	}
1395 
1396 	return (n);
1397 }
1398 
1399 /*
1400  * Convert uint32_t to decimal string w/o leading zeros.
1401  * Add trailing null characters if 'len' is greater than string length.
1402  * Return the string length.
1403  */
1404 int
1405 pr_u32tos(uint32_t n, char *s, int len)
1406 {
1407 	char cbuf[11];		/* 32-bit unsigned integer fits in 10 digits */
1408 	char *cp = cbuf;
1409 	char *end = s + len;
1410 
1411 	do {
1412 		*cp++ = (char)(n % 10 + '0');
1413 		n /= 10;
1414 	} while (n);
1415 
1416 	len = (int)(cp - cbuf);
1417 
1418 	do {
1419 		*s++ = *--cp;
1420 	} while (cp > cbuf);
1421 
1422 	while (s < end)		/* optional pad */
1423 		*s++ = '\0';
1424 
1425 	return (len);
1426 }
1427 
1428 /*
1429  * Convert uint64_t to decimal string w/o leading zeros.
1430  * Return the string length.
1431  */
1432 static int
1433 pr_u64tos(uint64_t n, char *s)
1434 {
1435 	char cbuf[21];		/* 64-bit unsigned integer fits in 20 digits */
1436 	char *cp = cbuf;
1437 	int len;
1438 
1439 	do {
1440 		*cp++ = (char)(n % 10 + '0');
1441 		n /= 10;
1442 	} while (n);
1443 
1444 	len = (int)(cp - cbuf);
1445 
1446 	do {
1447 		*s++ = *--cp;
1448 	} while (cp > cbuf);
1449 
1450 	return (len);
1451 }
1452 
1453 void
1454 pr_object_name(char *name, vnode_t *vp, struct vattr *vattr)
1455 {
1456 	char *s = name;
1457 	struct vfs *vfsp;
1458 	struct vfssw *vfsswp;
1459 
1460 	if ((vfsp = vp->v_vfsp) != NULL &&
1461 	    ((vfsswp = vfssw + vfsp->vfs_fstype), vfsswp->vsw_name) &&
1462 	    *vfsswp->vsw_name) {
1463 		(void) strcpy(s, vfsswp->vsw_name);
1464 		s += strlen(s);
1465 		*s++ = '.';
1466 	}
1467 	s += pr_u32tos(getmajor(vattr->va_fsid), s, 0);
1468 	*s++ = '.';
1469 	s += pr_u32tos(getminor(vattr->va_fsid), s, 0);
1470 	*s++ = '.';
1471 	s += pr_u64tos(vattr->va_nodeid, s);
1472 	*s++ = '\0';
1473 }
1474 
1475 struct seg *
1476 break_seg(proc_t *p)
1477 {
1478 	caddr_t addr = p->p_brkbase;
1479 	struct seg *seg;
1480 	struct vnode *vp;
1481 
1482 	if (p->p_brksize != 0)
1483 		addr += p->p_brksize - 1;
1484 	seg = as_segat(p->p_as, addr);
1485 	if (seg != NULL && seg->s_ops == &segvn_ops &&
1486 	    (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL))
1487 		return (seg);
1488 	return (NULL);
1489 }
1490 
1491 /*
1492  * Implementation of service functions to handle procfs generic chained
1493  * copyout buffers.
1494  */
1495 typedef struct pr_iobuf_list {
1496 	list_node_t	piol_link;	/* buffer linkage */
1497 	size_t		piol_size;	/* total size (header + data) */
1498 	size_t		piol_usedsize;	/* amount to copy out from this buf */
1499 } piol_t;
1500 
1501 #define	MAPSIZE	(64 * 1024)
1502 #define	PIOL_DATABUF(iol)	((void *)(&(iol)[1]))
1503 
1504 void
1505 pr_iol_initlist(list_t *iolhead, size_t itemsize, int n)
1506 {
1507 	piol_t	*iol;
1508 	size_t	initial_size = MIN(1, n) * itemsize;
1509 
1510 	list_create(iolhead, sizeof (piol_t), offsetof(piol_t, piol_link));
1511 
1512 	ASSERT(list_head(iolhead) == NULL);
1513 	ASSERT(itemsize < MAPSIZE - sizeof (*iol));
1514 	ASSERT(initial_size > 0);
1515 
1516 	/*
1517 	 * Someone creating chained copyout buffers may ask for less than
1518 	 * MAPSIZE if the amount of data to be buffered is known to be
1519 	 * smaller than that.
1520 	 * But in order to prevent involuntary self-denial of service,
1521 	 * the requested input size is clamped at MAPSIZE.
1522 	 */
1523 	initial_size = MIN(MAPSIZE, initial_size + sizeof (*iol));
1524 	iol = kmem_alloc(initial_size, KM_SLEEP);
1525 	list_insert_head(iolhead, iol);
1526 	iol->piol_usedsize = 0;
1527 	iol->piol_size = initial_size;
1528 }
1529 
1530 void *
1531 pr_iol_newbuf(list_t *iolhead, size_t itemsize)
1532 {
1533 	piol_t	*iol;
1534 	char	*new;
1535 
1536 	ASSERT(itemsize < MAPSIZE - sizeof (*iol));
1537 	ASSERT(list_head(iolhead) != NULL);
1538 
1539 	iol = (piol_t *)list_tail(iolhead);
1540 
1541 	if (iol->piol_size <
1542 	    iol->piol_usedsize + sizeof (*iol) + itemsize) {
1543 		/*
1544 		 * Out of space in the current buffer. Allocate more.
1545 		 */
1546 		piol_t *newiol;
1547 
1548 		newiol = kmem_alloc(MAPSIZE, KM_SLEEP);
1549 		newiol->piol_size = MAPSIZE;
1550 		newiol->piol_usedsize = 0;
1551 
1552 		list_insert_after(iolhead, iol, newiol);
1553 		iol = list_next(iolhead, iol);
1554 		ASSERT(iol == newiol);
1555 	}
1556 	new = (char *)PIOL_DATABUF(iol) + iol->piol_usedsize;
1557 	iol->piol_usedsize += itemsize;
1558 	bzero(new, itemsize);
1559 	return (new);
1560 }
1561 
1562 int
1563 pr_iol_copyout_and_free(list_t *iolhead, caddr_t *tgt, int errin)
1564 {
1565 	int error = errin;
1566 	piol_t	*iol;
1567 
1568 	while ((iol = list_head(iolhead)) != NULL) {
1569 		list_remove(iolhead, iol);
1570 		if (!error) {
1571 			if (copyout(PIOL_DATABUF(iol), *tgt,
1572 			    iol->piol_usedsize))
1573 				error = EFAULT;
1574 			*tgt += iol->piol_usedsize;
1575 		}
1576 		kmem_free(iol, iol->piol_size);
1577 	}
1578 	list_destroy(iolhead);
1579 
1580 	return (error);
1581 }
1582 
1583 int
1584 pr_iol_uiomove_and_free(list_t *iolhead, uio_t *uiop, int errin)
1585 {
1586 	offset_t	off = uiop->uio_offset;
1587 	char		*base;
1588 	size_t		size;
1589 	piol_t		*iol;
1590 	int		error = errin;
1591 
1592 	while ((iol = list_head(iolhead)) != NULL) {
1593 		list_remove(iolhead, iol);
1594 		base = PIOL_DATABUF(iol);
1595 		size = iol->piol_usedsize;
1596 		if (off <= size && error == 0 && uiop->uio_resid > 0)
1597 			error = uiomove(base + off, size - off,
1598 			    UIO_READ, uiop);
1599 		off = MAX(0, off - (offset_t)size);
1600 		kmem_free(iol, iol->piol_size);
1601 	}
1602 	list_destroy(iolhead);
1603 
1604 	return (error);
1605 }
1606 
1607 /*
1608  * Return an array of structures with memory map information.
1609  * We allocate here; the caller must deallocate.
1610  */
1611 int
1612 prgetmap(proc_t *p, int reserved, list_t *iolhead)
1613 {
1614 	struct as *as = p->p_as;
1615 	prmap_t *mp;
1616 	struct seg *seg;
1617 	struct seg *brkseg, *stkseg;
1618 	struct vnode *vp;
1619 	struct vattr vattr;
1620 	uint_t prot;
1621 
1622 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1623 
1624 	/*
1625 	 * Request an initial buffer size that doesn't waste memory
1626 	 * if the address space has only a small number of segments.
1627 	 */
1628 	pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
1629 
1630 	if ((seg = AS_SEGFIRST(as)) == NULL)
1631 		return (0);
1632 
1633 	brkseg = break_seg(p);
1634 	stkseg = as_segat(as, prgetstackbase(p));
1635 
1636 	do {
1637 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1638 		caddr_t saddr, naddr;
1639 		void *tmp = NULL;
1640 
1641 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1642 			prot = pr_getprot(seg, reserved, &tmp,
1643 			    &saddr, &naddr, eaddr);
1644 			if (saddr == naddr)
1645 				continue;
1646 
1647 			mp = pr_iol_newbuf(iolhead, sizeof (*mp));
1648 
1649 			mp->pr_vaddr = (uintptr_t)saddr;
1650 			mp->pr_size = naddr - saddr;
1651 			mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1652 			mp->pr_mflags = 0;
1653 			if (prot & PROT_READ)
1654 				mp->pr_mflags |= MA_READ;
1655 			if (prot & PROT_WRITE)
1656 				mp->pr_mflags |= MA_WRITE;
1657 			if (prot & PROT_EXEC)
1658 				mp->pr_mflags |= MA_EXEC;
1659 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1660 				mp->pr_mflags |= MA_SHARED;
1661 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1662 				mp->pr_mflags |= MA_NORESERVE;
1663 			if (seg->s_ops == &segspt_shmops ||
1664 			    (seg->s_ops == &segvn_ops &&
1665 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1666 				mp->pr_mflags |= MA_ANON;
1667 			if (seg == brkseg)
1668 				mp->pr_mflags |= MA_BREAK;
1669 			else if (seg == stkseg) {
1670 				mp->pr_mflags |= MA_STACK;
1671 				if (reserved) {
1672 					size_t maxstack =
1673 					    ((size_t)p->p_stk_ctl +
1674 					    PAGEOFFSET) & PAGEMASK;
1675 					mp->pr_vaddr =
1676 					    (uintptr_t)prgetstackbase(p) +
1677 					    p->p_stksize - maxstack;
1678 					mp->pr_size = (uintptr_t)naddr -
1679 					    mp->pr_vaddr;
1680 				}
1681 			}
1682 			if (seg->s_ops == &segspt_shmops)
1683 				mp->pr_mflags |= MA_ISM | MA_SHM;
1684 			mp->pr_pagesize = PAGESIZE;
1685 
1686 			/*
1687 			 * Manufacture a filename for the "object" directory.
1688 			 */
1689 			vattr.va_mask = AT_FSID|AT_NODEID;
1690 			if (seg->s_ops == &segvn_ops &&
1691 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1692 			    vp != NULL && vp->v_type == VREG &&
1693 			    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
1694 				if (vp == p->p_exec)
1695 					(void) strcpy(mp->pr_mapname, "a.out");
1696 				else
1697 					pr_object_name(mp->pr_mapname,
1698 					    vp, &vattr);
1699 			}
1700 
1701 			/*
1702 			 * Get the SysV shared memory id, if any.
1703 			 */
1704 			if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1705 			    (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1706 			    SHMID_NONE) {
1707 				if (mp->pr_shmid == SHMID_FREE)
1708 					mp->pr_shmid = -1;
1709 
1710 				mp->pr_mflags |= MA_SHM;
1711 			} else {
1712 				mp->pr_shmid = -1;
1713 			}
1714 		}
1715 		ASSERT(tmp == NULL);
1716 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1717 
1718 	return (0);
1719 }
1720 
1721 #ifdef _SYSCALL32_IMPL
1722 int
1723 prgetmap32(proc_t *p, int reserved, list_t *iolhead)
1724 {
1725 	struct as *as = p->p_as;
1726 	prmap32_t *mp;
1727 	struct seg *seg;
1728 	struct seg *brkseg, *stkseg;
1729 	struct vnode *vp;
1730 	struct vattr vattr;
1731 	uint_t prot;
1732 
1733 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1734 
1735 	/*
1736 	 * Request an initial buffer size that doesn't waste memory
1737 	 * if the address space has only a small number of segments.
1738 	 */
1739 	pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
1740 
1741 	if ((seg = AS_SEGFIRST(as)) == NULL)
1742 		return (0);
1743 
1744 	brkseg = break_seg(p);
1745 	stkseg = as_segat(as, prgetstackbase(p));
1746 
1747 	do {
1748 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved);
1749 		caddr_t saddr, naddr;
1750 		void *tmp = NULL;
1751 
1752 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1753 			prot = pr_getprot(seg, reserved, &tmp,
1754 			    &saddr, &naddr, eaddr);
1755 			if (saddr == naddr)
1756 				continue;
1757 
1758 			mp = pr_iol_newbuf(iolhead, sizeof (*mp));
1759 
1760 			mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
1761 			mp->pr_size = (size32_t)(naddr - saddr);
1762 			mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1763 			mp->pr_mflags = 0;
1764 			if (prot & PROT_READ)
1765 				mp->pr_mflags |= MA_READ;
1766 			if (prot & PROT_WRITE)
1767 				mp->pr_mflags |= MA_WRITE;
1768 			if (prot & PROT_EXEC)
1769 				mp->pr_mflags |= MA_EXEC;
1770 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1771 				mp->pr_mflags |= MA_SHARED;
1772 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1773 				mp->pr_mflags |= MA_NORESERVE;
1774 			if (seg->s_ops == &segspt_shmops ||
1775 			    (seg->s_ops == &segvn_ops &&
1776 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1777 				mp->pr_mflags |= MA_ANON;
1778 			if (seg == brkseg)
1779 				mp->pr_mflags |= MA_BREAK;
1780 			else if (seg == stkseg) {
1781 				mp->pr_mflags |= MA_STACK;
1782 				if (reserved) {
1783 					size_t maxstack =
1784 					    ((size_t)p->p_stk_ctl +
1785 					    PAGEOFFSET) & PAGEMASK;
1786 					uintptr_t vaddr =
1787 					    (uintptr_t)prgetstackbase(p) +
1788 					    p->p_stksize - maxstack;
1789 					mp->pr_vaddr = (caddr32_t)vaddr;
1790 					mp->pr_size = (size32_t)
1791 					    ((uintptr_t)naddr - vaddr);
1792 				}
1793 			}
1794 			if (seg->s_ops == &segspt_shmops)
1795 				mp->pr_mflags |= MA_ISM | MA_SHM;
1796 			mp->pr_pagesize = PAGESIZE;
1797 
1798 			/*
1799 			 * Manufacture a filename for the "object" directory.
