1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/types.h> 33 #include <sys/t_lock.h> 34 #include <sys/param.h> 35 #include <sys/cmn_err.h> 36 #include <sys/cred.h> 37 #include <sys/priv.h> 38 #include <sys/debug.h> 39 #include <sys/errno.h> 40 #include <sys/inline.h> 41 #include <sys/kmem.h> 42 #include <sys/mman.h> 43 #include <sys/proc.h> 44 #include <sys/sobject.h> 45 #include <sys/sysmacros.h> 46 #include <sys/systm.h> 47 #include <sys/uio.h> 48 #include <sys/var.h> 49 #include <sys/vfs.h> 50 #include <sys/vnode.h> 51 #include <sys/session.h> 52 #include <sys/pcb.h> 53 #include <sys/signal.h> 54 #include <sys/user.h> 55 #include <sys/disp.h> 56 #include <sys/class.h> 57 #include <sys/ts.h> 58 #include <sys/bitmap.h> 59 #include <sys/poll.h> 60 #include <sys/shm_impl.h> 61 #include <sys/fault.h> 62 #include <sys/syscall.h> 63 #include <sys/procfs.h> 64 #include <sys/processor.h> 65 #include <sys/cpuvar.h> 66 #include <sys/copyops.h> 67 #include <sys/time.h> 68 #include <sys/msacct.h> 69 #include <vm/as.h> 70 #include <vm/rm.h> 71 #include <vm/seg.h> 72 #include <vm/seg_vn.h> 73 #include <vm/seg_dev.h> 74 #include <vm/seg_spt.h> 75 #include <vm/page.h> 76 #include <sys/vmparam.h> 77 #include <sys/swap.h> 78 #include <fs/proc/prdata.h> 79 #include <sys/task.h> 80 #include <sys/project.h> 81 #include <sys/contract_impl.h> 82 #include <sys/contract/process.h> 83 #include <sys/contract/process_impl.h> 84 #include <sys/schedctl.h> 85 #include <sys/pool.h> 86 #include <sys/zone.h> 87 #include <sys/atomic.h> 88 #include <sys/sdt.h> 89 90 #define MAX_ITERS_SPIN 5 91 92 typedef struct prpagev { 93 uint_t *pg_protv; /* vector of page permissions */ 94 char *pg_incore; /* vector of incore flags */ 95 size_t pg_npages; /* number of pages in protv and incore */ 96 ulong_t pg_pnbase; /* pn within segment of first protv element */ 97 } prpagev_t; 98 99 size_t pagev_lim = 256 * 1024; /* limit on number of pages in prpagev_t */ 100 101 extern struct seg_ops segdev_ops; /* needs a header file */ 102 extern struct seg_ops segspt_shmops; /* needs a header file */ 103 104 static int set_watched_page(proc_t *, caddr_t, caddr_t, ulong_t, ulong_t); 105 static void clear_watched_page(proc_t *, caddr_t, caddr_t, ulong_t); 106 107 /* 108 * Choose an lwp from the complete set of lwps for the process. 109 * This is called for any operation applied to the process 110 * file descriptor that requires an lwp to operate upon. 111 * 112 * Returns a pointer to the thread for the selected LWP, 113 * and with the dispatcher lock held for the thread. 114 * 115 * The algorithm for choosing an lwp is critical for /proc semantics; 116 * don't touch this code unless you know all of the implications. 117 */ 118 kthread_t * 119 prchoose(proc_t *p) 120 { 121 kthread_t *t; 122 kthread_t *t_onproc = NULL; /* running on processor */ 123 kthread_t *t_run = NULL; /* runnable, on disp queue */ 124 kthread_t *t_sleep = NULL; /* sleeping */ 125 kthread_t *t_hold = NULL; /* sleeping, performing hold */ 126 kthread_t *t_susp = NULL; /* suspended stop */ 127 kthread_t *t_jstop = NULL; /* jobcontrol stop, w/o directed stop */ 128 kthread_t *t_jdstop = NULL; /* jobcontrol stop with directed stop */ 129 kthread_t *t_req = NULL; /* requested stop */ 130 kthread_t *t_istop = NULL; /* event-of-interest stop */ 131 132 ASSERT(MUTEX_HELD(&p->p_lock)); 133 134 /* 135 * If the agent lwp exists, it takes precedence over all others. 136 */ 137 if ((t = p->p_agenttp) != NULL) { 138 thread_lock(t); 139 return (t); 140 } 141 142 if ((t = p->p_tlist) == NULL) /* start at the head of the list */ 143 return (t); 144 do { /* for eacn lwp in the process */ 145 if (VSTOPPED(t)) { /* virtually stopped */ 146 if (t_req == NULL) 147 t_req = t; 148 continue; 149 } 150 151 thread_lock(t); /* make sure thread is in good state */ 152 switch (t->t_state) { 153 default: 154 panic("prchoose: bad thread state %d, thread 0x%p", 155 t->t_state, (void *)t); 156 /*NOTREACHED*/ 157 case TS_SLEEP: 158 /* this is filthy */ 159 if (t->t_wchan == (caddr_t)&p->p_holdlwps && 160 t->t_wchan0 == NULL) { 161 if (t_hold == NULL) 162 t_hold = t; 163 } else { 164 if (t_sleep == NULL) 165 t_sleep = t; 166 } 167 break; 168 case TS_RUN: 169 case TS_WAIT: 170 if (t_run == NULL) 171 t_run = t; 172 break; 173 case TS_ONPROC: 174 if (t_onproc == NULL) 175 t_onproc = t; 176 break; 177 case TS_ZOMB: /* last possible choice */ 178 break; 179 case TS_STOPPED: 180 switch (t->t_whystop) { 181 case PR_SUSPENDED: 182 if (t_susp == NULL) 183 t_susp = t; 184 break; 185 case PR_JOBCONTROL: 186 if (t->t_proc_flag & TP_PRSTOP) { 187 if (t_jdstop == NULL) 188 t_jdstop = t; 189 } else { 190 if (t_jstop == NULL) 191 t_jstop = t; 192 } 193 break; 194 case PR_REQUESTED: 195 if (t_req == NULL) 196 t_req = t; 197 break; 198 case PR_SYSENTRY: 199 case PR_SYSEXIT: 200 case PR_SIGNALLED: 201 case PR_FAULTED: 202 /* 203 * Make an lwp calling exit() be the 204 * last lwp seen in the process. 205 */ 206 if (t_istop == NULL || 207 (t_istop->t_whystop == PR_SYSENTRY && 208 t_istop->t_whatstop == SYS_exit)) 209 t_istop = t; 210 break; 211 case PR_CHECKPOINT: /* can't happen? */ 212 break; 213 default: 214 panic("prchoose: bad t_whystop %d, thread 0x%p", 215 t->t_whystop, (void *)t); 216 /*NOTREACHED*/ 217 } 218 break; 219 } 220 thread_unlock(t); 221 } while ((t = t->t_forw) != p->p_tlist); 222 223 if (t_onproc) 224 t = t_onproc; 225 else if (t_run) 226 t = t_run; 227 else if (t_sleep) 228 t = t_sleep; 229 else if (t_jstop) 230 t = t_jstop; 231 else if (t_jdstop) 232 t = t_jdstop; 233 else if (t_istop) 234 t = t_istop; 235 else if (t_req) 236 t = t_req; 237 else if (t_hold) 238 t = t_hold; 239 else if (t_susp) 240 t = t_susp; 241 else /* TS_ZOMB */ 242 t = p->p_tlist; 243 244 if (t != NULL) 245 thread_lock(t); 246 return (t); 247 } 248 249 /* 250 * Wakeup anyone sleeping on the /proc vnode for the process/lwp to stop. 251 * Also call pollwakeup() if any lwps are waiting in poll() for POLLPRI 252 * on the /proc file descriptor. Called from stop() when a traced 253 * process stops on an event of interest. Also called from exit() 254 * and prinvalidate() to indicate POLLHUP and POLLERR respectively. 255 */ 256 void 257 prnotify(struct vnode *vp) 258 { 259 prcommon_t *pcp = VTOP(vp)->pr_common; 260 261 mutex_enter(&pcp->prc_mutex); 262 cv_broadcast(&pcp->prc_wait); 263 mutex_exit(&pcp->prc_mutex); 264 if (pcp->prc_flags & PRC_POLL) { 265 /* 266 * We call pollwakeup() with POLLHUP to ensure that 267 * the pollers are awakened even if they are polling 268 * for nothing (i.e., waiting for the process to exit). 269 * This enables the use of the PRC_POLL flag for optimization 270 * (we can turn off PRC_POLL only if we know no pollers remain). 271 */ 272 pcp->prc_flags &= ~PRC_POLL; 273 pollwakeup(&pcp->prc_pollhead, POLLHUP); 274 } 275 } 276 277 /* called immediately below, in prfree() */ 278 static void 279 prfreenotify(vnode_t *vp) 280 { 281 prnode_t *pnp; 282 prcommon_t *pcp; 283 284 while (vp != NULL) { 285 pnp = VTOP(vp); 286 pcp = pnp->pr_common; 287 ASSERT(pcp->prc_thread == NULL); 288 pcp->prc_proc = NULL; 289 /* 290 * We can't call prnotify() here because we are holding 291 * pidlock. We assert that there is no need to. 292 */ 293 mutex_enter(&pcp->prc_mutex); 294 cv_broadcast(&pcp->prc_wait); 295 mutex_exit(&pcp->prc_mutex); 296 ASSERT(!(pcp->prc_flags & PRC_POLL)); 297 298 vp = pnp->pr_next; 299 pnp->pr_next = NULL; 300 } 301 } 302 303 /* 304 * Called from a hook in freeproc() when a traced process is removed 305 * from the process table. The proc-table pointers of all associated 306 * /proc vnodes are cleared to indicate that the process has gone away. 307 */ 308 void 309 prfree(proc_t *p) 310 { 311 uint_t slot = p->p_slot; 312 313 ASSERT(MUTEX_HELD(&pidlock)); 314 315 /* 316 * Block the process against /proc so it can be freed. 317 * It cannot be freed while locked by some controlling process. 318 * Lock ordering: 319 * pidlock -> pr_pidlock -> p->p_lock -> pcp->prc_mutex 320 */ 321 mutex_enter(&pr_pidlock); /* protects pcp->prc_proc */ 322 mutex_enter(&p->p_lock); 323 while (p->p_proc_flag & P_PR_LOCK) { 324 mutex_exit(&pr_pidlock); 325 cv_wait(&pr_pid_cv[slot], &p->p_lock); 326 mutex_exit(&p->p_lock); 327 mutex_enter(&pr_pidlock); 328 mutex_enter(&p->p_lock); 329 } 330 331 ASSERT(p->p_tlist == NULL); 332 333 prfreenotify(p->p_plist); 334 p->p_plist = NULL; 335 336 prfreenotify(p->p_trace); 337 p->p_trace = NULL; 338 339 /* 340 * We broadcast to wake up everyone waiting for this process. 341 * No one can reach this process from this point on. 342 */ 343 cv_broadcast(&pr_pid_cv[slot]); 344 345 mutex_exit(&p->p_lock); 346 mutex_exit(&pr_pidlock); 347 } 348 349 /* 350 * Called from a hook in exit() when a traced process is becoming a zombie. 351 */ 352 void 353 prexit(proc_t *p) 354 { 355 ASSERT(MUTEX_HELD(&p->p_lock)); 356 357 if (pr_watch_active(p)) { 358 pr_free_watchpoints(p); 359 watch_disable(curthread); 360 } 361 /* pr_free_watched_pages() is called in exit(), after dropping p_lock */ 362 if (p->p_trace) { 363 VTOP(p->p_trace)->pr_common->prc_flags |= PRC_DESTROY; 364 prnotify(p->p_trace); 365 } 366 cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */ 367 } 368 369 /* 370 * Called when a thread calls lwp_exit(). 371 */ 372 void 373 prlwpexit(kthread_t *t) 374 { 375 vnode_t *vp; 376 prnode_t *pnp; 377 prcommon_t *pcp; 378 proc_t *p = ttoproc(t); 379 lwpent_t *lep = p->p_lwpdir[t->t_dslot].ld_entry; 380 381 ASSERT(t == curthread); 382 ASSERT(MUTEX_HELD(&p->p_lock)); 383 384 /* 385 * The process must be blocked against /proc to do this safely. 386 * The lwp must not disappear while the process is marked P_PR_LOCK. 387 * It is the caller's responsibility to have called prbarrier(p). 388 */ 389 ASSERT(!(p->p_proc_flag & P_PR_LOCK)); 390 391 for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) { 392 pnp = VTOP(vp); 393 pcp = pnp->pr_common; 394 if (pcp->prc_thread == t) { 395 pcp->prc_thread = NULL; 396 pcp->prc_flags |= PRC_DESTROY; 397 } 398 } 399 400 for (vp = lep->le_trace; vp != NULL; vp = pnp->pr_next) { 401 pnp = VTOP(vp); 402 pcp = pnp->pr_common; 403 pcp->prc_thread = NULL; 404 pcp->prc_flags |= PRC_DESTROY; 405 prnotify(vp); 406 } 407 408 if (p->p_trace) 409 prnotify(p->p_trace); 410 } 411 412 /* 413 * Called when a zombie thread is joined or when a 414 * detached lwp exits. Called from lwp_hash_out(). 415 */ 416 void 417 prlwpfree(proc_t *p, lwpent_t *lep) 418 { 419 vnode_t *vp; 420 prnode_t *pnp; 421 prcommon_t *pcp; 422 423 ASSERT(MUTEX_HELD(&p->p_lock)); 424 425 /* 426 * The process must be blocked against /proc to do this safely. 427 * The lwp must not disappear while the process is marked P_PR_LOCK. 428 * It is the caller's responsibility to have called prbarrier(p). 429 */ 430 ASSERT(!(p->p_proc_flag & P_PR_LOCK)); 431 432 vp = lep->le_trace; 433 lep->le_trace = NULL; 434 while (vp) { 435 prnotify(vp); 436 pnp = VTOP(vp); 437 pcp = pnp->pr_common; 438 ASSERT(pcp->prc_thread == NULL && 439 (pcp->prc_flags & PRC_DESTROY)); 440 pcp->prc_tslot = -1; 441 vp = pnp->pr_next; 442 pnp->pr_next = NULL; 443 } 444 445 if (p->p_trace) 446 prnotify(p->p_trace); 447 } 448 449 /* 450 * Called from a hook in exec() when a thread starts exec(). 451 */ 452 void 453 prexecstart(void) 454 { 455 proc_t *p = ttoproc(curthread); 456 klwp_t *lwp = ttolwp(curthread); 457 458 /* 459 * The P_PR_EXEC flag blocks /proc operations for 460 * the duration of the exec(). 461 * We can't start exec() while the process is 462 * locked by /proc, so we call prbarrier(). 463 * lwp_nostop keeps the process from being stopped 464 * via job control for the duration of the exec(). 465 */ 466 467 ASSERT(MUTEX_HELD(&p->p_lock)); 468 prbarrier(p); 469 lwp->lwp_nostop++; 470 p->p_proc_flag |= P_PR_EXEC; 471 } 472 473 /* 474 * Called from a hook in exec() when a thread finishes exec(). 475 * The thread may or may not have succeeded. Some other thread 476 * may have beat it to the punch. 477 */ 478 void 479 prexecend(void) 480 { 481 proc_t *p = ttoproc(curthread); 482 klwp_t *lwp = ttolwp(curthread); 483 vnode_t *vp; 484 prnode_t *pnp; 485 prcommon_t *pcp; 486 model_t model = p->p_model; 487 id_t tid = curthread->t_tid; 488 int tslot = curthread->t_dslot; 489 490 ASSERT(MUTEX_HELD(&p->p_lock)); 491 492 lwp->lwp_nostop--; 493 if (p->p_flag & SEXITLWPS) { 494 /* 495 * We are on our way to exiting because some 496 * other thread beat us in the race to exec(). 497 * Don't clear the P_PR_EXEC flag in this case. 498 */ 499 return; 500 } 501 502 /* 503 * Wake up anyone waiting in /proc for the process to complete exec(). 504 */ 505 p->p_proc_flag &= ~P_PR_EXEC; 506 if ((vp = p->p_trace) != NULL) { 507 pcp = VTOP(vp)->pr_common; 508 mutex_enter(&pcp->prc_mutex); 509 cv_broadcast(&pcp->prc_wait); 510 mutex_exit(&pcp->prc_mutex); 511 for (; vp != NULL; vp = pnp->pr_next) { 512 pnp = VTOP(vp); 513 pnp->pr_common->prc_datamodel = model; 514 } 515 } 516 if ((vp = p->p_lwpdir[tslot].ld_entry->le_trace) != NULL) { 517 /* 518 * We dealt with the process common above. 519 */ 520 ASSERT(p->p_trace != NULL); 521 pcp = VTOP(vp)->pr_common; 522 mutex_enter(&pcp->prc_mutex); 523 cv_broadcast(&pcp->prc_wait); 524 mutex_exit(&pcp->prc_mutex); 525 for (; vp != NULL; vp = pnp->pr_next) { 526 pnp = VTOP(vp); 527 pcp = pnp->pr_common; 528 pcp->prc_datamodel = model; 529 pcp->prc_tid = tid; 530 pcp->prc_tslot = tslot; 531 } 532 } 533 } 534 535 /* 536 * Called from a hook in relvm() just before freeing the address space. 537 * We free all the watched areas now. 538 */ 539 void 540 prrelvm(void) 541 { 542 proc_t *p = ttoproc(curthread); 543 544 mutex_enter(&p->p_lock); 545 prbarrier(p); /* block all other /proc operations */ 546 if (pr_watch_active(p)) { 547 pr_free_watchpoints(p); 548 watch_disable(curthread); 549 } 550 mutex_exit(&p->p_lock); 551 pr_free_watched_pages(p); 552 } 553 554 /* 555 * Called from hooks in exec-related code when a traced process 556 * attempts to exec(2) a setuid/setgid program or an unreadable 557 * file. Rather than fail the exec we invalidate the associated 558 * /proc vnodes so that subsequent attempts to use them will fail. 559 * 560 * All /proc vnodes, except directory vnodes, are retained on a linked 561 * list (rooted at p_plist in the process structure) until last close. 562 * 563 * A controlling process must re-open the /proc files in order to 564 * regain control. 565 */ 566 void 567 prinvalidate(struct user *up) 568 { 569 kthread_t *t = curthread; 570 proc_t *p = ttoproc(t); 571 vnode_t *vp; 572 prnode_t *pnp; 573 int writers = 0; 574 575 mutex_enter(&p->p_lock); 576 prbarrier(p); /* block all other /proc operations */ 577 578 /* 579 * At this moment, there can be only one lwp in the process. 580 */ 581 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 582 583 /* 584 * Invalidate any currently active /proc vnodes. 