1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 26 * All rights reserved. 27 */ 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/atomic.h> 61 #include <sys/policy.h> 62 #include <sys/sdt.h> 63 64 #include <rpc/types.h> 65 #include <rpc/auth.h> 66 #include <rpc/clnt.h> 67 68 #include <nfs/nfs.h> 69 #include <nfs/nfs_clnt.h> 70 #include <nfs/rnode.h> 71 #include <nfs/nfs_acl.h> 72 #include <nfs/lm.h> 73 74 #include <vm/hat.h> 75 #include <vm/as.h> 76 #include <vm/page.h> 77 #include <vm/pvn.h> 78 #include <vm/seg.h> 79 #include <vm/seg_map.h> 80 #include <vm/seg_kpm.h> 81 #include <vm/seg_vn.h> 82 83 #include <fs/fs_subr.h> 84 85 #include <sys/ddi.h> 86 87 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 88 cred_t *); 89 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 90 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 91 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 92 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 93 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 94 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 95 caller_context_t *); 96 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 97 static int nfs_bio(struct buf *, cred_t *); 98 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 99 page_t *[], size_t, struct seg *, caddr_t, 100 enum seg_rw, cred_t *); 101 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 102 cred_t *); 103 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 104 int, cred_t *); 105 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 106 int, cred_t *); 107 static void nfs_delmap_callback(struct as *, void *, uint_t); 108 109 /* 110 * Error flags used to pass information about certain special errors 111 * which need to be handled specially. 112 */ 113 #define NFS_EOF -98 114 115 /* 116 * These are the vnode ops routines which implement the vnode interface to 117 * the networked file system. These routines just take their parameters, 118 * make them look networkish by putting the right info into interface structs, 119 * and then calling the appropriate remote routine(s) to do the work. 120 * 121 * Note on directory name lookup cacheing: If we detect a stale fhandle, 122 * we purge the directory cache relative to that vnode. This way, the 123 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 124 * more details on rnode locking. 125 */ 126 127 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 128 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 129 caller_context_t *); 130 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 131 caller_context_t *); 132 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 133 caller_context_t *); 134 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 135 caller_context_t *); 136 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 137 caller_context_t *); 138 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 139 caller_context_t *); 140 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 141 static int nfs_accessx(void *, int, cred_t *); 142 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 143 caller_context_t *); 144 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 145 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 146 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 147 int, vnode_t *, cred_t *, caller_context_t *, 148 int *, pathname_t *); 149 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 150 int, vnode_t **, cred_t *, int, caller_context_t *, 151 vsecattr_t *); 152 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 153 int); 154 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 155 caller_context_t *, int); 156 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 157 caller_context_t *, int); 158 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 159 cred_t *, caller_context_t *, int, vsecattr_t *); 160 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 161 caller_context_t *, int); 162 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 163 cred_t *, caller_context_t *, int); 164 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 165 caller_context_t *, int); 166 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 167 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 168 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 169 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 170 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 171 page_t *[], size_t, struct seg *, caddr_t, 172 enum seg_rw, cred_t *, caller_context_t *); 173 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 174 caller_context_t *); 175 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 176 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 177 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 178 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 179 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 180 struct flk_callback *, cred_t *, caller_context_t *); 181 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 182 cred_t *, caller_context_t *); 183 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 184 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 185 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 186 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 187 caller_context_t *); 188 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 189 cred_t *, caller_context_t *); 190 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 191 caller_context_t *); 192 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 193 caller_context_t *); 194 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 195 caller_context_t *); 196 197 struct vnodeops *nfs_vnodeops; 198 199 const fs_operation_def_t nfs_vnodeops_template[] = { 200 VOPNAME_OPEN, { .vop_open = nfs_open }, 201 VOPNAME_CLOSE, { .vop_close = nfs_close }, 202 VOPNAME_READ, { .vop_read = nfs_read }, 203 VOPNAME_WRITE, { .vop_write = nfs_write }, 204 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 205 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 206 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 207 VOPNAME_ACCESS, { .vop_access = nfs_access }, 208 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 209 VOPNAME_CREATE, { .vop_create = nfs_create }, 210 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 211 VOPNAME_LINK, { .vop_link = nfs_link }, 212 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 213 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 214 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 215 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 216 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 217 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 218 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 219 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 220 VOPNAME_FID, { .vop_fid = nfs_fid }, 221 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 222 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 223 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 224 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 225 VOPNAME_SPACE, { .vop_space = nfs_space }, 226 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 227 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 228 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 229 VOPNAME_MAP, { .vop_map = nfs_map }, 230 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 231 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 232 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 233 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 234 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 235 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 236 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 237 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 238 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 239 NULL, NULL 240 }; 241 242 /* 243 * XXX: This is referenced in modstubs.s 244 */ 245 struct vnodeops * 246 nfs_getvnodeops(void) 247 { 248 return (nfs_vnodeops); 249 } 250 251 /* ARGSUSED */ 252 static int 253 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 254 { 255 int error; 256 struct vattr va; 257 rnode_t *rp; 258 vnode_t *vp; 259 260 vp = *vpp; 261 rp = VTOR(vp); 262 if (nfs_zone() != VTOMI(vp)->mi_zone) 263 return (EIO); 264 mutex_enter(&rp->r_statelock); 265 if (rp->r_cred == NULL) { 266 crhold(cr); 267 rp->r_cred = cr; 268 } 269 mutex_exit(&rp->r_statelock); 270 271 /* 272 * If there is no cached data or if close-to-open 273 * consistency checking is turned off, we can avoid 274 * the over the wire getattr. Otherwise, if the 275 * file system is mounted readonly, then just verify 276 * the caches are up to date using the normal mechanism. 277 * Else, if the file is not mmap'd, then just mark 278 * the attributes as timed out. They will be refreshed 279 * and the caches validated prior to being used. 280 * Else, the file system is mounted writeable so 281 * force an over the wire GETATTR in order to ensure 282 * that all cached data is valid. 283 */ 284 if (vp->v_count > 1 || 285 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 286 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 287 if (vn_is_readonly(vp)) 288 error = nfs_validate_caches(vp, cr); 289 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 290 PURGE_ATTRCACHE(vp); 291 error = 0; 292 } else { 293 va.va_mask = AT_ALL; 294 error = nfs_getattr_otw(vp, &va, cr); 295 } 296 } else 297 error = 0; 298 299 return (error); 300 } 301 302 /* ARGSUSED */ 303 static int 304 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 305 caller_context_t *ct) 306 { 307 rnode_t *rp; 308 int error; 309 struct vattr va; 310 311 /* 312 * zone_enter(2) prevents processes from changing zones with NFS files 313 * open; if we happen to get here from the wrong zone we can't do 314 * anything over the wire. 315 */ 316 if (VTOMI(vp)->mi_zone != nfs_zone()) { 317 /* 318 * We could attempt to clean up locks, except we're sure 319 * that the current process didn't acquire any locks on 320 * the file: any attempt to lock a file belong to another zone 321 * will fail, and one can't lock an NFS file and then change 322 * zones, as that fails too. 323 * 324 * Returning an error here is the sane thing to do. A 325 * subsequent call to VN_RELE() which translates to a 326 * nfs_inactive() will clean up state: if the zone of the 327 * vnode's origin is still alive and kicking, an async worker 328 * thread will handle the request (from the correct zone), and 329 * everything (minus the final nfs_getattr_otw() call) should 330 * be OK. If the zone is going away nfs_async_inactive() will 331 * throw away cached pages inline. 332 */ 333 return (EIO); 334 } 335 336 /* 337 * If we are using local locking for this filesystem, then 338 * release all of the SYSV style record locks. Otherwise, 339 * we are doing network locking and we need to release all 340 * of the network locks. All of the locks held by this 341 * process on this file are released no matter what the 342 * incoming reference count is. 343 */ 344 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 345 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 346 cleanshares(vp, ttoproc(curthread)->p_pid); 347 } else 348 nfs_lockrelease(vp, flag, offset, cr); 349 350 if (count > 1) 351 return (0); 352 353 /* 354 * If the file has been `unlinked', then purge the 355 * DNLC so that this vnode will get reycled quicker 356 * and the .nfs* file on the server will get removed. 357 */ 358 rp = VTOR(vp); 359 if (rp->r_unldvp != NULL) 360 dnlc_purge_vp(vp); 361 362 /* 363 * If the file was open for write and there are pages, 364 * then if the file system was mounted using the "no-close- 365 * to-open" semantics, then start an asynchronous flush 366 * of the all of the pages in the file. 367 * else the file system was not mounted using the "no-close- 368 * to-open" semantics, then do a synchronous flush and 369 * commit of all of the dirty and uncommitted pages. 370 * 371 * The asynchronous flush of the pages in the "nocto" path 372 * mostly just associates a cred pointer with the rnode so 373 * writes which happen later will have a better chance of 374 * working. It also starts the data being written to the 375 * server, but without unnecessarily delaying the application. 376 */ 377 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 378 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 379 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 380 cr, ct); 381 if (error == EAGAIN) 382 error = 0; 383 } else 384 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 385 if (!error) { 386 mutex_enter(&rp->r_statelock); 387 error = rp->r_error; 388 rp->r_error = 0; 389 mutex_exit(&rp->r_statelock); 390 } 391 } else { 392 mutex_enter(&rp->r_statelock); 393 error = rp->r_error; 394 rp->r_error = 0; 395 mutex_exit(&rp->r_statelock); 396 } 397 398 /* 399 * If RWRITEATTR is set, then issue an over the wire GETATTR to 400 * refresh the attribute cache with a set of attributes which 401 * weren't returned from a WRITE. This will enable the close- 402 * to-open processing to work. 403 */ 404 if (rp->r_flags & RWRITEATTR) 405 (void) nfs_getattr_otw(vp, &va, cr); 406 407 return (error); 408 } 409 410 /* ARGSUSED */ 411 static int 412 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 413 caller_context_t *ct) 414 { 415 rnode_t *rp; 416 u_offset_t off; 417 offset_t diff; 418 int on; 419 size_t n; 420 caddr_t base; 421 uint_t flags; 422 int error; 423 mntinfo_t *mi; 424 425 rp = VTOR(vp); 426 mi = VTOMI(vp); 427 428 if (nfs_zone() != mi->mi_zone) 429 return (EIO); 430 431 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 432 433 if (vp->v_type != VREG) 434 return (EISDIR); 435 436 if (uiop->uio_resid == 0) 437 return (0); 438 439 if (uiop->uio_loffset > MAXOFF32_T) 440 return (EFBIG); 441 442 if (uiop->uio_loffset < 0 || 443 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 444 return (EINVAL); 445 446 /* 447 * Bypass VM if caching has been disabled (e.g., locking) or if 448 * using client-side direct I/O and the file is not mmap'd and 449 * there are no cached pages. 450 */ 451 if ((vp->v_flag & VNOCACHE) || 452 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 453 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 454 size_t bufsize; 455 size_t resid = 0; 456 457 /* 458 * Let's try to do read in as large a chunk as we can 459 * (Filesystem (NFS client) bsize if possible/needed). 460 * For V3, this is 32K and for V2, this is 8K. 461 */ 462 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 463 base = kmem_alloc(bufsize, KM_SLEEP); 464 do { 465 n = MIN(uiop->uio_resid, bufsize); 466 error = nfsread(vp, base, uiop->uio_offset, n, 467 &resid, cr); 468 if (!error) { 469 n -= resid; 470 error = uiomove(base, n, UIO_READ, uiop); 471 } 472 } while (!error && uiop->uio_resid > 0 && n > 0); 473 kmem_free(base, bufsize); 474 return (error); 475 } 476 477 error = 0; 478 479 do { 480 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 481 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 482 n = MIN(MAXBSIZE - on, uiop->uio_resid); 483 484 error = nfs_validate_caches(vp, cr); 485 if (error) 486 break; 487 488 mutex_enter(&rp->r_statelock); 489 while (rp->r_flags & RINCACHEPURGE) { 490 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 491 mutex_exit(&rp->r_statelock); 492 return (EINTR); 493 } 494 } 495 diff = rp->r_size - uiop->uio_loffset; 496 mutex_exit(&rp->r_statelock); 497 if (diff <= 0) 498 break; 499 if (diff < n) 500 n = (size_t)diff; 501 502 if (vpm_enable) { 503 /* 504 * Copy data. 505 */ 506 error = vpm_data_copy(vp, off + on, n, uiop, 507 1, NULL, 0, S_READ); 508 } else { 509 base = segmap_getmapflt(segkmap, vp, off + on, n, 510 1, S_READ); 511 error = uiomove(base + on, n, UIO_READ, uiop); 512 } 513 514 if (!error) { 515 /* 516 * If read a whole block or read to eof, 517 * won't need this buffer again soon. 518 */ 519 mutex_enter(&rp->r_statelock); 520 if (n + on == MAXBSIZE || 521 uiop->uio_loffset == rp->r_size) 522 flags = SM_DONTNEED; 523 else 524 flags = 0; 525 mutex_exit(&rp->r_statelock); 526 if (vpm_enable) { 527 error = vpm_sync_pages(vp, off, n, flags); 528 } else { 529 error = segmap_release(segkmap, base, flags); 530 } 531 } else { 532 if (vpm_enable) { 533 (void) vpm_sync_pages(vp, off, n, 0); 534 } else { 535 (void) segmap_release(segkmap, base, 0); 536 } 537 } 538 } while (!error && uiop->uio_resid > 0); 539 540 return (error); 541 } 542 543 /* ARGSUSED */ 544 static int 545 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 546 caller_context_t *ct) 547 { 548 rnode_t *rp; 549 u_offset_t off; 550 caddr_t base; 551 uint_t flags; 552 int remainder; 553 size_t n; 554 int on; 555 int error; 556 int resid; 557 offset_t offset; 558 rlim_t limit; 559 mntinfo_t *mi; 560 561 rp = VTOR(vp); 562 563 mi = VTOMI(vp); 564 if (nfs_zone() != mi->mi_zone) 565 return (EIO); 566 if (vp->v_type != VREG) 567 return (EISDIR); 568 569 if (uiop->uio_resid == 0) 570 return (0); 571 572 if (ioflag & FAPPEND) { 573 struct vattr va; 574 575 /* 576 * Must serialize if appending. 