1800 			 */
1801 			vattr.va_mask = AT_FSID|AT_NODEID;
1802 			if (seg->s_ops == &segvn_ops &&
1803 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
1804 			    vp != NULL && vp->v_type == VREG &&
1805 			    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
1806 				if (vp == p->p_exec)
1807 					(void) strcpy(mp->pr_mapname, "a.out");
1808 				else
1809 					pr_object_name(mp->pr_mapname,
1810 					    vp, &vattr);
1811 			}
1812 
1813 			/*
1814 			 * Get the SysV shared memory id, if any.
1815 			 */
1816 			if ((mp->pr_mflags & MA_SHARED) && p->p_segacct &&
1817 			    (mp->pr_shmid = shmgetid(p, seg->s_base)) !=
1818 			    SHMID_NONE) {
1819 				if (mp->pr_shmid == SHMID_FREE)
1820 					mp->pr_shmid = -1;
1821 
1822 				mp->pr_mflags |= MA_SHM;
1823 			} else {
1824 				mp->pr_shmid = -1;
1825 			}
1826 		}
1827 		ASSERT(tmp == NULL);
1828 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1829 
1830 	return (0);
1831 }
1832 #endif	/* _SYSCALL32_IMPL */
1833 
1834 /*
1835  * Return the size of the /proc page data file.
1836  */
1837 size_t
1838 prpdsize(struct as *as)
1839 {
1840 	struct seg *seg;
1841 	size_t size;
1842 
1843 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1844 
1845 	if ((seg = AS_SEGFIRST(as)) == NULL)
1846 		return (0);
1847 
1848 	size = sizeof (prpageheader_t);
1849 	do {
1850 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1851 		caddr_t saddr, naddr;
1852 		void *tmp = NULL;
1853 		size_t npage;
1854 
1855 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1856 			(void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1857 			if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1858 				size += sizeof (prasmap_t) + round8(npage);
1859 		}
1860 		ASSERT(tmp == NULL);
1861 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1862 
1863 	return (size);
1864 }
1865 
1866 #ifdef _SYSCALL32_IMPL
1867 size_t
1868 prpdsize32(struct as *as)
1869 {
1870 	struct seg *seg;
1871 	size_t size;
1872 
1873 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
1874 
1875 	if ((seg = AS_SEGFIRST(as)) == NULL)
1876 		return (0);
1877 
1878 	size = sizeof (prpageheader32_t);
1879 	do {
1880 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1881 		caddr_t saddr, naddr;
1882 		void *tmp = NULL;
1883 		size_t npage;
1884 
1885 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1886 			(void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1887 			if ((npage = (naddr - saddr) / PAGESIZE) != 0)
1888 				size += sizeof (prasmap32_t) + round8(npage);
1889 		}
1890 		ASSERT(tmp == NULL);
1891 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
1892 
1893 	return (size);
1894 }
1895 #endif	/* _SYSCALL32_IMPL */
1896 
1897 /*
1898  * Read page data information.
1899  */
1900 int
1901 prpdread(proc_t *p, uint_t hatid, struct uio *uiop)
1902 {
1903 	struct as *as = p->p_as;
1904 	caddr_t buf;
1905 	size_t size;
1906 	prpageheader_t *php;
1907 	prasmap_t *pmp;
1908 	struct seg *seg;
1909 	int error;
1910 
1911 again:
1912 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1913 
1914 	if ((seg = AS_SEGFIRST(as)) == NULL) {
1915 		AS_LOCK_EXIT(as, &as->a_lock);
1916 		return (0);
1917 	}
1918 	size = prpdsize(as);
1919 	if (uiop->uio_resid < size) {
1920 		AS_LOCK_EXIT(as, &as->a_lock);
1921 		return (E2BIG);
1922 	}
1923 
1924 	buf = kmem_zalloc(size, KM_SLEEP);
1925 	php = (prpageheader_t *)buf;
1926 	pmp = (prasmap_t *)(buf + sizeof (prpageheader_t));
1927 
1928 	hrt2ts(gethrtime(), &php->pr_tstamp);
1929 	php->pr_nmap = 0;
1930 	php->pr_npage = 0;
1931 	do {
1932 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1933 		caddr_t saddr, naddr;
1934 		void *tmp = NULL;
1935 
1936 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1937 			struct vnode *vp;
1938 			struct vattr vattr;
1939 			size_t len;
1940 			size_t npage;
1941 			uint_t prot;
1942 			uintptr_t next;
1943 
1944 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1945 			if ((len = (size_t)(naddr - saddr)) == 0)
1946 				continue;
1947 			npage = len / PAGESIZE;
1948 			next = (uintptr_t)(pmp + 1) + round8(npage);
1949 			/*
1950 			 * It's possible that the address space can change
1951 			 * subtlely even though we're holding as->a_lock
1952 			 * due to the nondeterminism of page_exists() in
1953 			 * the presence of asychronously flushed pages or
1954 			 * mapped files whose sizes are changing.
1955 			 * page_exists() may be called indirectly from
1956 			 * pr_getprot() by a SEGOP_INCORE() routine.
1957 			 * If this happens we need to make sure we don't
1958 			 * overrun the buffer whose size we computed based
1959 			 * on the initial iteration through the segments.
1960 			 * Once we've detected an overflow, we need to clean
1961 			 * up the temporary memory allocated in pr_getprot()
1962 			 * and retry. If there's a pending signal, we return
1963 			 * EINTR so that this thread can be dislodged if
1964 			 * a latent bug causes us to spin indefinitely.
1965 			 */
1966 			if (next > (uintptr_t)buf + size) {
1967 				pr_getprot_done(&tmp);
1968 				AS_LOCK_EXIT(as, &as->a_lock);
1969 
1970 				kmem_free(buf, size);
1971 
1972 				if (ISSIG(curthread, JUSTLOOKING))
1973 					return (EINTR);
1974 
1975 				goto again;
1976 			}
1977 
1978 			php->pr_nmap++;
1979 			php->pr_npage += npage;
1980 			pmp->pr_vaddr = (uintptr_t)saddr;
1981 			pmp->pr_npage = npage;
1982 			pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
1983 			pmp->pr_mflags = 0;
1984 			if (prot & PROT_READ)
1985 				pmp->pr_mflags |= MA_READ;
1986 			if (prot & PROT_WRITE)
1987 				pmp->pr_mflags |= MA_WRITE;
1988 			if (prot & PROT_EXEC)
1989 				pmp->pr_mflags |= MA_EXEC;
1990 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
1991 				pmp->pr_mflags |= MA_SHARED;
1992 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
1993 				pmp->pr_mflags |= MA_NORESERVE;
1994 			if (seg->s_ops == &segspt_shmops ||
1995 			    (seg->s_ops == &segvn_ops &&
1996 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
1997 				pmp->pr_mflags |= MA_ANON;
1998 			if (seg->s_ops == &segspt_shmops)
1999 				pmp->pr_mflags |= MA_ISM | MA_SHM;
2000 			pmp->pr_pagesize = PAGESIZE;
2001 			/*
2002 			 * Manufacture a filename for the "object" directory.
2003 			 */
2004 			vattr.va_mask = AT_FSID|AT_NODEID;
2005 			if (seg->s_ops == &segvn_ops &&
2006 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
2007 			    vp != NULL && vp->v_type == VREG &&
2008 			    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
2009 				if (vp == p->p_exec)
2010 					(void) strcpy(pmp->pr_mapname, "a.out");
2011 				else
2012 					pr_object_name(pmp->pr_mapname,
2013 					    vp, &vattr);
2014 			}
2015 
2016 			/*
2017 			 * Get the SysV shared memory id, if any.
2018 			 */
2019 			if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2020 			    (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2021 			    SHMID_NONE) {
2022 				if (pmp->pr_shmid == SHMID_FREE)
2023 					pmp->pr_shmid = -1;
2024 
2025 				pmp->pr_mflags |= MA_SHM;
2026 			} else {
2027 				pmp->pr_shmid = -1;
2028 			}
2029 
2030 			hat_getstat(as, saddr, len, hatid,
2031 			    (char *)(pmp + 1), HAT_SYNC_ZERORM);
2032 			pmp = (prasmap_t *)next;
2033 		}
2034 		ASSERT(tmp == NULL);
2035 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2036 
2037 	AS_LOCK_EXIT(as, &as->a_lock);
2038 
2039 	ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2040 	error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2041 	kmem_free(buf, size);
2042 
2043 	return (error);
2044 }
2045 
2046 #ifdef _SYSCALL32_IMPL
2047 int
2048 prpdread32(proc_t *p, uint_t hatid, struct uio *uiop)
2049 {
2050 	struct as *as = p->p_as;
2051 	caddr_t buf;
2052 	size_t size;
2053 	prpageheader32_t *php;
2054 	prasmap32_t *pmp;
2055 	struct seg *seg;
2056 	int error;
2057 
2058 again:
2059 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2060 
2061 	if ((seg = AS_SEGFIRST(as)) == NULL) {
2062 		AS_LOCK_EXIT(as, &as->a_lock);
2063 		return (0);
2064 	}
2065 	size = prpdsize32(as);
2066 	if (uiop->uio_resid < size) {
2067 		AS_LOCK_EXIT(as, &as->a_lock);
2068 		return (E2BIG);
2069 	}
2070 
2071 	buf = kmem_zalloc(size, KM_SLEEP);
2072 	php = (prpageheader32_t *)buf;
2073 	pmp = (prasmap32_t *)(buf + sizeof (prpageheader32_t));
2074 
2075 	hrt2ts32(gethrtime(), &php->pr_tstamp);
2076 	php->pr_nmap = 0;
2077 	php->pr_npage = 0;
2078 	do {
2079 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
2080 		caddr_t saddr, naddr;
2081 		void *tmp = NULL;
2082 
2083 		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
2084 			struct vnode *vp;
2085 			struct vattr vattr;
2086 			size_t len;
2087 			size_t npage;
2088 			uint_t prot;
2089 			uintptr_t next;
2090 
2091 			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
2092 			if ((len = (size_t)(naddr - saddr)) == 0)
2093 				continue;
2094 			npage = len / PAGESIZE;
2095 			next = (uintptr_t)(pmp + 1) + round8(npage);
2096 			/*
2097 			 * It's possible that the address space can change
2098 			 * subtlely even though we're holding as->a_lock
2099 			 * due to the nondeterminism of page_exists() in
2100 			 * the presence of asychronously flushed pages or
2101 			 * mapped files whose sizes are changing.
2102 			 * page_exists() may be called indirectly from
2103 			 * pr_getprot() by a SEGOP_INCORE() routine.
2104 			 * If this happens we need to make sure we don't
2105 			 * overrun the buffer whose size we computed based
2106 			 * on the initial iteration through the segments.
2107 			 * Once we've detected an overflow, we need to clean
2108 			 * up the temporary memory allocated in pr_getprot()
2109 			 * and retry. If there's a pending signal, we return
2110 			 * EINTR so that this thread can be dislodged if
2111 			 * a latent bug causes us to spin indefinitely.
2112 			 */
2113 			if (next > (uintptr_t)buf + size) {
2114 				pr_getprot_done(&tmp);
2115 				AS_LOCK_EXIT(as, &as->a_lock);
2116 
2117 				kmem_free(buf, size);
2118 
2119 				if (ISSIG(curthread, JUSTLOOKING))
2120 					return (EINTR);
2121 
2122 				goto again;
2123 			}
2124 
2125 			php->pr_nmap++;
2126 			php->pr_npage += npage;
2127 			pmp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
2128 			pmp->pr_npage = (size32_t)npage;
2129 			pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
2130 			pmp->pr_mflags = 0;
2131 			if (prot & PROT_READ)
2132 				pmp->pr_mflags |= MA_READ;
2133 			if (prot & PROT_WRITE)
2134 				pmp->pr_mflags |= MA_WRITE;
2135 			if (prot & PROT_EXEC)
2136 				pmp->pr_mflags |= MA_EXEC;
2137 			if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
2138 				pmp->pr_mflags |= MA_SHARED;
2139 			if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
2140 				pmp->pr_mflags |= MA_NORESERVE;
2141 			if (seg->s_ops == &segspt_shmops ||
2142 			    (seg->s_ops == &segvn_ops &&
2143 			    (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL)))
2144 				pmp->pr_mflags |= MA_ANON;
2145 			if (seg->s_ops == &segspt_shmops)
2146 				pmp->pr_mflags |= MA_ISM | MA_SHM;
2147 			pmp->pr_pagesize = PAGESIZE;
2148 			/*
2149 			 * Manufacture a filename for the "object" directory.
2150 			 */
2151 			vattr.va_mask = AT_FSID|AT_NODEID;
2152 			if (seg->s_ops == &segvn_ops &&
2153 			    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
2154 			    vp != NULL && vp->v_type == VREG &&
2155 			    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
2156 				if (vp == p->p_exec)
2157 					(void) strcpy(pmp->pr_mapname, "a.out");
2158 				else
2159 					pr_object_name(pmp->pr_mapname,
2160 					    vp, &vattr);
2161 			}
2162 
2163 			/*
2164 			 * Get the SysV shared memory id, if any.