585 */ 586 for (vp = p->p_plist; vp != NULL; vp = pnp->pr_next) { 587 pnp = VTOP(vp); 588 switch (pnp->pr_type) { 589 case PR_PSINFO: /* these files can read by anyone */ 590 case PR_LPSINFO: 591 case PR_LWPSINFO: 592 case PR_LWPDIR: 593 case PR_LWPIDDIR: 594 case PR_USAGE: 595 case PR_LUSAGE: 596 case PR_LWPUSAGE: 597 break; 598 default: 599 pnp->pr_flags |= PR_INVAL; 600 break; 601 } 602 } 603 /* 604 * Wake up anyone waiting for the process or lwp. 605 * p->p_trace is guaranteed to be non-NULL if there 606 * are any open /proc files for this process. 607 */ 608 if ((vp = p->p_trace) != NULL) { 609 prcommon_t *pcp = VTOP(vp)->pr_pcommon; 610 611 prnotify(vp); 612 /* 613 * Are there any writers? 614 */ 615 if ((writers = pcp->prc_writers) != 0) { 616 /* 617 * Clear the exclusive open flag (old /proc interface). 618 * Set prc_selfopens equal to prc_writers so that 619 * the next O_EXCL|O_WRITE open will succeed 620 * even with existing (though invalid) writers. 621 * prclose() must decrement prc_selfopens when 622 * the invalid files are closed. 623 */ 624 pcp->prc_flags &= ~PRC_EXCL; 625 ASSERT(pcp->prc_selfopens <= writers); 626 pcp->prc_selfopens = writers; 627 } 628 } 629 vp = p->p_lwpdir[t->t_dslot].ld_entry->le_trace; 630 while (vp != NULL) { 631 /* 632 * We should not invalidate the lwpiddir vnodes, 633 * but the necessities of maintaining the old 634 * ioctl()-based version of /proc require it. 635 */ 636 pnp = VTOP(vp); 637 pnp->pr_flags |= PR_INVAL; 638 prnotify(vp); 639 vp = pnp->pr_next; 640 } 641 642 /* 643 * If any tracing flags are in effect and any vnodes are open for 644 * writing then set the requested-stop and run-on-last-close flags. 645 * Otherwise, clear all tracing flags. 646 */ 647 t->t_proc_flag &= ~TP_PAUSE; 648 if ((p->p_proc_flag & P_PR_TRACE) && writers) { 649 t->t_proc_flag |= TP_PRSTOP; 650 aston(t); /* so ISSIG will see the flag */ 651 p->p_proc_flag |= P_PR_RUNLCL; 652 } else { 653 premptyset(&up->u_entrymask); /* syscalls */ 654 premptyset(&up->u_exitmask); 655 up->u_systrap = 0; 656 premptyset(&p->p_sigmask); /* signals */ 657 premptyset(&p->p_fltmask); /* faults */ 658 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP|TP_STOPPING); 659 p->p_proc_flag &= ~(P_PR_RUNLCL|P_PR_KILLCL|P_PR_TRACE); 660 prnostep(ttolwp(t)); 661 } 662 663 mutex_exit(&p->p_lock); 664 } 665 666 /* 667 * Acquire the controlled process's p_lock and mark it P_PR_LOCK. 668 * Return with pr_pidlock held in all cases. 669 * Return with p_lock held if the the process still exists. 670 * Return value is the process pointer if the process still exists, else NULL. 671 * If we lock the process, give ourself kernel priority to avoid deadlocks; 672 * this is undone in prunlock(). 673 */ 674 proc_t * 675 pr_p_lock(prnode_t *pnp) 676 { 677 proc_t *p; 678 prcommon_t *pcp; 679 680 mutex_enter(&pr_pidlock); 681 if ((pcp = pnp->pr_pcommon) == NULL || (p = pcp->prc_proc) == NULL) 682 return (NULL); 683 mutex_enter(&p->p_lock); 684 while (p->p_proc_flag & P_PR_LOCK) { 685 /* 686 * This cv/mutex pair is persistent even if 687 * the process disappears while we sleep. 688 */ 689 kcondvar_t *cv = &pr_pid_cv[p->p_slot]; 690 kmutex_t *mp = &p->p_lock; 691 692 mutex_exit(&pr_pidlock); 693 cv_wait(cv, mp); 694 mutex_exit(mp); 695 mutex_enter(&pr_pidlock); 696 if (pcp->prc_proc == NULL) 697 return (NULL); 698 ASSERT(p == pcp->prc_proc); 699 mutex_enter(&p->p_lock); 700 } 701 p->p_proc_flag |= P_PR_LOCK; 702 THREAD_KPRI_REQUEST(); 703 return (p); 704 } 705 706 /* 707 * Lock the target process by setting P_PR_LOCK and grabbing p->p_lock. 708 * This prevents any lwp of the process from disappearing and 709 * blocks most operations that a process can perform on itself. 710 * Returns 0 on success, a non-zero error number on failure. 711 * 712 * 'zdisp' is ZYES or ZNO to indicate whether prlock() should succeed when 713 * the subject process is a zombie (ZYES) or fail for zombies (ZNO). 714 * 715 * error returns: 716 * ENOENT: process or lwp has disappeared or process is exiting 717 * (or has become a zombie and zdisp == ZNO). 718 * EAGAIN: procfs vnode has become invalid. 719 * EINTR: signal arrived while waiting for exec to complete. 720 */ 721 int 722 prlock(prnode_t *pnp, int zdisp) 723 { 724 prcommon_t *pcp; 725 proc_t *p; 726 727 again: 728 pcp = pnp->pr_common; 729 p = pr_p_lock(pnp); 730 mutex_exit(&pr_pidlock); 731 732 /* 733 * Return ENOENT immediately if there is no process. 734 */ 735 if (p == NULL) 736 return (ENOENT); 737 738 ASSERT(p == pcp->prc_proc && p->p_stat != 0 && p->p_stat != SIDL); 739 740 /* 741 * Return ENOENT if process entered zombie state or is exiting 742 * and the 'zdisp' flag is set to ZNO indicating not to lock zombies. 743 */ 744 if (zdisp == ZNO && 745 ((pcp->prc_flags & PRC_DESTROY) || (p->p_flag & SEXITING))) { 746 prunlock(pnp); 747 return (ENOENT); 748 } 749 750 /* 751 * If lwp-specific, check to see if lwp has disappeared. 752 */ 753 if (pcp->prc_flags & PRC_LWP) { 754 if ((zdisp == ZNO && (pcp->prc_flags & PRC_DESTROY)) || 755 pcp->prc_tslot == -1) { 756 prunlock(pnp); 757 return (ENOENT); 758 } 759 } 760 761 /* 762 * Return EAGAIN if we have encountered a security violation. 763 * (The process exec'd a set-id or unreadable executable file.) 764 */ 765 if (pnp->pr_flags & PR_INVAL) { 766 prunlock(pnp); 767 return (EAGAIN); 768 } 769 770 /* 771 * If process is undergoing an exec(), wait for 772 * completion and then start all over again. 773 */ 774 if (p->p_proc_flag & P_PR_EXEC) { 775 pcp = pnp->pr_pcommon; /* Put on the correct sleep queue */ 776 mutex_enter(&pcp->prc_mutex); 777 prunlock(pnp); 778 if (!cv_wait_sig(&pcp->prc_wait, &pcp->prc_mutex)) { 779 mutex_exit(&pcp->prc_mutex); 780 return (EINTR); 781 } 782 mutex_exit(&pcp->prc_mutex); 783 goto again; 784 } 785 786 /* 787 * We return holding p->p_lock. 788 */ 789 return (0); 790 } 791 792 /* 793 * Undo prlock() and pr_p_lock(). 794 * p->p_lock is still held; pr_pidlock is no longer held. 795 * 796 * prunmark() drops the P_PR_LOCK flag and wakes up another thread, 797 * if any, waiting for the flag to be dropped; it retains p->p_lock. 798 * 799 * prunlock() calls prunmark() and then drops p->p_lock. 800 */ 801 void 802 prunmark(proc_t *p) 803 { 804 ASSERT(p->p_proc_flag & P_PR_LOCK); 805 ASSERT(MUTEX_HELD(&p->p_lock)); 806 807 cv_signal(&pr_pid_cv[p->p_slot]); 808 p->p_proc_flag &= ~P_PR_LOCK; 809 THREAD_KPRI_RELEASE(); 810 } 811 812 void 813 prunlock(prnode_t *pnp) 814 { 815 prcommon_t *pcp = pnp->pr_common; 816 proc_t *p = pcp->prc_proc; 817 818 /* 819 * If we (or someone) gave it a SIGKILL, and it is not 820 * already a zombie, set it running unconditionally. 821 */ 822 if ((p->p_flag & SKILLED) && 823 !(p->p_flag & SEXITING) && 824 !(pcp->prc_flags & PRC_DESTROY) && 825 !((pcp->prc_flags & PRC_LWP) && pcp->prc_tslot == -1)) 826 (void) pr_setrun(pnp, 0); 827 prunmark(p); 828 mutex_exit(&p->p_lock); 829 } 830 831 /* 832 * Called while holding p->p_lock to delay until the process is unlocked. 833 * We enter holding p->p_lock; p->p_lock is dropped and reacquired. 834 * The process cannot become locked again until p->p_lock is dropped. 835 */ 836 void 837 prbarrier(proc_t *p) 838 { 839 ASSERT(MUTEX_HELD(&p->p_lock)); 840 841 if (p->p_proc_flag & P_PR_LOCK) { 842 /* The process is locked; delay until not locked */ 843 uint_t slot = p->p_slot; 844 845 while (p->p_proc_flag & P_PR_LOCK) 846 cv_wait(&pr_pid_cv[slot], &p->p_lock); 847 cv_signal(&pr_pid_cv[slot]); 848 } 849 } 850 851 /* 852 * Return process/lwp status. 853 * The u-block is mapped in by this routine and unmapped at the end. 854 */ 855 void 856 prgetstatus(proc_t *p, pstatus_t *sp, zone_t *zp) 857 { 858 kthread_t *t; 859 860 ASSERT(MUTEX_HELD(&p->p_lock)); 861 862 t = prchoose(p); /* returns locked thread */ 863 ASSERT(t != NULL); 864 thread_unlock(t); 865 866 /* just bzero the process part, prgetlwpstatus() does the rest */ 867 bzero(sp, sizeof (pstatus_t) - sizeof (lwpstatus_t)); 868 sp->pr_nlwp = p->p_lwpcnt; 869 sp->pr_nzomb = p->p_zombcnt; 870 prassignset(&sp->pr_sigpend, &p->p_sig); 871 sp->pr_brkbase = (uintptr_t)p->p_brkbase; 872 sp->pr_brksize = p->p_brksize; 873 sp->pr_stkbase = (uintptr_t)prgetstackbase(p); 874 sp->pr_stksize = p->p_stksize; 875 sp->pr_pid = p->p_pid; 876 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 877 (p->p_flag & SZONETOP)) { 878 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 879 /* 880 * Inside local zones, fake zsched's pid as parent pids for 881 * processes which reference processes outside of the zone. 882 */ 883 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 884 } else { 885 sp->pr_ppid = p->p_ppid; 886 } 887 sp->pr_pgid = p->p_pgrp; 888 sp->pr_sid = p->p_sessp->s_sid; 889 sp->pr_taskid = p->p_task->tk_tkid; 890 sp->pr_projid = p->p_task->tk_proj->kpj_id; 891 sp->pr_zoneid = p->p_zone->zone_id; 892 hrt2ts(mstate_aggr_state(p, LMS_USER), &sp->pr_utime); 893 hrt2ts(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime); 894 TICK_TO_TIMESTRUC(p->p_cutime, &sp->pr_cutime); 895 TICK_TO_TIMESTRUC(p->p_cstime, &sp->pr_cstime); 896 prassignset(&sp->pr_sigtrace, &p->p_sigmask); 897 prassignset(&sp->pr_flttrace, &p->p_fltmask); 898 prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask); 899 prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask); 900 switch (p->p_model) { 901 case DATAMODEL_ILP32: 902 sp->pr_dmodel = PR_MODEL_ILP32; 903 break; 904 case DATAMODEL_LP64: 905 sp->pr_dmodel = PR_MODEL_LP64; 906 break; 907 } 908 if (p->p_agenttp) 909 sp->pr_agentid = p->p_agenttp->t_tid; 910 911 /* get the chosen lwp's status */ 912 prgetlwpstatus(t, &sp->pr_lwp, zp); 913 914 /* replicate the flags */ 915 sp->pr_flags = sp->pr_lwp.pr_flags; 916 } 917 918 #ifdef _SYSCALL32_IMPL 919 void 920 prgetlwpstatus32(kthread_t *t, lwpstatus32_t *sp, zone_t *zp) 921 { 922 proc_t *p = ttoproc(t); 923 klwp_t *lwp = ttolwp(t); 924 struct mstate *ms = &lwp->lwp_mstate; 925 hrtime_t usr, sys; 926 int flags; 927 ulong_t instr; 928 929 ASSERT(MUTEX_HELD(&p->p_lock)); 930 931 bzero(sp, sizeof (*sp)); 932 flags = 0L; 933 if (t->t_state == TS_STOPPED) { 934 flags |= PR_STOPPED; 935 if ((t->t_schedflag & TS_PSTART) == 0) 936 flags |= PR_ISTOP; 937 } else if (VSTOPPED(t)) { 938 flags |= PR_STOPPED|PR_ISTOP; 939 } 940 if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP)) 941 flags |= PR_DSTOP; 942 if (lwp->lwp_asleep) 943 flags |= PR_ASLEEP; 944 if (t == p->p_agenttp) 945 flags |= PR_AGENT; 946 if (!(t->t_proc_flag & TP_TWAIT)) 947 flags |= PR_DETACH; 948 if (t->t_proc_flag & TP_DAEMON) 949 flags |= PR_DAEMON; 950 if (p->p_proc_flag & P_PR_FORK) 951 flags |= PR_FORK; 952 if (p->p_proc_flag & P_PR_RUNLCL) 953 flags |= PR_RLC; 954 if (p->p_proc_flag & P_PR_KILLCL) 955 flags |= PR_KLC; 956 if (p->p_proc_flag & P_PR_ASYNC) 957 flags |= PR_ASYNC; 958 if (p->p_proc_flag & P_PR_BPTADJ) 959 flags |= PR_BPTADJ; 960 if (p->p_proc_flag & P_PR_PTRACE) 961 flags |= PR_PTRACE; 962 if (p->p_flag & SMSACCT) 963 flags |= PR_MSACCT; 964 if (p->p_flag & SMSFORK) 965 flags |= PR_MSFORK; 966 if (p->p_flag & SVFWAIT) 967 flags |= PR_VFORKP; 968 sp->pr_flags = flags; 969 if (VSTOPPED(t)) { 970 sp->pr_why = PR_REQUESTED; 971 sp->pr_what = 0; 972 } else { 973 sp->pr_why = t->t_whystop; 974 sp->pr_what = t->t_whatstop; 975 } 976 sp->pr_lwpid = t->t_tid; 977 sp->pr_cursig = lwp->lwp_cursig; 978 prassignset(&sp->pr_lwppend, &t->t_sig); 979 schedctl_finish_sigblock(t); 980 prassignset(&sp->pr_lwphold, &t->t_hold); 981 if (t->t_whystop == PR_FAULTED) { 982 siginfo_kto32(&lwp->lwp_siginfo, &sp->pr_info); 983 if (t->t_whatstop == FLTPAGE) 984 sp->pr_info.si_addr = 985 (caddr32_t)(uintptr_t)lwp->lwp_siginfo.si_addr; 986 } else if (lwp->lwp_curinfo) 987 siginfo_kto32(&lwp->lwp_curinfo->sq_info, &sp->pr_info); 988 if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID && 989 sp->pr_info.si_zoneid != zp->zone_id) { 990 sp->pr_info.si_pid = zp->zone_zsched->p_pid; 991 sp->pr_info.si_uid = 0; 992 sp->pr_info.si_ctid = -1; 993 sp->pr_info.si_zoneid = zp->zone_id; 994 } 995 sp->pr_altstack.ss_sp = 996 (caddr32_t)(uintptr_t)lwp->lwp_sigaltstack.ss_sp; 997 sp->pr_altstack.ss_size = (size32_t)lwp->lwp_sigaltstack.ss_size; 998 sp->pr_altstack.ss_flags = (int32_t)lwp->lwp_sigaltstack.ss_flags; 999 prgetaction32(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action); 1000 sp->pr_oldcontext = (caddr32_t)lwp->lwp_oldcontext; 1001 sp->pr_ustack = (caddr32_t)lwp->lwp_ustack; 1002 (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name, 1003 sizeof (sp->pr_clname) - 1); 1004 if (flags & PR_STOPPED) 1005 hrt2ts32(t->t_stoptime, &sp->pr_tstamp); 1006 usr = ms->ms_acct[LMS_USER]; 1007 sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP]; 1008 scalehrtime(&usr); 1009 scalehrtime(&sys); 1010 hrt2ts32(usr, &sp->pr_utime); 1011 hrt2ts32(sys, &sp->pr_stime); 1012 1013 /* 1014 * Fetch the current instruction, if not a system process. 1015 * We don't attempt this unless the lwp is stopped. 1016 */ 1017 if ((p->p_flag & SSYS) || p->p_as == &kas) 1018 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL); 1019 else if (!(flags & PR_STOPPED)) 1020 sp->pr_flags |= PR_PCINVAL; 1021 else if (!prfetchinstr(lwp, &instr)) 1022 sp->pr_flags |= PR_PCINVAL; 1023 else 1024 sp->pr_instr = (uint32_t)instr; 1025 1026 /* 1027 * Drop p_lock while touching the lwp's stack. 1028 */ 1029 mutex_exit(&p->p_lock); 1030 if (prisstep(lwp)) 1031 sp->pr_flags |= PR_STEP; 1032 if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) { 1033 int i; 1034 1035 sp->pr_syscall = get_syscall32_args(lwp, 1036 (int *)sp->pr_sysarg, &i); 1037 sp->pr_nsysarg = (ushort_t)i; 1038 } 1039 if ((flags & PR_STOPPED) || t == curthread) 1040 prgetprregs32(lwp, sp->pr_reg); 1041 if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) || 1042 (flags & PR_VFORKP)) { 1043 long r1, r2; 1044 user_t *up; 1045 auxv_t *auxp; 1046 int i; 1047 1048 sp->pr_errno = prgetrvals(lwp, &r1, &r2); 1049 if (sp->pr_errno == 0) { 1050 sp->pr_rval1 = (int32_t)r1; 1051 sp->pr_rval2 = (int32_t)r2; 1052 sp->pr_errpriv = PRIV_NONE; 1053 } else 1054 sp->pr_errpriv = lwp->lwp_badpriv; 1055 1056 if (t->t_sysnum == SYS_exec || t->t_sysnum == SYS_execve) { 1057 up = PTOU(p); 1058 sp->pr_sysarg[0] = 0; 1059 sp->pr_sysarg[1] = (caddr32_t)up->u_argv; 1060 sp->pr_sysarg[2] = (caddr32_t)up->u_envp; 1061 for (i = 0, auxp = up->u_auxv; 1062 i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]); 1063 i++, auxp++) { 1064 if (auxp->a_type == AT_SUN_EXECNAME) { 1065 sp->pr_sysarg[0] = 1066 (caddr32_t)(uintptr_t)auxp->a_un.a_ptr; 1067 break; 1068 } 1069 } 1070 } 1071 } 1072 if (prhasfp()) 1073 prgetprfpregs32(lwp, &sp->pr_fpreg); 1074 mutex_enter(&p->p_lock); 1075 } 1076 1077 void 1078 prgetstatus32(proc_t *p, pstatus32_t *sp, zone_t *zp) 1079 { 1080 kthread_t *t; 1081 1082 ASSERT(MUTEX_HELD(&p->p_lock)); 1083 1084 t = prchoose(p); /* returns locked thread */ 1085 ASSERT(t != NULL); 1086 thread_unlock(t); 1087 1088 /* just bzero the process part, prgetlwpstatus32() does the rest */ 1089 bzero(sp, sizeof (pstatus32_t) - sizeof (lwpstatus32_t)); 1090 sp->pr_nlwp = p->p_lwpcnt; 1091 sp->pr_nzomb = p->p_zombcnt; 1092 prassignset(&sp->pr_sigpend, &p->p_sig); 1093 sp->pr_brkbase = (uint32_t)(uintptr_t)p->p_brkbase; 1094 sp->pr_brksize = (uint32_t)p->p_brksize; 1095 sp->pr_stkbase = (uint32_t)(uintptr_t)prgetstackbase(p); 1096 sp->pr_stksize = (uint32_t)p->p_stksize; 1097 sp->pr_pid = p->p_pid; 1098 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 1099 (p->p_flag & SZONETOP)) { 1100 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 1101 /* 1102 * Inside local zones, fake zsched's pid as parent pids for 1103 * processes which reference processes outside of the zone. 1104 */ 1105 sp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 1106 } else { 1107 sp->pr_ppid = p->p_ppid; 1108 } 1109 sp->pr_pgid = p->p_pgrp; 1110 sp->pr_sid = p->p_sessp->s_sid; 1111 sp->pr_taskid = p->p_task->tk_tkid; 1112 sp->pr_projid = p->p_task->tk_proj->kpj_id; 1113 sp->pr_zoneid = p->p_zone->zone_id; 1114 hrt2ts32(mstate_aggr_state(p, LMS_USER), &sp->pr_utime); 1115 hrt2ts32(mstate_aggr_state(p, LMS_SYSTEM), &sp->pr_stime); 1116 TICK_TO_TIMESTRUC32(p->p_cutime, &sp->pr_cutime); 1117 TICK_TO_TIMESTRUC32(p->p_cstime, &sp->pr_cstime); 1118 prassignset(&sp->pr_sigtrace, &p->p_sigmask); 1119 prassignset(&sp->pr_flttrace, &p->p_fltmask); 1120 prassignset(&sp->pr_sysentry, &PTOU(p)->u_entrymask); 1121 prassignset(&sp->pr_sysexit, &PTOU(p)->u_exitmask); 1122 switch (p->p_model) { 1123 case DATAMODEL_ILP32: 1124 sp->pr_dmodel = PR_MODEL_ILP32; 1125 break; 1126 case DATAMODEL_LP64: 1127 sp->pr_dmodel = PR_MODEL_LP64; 1128 break; 1129 } 1130 if (p->p_agenttp) 1131 sp->pr_agentid = p->p_agenttp->t_tid; 1132 1133 /* get the chosen lwp's status */ 1134 prgetlwpstatus32(t, &sp->pr_lwp, zp); 1135 1136 /* replicate the flags */ 1137 sp->pr_flags = sp->pr_lwp.pr_flags; 1138 } 1139 #endif /* _SYSCALL32_IMPL */ 1140 1141 /* 1142 * Return lwp status. 