577 */ 578 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 579 nfs_rw_exit(&rp->r_rwlock); 580 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 581 INTR(vp))) 582 return (EINTR); 583 } 584 585 va.va_mask = AT_SIZE; 586 error = nfsgetattr(vp, &va, cr); 587 if (error) 588 return (error); 589 uiop->uio_loffset = va.va_size; 590 } 591 592 if (uiop->uio_loffset > MAXOFF32_T) 593 return (EFBIG); 594 595 offset = uiop->uio_loffset + uiop->uio_resid; 596 597 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 598 return (EINVAL); 599 600 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 601 limit = MAXOFF32_T; 602 } else { 603 limit = (rlim_t)uiop->uio_llimit; 604 } 605 606 /* 607 * Check to make sure that the process will not exceed 608 * its limit on file size. It is okay to write up to 609 * the limit, but not beyond. Thus, the write which 610 * reaches the limit will be short and the next write 611 * will return an error. 612 */ 613 remainder = 0; 614 if (offset > limit) { 615 remainder = offset - limit; 616 uiop->uio_resid = limit - uiop->uio_offset; 617 if (uiop->uio_resid <= 0) { 618 proc_t *p = ttoproc(curthread); 619 620 uiop->uio_resid += remainder; 621 mutex_enter(&p->p_lock); 622 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 623 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 624 mutex_exit(&p->p_lock); 625 return (EFBIG); 626 } 627 } 628 629 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 630 return (EINTR); 631 632 /* 633 * Bypass VM if caching has been disabled (e.g., locking) or if 634 * using client-side direct I/O and the file is not mmap'd and 635 * there are no cached pages. 636 */ 637 if ((vp->v_flag & VNOCACHE) || 638 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 639 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 640 size_t bufsize; 641 int count; 642 uint_t org_offset; 643 644 nfs_fwrite: 645 if (rp->r_flags & RSTALE) { 646 resid = uiop->uio_resid; 647 offset = uiop->uio_loffset; 648 error = rp->r_error; 649 goto bottom; 650 } 651 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 652 base = kmem_alloc(bufsize, KM_SLEEP); 653 do { 654 resid = uiop->uio_resid; 655 offset = uiop->uio_loffset; 656 count = MIN(uiop->uio_resid, bufsize); 657 org_offset = uiop->uio_offset; 658 error = uiomove(base, count, UIO_WRITE, uiop); 659 if (!error) { 660 error = nfswrite(vp, base, org_offset, 661 count, cr); 662 } 663 } while (!error && uiop->uio_resid > 0); 664 kmem_free(base, bufsize); 665 goto bottom; 666 } 667 668 do { 669 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 670 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 671 n = MIN(MAXBSIZE - on, uiop->uio_resid); 672 673 resid = uiop->uio_resid; 674 offset = uiop->uio_loffset; 675 676 if (rp->r_flags & RSTALE) { 677 error = rp->r_error; 678 break; 679 } 680 681 /* 682 * Don't create dirty pages faster than they 683 * can be cleaned so that the system doesn't 684 * get imbalanced. If the async queue is 685 * maxed out, then wait for it to drain before 686 * creating more dirty pages. Also, wait for 687 * any threads doing pagewalks in the vop_getattr 688 * entry points so that they don't block for 689 * long periods. 690 */ 691 mutex_enter(&rp->r_statelock); 692 while ((mi->mi_max_threads != 0 && 693 rp->r_awcount > 2 * mi->mi_max_threads) || 694 rp->r_gcount > 0) 695 cv_wait(&rp->r_cv, &rp->r_statelock); 696 mutex_exit(&rp->r_statelock); 697 698 if (vpm_enable) { 699 /* 700 * It will use kpm mappings, so no need to 701 * pass an address. 702 */ 703 error = writerp(rp, NULL, n, uiop, 0); 704 } else { 705 if (segmap_kpm) { 706 int pon = uiop->uio_loffset & PAGEOFFSET; 707 size_t pn = MIN(PAGESIZE - pon, 708 uiop->uio_resid); 709 int pagecreate; 710 711 mutex_enter(&rp->r_statelock); 712 pagecreate = (pon == 0) && (pn == PAGESIZE || 713 uiop->uio_loffset + pn >= rp->r_size); 714 mutex_exit(&rp->r_statelock); 715 716 base = segmap_getmapflt(segkmap, vp, off + on, 717 pn, !pagecreate, S_WRITE); 718 719 error = writerp(rp, base + pon, n, uiop, 720 pagecreate); 721 722 } else { 723 base = segmap_getmapflt(segkmap, vp, off + on, 724 n, 0, S_READ); 725 error = writerp(rp, base + on, n, uiop, 0); 726 } 727 } 728 729 if (!error) { 730 if (mi->mi_flags & MI_NOAC) 731 flags = SM_WRITE; 732 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 733 /* 734 * Have written a whole block. 735 * Start an asynchronous write 736 * and mark the buffer to 737 * indicate that it won't be 738 * needed again soon. 739 */ 740 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 741 } else 742 flags = 0; 743 if ((ioflag & (FSYNC|FDSYNC)) || 744 (rp->r_flags & ROUTOFSPACE)) { 745 flags &= ~SM_ASYNC; 746 flags |= SM_WRITE; 747 } 748 if (vpm_enable) { 749 error = vpm_sync_pages(vp, off, n, flags); 750 } else { 751 error = segmap_release(segkmap, base, flags); 752 } 753 } else { 754 if (vpm_enable) { 755 (void) vpm_sync_pages(vp, off, n, 0); 756 } else { 757 (void) segmap_release(segkmap, base, 0); 758 } 759 /* 760 * In the event that we got an access error while 761 * faulting in a page for a write-only file just 762 * force a write. 763 */ 764 if (error == EACCES) 765 goto nfs_fwrite; 766 } 767 } while (!error && uiop->uio_resid > 0); 768 769 bottom: 770 if (error) { 771 uiop->uio_resid = resid + remainder; 772 uiop->uio_loffset = offset; 773 } else 774 uiop->uio_resid += remainder; 775 776 nfs_rw_exit(&rp->r_lkserlock); 777 778 return (error); 779 } 780 781 /* 782 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 783 */ 784 static int 785 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 786 int flags, cred_t *cr) 787 { 788 struct buf *bp; 789 int error; 790 791 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 792 bp = pageio_setup(pp, len, vp, flags); 793 ASSERT(bp != NULL); 794 795 /* 796 * pageio_setup should have set b_addr to 0. This 797 * is correct since we want to do I/O on a page 798 * boundary. bp_mapin will use this addr to calculate 799 * an offset, and then set b_addr to the kernel virtual 800 * address it allocated for us. 801 */ 802 ASSERT(bp->b_un.b_addr == 0); 803 804 bp->b_edev = 0; 805 bp->b_dev = 0; 806 bp->b_lblkno = lbtodb(off); 807 bp->b_file = vp; 808 bp->b_offset = (offset_t)off; 809 bp_mapin(bp); 810 811 error = nfs_bio(bp, cr); 812 813 bp_mapout(bp); 814 pageio_done(bp); 815 816 return (error); 817 } 818 819 /* 820 * Write to file. Writes to remote server in largest size 821 * chunks that the server can handle. Write is synchronous. 822 */ 823 static int 824 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 825 { 826 rnode_t *rp; 827 mntinfo_t *mi; 828 struct nfswriteargs wa; 829 struct nfsattrstat ns; 830 int error; 831 int tsize; 832 int douprintf; 833 834 douprintf = 1; 835 836 rp = VTOR(vp); 837 mi = VTOMI(vp); 838 839 ASSERT(nfs_zone() == mi->mi_zone); 840 841 wa.wa_args = &wa.wa_args_buf; 842 wa.wa_fhandle = *VTOFH(vp); 843 844 do { 845 tsize = MIN(mi->mi_curwrite, count); 846 wa.wa_data = base; 847 wa.wa_begoff = offset; 848 wa.wa_totcount = tsize; 849 wa.wa_count = tsize; 850 wa.wa_offset = offset; 851 852 if (mi->mi_io_kstats) { 853 mutex_enter(&mi->mi_lock); 854 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 855 mutex_exit(&mi->mi_lock); 856 } 857 wa.wa_mblk = NULL; 858 do { 859 error = rfs2call(mi, RFS_WRITE, 860 xdr_writeargs, (caddr_t)&wa, 861 xdr_attrstat, (caddr_t)&ns, cr, 862 &douprintf, &ns.ns_status, 0, NULL); 863 } while (error == ENFS_TRYAGAIN); 864 if (mi->mi_io_kstats) { 865 mutex_enter(&mi->mi_lock); 866 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 867 mutex_exit(&mi->mi_lock); 868 } 869 870 if (!error) { 871 error = geterrno(ns.ns_status); 872 /* 873 * Can't check for stale fhandle and purge caches 874 * here because pages are held by nfs_getpage. 875 * Just mark the attribute cache as timed out 876 * and set RWRITEATTR to indicate that the file 877 * was modified with a WRITE operation. 878 */ 879 if (!error) { 880 count -= tsize; 881 base += tsize; 882 offset += tsize; 883 if (mi->mi_io_kstats) { 884 mutex_enter(&mi->mi_lock); 885 KSTAT_IO_PTR(mi->mi_io_kstats)-> 886 writes++; 887 KSTAT_IO_PTR(mi->mi_io_kstats)-> 888 nwritten += tsize; 889 mutex_exit(&mi->mi_lock); 890 } 891 lwp_stat_update(LWP_STAT_OUBLK, 1); 892 mutex_enter(&rp->r_statelock); 893 PURGE_ATTRCACHE_LOCKED(rp); 894 rp->r_flags |= RWRITEATTR; 895 mutex_exit(&rp->r_statelock); 896 } 897 } 898 } while (!error && count); 899 900 return (error); 901 } 902 903 /* 904 * Read from a file. Reads data in largest chunks our interface can handle. 905 */ 906 static int 907 nfsread(vnode_t *vp, caddr_t base, uint_t offset, int count, size_t *residp, 908 cred_t *cr) 909 { 910 mntinfo_t *mi; 911 struct nfsreadargs ra; 912 struct nfsrdresult rr; 913 int tsize; 914 int error; 915 int douprintf; 916 failinfo_t fi; 917 rnode_t *rp; 918 struct vattr va; 919 hrtime_t t; 920 921 rp = VTOR(vp); 922 mi = VTOMI(vp); 923 924 ASSERT(nfs_zone() == mi->mi_zone); 925 926 douprintf = 1; 927 928 ra.ra_fhandle = *VTOFH(vp); 929 930 fi.vp = vp; 931 fi.fhp = (caddr_t)&ra.ra_fhandle; 932 fi.copyproc = nfscopyfh; 933 fi.lookupproc = nfslookup; 934 fi.xattrdirproc = acl_getxattrdir2; 935 936 do { 937 if (mi->mi_io_kstats) { 938 mutex_enter(&mi->mi_lock); 939 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 940 mutex_exit(&mi->mi_lock); 941 } 942 943 do { 944 tsize = MIN(mi->mi_curread, count); 945 rr.rr_data = base; 946 ra.ra_offset = offset; 947 ra.ra_totcount = tsize; 948 ra.ra_count = tsize; 949 t = gethrtime(); 950 error = rfs2call(mi, RFS_READ, 951 xdr_readargs, (caddr_t)&ra, 952 xdr_rdresult, (caddr_t)&rr, cr, 953 &douprintf, &rr.rr_status, 0, &fi); 954 } while (error == ENFS_TRYAGAIN); 955 956 if (mi->mi_io_kstats) { 957 mutex_enter(&mi->mi_lock); 958 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 959 mutex_exit(&mi->mi_lock); 960 } 961 962 if (!error) { 963 error = geterrno(rr.rr_status); 964 if (!error) { 965 count -= rr.rr_count; 966 base += rr.rr_count; 967 offset += rr.rr_count; 968 if (mi->mi_io_kstats) { 969 mutex_enter(&mi->mi_lock); 970 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 971 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 972 rr.rr_count; 973 mutex_exit(&mi->mi_lock); 974 } 975 lwp_stat_update(LWP_STAT_INBLK, 1); 976 } 977 } 978 } while (!error && count && rr.rr_count == tsize); 979 980 *residp = count; 981 982 if (!error) { 983 /* 984 * Since no error occurred, we have the current 985 * attributes and we need to do a cache check and then 986 * potentially update the cached attributes. We can't 987 * use the normal attribute check and cache mechanisms 988 * because they might cause a cache flush which would 989 * deadlock. Instead, we just check the cache to see 990 * if the attributes have changed. If it is, then we 991 * just mark the attributes as out of date. The next 992 * time that the attributes are checked, they will be 993 * out of date, new attributes will be fetched, and 994 * the page cache will be flushed. If the attributes 995 * weren't changed, then we just update the cached 996 * attributes with these attributes. 997 */ 998 /* 999 * If NFS_ACL is supported on the server, then the 1000 * attributes returned by server may have minimal 1001 * permissions sometimes denying access to users having 1002 * proper access. To get the proper attributes, mark 1003 * the attributes as expired so that they will be 1004 * regotten via the NFS_ACL GETATTR2 procedure. 1005 */ 1006 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1007 mutex_enter(&rp->r_statelock); 1008 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1009 (mi->mi_flags & MI_ACL)) { 1010 mutex_exit(&rp->r_statelock); 1011 PURGE_ATTRCACHE(vp); 1012 } else { 1013 if (rp->r_mtime <= t) { 1014 nfs_attrcache_va(vp, &va); 1015 } 1016 mutex_exit(&rp->r_statelock); 1017 } 1018 } 1019 1020 return (error); 1021 } 1022 1023 /* ARGSUSED */ 1024 static int 1025 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1026 caller_context_t *ct) 1027 { 1028 1029 if (nfs_zone() != VTOMI(vp)->mi_zone) 1030 return (EIO); 1031 switch (cmd) { 1032 case _FIODIRECTIO: 1033 return (nfs_directio(vp, (int)arg, cr)); 1034 default: 1035 return (ENOTTY); 1036 } 1037 } 1038 1039 /* ARGSUSED */ 1040 static int 1041 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1042 caller_context_t *ct) 1043 { 1044 int error; 1045 rnode_t *rp; 1046 1047 if (nfs_zone() != VTOMI(vp)->mi_zone) 1048 return (EIO); 1049 /* 1050 * If it has been specified that the return value will 1051 * just be used as a hint, and we are only being asked 1052 * for size, fsid or rdevid, then return the client's 1053 * notion of these values without checking to make sure 1054 * that the attribute cache is up to date. 1055 * The whole point is to avoid an over the wire GETATTR 1056 * call. 1057 */ 1058 rp = VTOR(vp); 1059 if (flags & ATTR_HINT) { 1060 if (vap->va_mask == 1061 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1062 mutex_enter(&rp->r_statelock); 1063 if (vap->va_mask | AT_SIZE) 1064 vap->va_size = rp->r_size; 1065 if (vap->va_mask | AT_FSID) 1066 vap->va_fsid = rp->r_attr.va_fsid; 1067 if (vap->va_mask | AT_RDEV) 1068 vap->va_rdev = rp->r_attr.va_rdev; 1069 mutex_exit(&rp->r_statelock); 1070 return (0); 1071 } 1072 } 1073 1074 /* 1075 * Only need to flush pages if asking for the mtime 1076 * and if there any dirty pages or any outstanding 1077 * asynchronous (write) requests for this file. 1078 */ 1079 if (vap->va_mask & AT_MTIME) { 1080 if (vn_has_cached_data(vp) && 1081 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1082 mutex_enter(&rp->r_statelock); 1083 rp->r_gcount++; 1084 mutex_exit(&rp->r_statelock); 1085 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1086 mutex_enter(&rp->r_statelock); 1087 if (error && (error == ENOSPC || error == EDQUOT)) { 1088 if (!rp->r_error) 1089 rp->r_error = error; 1090 } 1091 if (--rp->r_gcount == 0) 1092 cv_broadcast(&rp->r_cv); 1093 mutex_exit(&rp->r_statelock); 1094 } 1095 } 1096 1097 return (nfsgetattr(vp, vap, cr)); 1098 } 1099 1100 /*ARGSUSED4*/ 1101 static int 1102 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1103 caller_context_t *ct) 1104 { 1105 int error; 1106 uint_t mask; 1107 struct vattr va; 1108 1109 mask = vap->va_mask; 1110 1111 if (mask & AT_NOSET) 1112 return (EINVAL); 1113 1114 if ((mask & AT_SIZE) && 1115 vap->va_type == VREG && 1116 vap->va_size > MAXOFF32_T) 1117 return (EFBIG); 1118 1119 if (nfs_zone() != VTOMI(vp)->mi_zone) 1120 return (EIO); 1121 1122 va.va_mask = AT_UID | AT_MODE; 1123 1124 error = nfsgetattr(vp, &va, cr); 1125 if (error) 1126 return (error); 1127 1128 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1129 vp); 1130 1131 if (error) 1132 return (error); 1133 1134 return (nfssetattr(vp, vap, flags, cr)); 1135 } 1136 1137 static int 1138 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1139 { 1140 int error; 1141 uint_t mask; 1142 struct nfssaargs args; 1143 struct nfsattrstat ns; 1144 int douprintf; 1145 rnode_t *rp; 1146 struct vattr va; 1147 mode_t omode; 1148 mntinfo_t *mi; 1149 vsecattr_t *vsp; 1150 hrtime_t t; 1151 1152 mask = vap->va_mask; 1153 1154 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1155 1156 rp = VTOR(vp); 1157 1158 /* 1159 * Only need to flush pages if there are any pages and 1160 * if the file is marked as dirty in some fashion. The 1161 * file must be flushed so that we can accurately 1162 * determine the size of the file and the cached data 1163 * after the SETATTR returns. A file is considered to 1164 * be dirty if it is either marked with RDIRTY, has 1165 * outstanding i/o's active, or is mmap'd. In this 1166 * last case, we can't tell whether there are dirty 1167 * pages, so we flush just to be sure. 1168 */ 1169 if (vn_has_cached_data(vp) && 1170 ((rp->r_flags & RDIRTY) || 1171 rp->r_count > 0 || 1172 rp->r_mapcnt > 0)) { 1173 ASSERT(vp->v_type != VCHR); 1174 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1175 if (error && (error == ENOSPC || error == EDQUOT)) { 1176 mutex_enter(&rp->r_statelock); 1177 if (!rp->r_error) 1178 rp->r_error = error; 1179 mutex_exit(&rp->r_statelock); 1180 } 1181 } 1182 1183 /* 1184 * If the system call was utime(2) or utimes(2) and the 1185 * application did not specify the times, then set the 1186 * mtime nanosecond field to 1 billion. This will get 1187 * translated from 1 billion nanoseconds to 1 million 1188 * microseconds in the over the wire request. The 1189 * server will use 1 million in the microsecond field 1190 * to tell whether both the mtime and atime should be 1191 * set to the server's current time. 1192 * 1193 * This is an overload of the protocol and should be 1194 * documented in the NFS Version 2 protocol specification. 