2165 			 */
2166 			if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct &&
2167 			    (pmp->pr_shmid = shmgetid(p, seg->s_base)) !=
2168 			    SHMID_NONE) {
2169 				if (pmp->pr_shmid == SHMID_FREE)
2170 					pmp->pr_shmid = -1;
2171 
2172 				pmp->pr_mflags |= MA_SHM;
2173 			} else {
2174 				pmp->pr_shmid = -1;
2175 			}
2176 
2177 			hat_getstat(as, saddr, len, hatid,
2178 			    (char *)(pmp + 1), HAT_SYNC_ZERORM);
2179 			pmp = (prasmap32_t *)next;
2180 		}
2181 		ASSERT(tmp == NULL);
2182 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2183 
2184 	AS_LOCK_EXIT(as, &as->a_lock);
2185 
2186 	ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size);
2187 	error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop);
2188 	kmem_free(buf, size);
2189 
2190 	return (error);
2191 }
2192 #endif	/* _SYSCALL32_IMPL */
2193 
2194 ushort_t
2195 prgetpctcpu(uint64_t pct)
2196 {
2197 	/*
2198 	 * The value returned will be relevant in the zone of the examiner,
2199 	 * which may not be the same as the zone which performed the procfs
2200 	 * mount.
2201 	 */
2202 	int nonline = zone_ncpus_online_get(curproc->p_zone);
2203 
2204 	/*
2205 	 * Prorate over online cpus so we don't exceed 100%
2206 	 */
2207 	if (nonline > 1)
2208 		pct /= nonline;
2209 	pct >>= 16;		/* convert to 16-bit scaled integer */
2210 	if (pct > 0x8000)	/* might happen, due to rounding */
2211 		pct = 0x8000;
2212 	return ((ushort_t)pct);
2213 }
2214 
2215 /*
2216  * Return information used by ps(1).
2217  */
2218 void
2219 prgetpsinfo(proc_t *p, psinfo_t *psp)
2220 {
2221 	kthread_t *t;
2222 	struct cred *cred;
2223 	hrtime_t hrutime, hrstime;
2224 
2225 	ASSERT(MUTEX_HELD(&p->p_lock));
2226 
2227 	if ((t = prchoose(p)) == NULL)	/* returns locked thread */
2228 		bzero(psp, sizeof (*psp));
2229 	else {
2230 		thread_unlock(t);
2231 		bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2232 	}
2233 
2234 	/*
2235 	 * only export SSYS and SMSACCT; everything else is off-limits to
2236 	 * userland apps.
2237 	 */
2238 	psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2239 	psp->pr_nlwp = p->p_lwpcnt;
2240 	psp->pr_nzomb = p->p_zombcnt;
2241 	mutex_enter(&p->p_crlock);
2242 	cred = p->p_cred;
2243 	psp->pr_uid = crgetruid(cred);
2244 	psp->pr_euid = crgetuid(cred);
2245 	psp->pr_gid = crgetrgid(cred);
2246 	psp->pr_egid = crgetgid(cred);
2247 	mutex_exit(&p->p_crlock);
2248 	psp->pr_pid = p->p_pid;
2249 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2250 	    (p->p_flag & SZONETOP)) {
2251 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2252 		/*
2253 		 * Inside local zones, fake zsched's pid as parent pids for
2254 		 * processes which reference processes outside of the zone.
2255 		 */
2256 		psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2257 	} else {
2258 		psp->pr_ppid = p->p_ppid;
2259 	}
2260 	psp->pr_pgid = p->p_pgrp;
2261 	psp->pr_sid = p->p_sessp->s_sid;
2262 	psp->pr_taskid = p->p_task->tk_tkid;
2263 	psp->pr_projid = p->p_task->tk_proj->kpj_id;
2264 	psp->pr_poolid = p->p_pool->pool_id;
2265 	psp->pr_zoneid = p->p_zone->zone_id;
2266 	if ((psp->pr_contract = PRCTID(p)) == 0)
2267 		psp->pr_contract = -1;
2268 	psp->pr_addr = (uintptr_t)prgetpsaddr(p);
2269 	switch (p->p_model) {
2270 	case DATAMODEL_ILP32:
2271 		psp->pr_dmodel = PR_MODEL_ILP32;
2272 		break;
2273 	case DATAMODEL_LP64:
2274 		psp->pr_dmodel = PR_MODEL_LP64;
2275 		break;
2276 	}
2277 	hrutime = mstate_aggr_state(p, LMS_USER);
2278 	hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2279 	hrt2ts((hrutime + hrstime), &psp->pr_time);
2280 	TICK_TO_TIMESTRUC(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2281 
2282 	if (t == NULL) {
2283 		int wcode = p->p_wcode;		/* must be atomic read */
2284 
2285 		if (wcode)
2286 			psp->pr_wstat = wstat(wcode, p->p_wdata);
2287 		psp->pr_ttydev = PRNODEV;
2288 		psp->pr_lwp.pr_state = SZOMB;
2289 		psp->pr_lwp.pr_sname = 'Z';
2290 		psp->pr_lwp.pr_bindpro = PBIND_NONE;
2291 		psp->pr_lwp.pr_bindpset = PS_NONE;
2292 	} else {
2293 		user_t *up = PTOU(p);
2294 		struct as *as;
2295 		dev_t d;
2296 		extern dev_t rwsconsdev, rconsdev, uconsdev;
2297 
2298 		d = cttydev(p);
2299 		/*
2300 		 * If the controlling terminal is the real
2301 		 * or workstation console device, map to what the
2302 		 * user thinks is the console device. Handle case when
2303 		 * rwsconsdev or rconsdev is set to NODEV for Starfire.
2304 		 */
2305 		if ((d == rwsconsdev || d == rconsdev) && d != NODEV)
2306 			d = uconsdev;
2307 		psp->pr_ttydev = (d == NODEV) ? PRNODEV : d;
2308 		psp->pr_start = up->u_start;
2309 		bcopy(up->u_comm, psp->pr_fname,
2310 		    MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2311 		bcopy(up->u_psargs, psp->pr_psargs,
2312 		    MIN(PRARGSZ-1, PSARGSZ));
2313 		psp->pr_argc = up->u_argc;
2314 		psp->pr_argv = up->u_argv;
2315 		psp->pr_envp = up->u_envp;
2316 
2317 		/* get the chosen lwp's lwpsinfo */
2318 		prgetlwpsinfo(t, &psp->pr_lwp);
2319 
2320 		/* compute %cpu for the process */
2321 		if (p->p_lwpcnt == 1)
2322 			psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2323 		else {
2324 			uint64_t pct = 0;
2325 			hrtime_t cur_time = gethrtime_unscaled();
2326 
2327 			t = p->p_tlist;
2328 			do {
2329 				pct += cpu_update_pct(t, cur_time);
2330 			} while ((t = t->t_forw) != p->p_tlist);
2331 
2332 			psp->pr_pctcpu = prgetpctcpu(pct);
2333 		}
2334 		if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2335 			psp->pr_size = 0;
2336 			psp->pr_rssize = 0;
2337 		} else {
2338 			mutex_exit(&p->p_lock);
2339 			AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2340 			psp->pr_size = btopr(as->a_resvsize) *
2341 			    (PAGESIZE / 1024);
2342 			psp->pr_rssize = rm_asrss(as) * (PAGESIZE / 1024);
2343 			psp->pr_pctmem = rm_pctmemory(as);
2344 			AS_LOCK_EXIT(as, &as->a_lock);
2345 			mutex_enter(&p->p_lock);
2346 		}
2347 	}
2348 }
2349 
2350 #ifdef _SYSCALL32_IMPL
2351 void
2352 prgetpsinfo32(proc_t *p, psinfo32_t *psp)
2353 {
2354 	kthread_t *t;
2355 	struct cred *cred;
2356 	hrtime_t hrutime, hrstime;
2357 
2358 	ASSERT(MUTEX_HELD(&p->p_lock));
2359 
2360 	if ((t = prchoose(p)) == NULL)	/* returns locked thread */
2361 		bzero(psp, sizeof (*psp));
2362 	else {
2363 		thread_unlock(t);
2364 		bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp));
2365 	}
2366 
2367 	/*
2368 	 * only export SSYS and SMSACCT; everything else is off-limits to
2369 	 * userland apps.
2370 	 */
2371 	psp->pr_flag = p->p_flag & (SSYS | SMSACCT);
2372 	psp->pr_nlwp = p->p_lwpcnt;
2373 	psp->pr_nzomb = p->p_zombcnt;
2374 	mutex_enter(&p->p_crlock);
2375 	cred = p->p_cred;
2376 	psp->pr_uid = crgetruid(cred);
2377 	psp->pr_euid = crgetuid(cred);
2378 	psp->pr_gid = crgetrgid(cred);
2379 	psp->pr_egid = crgetgid(cred);
2380 	mutex_exit(&p->p_crlock);
2381 	psp->pr_pid = p->p_pid;
2382 	if (curproc->p_zone->zone_id != GLOBAL_ZONEID &&
2383 	    (p->p_flag & SZONETOP)) {
2384 		ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID);
2385 		/*
2386 		 * Inside local zones, fake zsched's pid as parent pids for
2387 		 * processes which reference processes outside of the zone.
2388 		 */
2389 		psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid;
2390 	} else {
2391 		psp->pr_ppid = p->p_ppid;
2392 	}
2393 	psp->pr_pgid = p->p_pgrp;
2394 	psp->pr_sid = p->p_sessp->s_sid;
2395 	psp->pr_taskid = p->p_task->tk_tkid;
2396 	psp->pr_projid = p->p_task->tk_proj->kpj_id;
2397 	psp->pr_poolid = p->p_pool->pool_id;
2398 	psp->pr_zoneid = p->p_zone->zone_id;
2399 	if ((psp->pr_contract = PRCTID(p)) == 0)
2400 		psp->pr_contract = -1;
2401 	psp->pr_addr = 0;	/* cannot represent 64-bit addr in 32 bits */
2402 	switch (p->p_model) {
2403 	case DATAMODEL_ILP32:
2404 		psp->pr_dmodel = PR_MODEL_ILP32;
2405 		break;
2406 	case DATAMODEL_LP64:
2407 		psp->pr_dmodel = PR_MODEL_LP64;
2408 		break;
2409 	}
2410 	hrutime = mstate_aggr_state(p, LMS_USER);
2411 	hrstime = mstate_aggr_state(p, LMS_SYSTEM);
2412 	hrt2ts32(hrutime + hrstime, &psp->pr_time);
2413 	TICK_TO_TIMESTRUC32(p->p_cutime + p->p_cstime, &psp->pr_ctime);
2414 
2415 	if (t == NULL) {
2416 		extern int wstat(int, int);	/* needs a header file */
2417 		int wcode = p->p_wcode;		/* must be atomic read */
2418 
2419 		if (wcode)
2420 			psp->pr_wstat = wstat(wcode, p->p_wdata);
2421 		psp->pr_ttydev = PRNODEV32;
2422 		psp->pr_lwp.pr_state = SZOMB;
2423 		psp->pr_lwp.pr_sname = 'Z';
2424 	} else {
2425 		user_t *up = PTOU(p);
2426 		struct as *as;
2427 		dev_t d;
2428 		extern dev_t rwsconsdev, rconsdev, uconsdev;
2429 
2430 		d = cttydev(p);
2431 		/*
2432 		 * If the controlling terminal is the real
2433 		 * or workstation console device, map to what the
2434 		 * user thinks is the console device. Handle case when
2435 		 * rwsconsdev or rconsdev is set to NODEV for Starfire.
2436 		 */
2437 		if ((d == rwsconsdev || d == rconsdev) && d != NODEV)
2438 			d = uconsdev;
2439 		(void) cmpldev(&psp->pr_ttydev, d);
2440 		TIMESPEC_TO_TIMESPEC32(&psp->pr_start, &up->u_start);
2441 		bcopy(up->u_comm, psp->pr_fname,
2442 		    MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1));
2443 		bcopy(up->u_psargs, psp->pr_psargs,
2444 		    MIN(PRARGSZ-1, PSARGSZ));
2445 		psp->pr_argc = up->u_argc;
2446 		psp->pr_argv = (caddr32_t)up->u_argv;
2447 		psp->pr_envp = (caddr32_t)up->u_envp;
2448 
2449 		/* get the chosen lwp's lwpsinfo */
2450 		prgetlwpsinfo32(t, &psp->pr_lwp);
2451 
2452 		/* compute %cpu for the process */
2453 		if (p->p_lwpcnt == 1)
2454 			psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu;
2455 		else {
2456 			uint64_t pct = 0;
2457 			hrtime_t cur_time;
2458 
2459 			t = p->p_tlist;
2460 			cur_time = gethrtime_unscaled();
2461 			do {
2462 				pct += cpu_update_pct(t, cur_time);
2463 			} while ((t = t->t_forw) != p->p_tlist);
2464 
2465 			psp->pr_pctcpu = prgetpctcpu(pct);
2466 		}
2467 		if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) {
2468 			psp->pr_size = 0;
2469 			psp->pr_rssize = 0;
2470 		} else {
2471 			mutex_exit(&p->p_lock);
2472 			AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2473 			psp->pr_size = (size32_t)
2474 			    (btopr(as->a_resvsize) * (PAGESIZE / 1024));
2475 			psp->pr_rssize = (size32_t)
2476 			    (rm_asrss(as) * (PAGESIZE / 1024));
2477 			psp->pr_pctmem = rm_pctmemory(as);
2478 			AS_LOCK_EXIT(as, &as->a_lock);
2479 			mutex_enter(&p->p_lock);
2480 		}
2481 	}
2482 
2483 	/*
2484 	 * If we are looking at an LP64 process, zero out
2485 	 * the fields that cannot be represented in ILP32.