1143 */ 1144 void 1145 prgetlwpstatus(kthread_t *t, lwpstatus_t *sp, zone_t *zp) 1146 { 1147 proc_t *p = ttoproc(t); 1148 klwp_t *lwp = ttolwp(t); 1149 struct mstate *ms = &lwp->lwp_mstate; 1150 hrtime_t usr, sys; 1151 int flags; 1152 ulong_t instr; 1153 1154 ASSERT(MUTEX_HELD(&p->p_lock)); 1155 1156 bzero(sp, sizeof (*sp)); 1157 flags = 0L; 1158 if (t->t_state == TS_STOPPED) { 1159 flags |= PR_STOPPED; 1160 if ((t->t_schedflag & TS_PSTART) == 0) 1161 flags |= PR_ISTOP; 1162 } else if (VSTOPPED(t)) { 1163 flags |= PR_STOPPED|PR_ISTOP; 1164 } 1165 if (!(flags & PR_ISTOP) && (t->t_proc_flag & TP_PRSTOP)) 1166 flags |= PR_DSTOP; 1167 if (lwp->lwp_asleep) 1168 flags |= PR_ASLEEP; 1169 if (t == p->p_agenttp) 1170 flags |= PR_AGENT; 1171 if (!(t->t_proc_flag & TP_TWAIT)) 1172 flags |= PR_DETACH; 1173 if (t->t_proc_flag & TP_DAEMON) 1174 flags |= PR_DAEMON; 1175 if (p->p_proc_flag & P_PR_FORK) 1176 flags |= PR_FORK; 1177 if (p->p_proc_flag & P_PR_RUNLCL) 1178 flags |= PR_RLC; 1179 if (p->p_proc_flag & P_PR_KILLCL) 1180 flags |= PR_KLC; 1181 if (p->p_proc_flag & P_PR_ASYNC) 1182 flags |= PR_ASYNC; 1183 if (p->p_proc_flag & P_PR_BPTADJ) 1184 flags |= PR_BPTADJ; 1185 if (p->p_proc_flag & P_PR_PTRACE) 1186 flags |= PR_PTRACE; 1187 if (p->p_flag & SMSACCT) 1188 flags |= PR_MSACCT; 1189 if (p->p_flag & SMSFORK) 1190 flags |= PR_MSFORK; 1191 if (p->p_flag & SVFWAIT) 1192 flags |= PR_VFORKP; 1193 if (p->p_pgidp->pid_pgorphaned) 1194 flags |= PR_ORPHAN; 1195 if (p->p_pidflag & CLDNOSIGCHLD) 1196 flags |= PR_NOSIGCHLD; 1197 if (p->p_pidflag & CLDWAITPID) 1198 flags |= PR_WAITPID; 1199 sp->pr_flags = flags; 1200 if (VSTOPPED(t)) { 1201 sp->pr_why = PR_REQUESTED; 1202 sp->pr_what = 0; 1203 } else { 1204 sp->pr_why = t->t_whystop; 1205 sp->pr_what = t->t_whatstop; 1206 } 1207 sp->pr_lwpid = t->t_tid; 1208 sp->pr_cursig = lwp->lwp_cursig; 1209 prassignset(&sp->pr_lwppend, &t->t_sig); 1210 schedctl_finish_sigblock(t); 1211 prassignset(&sp->pr_lwphold, &t->t_hold); 1212 if (t->t_whystop == PR_FAULTED) 1213 bcopy(&lwp->lwp_siginfo, 1214 &sp->pr_info, sizeof (k_siginfo_t)); 1215 else if (lwp->lwp_curinfo) 1216 bcopy(&lwp->lwp_curinfo->sq_info, 1217 &sp->pr_info, sizeof (k_siginfo_t)); 1218 if (SI_FROMUSER(&lwp->lwp_siginfo) && zp->zone_id != GLOBAL_ZONEID && 1219 sp->pr_info.si_zoneid != zp->zone_id) { 1220 sp->pr_info.si_pid = zp->zone_zsched->p_pid; 1221 sp->pr_info.si_uid = 0; 1222 sp->pr_info.si_ctid = -1; 1223 sp->pr_info.si_zoneid = zp->zone_id; 1224 } 1225 sp->pr_altstack = lwp->lwp_sigaltstack; 1226 prgetaction(p, PTOU(p), lwp->lwp_cursig, &sp->pr_action); 1227 sp->pr_oldcontext = (uintptr_t)lwp->lwp_oldcontext; 1228 sp->pr_ustack = lwp->lwp_ustack; 1229 (void) strncpy(sp->pr_clname, sclass[t->t_cid].cl_name, 1230 sizeof (sp->pr_clname) - 1); 1231 if (flags & PR_STOPPED) 1232 hrt2ts(t->t_stoptime, &sp->pr_tstamp); 1233 usr = ms->ms_acct[LMS_USER]; 1234 sys = ms->ms_acct[LMS_SYSTEM] + ms->ms_acct[LMS_TRAP]; 1235 scalehrtime(&usr); 1236 scalehrtime(&sys); 1237 hrt2ts(usr, &sp->pr_utime); 1238 hrt2ts(sys, &sp->pr_stime); 1239 1240 /* 1241 * Fetch the current instruction, if not a system process. 1242 * We don't attempt this unless the lwp is stopped. 1243 */ 1244 if ((p->p_flag & SSYS) || p->p_as == &kas) 1245 sp->pr_flags |= (PR_ISSYS|PR_PCINVAL); 1246 else if (!(flags & PR_STOPPED)) 1247 sp->pr_flags |= PR_PCINVAL; 1248 else if (!prfetchinstr(lwp, &instr)) 1249 sp->pr_flags |= PR_PCINVAL; 1250 else 1251 sp->pr_instr = instr; 1252 1253 /* 1254 * Drop p_lock while touching the lwp's stack. 1255 */ 1256 mutex_exit(&p->p_lock); 1257 if (prisstep(lwp)) 1258 sp->pr_flags |= PR_STEP; 1259 if ((flags & (PR_STOPPED|PR_ASLEEP)) && t->t_sysnum) { 1260 int i; 1261 1262 sp->pr_syscall = get_syscall_args(lwp, 1263 (long *)sp->pr_sysarg, &i); 1264 sp->pr_nsysarg = (ushort_t)i; 1265 } 1266 if ((flags & PR_STOPPED) || t == curthread) 1267 prgetprregs(lwp, sp->pr_reg); 1268 if ((t->t_state == TS_STOPPED && t->t_whystop == PR_SYSEXIT) || 1269 (flags & PR_VFORKP)) { 1270 user_t *up; 1271 auxv_t *auxp; 1272 int i; 1273 1274 sp->pr_errno = prgetrvals(lwp, &sp->pr_rval1, &sp->pr_rval2); 1275 if (sp->pr_errno == 0) 1276 sp->pr_errpriv = PRIV_NONE; 1277 else 1278 sp->pr_errpriv = lwp->lwp_badpriv; 1279 1280 if (t->t_sysnum == SYS_exec || t->t_sysnum == SYS_execve) { 1281 up = PTOU(p); 1282 sp->pr_sysarg[0] = 0; 1283 sp->pr_sysarg[1] = (uintptr_t)up->u_argv; 1284 sp->pr_sysarg[2] = (uintptr_t)up->u_envp; 1285 for (i = 0, auxp = up->u_auxv; 1286 i < sizeof (up->u_auxv) / sizeof (up->u_auxv[0]); 1287 i++, auxp++) { 1288 if (auxp->a_type == AT_SUN_EXECNAME) { 1289 sp->pr_sysarg[0] = 1290 (uintptr_t)auxp->a_un.a_ptr; 1291 break; 1292 } 1293 } 1294 } 1295 } 1296 if (prhasfp()) 1297 prgetprfpregs(lwp, &sp->pr_fpreg); 1298 mutex_enter(&p->p_lock); 1299 } 1300 1301 /* 1302 * Get the sigaction structure for the specified signal. The u-block 1303 * must already have been mapped in by the caller. 1304 */ 1305 void 1306 prgetaction(proc_t *p, user_t *up, uint_t sig, struct sigaction *sp) 1307 { 1308 bzero(sp, sizeof (*sp)); 1309 1310 if (sig != 0 && (unsigned)sig < NSIG) { 1311 sp->sa_handler = up->u_signal[sig-1]; 1312 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]); 1313 if (sigismember(&up->u_sigonstack, sig)) 1314 sp->sa_flags |= SA_ONSTACK; 1315 if (sigismember(&up->u_sigresethand, sig)) 1316 sp->sa_flags |= SA_RESETHAND; 1317 if (sigismember(&up->u_sigrestart, sig)) 1318 sp->sa_flags |= SA_RESTART; 1319 if (sigismember(&p->p_siginfo, sig)) 1320 sp->sa_flags |= SA_SIGINFO; 1321 if (sigismember(&up->u_signodefer, sig)) 1322 sp->sa_flags |= SA_NODEFER; 1323 if (sig == SIGCLD) { 1324 if (p->p_flag & SNOWAIT) 1325 sp->sa_flags |= SA_NOCLDWAIT; 1326 if ((p->p_flag & SJCTL) == 0) 1327 sp->sa_flags |= SA_NOCLDSTOP; 1328 } 1329 } 1330 } 1331 1332 #ifdef _SYSCALL32_IMPL 1333 void 1334 prgetaction32(proc_t *p, user_t *up, uint_t sig, struct sigaction32 *sp) 1335 { 1336 bzero(sp, sizeof (*sp)); 1337 1338 if (sig != 0 && (unsigned)sig < NSIG) { 1339 sp->sa_handler = (caddr32_t)(uintptr_t)up->u_signal[sig-1]; 1340 prassignset(&sp->sa_mask, &up->u_sigmask[sig-1]); 1341 if (sigismember(&up->u_sigonstack, sig)) 1342 sp->sa_flags |= SA_ONSTACK; 1343 if (sigismember(&up->u_sigresethand, sig)) 1344 sp->sa_flags |= SA_RESETHAND; 1345 if (sigismember(&up->u_sigrestart, sig)) 1346 sp->sa_flags |= SA_RESTART; 1347 if (sigismember(&p->p_siginfo, sig)) 1348 sp->sa_flags |= SA_SIGINFO; 1349 if (sigismember(&up->u_signodefer, sig)) 1350 sp->sa_flags |= SA_NODEFER; 1351 if (sig == SIGCLD) { 1352 if (p->p_flag & SNOWAIT) 1353 sp->sa_flags |= SA_NOCLDWAIT; 1354 if ((p->p_flag & SJCTL) == 0) 1355 sp->sa_flags |= SA_NOCLDSTOP; 1356 } 1357 } 1358 } 1359 #endif /* _SYSCALL32_IMPL */ 1360 1361 /* 1362 * Count the number of segments in this process's address space. 1363 */ 1364 int 1365 prnsegs(struct as *as, int reserved) 1366 { 1367 int n = 0; 1368 struct seg *seg; 1369 1370 ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock)); 1371 1372 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1373 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1374 caddr_t saddr, naddr; 1375 void *tmp = NULL; 1376 1377 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1378 (void) pr_getprot(seg, reserved, &tmp, 1379 &saddr, &naddr, eaddr); 1380 if (saddr != naddr) 1381 n++; 1382 } 1383 1384 ASSERT(tmp == NULL); 1385 } 1386 1387 return (n); 1388 } 1389 1390 /* 1391 * Convert uint32_t to decimal string w/o leading zeros. 1392 * Add trailing null characters if 'len' is greater than string length. 1393 * Return the string length. 1394 */ 1395 int 1396 pr_u32tos(uint32_t n, char *s, int len) 1397 { 1398 char cbuf[11]; /* 32-bit unsigned integer fits in 10 digits */ 1399 char *cp = cbuf; 1400 char *end = s + len; 1401 1402 do { 1403 *cp++ = (char)(n % 10 + '0'); 1404 n /= 10; 1405 } while (n); 1406 1407 len = (int)(cp - cbuf); 1408 1409 do { 1410 *s++ = *--cp; 1411 } while (cp > cbuf); 1412 1413 while (s < end) /* optional pad */ 1414 *s++ = '\0'; 1415 1416 return (len); 1417 } 1418 1419 /* 1420 * Convert uint64_t to decimal string w/o leading zeros. 1421 * Return the string length. 1422 */ 1423 static int 1424 pr_u64tos(uint64_t n, char *s) 1425 { 1426 char cbuf[21]; /* 64-bit unsigned integer fits in 20 digits */ 1427 char *cp = cbuf; 1428 int len; 1429 1430 do { 1431 *cp++ = (char)(n % 10 + '0'); 1432 n /= 10; 1433 } while (n); 1434 1435 len = (int)(cp - cbuf); 1436 1437 do { 1438 *s++ = *--cp; 1439 } while (cp > cbuf); 1440 1441 return (len); 1442 } 1443 1444 void 1445 pr_object_name(char *name, vnode_t *vp, struct vattr *vattr) 1446 { 1447 char *s = name; 1448 struct vfs *vfsp; 1449 struct vfssw *vfsswp; 1450 1451 if ((vfsp = vp->v_vfsp) != NULL && 1452 ((vfsswp = vfssw + vfsp->vfs_fstype), vfsswp->vsw_name) && 1453 *vfsswp->vsw_name) { 1454 (void) strcpy(s, vfsswp->vsw_name); 1455 s += strlen(s); 1456 *s++ = '.'; 1457 } 1458 s += pr_u32tos(getmajor(vattr->va_fsid), s, 0); 1459 *s++ = '.'; 1460 s += pr_u32tos(getminor(vattr->va_fsid), s, 0); 1461 *s++ = '.'; 1462 s += pr_u64tos(vattr->va_nodeid, s); 1463 *s++ = '\0'; 1464 } 1465 1466 struct seg * 1467 break_seg(proc_t *p) 1468 { 1469 caddr_t addr = p->p_brkbase; 1470 struct seg *seg; 1471 struct vnode *vp; 1472 1473 if (p->p_brksize != 0) 1474 addr += p->p_brksize - 1; 1475 seg = as_segat(p->p_as, addr); 1476 if (seg != NULL && seg->s_ops == &segvn_ops && 1477 (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)) 1478 return (seg); 1479 return (NULL); 1480 } 1481 1482 /* 1483 * Implementation of service functions to handle procfs generic chained 1484 * copyout buffers. 1485 */ 1486 typedef struct pr_iobuf_list { 1487 list_node_t piol_link; /* buffer linkage */ 1488 size_t piol_size; /* total size (header + data) */ 1489 size_t piol_usedsize; /* amount to copy out from this buf */ 1490 } piol_t; 1491 1492 #define MAPSIZE (64 * 1024) 1493 #define PIOL_DATABUF(iol) ((void *)(&(iol)[1])) 1494 1495 void 1496 pr_iol_initlist(list_t *iolhead, size_t itemsize, int n) 1497 { 1498 piol_t *iol; 1499 size_t initial_size = MIN(1, n) * itemsize; 1500 1501 list_create(iolhead, sizeof (piol_t), offsetof(piol_t, piol_link)); 1502 1503 ASSERT(list_head(iolhead) == NULL); 1504 ASSERT(itemsize < MAPSIZE - sizeof (*iol)); 1505 ASSERT(initial_size > 0); 1506 1507 /* 1508 * Someone creating chained copyout buffers may ask for less than 1509 * MAPSIZE if the amount of data to be buffered is known to be 1510 * smaller than that. 1511 * But in order to prevent involuntary self-denial of service, 1512 * the requested input size is clamped at MAPSIZE. 1513 */ 1514 initial_size = MIN(MAPSIZE, initial_size + sizeof (*iol)); 1515 iol = kmem_alloc(initial_size, KM_SLEEP); 1516 list_insert_head(iolhead, iol); 1517 iol->piol_usedsize = 0; 1518 iol->piol_size = initial_size; 1519 } 1520 1521 void * 1522 pr_iol_newbuf(list_t *iolhead, size_t itemsize) 1523 { 1524 piol_t *iol; 1525 char *new; 1526 1527 ASSERT(itemsize < MAPSIZE - sizeof (*iol)); 1528 ASSERT(list_head(iolhead) != NULL); 1529 1530 iol = (piol_t *)list_tail(iolhead); 1531 1532 if (iol->piol_size < 1533 iol->piol_usedsize + sizeof (*iol) + itemsize) { 1534 /* 1535 * Out of space in the current buffer. Allocate more. 1536 */ 1537 piol_t *newiol; 1538 1539 newiol = kmem_alloc(MAPSIZE, KM_SLEEP); 1540 newiol->piol_size = MAPSIZE; 1541 newiol->piol_usedsize = 0; 1542 1543 list_insert_after(iolhead, iol, newiol); 1544 iol = list_next(iolhead, iol); 1545 ASSERT(iol == newiol); 1546 } 1547 new = (char *)PIOL_DATABUF(iol) + iol->piol_usedsize; 1548 iol->piol_usedsize += itemsize; 1549 bzero(new, itemsize); 1550 return (new); 1551 } 1552 1553 int 1554 pr_iol_copyout_and_free(list_t *iolhead, caddr_t *tgt, int errin) 1555 { 1556 int error = errin; 1557 piol_t *iol; 1558 1559 while ((iol = list_head(iolhead)) != NULL) { 1560 list_remove(iolhead, iol); 1561 if (!error) { 1562 if (copyout(PIOL_DATABUF(iol), *tgt, 1563 iol->piol_usedsize)) 1564 error = EFAULT; 1565 *tgt += iol->piol_usedsize; 1566 } 1567 kmem_free(iol, iol->piol_size); 1568 } 1569 list_destroy(iolhead); 1570 1571 return (error); 1572 } 1573 1574 int 1575 pr_iol_uiomove_and_free(list_t *iolhead, uio_t *uiop, int errin) 1576 { 1577 offset_t off = uiop->uio_offset; 1578 char *base; 1579 size_t size; 1580 piol_t *iol; 1581 int error = errin; 1582 1583 while ((iol = list_head(iolhead)) != NULL) { 1584 list_remove(iolhead, iol); 1585 base = PIOL_DATABUF(iol); 1586 size = iol->piol_usedsize; 1587 if (off <= size && error == 0 && uiop->uio_resid > 0) 1588 error = uiomove(base + off, size - off, 1589 UIO_READ, uiop); 1590 off = MAX(0, off - (offset_t)size); 1591 kmem_free(iol, iol->piol_size); 1592 } 1593 list_destroy(iolhead); 1594 1595 return (error); 1596 } 1597 1598 /* 1599 * Return an array of structures with memory map information. 1600 * We allocate here; the caller must deallocate. 1601 */ 1602 int 1603 prgetmap(proc_t *p, int reserved, list_t *iolhead) 1604 { 1605 struct as *as = p->p_as; 1606 prmap_t *mp; 1607 struct seg *seg; 1608 struct seg *brkseg, *stkseg; 1609 struct vnode *vp; 1610 struct vattr vattr; 1611 uint_t prot; 1612 1613 ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock)); 1614 1615 /* 1616 * Request an initial buffer size that doesn't waste memory 1617 * if the address space has only a small number of segments. 