1195 */ 1196 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1197 vap->va_mtime.tv_nsec = 1000000000; 1198 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1199 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1200 error = vattr_to_sattr(vap, &args.saa_sa); 1201 } else { 1202 /* 1203 * Use server times. vap time values will not be used. 1204 * To ensure no time overflow, make sure vap has 1205 * valid values, but retain the original values. 1206 */ 1207 timestruc_t mtime = vap->va_mtime; 1208 timestruc_t atime = vap->va_atime; 1209 time_t now; 1210 1211 now = gethrestime_sec(); 1212 if (NFS_TIME_T_OK(now)) { 1213 /* Just in case server does not know of this */ 1214 vap->va_mtime.tv_sec = now; 1215 vap->va_atime.tv_sec = now; 1216 } else { 1217 vap->va_mtime.tv_sec = 0; 1218 vap->va_atime.tv_sec = 0; 1219 } 1220 error = vattr_to_sattr(vap, &args.saa_sa); 1221 /* set vap times back on */ 1222 vap->va_mtime = mtime; 1223 vap->va_atime = atime; 1224 } 1225 } else { 1226 /* Either do not set times or use the client specified times */ 1227 error = vattr_to_sattr(vap, &args.saa_sa); 1228 } 1229 if (error) { 1230 /* req time field(s) overflow - return immediately */ 1231 return (error); 1232 } 1233 args.saa_fh = *VTOFH(vp); 1234 1235 va.va_mask = AT_MODE; 1236 error = nfsgetattr(vp, &va, cr); 1237 if (error) 1238 return (error); 1239 omode = va.va_mode; 1240 1241 mi = VTOMI(vp); 1242 1243 douprintf = 1; 1244 1245 t = gethrtime(); 1246 1247 error = rfs2call(mi, RFS_SETATTR, 1248 xdr_saargs, (caddr_t)&args, 1249 xdr_attrstat, (caddr_t)&ns, cr, 1250 &douprintf, &ns.ns_status, 0, NULL); 1251 1252 /* 1253 * Purge the access cache and ACL cache if changing either the 1254 * owner of the file, the group owner, or the mode. These may 1255 * change the access permissions of the file, so purge old 1256 * information and start over again. 1257 */ 1258 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1259 (void) nfs_access_purge_rp(rp); 1260 if (rp->r_secattr != NULL) { 1261 mutex_enter(&rp->r_statelock); 1262 vsp = rp->r_secattr; 1263 rp->r_secattr = NULL; 1264 mutex_exit(&rp->r_statelock); 1265 if (vsp != NULL) 1266 nfs_acl_free(vsp); 1267 } 1268 } 1269 1270 if (!error) { 1271 error = geterrno(ns.ns_status); 1272 if (!error) { 1273 /* 1274 * If changing the size of the file, invalidate 1275 * any local cached data which is no longer part 1276 * of the file. We also possibly invalidate the 1277 * last page in the file. We could use 1278 * pvn_vpzero(), but this would mark the page as 1279 * modified and require it to be written back to 1280 * the server for no particularly good reason. 1281 * This way, if we access it, then we bring it 1282 * back in. A read should be cheaper than a 1283 * write. 1284 */ 1285 if (mask & AT_SIZE) { 1286 nfs_invalidate_pages(vp, 1287 (vap->va_size & PAGEMASK), cr); 1288 } 1289 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1290 /* 1291 * If NFS_ACL is supported on the server, then the 1292 * attributes returned by server may have minimal 1293 * permissions sometimes denying access to users having 1294 * proper access. To get the proper attributes, mark 1295 * the attributes as expired so that they will be 1296 * regotten via the NFS_ACL GETATTR2 procedure. 1297 */ 1298 if (mi->mi_flags & MI_ACL) { 1299 PURGE_ATTRCACHE(vp); 1300 } 1301 /* 1302 * This next check attempts to deal with NFS 1303 * servers which can not handle increasing 1304 * the size of the file via setattr. Most 1305 * of these servers do not return an error, 1306 * but do not change the size of the file. 1307 * Hence, this check and then attempt to set 1308 * the file size by writing 1 byte at the 1309 * offset of the end of the file that we need. 1310 */ 1311 if ((mask & AT_SIZE) && 1312 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1313 char zb = '\0'; 1314 1315 error = nfswrite(vp, &zb, 1316 vap->va_size - sizeof (zb), 1317 sizeof (zb), cr); 1318 } 1319 /* 1320 * Some servers will change the mode to clear the setuid 1321 * and setgid bits when changing the uid or gid. The 1322 * client needs to compensate appropriately. 1323 */ 1324 if (mask & (AT_UID | AT_GID)) { 1325 int terror; 1326 1327 va.va_mask = AT_MODE; 1328 terror = nfsgetattr(vp, &va, cr); 1329 if (!terror && 1330 (((mask & AT_MODE) && 1331 va.va_mode != vap->va_mode) || 1332 (!(mask & AT_MODE) && 1333 va.va_mode != omode))) { 1334 va.va_mask = AT_MODE; 1335 if (mask & AT_MODE) 1336 va.va_mode = vap->va_mode; 1337 else 1338 va.va_mode = omode; 1339 (void) nfssetattr(vp, &va, 0, cr); 1340 } 1341 } 1342 } else { 1343 PURGE_ATTRCACHE(vp); 1344 PURGE_STALE_FH(error, vp, cr); 1345 } 1346 } else { 1347 PURGE_ATTRCACHE(vp); 1348 } 1349 1350 return (error); 1351 } 1352 1353 static int 1354 nfs_accessx(void *vp, int mode, cred_t *cr) 1355 { 1356 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1357 return (nfs_access(vp, mode, 0, cr, NULL)); 1358 } 1359 1360 /* ARGSUSED */ 1361 static int 1362 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1363 { 1364 struct vattr va; 1365 int error; 1366 mntinfo_t *mi; 1367 int shift = 0; 1368 1369 mi = VTOMI(vp); 1370 1371 if (nfs_zone() != mi->mi_zone) 1372 return (EIO); 1373 if (mi->mi_flags & MI_ACL) { 1374 error = acl_access2(vp, mode, flags, cr); 1375 if (mi->mi_flags & MI_ACL) 1376 return (error); 1377 } 1378 1379 va.va_mask = AT_MODE | AT_UID | AT_GID; 1380 error = nfsgetattr(vp, &va, cr); 1381 if (error) 1382 return (error); 1383 1384 /* 1385 * Disallow write attempts on read-only 1386 * file systems, unless the file is a 1387 * device node. 1388 */ 1389 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1390 return (EROFS); 1391 1392 /* 1393 * Disallow attempts to access mandatory lock files. 1394 */ 1395 if ((mode & (VWRITE | VREAD | VEXEC)) && 1396 MANDLOCK(vp, va.va_mode)) 1397 return (EACCES); 1398 1399 /* 1400 * Access check is based on only 1401 * one of owner, group, public. 1402 * If not owner, then check group. 1403 * If not a member of the group, 1404 * then check public access. 1405 */ 1406 if (crgetuid(cr) != va.va_uid) { 1407 shift += 3; 1408 if (!groupmember(va.va_gid, cr)) 1409 shift += 3; 1410 } 1411 found: 1412 mode &= ~(va.va_mode << shift); 1413 if (mode == 0) 1414 return (0); 1415 1416 return (secpolicy_vnode_access(cr, vp, va.va_uid, mode)); 1417 } 1418 1419 static int nfs_do_symlink_cache = 1; 1420 1421 /* ARGSUSED */ 1422 static int 1423 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1424 { 1425 int error; 1426 struct nfsrdlnres rl; 1427 rnode_t *rp; 1428 int douprintf; 1429 failinfo_t fi; 1430 1431 /* 1432 * We want to be consistent with UFS semantics so we will return 1433 * EINVAL instead of ENXIO. This violates the XNFS spec and 1434 * the RFC 1094, which are wrong any way. BUGID 1138002. 1435 */ 1436 if (vp->v_type != VLNK) 1437 return (EINVAL); 1438 1439 if (nfs_zone() != VTOMI(vp)->mi_zone) 1440 return (EIO); 1441 1442 rp = VTOR(vp); 1443 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1444 error = nfs_validate_caches(vp, cr); 1445 if (error) 1446 return (error); 1447 mutex_enter(&rp->r_statelock); 1448 if (rp->r_symlink.contents != NULL) { 1449 error = uiomove(rp->r_symlink.contents, 1450 rp->r_symlink.len, UIO_READ, uiop); 1451 mutex_exit(&rp->r_statelock); 1452 return (error); 1453 } 1454 mutex_exit(&rp->r_statelock); 1455 } 1456 1457 1458 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1459 1460 fi.vp = vp; 1461 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1462 fi.copyproc = nfscopyfh; 1463 fi.lookupproc = nfslookup; 1464 fi.xattrdirproc = acl_getxattrdir2; 1465 1466 douprintf = 1; 1467 1468 error = rfs2call(VTOMI(vp), RFS_READLINK, 1469 xdr_fhandle, (caddr_t)VTOFH(vp), 1470 xdr_rdlnres, (caddr_t)&rl, cr, 1471 &douprintf, &rl.rl_status, 0, &fi); 1472 1473 if (error) { 1474 1475 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1476 return (error); 1477 } 1478 1479 error = geterrno(rl.rl_status); 1480 if (!error) { 1481 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1482 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1483 mutex_enter(&rp->r_statelock); 1484 if (rp->r_symlink.contents == NULL) { 1485 rp->r_symlink.contents = rl.rl_data; 1486 rp->r_symlink.len = (int)rl.rl_count; 1487 rp->r_symlink.size = NFS_MAXPATHLEN; 1488 mutex_exit(&rp->r_statelock); 1489 } else { 1490 mutex_exit(&rp->r_statelock); 1491 1492 kmem_free((void *)rl.rl_data, 1493 NFS_MAXPATHLEN); 1494 } 1495 } else { 1496 1497 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1498 } 1499 } else { 1500 PURGE_STALE_FH(error, vp, cr); 1501 1502 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1503 } 1504 1505 /* 1506 * Conform to UFS semantics (see comment above) 1507 */ 1508 return (error == ENXIO ? EINVAL : error); 1509 } 1510 1511 /* 1512 * Flush local dirty pages to stable storage on the server. 1513 * 1514 * If FNODSYNC is specified, then there is nothing to do because 1515 * metadata changes are not cached on the client before being 1516 * sent to the server. 1517 */ 1518 /* ARGSUSED */ 1519 static int 1520 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1521 { 1522 int error; 1523 1524 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1525 return (0); 1526 1527 if (nfs_zone() != VTOMI(vp)->mi_zone) 1528 return (EIO); 1529 1530 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1531 if (!error) 1532 error = VTOR(vp)->r_error; 1533 return (error); 1534 } 1535 1536 1537 /* 1538 * Weirdness: if the file was removed or the target of a rename 1539 * operation while it was open, it got renamed instead. Here we 1540 * remove the renamed file. 1541 */ 1542 /* ARGSUSED */ 1543 static void 1544 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1545 { 1546 rnode_t *rp; 1547 1548 ASSERT(vp != DNLC_NO_VNODE); 1549 1550 /* 1551 * If this is coming from the wrong zone, we let someone in the right 1552 * zone take care of it asynchronously. We can get here due to 1553 * VN_RELE() being called from pageout() or fsflush(). This call may 1554 * potentially turn into an expensive no-op if, for instance, v_count 1555 * gets incremented in the meantime, but it's still correct. 1556 */ 1557 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1558 nfs_async_inactive(vp, cr, nfs_inactive); 1559 return; 1560 } 1561 1562 rp = VTOR(vp); 1563 redo: 1564 if (rp->r_unldvp != NULL) { 1565 /* 1566 * Save the vnode pointer for the directory where the 1567 * unlinked-open file got renamed, then set it to NULL 1568 * to prevent another thread from getting here before 1569 * we're done with the remove. While we have the 1570 * statelock, make local copies of the pertinent rnode 1571 * fields. If we weren't to do this in an atomic way, the 1572 * the unl* fields could become inconsistent with respect 1573 * to each other due to a race condition between this 1574 * code and nfs_remove(). See bug report 1034328. 1575 */ 1576 mutex_enter(&rp->r_statelock); 1577 if (rp->r_unldvp != NULL) { 1578 vnode_t *unldvp; 1579 char *unlname; 1580 cred_t *unlcred; 1581 struct nfsdiropargs da; 1582 enum nfsstat status; 1583 int douprintf; 1584 int error; 1585 1586 unldvp = rp->r_unldvp; 1587 rp->r_unldvp = NULL; 1588 unlname = rp->r_unlname; 1589 rp->r_unlname = NULL; 1590 unlcred = rp->r_unlcred; 1591 rp->r_unlcred = NULL; 1592 mutex_exit(&rp->r_statelock); 1593 1594 /* 1595 * If there are any dirty pages left, then flush 1596 * them. This is unfortunate because they just 1597 * may get thrown away during the remove operation, 1598 * but we have to do this for correctness. 1599 */ 1600 if (vn_has_cached_data(vp) && 1601 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1602 ASSERT(vp->v_type != VCHR); 1603 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1604 cr, ct); 1605 if (error) { 1606 mutex_enter(&rp->r_statelock); 1607 if (!rp->r_error) 1608 rp->r_error = error; 1609 mutex_exit(&rp->r_statelock); 1610 } 1611 } 1612 1613 /* 1614 * Do the remove operation on the renamed file 1615 */ 1616 setdiropargs(&da, unlname, unldvp); 1617 1618 douprintf = 1; 1619 1620 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1621 xdr_diropargs, (caddr_t)&da, 1622 xdr_enum, (caddr_t)&status, unlcred, 1623 &douprintf, &status, 0, NULL); 1624 1625 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1626 nfs_purge_rddir_cache(unldvp); 1627 PURGE_ATTRCACHE(unldvp); 1628 1629 /* 1630 * Release stuff held for the remove 1631 */ 1632 VN_RELE(unldvp); 1633 kmem_free(unlname, MAXNAMELEN); 1634 crfree(unlcred); 1635 goto redo; 1636 } 1637 mutex_exit(&rp->r_statelock); 1638 } 1639 1640 rp_addfree(rp, cr); 1641 } 1642 1643 /* 1644 * Remote file system operations having to do with directory manipulation. 1645 */ 1646 1647 /* ARGSUSED */ 1648 static int 1649 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1650 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1651 int *direntflags, pathname_t *realpnp) 1652 { 1653 int error; 1654 vnode_t *vp; 1655 vnode_t *avp = NULL; 1656 rnode_t *drp; 1657 1658 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1659 return (EPERM); 1660 1661 drp = VTOR(dvp); 1662 1663 /* 1664 * Are we looking up extended attributes? If so, "dvp" is 1665 * the file or directory for which we want attributes, and 1666 * we need a lookup of the hidden attribute directory 1667 * before we lookup the rest of the path. 1668 */ 1669 if (flags & LOOKUP_XATTR) { 1670 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1671 mntinfo_t *mi; 1672 1673 mi = VTOMI(dvp); 1674 if (!(mi->mi_flags & MI_EXTATTR)) 1675 return (EINVAL); 1676 1677 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1678 return (EINTR); 1679 1680 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1681 if (avp == NULL) 1682 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1683 else 1684 error = 0; 1685 1686 nfs_rw_exit(&drp->r_rwlock); 1687 1688 if (error) { 1689 if (mi->mi_flags & MI_EXTATTR) 1690 return (error); 1691 return (EINVAL); 1692 } 1693 dvp = avp; 1694 drp = VTOR(dvp); 1695 } 1696 1697 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1698 error = EINTR; 1699 goto out; 1700 } 1701 1702 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1703 1704 nfs_rw_exit(&drp->r_rwlock); 1705 1706 /* 1707 * If vnode is a device, create special vnode. 1708 */ 1709 if (!error && IS_DEVVP(*vpp)) { 1710 vp = *vpp; 1711 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1712 VN_RELE(vp); 1713 } 1714 1715 out: 1716 if (avp != NULL) 1717 VN_RELE(avp); 1718 1719 return (error); 1720 } 1721 1722 static int nfs_lookup_neg_cache = 1; 1723 1724 #ifdef DEBUG 1725 static int nfs_lookup_dnlc_hits = 0; 1726 static int nfs_lookup_dnlc_misses = 0; 1727 static int nfs_lookup_dnlc_neg_hits = 0; 1728 static int nfs_lookup_dnlc_disappears = 0; 1729 static int nfs_lookup_dnlc_lookups = 0; 1730 #endif 1731 1732 /* ARGSUSED */ 1733 int 1734 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1735 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1736 { 1737 int error; 1738 1739 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1740 1741 /* 1742 * If lookup is for "", just return dvp. Don't need 1743 * to send it over the wire, look it up in the dnlc, 1744 * or perform any access checks. 1745 */ 1746 if (*nm == '\0') { 1747 VN_HOLD(dvp); 1748 *vpp = dvp; 1749 return (0); 1750 } 1751 1752 /* 1753 * Can't do lookups in non-directories. 1754 */ 1755 if (dvp->v_type != VDIR) 1756 return (ENOTDIR); 1757 1758 /* 1759 * If we're called with RFSCALL_SOFT, it's important that 1760 * the only rfscall is one we make directly; if we permit 1761 * an access call because we're looking up "." or validating 1762 * a dnlc hit, we'll deadlock because that rfscall will not 1763 * have the RFSCALL_SOFT set. 1764 */ 1765 if (rfscall_flags & RFSCALL_SOFT) 1766 goto callit; 1767 1768 /* 1769 * If lookup is for ".", just return dvp. Don't need 1770 * to send it over the wire or look it up in the dnlc, 1771 * just need to check access. 1772 */ 1773 if (strcmp(nm, ".") == 0) { 1774 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1775 if (error) 1776 return (error); 1777 VN_HOLD(dvp); 1778 *vpp = dvp; 1779 return (0); 1780 } 1781 1782 /* 1783 * Lookup this name in the DNLC. If there was a valid entry, 1784 * then return the results of the lookup. 