2486 	 */
2487 	if (p->p_model != DATAMODEL_ILP32) {
2488 		psp->pr_size = 0;
2489 		psp->pr_rssize = 0;
2490 		psp->pr_argv = 0;
2491 		psp->pr_envp = 0;
2492 	}
2493 }
2494 #endif	/* _SYSCALL32_IMPL */
2495 
2496 void
2497 prgetlwpsinfo(kthread_t *t, lwpsinfo_t *psp)
2498 {
2499 	klwp_t *lwp = ttolwp(t);
2500 	sobj_ops_t *sobj;
2501 	char c, state;
2502 	uint64_t pct;
2503 	int retval, niceval;
2504 	hrtime_t hrutime, hrstime;
2505 
2506 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
2507 
2508 	bzero(psp, sizeof (*psp));
2509 
2510 	psp->pr_flag = 0;	/* lwpsinfo_t.pr_flag is deprecated */
2511 	psp->pr_lwpid = t->t_tid;
2512 	psp->pr_addr = (uintptr_t)t;
2513 	psp->pr_wchan = (uintptr_t)t->t_wchan;
2514 
2515 	/* map the thread state enum into a process state enum */
2516 	state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2517 	switch (state) {
2518 	case TS_SLEEP:		state = SSLEEP;		c = 'S';	break;
2519 	case TS_RUN:		state = SRUN;		c = 'R';	break;
2520 	case TS_ONPROC:		state = SONPROC;	c = 'O';	break;
2521 	case TS_ZOMB:		state = SZOMB;		c = 'Z';	break;
2522 	case TS_STOPPED:	state = SSTOP;		c = 'T';	break;
2523 	case TS_WAIT:		state = SWAIT;		c = 'W';	break;
2524 	default:		state = 0;		c = '?';	break;
2525 	}
2526 	psp->pr_state = state;
2527 	psp->pr_sname = c;
2528 	if ((sobj = t->t_sobj_ops) != NULL)
2529 		psp->pr_stype = SOBJ_TYPE(sobj);
2530 	retval = CL_DONICE(t, NULL, 0, &niceval);
2531 	if (retval == 0) {
2532 		psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2533 		psp->pr_nice = niceval + NZERO;
2534 	}
2535 	psp->pr_syscall = t->t_sysnum;
2536 	psp->pr_pri = t->t_pri;
2537 	psp->pr_start.tv_sec = t->t_start;
2538 	psp->pr_start.tv_nsec = 0L;
2539 	hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2540 	scalehrtime(&hrutime);
2541 	hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2542 	    lwp->lwp_mstate.ms_acct[LMS_TRAP];
2543 	scalehrtime(&hrstime);
2544 	hrt2ts(hrutime + hrstime, &psp->pr_time);
2545 	/* compute %cpu for the lwp */
2546 	pct = cpu_update_pct(t, gethrtime_unscaled());
2547 	psp->pr_pctcpu = prgetpctcpu(pct);
2548 	psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15;	/* [0..99] */
2549 	if (psp->pr_cpu > 99)
2550 		psp->pr_cpu = 99;
2551 
2552 	(void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2553 	    sizeof (psp->pr_clname) - 1);
2554 	bzero(psp->pr_name, sizeof (psp->pr_name));	/* XXX ??? */
2555 	psp->pr_onpro = t->t_cpu->cpu_id;
2556 	psp->pr_bindpro = t->t_bind_cpu;
2557 	psp->pr_bindpset = t->t_bind_pset;
2558 	psp->pr_lgrp = t->t_lpl->lpl_lgrpid;
2559 }
2560 
2561 #ifdef _SYSCALL32_IMPL
2562 void
2563 prgetlwpsinfo32(kthread_t *t, lwpsinfo32_t *psp)
2564 {
2565 	proc_t *p = ttoproc(t);
2566 	klwp_t *lwp = ttolwp(t);
2567 	sobj_ops_t *sobj;
2568 	char c, state;
2569 	uint64_t pct;
2570 	int retval, niceval;
2571 	hrtime_t hrutime, hrstime;
2572 
2573 	ASSERT(MUTEX_HELD(&p->p_lock));
2574 
2575 	bzero(psp, sizeof (*psp));
2576 
2577 	psp->pr_flag = 0;	/* lwpsinfo_t.pr_flag is deprecated */
2578 	psp->pr_lwpid = t->t_tid;
2579 	psp->pr_addr = 0;	/* cannot represent 64-bit addr in 32 bits */
2580 	psp->pr_wchan = 0;	/* cannot represent 64-bit addr in 32 bits */
2581 
2582 	/* map the thread state enum into a process state enum */
2583 	state = VSTOPPED(t) ? TS_STOPPED : t->t_state;
2584 	switch (state) {
2585 	case TS_SLEEP:		state = SSLEEP;		c = 'S';	break;
2586 	case TS_RUN:		state = SRUN;		c = 'R';	break;
2587 	case TS_ONPROC:		state = SONPROC;	c = 'O';	break;
2588 	case TS_ZOMB:		state = SZOMB;		c = 'Z';	break;
2589 	case TS_STOPPED:	state = SSTOP;		c = 'T';	break;
2590 	case TS_WAIT:		state = SWAIT;		c = 'W';	break;
2591 	default:		state = 0;		c = '?';	break;
2592 	}
2593 	psp->pr_state = state;
2594 	psp->pr_sname = c;
2595 	if ((sobj = t->t_sobj_ops) != NULL)
2596 		psp->pr_stype = SOBJ_TYPE(sobj);
2597 	retval = CL_DONICE(t, NULL, 0, &niceval);
2598 	if (retval == 0) {
2599 		psp->pr_oldpri = v.v_maxsyspri - t->t_pri;
2600 		psp->pr_nice = niceval + NZERO;
2601 	} else {
2602 		psp->pr_oldpri = 0;
2603 		psp->pr_nice = 0;
2604 	}
2605 	psp->pr_syscall = t->t_sysnum;
2606 	psp->pr_pri = t->t_pri;
2607 	psp->pr_start.tv_sec = (time32_t)t->t_start;
2608 	psp->pr_start.tv_nsec = 0L;
2609 	hrutime = lwp->lwp_mstate.ms_acct[LMS_USER];
2610 	scalehrtime(&hrutime);
2611 	hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] +
2612 	    lwp->lwp_mstate.ms_acct[LMS_TRAP];
2613 	scalehrtime(&hrstime);
2614 	hrt2ts32(hrutime + hrstime, &psp->pr_time);
2615 	/* compute %cpu for the lwp */
2616 	pct = cpu_update_pct(t, gethrtime_unscaled());
2617 	psp->pr_pctcpu = prgetpctcpu(pct);
2618 	psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15;	/* [0..99] */
2619 	if (psp->pr_cpu > 99)
2620 		psp->pr_cpu = 99;
2621 
2622 	(void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name,
2623 	    sizeof (psp->pr_clname) - 1);
2624 	bzero(psp->pr_name, sizeof (psp->pr_name));	/* XXX ??? */
2625 	psp->pr_onpro = t->t_cpu->cpu_id;
2626 	psp->pr_bindpro = t->t_bind_cpu;
2627 	psp->pr_bindpset = t->t_bind_pset;
2628 	psp->pr_lgrp = t->t_lpl->lpl_lgrpid;
2629 }
2630 #endif	/* _SYSCALL32_IMPL */
2631 
2632 /*
2633  * This used to get called when microstate accounting was disabled but
2634  * microstate information was requested.  Since Microstate accounting is on
2635  * regardless of the proc flags, this simply makes it appear to procfs that
2636  * microstate accounting is on.  This is relatively meaningless since you
2637  * can't turn it off, but this is here for the sake of appearances.
2638  */
2639 
2640 /*ARGSUSED*/
2641 void
2642 estimate_msacct(kthread_t *t, hrtime_t curtime)
2643 {
2644 	proc_t *p;
2645 
2646 	if (t == NULL)
2647 		return;
2648 
2649 	p = ttoproc(t);
2650 	ASSERT(MUTEX_HELD(&p->p_lock));
2651 
2652 	/*
2653 	 * A system process (p0) could be referenced if the thread is
2654 	 * in the process of exiting.  Don't turn on microstate accounting
2655 	 * in that case.
2656 	 */
2657 	if (p->p_flag & SSYS)
2658 		return;
2659 
2660 	/*
2661 	 * Loop through all the LWPs (kernel threads) in the process.
2662 	 */
2663 	t = p->p_tlist;
2664 	do {
2665 		t->t_proc_flag |= TP_MSACCT;
2666 	} while ((t = t->t_forw) != p->p_tlist);
2667 
2668 	p->p_flag |= SMSACCT;			/* set process-wide MSACCT */
2669 }
2670 
2671 /*
2672  * It's not really possible to disable microstate accounting anymore.
2673  * However, this routine simply turns off the ms accounting flags in a process
2674  * This way procfs can still pretend to turn microstate accounting on and
2675  * off for a process, but it actually doesn't do anything.  This is
2676  * a neutered form of preemptive idiot-proofing.
2677  */
2678 void
2679 disable_msacct(proc_t *p)
2680 {
2681 	kthread_t *t;
2682 
2683 	ASSERT(MUTEX_HELD(&p->p_lock));
2684 
2685 	p->p_flag &= ~SMSACCT;		/* clear process-wide MSACCT */
2686 	/*
2687 	 * Loop through all the LWPs (kernel threads) in the process.
2688 	 */
2689 	if ((t = p->p_tlist) != NULL) {
2690 		do {
2691 			/* clear per-thread flag */
2692 			t->t_proc_flag &= ~TP_MSACCT;
2693 		} while ((t = t->t_forw) != p->p_tlist);
2694 	}
2695 }
2696 
2697 /*
2698  * Return resource usage information.
2699  */
2700 void
2701 prgetusage(kthread_t *t, prhusage_t *pup)
2702 {
2703 	klwp_t *lwp = ttolwp(t);
2704 	hrtime_t *mstimep;
2705 	struct mstate *ms = &lwp->lwp_mstate;
2706 	int state;
2707 	int i;
2708 	hrtime_t curtime;
2709 	hrtime_t waitrq;
2710 	hrtime_t tmp1;
2711 
2712 	curtime = gethrtime_unscaled();
2713 
2714 	pup->pr_lwpid	= t->t_tid;
2715 	pup->pr_count	= 1;
2716 	pup->pr_create	= ms->ms_start;
2717 	pup->pr_term    = ms->ms_term;
2718 	scalehrtime(&pup->pr_create);
2719 	scalehrtime(&pup->pr_term);
2720 	if (ms->ms_term == 0) {
2721 		pup->pr_rtime = curtime - ms->ms_start;
2722 		scalehrtime(&pup->pr_rtime);
2723 	} else {
2724 		pup->pr_rtime = ms->ms_term - ms->ms_start;
2725 		scalehrtime(&pup->pr_rtime);
2726 	}
2727 
2728 
2729 	pup->pr_utime    = ms->ms_acct[LMS_USER];
2730 	pup->pr_stime    = ms->ms_acct[LMS_SYSTEM];
2731 	pup->pr_ttime    = ms->ms_acct[LMS_TRAP];
2732 	pup->pr_tftime   = ms->ms_acct[LMS_TFAULT];
2733 	pup->pr_dftime   = ms->ms_acct[LMS_DFAULT];
2734 	pup->pr_kftime   = ms->ms_acct[LMS_KFAULT];
2735 	pup->pr_ltime    = ms->ms_acct[LMS_USER_LOCK];
2736 	pup->pr_slptime  = ms->ms_acct[LMS_SLEEP];
2737 	pup->pr_wtime    = ms->ms_acct[LMS_WAIT_CPU];
2738 	pup->pr_stoptime = ms->ms_acct[LMS_STOPPED];
2739 
2740 	prscaleusage(pup);
2741 
2742 	/*
2743 	 * Adjust for time waiting in the dispatcher queue.
2744 	 */
2745 	waitrq = t->t_waitrq;	/* hopefully atomic */
2746 	if (waitrq != 0) {
2747 		tmp1 = curtime - waitrq;
2748 		scalehrtime(&tmp1);
2749 		pup->pr_wtime += tmp1;
2750 		curtime = waitrq;
2751 	}
2752 
2753 	/*
2754 	 * Adjust for time spent in current microstate.
2755 	 */
2756 	if (ms->ms_state_start > curtime) {
2757 		curtime = gethrtime_unscaled();
2758 	}
2759 
2760 	i = 0;
2761 	do {
2762 		switch (state = t->t_mstate) {
2763 		case LMS_SLEEP:
2764 			/*
2765 			 * Update the timer for the current sleep state.
2766 			 */
2767 			switch (state = ms->ms_prev) {
2768 			case LMS_TFAULT:
2769 			case LMS_DFAULT:
2770 			case LMS_KFAULT:
2771 			case LMS_USER_LOCK:
2772 				break;
2773 			default:
2774 				state = LMS_SLEEP;
2775 				break;
2776 			}
2777 			break;
2778 		case LMS_TFAULT:
2779 		case LMS_DFAULT:
2780 		case LMS_KFAULT:
2781 		case LMS_USER_LOCK:
2782 			state = LMS_SYSTEM;
2783 			break;
2784 		}
2785 		switch (state) {
2786 		case LMS_USER:		mstimep = &pup->pr_utime;	break;
2787 		case LMS_SYSTEM:	mstimep = &pup->pr_stime;	break;
2788 		case LMS_TRAP:		mstimep = &pup->pr_ttime;	break;
2789 		case LMS_TFAULT:	mstimep = &pup->pr_tftime;	break;
2790 		case LMS_DFAULT:	mstimep = &pup->pr_dftime;	break;
2791 		case LMS_KFAULT:	mstimep = &pup->pr_kftime;	break;
2792 		case LMS_USER_LOCK:	mstimep = &pup->pr_ltime;	break;
2793 		case LMS_SLEEP:		mstimep = &pup->pr_slptime;	break;
2794 		case LMS_WAIT_CPU:	mstimep = &pup->pr_wtime;	break;
2795 		case LMS_STOPPED:	mstimep = &pup->pr_stoptime;	break;
2796 		default:		panic("prgetusage: unknown microstate");
2797 		}
2798 		tmp1 = curtime - ms->ms_state_start;
2799 		if (tmp1 < 0) {
2800 			curtime = gethrtime_unscaled();
2801 			i++;
2802 			continue;
2803 		}
2804 		scalehrtime(&tmp1);
2805 	} while (tmp1 < 0 && i < MAX_ITERS_SPIN);
2806 
2807 	*mstimep += tmp1;
2808 
2809 	/* update pup timestamp */
2810 	pup->pr_tstamp = curtime;
2811 	scalehrtime(&pup->pr_tstamp);
2812 
2813 	/*
2814 	 * Resource usage counters.