1618 */ 1619 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 1620 1621 if ((seg = AS_SEGFIRST(as)) == NULL) 1622 return (0); 1623 1624 brkseg = break_seg(p); 1625 stkseg = as_segat(as, prgetstackbase(p)); 1626 1627 do { 1628 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1629 caddr_t saddr, naddr; 1630 void *tmp = NULL; 1631 1632 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1633 prot = pr_getprot(seg, reserved, &tmp, 1634 &saddr, &naddr, eaddr); 1635 if (saddr == naddr) 1636 continue; 1637 1638 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 1639 1640 mp->pr_vaddr = (uintptr_t)saddr; 1641 mp->pr_size = naddr - saddr; 1642 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 1643 mp->pr_mflags = 0; 1644 if (prot & PROT_READ) 1645 mp->pr_mflags |= MA_READ; 1646 if (prot & PROT_WRITE) 1647 mp->pr_mflags |= MA_WRITE; 1648 if (prot & PROT_EXEC) 1649 mp->pr_mflags |= MA_EXEC; 1650 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 1651 mp->pr_mflags |= MA_SHARED; 1652 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 1653 mp->pr_mflags |= MA_NORESERVE; 1654 if (seg->s_ops == &segspt_shmops || 1655 (seg->s_ops == &segvn_ops && 1656 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 1657 mp->pr_mflags |= MA_ANON; 1658 if (seg == brkseg) 1659 mp->pr_mflags |= MA_BREAK; 1660 else if (seg == stkseg) { 1661 mp->pr_mflags |= MA_STACK; 1662 if (reserved) { 1663 size_t maxstack = 1664 ((size_t)p->p_stk_ctl + 1665 PAGEOFFSET) & PAGEMASK; 1666 mp->pr_vaddr = 1667 (uintptr_t)prgetstackbase(p) + 1668 p->p_stksize - maxstack; 1669 mp->pr_size = (uintptr_t)naddr - 1670 mp->pr_vaddr; 1671 } 1672 } 1673 if (seg->s_ops == &segspt_shmops) 1674 mp->pr_mflags |= MA_ISM | MA_SHM; 1675 mp->pr_pagesize = PAGESIZE; 1676 1677 /* 1678 * Manufacture a filename for the "object" directory. 1679 */ 1680 vattr.va_mask = AT_FSID|AT_NODEID; 1681 if (seg->s_ops == &segvn_ops && 1682 SEGOP_GETVP(seg, saddr, &vp) == 0 && 1683 vp != NULL && vp->v_type == VREG && 1684 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 1685 if (vp == p->p_exec) 1686 (void) strcpy(mp->pr_mapname, "a.out"); 1687 else 1688 pr_object_name(mp->pr_mapname, 1689 vp, &vattr); 1690 } 1691 1692 /* 1693 * Get the SysV shared memory id, if any. 1694 */ 1695 if ((mp->pr_mflags & MA_SHARED) && p->p_segacct && 1696 (mp->pr_shmid = shmgetid(p, seg->s_base)) != 1697 SHMID_NONE) { 1698 if (mp->pr_shmid == SHMID_FREE) 1699 mp->pr_shmid = -1; 1700 1701 mp->pr_mflags |= MA_SHM; 1702 } else { 1703 mp->pr_shmid = -1; 1704 } 1705 } 1706 ASSERT(tmp == NULL); 1707 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1708 1709 return (0); 1710 } 1711 1712 #ifdef _SYSCALL32_IMPL 1713 int 1714 prgetmap32(proc_t *p, int reserved, list_t *iolhead) 1715 { 1716 struct as *as = p->p_as; 1717 prmap32_t *mp; 1718 struct seg *seg; 1719 struct seg *brkseg, *stkseg; 1720 struct vnode *vp; 1721 struct vattr vattr; 1722 uint_t prot; 1723 1724 ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock)); 1725 1726 /* 1727 * Request an initial buffer size that doesn't waste memory 1728 * if the address space has only a small number of segments. 1729 */ 1730 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 1731 1732 if ((seg = AS_SEGFIRST(as)) == NULL) 1733 return (0); 1734 1735 brkseg = break_seg(p); 1736 stkseg = as_segat(as, prgetstackbase(p)); 1737 1738 do { 1739 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, reserved); 1740 caddr_t saddr, naddr; 1741 void *tmp = NULL; 1742 1743 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1744 prot = pr_getprot(seg, reserved, &tmp, 1745 &saddr, &naddr, eaddr); 1746 if (saddr == naddr) 1747 continue; 1748 1749 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 1750 1751 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 1752 mp->pr_size = (size32_t)(naddr - saddr); 1753 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 1754 mp->pr_mflags = 0; 1755 if (prot & PROT_READ) 1756 mp->pr_mflags |= MA_READ; 1757 if (prot & PROT_WRITE) 1758 mp->pr_mflags |= MA_WRITE; 1759 if (prot & PROT_EXEC) 1760 mp->pr_mflags |= MA_EXEC; 1761 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 1762 mp->pr_mflags |= MA_SHARED; 1763 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 1764 mp->pr_mflags |= MA_NORESERVE; 1765 if (seg->s_ops == &segspt_shmops || 1766 (seg->s_ops == &segvn_ops && 1767 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 1768 mp->pr_mflags |= MA_ANON; 1769 if (seg == brkseg) 1770 mp->pr_mflags |= MA_BREAK; 1771 else if (seg == stkseg) { 1772 mp->pr_mflags |= MA_STACK; 1773 if (reserved) { 1774 size_t maxstack = 1775 ((size_t)p->p_stk_ctl + 1776 PAGEOFFSET) & PAGEMASK; 1777 uintptr_t vaddr = 1778 (uintptr_t)prgetstackbase(p) + 1779 p->p_stksize - maxstack; 1780 mp->pr_vaddr = (caddr32_t)vaddr; 1781 mp->pr_size = (size32_t) 1782 ((uintptr_t)naddr - vaddr); 1783 } 1784 } 1785 if (seg->s_ops == &segspt_shmops) 1786 mp->pr_mflags |= MA_ISM | MA_SHM; 1787 mp->pr_pagesize = PAGESIZE; 1788 1789 /* 1790 * Manufacture a filename for the "object" directory. 1791 */ 1792 vattr.va_mask = AT_FSID|AT_NODEID; 1793 if (seg->s_ops == &segvn_ops && 1794 SEGOP_GETVP(seg, saddr, &vp) == 0 && 1795 vp != NULL && vp->v_type == VREG && 1796 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 1797 if (vp == p->p_exec) 1798 (void) strcpy(mp->pr_mapname, "a.out"); 1799 else 1800 pr_object_name(mp->pr_mapname, 1801 vp, &vattr); 1802 } 1803 1804 /* 1805 * Get the SysV shared memory id, if any. 1806 */ 1807 if ((mp->pr_mflags & MA_SHARED) && p->p_segacct && 1808 (mp->pr_shmid = shmgetid(p, seg->s_base)) != 1809 SHMID_NONE) { 1810 if (mp->pr_shmid == SHMID_FREE) 1811 mp->pr_shmid = -1; 1812 1813 mp->pr_mflags |= MA_SHM; 1814 } else { 1815 mp->pr_shmid = -1; 1816 } 1817 } 1818 ASSERT(tmp == NULL); 1819 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1820 1821 return (0); 1822 } 1823 #endif /* _SYSCALL32_IMPL */ 1824 1825 /* 1826 * Return the size of the /proc page data file. 1827 */ 1828 size_t 1829 prpdsize(struct as *as) 1830 { 1831 struct seg *seg; 1832 size_t size; 1833 1834 ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock)); 1835 1836 if ((seg = AS_SEGFIRST(as)) == NULL) 1837 return (0); 1838 1839 size = sizeof (prpageheader_t); 1840 do { 1841 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1842 caddr_t saddr, naddr; 1843 void *tmp = NULL; 1844 size_t npage; 1845 1846 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1847 (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1848 if ((npage = (naddr - saddr) / PAGESIZE) != 0) 1849 size += sizeof (prasmap_t) + round8(npage); 1850 } 1851 ASSERT(tmp == NULL); 1852 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1853 1854 return (size); 1855 } 1856 1857 #ifdef _SYSCALL32_IMPL 1858 size_t 1859 prpdsize32(struct as *as) 1860 { 1861 struct seg *seg; 1862 size_t size; 1863 1864 ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock)); 1865 1866 if ((seg = AS_SEGFIRST(as)) == NULL) 1867 return (0); 1868 1869 size = sizeof (prpageheader32_t); 1870 do { 1871 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1872 caddr_t saddr, naddr; 1873 void *tmp = NULL; 1874 size_t npage; 1875 1876 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1877 (void) pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1878 if ((npage = (naddr - saddr) / PAGESIZE) != 0) 1879 size += sizeof (prasmap32_t) + round8(npage); 1880 } 1881 ASSERT(tmp == NULL); 1882 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 1883 1884 return (size); 1885 } 1886 #endif /* _SYSCALL32_IMPL */ 1887 1888 /* 1889 * Read page data information. 1890 */ 1891 int 1892 prpdread(proc_t *p, uint_t hatid, struct uio *uiop) 1893 { 1894 struct as *as = p->p_as; 1895 caddr_t buf; 1896 size_t size; 1897 prpageheader_t *php; 1898 prasmap_t *pmp; 1899 struct seg *seg; 1900 int error; 1901 1902 again: 1903 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1904 1905 if ((seg = AS_SEGFIRST(as)) == NULL) { 1906 AS_LOCK_EXIT(as, &as->a_lock); 1907 return (0); 1908 } 1909 size = prpdsize(as); 1910 if (uiop->uio_resid < size) { 1911 AS_LOCK_EXIT(as, &as->a_lock); 1912 return (E2BIG); 1913 } 1914 1915 buf = kmem_zalloc(size, KM_SLEEP); 1916 php = (prpageheader_t *)buf; 1917 pmp = (prasmap_t *)(buf + sizeof (prpageheader_t)); 1918 1919 hrt2ts(gethrtime(), &php->pr_tstamp); 1920 php->pr_nmap = 0; 1921 php->pr_npage = 0; 1922 do { 1923 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1924 caddr_t saddr, naddr; 1925 void *tmp = NULL; 1926 1927 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1928 struct vnode *vp; 1929 struct vattr vattr; 1930 size_t len; 1931 size_t npage; 1932 uint_t prot; 1933 uintptr_t next; 1934 1935 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1936 if ((len = (size_t)(naddr - saddr)) == 0) 1937 continue; 1938 npage = len / PAGESIZE; 1939 next = (uintptr_t)(pmp + 1) + round8(npage); 1940 /* 1941 * It's possible that the address space can change 1942 * subtlely even though we're holding as->a_lock 1943 * due to the nondeterminism of page_exists() in 1944 * the presence of asychronously flushed pages or 1945 * mapped files whose sizes are changing. 1946 * page_exists() may be called indirectly from 1947 * pr_getprot() by a SEGOP_INCORE() routine. 1948 * If this happens we need to make sure we don't 1949 * overrun the buffer whose size we computed based 1950 * on the initial iteration through the segments. 1951 * Once we've detected an overflow, we need to clean 1952 * up the temporary memory allocated in pr_getprot() 1953 * and retry. If there's a pending signal, we return 1954 * EINTR so that this thread can be dislodged if 1955 * a latent bug causes us to spin indefinitely. 1956 */ 1957 if (next > (uintptr_t)buf + size) { 1958 pr_getprot_done(&tmp); 1959 AS_LOCK_EXIT(as, &as->a_lock); 1960 1961 kmem_free(buf, size); 1962 1963 if (ISSIG(curthread, JUSTLOOKING)) 1964 return (EINTR); 1965 1966 goto again; 1967 } 1968 1969 php->pr_nmap++; 1970 php->pr_npage += npage; 1971 pmp->pr_vaddr = (uintptr_t)saddr; 1972 pmp->pr_npage = npage; 1973 pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 1974 pmp->pr_mflags = 0; 1975 if (prot & PROT_READ) 1976 pmp->pr_mflags |= MA_READ; 1977 if (prot & PROT_WRITE) 1978 pmp->pr_mflags |= MA_WRITE; 1979 if (prot & PROT_EXEC) 1980 pmp->pr_mflags |= MA_EXEC; 1981 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 1982 pmp->pr_mflags |= MA_SHARED; 1983 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 1984 pmp->pr_mflags |= MA_NORESERVE; 1985 if (seg->s_ops == &segspt_shmops || 1986 (seg->s_ops == &segvn_ops && 1987 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 1988 pmp->pr_mflags |= MA_ANON; 1989 if (seg->s_ops == &segspt_shmops) 1990 pmp->pr_mflags |= MA_ISM | MA_SHM; 1991 pmp->pr_pagesize = PAGESIZE; 1992 /* 1993 * Manufacture a filename for the "object" directory. 1994 */ 1995 vattr.va_mask = AT_FSID|AT_NODEID; 1996 if (seg->s_ops == &segvn_ops && 1997 SEGOP_GETVP(seg, saddr, &vp) == 0 && 1998 vp != NULL && vp->v_type == VREG && 1999 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 2000 if (vp == p->p_exec) 2001 (void) strcpy(pmp->pr_mapname, "a.out"); 2002 else 2003 pr_object_name(pmp->pr_mapname, 2004 vp, &vattr); 2005 } 2006 2007 /* 2008 * Get the SysV shared memory id, if any. 2009 */ 2010 if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct && 2011 (pmp->pr_shmid = shmgetid(p, seg->s_base)) != 2012 SHMID_NONE) { 2013 if (pmp->pr_shmid == SHMID_FREE) 2014 pmp->pr_shmid = -1; 2015 2016 pmp->pr_mflags |= MA_SHM; 2017 } else { 2018 pmp->pr_shmid = -1; 2019 } 2020 2021 hat_getstat(as, saddr, len, hatid, 2022 (char *)(pmp + 1), HAT_SYNC_ZERORM); 2023 pmp = (prasmap_t *)next; 2024 } 2025 ASSERT(tmp == NULL); 2026 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2027 2028 AS_LOCK_EXIT(as, &as->a_lock); 2029 2030 ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size); 2031 error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop); 2032 kmem_free(buf, size); 2033 2034 return (error); 2035 } 2036 2037 #ifdef _SYSCALL32_IMPL 2038 int 2039 prpdread32(proc_t *p, uint_t hatid, struct uio *uiop) 2040 { 2041 struct as *as = p->p_as; 2042 caddr_t buf; 2043 size_t size; 2044 prpageheader32_t *php; 2045 prasmap32_t *pmp; 2046 struct seg *seg; 2047 int error; 2048 2049 again: 2050 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2051 2052 if ((seg = AS_SEGFIRST(as)) == NULL) { 2053 AS_LOCK_EXIT(as, &as->a_lock); 2054 return (0); 2055 } 2056 size = prpdsize32(as); 2057 if (uiop->uio_resid < size) { 2058 AS_LOCK_EXIT(as, &as->a_lock); 2059 return (E2BIG); 2060 } 2061 2062 buf = kmem_zalloc(size, KM_SLEEP); 2063 php = (prpageheader32_t *)buf; 2064 pmp = (prasmap32_t *)(buf + sizeof (prpageheader32_t)); 2065 2066 hrt2ts32(gethrtime(), &php->pr_tstamp); 2067 php->pr_nmap = 0; 2068 php->pr_npage = 0; 2069 do { 2070 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 2071 caddr_t saddr, naddr; 2072 void *tmp = NULL; 2073 2074 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 2075 struct vnode *vp; 2076 struct vattr vattr; 2077 size_t len; 2078 size_t npage; 2079 uint_t prot; 2080 uintptr_t next; 2081 2082 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 2083 if ((len = (size_t)(naddr - saddr)) == 0) 2084 continue; 2085 npage = len / PAGESIZE; 2086 next = (uintptr_t)(pmp + 1) + round8(npage); 2087 /* 2088 * It's possible that the address space can change 2089 * subtlely even though we're holding as->a_lock 2090 * due to the nondeterminism of page_exists() in 2091 * the presence of asychronously flushed pages or 2092 * mapped files whose sizes are changing. 2093 * page_exists() may be called indirectly from 2094 * pr_getprot() by a SEGOP_INCORE() routine. 2095 * If this happens we need to make sure we don't 2096 * overrun the buffer whose size we computed based 2097 * on the initial iteration through the segments. 2098 * Once we've detected an overflow, we need to clean 2099 * up the temporary memory allocated in pr_getprot() 2100 * and retry. If there's a pending signal, we return 2101 * EINTR so that this thread can be dislodged if 2102 * a latent bug causes us to spin indefinitely. 2103 */ 2104 if (next > (uintptr_t)buf + size) { 2105 pr_getprot_done(&tmp); 2106 AS_LOCK_EXIT(as, &as->a_lock); 2107 2108 kmem_free(buf, size); 2109 2110 if (ISSIG(curthread, JUSTLOOKING)) 2111 return (EINTR); 2112 2113 goto again; 2114 } 2115 2116 php->pr_nmap++; 2117 php->pr_npage += npage; 2118 pmp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 2119 pmp->pr_npage = (size32_t)npage; 2120 pmp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 2121 pmp->pr_mflags = 0; 2122 if (prot & PROT_READ) 2123 pmp->pr_mflags |= MA_READ; 2124 if (prot & PROT_WRITE) 2125 pmp->pr_mflags |= MA_WRITE; 2126 if (prot & PROT_EXEC) 2127 pmp->pr_mflags |= MA_EXEC; 2128 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 2129 pmp->pr_mflags |= MA_SHARED; 2130 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 2131 pmp->pr_mflags |= MA_NORESERVE; 2132 if (seg->s_ops == &segspt_shmops || 2133 (seg->s_ops == &segvn_ops && 2134 (SEGOP_GETVP(seg, saddr, &vp) != 0 || vp == NULL))) 2135 pmp->pr_mflags |= MA_ANON; 2136 if (seg->s_ops == &segspt_shmops) 2137 pmp->pr_mflags |= MA_ISM | MA_SHM; 2138 pmp->pr_pagesize = PAGESIZE; 2139 /* 2140 * Manufacture a filename for the "object" directory. 