1785 */ 1786 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1787 if (error || *vpp != NULL) 1788 return (error); 1789 1790 callit: 1791 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1792 1793 return (error); 1794 } 1795 1796 static int 1797 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1798 { 1799 int error; 1800 vnode_t *vp; 1801 1802 ASSERT(*nm != '\0'); 1803 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1804 1805 /* 1806 * Lookup this name in the DNLC. If successful, then validate 1807 * the caches and then recheck the DNLC. The DNLC is rechecked 1808 * just in case this entry got invalidated during the call 1809 * to nfs_validate_caches. 1810 * 1811 * An assumption is being made that it is safe to say that a 1812 * file exists which may not on the server. Any operations to 1813 * the server will fail with ESTALE. 1814 */ 1815 #ifdef DEBUG 1816 nfs_lookup_dnlc_lookups++; 1817 #endif 1818 vp = dnlc_lookup(dvp, nm); 1819 if (vp != NULL) { 1820 VN_RELE(vp); 1821 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1822 PURGE_ATTRCACHE(dvp); 1823 } 1824 error = nfs_validate_caches(dvp, cr); 1825 if (error) 1826 return (error); 1827 vp = dnlc_lookup(dvp, nm); 1828 if (vp != NULL) { 1829 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1830 if (error) { 1831 VN_RELE(vp); 1832 return (error); 1833 } 1834 if (vp == DNLC_NO_VNODE) { 1835 VN_RELE(vp); 1836 #ifdef DEBUG 1837 nfs_lookup_dnlc_neg_hits++; 1838 #endif 1839 return (ENOENT); 1840 } 1841 *vpp = vp; 1842 #ifdef DEBUG 1843 nfs_lookup_dnlc_hits++; 1844 #endif 1845 return (0); 1846 } 1847 #ifdef DEBUG 1848 nfs_lookup_dnlc_disappears++; 1849 #endif 1850 } 1851 #ifdef DEBUG 1852 else 1853 nfs_lookup_dnlc_misses++; 1854 #endif 1855 1856 *vpp = NULL; 1857 1858 return (0); 1859 } 1860 1861 static int 1862 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1863 int rfscall_flags) 1864 { 1865 int error; 1866 struct nfsdiropargs da; 1867 struct nfsdiropres dr; 1868 int douprintf; 1869 failinfo_t fi; 1870 hrtime_t t; 1871 1872 ASSERT(*nm != '\0'); 1873 ASSERT(dvp->v_type == VDIR); 1874 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1875 1876 setdiropargs(&da, nm, dvp); 1877 1878 fi.vp = dvp; 1879 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1880 fi.copyproc = nfscopyfh; 1881 fi.lookupproc = nfslookup; 1882 fi.xattrdirproc = acl_getxattrdir2; 1883 1884 douprintf = 1; 1885 1886 t = gethrtime(); 1887 1888 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1889 xdr_diropargs, (caddr_t)&da, 1890 xdr_diropres, (caddr_t)&dr, cr, 1891 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1892 1893 if (!error) { 1894 error = geterrno(dr.dr_status); 1895 if (!error) { 1896 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1897 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1898 /* 1899 * If NFS_ACL is supported on the server, then the 1900 * attributes returned by server may have minimal 1901 * permissions sometimes denying access to users having 1902 * proper access. To get the proper attributes, mark 1903 * the attributes as expired so that they will be 1904 * regotten via the NFS_ACL GETATTR2 procedure. 1905 */ 1906 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1907 PURGE_ATTRCACHE(*vpp); 1908 } 1909 if (!(rfscall_flags & RFSCALL_SOFT)) 1910 dnlc_update(dvp, nm, *vpp); 1911 } else { 1912 PURGE_STALE_FH(error, dvp, cr); 1913 if (error == ENOENT && nfs_lookup_neg_cache) 1914 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1915 } 1916 } 1917 1918 return (error); 1919 } 1920 1921 /* ARGSUSED */ 1922 static int 1923 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1924 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1925 vsecattr_t *vsecp) 1926 { 1927 int error; 1928 struct nfscreatargs args; 1929 struct nfsdiropres dr; 1930 int douprintf; 1931 vnode_t *vp; 1932 rnode_t *rp; 1933 struct vattr vattr; 1934 rnode_t *drp; 1935 vnode_t *tempvp; 1936 hrtime_t t; 1937 1938 drp = VTOR(dvp); 1939 1940 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1941 return (EPERM); 1942 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1943 return (EINTR); 1944 1945 /* 1946 * We make a copy of the attributes because the caller does not 1947 * expect us to change what va points to. 1948 */ 1949 vattr = *va; 1950 1951 /* 1952 * If the pathname is "", just use dvp. Don't need 1953 * to send it over the wire, look it up in the dnlc, 1954 * or perform any access checks. 1955 */ 1956 if (*nm == '\0') { 1957 error = 0; 1958 VN_HOLD(dvp); 1959 vp = dvp; 1960 /* 1961 * If the pathname is ".", just use dvp. Don't need 1962 * to send it over the wire or look it up in the dnlc, 1963 * just need to check access. 1964 */ 1965 } else if (strcmp(nm, ".") == 0) { 1966 error = nfs_access(dvp, VEXEC, 0, cr, ct); 1967 if (error) { 1968 nfs_rw_exit(&drp->r_rwlock); 1969 return (error); 1970 } 1971 VN_HOLD(dvp); 1972 vp = dvp; 1973 /* 1974 * We need to go over the wire, just to be sure whether the 1975 * file exists or not. Using the DNLC can be dangerous in 1976 * this case when making a decision regarding existence. 1977 */ 1978 } else { 1979 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 1980 } 1981 if (!error) { 1982 if (exclusive == EXCL) 1983 error = EEXIST; 1984 else if (vp->v_type == VDIR && (mode & VWRITE)) 1985 error = EISDIR; 1986 else { 1987 /* 1988 * If vnode is a device, create special vnode. 1989 */ 1990 if (IS_DEVVP(vp)) { 1991 tempvp = vp; 1992 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1993 VN_RELE(tempvp); 1994 } 1995 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 1996 if ((vattr.va_mask & AT_SIZE) && 1997 vp->v_type == VREG) { 1998 vattr.va_mask = AT_SIZE; 1999 error = nfssetattr(vp, &vattr, 0, cr); 2000 } 2001 } 2002 } 2003 nfs_rw_exit(&drp->r_rwlock); 2004 if (error) { 2005 VN_RELE(vp); 2006 } else { 2007 /* 2008 * existing file got truncated, notify. 2009 */ 2010 vnevent_create(vp, ct); 2011 *vpp = vp; 2012 } 2013 return (error); 2014 } 2015 2016 ASSERT(vattr.va_mask & AT_TYPE); 2017 if (vattr.va_type == VREG) { 2018 ASSERT(vattr.va_mask & AT_MODE); 2019 if (MANDMODE(vattr.va_mode)) { 2020 nfs_rw_exit(&drp->r_rwlock); 2021 return (EACCES); 2022 } 2023 } 2024 2025 dnlc_remove(dvp, nm); 2026 2027 setdiropargs(&args.ca_da, nm, dvp); 2028 2029 /* 2030 * Decide what the group-id of the created file should be. 2031 * Set it in attribute list as advisory...then do a setattr 2032 * if the server didn't get it right the first time. 2033 */ 2034 error = setdirgid(dvp, &vattr.va_gid, cr); 2035 if (error) { 2036 nfs_rw_exit(&drp->r_rwlock); 2037 return (error); 2038 } 2039 vattr.va_mask |= AT_GID; 2040 2041 /* 2042 * This is a completely gross hack to make mknod 2043 * work over the wire until we can wack the protocol 2044 */ 2045 #define IFCHR 0020000 /* character special */ 2046 #define IFBLK 0060000 /* block special */ 2047 #define IFSOCK 0140000 /* socket */ 2048 2049 /* 2050 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2051 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2052 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2053 * minor/major numbers <= 8 bits long, compress the device 2054 * number before sending it. Otherwise, the 4.x server will not 2055 * create the device with the correct device number and nothing can be 2056 * done about this. 2057 */ 2058 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2059 dev_t d = vattr.va_rdev; 2060 dev32_t dev32; 2061 2062 if (vattr.va_type == VCHR) 2063 vattr.va_mode |= IFCHR; 2064 else 2065 vattr.va_mode |= IFBLK; 2066 2067 (void) cmpldev(&dev32, d); 2068 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2069 vattr.va_size = (u_offset_t)dev32; 2070 else 2071 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2072 2073 vattr.va_mask |= AT_MODE|AT_SIZE; 2074 } else if (vattr.va_type == VFIFO) { 2075 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2076 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2077 vattr.va_mask |= AT_MODE|AT_SIZE; 2078 } else if (vattr.va_type == VSOCK) { 2079 vattr.va_mode |= IFSOCK; 2080 /* 2081 * To avoid triggering bugs in the servers set AT_SIZE 2082 * (all other RFS_CREATE calls set this). 2083 */ 2084 vattr.va_size = 0; 2085 vattr.va_mask |= AT_MODE|AT_SIZE; 2086 } 2087 2088 args.ca_sa = &args.ca_sa_buf; 2089 error = vattr_to_sattr(&vattr, args.ca_sa); 2090 if (error) { 2091 /* req time field(s) overflow - return immediately */ 2092 nfs_rw_exit(&drp->r_rwlock); 2093 return (error); 2094 } 2095 2096 douprintf = 1; 2097 2098 t = gethrtime(); 2099 2100 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2101 xdr_creatargs, (caddr_t)&args, 2102 xdr_diropres, (caddr_t)&dr, cr, 2103 &douprintf, &dr.dr_status, 0, NULL); 2104 2105 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2106 2107 if (!error) { 2108 error = geterrno(dr.dr_status); 2109 if (!error) { 2110 if (HAVE_RDDIR_CACHE(drp)) 2111 nfs_purge_rddir_cache(dvp); 2112 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2113 dvp->v_vfsp, t, cr, NULL, NULL); 2114 /* 2115 * If NFS_ACL is supported on the server, then the 2116 * attributes returned by server may have minimal 2117 * permissions sometimes denying access to users having 2118 * proper access. To get the proper attributes, mark 2119 * the attributes as expired so that they will be 2120 * regotten via the NFS_ACL GETATTR2 procedure. 2121 */ 2122 if (VTOMI(vp)->mi_flags & MI_ACL) { 2123 PURGE_ATTRCACHE(vp); 2124 } 2125 dnlc_update(dvp, nm, vp); 2126 rp = VTOR(vp); 2127 if (vattr.va_size == 0) { 2128 mutex_enter(&rp->r_statelock); 2129 rp->r_size = 0; 2130 mutex_exit(&rp->r_statelock); 2131 if (vn_has_cached_data(vp)) { 2132 ASSERT(vp->v_type != VCHR); 2133 nfs_invalidate_pages(vp, 2134 (u_offset_t)0, cr); 2135 } 2136 } 2137 2138 /* 2139 * Make sure the gid was set correctly. 2140 * If not, try to set it (but don't lose 2141 * any sleep over it). 2142 */ 2143 if (vattr.va_gid != rp->r_attr.va_gid) { 2144 vattr.va_mask = AT_GID; 2145 (void) nfssetattr(vp, &vattr, 0, cr); 2146 } 2147 2148 /* 2149 * If vnode is a device create special vnode 2150 */ 2151 if (IS_DEVVP(vp)) { 2152 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2153 VN_RELE(vp); 2154 } else 2155 *vpp = vp; 2156 } else { 2157 PURGE_STALE_FH(error, dvp, cr); 2158 } 2159 } 2160 2161 nfs_rw_exit(&drp->r_rwlock); 2162 2163 return (error); 2164 } 2165 2166 /* 2167 * Weirdness: if the vnode to be removed is open 2168 * we rename it instead of removing it and nfs_inactive 2169 * will remove the new name. 2170 */ 2171 /* ARGSUSED */ 2172 static int 2173 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2174 { 2175 int error; 2176 struct nfsdiropargs da; 2177 enum nfsstat status; 2178 vnode_t *vp; 2179 char *tmpname; 2180 int douprintf; 2181 rnode_t *rp; 2182 rnode_t *drp; 2183 2184 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2185 return (EPERM); 2186 drp = VTOR(dvp); 2187 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2188 return (EINTR); 2189 2190 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2191 if (error) { 2192 nfs_rw_exit(&drp->r_rwlock); 2193 return (error); 2194 } 2195 2196 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2197 VN_RELE(vp); 2198 nfs_rw_exit(&drp->r_rwlock); 2199 return (EPERM); 2200 } 2201 2202 /* 2203 * First just remove the entry from the name cache, as it 2204 * is most likely the only entry for this vp. 2205 */ 2206 dnlc_remove(dvp, nm); 2207 2208 /* 2209 * If the file has a v_count > 1 then there may be more than one 2210 * entry in the name cache due multiple links or an open file, 2211 * but we don't have the real reference count so flush all 2212 * possible entries. 2213 */ 2214 if (vp->v_count > 1) 2215 dnlc_purge_vp(vp); 2216 2217 /* 2218 * Now we have the real reference count on the vnode 2219 */ 2220 rp = VTOR(vp); 2221 mutex_enter(&rp->r_statelock); 2222 if (vp->v_count > 1 && 2223 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2224 mutex_exit(&rp->r_statelock); 2225 tmpname = newname(); 2226 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2227 if (error) 2228 kmem_free(tmpname, MAXNAMELEN); 2229 else { 2230 mutex_enter(&rp->r_statelock); 2231 if (rp->r_unldvp == NULL) { 2232 VN_HOLD(dvp); 2233 rp->r_unldvp = dvp; 2234 if (rp->r_unlcred != NULL) 2235 crfree(rp->r_unlcred); 2236 crhold(cr); 2237 rp->r_unlcred = cr; 2238 rp->r_unlname = tmpname; 2239 } else { 2240 kmem_free(rp->r_unlname, MAXNAMELEN); 2241 rp->r_unlname = tmpname; 2242 } 2243 mutex_exit(&rp->r_statelock); 2244 } 2245 } else { 2246 mutex_exit(&rp->r_statelock); 2247 /* 2248 * We need to flush any dirty pages which happen to 2249 * be hanging around before removing the file. This 2250 * shouldn't happen very often and mostly on file 2251 * systems mounted "nocto". 2252 */ 2253 if (vn_has_cached_data(vp) && 2254 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2255 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2256 if (error && (error == ENOSPC || error == EDQUOT)) { 2257 mutex_enter(&rp->r_statelock); 2258 if (!rp->r_error) 2259 rp->r_error = error; 2260 mutex_exit(&rp->r_statelock); 2261 } 2262 } 2263 2264 setdiropargs(&da, nm, dvp); 2265 2266 douprintf = 1; 2267 2268 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2269 xdr_diropargs, (caddr_t)&da, 2270 xdr_enum, (caddr_t)&status, cr, 2271 &douprintf, &status, 0, NULL); 2272 2273 /* 2274 * The xattr dir may be gone after last attr is removed, 2275 * so flush it from dnlc. 2276 */ 2277 if (dvp->v_flag & V_XATTRDIR) 2278 dnlc_purge_vp(dvp); 2279 2280 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2281 PURGE_ATTRCACHE(vp); /* link count changed */ 2282 2283 if (!error) { 2284 error = geterrno(status); 2285 if (!error) { 2286 if (HAVE_RDDIR_CACHE(drp)) 2287 nfs_purge_rddir_cache(dvp); 2288 } else { 2289 PURGE_STALE_FH(error, dvp, cr); 2290 } 2291 } 2292 } 2293 2294 if (error == 0) { 2295 vnevent_remove(vp, dvp, nm, ct); 2296 } 2297 VN_RELE(vp); 2298 2299 nfs_rw_exit(&drp->r_rwlock); 2300 2301 return (error); 2302 } 2303 2304 /* ARGSUSED */ 2305 static int 2306 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2307 caller_context_t *ct, int flags) 2308 { 2309 int error; 2310 struct nfslinkargs args; 2311 enum nfsstat status; 2312 vnode_t *realvp; 2313 int douprintf; 2314 rnode_t *tdrp; 2315 2316 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2317 return (EPERM); 2318 if (VOP_REALVP(svp, &realvp, ct) == 0) 2319 svp = realvp; 2320 2321 args.la_from = VTOFH(svp); 2322 setdiropargs(&args.la_to, tnm, tdvp); 2323 2324 tdrp = VTOR(tdvp); 2325 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2326 return (EINTR); 2327 2328 dnlc_remove(tdvp, tnm); 2329 2330 douprintf = 1; 2331 2332 error = rfs2call(VTOMI(svp), RFS_LINK, 2333 xdr_linkargs, (caddr_t)&args, 2334 xdr_enum, (caddr_t)&status, cr, 2335 &douprintf, &status, 0, NULL); 2336 2337 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2338 PURGE_ATTRCACHE(svp); /* link count changed */ 2339 2340 if (!error) { 2341 error = geterrno(status); 2342 if (!error) { 2343 if (HAVE_RDDIR_CACHE(tdrp)) 2344 nfs_purge_rddir_cache(tdvp); 2345 } 2346 } 2347 2348 nfs_rw_exit(&tdrp->r_rwlock); 2349 2350 if (!error) { 2351 /* 2352 * Notify the source file of this link operation. 2353 */ 2354 vnevent_link(svp, ct); 2355 } 2356 return (error); 2357 } 2358 2359 /* ARGSUSED */ 2360 static int 2361 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2362 caller_context_t *ct, int flags) 2363 { 2364 vnode_t *realvp; 2365 2366 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2367 return (EPERM); 2368 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2369 ndvp = realvp; 2370 2371 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2372 } 2373 2374 /* 2375 * nfsrename does the real work of renaming in NFS Version 2. 2376 */ 2377 static int 2378 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2379 caller_context_t *ct) 2380 { 2381 int error; 2382 enum nfsstat status; 2383 struct nfsrnmargs args; 2384 int douprintf; 2385 vnode_t *nvp = NULL; 2386 vnode_t *ovp = NULL; 2387 char *tmpname; 2388 rnode_t *rp; 2389 rnode_t *odrp; 2390 rnode_t *ndrp; 2391 2392 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2393 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2394 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2395 return (EINVAL); 2396 2397 odrp = VTOR(odvp); 2398 ndrp = VTOR(ndvp); 2399 if ((intptr_t)odrp < (intptr_t)ndrp) { 2400 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2401 return (EINTR); 2402 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2403 nfs_rw_exit(&odrp->r_rwlock); 2404 return (EINTR); 2405 } 2406 } else { 2407 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2408 return (EINTR); 2409 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2410 nfs_rw_exit(&ndrp->r_rwlock); 2411 return (EINTR); 2412 } 2413 } 2414 2415 /* 2416 * Lookup the target file. If it exists, it needs to be 2417 * checked to see whether it is a mount point and whether 2418 * it is active (open). 