2815 	 */
2816 	pup->pr_minf  = lwp->lwp_ru.minflt;
2817 	pup->pr_majf  = lwp->lwp_ru.majflt;
2818 	pup->pr_nswap = lwp->lwp_ru.nswap;
2819 	pup->pr_inblk = lwp->lwp_ru.inblock;
2820 	pup->pr_oublk = lwp->lwp_ru.oublock;
2821 	pup->pr_msnd  = lwp->lwp_ru.msgsnd;
2822 	pup->pr_mrcv  = lwp->lwp_ru.msgrcv;
2823 	pup->pr_sigs  = lwp->lwp_ru.nsignals;
2824 	pup->pr_vctx  = lwp->lwp_ru.nvcsw;
2825 	pup->pr_ictx  = lwp->lwp_ru.nivcsw;
2826 	pup->pr_sysc  = lwp->lwp_ru.sysc;
2827 	pup->pr_ioch  = lwp->lwp_ru.ioch;
2828 }
2829 
2830 /*
2831  * Convert ms_acct stats from unscaled high-res time to nanoseconds
2832  */
2833 void
2834 prscaleusage(prhusage_t *usg)
2835 {
2836 	scalehrtime(&usg->pr_utime);
2837 	scalehrtime(&usg->pr_stime);
2838 	scalehrtime(&usg->pr_ttime);
2839 	scalehrtime(&usg->pr_tftime);
2840 	scalehrtime(&usg->pr_dftime);
2841 	scalehrtime(&usg->pr_kftime);
2842 	scalehrtime(&usg->pr_ltime);
2843 	scalehrtime(&usg->pr_slptime);
2844 	scalehrtime(&usg->pr_wtime);
2845 	scalehrtime(&usg->pr_stoptime);
2846 }
2847 
2848 
2849 /*
2850  * Sum resource usage information.
2851  */
2852 void
2853 praddusage(kthread_t *t, prhusage_t *pup)
2854 {
2855 	klwp_t *lwp = ttolwp(t);
2856 	hrtime_t *mstimep;
2857 	struct mstate *ms = &lwp->lwp_mstate;
2858 	int state;
2859 	int i;
2860 	hrtime_t curtime;
2861 	hrtime_t waitrq;
2862 	hrtime_t tmp;
2863 	prhusage_t conv;
2864 
2865 	curtime = gethrtime_unscaled();
2866 
2867 	if (ms->ms_term == 0) {
2868 		tmp = curtime - ms->ms_start;
2869 		scalehrtime(&tmp);
2870 		pup->pr_rtime += tmp;
2871 	} else {
2872 		tmp = ms->ms_term - ms->ms_start;
2873 		scalehrtime(&tmp);
2874 		pup->pr_rtime += tmp;
2875 	}
2876 
2877 	conv.pr_utime = ms->ms_acct[LMS_USER];
2878 	conv.pr_stime = ms->ms_acct[LMS_SYSTEM];
2879 	conv.pr_ttime = ms->ms_acct[LMS_TRAP];
2880 	conv.pr_tftime = ms->ms_acct[LMS_TFAULT];
2881 	conv.pr_dftime = ms->ms_acct[LMS_DFAULT];
2882 	conv.pr_kftime = ms->ms_acct[LMS_KFAULT];
2883 	conv.pr_ltime = ms->ms_acct[LMS_USER_LOCK];
2884 	conv.pr_slptime = ms->ms_acct[LMS_SLEEP];
2885 	conv.pr_wtime = ms->ms_acct[LMS_WAIT_CPU];
2886 	conv.pr_stoptime = ms->ms_acct[LMS_STOPPED];
2887 
2888 	prscaleusage(&conv);
2889 
2890 	pup->pr_utime	+= conv.pr_utime;
2891 	pup->pr_stime	+= conv.pr_stime;
2892 	pup->pr_ttime	+= conv.pr_ttime;
2893 	pup->pr_tftime	+= conv.pr_tftime;
2894 	pup->pr_dftime	+= conv.pr_dftime;
2895 	pup->pr_kftime	+= conv.pr_kftime;
2896 	pup->pr_ltime	+= conv.pr_ltime;
2897 	pup->pr_slptime	+= conv.pr_slptime;
2898 	pup->pr_wtime	+= conv.pr_wtime;
2899 	pup->pr_stoptime += conv.pr_stoptime;
2900 
2901 	/*
2902 	 * Adjust for time waiting in the dispatcher queue.
2903 	 */
2904 	waitrq = t->t_waitrq;	/* hopefully atomic */
2905 	if (waitrq != 0) {
2906 		tmp = curtime - waitrq;
2907 		scalehrtime(&tmp);
2908 		pup->pr_wtime += tmp;
2909 		curtime = waitrq;
2910 	}
2911 
2912 	/*
2913 	 * Adjust for time spent in current microstate.
2914 	 */
2915 	if (ms->ms_state_start > curtime) {
2916 		curtime = gethrtime_unscaled();
2917 	}
2918 
2919 	i = 0;
2920 	do {
2921 		switch (state = t->t_mstate) {
2922 		case LMS_SLEEP:
2923 			/*
2924 			 * Update the timer for the current sleep state.
2925 			 */
2926 			switch (state = ms->ms_prev) {
2927 			case LMS_TFAULT:
2928 			case LMS_DFAULT:
2929 			case LMS_KFAULT:
2930 			case LMS_USER_LOCK:
2931 				break;
2932 			default:
2933 				state = LMS_SLEEP;
2934 				break;
2935 			}
2936 			break;
2937 		case LMS_TFAULT:
2938 		case LMS_DFAULT:
2939 		case LMS_KFAULT:
2940 		case LMS_USER_LOCK:
2941 			state = LMS_SYSTEM;
2942 			break;
2943 		}
2944 		switch (state) {
2945 		case LMS_USER:		mstimep = &pup->pr_utime;	break;
2946 		case LMS_SYSTEM:	mstimep = &pup->pr_stime;	break;
2947 		case LMS_TRAP:		mstimep = &pup->pr_ttime;	break;
2948 		case LMS_TFAULT:	mstimep = &pup->pr_tftime;	break;
2949 		case LMS_DFAULT:	mstimep = &pup->pr_dftime;	break;
2950 		case LMS_KFAULT:	mstimep = &pup->pr_kftime;	break;
2951 		case LMS_USER_LOCK:	mstimep = &pup->pr_ltime;	break;
2952 		case LMS_SLEEP:		mstimep = &pup->pr_slptime;	break;
2953 		case LMS_WAIT_CPU:	mstimep = &pup->pr_wtime;	break;
2954 		case LMS_STOPPED:	mstimep = &pup->pr_stoptime;	break;
2955 		default:		panic("praddusage: unknown microstate");
2956 		}
2957 		tmp = curtime - ms->ms_state_start;
2958 		if (tmp < 0) {
2959 			curtime = gethrtime_unscaled();
2960 			i++;
2961 			continue;
2962 		}
2963 		scalehrtime(&tmp);
2964 	} while (tmp < 0 && i < MAX_ITERS_SPIN);
2965 
2966 	*mstimep += tmp;
2967 
2968 	/* update pup timestamp */
2969 	pup->pr_tstamp = curtime;
2970 	scalehrtime(&pup->pr_tstamp);
2971 
2972 	/*
2973 	 * Resource usage counters.
2974 	 */
2975 	pup->pr_minf  += lwp->lwp_ru.minflt;
2976 	pup->pr_majf  += lwp->lwp_ru.majflt;
2977 	pup->pr_nswap += lwp->lwp_ru.nswap;
2978 	pup->pr_inblk += lwp->lwp_ru.inblock;
2979 	pup->pr_oublk += lwp->lwp_ru.oublock;
2980 	pup->pr_msnd  += lwp->lwp_ru.msgsnd;
2981 	pup->pr_mrcv  += lwp->lwp_ru.msgrcv;
2982 	pup->pr_sigs  += lwp->lwp_ru.nsignals;
2983 	pup->pr_vctx  += lwp->lwp_ru.nvcsw;
2984 	pup->pr_ictx  += lwp->lwp_ru.nivcsw;
2985 	pup->pr_sysc  += lwp->lwp_ru.sysc;
2986 	pup->pr_ioch  += lwp->lwp_ru.ioch;
2987 }
2988 
2989 /*
2990  * Convert a prhusage_t to a prusage_t.
2991  * This means convert each hrtime_t to a timestruc_t
2992  * and copy the count fields uint64_t => ulong_t.
2993  */
2994 void
2995 prcvtusage(prhusage_t *pup, prusage_t *upup)
2996 {
2997 	uint64_t *ullp;
2998 	ulong_t *ulp;
2999 	int i;
3000 
3001 	upup->pr_lwpid = pup->pr_lwpid;
3002 	upup->pr_count = pup->pr_count;
3003 
3004 	hrt2ts(pup->pr_tstamp,	&upup->pr_tstamp);
3005 	hrt2ts(pup->pr_create,	&upup->pr_create);
3006 	hrt2ts(pup->pr_term,	&upup->pr_term);
3007 	hrt2ts(pup->pr_rtime,	&upup->pr_rtime);
3008 	hrt2ts(pup->pr_utime,	&upup->pr_utime);
3009 	hrt2ts(pup->pr_stime,	&upup->pr_stime);
3010 	hrt2ts(pup->pr_ttime,	&upup->pr_ttime);
3011 	hrt2ts(pup->pr_tftime,	&upup->pr_tftime);
3012 	hrt2ts(pup->pr_dftime,	&upup->pr_dftime);
3013 	hrt2ts(pup->pr_kftime,	&upup->pr_kftime);
3014 	hrt2ts(pup->pr_ltime,	&upup->pr_ltime);
3015 	hrt2ts(pup->pr_slptime,	&upup->pr_slptime);
3016 	hrt2ts(pup->pr_wtime,	&upup->pr_wtime);
3017 	hrt2ts(pup->pr_stoptime, &upup->pr_stoptime);
3018 	bzero(upup->filltime, sizeof (upup->filltime));
3019 
3020 	ullp = &pup->pr_minf;
3021 	ulp = &upup->pr_minf;
3022 	for (i = 0; i < 22; i++)
3023 		*ulp++ = (ulong_t)*ullp++;
3024 }
3025 
3026 #ifdef _SYSCALL32_IMPL
3027 void
3028 prcvtusage32(prhusage_t *pup, prusage32_t *upup)
3029 {
3030 	uint64_t *ullp;
3031 	uint32_t *ulp;
3032 	int i;
3033 
3034 	upup->pr_lwpid = pup->pr_lwpid;
3035 	upup->pr_count = pup->pr_count;
3036 
3037 	hrt2ts32(pup->pr_tstamp,	&upup->pr_tstamp);
3038 	hrt2ts32(pup->pr_create,	&upup->pr_create);
3039 	hrt2ts32(pup->pr_term,		&upup->pr_term);
3040 	hrt2ts32(pup->pr_rtime,		&upup->pr_rtime);
3041 	hrt2ts32(pup->pr_utime,		&upup->pr_utime);
3042 	hrt2ts32(pup->pr_stime,		&upup->pr_stime);
3043 	hrt2ts32(pup->pr_ttime,		&upup->pr_ttime);
3044 	hrt2ts32(pup->pr_tftime,	&upup->pr_tftime);
3045 	hrt2ts32(pup->pr_dftime,	&upup->pr_dftime);
3046 	hrt2ts32(pup->pr_kftime,	&upup->pr_kftime);
3047 	hrt2ts32(pup->pr_ltime,		&upup->pr_ltime);
3048 	hrt2ts32(pup->pr_slptime,	&upup->pr_slptime);
3049 	hrt2ts32(pup->pr_wtime,		&upup->pr_wtime);
3050 	hrt2ts32(pup->pr_stoptime,	&upup->pr_stoptime);
3051 	bzero(upup->filltime, sizeof (upup->filltime));
3052 
3053 	ullp = &pup->pr_minf;
3054 	ulp = &upup->pr_minf;
3055 	for (i = 0; i < 22; i++)
3056 		*ulp++ = (uint32_t)*ullp++;
3057 }
3058 #endif	/* _SYSCALL32_IMPL */
3059 
3060 /*
3061  * Determine whether a set is empty.
3062  */
3063 int
3064 setisempty(uint32_t *sp, uint_t n)
3065 {
3066 	while (n--)
3067 		if (*sp++)
3068 			return (0);
3069 	return (1);
3070 }
3071 
3072 /*
3073  * Utility routine for establishing a watched area in the process.
3074  * Keep the list of watched areas sorted by virtual address.
3075  */
3076 int
3077 set_watched_area(proc_t *p, struct watched_area *pwa)
3078 {
3079 	caddr_t vaddr = pwa->wa_vaddr;
3080 	caddr_t eaddr = pwa->wa_eaddr;
3081 	ulong_t flags = pwa->wa_flags;
3082 	struct watched_area *target;
3083 	avl_index_t where;
3084 	int error = 0;
3085 
3086 	/* we must not be holding p->p_lock, but the process must be locked */
3087 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3088 	ASSERT(p->p_proc_flag & P_PR_LOCK);
3089 
3090 	/*
3091 	 * If this is our first watchpoint, enable watchpoints for the process.
3092 	 */
3093 	if (!pr_watch_active(p)) {
3094 		kthread_t *t;
3095 
3096 		mutex_enter(&p->p_lock);
3097 		if ((t = p->p_tlist) != NULL) {
3098 			do {
3099 				watch_enable(t);
3100 			} while ((t = t->t_forw) != p->p_tlist);
3101 		}
3102 		mutex_exit(&p->p_lock);
3103 	}
3104 
3105 	target = pr_find_watched_area(p, pwa, &where);
3106 	if (target != NULL) {
3107 		/*
3108 		 * We discovered an existing, overlapping watched area.
3109 		 * Allow it only if it is an exact match.
3110 		 */
3111 		if (target->wa_vaddr != vaddr ||
3112 		    target->wa_eaddr != eaddr)
3113 			error = EINVAL;
3114 		else if (target->wa_flags != flags) {
3115 			error = set_watched_page(p, vaddr, eaddr,
3116 			    flags, target->wa_flags);
3117 			target->wa_flags = flags;
3118 		}
3119 		kmem_free(pwa, sizeof (struct watched_area));
3120 	} else {
3121 		avl_insert(&p->p_warea, pwa, where);
3122 		error = set_watched_page(p, vaddr, eaddr, flags, 0);
3123 	}
3124 
3125 	return (error);
3126 }
3127 
3128 /*
3129  * Utility routine for clearing a watched area in the process.