2141 */ 2142 vattr.va_mask = AT_FSID|AT_NODEID; 2143 if (seg->s_ops == &segvn_ops && 2144 SEGOP_GETVP(seg, saddr, &vp) == 0 && 2145 vp != NULL && vp->v_type == VREG && 2146 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 2147 if (vp == p->p_exec) 2148 (void) strcpy(pmp->pr_mapname, "a.out"); 2149 else 2150 pr_object_name(pmp->pr_mapname, 2151 vp, &vattr); 2152 } 2153 2154 /* 2155 * Get the SysV shared memory id, if any. 2156 */ 2157 if ((pmp->pr_mflags & MA_SHARED) && p->p_segacct && 2158 (pmp->pr_shmid = shmgetid(p, seg->s_base)) != 2159 SHMID_NONE) { 2160 if (pmp->pr_shmid == SHMID_FREE) 2161 pmp->pr_shmid = -1; 2162 2163 pmp->pr_mflags |= MA_SHM; 2164 } else { 2165 pmp->pr_shmid = -1; 2166 } 2167 2168 hat_getstat(as, saddr, len, hatid, 2169 (char *)(pmp + 1), HAT_SYNC_ZERORM); 2170 pmp = (prasmap32_t *)next; 2171 } 2172 ASSERT(tmp == NULL); 2173 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2174 2175 AS_LOCK_EXIT(as, &as->a_lock); 2176 2177 ASSERT((uintptr_t)pmp <= (uintptr_t)buf + size); 2178 error = uiomove(buf, (caddr_t)pmp - buf, UIO_READ, uiop); 2179 kmem_free(buf, size); 2180 2181 return (error); 2182 } 2183 #endif /* _SYSCALL32_IMPL */ 2184 2185 ushort_t 2186 prgetpctcpu(uint64_t pct) 2187 { 2188 /* 2189 * The value returned will be relevant in the zone of the examiner, 2190 * which may not be the same as the zone which performed the procfs 2191 * mount. 2192 */ 2193 int nonline = zone_ncpus_online_get(curproc->p_zone); 2194 2195 /* 2196 * Prorate over online cpus so we don't exceed 100% 2197 */ 2198 if (nonline > 1) 2199 pct /= nonline; 2200 pct >>= 16; /* convert to 16-bit scaled integer */ 2201 if (pct > 0x8000) /* might happen, due to rounding */ 2202 pct = 0x8000; 2203 return ((ushort_t)pct); 2204 } 2205 2206 /* 2207 * Return information used by ps(1). 2208 */ 2209 void 2210 prgetpsinfo(proc_t *p, psinfo_t *psp) 2211 { 2212 kthread_t *t; 2213 struct cred *cred; 2214 hrtime_t hrutime, hrstime; 2215 2216 ASSERT(MUTEX_HELD(&p->p_lock)); 2217 2218 if ((t = prchoose(p)) == NULL) /* returns locked thread */ 2219 bzero(psp, sizeof (*psp)); 2220 else { 2221 thread_unlock(t); 2222 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp)); 2223 } 2224 2225 /* 2226 * only export SSYS and SMSACCT; everything else is off-limits to 2227 * userland apps. 2228 */ 2229 psp->pr_flag = p->p_flag & (SSYS | SMSACCT); 2230 psp->pr_nlwp = p->p_lwpcnt; 2231 psp->pr_nzomb = p->p_zombcnt; 2232 mutex_enter(&p->p_crlock); 2233 cred = p->p_cred; 2234 psp->pr_uid = crgetruid(cred); 2235 psp->pr_euid = crgetuid(cred); 2236 psp->pr_gid = crgetrgid(cred); 2237 psp->pr_egid = crgetgid(cred); 2238 mutex_exit(&p->p_crlock); 2239 psp->pr_pid = p->p_pid; 2240 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 2241 (p->p_flag & SZONETOP)) { 2242 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 2243 /* 2244 * Inside local zones, fake zsched's pid as parent pids for 2245 * processes which reference processes outside of the zone. 2246 */ 2247 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 2248 } else { 2249 psp->pr_ppid = p->p_ppid; 2250 } 2251 psp->pr_pgid = p->p_pgrp; 2252 psp->pr_sid = p->p_sessp->s_sid; 2253 psp->pr_taskid = p->p_task->tk_tkid; 2254 psp->pr_projid = p->p_task->tk_proj->kpj_id; 2255 psp->pr_poolid = p->p_pool->pool_id; 2256 psp->pr_zoneid = p->p_zone->zone_id; 2257 if ((psp->pr_contract = PRCTID(p)) == 0) 2258 psp->pr_contract = -1; 2259 psp->pr_addr = (uintptr_t)prgetpsaddr(p); 2260 switch (p->p_model) { 2261 case DATAMODEL_ILP32: 2262 psp->pr_dmodel = PR_MODEL_ILP32; 2263 break; 2264 case DATAMODEL_LP64: 2265 psp->pr_dmodel = PR_MODEL_LP64; 2266 break; 2267 } 2268 hrutime = mstate_aggr_state(p, LMS_USER); 2269 hrstime = mstate_aggr_state(p, LMS_SYSTEM); 2270 hrt2ts((hrutime + hrstime), &psp->pr_time); 2271 TICK_TO_TIMESTRUC(p->p_cutime + p->p_cstime, &psp->pr_ctime); 2272 2273 if (t == NULL) { 2274 int wcode = p->p_wcode; /* must be atomic read */ 2275 2276 if (wcode) 2277 psp->pr_wstat = wstat(wcode, p->p_wdata); 2278 psp->pr_ttydev = PRNODEV; 2279 psp->pr_lwp.pr_state = SZOMB; 2280 psp->pr_lwp.pr_sname = 'Z'; 2281 psp->pr_lwp.pr_bindpro = PBIND_NONE; 2282 psp->pr_lwp.pr_bindpset = PS_NONE; 2283 } else { 2284 user_t *up = PTOU(p); 2285 struct as *as; 2286 dev_t d; 2287 extern dev_t rwsconsdev, rconsdev, uconsdev; 2288 2289 d = cttydev(p); 2290 /* 2291 * If the controlling terminal is the real 2292 * or workstation console device, map to what the 2293 * user thinks is the console device. 2294 */ 2295 if (d == rwsconsdev || d == rconsdev) 2296 d = uconsdev; 2297 psp->pr_ttydev = (d == NODEV) ? PRNODEV : d; 2298 psp->pr_start = up->u_start; 2299 bcopy(up->u_comm, psp->pr_fname, 2300 MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1)); 2301 bcopy(up->u_psargs, psp->pr_psargs, 2302 MIN(PRARGSZ-1, PSARGSZ)); 2303 psp->pr_argc = up->u_argc; 2304 psp->pr_argv = up->u_argv; 2305 psp->pr_envp = up->u_envp; 2306 2307 /* get the chosen lwp's lwpsinfo */ 2308 prgetlwpsinfo(t, &psp->pr_lwp); 2309 2310 /* compute %cpu for the process */ 2311 if (p->p_lwpcnt == 1) 2312 psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu; 2313 else { 2314 uint64_t pct = 0; 2315 hrtime_t cur_time = gethrtime_unscaled(); 2316 2317 t = p->p_tlist; 2318 do { 2319 pct += cpu_update_pct(t, cur_time); 2320 } while ((t = t->t_forw) != p->p_tlist); 2321 2322 psp->pr_pctcpu = prgetpctcpu(pct); 2323 } 2324 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) { 2325 psp->pr_size = 0; 2326 psp->pr_rssize = 0; 2327 } else { 2328 mutex_exit(&p->p_lock); 2329 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2330 psp->pr_size = btopr(rm_assize(as)) * (PAGESIZE / 1024); 2331 psp->pr_rssize = rm_asrss(as) * (PAGESIZE / 1024); 2332 psp->pr_pctmem = rm_pctmemory(as); 2333 AS_LOCK_EXIT(as, &as->a_lock); 2334 mutex_enter(&p->p_lock); 2335 } 2336 } 2337 } 2338 2339 #ifdef _SYSCALL32_IMPL 2340 void 2341 prgetpsinfo32(proc_t *p, psinfo32_t *psp) 2342 { 2343 kthread_t *t; 2344 struct cred *cred; 2345 hrtime_t hrutime, hrstime; 2346 2347 ASSERT(MUTEX_HELD(&p->p_lock)); 2348 2349 if ((t = prchoose(p)) == NULL) /* returns locked thread */ 2350 bzero(psp, sizeof (*psp)); 2351 else { 2352 thread_unlock(t); 2353 bzero(psp, sizeof (*psp) - sizeof (psp->pr_lwp)); 2354 } 2355 2356 /* 2357 * only export SSYS and SMSACCT; everything else is off-limits to 2358 * userland apps. 2359 */ 2360 psp->pr_flag = p->p_flag & (SSYS | SMSACCT); 2361 psp->pr_nlwp = p->p_lwpcnt; 2362 psp->pr_nzomb = p->p_zombcnt; 2363 mutex_enter(&p->p_crlock); 2364 cred = p->p_cred; 2365 psp->pr_uid = crgetruid(cred); 2366 psp->pr_euid = crgetuid(cred); 2367 psp->pr_gid = crgetrgid(cred); 2368 psp->pr_egid = crgetgid(cred); 2369 mutex_exit(&p->p_crlock); 2370 psp->pr_pid = p->p_pid; 2371 if (curproc->p_zone->zone_id != GLOBAL_ZONEID && 2372 (p->p_flag & SZONETOP)) { 2373 ASSERT(p->p_zone->zone_id != GLOBAL_ZONEID); 2374 /* 2375 * Inside local zones, fake zsched's pid as parent pids for 2376 * processes which reference processes outside of the zone. 2377 */ 2378 psp->pr_ppid = curproc->p_zone->zone_zsched->p_pid; 2379 } else { 2380 psp->pr_ppid = p->p_ppid; 2381 } 2382 psp->pr_pgid = p->p_pgrp; 2383 psp->pr_sid = p->p_sessp->s_sid; 2384 psp->pr_taskid = p->p_task->tk_tkid; 2385 psp->pr_projid = p->p_task->tk_proj->kpj_id; 2386 psp->pr_poolid = p->p_pool->pool_id; 2387 psp->pr_zoneid = p->p_zone->zone_id; 2388 if ((psp->pr_contract = PRCTID(p)) == 0) 2389 psp->pr_contract = -1; 2390 psp->pr_addr = 0; /* cannot represent 64-bit addr in 32 bits */ 2391 switch (p->p_model) { 2392 case DATAMODEL_ILP32: 2393 psp->pr_dmodel = PR_MODEL_ILP32; 2394 break; 2395 case DATAMODEL_LP64: 2396 psp->pr_dmodel = PR_MODEL_LP64; 2397 break; 2398 } 2399 hrutime = mstate_aggr_state(p, LMS_USER); 2400 hrstime = mstate_aggr_state(p, LMS_SYSTEM); 2401 hrt2ts32(hrutime + hrstime, &psp->pr_time); 2402 TICK_TO_TIMESTRUC32(p->p_cutime + p->p_cstime, &psp->pr_ctime); 2403 2404 if (t == NULL) { 2405 extern int wstat(int, int); /* needs a header file */ 2406 int wcode = p->p_wcode; /* must be atomic read */ 2407 2408 if (wcode) 2409 psp->pr_wstat = wstat(wcode, p->p_wdata); 2410 psp->pr_ttydev = PRNODEV32; 2411 psp->pr_lwp.pr_state = SZOMB; 2412 psp->pr_lwp.pr_sname = 'Z'; 2413 } else { 2414 user_t *up = PTOU(p); 2415 struct as *as; 2416 dev_t d; 2417 extern dev_t rwsconsdev, rconsdev, uconsdev; 2418 2419 d = cttydev(p); 2420 /* 2421 * If the controlling terminal is the real 2422 * or workstation console device, map to what the 2423 * user thinks is the console device. 2424 */ 2425 if (d == rwsconsdev || d == rconsdev) 2426 d = uconsdev; 2427 (void) cmpldev(&psp->pr_ttydev, d); 2428 TIMESPEC_TO_TIMESPEC32(&psp->pr_start, &up->u_start); 2429 bcopy(up->u_comm, psp->pr_fname, 2430 MIN(sizeof (up->u_comm), sizeof (psp->pr_fname)-1)); 2431 bcopy(up->u_psargs, psp->pr_psargs, 2432 MIN(PRARGSZ-1, PSARGSZ)); 2433 psp->pr_argc = up->u_argc; 2434 psp->pr_argv = (caddr32_t)up->u_argv; 2435 psp->pr_envp = (caddr32_t)up->u_envp; 2436 2437 /* get the chosen lwp's lwpsinfo */ 2438 prgetlwpsinfo32(t, &psp->pr_lwp); 2439 2440 /* compute %cpu for the process */ 2441 if (p->p_lwpcnt == 1) 2442 psp->pr_pctcpu = psp->pr_lwp.pr_pctcpu; 2443 else { 2444 uint64_t pct = 0; 2445 hrtime_t cur_time; 2446 2447 t = p->p_tlist; 2448 cur_time = gethrtime_unscaled(); 2449 do { 2450 pct += cpu_update_pct(t, cur_time); 2451 } while ((t = t->t_forw) != p->p_tlist); 2452 2453 psp->pr_pctcpu = prgetpctcpu(pct); 2454 } 2455 if ((p->p_flag & SSYS) || (as = p->p_as) == &kas) { 2456 psp->pr_size = 0; 2457 psp->pr_rssize = 0; 2458 } else { 2459 mutex_exit(&p->p_lock); 2460 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2461 psp->pr_size = (size32_t) 2462 (btopr(rm_assize(as)) * (PAGESIZE / 1024)); 2463 psp->pr_rssize = (size32_t) 2464 (rm_asrss(as) * (PAGESIZE / 1024)); 2465 psp->pr_pctmem = rm_pctmemory(as); 2466 AS_LOCK_EXIT(as, &as->a_lock); 2467 mutex_enter(&p->p_lock); 2468 } 2469 } 2470 2471 /* 2472 * If we are looking at an LP64 process, zero out 2473 * the fields that cannot be represented in ILP32. 2474 */ 2475 if (p->p_model != DATAMODEL_ILP32) { 2476 psp->pr_size = 0; 2477 psp->pr_rssize = 0; 2478 psp->pr_argv = 0; 2479 psp->pr_envp = 0; 2480 } 2481 } 2482 #endif /* _SYSCALL32_IMPL */ 2483 2484 void 2485 prgetlwpsinfo(kthread_t *t, lwpsinfo_t *psp) 2486 { 2487 klwp_t *lwp = ttolwp(t); 2488 sobj_ops_t *sobj; 2489 char c, state; 2490 uint64_t pct; 2491 int retval, niceval; 2492 hrtime_t hrutime, hrstime; 2493 2494 ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock)); 2495 2496 bzero(psp, sizeof (*psp)); 2497 2498 psp->pr_flag = 0; /* lwpsinfo_t.pr_flag is deprecated */ 2499 psp->pr_lwpid = t->t_tid; 2500 psp->pr_addr = (uintptr_t)t; 2501 psp->pr_wchan = (uintptr_t)t->t_wchan; 2502 2503 /* map the thread state enum into a process state enum */ 2504 state = VSTOPPED(t) ? TS_STOPPED : t->t_state; 2505 switch (state) { 2506 case TS_SLEEP: state = SSLEEP; c = 'S'; break; 2507 case TS_RUN: state = SRUN; c = 'R'; break; 2508 case TS_ONPROC: state = SONPROC; c = 'O'; break; 2509 case TS_ZOMB: state = SZOMB; c = 'Z'; break; 2510 case TS_STOPPED: state = SSTOP; c = 'T'; break; 2511 case TS_WAIT: state = SWAIT; c = 'W'; break; 2512 default: state = 0; c = '?'; break; 2513 } 2514 psp->pr_state = state; 2515 psp->pr_sname = c; 2516 if ((sobj = t->t_sobj_ops) != NULL) 2517 psp->pr_stype = SOBJ_TYPE(sobj); 2518 retval = CL_DONICE(t, NULL, 0, &niceval); 2519 if (retval == 0) { 2520 psp->pr_oldpri = v.v_maxsyspri - t->t_pri; 2521 psp->pr_nice = niceval + NZERO; 2522 } 2523 psp->pr_syscall = t->t_sysnum; 2524 psp->pr_pri = t->t_pri; 2525 psp->pr_start.tv_sec = t->t_start; 2526 psp->pr_start.tv_nsec = 0L; 2527 hrutime = lwp->lwp_mstate.ms_acct[LMS_USER]; 2528 scalehrtime(&hrutime); 2529 hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] + 2530 lwp->lwp_mstate.ms_acct[LMS_TRAP]; 2531 scalehrtime(&hrstime); 2532 hrt2ts(hrutime + hrstime, &psp->pr_time); 2533 /* compute %cpu for the lwp */ 2534 pct = cpu_update_pct(t, gethrtime_unscaled()); 2535 psp->pr_pctcpu = prgetpctcpu(pct); 2536 psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15; /* [0..99] */ 2537 if (psp->pr_cpu > 99) 2538 psp->pr_cpu = 99; 2539 2540 (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name, 2541 sizeof (psp->pr_clname) - 1); 2542 bzero(psp->pr_name, sizeof (psp->pr_name)); /* XXX ??? */ 2543 psp->pr_onpro = t->t_cpu->cpu_id; 2544 psp->pr_bindpro = t->t_bind_cpu; 2545 psp->pr_bindpset = t->t_bind_pset; 2546 psp->pr_lgrp = t->t_lpl->lpl_lgrpid; 2547 } 2548 2549 #ifdef _SYSCALL32_IMPL 2550 void 2551 prgetlwpsinfo32(kthread_t *t, lwpsinfo32_t *psp) 2552 { 2553 proc_t *p = ttoproc(t); 2554 klwp_t *lwp = ttolwp(t); 2555 sobj_ops_t *sobj; 2556 char c, state; 2557 uint64_t pct; 2558 int retval, niceval; 2559 hrtime_t hrutime, hrstime; 2560 2561 ASSERT(MUTEX_HELD(&p->p_lock)); 2562 2563 bzero(psp, sizeof (*psp)); 2564 2565 psp->pr_flag = 0; /* lwpsinfo_t.pr_flag is deprecated */ 2566 psp->pr_lwpid = t->t_tid; 2567 psp->pr_addr = 0; /* cannot represent 64-bit addr in 32 bits */ 2568 psp->pr_wchan = 0; /* cannot represent 64-bit addr in 32 bits */ 2569 2570 /* map the thread state enum into a process state enum */ 2571 state = VSTOPPED(t) ? TS_STOPPED : t->t_state; 2572 switch (state) { 2573 case TS_SLEEP: state = SSLEEP; c = 'S'; break; 2574 case TS_RUN: state = SRUN; c = 'R'; break; 2575 case TS_ONPROC: state = SONPROC; c = 'O'; break; 2576 case TS_ZOMB: state = SZOMB; c = 'Z'; break; 2577 case TS_STOPPED: state = SSTOP; c = 'T'; break; 2578 case TS_WAIT: state = SWAIT; c = 'W'; break; 2579 default: state = 0; c = '?'; break; 2580 } 2581 psp->pr_state = state; 2582 psp->pr_sname = c; 2583 if ((sobj = t->t_sobj_ops) != NULL) 2584 psp->pr_stype = SOBJ_TYPE(sobj); 2585 retval = CL_DONICE(t, NULL, 0, &niceval); 2586 if (retval == 0) { 2587 psp->pr_oldpri = v.v_maxsyspri - t->t_pri; 2588 psp->pr_nice = niceval + NZERO; 2589 } else { 2590 psp->pr_oldpri = 0; 2591 psp->pr_nice = 0; 2592 } 2593 psp->pr_syscall = t->t_sysnum; 2594 psp->pr_pri = t->t_pri; 2595 psp->pr_start.tv_sec = (time32_t)t->t_start; 2596 psp->pr_start.tv_nsec = 0L; 2597 hrutime = lwp->lwp_mstate.ms_acct[LMS_USER]; 2598 scalehrtime(&hrutime); 2599 hrstime = lwp->lwp_mstate.ms_acct[LMS_SYSTEM] + 2600 lwp->lwp_mstate.ms_acct[LMS_TRAP]; 2601 scalehrtime(&hrstime); 2602 hrt2ts32(hrutime + hrstime, &psp->pr_time); 2603 /* compute %cpu for the lwp */ 2604 pct = cpu_update_pct(t, gethrtime_unscaled()); 2605 psp->pr_pctcpu = prgetpctcpu(pct); 2606 psp->pr_cpu = (psp->pr_pctcpu*100 + 0x6000) >> 15; /* [0..99] */ 2607 if (psp->pr_cpu > 99) 2608 psp->pr_cpu = 99; 2609 2610 (void) strncpy(psp->pr_clname, sclass[t->t_cid].cl_name, 2611 sizeof (psp->pr_clname) - 1); 2612 bzero(psp->pr_name, sizeof (psp->pr_name)); /* XXX ??? */ 2613 psp->pr_onpro = t->t_cpu->cpu_id; 2614 psp->pr_bindpro = t->t_bind_cpu; 2615 psp->pr_bindpset = t->t_bind_pset; 2616 psp->pr_lgrp = t->t_lpl->lpl_lgrpid; 2617 } 2618 #endif /* _SYSCALL32_IMPL */ 2619 2620 /* 2621 * This used to get called when microstate accounting was disabled but 2622 * microstate information was requested. Since Microstate accounting is on 2623 * regardless of the proc flags, this simply makes it appear to procfs that 2624 * microstate accounting is on. This is relatively meaningless since you 2625 * can't turn it off, but this is here for the sake of appearances. 