2419 */ 2420 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2421 if (!error) { 2422 /* 2423 * If this file has been mounted on, then just 2424 * return busy because renaming to it would remove 2425 * the mounted file system from the name space. 2426 */ 2427 if (vn_mountedvfs(nvp) != NULL) { 2428 VN_RELE(nvp); 2429 nfs_rw_exit(&odrp->r_rwlock); 2430 nfs_rw_exit(&ndrp->r_rwlock); 2431 return (EBUSY); 2432 } 2433 2434 /* 2435 * Purge the name cache of all references to this vnode 2436 * so that we can check the reference count to infer 2437 * whether it is active or not. 2438 */ 2439 /* 2440 * First just remove the entry from the name cache, as it 2441 * is most likely the only entry for this vp. 2442 */ 2443 dnlc_remove(ndvp, nnm); 2444 /* 2445 * If the file has a v_count > 1 then there may be more 2446 * than one entry in the name cache due multiple links 2447 * or an open file, but we don't have the real reference 2448 * count so flush all possible entries. 2449 */ 2450 if (nvp->v_count > 1) 2451 dnlc_purge_vp(nvp); 2452 2453 /* 2454 * If the vnode is active and is not a directory, 2455 * arrange to rename it to a 2456 * temporary file so that it will continue to be 2457 * accessible. This implements the "unlink-open-file" 2458 * semantics for the target of a rename operation. 2459 * Before doing this though, make sure that the 2460 * source and target files are not already the same. 2461 */ 2462 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2463 /* 2464 * Lookup the source name. 2465 */ 2466 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2467 cr, 0); 2468 2469 /* 2470 * The source name *should* already exist. 2471 */ 2472 if (error) { 2473 VN_RELE(nvp); 2474 nfs_rw_exit(&odrp->r_rwlock); 2475 nfs_rw_exit(&ndrp->r_rwlock); 2476 return (error); 2477 } 2478 2479 /* 2480 * Compare the two vnodes. If they are the same, 2481 * just release all held vnodes and return success. 2482 */ 2483 if (ovp == nvp) { 2484 VN_RELE(ovp); 2485 VN_RELE(nvp); 2486 nfs_rw_exit(&odrp->r_rwlock); 2487 nfs_rw_exit(&ndrp->r_rwlock); 2488 return (0); 2489 } 2490 2491 /* 2492 * Can't mix and match directories and non- 2493 * directories in rename operations. We already 2494 * know that the target is not a directory. If 2495 * the source is a directory, return an error. 2496 */ 2497 if (ovp->v_type == VDIR) { 2498 VN_RELE(ovp); 2499 VN_RELE(nvp); 2500 nfs_rw_exit(&odrp->r_rwlock); 2501 nfs_rw_exit(&ndrp->r_rwlock); 2502 return (ENOTDIR); 2503 } 2504 2505 /* 2506 * The target file exists, is not the same as 2507 * the source file, and is active. Link it 2508 * to a temporary filename to avoid having 2509 * the server removing the file completely. 2510 */ 2511 tmpname = newname(); 2512 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2513 if (error == EOPNOTSUPP) { 2514 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2515 cr, NULL, 0); 2516 } 2517 if (error) { 2518 kmem_free(tmpname, MAXNAMELEN); 2519 VN_RELE(ovp); 2520 VN_RELE(nvp); 2521 nfs_rw_exit(&odrp->r_rwlock); 2522 nfs_rw_exit(&ndrp->r_rwlock); 2523 return (error); 2524 } 2525 rp = VTOR(nvp); 2526 mutex_enter(&rp->r_statelock); 2527 if (rp->r_unldvp == NULL) { 2528 VN_HOLD(ndvp); 2529 rp->r_unldvp = ndvp; 2530 if (rp->r_unlcred != NULL) 2531 crfree(rp->r_unlcred); 2532 crhold(cr); 2533 rp->r_unlcred = cr; 2534 rp->r_unlname = tmpname; 2535 } else { 2536 kmem_free(rp->r_unlname, MAXNAMELEN); 2537 rp->r_unlname = tmpname; 2538 } 2539 mutex_exit(&rp->r_statelock); 2540 } 2541 } 2542 2543 if (ovp == NULL) { 2544 /* 2545 * When renaming directories to be a subdirectory of a 2546 * different parent, the dnlc entry for ".." will no 2547 * longer be valid, so it must be removed. 2548 * 2549 * We do a lookup here to determine whether we are renaming 2550 * a directory and we need to check if we are renaming 2551 * an unlinked file. This might have already been done 2552 * in previous code, so we check ovp == NULL to avoid 2553 * doing it twice. 2554 */ 2555 2556 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2557 2558 /* 2559 * The source name *should* already exist. 2560 */ 2561 if (error) { 2562 nfs_rw_exit(&odrp->r_rwlock); 2563 nfs_rw_exit(&ndrp->r_rwlock); 2564 if (nvp) { 2565 VN_RELE(nvp); 2566 } 2567 return (error); 2568 } 2569 ASSERT(ovp != NULL); 2570 } 2571 2572 dnlc_remove(odvp, onm); 2573 dnlc_remove(ndvp, nnm); 2574 2575 setdiropargs(&args.rna_from, onm, odvp); 2576 setdiropargs(&args.rna_to, nnm, ndvp); 2577 2578 douprintf = 1; 2579 2580 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2581 xdr_rnmargs, (caddr_t)&args, 2582 xdr_enum, (caddr_t)&status, cr, 2583 &douprintf, &status, 0, NULL); 2584 2585 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2586 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2587 2588 if (!error) { 2589 error = geterrno(status); 2590 if (!error) { 2591 if (HAVE_RDDIR_CACHE(odrp)) 2592 nfs_purge_rddir_cache(odvp); 2593 if (HAVE_RDDIR_CACHE(ndrp)) 2594 nfs_purge_rddir_cache(ndvp); 2595 /* 2596 * when renaming directories to be a subdirectory of a 2597 * different parent, the dnlc entry for ".." will no 2598 * longer be valid, so it must be removed 2599 */ 2600 rp = VTOR(ovp); 2601 if (ndvp != odvp) { 2602 if (ovp->v_type == VDIR) { 2603 dnlc_remove(ovp, ".."); 2604 if (HAVE_RDDIR_CACHE(rp)) 2605 nfs_purge_rddir_cache(ovp); 2606 } 2607 } 2608 2609 /* 2610 * If we are renaming the unlinked file, update the 2611 * r_unldvp and r_unlname as needed. 2612 */ 2613 mutex_enter(&rp->r_statelock); 2614 if (rp->r_unldvp != NULL) { 2615 if (strcmp(rp->r_unlname, onm) == 0) { 2616 (void) strncpy(rp->r_unlname, 2617 nnm, MAXNAMELEN); 2618 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2619 2620 if (ndvp != rp->r_unldvp) { 2621 VN_RELE(rp->r_unldvp); 2622 rp->r_unldvp = ndvp; 2623 VN_HOLD(ndvp); 2624 } 2625 } 2626 } 2627 mutex_exit(&rp->r_statelock); 2628 } else { 2629 /* 2630 * System V defines rename to return EEXIST, not 2631 * ENOTEMPTY if the target directory is not empty. 2632 * Over the wire, the error is NFSERR_ENOTEMPTY 2633 * which geterrno maps to ENOTEMPTY. 2634 */ 2635 if (error == ENOTEMPTY) 2636 error = EEXIST; 2637 } 2638 } 2639 2640 if (error == 0) { 2641 if (nvp) 2642 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2643 2644 if (odvp != ndvp) 2645 vnevent_rename_dest_dir(ndvp, ct); 2646 2647 ASSERT(ovp != NULL); 2648 vnevent_rename_src(ovp, odvp, onm, ct); 2649 } 2650 2651 if (nvp) { 2652 VN_RELE(nvp); 2653 } 2654 VN_RELE(ovp); 2655 2656 nfs_rw_exit(&odrp->r_rwlock); 2657 nfs_rw_exit(&ndrp->r_rwlock); 2658 2659 return (error); 2660 } 2661 2662 /* ARGSUSED */ 2663 static int 2664 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2665 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2666 { 2667 int error; 2668 struct nfscreatargs args; 2669 struct nfsdiropres dr; 2670 int douprintf; 2671 rnode_t *drp; 2672 hrtime_t t; 2673 2674 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2675 return (EPERM); 2676 2677 setdiropargs(&args.ca_da, nm, dvp); 2678 2679 /* 2680 * Decide what the group-id and set-gid bit of the created directory 2681 * should be. May have to do a setattr to get the gid right. 2682 */ 2683 error = setdirgid(dvp, &va->va_gid, cr); 2684 if (error) 2685 return (error); 2686 error = setdirmode(dvp, &va->va_mode, cr); 2687 if (error) 2688 return (error); 2689 va->va_mask |= AT_MODE|AT_GID; 2690 2691 args.ca_sa = &args.ca_sa_buf; 2692 error = vattr_to_sattr(va, args.ca_sa); 2693 if (error) { 2694 /* req time field(s) overflow - return immediately */ 2695 return (error); 2696 } 2697 2698 drp = VTOR(dvp); 2699 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2700 return (EINTR); 2701 2702 dnlc_remove(dvp, nm); 2703 2704 douprintf = 1; 2705 2706 t = gethrtime(); 2707 2708 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2709 xdr_creatargs, (caddr_t)&args, 2710 xdr_diropres, (caddr_t)&dr, cr, 2711 &douprintf, &dr.dr_status, 0, NULL); 2712 2713 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2714 2715 if (!error) { 2716 error = geterrno(dr.dr_status); 2717 if (!error) { 2718 if (HAVE_RDDIR_CACHE(drp)) 2719 nfs_purge_rddir_cache(dvp); 2720 /* 2721 * The attributes returned by RFS_MKDIR can not 2722 * be depended upon, so mark the attribute cache 2723 * as purged. A subsequent GETATTR will get the 2724 * correct attributes from the server. 2725 */ 2726 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2727 dvp->v_vfsp, t, cr, NULL, NULL); 2728 PURGE_ATTRCACHE(*vpp); 2729 dnlc_update(dvp, nm, *vpp); 2730 2731 /* 2732 * Make sure the gid was set correctly. 2733 * If not, try to set it (but don't lose 2734 * any sleep over it). 2735 */ 2736 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2737 va->va_mask = AT_GID; 2738 (void) nfssetattr(*vpp, va, 0, cr); 2739 } 2740 } else { 2741 PURGE_STALE_FH(error, dvp, cr); 2742 } 2743 } 2744 2745 nfs_rw_exit(&drp->r_rwlock); 2746 2747 return (error); 2748 } 2749 2750 /* ARGSUSED */ 2751 static int 2752 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2753 caller_context_t *ct, int flags) 2754 { 2755 int error; 2756 enum nfsstat status; 2757 struct nfsdiropargs da; 2758 vnode_t *vp; 2759 int douprintf; 2760 rnode_t *drp; 2761 2762 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2763 return (EPERM); 2764 drp = VTOR(dvp); 2765 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2766 return (EINTR); 2767 2768 /* 2769 * Attempt to prevent a rmdir(".") from succeeding. 2770 */ 2771 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2772 if (error) { 2773 nfs_rw_exit(&drp->r_rwlock); 2774 return (error); 2775 } 2776 2777 if (vp == cdir) { 2778 VN_RELE(vp); 2779 nfs_rw_exit(&drp->r_rwlock); 2780 return (EINVAL); 2781 } 2782 2783 setdiropargs(&da, nm, dvp); 2784 2785 /* 2786 * First just remove the entry from the name cache, as it 2787 * is most likely an entry for this vp. 2788 */ 2789 dnlc_remove(dvp, nm); 2790 2791 /* 2792 * If there vnode reference count is greater than one, then 2793 * there may be additional references in the DNLC which will 2794 * need to be purged. First, trying removing the entry for 2795 * the parent directory and see if that removes the additional 2796 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2797 * to completely remove any references to the directory which 2798 * might still exist in the DNLC. 2799 */ 2800 if (vp->v_count > 1) { 2801 dnlc_remove(vp, ".."); 2802 if (vp->v_count > 1) 2803 dnlc_purge_vp(vp); 2804 } 2805 2806 douprintf = 1; 2807 2808 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2809 xdr_diropargs, (caddr_t)&da, 2810 xdr_enum, (caddr_t)&status, cr, 2811 &douprintf, &status, 0, NULL); 2812 2813 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2814 2815 if (error) { 2816 VN_RELE(vp); 2817 nfs_rw_exit(&drp->r_rwlock); 2818 return (error); 2819 } 2820 2821 error = geterrno(status); 2822 if (!error) { 2823 if (HAVE_RDDIR_CACHE(drp)) 2824 nfs_purge_rddir_cache(dvp); 2825 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2826 nfs_purge_rddir_cache(vp); 2827 } else { 2828 PURGE_STALE_FH(error, dvp, cr); 2829 /* 2830 * System V defines rmdir to return EEXIST, not 2831 * ENOTEMPTY if the directory is not empty. Over 2832 * the wire, the error is NFSERR_ENOTEMPTY which 2833 * geterrno maps to ENOTEMPTY. 2834 */ 2835 if (error == ENOTEMPTY) 2836 error = EEXIST; 2837 } 2838 2839 if (error == 0) { 2840 vnevent_rmdir(vp, dvp, nm, ct); 2841 } 2842 VN_RELE(vp); 2843 2844 nfs_rw_exit(&drp->r_rwlock); 2845 2846 return (error); 2847 } 2848 2849 /* ARGSUSED */ 2850 static int 2851 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2852 caller_context_t *ct, int flags) 2853 { 2854 int error; 2855 struct nfsslargs args; 2856 enum nfsstat status; 2857 int douprintf; 2858 rnode_t *drp; 2859 2860 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2861 return (EPERM); 2862 setdiropargs(&args.sla_from, lnm, dvp); 2863 args.sla_sa = &args.sla_sa_buf; 2864 error = vattr_to_sattr(tva, args.sla_sa); 2865 if (error) { 2866 /* req time field(s) overflow - return immediately */ 2867 return (error); 2868 } 2869 args.sla_tnm = tnm; 2870 2871 drp = VTOR(dvp); 2872 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2873 return (EINTR); 2874 2875 dnlc_remove(dvp, lnm); 2876 2877 douprintf = 1; 2878 2879 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2880 xdr_slargs, (caddr_t)&args, 2881 xdr_enum, (caddr_t)&status, cr, 2882 &douprintf, &status, 0, NULL); 2883 2884 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2885 2886 if (!error) { 2887 error = geterrno(status); 2888 if (!error) { 2889 if (HAVE_RDDIR_CACHE(drp)) 2890 nfs_purge_rddir_cache(dvp); 2891 } else { 2892 PURGE_STALE_FH(error, dvp, cr); 2893 } 2894 } 2895 2896 nfs_rw_exit(&drp->r_rwlock); 2897 2898 return (error); 2899 } 2900 2901 #ifdef DEBUG 2902 static int nfs_readdir_cache_hits = 0; 2903 static int nfs_readdir_cache_shorts = 0; 2904 static int nfs_readdir_cache_waits = 0; 2905 static int nfs_readdir_cache_misses = 0; 2906 static int nfs_readdir_readahead = 0; 2907 #endif 2908 2909 static int nfs_shrinkreaddir = 0; 2910 2911 /* 2912 * Read directory entries. 2913 * There are some weird things to look out for here. The uio_offset 2914 * field is either 0 or it is the offset returned from a previous 2915 * readdir. It is an opaque value used by the server to find the 2916 * correct directory block to read. The count field is the number 2917 * of blocks to read on the server. This is advisory only, the server 2918 * may return only one block's worth of entries. Entries may be compressed 2919 * on the server. 2920 */ 2921 /* ARGSUSED */ 2922 static int 2923 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2924 caller_context_t *ct, int flags) 2925 { 2926 int error; 2927 size_t count; 2928 rnode_t *rp; 2929 rddir_cache *rdc; 2930 rddir_cache *nrdc; 2931 rddir_cache *rrdc; 2932 #ifdef DEBUG 2933 int missed; 2934 #endif 2935 rddir_cache srdc; 2936 avl_index_t where; 2937 2938 rp = VTOR(vp); 2939 2940 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2941 if (nfs_zone() != VTOMI(vp)->mi_zone) 2942 return (EIO); 2943 /* 2944 * Make sure that the directory cache is valid. 2945 */ 2946 if (HAVE_RDDIR_CACHE(rp)) { 2947 if (nfs_disable_rddir_cache) { 2948 /* 2949 * Setting nfs_disable_rddir_cache in /etc/system 2950 * allows interoperability with servers that do not 2951 * properly update the attributes of directories. 2952 * Any cached information gets purged before an 2953 * access is made to it. 2954 */ 2955 nfs_purge_rddir_cache(vp); 2956 } else { 2957 error = nfs_validate_caches(vp, cr); 2958 if (error) 2959 return (error); 2960 } 2961 } 2962 2963 /* 2964 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 2965 * RFS_READDIR request with rda_count set to more than 0x400. So 2966 * we reduce the request size here purely for compatibility. 2967 * 2968 * In general, this is no longer required. However, if a server 2969 * is discovered which can not handle requests larger than 1024, 2970 * nfs_shrinkreaddir can be set to 1 to enable this backwards 2971 * compatibility. 2972 * 2973 * In any case, the request size is limited to NFS_MAXDATA bytes. 2974 */ 2975 count = MIN(uiop->uio_iov->iov_len, 2976 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 2977 2978 nrdc = NULL; 2979 #ifdef DEBUG 2980 missed = 0; 2981 #endif 2982 top: 2983 /* 2984 * Short circuit last readdir which always returns 0 bytes. 2985 * This can be done after the directory has been read through 2986 * completely at least once. This will set r_direof which 2987 * can be used to find the value of the last cookie. 2988 */ 2989 mutex_enter(&rp->r_statelock); 2990 if (rp->r_direof != NULL && 2991 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 2992 mutex_exit(&rp->r_statelock); 2993 #ifdef DEBUG 2994 nfs_readdir_cache_shorts++; 2995 #endif 2996 if (eofp) 2997 *eofp = 1; 2998 if (nrdc != NULL) 2999 rddir_cache_rele(nrdc); 3000 return (0); 3001 } 3002 /* 3003 * Look for a cache entry. Cache entries are identified 3004 * by the NFS cookie value and the byte count requested. 