3130  * Must be an exact match of the virtual address.
3131  * size and flags don't matter.
3132  */
3133 int
3134 clear_watched_area(proc_t *p, struct watched_area *pwa)
3135 {
3136 	struct watched_area *found;
3137 
3138 	/* we must not be holding p->p_lock, but the process must be locked */
3139 	ASSERT(MUTEX_NOT_HELD(&p->p_lock));
3140 	ASSERT(p->p_proc_flag & P_PR_LOCK);
3141 
3142 
3143 	if (!pr_watch_active(p)) {
3144 		kmem_free(pwa, sizeof (struct watched_area));
3145 		return (0);
3146 	}
3147 
3148 	/*
3149 	 * Look for a matching address in the watched areas.  If a match is
3150 	 * found, clear the old watched area and adjust the watched page(s).  It
3151 	 * is not an error if there is no match.
3152 	 */
3153 	if ((found = pr_find_watched_area(p, pwa, NULL)) != NULL &&
3154 	    found->wa_vaddr == pwa->wa_vaddr) {
3155 		clear_watched_page(p, found->wa_vaddr, found->wa_eaddr,
3156 		    found->wa_flags);
3157 		avl_remove(&p->p_warea, found);
3158 		kmem_free(found, sizeof (struct watched_area));
3159 	}
3160 
3161 	kmem_free(pwa, sizeof (struct watched_area));
3162 
3163 	/*
3164 	 * If we removed the last watched area from the process, disable
3165 	 * watchpoints.
3166 	 */
3167 	if (!pr_watch_active(p)) {
3168 		kthread_t *t;
3169 
3170 		mutex_enter(&p->p_lock);
3171 		if ((t = p->p_tlist) != NULL) {
3172 			do {
3173 				watch_disable(t);
3174 			} while ((t = t->t_forw) != p->p_tlist);
3175 		}
3176 		mutex_exit(&p->p_lock);
3177 	}
3178 
3179 	return (0);
3180 }
3181 
3182 /*
3183  * Frees all the watched_area structures
3184  */
3185 void
3186 pr_free_watchpoints(proc_t *p)
3187 {
3188 	struct watched_area *delp;
3189 	void *cookie;
3190 
3191 	cookie = NULL;
3192 	while ((delp = avl_destroy_nodes(&p->p_warea, &cookie)) != NULL)
3193 		kmem_free(delp, sizeof (struct watched_area));
3194 
3195 	avl_destroy(&p->p_warea);
3196 }
3197 
3198 /*
3199  * This one is called by the traced process to unwatch all the
3200  * pages while deallocating the list of watched_page structs.
3201  */
3202 void
3203 pr_free_watched_pages(proc_t *p)
3204 {
3205 	struct as *as = p->p_as;
3206 	struct watched_page *pwp;
3207 	uint_t prot;
3208 	int    retrycnt, err;
3209 	void *cookie;
3210 
3211 	if (as == NULL || avl_numnodes(&as->a_wpage) == 0)
3212 		return;
3213 
3214 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
3215 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3216 
3217 	pwp = avl_first(&as->a_wpage);
3218 
3219 	cookie = NULL;
3220 	while ((pwp = avl_destroy_nodes(&as->a_wpage, &cookie)) != NULL) {
3221 		retrycnt = 0;
3222 		if ((prot = pwp->wp_oprot) != 0) {
3223 			caddr_t addr = pwp->wp_vaddr;
3224 			struct seg *seg;
3225 		retry:
3226 
3227 			if ((pwp->wp_prot != prot ||
3228 			    (pwp->wp_flags & WP_NOWATCH)) &&
3229 			    (seg = as_segat(as, addr)) != NULL) {
3230 				err = SEGOP_SETPROT(seg, addr, PAGESIZE, prot);
3231 				if (err == IE_RETRY) {
3232 					ASSERT(retrycnt == 0);
3233 					retrycnt++;
3234 					goto retry;
3235 				}
3236 			}
3237 		}
3238 		kmem_free(pwp, sizeof (struct watched_page));
3239 	}
3240 
3241 	avl_destroy(&as->a_wpage);
3242 	p->p_wprot = NULL;
3243 
3244 	AS_LOCK_EXIT(as, &as->a_lock);
3245 }
3246 
3247 /*
3248  * Insert a watched area into the list of watched pages.
3249  * If oflags is zero then we are adding a new watched area.
3250  * Otherwise we are changing the flags of an existing watched area.
3251  */
3252 static int
3253 set_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr,
3254 	ulong_t flags, ulong_t oflags)
3255 {
3256 	struct as *as = p->p_as;
3257 	avl_tree_t *pwp_tree;
3258 	struct watched_page *pwp, *newpwp;
3259 	struct watched_page tpw;
3260 	avl_index_t where;
3261 	struct seg *seg;
3262 	uint_t prot;
3263 	caddr_t addr;
3264 
3265 	/*
3266 	 * We need to pre-allocate a list of structures before we grab the
3267 	 * address space lock to avoid calling kmem_alloc(KM_SLEEP) with locks
3268 	 * held.
3269 	 */
3270 	newpwp = NULL;
3271 	for (addr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3272 	    addr < eaddr; addr += PAGESIZE) {
3273 		pwp = kmem_zalloc(sizeof (struct watched_page), KM_SLEEP);
3274 		pwp->wp_list = newpwp;
3275 		newpwp = pwp;
3276 	}
3277 
3278 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3279 
3280 	/*
3281 	 * Search for an existing watched page to contain the watched area.
3282 	 * If none is found, grab a new one from the available list
3283 	 * and insert it in the active list, keeping the list sorted
3284 	 * by user-level virtual address.
3285 	 */
3286 	if (p->p_flag & SVFWAIT)
3287 		pwp_tree = &p->p_wpage;
3288 	else
3289 		pwp_tree = &as->a_wpage;
3290 
3291 again:
3292 	if (avl_numnodes(pwp_tree) > prnwatch) {
3293 		AS_LOCK_EXIT(as, &as->a_lock);
3294 		while (newpwp != NULL) {
3295 			pwp = newpwp->wp_list;
3296 			kmem_free(newpwp, sizeof (struct watched_page));
3297 			newpwp = pwp;
3298 		}
3299 		return (E2BIG);
3300 	}
3301 
3302 	tpw.wp_vaddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3303 	if ((pwp = avl_find(pwp_tree, &tpw, &where)) == NULL) {
3304 		pwp = newpwp;
3305 		newpwp = newpwp->wp_list;
3306 		pwp->wp_list = NULL;
3307 		pwp->wp_vaddr = (caddr_t)((uintptr_t)vaddr &
3308 		    (uintptr_t)PAGEMASK);
3309 		avl_insert(pwp_tree, pwp, where);
3310 	}
3311 
3312 	ASSERT(vaddr >= pwp->wp_vaddr && vaddr < pwp->wp_vaddr + PAGESIZE);
3313 
3314 	if (oflags & WA_READ)
3315 		pwp->wp_read--;
3316 	if (oflags & WA_WRITE)
3317 		pwp->wp_write--;
3318 	if (oflags & WA_EXEC)
3319 		pwp->wp_exec--;
3320 
3321 	ASSERT(pwp->wp_read >= 0);
3322 	ASSERT(pwp->wp_write >= 0);
3323 	ASSERT(pwp->wp_exec >= 0);
3324 
3325 	if (flags & WA_READ)
3326 		pwp->wp_read++;
3327 	if (flags & WA_WRITE)
3328 		pwp->wp_write++;
3329 	if (flags & WA_EXEC)
3330 		pwp->wp_exec++;
3331 
3332 	if (!(p->p_flag & SVFWAIT)) {
3333 		vaddr = pwp->wp_vaddr;
3334 		if (pwp->wp_oprot == 0 &&
3335 		    (seg = as_segat(as, vaddr)) != NULL) {
3336 			SEGOP_GETPROT(seg, vaddr, 0, &prot);
3337 			pwp->wp_oprot = (uchar_t)prot;
3338 			pwp->wp_prot = (uchar_t)prot;
3339 		}
3340 		if (pwp->wp_oprot != 0) {
3341 			prot = pwp->wp_oprot;
3342 			if (pwp->wp_read)
3343 				prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3344 			if (pwp->wp_write)
3345 				prot &= ~PROT_WRITE;
3346 			if (pwp->wp_exec)
3347 				prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3348 			if (!(pwp->wp_flags & WP_NOWATCH) &&
3349 			    pwp->wp_prot != prot &&
3350 			    (pwp->wp_flags & WP_SETPROT) == 0) {
3351 				pwp->wp_flags |= WP_SETPROT;
3352 				pwp->wp_list = p->p_wprot;
3353 				p->p_wprot = pwp;
3354 			}
3355 			pwp->wp_prot = (uchar_t)prot;
3356 		}
3357 	}
3358 
3359 	/*
3360 	 * If the watched area extends into the next page then do
3361 	 * it over again with the virtual address of the next page.
3362 	 */
3363 	if ((vaddr = pwp->wp_vaddr + PAGESIZE) < eaddr)
3364 		goto again;
3365 
3366 	AS_LOCK_EXIT(as, &as->a_lock);
3367 
3368 	/*
3369 	 * Free any pages we may have over-allocated
3370 	 */
3371 	while (newpwp != NULL) {
3372 		pwp = newpwp->wp_list;
3373 		kmem_free(newpwp, sizeof (struct watched_page));
3374 		newpwp = pwp;
3375 	}
3376 
3377 	return (0);
3378 }
3379 
3380 /*
3381  * Remove a watched area from the list of watched pages.
3382  * A watched area may extend over more than one page.
3383  */
3384 static void
3385 clear_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, ulong_t flags)
3386 {
3387 	struct as *as = p->p_as;
3388 	struct watched_page *pwp;
3389 	struct watched_page tpw;
3390 	avl_tree_t *tree;
3391 	avl_index_t where;
3392 
3393 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3394 
3395 	if (p->p_flag & SVFWAIT)
3396 		tree = &p->p_wpage;
3397 	else
3398 		tree = &as->a_wpage;
3399 
3400 	tpw.wp_vaddr = vaddr =
3401 	    (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
3402 	pwp = avl_find(tree, &tpw, &where);
3403 	if (pwp == NULL)
3404 		pwp = avl_nearest(tree, where, AVL_AFTER);
3405 
3406 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3407 		ASSERT(vaddr <=  pwp->wp_vaddr);
3408 
3409 		if (flags & WA_READ)
3410 			pwp->wp_read--;
3411 		if (flags & WA_WRITE)
3412 			pwp->wp_write--;
3413 		if (flags & WA_EXEC)
3414 			pwp->wp_exec--;
3415 
3416 		if (pwp->wp_read + pwp->wp_write + pwp->wp_exec != 0) {
3417 			/*
3418 			 * Reset the hat layer's protections on this page.
3419 			 */
3420 			if (pwp->wp_oprot != 0) {
3421 				uint_t prot = pwp->wp_oprot;
3422 
3423 				if (pwp->wp_read)
3424 					prot &=
3425 					    ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3426 				if (pwp->wp_write)
3427 					prot &= ~PROT_WRITE;
3428 				if (pwp->wp_exec)
3429 					prot &=
3430 					    ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3431 				if (!(pwp->wp_flags & WP_NOWATCH) &&
3432 				    pwp->wp_prot != prot &&
3433 				    (pwp->wp_flags & WP_SETPROT) == 0) {
3434 					pwp->wp_flags |= WP_SETPROT;
3435 					pwp->wp_list = p->p_wprot;
3436 					p->p_wprot = pwp;
3437 				}
3438 				pwp->wp_prot = (uchar_t)prot;
3439 			}
3440 		} else {
3441 			/*
3442 			 * No watched areas remain in this page.
3443 			 * Reset everything to normal.
3444 			 */
3445 			if (pwp->wp_oprot != 0) {
3446 				pwp->wp_prot = pwp->wp_oprot;
3447 				if ((pwp->wp_flags & WP_SETPROT) == 0) {
3448 					pwp->wp_flags |= WP_SETPROT;
3449 					pwp->wp_list = p->p_wprot;
3450 					p->p_wprot = pwp;
3451 				}
3452 			}
3453 		}
3454 
3455 		pwp = AVL_NEXT(tree, pwp);
3456 	}
3457 
3458 	AS_LOCK_EXIT(as, &as->a_lock);
3459 }
3460 
3461 /*
3462  * Return the original protections for the specified page.
3463  */
3464 static void
3465 getwatchprot(struct as *as, caddr_t addr, uint_t *prot)
3466 {
3467 	struct watched_page *pwp;
3468 	struct watched_page tpw;
3469 
3470 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
3471 
3472 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3473 	if ((pwp = avl_find(&as->a_wpage, &tpw, NULL)) != NULL)
3474 		*prot = pwp->wp_oprot;
3475 }
3476 
3477 static prpagev_t *
3478 pr_pagev_create(struct seg *seg, int check_noreserve)
3479 {
3480 	prpagev_t *pagev = kmem_alloc(sizeof (prpagev_t), KM_SLEEP);
3481 	size_t total_pages = seg_pages(seg);
3482 
3483 	/*
3484 	 * Limit the size of our vectors to pagev_lim pages at a time.  We need
3485 	 * 4 or 5 bytes of storage per page, so this means we limit ourself
3486 	 * to about a megabyte of kernel heap by default.