2626 */ 2627 2628 /*ARGSUSED*/ 2629 void 2630 estimate_msacct(kthread_t *t, hrtime_t curtime) 2631 { 2632 proc_t *p; 2633 2634 if (t == NULL) 2635 return; 2636 2637 p = ttoproc(t); 2638 ASSERT(MUTEX_HELD(&p->p_lock)); 2639 2640 /* 2641 * A system process (p0) could be referenced if the thread is 2642 * in the process of exiting. Don't turn on microstate accounting 2643 * in that case. 2644 */ 2645 if (p->p_flag & SSYS) 2646 return; 2647 2648 /* 2649 * Loop through all the LWPs (kernel threads) in the process. 2650 */ 2651 t = p->p_tlist; 2652 do { 2653 t->t_proc_flag |= TP_MSACCT; 2654 } while ((t = t->t_forw) != p->p_tlist); 2655 2656 p->p_flag |= SMSACCT; /* set process-wide MSACCT */ 2657 } 2658 2659 /* 2660 * It's not really possible to disable microstate accounting anymore. 2661 * However, this routine simply turns off the ms accounting flags in a process 2662 * This way procfs can still pretend to turn microstate accounting on and 2663 * off for a process, but it actually doesn't do anything. This is 2664 * a neutered form of preemptive idiot-proofing. 2665 */ 2666 void 2667 disable_msacct(proc_t *p) 2668 { 2669 kthread_t *t; 2670 2671 ASSERT(MUTEX_HELD(&p->p_lock)); 2672 2673 p->p_flag &= ~SMSACCT; /* clear process-wide MSACCT */ 2674 /* 2675 * Loop through all the LWPs (kernel threads) in the process. 2676 */ 2677 if ((t = p->p_tlist) != NULL) { 2678 do { 2679 /* clear per-thread flag */ 2680 t->t_proc_flag &= ~TP_MSACCT; 2681 } while ((t = t->t_forw) != p->p_tlist); 2682 } 2683 } 2684 2685 /* 2686 * Return resource usage information. 2687 */ 2688 void 2689 prgetusage(kthread_t *t, prhusage_t *pup) 2690 { 2691 klwp_t *lwp = ttolwp(t); 2692 hrtime_t *mstimep; 2693 struct mstate *ms = &lwp->lwp_mstate; 2694 int state; 2695 int i; 2696 hrtime_t curtime; 2697 hrtime_t waitrq; 2698 hrtime_t tmp1; 2699 2700 curtime = gethrtime_unscaled(); 2701 2702 pup->pr_lwpid = t->t_tid; 2703 pup->pr_count = 1; 2704 pup->pr_create = ms->ms_start; 2705 pup->pr_term = ms->ms_term; 2706 scalehrtime(&pup->pr_create); 2707 scalehrtime(&pup->pr_term); 2708 if (ms->ms_term == 0) { 2709 pup->pr_rtime = curtime - ms->ms_start; 2710 scalehrtime(&pup->pr_rtime); 2711 } else { 2712 pup->pr_rtime = ms->ms_term - ms->ms_start; 2713 scalehrtime(&pup->pr_rtime); 2714 } 2715 2716 2717 pup->pr_utime = ms->ms_acct[LMS_USER]; 2718 pup->pr_stime = ms->ms_acct[LMS_SYSTEM]; 2719 pup->pr_ttime = ms->ms_acct[LMS_TRAP]; 2720 pup->pr_tftime = ms->ms_acct[LMS_TFAULT]; 2721 pup->pr_dftime = ms->ms_acct[LMS_DFAULT]; 2722 pup->pr_kftime = ms->ms_acct[LMS_KFAULT]; 2723 pup->pr_ltime = ms->ms_acct[LMS_USER_LOCK]; 2724 pup->pr_slptime = ms->ms_acct[LMS_SLEEP]; 2725 pup->pr_wtime = ms->ms_acct[LMS_WAIT_CPU]; 2726 pup->pr_stoptime = ms->ms_acct[LMS_STOPPED]; 2727 2728 prscaleusage(pup); 2729 2730 /* 2731 * Adjust for time waiting in the dispatcher queue. 2732 */ 2733 waitrq = t->t_waitrq; /* hopefully atomic */ 2734 if (waitrq != 0) { 2735 tmp1 = curtime - waitrq; 2736 scalehrtime(&tmp1); 2737 pup->pr_wtime += tmp1; 2738 curtime = waitrq; 2739 } 2740 2741 /* 2742 * Adjust for time spent in current microstate. 2743 */ 2744 if (ms->ms_state_start > curtime) { 2745 curtime = gethrtime_unscaled(); 2746 } 2747 2748 i = 0; 2749 do { 2750 switch (state = t->t_mstate) { 2751 case LMS_SLEEP: 2752 /* 2753 * Update the timer for the current sleep state. 2754 */ 2755 switch (state = ms->ms_prev) { 2756 case LMS_TFAULT: 2757 case LMS_DFAULT: 2758 case LMS_KFAULT: 2759 case LMS_USER_LOCK: 2760 break; 2761 default: 2762 state = LMS_SLEEP; 2763 break; 2764 } 2765 break; 2766 case LMS_TFAULT: 2767 case LMS_DFAULT: 2768 case LMS_KFAULT: 2769 case LMS_USER_LOCK: 2770 state = LMS_SYSTEM; 2771 break; 2772 } 2773 switch (state) { 2774 case LMS_USER: mstimep = &pup->pr_utime; break; 2775 case LMS_SYSTEM: mstimep = &pup->pr_stime; break; 2776 case LMS_TRAP: mstimep = &pup->pr_ttime; break; 2777 case LMS_TFAULT: mstimep = &pup->pr_tftime; break; 2778 case LMS_DFAULT: mstimep = &pup->pr_dftime; break; 2779 case LMS_KFAULT: mstimep = &pup->pr_kftime; break; 2780 case LMS_USER_LOCK: mstimep = &pup->pr_ltime; break; 2781 case LMS_SLEEP: mstimep = &pup->pr_slptime; break; 2782 case LMS_WAIT_CPU: mstimep = &pup->pr_wtime; break; 2783 case LMS_STOPPED: mstimep = &pup->pr_stoptime; break; 2784 default: panic("prgetusage: unknown microstate"); 2785 } 2786 tmp1 = curtime - ms->ms_state_start; 2787 if (tmp1 < 0) { 2788 curtime = gethrtime_unscaled(); 2789 i++; 2790 continue; 2791 } 2792 scalehrtime(&tmp1); 2793 } while (tmp1 < 0 && i < MAX_ITERS_SPIN); 2794 2795 *mstimep += tmp1; 2796 2797 /* update pup timestamp */ 2798 pup->pr_tstamp = curtime; 2799 scalehrtime(&pup->pr_tstamp); 2800 2801 /* 2802 * Resource usage counters. 2803 */ 2804 pup->pr_minf = lwp->lwp_ru.minflt; 2805 pup->pr_majf = lwp->lwp_ru.majflt; 2806 pup->pr_nswap = lwp->lwp_ru.nswap; 2807 pup->pr_inblk = lwp->lwp_ru.inblock; 2808 pup->pr_oublk = lwp->lwp_ru.oublock; 2809 pup->pr_msnd = lwp->lwp_ru.msgsnd; 2810 pup->pr_mrcv = lwp->lwp_ru.msgrcv; 2811 pup->pr_sigs = lwp->lwp_ru.nsignals; 2812 pup->pr_vctx = lwp->lwp_ru.nvcsw; 2813 pup->pr_ictx = lwp->lwp_ru.nivcsw; 2814 pup->pr_sysc = lwp->lwp_ru.sysc; 2815 pup->pr_ioch = lwp->lwp_ru.ioch; 2816 } 2817 2818 /* 2819 * Convert ms_acct stats from unscaled high-res time to nanoseconds 2820 */ 2821 void 2822 prscaleusage(prhusage_t *usg) 2823 { 2824 scalehrtime(&usg->pr_utime); 2825 scalehrtime(&usg->pr_stime); 2826 scalehrtime(&usg->pr_ttime); 2827 scalehrtime(&usg->pr_tftime); 2828 scalehrtime(&usg->pr_dftime); 2829 scalehrtime(&usg->pr_kftime); 2830 scalehrtime(&usg->pr_ltime); 2831 scalehrtime(&usg->pr_slptime); 2832 scalehrtime(&usg->pr_wtime); 2833 scalehrtime(&usg->pr_stoptime); 2834 } 2835 2836 2837 /* 2838 * Sum resource usage information. 2839 */ 2840 void 2841 praddusage(kthread_t *t, prhusage_t *pup) 2842 { 2843 klwp_t *lwp = ttolwp(t); 2844 hrtime_t *mstimep; 2845 struct mstate *ms = &lwp->lwp_mstate; 2846 int state; 2847 int i; 2848 hrtime_t curtime; 2849 hrtime_t waitrq; 2850 hrtime_t tmp; 2851 prhusage_t conv; 2852 2853 curtime = gethrtime_unscaled(); 2854 2855 if (ms->ms_term == 0) { 2856 tmp = curtime - ms->ms_start; 2857 scalehrtime(&tmp); 2858 pup->pr_rtime += tmp; 2859 } else { 2860 tmp = ms->ms_term - ms->ms_start; 2861 scalehrtime(&tmp); 2862 pup->pr_rtime += tmp; 2863 } 2864 2865 conv.pr_utime = ms->ms_acct[LMS_USER]; 2866 conv.pr_stime = ms->ms_acct[LMS_SYSTEM]; 2867 conv.pr_ttime = ms->ms_acct[LMS_TRAP]; 2868 conv.pr_tftime = ms->ms_acct[LMS_TFAULT]; 2869 conv.pr_dftime = ms->ms_acct[LMS_DFAULT]; 2870 conv.pr_kftime = ms->ms_acct[LMS_KFAULT]; 2871 conv.pr_ltime = ms->ms_acct[LMS_USER_LOCK]; 2872 conv.pr_slptime = ms->ms_acct[LMS_SLEEP]; 2873 conv.pr_wtime = ms->ms_acct[LMS_WAIT_CPU]; 2874 conv.pr_stoptime = ms->ms_acct[LMS_STOPPED]; 2875 2876 prscaleusage(&conv); 2877 2878 pup->pr_utime += conv.pr_utime; 2879 pup->pr_stime += conv.pr_stime; 2880 pup->pr_ttime += conv.pr_ttime; 2881 pup->pr_tftime += conv.pr_tftime; 2882 pup->pr_dftime += conv.pr_dftime; 2883 pup->pr_kftime += conv.pr_kftime; 2884 pup->pr_ltime += conv.pr_ltime; 2885 pup->pr_slptime += conv.pr_slptime; 2886 pup->pr_wtime += conv.pr_wtime; 2887 pup->pr_stoptime += conv.pr_stoptime; 2888 2889 /* 2890 * Adjust for time waiting in the dispatcher queue. 2891 */ 2892 waitrq = t->t_waitrq; /* hopefully atomic */ 2893 if (waitrq != 0) { 2894 tmp = curtime - waitrq; 2895 scalehrtime(&tmp); 2896 pup->pr_wtime += tmp; 2897 curtime = waitrq; 2898 } 2899 2900 /* 2901 * Adjust for time spent in current microstate. 2902 */ 2903 if (ms->ms_state_start > curtime) { 2904 curtime = gethrtime_unscaled(); 2905 } 2906 2907 i = 0; 2908 do { 2909 switch (state = t->t_mstate) { 2910 case LMS_SLEEP: 2911 /* 2912 * Update the timer for the current sleep state. 2913 */ 2914 switch (state = ms->ms_prev) { 2915 case LMS_TFAULT: 2916 case LMS_DFAULT: 2917 case LMS_KFAULT: 2918 case LMS_USER_LOCK: 2919 break; 2920 default: 2921 state = LMS_SLEEP; 2922 break; 2923 } 2924 break; 2925 case LMS_TFAULT: 2926 case LMS_DFAULT: 2927 case LMS_KFAULT: 2928 case LMS_USER_LOCK: 2929 state = LMS_SYSTEM; 2930 break; 2931 } 2932 switch (state) { 2933 case LMS_USER: mstimep = &pup->pr_utime; break; 2934 case LMS_SYSTEM: mstimep = &pup->pr_stime; break; 2935 case LMS_TRAP: mstimep = &pup->pr_ttime; break; 2936 case LMS_TFAULT: mstimep = &pup->pr_tftime; break; 2937 case LMS_DFAULT: mstimep = &pup->pr_dftime; break; 2938 case LMS_KFAULT: mstimep = &pup->pr_kftime; break; 2939 case LMS_USER_LOCK: mstimep = &pup->pr_ltime; break; 2940 case LMS_SLEEP: mstimep = &pup->pr_slptime; break; 2941 case LMS_WAIT_CPU: mstimep = &pup->pr_wtime; break; 2942 case LMS_STOPPED: mstimep = &pup->pr_stoptime; break; 2943 default: panic("praddusage: unknown microstate"); 2944 } 2945 tmp = curtime - ms->ms_state_start; 2946 if (tmp < 0) { 2947 curtime = gethrtime_unscaled(); 2948 i++; 2949 continue; 2950 } 2951 scalehrtime(&tmp); 2952 } while (tmp < 0 && i < MAX_ITERS_SPIN); 2953 2954 *mstimep += tmp; 2955 2956 /* update pup timestamp */ 2957 pup->pr_tstamp = curtime; 2958 scalehrtime(&pup->pr_tstamp); 2959 2960 /* 2961 * Resource usage counters. 2962 */ 2963 pup->pr_minf += lwp->lwp_ru.minflt; 2964 pup->pr_majf += lwp->lwp_ru.majflt; 2965 pup->pr_nswap += lwp->lwp_ru.nswap; 2966 pup->pr_inblk += lwp->lwp_ru.inblock; 2967 pup->pr_oublk += lwp->lwp_ru.oublock; 2968 pup->pr_msnd += lwp->lwp_ru.msgsnd; 2969 pup->pr_mrcv += lwp->lwp_ru.msgrcv; 2970 pup->pr_sigs += lwp->lwp_ru.nsignals; 2971 pup->pr_vctx += lwp->lwp_ru.nvcsw; 2972 pup->pr_ictx += lwp->lwp_ru.nivcsw; 2973 pup->pr_sysc += lwp->lwp_ru.sysc; 2974 pup->pr_ioch += lwp->lwp_ru.ioch; 2975 } 2976 2977 /* 2978 * Convert a prhusage_t to a prusage_t. 2979 * This means convert each hrtime_t to a timestruc_t 2980 * and copy the count fields uint64_t => ulong_t. 2981 */ 2982 void 2983 prcvtusage(prhusage_t *pup, prusage_t *upup) 2984 { 2985 uint64_t *ullp; 2986 ulong_t *ulp; 2987 int i; 2988 2989 upup->pr_lwpid = pup->pr_lwpid; 2990 upup->pr_count = pup->pr_count; 2991 2992 hrt2ts(pup->pr_tstamp, &upup->pr_tstamp); 2993 hrt2ts(pup->pr_create, &upup->pr_create); 2994 hrt2ts(pup->pr_term, &upup->pr_term); 2995 hrt2ts(pup->pr_rtime, &upup->pr_rtime); 2996 hrt2ts(pup->pr_utime, &upup->pr_utime); 2997 hrt2ts(pup->pr_stime, &upup->pr_stime); 2998 hrt2ts(pup->pr_ttime, &upup->pr_ttime); 2999 hrt2ts(pup->pr_tftime, &upup->pr_tftime); 3000 hrt2ts(pup->pr_dftime, &upup->pr_dftime); 3001 hrt2ts(pup->pr_kftime, &upup->pr_kftime); 3002 hrt2ts(pup->pr_ltime, &upup->pr_ltime); 3003 hrt2ts(pup->pr_slptime, &upup->pr_slptime); 3004 hrt2ts(pup->pr_wtime, &upup->pr_wtime); 3005 hrt2ts(pup->pr_stoptime, &upup->pr_stoptime); 3006 bzero(upup->filltime, sizeof (upup->filltime)); 3007 3008 ullp = &pup->pr_minf; 3009 ulp = &upup->pr_minf; 3010 for (i = 0; i < 22; i++) 3011 *ulp++ = (ulong_t)*ullp++; 3012 } 3013 3014 #ifdef _SYSCALL32_IMPL 3015 void 3016 prcvtusage32(prhusage_t *pup, prusage32_t *upup) 3017 { 3018 uint64_t *ullp; 3019 uint32_t *ulp; 3020 int i; 3021 3022 upup->pr_lwpid = pup->pr_lwpid; 3023 upup->pr_count = pup->pr_count; 3024 3025 hrt2ts32(pup->pr_tstamp, &upup->pr_tstamp); 3026 hrt2ts32(pup->pr_create, &upup->pr_create); 3027 hrt2ts32(pup->pr_term, &upup->pr_term); 3028 hrt2ts32(pup->pr_rtime, &upup->pr_rtime); 3029 hrt2ts32(pup->pr_utime, &upup->pr_utime); 3030 hrt2ts32(pup->pr_stime, &upup->pr_stime); 3031 hrt2ts32(pup->pr_ttime, &upup->pr_ttime); 3032 hrt2ts32(pup->pr_tftime, &upup->pr_tftime); 3033 hrt2ts32(pup->pr_dftime, &upup->pr_dftime); 3034 hrt2ts32(pup->pr_kftime, &upup->pr_kftime); 3035 hrt2ts32(pup->pr_ltime, &upup->pr_ltime); 3036 hrt2ts32(pup->pr_slptime, &upup->pr_slptime); 3037 hrt2ts32(pup->pr_wtime, &upup->pr_wtime); 3038 hrt2ts32(pup->pr_stoptime, &upup->pr_stoptime); 3039 bzero(upup->filltime, sizeof (upup->filltime)); 3040 3041 ullp = &pup->pr_minf; 3042 ulp = &upup->pr_minf; 3043 for (i = 0; i < 22; i++) 3044 *ulp++ = (uint32_t)*ullp++; 3045 } 3046 #endif /* _SYSCALL32_IMPL */ 3047 3048 /* 3049 * Determine whether a set is empty. 3050 */ 3051 int 3052 setisempty(uint32_t *sp, uint_t n) 3053 { 3054 while (n--) 3055 if (*sp++) 3056 return (0); 3057 return (1); 3058 } 3059 3060 /* 3061 * Utility routine for establishing a watched area in the process. 3062 * Keep the list of watched areas sorted by virtual address. 3063 */ 3064 int 3065 set_watched_area(proc_t *p, struct watched_area *pwa) 3066 { 3067 caddr_t vaddr = pwa->wa_vaddr; 3068 caddr_t eaddr = pwa->wa_eaddr; 3069 ulong_t flags = pwa->wa_flags; 3070 struct watched_area *target; 3071 avl_index_t where; 3072 int error = 0; 3073 3074 /* we must not be holding p->p_lock, but the process must be locked */ 3075 ASSERT(MUTEX_NOT_HELD(&p->p_lock)); 3076 ASSERT(p->p_proc_flag & P_PR_LOCK); 3077 3078 /* 3079 * If this is our first watchpoint, enable watchpoints for the process. 3080 */ 3081 if (!pr_watch_active(p)) { 3082 kthread_t *t; 3083 3084 mutex_enter(&p->p_lock); 3085 if ((t = p->p_tlist) != NULL) { 3086 do { 3087 watch_enable(t); 3088 } while ((t = t->t_forw) != p->p_tlist); 3089 } 3090 mutex_exit(&p->p_lock); 3091 } 3092 3093 target = pr_find_watched_area(p, pwa, &where); 3094 if (target != NULL) { 3095 /* 3096 * We discovered an existing, overlapping watched area. 3097 * Allow it only if it is an exact match. 3098 */ 3099 if (target->wa_vaddr != vaddr || 3100 target->wa_eaddr != eaddr) 3101 error = EINVAL; 3102 else if (target->wa_flags != flags) { 3103 error = set_watched_page(p, vaddr, eaddr, 3104 flags, target->wa_flags); 3105 target->wa_flags = flags; 3106 } 3107 kmem_free(pwa, sizeof (struct watched_area)); 3108 } else { 3109 avl_insert(&p->p_warea, pwa, where); 3110 error = set_watched_page(p, vaddr, eaddr, flags, 0); 3111 } 3112 3113 return (error); 3114 } 3115 3116 /* 3117 * Utility routine for clearing a watched area in the process. 3118 * Must be an exact match of the virtual address. 3119 * size and flags don't matter. 3120 */ 3121 int 3122 clear_watched_area(proc_t *p, struct watched_area *pwa) 3123 { 3124 struct watched_area *found; 3125 3126 /* we must not be holding p->p_lock, but the process must be locked */ 3127 ASSERT(MUTEX_NOT_HELD(&p->p_lock)); 3128 ASSERT(p->p_proc_flag & P_PR_LOCK); 3129 3130 3131 if (!pr_watch_active(p)) { 3132 kmem_free(pwa, sizeof (struct watched_area)); 3133 return (0); 3134 } 3135 3136 /* 3137 * Look for a matching address in the watched areas. If a match is 3138 * found, clear the old watched area and adjust the watched page(s). It 3139 * is not an error if there is no match. 