3005 */ 3006 srdc.nfs_cookie = uiop->uio_offset; 3007 srdc.buflen = count; 3008 rdc = avl_find(&rp->r_dir, &srdc, &where); 3009 if (rdc != NULL) { 3010 rddir_cache_hold(rdc); 3011 /* 3012 * If the cache entry is in the process of being 3013 * filled in, wait until this completes. The 3014 * RDDIRWAIT bit is set to indicate that someone 3015 * is waiting and then the thread currently 3016 * filling the entry is done, it should do a 3017 * cv_broadcast to wakeup all of the threads 3018 * waiting for it to finish. 3019 */ 3020 if (rdc->flags & RDDIR) { 3021 nfs_rw_exit(&rp->r_rwlock); 3022 rdc->flags |= RDDIRWAIT; 3023 #ifdef DEBUG 3024 nfs_readdir_cache_waits++; 3025 #endif 3026 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3027 /* 3028 * We got interrupted, probably 3029 * the user typed ^C or an alarm 3030 * fired. We free the new entry 3031 * if we allocated one. 3032 */ 3033 mutex_exit(&rp->r_statelock); 3034 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3035 RW_READER, FALSE); 3036 rddir_cache_rele(rdc); 3037 if (nrdc != NULL) 3038 rddir_cache_rele(nrdc); 3039 return (EINTR); 3040 } 3041 mutex_exit(&rp->r_statelock); 3042 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3043 RW_READER, FALSE); 3044 rddir_cache_rele(rdc); 3045 goto top; 3046 } 3047 /* 3048 * Check to see if a readdir is required to 3049 * fill the entry. If so, mark this entry 3050 * as being filled, remove our reference, 3051 * and branch to the code to fill the entry. 3052 */ 3053 if (rdc->flags & RDDIRREQ) { 3054 rdc->flags &= ~RDDIRREQ; 3055 rdc->flags |= RDDIR; 3056 if (nrdc != NULL) 3057 rddir_cache_rele(nrdc); 3058 nrdc = rdc; 3059 mutex_exit(&rp->r_statelock); 3060 goto bottom; 3061 } 3062 #ifdef DEBUG 3063 if (!missed) 3064 nfs_readdir_cache_hits++; 3065 #endif 3066 /* 3067 * If an error occurred while attempting 3068 * to fill the cache entry, just return it. 3069 */ 3070 if (rdc->error) { 3071 error = rdc->error; 3072 mutex_exit(&rp->r_statelock); 3073 rddir_cache_rele(rdc); 3074 if (nrdc != NULL) 3075 rddir_cache_rele(nrdc); 3076 return (error); 3077 } 3078 3079 /* 3080 * The cache entry is complete and good, 3081 * copyout the dirent structs to the calling 3082 * thread. 3083 */ 3084 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3085 3086 /* 3087 * If no error occurred during the copyout, 3088 * update the offset in the uio struct to 3089 * contain the value of the next cookie 3090 * and set the eof value appropriately. 3091 */ 3092 if (!error) { 3093 uiop->uio_offset = rdc->nfs_ncookie; 3094 if (eofp) 3095 *eofp = rdc->eof; 3096 } 3097 3098 /* 3099 * Decide whether to do readahead. Don't if 3100 * have already read to the end of directory. 3101 */ 3102 if (rdc->eof) { 3103 rp->r_direof = rdc; 3104 mutex_exit(&rp->r_statelock); 3105 rddir_cache_rele(rdc); 3106 if (nrdc != NULL) 3107 rddir_cache_rele(nrdc); 3108 return (error); 3109 } 3110 3111 /* 3112 * Check to see whether we found an entry 3113 * for the readahead. If so, we don't need 3114 * to do anything further, so free the new 3115 * entry if one was allocated. Otherwise, 3116 * allocate a new entry, add it to the cache, 3117 * and then initiate an asynchronous readdir 3118 * operation to fill it. 3119 */ 3120 srdc.nfs_cookie = rdc->nfs_ncookie; 3121 srdc.buflen = count; 3122 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3123 if (rrdc != NULL) { 3124 if (nrdc != NULL) 3125 rddir_cache_rele(nrdc); 3126 } else { 3127 if (nrdc != NULL) 3128 rrdc = nrdc; 3129 else { 3130 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3131 } 3132 if (rrdc != NULL) { 3133 rrdc->nfs_cookie = rdc->nfs_ncookie; 3134 rrdc->buflen = count; 3135 avl_insert(&rp->r_dir, rrdc, where); 3136 rddir_cache_hold(rrdc); 3137 mutex_exit(&rp->r_statelock); 3138 rddir_cache_rele(rdc); 3139 #ifdef DEBUG 3140 nfs_readdir_readahead++; 3141 #endif 3142 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3143 return (error); 3144 } 3145 } 3146 3147 mutex_exit(&rp->r_statelock); 3148 rddir_cache_rele(rdc); 3149 return (error); 3150 } 3151 3152 /* 3153 * Didn't find an entry in the cache. Construct a new empty 3154 * entry and link it into the cache. Other processes attempting 3155 * to access this entry will need to wait until it is filled in. 3156 * 3157 * Since kmem_alloc may block, another pass through the cache 3158 * will need to be taken to make sure that another process 3159 * hasn't already added an entry to the cache for this request. 3160 */ 3161 if (nrdc == NULL) { 3162 mutex_exit(&rp->r_statelock); 3163 nrdc = rddir_cache_alloc(KM_SLEEP); 3164 nrdc->nfs_cookie = uiop->uio_offset; 3165 nrdc->buflen = count; 3166 goto top; 3167 } 3168 3169 /* 3170 * Add this entry to the cache. 3171 */ 3172 avl_insert(&rp->r_dir, nrdc, where); 3173 rddir_cache_hold(nrdc); 3174 mutex_exit(&rp->r_statelock); 3175 3176 bottom: 3177 #ifdef DEBUG 3178 missed = 1; 3179 nfs_readdir_cache_misses++; 3180 #endif 3181 /* 3182 * Do the readdir. 3183 */ 3184 error = nfsreaddir(vp, nrdc, cr); 3185 3186 /* 3187 * If this operation failed, just return the error which occurred. 3188 */ 3189 if (error != 0) 3190 return (error); 3191 3192 /* 3193 * Since the RPC operation will have taken sometime and blocked 3194 * this process, another pass through the cache will need to be 3195 * taken to find the correct cache entry. It is possible that 3196 * the correct cache entry will not be there (although one was 3197 * added) because the directory changed during the RPC operation 3198 * and the readdir cache was flushed. In this case, just start 3199 * over. It is hoped that this will not happen too often... :-) 3200 */ 3201 nrdc = NULL; 3202 goto top; 3203 /* NOTREACHED */ 3204 } 3205 3206 static int 3207 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3208 { 3209 int error; 3210 struct nfsrddirargs rda; 3211 struct nfsrddirres rd; 3212 rnode_t *rp; 3213 mntinfo_t *mi; 3214 uint_t count; 3215 int douprintf; 3216 failinfo_t fi, *fip; 3217 3218 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3219 count = rdc->buflen; 3220 3221 rp = VTOR(vp); 3222 mi = VTOMI(vp); 3223 3224 rda.rda_fh = *VTOFH(vp); 3225 rda.rda_offset = rdc->nfs_cookie; 3226 3227 /* 3228 * NFS client failover support 3229 * suppress failover unless we have a zero cookie 3230 */ 3231 if (rdc->nfs_cookie == (off_t)0) { 3232 fi.vp = vp; 3233 fi.fhp = (caddr_t)&rda.rda_fh; 3234 fi.copyproc = nfscopyfh; 3235 fi.lookupproc = nfslookup; 3236 fi.xattrdirproc = acl_getxattrdir2; 3237 fip = &fi; 3238 } else { 3239 fip = NULL; 3240 } 3241 3242 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3243 rd.rd_size = count; 3244 rd.rd_offset = rda.rda_offset; 3245 3246 douprintf = 1; 3247 3248 if (mi->mi_io_kstats) { 3249 mutex_enter(&mi->mi_lock); 3250 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3251 mutex_exit(&mi->mi_lock); 3252 } 3253 3254 do { 3255 rda.rda_count = MIN(count, mi->mi_curread); 3256 error = rfs2call(mi, RFS_READDIR, 3257 xdr_rddirargs, (caddr_t)&rda, 3258 xdr_getrddirres, (caddr_t)&rd, cr, 3259 &douprintf, &rd.rd_status, 0, fip); 3260 } while (error == ENFS_TRYAGAIN); 3261 3262 if (mi->mi_io_kstats) { 3263 mutex_enter(&mi->mi_lock); 3264 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3265 mutex_exit(&mi->mi_lock); 3266 } 3267 3268 /* 3269 * Since we are actually doing a READDIR RPC, we must have 3270 * exclusive access to the cache entry being filled. Thus, 3271 * it is safe to update all fields except for the flags 3272 * field. The r_statelock in the rnode must be held to 3273 * prevent two different threads from simultaneously 3274 * attempting to update the flags field. This can happen 3275 * if we are turning off RDDIR and the other thread is 3276 * trying to set RDDIRWAIT. 3277 */ 3278 ASSERT(rdc->flags & RDDIR); 3279 if (!error) { 3280 error = geterrno(rd.rd_status); 3281 if (!error) { 3282 rdc->nfs_ncookie = rd.rd_offset; 3283 rdc->eof = rd.rd_eof ? 1 : 0; 3284 rdc->entlen = rd.rd_size; 3285 ASSERT(rdc->entlen <= rdc->buflen); 3286 #ifdef DEBUG 3287 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3288 KM_SLEEP); 3289 #else 3290 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3291 #endif 3292 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3293 rdc->error = 0; 3294 if (mi->mi_io_kstats) { 3295 mutex_enter(&mi->mi_lock); 3296 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3297 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3298 rd.rd_size; 3299 mutex_exit(&mi->mi_lock); 3300 } 3301 } else { 3302 PURGE_STALE_FH(error, vp, cr); 3303 } 3304 } 3305 if (error) { 3306 rdc->entries = NULL; 3307 rdc->error = error; 3308 } 3309 kmem_free(rd.rd_entries, rdc->buflen); 3310 3311 mutex_enter(&rp->r_statelock); 3312 rdc->flags &= ~RDDIR; 3313 if (rdc->flags & RDDIRWAIT) { 3314 rdc->flags &= ~RDDIRWAIT; 3315 cv_broadcast(&rdc->cv); 3316 } 3317 if (error) 3318 rdc->flags |= RDDIRREQ; 3319 mutex_exit(&rp->r_statelock); 3320 3321 rddir_cache_rele(rdc); 3322 3323 return (error); 3324 } 3325 3326 #ifdef DEBUG 3327 static int nfs_bio_do_stop = 0; 3328 #endif 3329 3330 static int 3331 nfs_bio(struct buf *bp, cred_t *cr) 3332 { 3333 rnode_t *rp = VTOR(bp->b_vp); 3334 int count; 3335 int error; 3336 cred_t *cred; 3337 uint_t offset; 3338 3339 DTRACE_IO1(start, struct buf *, bp); 3340 3341 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3342 offset = dbtob(bp->b_blkno); 3343 3344 if (bp->b_flags & B_READ) { 3345 mutex_enter(&rp->r_statelock); 3346 if (rp->r_cred != NULL) { 3347 cred = rp->r_cred; 3348 crhold(cred); 3349 } else { 3350 rp->r_cred = cr; 3351 crhold(cr); 3352 cred = cr; 3353 crhold(cred); 3354 } 3355 mutex_exit(&rp->r_statelock); 3356 read_again: 3357 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3358 offset, bp->b_bcount, &bp->b_resid, cred); 3359 crfree(cred); 3360 if (!error) { 3361 if (bp->b_resid) { 3362 /* 3363 * Didn't get it all because we hit EOF, 3364 * zero all the memory beyond the EOF. 3365 */ 3366 /* bzero(rdaddr + */ 3367 bzero(bp->b_un.b_addr + 3368 bp->b_bcount - bp->b_resid, bp->b_resid); 3369 } 3370 mutex_enter(&rp->r_statelock); 3371 if (bp->b_resid == bp->b_bcount && 3372 offset >= rp->r_size) { 3373 /* 3374 * We didn't read anything at all as we are 3375 * past EOF. Return an error indicator back 3376 * but don't destroy the pages (yet). 3377 */ 3378 error = NFS_EOF; 3379 } 3380 mutex_exit(&rp->r_statelock); 3381 } else if (error == EACCES) { 3382 mutex_enter(&rp->r_statelock); 3383 if (cred != cr) { 3384 if (rp->r_cred != NULL) 3385 crfree(rp->r_cred); 3386 rp->r_cred = cr; 3387 crhold(cr); 3388 cred = cr; 3389 crhold(cred); 3390 mutex_exit(&rp->r_statelock); 3391 goto read_again; 3392 } 3393 mutex_exit(&rp->r_statelock); 3394 } 3395 } else { 3396 if (!(rp->r_flags & RSTALE)) { 3397 mutex_enter(&rp->r_statelock); 3398 if (rp->r_cred != NULL) { 3399 cred = rp->r_cred; 3400 crhold(cred); 3401 } else { 3402 rp->r_cred = cr; 3403 crhold(cr); 3404 cred = cr; 3405 crhold(cred); 3406 } 3407 mutex_exit(&rp->r_statelock); 3408 write_again: 3409 mutex_enter(&rp->r_statelock); 3410 count = MIN(bp->b_bcount, rp->r_size - offset); 3411 mutex_exit(&rp->r_statelock); 3412 if (count < 0) 3413 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3414 #ifdef DEBUG 3415 if (count == 0) { 3416 zcmn_err(getzoneid(), CE_WARN, 3417 "nfs_bio: zero length write at %d", 3418 offset); 3419 nfs_printfhandle(&rp->r_fh); 3420 if (nfs_bio_do_stop) 3421 debug_enter("nfs_bio"); 3422 } 3423 #endif 3424 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3425 count, cred); 3426 if (error == EACCES) { 3427 mutex_enter(&rp->r_statelock); 3428 if (cred != cr) { 3429 if (rp->r_cred != NULL) 3430 crfree(rp->r_cred); 3431 rp->r_cred = cr; 3432 crhold(cr); 3433 crfree(cred); 3434 cred = cr; 3435 crhold(cred); 3436 mutex_exit(&rp->r_statelock); 3437 goto write_again; 3438 } 3439 mutex_exit(&rp->r_statelock); 3440 } 3441 bp->b_error = error; 3442 if (error && error != EINTR) { 3443 /* 3444 * Don't print EDQUOT errors on the console. 3445 * Don't print asynchronous EACCES errors. 3446 * Don't print EFBIG errors. 3447 * Print all other write errors. 3448 */ 3449 if (error != EDQUOT && error != EFBIG && 3450 (error != EACCES || 3451 !(bp->b_flags & B_ASYNC))) 3452 nfs_write_error(bp->b_vp, error, cred); 3453 /* 3454 * Update r_error and r_flags as appropriate. 3455 * If the error was ESTALE, then mark the 3456 * rnode as not being writeable and save 3457 * the error status. Otherwise, save any 3458 * errors which occur from asynchronous 3459 * page invalidations. Any errors occurring 3460 * from other operations should be saved 3461 * by the caller. 3462 */ 3463 mutex_enter(&rp->r_statelock); 3464 if (error == ESTALE) { 3465 rp->r_flags |= RSTALE; 3466 if (!rp->r_error) 3467 rp->r_error = error; 3468 } else if (!rp->r_error && 3469 (bp->b_flags & 3470 (B_INVAL|B_FORCE|B_ASYNC)) == 3471 (B_INVAL|B_FORCE|B_ASYNC)) { 3472 rp->r_error = error; 3473 } 3474 mutex_exit(&rp->r_statelock); 3475 } 3476 crfree(cred); 3477 } else 3478 error = rp->r_error; 3479 } 3480 3481 if (error != 0 && error != NFS_EOF) 3482 bp->b_flags |= B_ERROR; 3483 3484 DTRACE_IO1(done, struct buf *, bp); 3485 3486 return (error); 3487 } 3488 3489 /* ARGSUSED */ 3490 static int 3491 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3492 { 3493 struct nfs_fid *fp; 3494 rnode_t *rp; 3495 3496 rp = VTOR(vp); 3497 3498 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3499 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3500 return (ENOSPC); 3501 } 3502 fp = (struct nfs_fid *)fidp; 3503 fp->nf_pad = 0; 3504 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3505 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3506 return (0); 3507 } 3508 3509 /* ARGSUSED2 */ 3510 static int 3511 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3512 { 3513 rnode_t *rp = VTOR(vp); 3514 3515 if (!write_lock) { 3516 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3517 return (V_WRITELOCK_FALSE); 3518 } 3519 3520 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3521 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3522 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3523 return (V_WRITELOCK_FALSE); 3524 nfs_rw_exit(&rp->r_rwlock); 3525 } 3526 3527 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3528 return (V_WRITELOCK_TRUE); 3529 } 3530 3531 /* ARGSUSED */ 3532 static void 3533 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3534 { 3535 rnode_t *rp = VTOR(vp); 3536 3537 nfs_rw_exit(&rp->r_rwlock); 3538 } 3539 3540 /* ARGSUSED */ 3541 static int 3542 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3543 { 3544 3545 /* 3546 * Because we stuff the readdir cookie into the offset field 3547 * someone may attempt to do an lseek with the cookie which 3548 * we want to succeed. 3549 */ 3550 if (vp->v_type == VDIR) 3551 return (0); 3552 if (*noffp < 0 || *noffp > MAXOFF32_T) 3553 return (EINVAL); 3554 return (0); 3555 } 3556 3557 /* 3558 * number of NFS_MAXDATA blocks to read ahead 3559 * optimized for 100 base-T. 3560 */ 3561 static int nfs_nra = 4; 3562 3563 #ifdef DEBUG 3564 static int nfs_lostpage = 0; /* number of times we lost original page */ 3565 #endif 3566 3567 /* 3568 * Return all the pages from [off..off+len) in file 3569 */ 3570 /* ARGSUSED */ 3571 static int 3572 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3573 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3574 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3575 { 3576 rnode_t *rp; 3577 int error; 3578 mntinfo_t *mi; 3579 3580 if (vp->v_flag & VNOMAP) 3581 return (ENOSYS); 3582 3583 ASSERT(off <= MAXOFF32_T); 3584 if (nfs_zone() != VTOMI(vp)->mi_zone) 3585 return (EIO); 3586 if (protp != NULL) 3587 *protp = PROT_ALL; 3588 3589 /* 3590 * Now valididate that the caches are up to date. 3591 */ 3592 error = nfs_validate_caches(vp, cr); 3593 if (error) 3594 return (error); 3595 3596 rp = VTOR(vp); 3597 mi = VTOMI(vp); 3598 retry: 3599 mutex_enter(&rp->r_statelock); 3600 3601 /* 3602 * Don't create dirty pages faster than they 3603 * can be cleaned so that the system doesn't 3604 * get imbalanced. If the async queue is 3605 * maxed out, then wait for it to drain before 3606 * creating more dirty pages. Also, wait for 3607 * any threads doing pagewalks in the vop_getattr 3608 * entry points so that they don't block for 3609 * long periods. 3610 */ 3611 if (rw == S_CREATE) { 3612 while ((mi->mi_max_threads != 0 && 3613 rp->r_awcount > 2 * mi->mi_max_threads) || 3614 rp->r_gcount > 0) 3615 cv_wait(&rp->r_cv, &rp->r_statelock); 3616 } 3617 3618 /* 3619 * If we are getting called as a side effect of an nfs_write() 3620 * operation the local file size might not be extended yet. 3621 * In this case we want to be able to return pages of zeroes. 