3487 	 */
3488 	pagev->pg_npages = MIN(total_pages, pagev_lim);
3489 	pagev->pg_pnbase = 0;
3490 
3491 	pagev->pg_protv =
3492 	    kmem_alloc(pagev->pg_npages * sizeof (uint_t), KM_SLEEP);
3493 
3494 	if (check_noreserve)
3495 		pagev->pg_incore =
3496 		    kmem_alloc(pagev->pg_npages * sizeof (char), KM_SLEEP);
3497 	else
3498 		pagev->pg_incore = NULL;
3499 
3500 	return (pagev);
3501 }
3502 
3503 static void
3504 pr_pagev_destroy(prpagev_t *pagev)
3505 {
3506 	if (pagev->pg_incore != NULL)
3507 		kmem_free(pagev->pg_incore, pagev->pg_npages * sizeof (char));
3508 
3509 	kmem_free(pagev->pg_protv, pagev->pg_npages * sizeof (uint_t));
3510 	kmem_free(pagev, sizeof (prpagev_t));
3511 }
3512 
3513 static caddr_t
3514 pr_pagev_fill(prpagev_t *pagev, struct seg *seg, caddr_t addr, caddr_t eaddr)
3515 {
3516 	ulong_t lastpg = seg_page(seg, eaddr - 1);
3517 	ulong_t pn, pnlim;
3518 	caddr_t saddr;
3519 	size_t len;
3520 
3521 	ASSERT(addr >= seg->s_base && addr <= eaddr);
3522 
3523 	if (addr == eaddr)
3524 		return (eaddr);
3525 
3526 refill:
3527 	ASSERT(addr < eaddr);
3528 	pagev->pg_pnbase = seg_page(seg, addr);
3529 	pnlim = pagev->pg_pnbase + pagev->pg_npages;
3530 	saddr = addr;
3531 
3532 	if (lastpg < pnlim)
3533 		len = (size_t)(eaddr - addr);
3534 	else
3535 		len = pagev->pg_npages * PAGESIZE;
3536 
3537 	if (pagev->pg_incore != NULL) {
3538 		/*
3539 		 * INCORE cleverly has different semantics than GETPROT:
3540 		 * it returns info on pages up to but NOT including addr + len.
3541 		 */
3542 		SEGOP_INCORE(seg, addr, len, pagev->pg_incore);
3543 		pn = pagev->pg_pnbase;
3544 
3545 		do {
3546 			/*
3547 			 * Guilty knowledge here:  We know that segvn_incore
3548 			 * returns more than just the low-order bit that
3549 			 * indicates the page is actually in memory.  If any
3550 			 * bits are set, then the page has backing store.
3551 			 */
3552 			if (pagev->pg_incore[pn++ - pagev->pg_pnbase])
3553 				goto out;
3554 
3555 		} while ((addr += PAGESIZE) < eaddr && pn < pnlim);
3556 
3557 		/*
3558 		 * If we examined all the pages in the vector but we're not
3559 		 * at the end of the segment, take another lap.
3560 		 */
3561 		if (addr < eaddr)
3562 			goto refill;
3563 	}
3564 
3565 	/*
3566 	 * Need to take len - 1 because addr + len is the address of the
3567 	 * first byte of the page just past the end of what we want.
3568 	 */
3569 out:
3570 	SEGOP_GETPROT(seg, saddr, len - 1, pagev->pg_protv);
3571 	return (addr);
3572 }
3573 
3574 static caddr_t
3575 pr_pagev_nextprot(prpagev_t *pagev, struct seg *seg,
3576     caddr_t *saddrp, caddr_t eaddr, uint_t *protp)
3577 {
3578 	/*
3579 	 * Our starting address is either the specified address, or the base
3580 	 * address from the start of the pagev.  If the latter is greater,
3581 	 * this means a previous call to pr_pagev_fill has already scanned
3582 	 * further than the end of the previous mapping.
3583 	 */
3584 	caddr_t base = seg->s_base + pagev->pg_pnbase * PAGESIZE;
3585 	caddr_t addr = MAX(*saddrp, base);
3586 	ulong_t pn = seg_page(seg, addr);
3587 	uint_t prot, nprot;
3588 
3589 	/*
3590 	 * If we're dealing with noreserve pages, then advance addr to
3591 	 * the address of the next page which has backing store.
3592 	 */
3593 	if (pagev->pg_incore != NULL) {
3594 		while (pagev->pg_incore[pn - pagev->pg_pnbase] == 0) {
3595 			if ((addr += PAGESIZE) == eaddr) {
3596 				*saddrp = addr;
3597 				prot = 0;
3598 				goto out;
3599 			}
3600 			if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3601 				addr = pr_pagev_fill(pagev, seg, addr, eaddr);
3602 				if (addr == eaddr) {
3603 					*saddrp = addr;
3604 					prot = 0;
3605 					goto out;
3606 				}
3607 				pn = seg_page(seg, addr);
3608 			}
3609 		}
3610 	}
3611 
3612 	/*
3613 	 * Get the protections on the page corresponding to addr.
3614 	 */
3615 	pn = seg_page(seg, addr);
3616 	ASSERT(pn >= pagev->pg_pnbase);
3617 	ASSERT(pn < (pagev->pg_pnbase + pagev->pg_npages));
3618 
3619 	prot = pagev->pg_protv[pn - pagev->pg_pnbase];
3620 	getwatchprot(seg->s_as, addr, &prot);
3621 	*saddrp = addr;
3622 
3623 	/*
3624 	 * Now loop until we find a backed page with different protections
3625 	 * or we reach the end of this segment.
3626 	 */
3627 	while ((addr += PAGESIZE) < eaddr) {
3628 		/*
3629 		 * If pn has advanced to the page number following what we
3630 		 * have information on, refill the page vector and reset
3631 		 * addr and pn.  If pr_pagev_fill does not return the
3632 		 * address of the next page, we have a discontiguity and
3633 		 * thus have reached the end of the current mapping.
3634 		 */
3635 		if (++pn == pagev->pg_pnbase + pagev->pg_npages) {
3636 			caddr_t naddr = pr_pagev_fill(pagev, seg, addr, eaddr);
3637 			if (naddr != addr)
3638 				goto out;
3639 			pn = seg_page(seg, addr);
3640 		}
3641 
3642 		/*
3643 		 * The previous page's protections are in prot, and it has
3644 		 * backing.  If this page is MAP_NORESERVE and has no backing,
3645 		 * then end this mapping and return the previous protections.
3646 		 */
3647 		if (pagev->pg_incore != NULL &&
3648 		    pagev->pg_incore[pn - pagev->pg_pnbase] == 0)
3649 			break;
3650 
3651 		/*
3652 		 * Otherwise end the mapping if this page's protections (nprot)
3653 		 * are different than those in the previous page (prot).
3654 		 */
3655 		nprot = pagev->pg_protv[pn - pagev->pg_pnbase];
3656 		getwatchprot(seg->s_as, addr, &nprot);
3657 
3658 		if (nprot != prot)
3659 			break;
3660 	}
3661 
3662 out:
3663 	*protp = prot;
3664 	return (addr);
3665 }
3666 
3667 size_t
3668 pr_getsegsize(struct seg *seg, int reserved)
3669 {
3670 	size_t size = seg->s_size;
3671 
3672 	/*
3673 	 * If we're interested in the reserved space, return the size of the
3674 	 * segment itself.  Everything else in this function is a special case
3675 	 * to determine the actual underlying size of various segment types.
3676 	 */
3677 	if (reserved)
3678 		return (size);
3679 
3680 	/*
3681 	 * If this is a segvn mapping of a regular file, return the smaller
3682 	 * of the segment size and the remaining size of the file beyond
3683 	 * the file offset corresponding to seg->s_base.
3684 	 */
3685 	if (seg->s_ops == &segvn_ops) {
3686 		vattr_t vattr;
3687 		vnode_t *vp;
3688 
3689 		vattr.va_mask = AT_SIZE;
3690 
3691 		if (SEGOP_GETVP(seg, seg->s_base, &vp) == 0 &&
3692 		    vp != NULL && vp->v_type == VREG &&
3693 		    VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) {
3694 
3695 			u_offset_t fsize = vattr.va_size;
3696 			u_offset_t offset = SEGOP_GETOFFSET(seg, seg->s_base);
3697 
3698 			if (fsize < offset)
3699 				fsize = 0;
3700 			else
3701 				fsize -= offset;
3702 
3703 			fsize = roundup(fsize, (u_offset_t)PAGESIZE);
3704 
3705 			if (fsize < (u_offset_t)size)
3706 				size = (size_t)fsize;
3707 		}
3708 
3709 		return (size);
3710 	}
3711 
3712 	/*
3713 	 * If this is an ISM shared segment, don't include pages that are
3714 	 * beyond the real size of the spt segment that backs it.
3715 	 */
3716 	if (seg->s_ops == &segspt_shmops)
3717 		return (MIN(spt_realsize(seg), size));
3718 
3719 	/*
3720 	 * If this is segment is a mapping from /dev/null, then this is a
3721 	 * reservation of virtual address space and has no actual size.
3722 	 * Such segments are backed by segdev and have type set to neither
3723 	 * MAP_SHARED nor MAP_PRIVATE.
3724 	 */
3725 	if (seg->s_ops == &segdev_ops &&
3726 	    ((SEGOP_GETTYPE(seg, seg->s_base) &
3727 	    (MAP_SHARED | MAP_PRIVATE)) == 0))
3728 		return (0);
3729 
3730 	/*
3731 	 * If this segment doesn't match one of the special types we handle,
3732 	 * just return the size of the segment itself.
3733 	 */
3734 	return (size);
3735 }
3736 
3737 uint_t
3738 pr_getprot(struct seg *seg, int reserved, void **tmp,
3739 	caddr_t *saddrp, caddr_t *naddrp, caddr_t eaddr)
3740 {
3741 	struct as *as = seg->s_as;
3742 
3743 	caddr_t saddr = *saddrp;
3744 	caddr_t naddr;
3745 
3746 	int check_noreserve;
3747 	uint_t prot;
3748 
3749 	union {
3750 		struct segvn_data *svd;
3751 		struct segdev_data *sdp;
3752 		void *data;
3753 	} s;
3754 
3755 	s.data = seg->s_data;
3756 
3757 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3758 	ASSERT(saddr >= seg->s_base && saddr < eaddr);
3759 	ASSERT(eaddr <= seg->s_base + seg->s_size);
3760 
3761 	/*
3762 	 * Don't include MAP_NORESERVE pages in the address range
3763 	 * unless their mappings have actually materialized.
3764 	 * We cheat by knowing that segvn is the only segment
3765 	 * driver that supports MAP_NORESERVE.
3766 	 */
3767 	check_noreserve =
3768 	    (!reserved && seg->s_ops == &segvn_ops && s.svd != NULL &&
3769 	    (s.svd->vp == NULL || s.svd->vp->v_type != VREG) &&
3770 	    (s.svd->flags & MAP_NORESERVE));
3771 
3772 	/*
3773 	 * Examine every page only as a last resort.  We use guilty knowledge
3774 	 * of segvn and segdev to avoid this: if there are no per-page
3775 	 * protections present in the segment and we don't care about
3776 	 * MAP_NORESERVE, then s_data->prot is the prot for the whole segment.
3777 	 */
3778 	if (!check_noreserve && saddr == seg->s_base &&
3779 	    seg->s_ops == &segvn_ops && s.svd != NULL && s.svd->pageprot == 0) {
3780 		prot = s.svd->prot;
3781 		getwatchprot(as, saddr, &prot);
3782 		naddr = eaddr;
3783 
3784 	} else if (saddr == seg->s_base && seg->s_ops == &segdev_ops &&
3785 	    s.sdp != NULL && s.sdp->pageprot == 0) {
3786 		prot = s.sdp->prot;
3787 		getwatchprot(as, saddr, &prot);
3788 		naddr = eaddr;
3789 
3790 	} else {
3791 		prpagev_t *pagev;
3792 
3793 		/*
3794 		 * If addr is sitting at the start of the segment, then
3795 		 * create a page vector to store protection and incore
3796 		 * information for pages in the segment, and fill it.
3797 		 * Otherwise, we expect *tmp to address the prpagev_t
3798 		 * allocated by a previous call to this function.
3799 		 */
3800 		if (saddr == seg->s_base) {
3801 			pagev = pr_pagev_create(seg, check_noreserve);
3802 			saddr = pr_pagev_fill(pagev, seg, saddr, eaddr);
3803 
3804 			ASSERT(*tmp == NULL);
3805 			*tmp = pagev;
3806 
3807 			ASSERT(saddr <= eaddr);
3808 			*saddrp = saddr;
3809 
3810 			if (saddr == eaddr) {
3811 				naddr = saddr;
3812 				prot = 0;
3813 				goto out;
3814 			}
3815 
3816 		} else {
3817 			ASSERT(*tmp != NULL);
3818 			pagev = (prpagev_t *)*tmp;
3819 		}
3820 
3821 		naddr = pr_pagev_nextprot(pagev, seg, saddrp, eaddr, &prot);
3822 		ASSERT(naddr <= eaddr);
3823 	}
3824 
3825 out:
3826 	if (naddr == eaddr)
3827 		pr_getprot_done(tmp);
3828 	*naddrp = naddr;
3829 	return (prot);
3830 }
3831 
3832 void
3833 pr_getprot_done(void **tmp)
3834 {
3835 	if (*tmp != NULL) {
3836 		pr_pagev_destroy((prpagev_t *)*tmp);
3837 		*tmp = NULL;
3838 	}
3839 }
3840 
3841 /*
3842  * Return true iff the vnode is a /proc file from the object directory.
3843  */
3844 int
3845 pr_isobject(vnode_t *vp)
3846 {
3847 	return (vn_matchops(vp, prvnodeops) && VTOP(vp)->pr_type == PR_OBJECT);
3848 }
3849 
3850 /*
3851  * Return true iff the vnode is a /proc file opened by the process itself.
3852  */
3853 int
3854 pr_isself(vnode_t *vp)
3855 {
3856 	/*
3857 	 * XXX: To retain binary compatibility with the old
3858 	 * ioctl()-based version of /proc, we exempt self-opens
3859 	 * of /proc/<pid> from being marked close-on-exec.