3140 */ 3141 if ((found = pr_find_watched_area(p, pwa, NULL)) != NULL && 3142 found->wa_vaddr == pwa->wa_vaddr) { 3143 clear_watched_page(p, found->wa_vaddr, found->wa_eaddr, 3144 found->wa_flags); 3145 avl_remove(&p->p_warea, found); 3146 kmem_free(found, sizeof (struct watched_area)); 3147 } 3148 3149 kmem_free(pwa, sizeof (struct watched_area)); 3150 3151 /* 3152 * If we removed the last watched area from the process, disable 3153 * watchpoints. 3154 */ 3155 if (!pr_watch_active(p)) { 3156 kthread_t *t; 3157 3158 mutex_enter(&p->p_lock); 3159 if ((t = p->p_tlist) != NULL) { 3160 do { 3161 watch_disable(t); 3162 } while ((t = t->t_forw) != p->p_tlist); 3163 } 3164 mutex_exit(&p->p_lock); 3165 } 3166 3167 return (0); 3168 } 3169 3170 /* 3171 * Frees all the watched_area structures 3172 */ 3173 void 3174 pr_free_watchpoints(proc_t *p) 3175 { 3176 struct watched_area *delp; 3177 void *cookie; 3178 3179 cookie = NULL; 3180 while ((delp = avl_destroy_nodes(&p->p_warea, &cookie)) != NULL) 3181 kmem_free(delp, sizeof (struct watched_area)); 3182 3183 avl_destroy(&p->p_warea); 3184 } 3185 3186 /* 3187 * This one is called by the traced process to unwatch all the 3188 * pages while deallocating the list of watched_page structs. 3189 */ 3190 void 3191 pr_free_watched_pages(proc_t *p) 3192 { 3193 struct as *as = p->p_as; 3194 struct watched_page *pwp; 3195 uint_t prot; 3196 int retrycnt, err; 3197 void *cookie; 3198 3199 if (as == NULL || avl_numnodes(&as->a_wpage) == 0) 3200 return; 3201 3202 ASSERT(MUTEX_NOT_HELD(&curproc->p_lock)); 3203 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 3204 3205 pwp = avl_first(&as->a_wpage); 3206 3207 cookie = NULL; 3208 while ((pwp = avl_destroy_nodes(&as->a_wpage, &cookie)) != NULL) { 3209 retrycnt = 0; 3210 if ((prot = pwp->wp_oprot) != 0) { 3211 caddr_t addr = pwp->wp_vaddr; 3212 struct seg *seg; 3213 retry: 3214 3215 if ((pwp->wp_prot != prot || 3216 (pwp->wp_flags & WP_NOWATCH)) && 3217 (seg = as_segat(as, addr)) != NULL) { 3218 err = SEGOP_SETPROT(seg, addr, PAGESIZE, prot); 3219 if (err == IE_RETRY) { 3220 ASSERT(retrycnt == 0); 3221 retrycnt++; 3222 goto retry; 3223 } 3224 } 3225 } 3226 kmem_free(pwp, sizeof (struct watched_page)); 3227 } 3228 3229 avl_destroy(&as->a_wpage); 3230 p->p_wprot = NULL; 3231 3232 AS_LOCK_EXIT(as, &as->a_lock); 3233 } 3234 3235 /* 3236 * Insert a watched area into the list of watched pages. 3237 * If oflags is zero then we are adding a new watched area. 3238 * Otherwise we are changing the flags of an existing watched area. 3239 */ 3240 static int 3241 set_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, 3242 ulong_t flags, ulong_t oflags) 3243 { 3244 struct as *as = p->p_as; 3245 avl_tree_t *pwp_tree; 3246 struct watched_page *pwp, *newpwp; 3247 struct watched_page tpw; 3248 avl_index_t where; 3249 struct seg *seg; 3250 uint_t prot; 3251 caddr_t addr; 3252 3253 /* 3254 * We need to pre-allocate a list of structures before we grab the 3255 * address space lock to avoid calling kmem_alloc(KM_SLEEP) with locks 3256 * held. 3257 */ 3258 newpwp = NULL; 3259 for (addr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3260 addr < eaddr; addr += PAGESIZE) { 3261 pwp = kmem_zalloc(sizeof (struct watched_page), KM_SLEEP); 3262 pwp->wp_list = newpwp; 3263 newpwp = pwp; 3264 } 3265 3266 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 3267 3268 /* 3269 * Search for an existing watched page to contain the watched area. 3270 * If none is found, grab a new one from the available list 3271 * and insert it in the active list, keeping the list sorted 3272 * by user-level virtual address. 3273 */ 3274 if (p->p_flag & SVFWAIT) 3275 pwp_tree = &p->p_wpage; 3276 else 3277 pwp_tree = &as->a_wpage; 3278 3279 again: 3280 if (avl_numnodes(pwp_tree) > prnwatch) { 3281 AS_LOCK_EXIT(as, &as->a_lock); 3282 while (newpwp != NULL) { 3283 pwp = newpwp->wp_list; 3284 kmem_free(newpwp, sizeof (struct watched_page)); 3285 newpwp = pwp; 3286 } 3287 return (E2BIG); 3288 } 3289 3290 tpw.wp_vaddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3291 if ((pwp = avl_find(pwp_tree, &tpw, &where)) == NULL) { 3292 pwp = newpwp; 3293 newpwp = newpwp->wp_list; 3294 pwp->wp_list = NULL; 3295 pwp->wp_vaddr = (caddr_t)((uintptr_t)vaddr & 3296 (uintptr_t)PAGEMASK); 3297 avl_insert(pwp_tree, pwp, where); 3298 } 3299 3300 ASSERT(vaddr >= pwp->wp_vaddr && vaddr < pwp->wp_vaddr + PAGESIZE); 3301 3302 if (oflags & WA_READ) 3303 pwp->wp_read--; 3304 if (oflags & WA_WRITE) 3305 pwp->wp_write--; 3306 if (oflags & WA_EXEC) 3307 pwp->wp_exec--; 3308 3309 ASSERT(pwp->wp_read >= 0); 3310 ASSERT(pwp->wp_write >= 0); 3311 ASSERT(pwp->wp_exec >= 0); 3312 3313 if (flags & WA_READ) 3314 pwp->wp_read++; 3315 if (flags & WA_WRITE) 3316 pwp->wp_write++; 3317 if (flags & WA_EXEC) 3318 pwp->wp_exec++; 3319 3320 if (!(p->p_flag & SVFWAIT)) { 3321 vaddr = pwp->wp_vaddr; 3322 if (pwp->wp_oprot == 0 && 3323 (seg = as_segat(as, vaddr)) != NULL) { 3324 SEGOP_GETPROT(seg, vaddr, 0, &prot); 3325 pwp->wp_oprot = (uchar_t)prot; 3326 pwp->wp_prot = (uchar_t)prot; 3327 } 3328 if (pwp->wp_oprot != 0) { 3329 prot = pwp->wp_oprot; 3330 if (pwp->wp_read) 3331 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3332 if (pwp->wp_write) 3333 prot &= ~PROT_WRITE; 3334 if (pwp->wp_exec) 3335 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3336 if (!(pwp->wp_flags & WP_NOWATCH) && 3337 pwp->wp_prot != prot && 3338 (pwp->wp_flags & WP_SETPROT) == 0) { 3339 pwp->wp_flags |= WP_SETPROT; 3340 pwp->wp_list = p->p_wprot; 3341 p->p_wprot = pwp; 3342 } 3343 pwp->wp_prot = (uchar_t)prot; 3344 } 3345 } 3346 3347 /* 3348 * If the watched area extends into the next page then do 3349 * it over again with the virtual address of the next page. 3350 */ 3351 if ((vaddr = pwp->wp_vaddr + PAGESIZE) < eaddr) 3352 goto again; 3353 3354 AS_LOCK_EXIT(as, &as->a_lock); 3355 3356 /* 3357 * Free any pages we may have over-allocated 3358 */ 3359 while (newpwp != NULL) { 3360 pwp = newpwp->wp_list; 3361 kmem_free(newpwp, sizeof (struct watched_page)); 3362 newpwp = pwp; 3363 } 3364 3365 return (0); 3366 } 3367 3368 /* 3369 * Remove a watched area from the list of watched pages. 3370 * A watched area may extend over more than one page. 3371 */ 3372 static void 3373 clear_watched_page(proc_t *p, caddr_t vaddr, caddr_t eaddr, ulong_t flags) 3374 { 3375 struct as *as = p->p_as; 3376 struct watched_page *pwp; 3377 struct watched_page tpw; 3378 avl_tree_t *tree; 3379 avl_index_t where; 3380 3381 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 3382 3383 if (p->p_flag & SVFWAIT) 3384 tree = &p->p_wpage; 3385 else 3386 tree = &as->a_wpage; 3387 3388 tpw.wp_vaddr = vaddr = 3389 (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 3390 pwp = avl_find(tree, &tpw, &where); 3391 if (pwp == NULL) 3392 pwp = avl_nearest(tree, where, AVL_AFTER); 3393 3394 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3395 ASSERT(vaddr <= pwp->wp_vaddr); 3396 3397 if (flags & WA_READ) 3398 pwp->wp_read--; 3399 if (flags & WA_WRITE) 3400 pwp->wp_write--; 3401 if (flags & WA_EXEC) 3402 pwp->wp_exec--; 3403 3404 if (pwp->wp_read + pwp->wp_write + pwp->wp_exec != 0) { 3405 /* 3406 * Reset the hat layer's protections on this page. 3407 */ 3408 if (pwp->wp_oprot != 0) { 3409 uint_t prot = pwp->wp_oprot; 3410 3411 if (pwp->wp_read) 3412 prot &= 3413 ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3414 if (pwp->wp_write) 3415 prot &= ~PROT_WRITE; 3416 if (pwp->wp_exec) 3417 prot &= 3418 ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3419 if (!(pwp->wp_flags & WP_NOWATCH) && 3420 pwp->wp_prot != prot && 3421 (pwp->wp_flags & WP_SETPROT) == 0) { 3422 pwp->wp_flags |= WP_SETPROT; 3423 pwp->wp_list = p->p_wprot; 3424 p->p_wprot = pwp; 3425 } 3426 pwp->wp_prot = (uchar_t)prot; 3427 } 3428 } else { 3429 /* 3430 * No watched areas remain in this page. 3431 * Reset everything to normal. 3432 */ 3433 if (pwp->wp_oprot != 0) { 3434 pwp->wp_prot = pwp->wp_oprot; 3435 if ((pwp->wp_flags & WP_SETPROT) == 0) { 3436 pwp->wp_flags |= WP_SETPROT; 3437 pwp->wp_list = p->p_wprot; 3438 p->p_wprot = pwp; 3439 } 3440 } 3441 } 3442 3443 pwp = AVL_NEXT(tree, pwp); 3444 } 3445 3446 AS_LOCK_EXIT(as, &as->a_lock); 3447 } 3448 3449 /* 3450 * Return the original protections for the specified page. 3451 */ 3452 static void 3453 getwatchprot(struct as *as, caddr_t addr, uint_t *prot) 3454 { 3455 struct watched_page *pwp; 3456 struct watched_page tpw; 3457 3458 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 3459 3460 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3461 if ((pwp = avl_find(&as->a_wpage, &tpw, NULL)) != NULL) 3462 *prot = pwp->wp_oprot; 3463 } 3464 3465 static prpagev_t * 3466 pr_pagev_create(struct seg *seg, int check_noreserve) 3467 { 3468 prpagev_t *pagev = kmem_alloc(sizeof (prpagev_t), KM_SLEEP); 3469 size_t total_pages = seg_pages(seg); 3470 3471 /* 3472 * Limit the size of our vectors to pagev_lim pages at a time. We need 3473 * 4 or 5 bytes of storage per page, so this means we limit ourself 3474 * to about a megabyte of kernel heap by default. 3475 */ 3476 pagev->pg_npages = MIN(total_pages, pagev_lim); 3477 pagev->pg_pnbase = 0; 3478 3479 pagev->pg_protv = 3480 kmem_alloc(pagev->pg_npages * sizeof (uint_t), KM_SLEEP); 3481 3482 if (check_noreserve) 3483 pagev->pg_incore = 3484 kmem_alloc(pagev->pg_npages * sizeof (char), KM_SLEEP); 3485 else 3486 pagev->pg_incore = NULL; 3487 3488 return (pagev); 3489 } 3490 3491 static void 3492 pr_pagev_destroy(prpagev_t *pagev) 3493 { 3494 if (pagev->pg_incore != NULL) 3495 kmem_free(pagev->pg_incore, pagev->pg_npages * sizeof (char)); 3496 3497 kmem_free(pagev->pg_protv, pagev->pg_npages * sizeof (uint_t)); 3498 kmem_free(pagev, sizeof (prpagev_t)); 3499 } 3500 3501 static caddr_t 3502 pr_pagev_fill(prpagev_t *pagev, struct seg *seg, caddr_t addr, caddr_t eaddr) 3503 { 3504 ulong_t lastpg = seg_page(seg, eaddr - 1); 3505 ulong_t pn, pnlim; 3506 caddr_t saddr; 3507 size_t len; 3508 3509 ASSERT(addr >= seg->s_base && addr <= eaddr); 3510 3511 if (addr == eaddr) 3512 return (eaddr); 3513 3514 refill: 3515 ASSERT(addr < eaddr); 3516 pagev->pg_pnbase = seg_page(seg, addr); 3517 pnlim = pagev->pg_pnbase + pagev->pg_npages; 3518 saddr = addr; 3519 3520 if (lastpg < pnlim) 3521 len = (size_t)(eaddr - addr); 3522 else 3523 len = pagev->pg_npages * PAGESIZE; 3524 3525 if (pagev->pg_incore != NULL) { 3526 /* 3527 * INCORE cleverly has different semantics than GETPROT: 3528 * it returns info on pages up to but NOT including addr + len. 3529 */ 3530 SEGOP_INCORE(seg, addr, len, pagev->pg_incore); 3531 pn = pagev->pg_pnbase; 3532 3533 do { 3534 /* 3535 * Guilty knowledge here: We know that segvn_incore 3536 * returns more than just the low-order bit that 3537 * indicates the page is actually in memory. If any 3538 * bits are set, then the page has backing store. 3539 */ 3540 if (pagev->pg_incore[pn++ - pagev->pg_pnbase]) 3541 goto out; 3542 3543 } while ((addr += PAGESIZE) < eaddr && pn < pnlim); 3544 3545 /* 3546 * If we examined all the pages in the vector but we're not 3547 * at the end of the segment, take another lap. 3548 */ 3549 if (addr < eaddr) 3550 goto refill; 3551 } 3552 3553 /* 3554 * Need to take len - 1 because addr + len is the address of the 3555 * first byte of the page just past the end of what we want. 3556 */ 3557 out: 3558 SEGOP_GETPROT(seg, saddr, len - 1, pagev->pg_protv); 3559 return (addr); 3560 } 3561 3562 static caddr_t 3563 pr_pagev_nextprot(prpagev_t *pagev, struct seg *seg, 3564 caddr_t *saddrp, caddr_t eaddr, uint_t *protp) 3565 { 3566 /* 3567 * Our starting address is either the specified address, or the base 3568 * address from the start of the pagev. If the latter is greater, 3569 * this means a previous call to pr_pagev_fill has already scanned 3570 * further than the end of the previous mapping. 3571 */ 3572 caddr_t base = seg->s_base + pagev->pg_pnbase * PAGESIZE; 3573 caddr_t addr = MAX(*saddrp, base); 3574 ulong_t pn = seg_page(seg, addr); 3575 uint_t prot, nprot; 3576 3577 /* 3578 * If we're dealing with noreserve pages, then advance addr to 3579 * the address of the next page which has backing store. 3580 */ 3581 if (pagev->pg_incore != NULL) { 3582 while (pagev->pg_incore[pn - pagev->pg_pnbase] == 0) { 3583 if ((addr += PAGESIZE) == eaddr) { 3584 *saddrp = addr; 3585 prot = 0; 3586 goto out; 3587 } 3588 if (++pn == pagev->pg_pnbase + pagev->pg_npages) { 3589 addr = pr_pagev_fill(pagev, seg, addr, eaddr); 3590 if (addr == eaddr) { 3591 *saddrp = addr; 3592 prot = 0; 3593 goto out; 3594 } 3595 pn = seg_page(seg, addr); 3596 } 3597 } 3598 } 3599 3600 /* 3601 * Get the protections on the page corresponding to addr. 3602 */ 3603 pn = seg_page(seg, addr); 3604 ASSERT(pn >= pagev->pg_pnbase); 3605 ASSERT(pn < (pagev->pg_pnbase + pagev->pg_npages)); 3606 3607 prot = pagev->pg_protv[pn - pagev->pg_pnbase]; 3608 getwatchprot(seg->s_as, addr, &prot); 3609 *saddrp = addr; 3610 3611 /* 3612 * Now loop until we find a backed page with different protections 3613 * or we reach the end of this segment. 3614 */ 3615 while ((addr += PAGESIZE) < eaddr) { 3616 /* 3617 * If pn has advanced to the page number following what we 3618 * have information on, refill the page vector and reset 3619 * addr and pn. If pr_pagev_fill does not return the 3620 * address of the next page, we have a discontiguity and 3621 * thus have reached the end of the current mapping. 3622 */ 3623 if (++pn == pagev->pg_pnbase + pagev->pg_npages) { 3624 caddr_t naddr = pr_pagev_fill(pagev, seg, addr, eaddr); 3625 if (naddr != addr) 3626 goto out; 3627 pn = seg_page(seg, addr); 3628 } 3629 3630 /* 3631 * The previous page's protections are in prot, and it has 3632 * backing. If this page is MAP_NORESERVE and has no backing, 3633 * then end this mapping and return the previous protections. 3634 */ 3635 if (pagev->pg_incore != NULL && 3636 pagev->pg_incore[pn - pagev->pg_pnbase] == 0) 3637 break; 3638 3639 /* 3640 * Otherwise end the mapping if this page's protections (nprot) 3641 * are different than those in the previous page (prot). 3642 */ 3643 nprot = pagev->pg_protv[pn - pagev->pg_pnbase]; 3644 getwatchprot(seg->s_as, addr, &nprot); 3645 3646 if (nprot != prot) 3647 break; 3648 } 3649 3650 out: 3651 *protp = prot; 3652 return (addr); 3653 } 3654 3655 size_t 3656 pr_getsegsize(struct seg *seg, int reserved) 3657 { 3658 size_t size = seg->s_size; 3659 3660 /* 3661 * If we're interested in the reserved space, return the size of the 3662 * segment itself. Everything else in this function is a special case 3663 * to determine the actual underlying size of various segment types. 