3622 */ 3623 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3624 mutex_exit(&rp->r_statelock); 3625 return (EFAULT); /* beyond EOF */ 3626 } 3627 3628 mutex_exit(&rp->r_statelock); 3629 3630 if (len <= PAGESIZE) { 3631 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3632 seg, addr, rw, cr); 3633 } else { 3634 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3635 pl, plsz, seg, addr, rw, cr); 3636 } 3637 3638 switch (error) { 3639 case NFS_EOF: 3640 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3641 goto retry; 3642 case ESTALE: 3643 PURGE_STALE_FH(error, vp, cr); 3644 } 3645 3646 return (error); 3647 } 3648 3649 /* 3650 * Called from pvn_getpages or nfs_getpage to get a particular page. 3651 */ 3652 /* ARGSUSED */ 3653 static int 3654 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3655 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3656 enum seg_rw rw, cred_t *cr) 3657 { 3658 rnode_t *rp; 3659 uint_t bsize; 3660 struct buf *bp; 3661 page_t *pp; 3662 u_offset_t lbn; 3663 u_offset_t io_off; 3664 u_offset_t blkoff; 3665 u_offset_t rablkoff; 3666 size_t io_len; 3667 uint_t blksize; 3668 int error; 3669 int readahead; 3670 int readahead_issued = 0; 3671 int ra_window; /* readahead window */ 3672 page_t *pagefound; 3673 3674 if (nfs_zone() != VTOMI(vp)->mi_zone) 3675 return (EIO); 3676 rp = VTOR(vp); 3677 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3678 3679 reread: 3680 bp = NULL; 3681 pp = NULL; 3682 pagefound = NULL; 3683 3684 if (pl != NULL) 3685 pl[0] = NULL; 3686 3687 error = 0; 3688 lbn = off / bsize; 3689 blkoff = lbn * bsize; 3690 3691 /* 3692 * Queueing up the readahead before doing the synchronous read 3693 * results in a significant increase in read throughput because 3694 * of the increased parallelism between the async threads and 3695 * the process context. 3696 */ 3697 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3698 rw != S_CREATE && 3699 !(vp->v_flag & VNOCACHE)) { 3700 mutex_enter(&rp->r_statelock); 3701 3702 /* 3703 * Calculate the number of readaheads to do. 3704 * a) No readaheads at offset = 0. 3705 * b) Do maximum(nfs_nra) readaheads when the readahead 3706 * window is closed. 3707 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3708 * upon how far the readahead window is open or close. 3709 * d) No readaheads if rp->r_nextr is not within the scope 3710 * of the readahead window (random i/o). 3711 */ 3712 3713 if (off == 0) 3714 readahead = 0; 3715 else if (blkoff == rp->r_nextr) 3716 readahead = nfs_nra; 3717 else if (rp->r_nextr > blkoff && 3718 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3719 <= (nfs_nra - 1))) 3720 readahead = nfs_nra - ra_window; 3721 else 3722 readahead = 0; 3723 3724 rablkoff = rp->r_nextr; 3725 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3726 mutex_exit(&rp->r_statelock); 3727 if (nfs_async_readahead(vp, rablkoff + bsize, 3728 addr + (rablkoff + bsize - off), seg, cr, 3729 nfs_readahead) < 0) { 3730 mutex_enter(&rp->r_statelock); 3731 break; 3732 } 3733 readahead--; 3734 rablkoff += bsize; 3735 /* 3736 * Indicate that we did a readahead so 3737 * readahead offset is not updated 3738 * by the synchronous read below. 3739 */ 3740 readahead_issued = 1; 3741 mutex_enter(&rp->r_statelock); 3742 /* 3743 * set readahead offset to 3744 * offset of last async readahead 3745 * request. 3746 */ 3747 rp->r_nextr = rablkoff; 3748 } 3749 mutex_exit(&rp->r_statelock); 3750 } 3751 3752 again: 3753 if ((pagefound = page_exists(vp, off)) == NULL) { 3754 if (pl == NULL) { 3755 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3756 nfs_readahead); 3757 } else if (rw == S_CREATE) { 3758 /* 3759 * Block for this page is not allocated, or the offset 3760 * is beyond the current allocation size, or we're 3761 * allocating a swap slot and the page was not found, 3762 * so allocate it and return a zero page. 3763 */ 3764 if ((pp = page_create_va(vp, off, 3765 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3766 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3767 io_len = PAGESIZE; 3768 mutex_enter(&rp->r_statelock); 3769 rp->r_nextr = off + PAGESIZE; 3770 mutex_exit(&rp->r_statelock); 3771 } else { 3772 /* 3773 * Need to go to server to get a BLOCK, exception to 3774 * that being while reading at offset = 0 or doing 3775 * random i/o, in that case read only a PAGE. 3776 */ 3777 mutex_enter(&rp->r_statelock); 3778 if (blkoff < rp->r_size && 3779 blkoff + bsize >= rp->r_size) { 3780 /* 3781 * If only a block or less is left in 3782 * the file, read all that is remaining. 3783 */ 3784 if (rp->r_size <= off) { 3785 /* 3786 * Trying to access beyond EOF, 3787 * set up to get at least one page. 3788 */ 3789 blksize = off + PAGESIZE - blkoff; 3790 } else 3791 blksize = rp->r_size - blkoff; 3792 } else if ((off == 0) || 3793 (off != rp->r_nextr && !readahead_issued)) { 3794 blksize = PAGESIZE; 3795 blkoff = off; /* block = page here */ 3796 } else 3797 blksize = bsize; 3798 mutex_exit(&rp->r_statelock); 3799 3800 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3801 &io_len, blkoff, blksize, 0); 3802 3803 /* 3804 * Some other thread has entered the page, 3805 * so just use it. 3806 */ 3807 if (pp == NULL) 3808 goto again; 3809 3810 /* 3811 * Now round the request size up to page boundaries. 3812 * This ensures that the entire page will be 3813 * initialized to zeroes if EOF is encountered. 3814 */ 3815 io_len = ptob(btopr(io_len)); 3816 3817 bp = pageio_setup(pp, io_len, vp, B_READ); 3818 ASSERT(bp != NULL); 3819 3820 /* 3821 * pageio_setup should have set b_addr to 0. This 3822 * is correct since we want to do I/O on a page 3823 * boundary. bp_mapin will use this addr to calculate 3824 * an offset, and then set b_addr to the kernel virtual 3825 * address it allocated for us. 3826 */ 3827 ASSERT(bp->b_un.b_addr == 0); 3828 3829 bp->b_edev = 0; 3830 bp->b_dev = 0; 3831 bp->b_lblkno = lbtodb(io_off); 3832 bp->b_file = vp; 3833 bp->b_offset = (offset_t)off; 3834 bp_mapin(bp); 3835 3836 /* 3837 * If doing a write beyond what we believe is EOF, 3838 * don't bother trying to read the pages from the 3839 * server, we'll just zero the pages here. We 3840 * don't check that the rw flag is S_WRITE here 3841 * because some implementations may attempt a 3842 * read access to the buffer before copying data. 3843 */ 3844 mutex_enter(&rp->r_statelock); 3845 if (io_off >= rp->r_size && seg == segkmap) { 3846 mutex_exit(&rp->r_statelock); 3847 bzero(bp->b_un.b_addr, io_len); 3848 } else { 3849 mutex_exit(&rp->r_statelock); 3850 error = nfs_bio(bp, cr); 3851 } 3852 3853 /* 3854 * Unmap the buffer before freeing it. 3855 */ 3856 bp_mapout(bp); 3857 pageio_done(bp); 3858 3859 if (error == NFS_EOF) { 3860 /* 3861 * If doing a write system call just return 3862 * zeroed pages, else user tried to get pages 3863 * beyond EOF, return error. We don't check 3864 * that the rw flag is S_WRITE here because 3865 * some implementations may attempt a read 3866 * access to the buffer before copying data. 3867 */ 3868 if (seg == segkmap) 3869 error = 0; 3870 else 3871 error = EFAULT; 3872 } 3873 3874 if (!readahead_issued && !error) { 3875 mutex_enter(&rp->r_statelock); 3876 rp->r_nextr = io_off + io_len; 3877 mutex_exit(&rp->r_statelock); 3878 } 3879 } 3880 } 3881 3882 out: 3883 if (pl == NULL) 3884 return (error); 3885 3886 if (error) { 3887 if (pp != NULL) 3888 pvn_read_done(pp, B_ERROR); 3889 return (error); 3890 } 3891 3892 if (pagefound) { 3893 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3894 3895 /* 3896 * Page exists in the cache, acquire the appropriate lock. 3897 * If this fails, start all over again. 3898 */ 3899 if ((pp = page_lookup(vp, off, se)) == NULL) { 3900 #ifdef DEBUG 3901 nfs_lostpage++; 3902 #endif 3903 goto reread; 3904 } 3905 pl[0] = pp; 3906 pl[1] = NULL; 3907 return (0); 3908 } 3909 3910 if (pp != NULL) 3911 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3912 3913 return (error); 3914 } 3915 3916 static void 3917 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3918 cred_t *cr) 3919 { 3920 int error; 3921 page_t *pp; 3922 u_offset_t io_off; 3923 size_t io_len; 3924 struct buf *bp; 3925 uint_t bsize, blksize; 3926 rnode_t *rp = VTOR(vp); 3927 3928 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3929 3930 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3931 3932 mutex_enter(&rp->r_statelock); 3933 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3934 /* 3935 * If less than a block left in file read less 3936 * than a block. 3937 */ 3938 blksize = rp->r_size - blkoff; 3939 } else 3940 blksize = bsize; 3941 mutex_exit(&rp->r_statelock); 3942 3943 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3944 &io_off, &io_len, blkoff, blksize, 1); 3945 /* 3946 * The isra flag passed to the kluster function is 1, we may have 3947 * gotten a return value of NULL for a variety of reasons (# of free 3948 * pages < minfree, someone entered the page on the vnode etc). In all 3949 * cases, we want to punt on the readahead. 3950 */ 3951 if (pp == NULL) 3952 return; 3953 3954 /* 3955 * Now round the request size up to page boundaries. 3956 * This ensures that the entire page will be 3957 * initialized to zeroes if EOF is encountered. 3958 */ 3959 io_len = ptob(btopr(io_len)); 3960 3961 bp = pageio_setup(pp, io_len, vp, B_READ); 3962 ASSERT(bp != NULL); 3963 3964 /* 3965 * pageio_setup should have set b_addr to 0. This is correct since 3966 * we want to do I/O on a page boundary. bp_mapin() will use this addr 3967 * to calculate an offset, and then set b_addr to the kernel virtual 3968 * address it allocated for us. 3969 */ 3970 ASSERT(bp->b_un.b_addr == 0); 3971 3972 bp->b_edev = 0; 3973 bp->b_dev = 0; 3974 bp->b_lblkno = lbtodb(io_off); 3975 bp->b_file = vp; 3976 bp->b_offset = (offset_t)blkoff; 3977 bp_mapin(bp); 3978 3979 /* 3980 * If doing a write beyond what we believe is EOF, don't bother trying 3981 * to read the pages from the server, we'll just zero the pages here. 3982 * We don't check that the rw flag is S_WRITE here because some 3983 * implementations may attempt a read access to the buffer before 3984 * copying data. 3985 */ 3986 mutex_enter(&rp->r_statelock); 3987 if (io_off >= rp->r_size && seg == segkmap) { 3988 mutex_exit(&rp->r_statelock); 3989 bzero(bp->b_un.b_addr, io_len); 3990 error = 0; 3991 } else { 3992 mutex_exit(&rp->r_statelock); 3993 error = nfs_bio(bp, cr); 3994 if (error == NFS_EOF) 3995 error = 0; 3996 } 3997 3998 /* 3999 * Unmap the buffer before freeing it. 4000 */ 4001 bp_mapout(bp); 4002 pageio_done(bp); 4003 4004 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4005 4006 /* 4007 * In case of error set readahead offset 4008 * to the lowest offset. 4009 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4010 */ 4011 if (error && rp->r_nextr > io_off) { 4012 mutex_enter(&rp->r_statelock); 4013 if (rp->r_nextr > io_off) 4014 rp->r_nextr = io_off; 4015 mutex_exit(&rp->r_statelock); 4016 } 4017 } 4018 4019 /* 4020 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4021 * If len == 0, do from off to EOF. 4022 * 4023 * The normal cases should be len == 0 && off == 0 (entire vp list), 4024 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4025 * (from pageout). 4026 */ 4027 /* ARGSUSED */ 4028 static int 4029 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4030 caller_context_t *ct) 4031 { 4032 int error; 4033 rnode_t *rp; 4034 4035 ASSERT(cr != NULL); 4036 4037 /* 4038 * XXX - Why should this check be made here? 4039 */ 4040 if (vp->v_flag & VNOMAP) 4041 return (ENOSYS); 4042 4043 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4044 return (0); 4045 4046 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4047 return (EIO); 4048 ASSERT(off <= MAXOFF32_T); 4049 4050 rp = VTOR(vp); 4051 mutex_enter(&rp->r_statelock); 4052 rp->r_count++; 4053 mutex_exit(&rp->r_statelock); 4054 error = nfs_putpages(vp, off, len, flags, cr); 4055 mutex_enter(&rp->r_statelock); 4056 rp->r_count--; 4057 cv_broadcast(&rp->r_cv); 4058 mutex_exit(&rp->r_statelock); 4059 4060 return (error); 4061 } 4062 4063 /* 4064 * Write out a single page, possibly klustering adjacent dirty pages. 4065 */ 4066 int 4067 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4068 int flags, cred_t *cr) 4069 { 4070 u_offset_t io_off; 4071 u_offset_t lbn_off; 4072 u_offset_t lbn; 4073 size_t io_len; 4074 uint_t bsize; 4075 int error; 4076 rnode_t *rp; 4077 4078 ASSERT(!vn_is_readonly(vp)); 4079 ASSERT(pp != NULL); 4080 ASSERT(cr != NULL); 4081 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4082 4083 rp = VTOR(vp); 4084 ASSERT(rp->r_count > 0); 4085 4086 ASSERT(pp->p_offset <= MAXOFF32_T); 4087 4088 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4089 lbn = pp->p_offset / bsize; 4090 lbn_off = lbn * bsize; 4091 4092 /* 4093 * Find a kluster that fits in one block, or in 4094 * one page if pages are bigger than blocks. If 4095 * there is less file space allocated than a whole 4096 * page, we'll shorten the i/o request below. 4097 */ 4098 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4099 roundup(bsize, PAGESIZE), flags); 4100 4101 /* 4102 * pvn_write_kluster shouldn't have returned a page with offset 4103 * behind the original page we were given. Verify that. 4104 */ 4105 ASSERT((pp->p_offset / bsize) >= lbn); 4106 4107 /* 4108 * Now pp will have the list of kept dirty pages marked for 4109 * write back. It will also handle invalidation and freeing 4110 * of pages that are not dirty. Check for page length rounding 4111 * problems. 4112 */ 4113 if (io_off + io_len > lbn_off + bsize) { 4114 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4115 io_len = lbn_off + bsize - io_off; 4116 } 4117 /* 4118 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4119 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4120 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4121 * progress and the r_size has not been made consistent with the 4122 * new size of the file. When the uiomove() completes the r_size is 4123 * updated and the RMODINPROGRESS flag is cleared. 4124 * 4125 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4126 * consistent value of r_size. Without this handshaking, it is 4127 * possible that nfs(3)_bio() picks up the old value of r_size 4128 * before the uiomove() in writerp() completes. This will result 4129 * in the write through nfs(3)_bio() being dropped. 4130 * 4131 * More precisely, there is a window between the time the uiomove() 4132 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4133 * operation intervenes in this window, the page will be picked up, 4134 * because it is dirty (it will be unlocked, unless it was 4135 * pagecreate'd). When the page is picked up as dirty, the dirty 4136 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4137 * checked. This will still be the old size. Therefore the page will 4138 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4139 * the page will be found to be clean and the write will be dropped. 4140 */ 4141 if (rp->r_flags & RMODINPROGRESS) { 4142 mutex_enter(&rp->r_statelock); 4143 if ((rp->r_flags & RMODINPROGRESS) && 4144 rp->r_modaddr + MAXBSIZE > io_off && 4145 rp->r_modaddr < io_off + io_len) { 4146 page_t *plist; 4147 /* 4148 * A write is in progress for this region of the file. 4149 * If we did not detect RMODINPROGRESS here then this 4150 * path through nfs_putapage() would eventually go to 4151 * nfs(3)_bio() and may not write out all of the data 4152 * in the pages. We end up losing data. So we decide 4153 * to set the modified bit on each page in the page 4154 * list and mark the rnode with RDIRTY. This write 4155 * will be restarted at some later time. 4156 */ 4157 plist = pp; 4158 while (plist != NULL) { 4159 pp = plist; 4160 page_sub(&plist, pp); 4161 hat_setmod(pp); 4162 page_io_unlock(pp); 4163 page_unlock(pp); 4164 } 4165 rp->r_flags |= RDIRTY; 4166 mutex_exit(&rp->r_statelock); 4167 if (offp) 4168 *offp = io_off; 4169 if (lenp) 4170 *lenp = io_len; 4171 return (0); 4172 } 4173 mutex_exit(&rp->r_statelock); 4174 } 4175 4176 if (flags & B_ASYNC) { 4177 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4178 nfs_sync_putapage); 4179 } else 4180 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4181 4182 if (offp) 4183 *offp = io_off; 4184 if (lenp) 4185 *lenp = io_len; 4186 return (error); 4187 } 4188 4189 static int 4190 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4191 int flags, cred_t *cr) 4192 { 4193 int error; 4194 rnode_t *rp; 4195 4196 flags |= B_WRITE; 4197 4198 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4199 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4200 4201 rp = VTOR(vp); 4202 4203 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4204 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4205 if (!