3860 	 */
3861 	return (vn_matchops(vp, prvnodeops) &&
3862 	    (VTOP(vp)->pr_flags & PR_ISSELF) &&
3863 	    VTOP(vp)->pr_type != PR_PIDDIR);
3864 }
3865 
3866 static ssize_t
3867 pr_getpagesize(struct seg *seg, caddr_t saddr, caddr_t *naddrp, caddr_t eaddr)
3868 {
3869 	ssize_t pagesize, hatsize;
3870 
3871 	ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock));
3872 	ASSERT(IS_P2ALIGNED(saddr, PAGESIZE));
3873 	ASSERT(IS_P2ALIGNED(eaddr, PAGESIZE));
3874 	ASSERT(saddr < eaddr);
3875 
3876 	pagesize = hatsize = hat_getpagesize(seg->s_as->a_hat, saddr);
3877 	ASSERT(pagesize == -1 || IS_P2ALIGNED(pagesize, pagesize));
3878 	ASSERT(pagesize != 0);
3879 
3880 	if (pagesize == -1)
3881 		pagesize = PAGESIZE;
3882 
3883 	saddr += P2NPHASE((uintptr_t)saddr, pagesize);
3884 
3885 	while (saddr < eaddr) {
3886 		if (hatsize != hat_getpagesize(seg->s_as->a_hat, saddr))
3887 			break;
3888 		ASSERT(IS_P2ALIGNED(saddr, pagesize));
3889 		saddr += pagesize;
3890 	}
3891 
3892 	*naddrp = ((saddr < eaddr) ? saddr : eaddr);
3893 	return (hatsize);
3894 }
3895 
3896 /*
3897  * Return an array of structures with extended memory map information.
3898  * We allocate here; the caller must deallocate.
3899  */
3900 int
3901 prgetxmap(proc_t *p, list_t *iolhead)
3902 {
3903 	struct as *as = p->p_as;
3904 	prxmap_t *mp;
3905 	struct seg *seg;
3906 	struct seg *brkseg, *stkseg;
3907 	struct vnode *vp;
3908 	struct vattr vattr;
3909 	uint_t prot;
3910 
3911 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
3912 
3913 	/*
3914 	 * Request an initial buffer size that doesn't waste memory
3915 	 * if the address space has only a small number of segments.
3916 	 */
3917 	pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
3918 
3919 	if ((seg = AS_SEGFIRST(as)) == NULL)
3920 		return (0);
3921 
3922 	brkseg = break_seg(p);
3923 	stkseg = as_segat(as, prgetstackbase(p));
3924 
3925 	do {
3926 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
3927 		caddr_t saddr, naddr, baddr;
3928 		void *tmp = NULL;
3929 		ssize_t psz;
3930 		char *parr;
3931 		uint64_t npages;
3932 		uint64_t pagenum;
3933 
3934 		/*
3935 		 * Segment loop part one: iterate from the base of the segment
3936 		 * to its end, pausing at each address boundary (baddr) between
3937 		 * ranges that have different virtual memory protections.
3938 		 */
3939 		for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
3940 			prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
3941 			ASSERT(baddr >= saddr && baddr <= eaddr);
3942 
3943 			/*
3944 			 * Segment loop part two: iterate from the current
3945 			 * position to the end of the protection boundary,
3946 			 * pausing at each address boundary (naddr) between
3947 			 * ranges that have different underlying page sizes.
3948 			 */
3949 			for (; saddr < baddr; saddr = naddr) {
3950 				psz = pr_getpagesize(seg, saddr, &naddr, baddr);
3951 				ASSERT(naddr >= saddr && naddr <= baddr);
3952 
3953 				mp = pr_iol_newbuf(iolhead, sizeof (*mp));
3954 
3955 				mp->pr_vaddr = (uintptr_t)saddr;
3956 				mp->pr_size = naddr - saddr;
3957 				mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
3958 				mp->pr_mflags = 0;
3959 				if (prot & PROT_READ)
3960 					mp->pr_mflags |= MA_READ;
3961 				if (prot & PROT_WRITE)
3962 					mp->pr_mflags |= MA_WRITE;
3963 				if (prot & PROT_EXEC)
3964 					mp->pr_mflags |= MA_EXEC;
3965 				if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
3966 					mp->pr_mflags |= MA_SHARED;
3967 				if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
3968 					mp->pr_mflags |= MA_NORESERVE;
3969 				if (seg->s_ops == &segspt_shmops ||
3970 				    (seg->s_ops == &segvn_ops &&
3971 				    (SEGOP_GETVP(seg, saddr, &vp) != 0 ||
3972 				    vp == NULL)))
3973 					mp->pr_mflags |= MA_ANON;
3974 				if (seg == brkseg)
3975 					mp->pr_mflags |= MA_BREAK;
3976 				else if (seg == stkseg)
3977 					mp->pr_mflags |= MA_STACK;
3978 				if (seg->s_ops == &segspt_shmops)
3979 					mp->pr_mflags |= MA_ISM | MA_SHM;
3980 
3981 				mp->pr_pagesize = PAGESIZE;
3982 				if (psz == -1) {
3983 					mp->pr_hatpagesize = 0;
3984 				} else {
3985 					mp->pr_hatpagesize = psz;
3986 				}
3987 
3988 				/*
3989 				 * Manufacture a filename for the "object" dir.
3990 				 */
3991 				mp->pr_dev = PRNODEV;
3992 				vattr.va_mask = AT_FSID|AT_NODEID;
3993 				if (seg->s_ops == &segvn_ops &&
3994 				    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
3995 				    vp != NULL && vp->v_type == VREG &&
3996 				    VOP_GETATTR(vp, &vattr, 0, CRED(),
3997 				    NULL) == 0) {
3998 					mp->pr_dev = vattr.va_fsid;
3999 					mp->pr_ino = vattr.va_nodeid;
4000 					if (vp == p->p_exec)
4001 						(void) strcpy(mp->pr_mapname,
4002 						    "a.out");
4003 					else
4004 						pr_object_name(mp->pr_mapname,
4005 						    vp, &vattr);
4006 				}
4007 
4008 				/*
4009 				 * Get the SysV shared memory id, if any.
4010 				 */
4011 				if ((mp->pr_mflags & MA_SHARED) &&
4012 				    p->p_segacct && (mp->pr_shmid = shmgetid(p,
4013 				    seg->s_base)) != SHMID_NONE) {
4014 					if (mp->pr_shmid == SHMID_FREE)
4015 						mp->pr_shmid = -1;
4016 
4017 					mp->pr_mflags |= MA_SHM;
4018 				} else {
4019 					mp->pr_shmid = -1;
4020 				}
4021 
4022 				npages = ((uintptr_t)(naddr - saddr)) >>
4023 				    PAGESHIFT;
4024 				parr = kmem_zalloc(npages, KM_SLEEP);
4025 
4026 				SEGOP_INCORE(seg, saddr, naddr - saddr, parr);
4027 
4028 				for (pagenum = 0; pagenum < npages; pagenum++) {
4029 					if (parr[pagenum] & SEG_PAGE_INCORE)
4030 						mp->pr_rss++;
4031 					if (parr[pagenum] & SEG_PAGE_ANON)
4032 						mp->pr_anon++;
4033 					if (parr[pagenum] & SEG_PAGE_LOCKED)
4034 						mp->pr_locked++;
4035 				}
4036 				kmem_free(parr, npages);
4037 			}
4038 		}
4039 		ASSERT(tmp == NULL);
4040 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4041 
4042 	return (0);
4043 }
4044 
4045 /*
4046  * Return the process's credentials.  We don't need a 32-bit equivalent of
4047  * this function because prcred_t and prcred32_t are actually the same.
4048  */
4049 void
4050 prgetcred(proc_t *p, prcred_t *pcrp)
4051 {
4052 	mutex_enter(&p->p_crlock);
4053 	cred2prcred(p->p_cred, pcrp);
4054 	mutex_exit(&p->p_crlock);
4055 }
4056 
4057 /*
4058  * Compute actual size of the prpriv_t structure.
4059  */
4060 
4061 size_t
4062 prgetprivsize(void)
4063 {
4064 	return (priv_prgetprivsize(NULL));
4065 }
4066 
4067 /*
4068  * Return the process's privileges.  We don't need a 32-bit equivalent of
4069  * this function because prpriv_t and prpriv32_t are actually the same.
4070  */
4071 void
4072 prgetpriv(proc_t *p, prpriv_t *pprp)
4073 {
4074 	mutex_enter(&p->p_crlock);
4075 	cred2prpriv(p->p_cred, pprp);
4076 	mutex_exit(&p->p_crlock);
4077 }
4078 
4079 #ifdef _SYSCALL32_IMPL
4080 /*
4081  * Return an array of structures with HAT memory map information.
4082  * We allocate here; the caller must deallocate.
4083  */
4084 int
4085 prgetxmap32(proc_t *p, list_t *iolhead)
4086 {
4087 	struct as *as = p->p_as;
4088 	prxmap32_t *mp;
4089 	struct seg *seg;
4090 	struct seg *brkseg, *stkseg;
4091 	struct vnode *vp;
4092 	struct vattr vattr;
4093 	uint_t prot;
4094 
4095 	ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock));
4096 
4097 	/*
4098 	 * Request an initial buffer size that doesn't waste memory
4099 	 * if the address space has only a small number of segments.
4100 	 */
4101 	pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree));
4102 
4103 	if ((seg = AS_SEGFIRST(as)) == NULL)
4104 		return (0);
4105 
4106 	brkseg = break_seg(p);
4107 	stkseg = as_segat(as, prgetstackbase(p));
4108 
4109 	do {
4110 		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
4111 		caddr_t saddr, naddr, baddr;
4112 		void *tmp = NULL;
4113 		ssize_t psz;
4114 		char *parr;
4115 		uint64_t npages;
4116 		uint64_t pagenum;
4117 
4118 		/*
4119 		 * Segment loop part one: iterate from the base of the segment
4120 		 * to its end, pausing at each address boundary (baddr) between
4121 		 * ranges that have different virtual memory protections.
4122 		 */
4123 		for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) {
4124 			prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr);
4125 			ASSERT(baddr >= saddr && baddr <= eaddr);
4126 
4127 			/*
4128 			 * Segment loop part two: iterate from the current
4129 			 * position to the end of the protection boundary,
4130 			 * pausing at each address boundary (naddr) between
4131 			 * ranges that have different underlying page sizes.
4132 			 */
4133 			for (; saddr < baddr; saddr = naddr) {
4134 				psz = pr_getpagesize(seg, saddr, &naddr, baddr);
4135 				ASSERT(naddr >= saddr && naddr <= baddr);
4136 
4137 				mp = pr_iol_newbuf(iolhead, sizeof (*mp));
4138 
4139 				mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr;
4140 				mp->pr_size = (size32_t)(naddr - saddr);
4141 				mp->pr_offset = SEGOP_GETOFFSET(seg, saddr);
4142 				mp->pr_mflags = 0;
4143 				if (prot & PROT_READ)
4144 					mp->pr_mflags |= MA_READ;
4145 				if (prot & PROT_WRITE)
4146 					mp->pr_mflags |= MA_WRITE;
4147 				if (prot & PROT_EXEC)
4148 					mp->pr_mflags |= MA_EXEC;
4149 				if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED)
4150 					mp->pr_mflags |= MA_SHARED;
4151 				if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE)
4152 					mp->pr_mflags |= MA_NORESERVE;
4153 				if (seg->s_ops == &segspt_shmops ||
4154 				    (seg->s_ops == &segvn_ops &&
4155 				    (SEGOP_GETVP(seg, saddr, &vp) != 0 ||
4156 				    vp == NULL)))
4157 					mp->pr_mflags |= MA_ANON;
4158 				if (seg == brkseg)
4159 					mp->pr_mflags |= MA_BREAK;
4160 				else if (seg == stkseg)
4161 					mp->pr_mflags |= MA_STACK;
4162 				if (seg->s_ops == &segspt_shmops)
4163 					mp->pr_mflags |= MA_ISM | MA_SHM;
4164 
4165 				mp->pr_pagesize = PAGESIZE;
4166 				if (psz == -1) {
4167 					mp->pr_hatpagesize = 0;
4168 				} else {
4169 					mp->pr_hatpagesize = psz;
4170 				}
4171 
4172 				/*
4173 				 * Manufacture a filename for the "object" dir.
4174 				 */
4175 				mp->pr_dev = PRNODEV32;
4176 				vattr.va_mask = AT_FSID|AT_NODEID;
4177 				if (seg->s_ops == &segvn_ops &&
4178 				    SEGOP_GETVP(seg, saddr, &vp) == 0 &&
4179 				    vp != NULL && vp->v_type == VREG &&
4180 				    VOP_GETATTR(vp, &vattr, 0, CRED(),
4181 				    NULL) == 0) {
4182 					(void) cmpldev(&mp->pr_dev,
4183 					    vattr.va_fsid);
4184 					mp->pr_ino = vattr.va_nodeid;
4185 					if (vp == p->p_exec)
4186 						(void) strcpy(mp->pr_mapname,
4187 						    "a.out");
4188 					else
4189 						pr_object_name(mp->pr_mapname,
4190 						    vp, &vattr);
4191 				}
4192 
4193 				/*
4194 				 * Get the SysV shared memory id, if any.
4195 				 */
4196 				if ((mp->pr_mflags & MA_SHARED) &&
4197 				    p->p_segacct && (mp->pr_shmid = shmgetid(p,
4198 				    seg->s_base)) != SHMID_NONE) {
4199 					if (mp->pr_shmid == SHMID_FREE)
4200 						mp->pr_shmid = -1;
4201 
4202 					mp->pr_mflags |= MA_SHM;
4203 				} else {
4204 					mp->pr_shmid = -1;
4205 				}
4206 
4207 				npages = ((uintptr_t)(naddr - saddr)) >>
4208 				    PAGESHIFT;
4209 				parr = kmem_zalloc(npages, KM_SLEEP);
4210 
4211 				SEGOP_INCORE(seg, saddr, naddr - saddr, parr);
4212 
4213 				for (pagenum = 0; pagenum < npages; pagenum++) {
4214 					if (parr[pagenum] & SEG_PAGE_INCORE)
4215 						mp->pr_rss++;
4216 					if (parr[pagenum] & SEG_PAGE_ANON)
4217 						mp->pr_anon++;
4218 					if (parr[pagenum] & SEG_PAGE_LOCKED)
4219 						mp->pr_locked++;
4220 				}
4221 				kmem_free(parr, npages);
4222 			}
4223 		}
4224 		ASSERT(tmp == NULL);
4225 	} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
4226 
4227 	return (0);
4228 }
4229 #endif	/* _SYSCALL32_IMPL */
4230