3664 */ 3665 if (reserved) 3666 return (size); 3667 3668 /* 3669 * If this is a segvn mapping of a regular file, return the smaller 3670 * of the segment size and the remaining size of the file beyond 3671 * the file offset corresponding to seg->s_base. 3672 */ 3673 if (seg->s_ops == &segvn_ops) { 3674 vattr_t vattr; 3675 vnode_t *vp; 3676 3677 vattr.va_mask = AT_SIZE; 3678 3679 if (SEGOP_GETVP(seg, seg->s_base, &vp) == 0 && 3680 vp != NULL && vp->v_type == VREG && 3681 VOP_GETATTR(vp, &vattr, 0, CRED(), NULL) == 0) { 3682 3683 u_offset_t fsize = vattr.va_size; 3684 u_offset_t offset = SEGOP_GETOFFSET(seg, seg->s_base); 3685 3686 if (fsize < offset) 3687 fsize = 0; 3688 else 3689 fsize -= offset; 3690 3691 fsize = roundup(fsize, (u_offset_t)PAGESIZE); 3692 3693 if (fsize < (u_offset_t)size) 3694 size = (size_t)fsize; 3695 } 3696 3697 return (size); 3698 } 3699 3700 /* 3701 * If this is an ISM shared segment, don't include pages that are 3702 * beyond the real size of the spt segment that backs it. 3703 */ 3704 if (seg->s_ops == &segspt_shmops) 3705 return (MIN(spt_realsize(seg), size)); 3706 3707 /* 3708 * If this is segment is a mapping from /dev/null, then this is a 3709 * reservation of virtual address space and has no actual size. 3710 * Such segments are backed by segdev and have type set to neither 3711 * MAP_SHARED nor MAP_PRIVATE. 3712 */ 3713 if (seg->s_ops == &segdev_ops && 3714 ((SEGOP_GETTYPE(seg, seg->s_base) & 3715 (MAP_SHARED | MAP_PRIVATE)) == 0)) 3716 return (0); 3717 3718 /* 3719 * If this segment doesn't match one of the special types we handle, 3720 * just return the size of the segment itself. 3721 */ 3722 return (size); 3723 } 3724 3725 uint_t 3726 pr_getprot(struct seg *seg, int reserved, void **tmp, 3727 caddr_t *saddrp, caddr_t *naddrp, caddr_t eaddr) 3728 { 3729 struct as *as = seg->s_as; 3730 3731 caddr_t saddr = *saddrp; 3732 caddr_t naddr; 3733 3734 int check_noreserve; 3735 uint_t prot; 3736 3737 union { 3738 struct segvn_data *svd; 3739 struct segdev_data *sdp; 3740 void *data; 3741 } s; 3742 3743 s.data = seg->s_data; 3744 3745 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3746 ASSERT(saddr >= seg->s_base && saddr < eaddr); 3747 ASSERT(eaddr <= seg->s_base + seg->s_size); 3748 3749 /* 3750 * Don't include MAP_NORESERVE pages in the address range 3751 * unless their mappings have actually materialized. 3752 * We cheat by knowing that segvn is the only segment 3753 * driver that supports MAP_NORESERVE. 3754 */ 3755 check_noreserve = 3756 (!reserved && seg->s_ops == &segvn_ops && s.svd != NULL && 3757 (s.svd->vp == NULL || s.svd->vp->v_type != VREG) && 3758 (s.svd->flags & MAP_NORESERVE)); 3759 3760 /* 3761 * Examine every page only as a last resort. We use guilty knowledge 3762 * of segvn and segdev to avoid this: if there are no per-page 3763 * protections present in the segment and we don't care about 3764 * MAP_NORESERVE, then s_data->prot is the prot for the whole segment. 3765 */ 3766 if (!check_noreserve && saddr == seg->s_base && 3767 seg->s_ops == &segvn_ops && s.svd != NULL && s.svd->pageprot == 0) { 3768 prot = s.svd->prot; 3769 getwatchprot(as, saddr, &prot); 3770 naddr = eaddr; 3771 3772 } else if (saddr == seg->s_base && seg->s_ops == &segdev_ops && 3773 s.sdp != NULL && s.sdp->pageprot == 0) { 3774 prot = s.sdp->prot; 3775 getwatchprot(as, saddr, &prot); 3776 naddr = eaddr; 3777 3778 } else { 3779 prpagev_t *pagev; 3780 3781 /* 3782 * If addr is sitting at the start of the segment, then 3783 * create a page vector to store protection and incore 3784 * information for pages in the segment, and fill it. 3785 * Otherwise, we expect *tmp to address the prpagev_t 3786 * allocated by a previous call to this function. 3787 */ 3788 if (saddr == seg->s_base) { 3789 pagev = pr_pagev_create(seg, check_noreserve); 3790 saddr = pr_pagev_fill(pagev, seg, saddr, eaddr); 3791 3792 ASSERT(*tmp == NULL); 3793 *tmp = pagev; 3794 3795 ASSERT(saddr <= eaddr); 3796 *saddrp = saddr; 3797 3798 if (saddr == eaddr) { 3799 naddr = saddr; 3800 prot = 0; 3801 goto out; 3802 } 3803 3804 } else { 3805 ASSERT(*tmp != NULL); 3806 pagev = (prpagev_t *)*tmp; 3807 } 3808 3809 naddr = pr_pagev_nextprot(pagev, seg, saddrp, eaddr, &prot); 3810 ASSERT(naddr <= eaddr); 3811 } 3812 3813 out: 3814 if (naddr == eaddr) 3815 pr_getprot_done(tmp); 3816 *naddrp = naddr; 3817 return (prot); 3818 } 3819 3820 void 3821 pr_getprot_done(void **tmp) 3822 { 3823 if (*tmp != NULL) { 3824 pr_pagev_destroy((prpagev_t *)*tmp); 3825 *tmp = NULL; 3826 } 3827 } 3828 3829 /* 3830 * Return true iff the vnode is a /proc file from the object directory. 3831 */ 3832 int 3833 pr_isobject(vnode_t *vp) 3834 { 3835 return (vn_matchops(vp, prvnodeops) && VTOP(vp)->pr_type == PR_OBJECT); 3836 } 3837 3838 /* 3839 * Return true iff the vnode is a /proc file opened by the process itself. 3840 */ 3841 int 3842 pr_isself(vnode_t *vp) 3843 { 3844 /* 3845 * XXX: To retain binary compatibility with the old 3846 * ioctl()-based version of /proc, we exempt self-opens 3847 * of /proc/<pid> from being marked close-on-exec. 3848 */ 3849 return (vn_matchops(vp, prvnodeops) && 3850 (VTOP(vp)->pr_flags & PR_ISSELF) && 3851 VTOP(vp)->pr_type != PR_PIDDIR); 3852 } 3853 3854 static ssize_t 3855 pr_getpagesize(struct seg *seg, caddr_t saddr, caddr_t *naddrp, caddr_t eaddr) 3856 { 3857 ssize_t pagesize, hatsize; 3858 3859 ASSERT(AS_WRITE_HELD(seg->s_as, &seg->s_as->a_lock)); 3860 ASSERT(IS_P2ALIGNED(saddr, PAGESIZE)); 3861 ASSERT(IS_P2ALIGNED(eaddr, PAGESIZE)); 3862 ASSERT(saddr < eaddr); 3863 3864 pagesize = hatsize = hat_getpagesize(seg->s_as->a_hat, saddr); 3865 ASSERT(pagesize == -1 || IS_P2ALIGNED(pagesize, pagesize)); 3866 ASSERT(pagesize != 0); 3867 3868 if (pagesize == -1) 3869 pagesize = PAGESIZE; 3870 3871 saddr += P2NPHASE((uintptr_t)saddr, pagesize); 3872 3873 while (saddr < eaddr) { 3874 if (hatsize != hat_getpagesize(seg->s_as->a_hat, saddr)) 3875 break; 3876 ASSERT(IS_P2ALIGNED(saddr, pagesize)); 3877 saddr += pagesize; 3878 } 3879 3880 *naddrp = ((saddr < eaddr) ? saddr : eaddr); 3881 return (hatsize); 3882 } 3883 3884 /* 3885 * Return an array of structures with extended memory map information. 3886 * We allocate here; the caller must deallocate. 3887 */ 3888 int 3889 prgetxmap(proc_t *p, list_t *iolhead) 3890 { 3891 struct as *as = p->p_as; 3892 prxmap_t *mp; 3893 struct seg *seg; 3894 struct seg *brkseg, *stkseg; 3895 struct vnode *vp; 3896 struct vattr vattr; 3897 uint_t prot; 3898 3899 ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock)); 3900 3901 /* 3902 * Request an initial buffer size that doesn't waste memory 3903 * if the address space has only a small number of segments. 3904 */ 3905 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 3906 3907 if ((seg = AS_SEGFIRST(as)) == NULL) 3908 return (0); 3909 3910 brkseg = break_seg(p); 3911 stkseg = as_segat(as, prgetstackbase(p)); 3912 3913 do { 3914 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 3915 caddr_t saddr, naddr, baddr; 3916 void *tmp = NULL; 3917 ssize_t psz; 3918 char *parr; 3919 uint64_t npages; 3920 uint64_t pagenum; 3921 3922 /* 3923 * Segment loop part one: iterate from the base of the segment 3924 * to its end, pausing at each address boundary (baddr) between 3925 * ranges that have different virtual memory protections. 3926 */ 3927 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) { 3928 prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr); 3929 ASSERT(baddr >= saddr && baddr <= eaddr); 3930 3931 /* 3932 * Segment loop part two: iterate from the current 3933 * position to the end of the protection boundary, 3934 * pausing at each address boundary (naddr) between 3935 * ranges that have different underlying page sizes. 3936 */ 3937 for (; saddr < baddr; saddr = naddr) { 3938 psz = pr_getpagesize(seg, saddr, &naddr, baddr); 3939 ASSERT(naddr >= saddr && naddr <= baddr); 3940 3941 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 3942 3943 mp->pr_vaddr = (uintptr_t)saddr; 3944 mp->pr_size = naddr - saddr; 3945 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 3946 mp->pr_mflags = 0; 3947 if (prot & PROT_READ) 3948 mp->pr_mflags |= MA_READ; 3949 if (prot & PROT_WRITE) 3950 mp->pr_mflags |= MA_WRITE; 3951 if (prot & PROT_EXEC) 3952 mp->pr_mflags |= MA_EXEC; 3953 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 3954 mp->pr_mflags |= MA_SHARED; 3955 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 3956 mp->pr_mflags |= MA_NORESERVE; 3957 if (seg->s_ops == &segspt_shmops || 3958 (seg->s_ops == &segvn_ops && 3959 (SEGOP_GETVP(seg, saddr, &vp) != 0 || 3960 vp == NULL))) 3961 mp->pr_mflags |= MA_ANON; 3962 if (seg == brkseg) 3963 mp->pr_mflags |= MA_BREAK; 3964 else if (seg == stkseg) 3965 mp->pr_mflags |= MA_STACK; 3966 if (seg->s_ops == &segspt_shmops) 3967 mp->pr_mflags |= MA_ISM | MA_SHM; 3968 3969 mp->pr_pagesize = PAGESIZE; 3970 if (psz == -1) { 3971 mp->pr_hatpagesize = 0; 3972 } else { 3973 mp->pr_hatpagesize = psz; 3974 } 3975 3976 /* 3977 * Manufacture a filename for the "object" dir. 3978 */ 3979 mp->pr_dev = PRNODEV; 3980 vattr.va_mask = AT_FSID|AT_NODEID; 3981 if (seg->s_ops == &segvn_ops && 3982 SEGOP_GETVP(seg, saddr, &vp) == 0 && 3983 vp != NULL && vp->v_type == VREG && 3984 VOP_GETATTR(vp, &vattr, 0, CRED(), 3985 NULL) == 0) { 3986 mp->pr_dev = vattr.va_fsid; 3987 mp->pr_ino = vattr.va_nodeid; 3988 if (vp == p->p_exec) 3989 (void) strcpy(mp->pr_mapname, 3990 "a.out"); 3991 else 3992 pr_object_name(mp->pr_mapname, 3993 vp, &vattr); 3994 } 3995 3996 /* 3997 * Get the SysV shared memory id, if any. 3998 */ 3999 if ((mp->pr_mflags & MA_SHARED) && 4000 p->p_segacct && (mp->pr_shmid = shmgetid(p, 4001 seg->s_base)) != SHMID_NONE) { 4002 if (mp->pr_shmid == SHMID_FREE) 4003 mp->pr_shmid = -1; 4004 4005 mp->pr_mflags |= MA_SHM; 4006 } else { 4007 mp->pr_shmid = -1; 4008 } 4009 4010 npages = ((uintptr_t)(naddr - saddr)) >> 4011 PAGESHIFT; 4012 parr = kmem_zalloc(npages, KM_SLEEP); 4013 4014 SEGOP_INCORE(seg, saddr, naddr - saddr, parr); 4015 4016 for (pagenum = 0; pagenum < npages; pagenum++) { 4017 if (parr[pagenum] & SEG_PAGE_INCORE) 4018 mp->pr_rss++; 4019 if (parr[pagenum] & SEG_PAGE_ANON) 4020 mp->pr_anon++; 4021 if (parr[pagenum] & SEG_PAGE_LOCKED) 4022 mp->pr_locked++; 4023 } 4024 kmem_free(parr, npages); 4025 } 4026 } 4027 ASSERT(tmp == NULL); 4028 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 4029 4030 return (0); 4031 } 4032 4033 /* 4034 * Return the process's credentials. We don't need a 32-bit equivalent of 4035 * this function because prcred_t and prcred32_t are actually the same. 4036 */ 4037 void 4038 prgetcred(proc_t *p, prcred_t *pcrp) 4039 { 4040 mutex_enter(&p->p_crlock); 4041 cred2prcred(p->p_cred, pcrp); 4042 mutex_exit(&p->p_crlock); 4043 } 4044 4045 /* 4046 * Compute actual size of the prpriv_t structure. 4047 */ 4048 4049 size_t 4050 prgetprivsize(void) 4051 { 4052 return (priv_prgetprivsize(NULL)); 4053 } 4054 4055 /* 4056 * Return the process's privileges. We don't need a 32-bit equivalent of 4057 * this function because prpriv_t and prpriv32_t are actually the same. 4058 */ 4059 void 4060 prgetpriv(proc_t *p, prpriv_t *pprp) 4061 { 4062 mutex_enter(&p->p_crlock); 4063 cred2prpriv(p->p_cred, pprp); 4064 mutex_exit(&p->p_crlock); 4065 } 4066 4067 #ifdef _SYSCALL32_IMPL 4068 /* 4069 * Return an array of structures with HAT memory map information. 4070 * We allocate here; the caller must deallocate. 4071 */ 4072 int 4073 prgetxmap32(proc_t *p, list_t *iolhead) 4074 { 4075 struct as *as = p->p_as; 4076 prxmap32_t *mp; 4077 struct seg *seg; 4078 struct seg *brkseg, *stkseg; 4079 struct vnode *vp; 4080 struct vattr vattr; 4081 uint_t prot; 4082 4083 ASSERT(as != &kas && AS_WRITE_HELD(as, &as->a_lock)); 4084 4085 /* 4086 * Request an initial buffer size that doesn't waste memory 4087 * if the address space has only a small number of segments. 4088 */ 4089 pr_iol_initlist(iolhead, sizeof (*mp), avl_numnodes(&as->a_segtree)); 4090 4091 if ((seg = AS_SEGFIRST(as)) == NULL) 4092 return (0); 4093 4094 brkseg = break_seg(p); 4095 stkseg = as_segat(as, prgetstackbase(p)); 4096 4097 do { 4098 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 4099 caddr_t saddr, naddr, baddr; 4100 void *tmp = NULL; 4101 ssize_t psz; 4102 char *parr; 4103 uint64_t npages; 4104 uint64_t pagenum; 4105 4106 /* 4107 * Segment loop part one: iterate from the base of the segment 4108 * to its end, pausing at each address boundary (baddr) between 4109 * ranges that have different virtual memory protections. 4110 */ 4111 for (saddr = seg->s_base; saddr < eaddr; saddr = baddr) { 4112 prot = pr_getprot(seg, 0, &tmp, &saddr, &baddr, eaddr); 4113 ASSERT(baddr >= saddr && baddr <= eaddr); 4114 4115 /* 4116 * Segment loop part two: iterate from the current 4117 * position to the end of the protection boundary, 4118 * pausing at each address boundary (naddr) between 4119 * ranges that have different underlying page sizes. 4120 */ 4121 for (; saddr < baddr; saddr = naddr) { 4122 psz = pr_getpagesize(seg, saddr, &naddr, baddr); 4123 ASSERT(naddr >= saddr && naddr <= baddr); 4124 4125 mp = pr_iol_newbuf(iolhead, sizeof (*mp)); 4126 4127 mp->pr_vaddr = (caddr32_t)(uintptr_t)saddr; 4128 mp->pr_size = (size32_t)(naddr - saddr); 4129 mp->pr_offset = SEGOP_GETOFFSET(seg, saddr); 4130 mp->pr_mflags = 0; 4131 if (prot & PROT_READ) 4132 mp->pr_mflags |= MA_READ; 4133 if (prot & PROT_WRITE) 4134 mp->pr_mflags |= MA_WRITE; 4135 if (prot & PROT_EXEC) 4136 mp->pr_mflags |= MA_EXEC; 4137 if (SEGOP_GETTYPE(seg, saddr) & MAP_SHARED) 4138 mp->pr_mflags |= MA_SHARED; 4139 if (SEGOP_GETTYPE(seg, saddr) & MAP_NORESERVE) 4140 mp->pr_mflags |= MA_NORESERVE; 4141 if (seg->s_ops == &segspt_shmops || 4142 (seg->s_ops == &segvn_ops && 4143 (SEGOP_GETVP(seg, saddr, &vp) != 0 || 4144 vp == NULL))) 4145 mp->pr_mflags |= MA_ANON; 4146 if (seg == brkseg) 4147 mp->pr_mflags |= MA_BREAK; 4148 else if (seg == stkseg) 4149 mp->pr_mflags |= MA_STACK; 4150 if (seg->s_ops == &segspt_shmops) 4151 mp->pr_mflags |= MA_ISM | MA_SHM; 4152 4153 mp->pr_pagesize = PAGESIZE; 4154 if (psz == -1) { 4155 mp->pr_hatpagesize = 0; 4156 } else { 4157 mp->pr_hatpagesize = psz; 4158 } 4159 4160 /* 4161 * Manufacture a filename for the "object" dir. 4162 */ 4163 mp->pr_dev = PRNODEV32; 4164 vattr.va_mask = AT_FSID|AT_NODEID; 4165 if (seg->s_ops == &segvn_ops && 4166 SEGOP_GETVP(seg, saddr, &vp) == 0 && 4167 vp != NULL && vp->v_type == VREG && 4168 VOP_GETATTR(vp, &vattr, 0, CRED(), 4169 NULL) == 0) { 4170 (void) cmpldev(&mp->pr_dev, 4171 vattr.va_fsid); 4172 mp->pr_ino = vattr.va_nodeid; 4173 if (vp == p->p_exec) 4174 (void) strcpy(mp->pr_mapname, 4175 "a.out"); 4176 else 4177 pr_object_name(mp->pr_mapname, 4178 vp, &vattr); 4179 } 4180 4181 /* 4182 * Get the SysV shared memory id, if any. 4183 */ 4184 if ((mp->pr_mflags & MA_SHARED) && 4185 p->p_segacct && (mp->pr_shmid = shmgetid(p, 4186 seg->s_base)) != SHMID_NONE) { 4187 if (mp->pr_shmid == SHMID_FREE) 4188 mp->pr_shmid = -1; 4189 4190 mp->pr_mflags |= MA_SHM; 4191 } else { 4192 mp->pr_shmid = -1; 4193 } 4194 4195 npages = ((uintptr_t)(naddr - saddr)) >> 4196 PAGESHIFT; 4197 parr = kmem_zalloc(npages, KM_SLEEP); 4198 4199 SEGOP_INCORE(seg, saddr, naddr - saddr, parr); 4200 4201 for (pagenum = 0; pagenum < npages; pagenum++) { 4202 if (parr[pagenum] & SEG_PAGE_INCORE) 4203 mp->pr_rss++; 4204 if (parr[pagenum] & SEG_PAGE_ANON) 4205 mp->pr_anon++; 4206 if (parr[pagenum] & SEG_PAGE_LOCKED) 4207 mp->pr_locked++; 4208 } 4209 kmem_free(parr, npages); 4210 } 4211 } 4212 ASSERT(tmp == NULL); 4213 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 4214 4215 return (0); 4216 } 4217 #endif /* _SYSCALL32_IMPL */ 4218