(rp->r_flags & ROUTOFSPACE)) { 4206 mutex_enter(&rp->r_statelock); 4207 rp->r_flags |= ROUTOFSPACE; 4208 mutex_exit(&rp->r_statelock); 4209 } 4210 flags |= B_ERROR; 4211 pvn_write_done(pp, flags); 4212 /* 4213 * If this was not an async thread, then try again to 4214 * write out the pages, but this time, also destroy 4215 * them whether or not the write is successful. This 4216 * will prevent memory from filling up with these 4217 * pages and destroying them is the only alternative 4218 * if they can't be written out. 4219 * 4220 * Don't do this if this is an async thread because 4221 * when the pages are unlocked in pvn_write_done, 4222 * some other thread could have come along, locked 4223 * them, and queued for an async thread. It would be 4224 * possible for all of the async threads to be tied 4225 * up waiting to lock the pages again and they would 4226 * all already be locked and waiting for an async 4227 * thread to handle them. Deadlock. 4228 */ 4229 if (!(flags & B_ASYNC)) { 4230 error = nfs_putpage(vp, io_off, io_len, 4231 B_INVAL | B_FORCE, cr, NULL); 4232 } 4233 } else { 4234 if (error) 4235 flags |= B_ERROR; 4236 else if (rp->r_flags & ROUTOFSPACE) { 4237 mutex_enter(&rp->r_statelock); 4238 rp->r_flags &= ~ROUTOFSPACE; 4239 mutex_exit(&rp->r_statelock); 4240 } 4241 pvn_write_done(pp, flags); 4242 } 4243 4244 return (error); 4245 } 4246 4247 /* ARGSUSED */ 4248 static int 4249 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4250 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4251 caller_context_t *ct) 4252 { 4253 struct segvn_crargs vn_a; 4254 int error; 4255 rnode_t *rp; 4256 struct vattr va; 4257 4258 if (nfs_zone() != VTOMI(vp)->mi_zone) 4259 return (EIO); 4260 4261 if (vp->v_flag & VNOMAP) 4262 return (ENOSYS); 4263 4264 if (off > MAXOFF32_T) 4265 return (EFBIG); 4266 4267 if (off < 0 || off + len < 0) 4268 return (ENXIO); 4269 4270 if (vp->v_type != VREG) 4271 return (ENODEV); 4272 4273 /* 4274 * If there is cached data and if close-to-open consistency 4275 * checking is not turned off and if the file system is not 4276 * mounted readonly, then force an over the wire getattr. 4277 * Otherwise, just invoke nfsgetattr to get a copy of the 4278 * attributes. The attribute cache will be used unless it 4279 * is timed out and if it is, then an over the wire getattr 4280 * will be issued. 4281 */ 4282 va.va_mask = AT_ALL; 4283 if (vn_has_cached_data(vp) && 4284 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4285 error = nfs_getattr_otw(vp, &va, cr); 4286 else 4287 error = nfsgetattr(vp, &va, cr); 4288 if (error) 4289 return (error); 4290 4291 /* 4292 * Check to see if the vnode is currently marked as not cachable. 4293 * This means portions of the file are locked (through VOP_FRLOCK). 4294 * In this case the map request must be refused. We use 4295 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4296 */ 4297 rp = VTOR(vp); 4298 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 4299 return (EINTR); 4300 4301 if (vp->v_flag & VNOCACHE) { 4302 error = EAGAIN; 4303 goto done; 4304 } 4305 4306 /* 4307 * Don't allow concurrent locks and mapping if mandatory locking is 4308 * enabled. 4309 */ 4310 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4311 MANDLOCK(vp, va.va_mode)) { 4312 error = EAGAIN; 4313 goto done; 4314 } 4315 4316 as_rangelock(as); 4317 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4318 if (error != 0) { 4319 as_rangeunlock(as); 4320 goto done; 4321 } 4322 4323 vn_a.vp = vp; 4324 vn_a.offset = off; 4325 vn_a.type = (flags & MAP_TYPE); 4326 vn_a.prot = (uchar_t)prot; 4327 vn_a.maxprot = (uchar_t)maxprot; 4328 vn_a.flags = (flags & ~MAP_TYPE); 4329 vn_a.cred = cr; 4330 vn_a.amp = NULL; 4331 vn_a.szc = 0; 4332 vn_a.lgrp_mem_policy_flags = 0; 4333 4334 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4335 as_rangeunlock(as); 4336 4337 done: 4338 nfs_rw_exit(&rp->r_lkserlock); 4339 return (error); 4340 } 4341 4342 /* ARGSUSED */ 4343 static int 4344 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4345 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4346 caller_context_t *ct) 4347 { 4348 rnode_t *rp; 4349 4350 if (vp->v_flag & VNOMAP) 4351 return (ENOSYS); 4352 if (nfs_zone() != VTOMI(vp)->mi_zone) 4353 return (EIO); 4354 4355 /* 4356 * Need to hold rwlock while incrementing the mapcnt so that 4357 * mmap'ing can be serialized with writes so that the caching 4358 * can be handled correctly. 4359 */ 4360 rp = VTOR(vp); 4361 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4362 return (EINTR); 4363 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4364 nfs_rw_exit(&rp->r_rwlock); 4365 4366 return (0); 4367 } 4368 4369 /* ARGSUSED */ 4370 static int 4371 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4372 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4373 { 4374 netobj lm_fh; 4375 int rc; 4376 u_offset_t start, end; 4377 rnode_t *rp; 4378 int error = 0, intr = INTR(vp); 4379 4380 /* check for valid cmd parameter */ 4381 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4382 return (EINVAL); 4383 if (nfs_zone() != VTOMI(vp)->mi_zone) 4384 return (EIO); 4385 4386 /* Verify l_type. */ 4387 switch (bfp->l_type) { 4388 case F_RDLCK: 4389 if (cmd != F_GETLK && !(flag & FREAD)) 4390 return (EBADF); 4391 break; 4392 case F_WRLCK: 4393 if (cmd != F_GETLK && !(flag & FWRITE)) 4394 return (EBADF); 4395 break; 4396 case F_UNLCK: 4397 intr = 0; 4398 break; 4399 4400 default: 4401 return (EINVAL); 4402 } 4403 4404 /* check the validity of the lock range */ 4405 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4406 return (rc); 4407 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4408 return (rc); 4409 4410 /* 4411 * If the filesystem is mounted using local locking, pass the 4412 * request off to the local locking code. 4413 */ 4414 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4415 if (offset > MAXOFF32_T) 4416 return (EFBIG); 4417 if (cmd == F_SETLK || cmd == F_SETLKW) { 4418 /* 4419 * For complete safety, we should be holding 4420 * r_lkserlock. However, we can't call 4421 * lm_safelock and then fs_frlock while 4422 * holding r_lkserlock, so just invoke 4423 * lm_safelock and expect that this will 4424 * catch enough of the cases. 4425 */ 4426 if (!lm_safelock(vp, bfp, cr)) 4427 return (EAGAIN); 4428 } 4429 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4430 } 4431 4432 rp = VTOR(vp); 4433 4434 /* 4435 * Check whether the given lock request can proceed, given the 4436 * current file mappings. 4437 */ 4438 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4439 return (EINTR); 4440 if (cmd == F_SETLK || cmd == F_SETLKW) { 4441 if (!lm_safelock(vp, bfp, cr)) { 4442 rc = EAGAIN; 4443 goto done; 4444 } 4445 } 4446 4447 /* 4448 * Flush the cache after waiting for async I/O to finish. For new 4449 * locks, this is so that the process gets the latest bits from the 4450 * server. For unlocks, this is so that other clients see the 4451 * latest bits once the file has been unlocked. If currently dirty 4452 * pages can't be flushed, then don't allow a lock to be set. But 4453 * allow unlocks to succeed, to avoid having orphan locks on the 4454 * server. 4455 */ 4456 if (cmd != F_GETLK) { 4457 mutex_enter(&rp->r_statelock); 4458 while (rp->r_count > 0) { 4459 if (intr) { 4460 klwp_t *lwp = ttolwp(curthread); 4461 4462 if (lwp != NULL) 4463 lwp->lwp_nostop++; 4464 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4465 == 0) { 4466 if (lwp != NULL) 4467 lwp->lwp_nostop--; 4468 rc = EINTR; 4469 break; 4470 } 4471 if (lwp != NULL) 4472 lwp->lwp_nostop--; 4473 } else 4474 cv_wait(&rp->r_cv, &rp->r_statelock); 4475 } 4476 mutex_exit(&rp->r_statelock); 4477 if (rc != 0) 4478 goto done; 4479 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4480 if (error) { 4481 if (error == ENOSPC || error == EDQUOT) { 4482 mutex_enter(&rp->r_statelock); 4483 if (!rp->r_error) 4484 rp->r_error = error; 4485 mutex_exit(&rp->r_statelock); 4486 } 4487 if (bfp->l_type != F_UNLCK) { 4488 rc = ENOLCK; 4489 goto done; 4490 } 4491 } 4492 } 4493 4494 lm_fh.n_len = sizeof (fhandle_t); 4495 lm_fh.n_bytes = (char *)VTOFH(vp); 4496 4497 /* 4498 * Call the lock manager to do the real work of contacting 4499 * the server and obtaining the lock. 4500 */ 4501 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4502 4503 if (rc == 0) 4504 nfs_lockcompletion(vp, cmd); 4505 4506 done: 4507 nfs_rw_exit(&rp->r_lkserlock); 4508 return (rc); 4509 } 4510 4511 /* 4512 * Free storage space associated with the specified vnode. The portion 4513 * to be freed is specified by bfp->l_start and bfp->l_len (already 4514 * normalized to a "whence" of 0). 4515 * 4516 * This is an experimental facility whose continued existence is not 4517 * guaranteed. Currently, we only support the special case 4518 * of l_len == 0, meaning free to end of file. 4519 */ 4520 /* ARGSUSED */ 4521 static int 4522 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4523 offset_t offset, cred_t *cr, caller_context_t *ct) 4524 { 4525 int error; 4526 4527 ASSERT(vp->v_type == VREG); 4528 if (cmd != F_FREESP) 4529 return (EINVAL); 4530 4531 if (offset > MAXOFF32_T) 4532 return (EFBIG); 4533 4534 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4535 (bfp->l_len > MAXOFF32_T)) 4536 return (EFBIG); 4537 4538 if (nfs_zone() != VTOMI(vp)->mi_zone) 4539 return (EIO); 4540 4541 error = convoff(vp, bfp, 0, offset); 4542 if (!error) { 4543 ASSERT(bfp->l_start >= 0); 4544 if (bfp->l_len == 0) { 4545 struct vattr va; 4546 4547 /* 4548 * ftruncate should not change the ctime and 4549 * mtime if we truncate the file to its 4550 * previous size. 4551 */ 4552 va.va_mask = AT_SIZE; 4553 error = nfsgetattr(vp, &va, cr); 4554 if (error || va.va_size == bfp->l_start) 4555 return (error); 4556 va.va_mask = AT_SIZE; 4557 va.va_size = bfp->l_start; 4558 error = nfssetattr(vp, &va, 0, cr); 4559 } else 4560 error = EINVAL; 4561 } 4562 4563 return (error); 4564 } 4565 4566 /* ARGSUSED */ 4567 static int 4568 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4569 { 4570 4571 return (EINVAL); 4572 } 4573 4574 /* 4575 * Setup and add an address space callback to do the work of the delmap call. 4576 * The callback will (and must be) deleted in the actual callback function. 4577 * 4578 * This is done in order to take care of the problem that we have with holding 4579 * the address space's a_lock for a long period of time (e.g. if the NFS server 4580 * is down). Callbacks will be executed in the address space code while the 4581 * a_lock is not held. Holding the address space's a_lock causes things such 4582 * as ps and fork to hang because they are trying to acquire this lock as well. 4583 */ 4584 /* ARGSUSED */ 4585 static int 4586 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4587 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4588 caller_context_t *ct) 4589 { 4590 int caller_found; 4591 int error; 4592 rnode_t *rp; 4593 nfs_delmap_args_t *dmapp; 4594 nfs_delmapcall_t *delmap_call; 4595 4596 if (vp->v_flag & VNOMAP) 4597 return (ENOSYS); 4598 /* 4599 * A process may not change zones if it has NFS pages mmap'ed 4600 * in, so we can't legitimately get here from the wrong zone. 4601 */ 4602 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4603 4604 rp = VTOR(vp); 4605 4606 /* 4607 * The way that the address space of this process deletes its mapping 4608 * of this file is via the following call chains: 4609 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4610 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4611 * 4612 * With the use of address space callbacks we are allowed to drop the 4613 * address space lock, a_lock, while executing the NFS operations that 4614 * need to go over the wire. Returning EAGAIN to the caller of this 4615 * function is what drives the execution of the callback that we add 4616 * below. The callback will be executed by the address space code 4617 * after dropping the a_lock. When the callback is finished, since 4618 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4619 * is called again on the same segment to finish the rest of the work 4620 * that needs to happen during unmapping. 4621 * 4622 * This action of calling back into the segment driver causes 4623 * nfs_delmap() to get called again, but since the callback was 4624 * already executed at this point, it already did the work and there 4625 * is nothing left for us to do. 4626 * 4627 * To Summarize: 4628 * - The first time nfs_delmap is called by the current thread is when 4629 * we add the caller associated with this delmap to the delmap caller 4630 * list, add the callback, and return EAGAIN. 4631 * - The second time in this call chain when nfs_delmap is called we 4632 * will find this caller in the delmap caller list and realize there 4633 * is no more work to do thus removing this caller from the list and 4634 * returning the error that was set in the callback execution. 4635 */ 4636 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4637 if (caller_found) { 4638 /* 4639 * 'error' is from the actual delmap operations. To avoid 4640 * hangs, we need to handle the return of EAGAIN differently 4641 * since this is what drives the callback execution. 4642 * In this case, we don't want to return EAGAIN and do the 4643 * callback execution because there are none to execute. 4644 */ 4645 if (error == EAGAIN) 4646 return (0); 4647 else 4648 return (error); 4649 } 4650 4651 /* current caller was not in the list */ 4652 delmap_call = nfs_init_delmapcall(); 4653 4654 mutex_enter(&rp->r_statelock); 4655 list_insert_tail(&rp->r_indelmap, delmap_call); 4656 mutex_exit(&rp->r_statelock); 4657 4658 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4659 4660 dmapp->vp = vp; 4661 dmapp->off = off; 4662 dmapp->addr = addr; 4663 dmapp->len = len; 4664 dmapp->prot = prot; 4665 dmapp->maxprot = maxprot; 4666 dmapp->flags = flags; 4667 dmapp->cr = cr; 4668 dmapp->caller = delmap_call; 4669 4670 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4671 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4672 4673 return (error ? error : EAGAIN); 4674 } 4675 4676 /* 4677 * Remove some pages from an mmap'd vnode. Just update the 4678 * count of pages. If doing close-to-open, then flush all 4679 * of the pages associated with this file. Otherwise, start 4680 * an asynchronous page flush to write out any dirty pages. 4681 * This will also associate a credential with the rnode which 4682 * can be used to write the pages. 4683 */ 4684 /* ARGSUSED */ 4685 static void 4686 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4687 { 4688 int error; 4689 rnode_t *rp; 4690 mntinfo_t *mi; 4691 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4692 4693 rp = VTOR(dmapp->vp); 4694 mi = VTOMI(dmapp->vp); 4695 4696 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4697 ASSERT(rp->r_mapcnt >= 0); 4698 4699 /* 4700 * Initiate a page flush if there are pages, the file system 4701 * was not mounted readonly, the segment was mapped shared, and 4702 * the pages themselves were writeable. 4703 */ 4704 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4705 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4706 mutex_enter(&rp->r_statelock); 4707 rp->r_flags |= RDIRTY; 4708 mutex_exit(&rp->r_statelock); 4709 /* 4710 * If this is a cross-zone access a sync putpage won't work, so 4711 * the best we can do is try an async putpage. That seems 4712 * better than something more draconian such as discarding the 4713 * dirty pages. 4714 */ 4715 if ((mi->mi_flags & MI_NOCTO) || 4716 nfs_zone() != mi->mi_zone) 4717 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4718 B_ASYNC, dmapp->cr, NULL); 4719 else 4720 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4721 0, dmapp->cr, NULL); 4722 if (!error) { 4723 mutex_enter(&rp->r_statelock); 4724 error = rp->r_error; 4725 rp->r_error = 0; 4726 mutex_exit(&rp->r_statelock); 4727 } 4728 } else 4729 error = 0; 4730 4731 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4732 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4733 B_INVAL, dmapp->cr, NULL); 4734 4735 dmapp->caller->error = error; 4736 (void) as_delete_callback(as, arg); 4737 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4738 } 4739 4740 /* ARGSUSED */ 4741 static int 4742 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4743 caller_context_t *ct) 4744 { 4745 int error = 0; 4746 4747 if (nfs_zone() != VTOMI(vp)->mi_zone) 4748 return (EIO); 4749 /* 4750 * This looks a little weird because it's written in a general 4751 * manner but we make little use of cases. If cntl() ever gets 4752 * widely used, the outer switch will make more sense. 4753 */ 4754 4755 switch (cmd) { 4756 4757 /* 4758 * Large file spec - need to base answer new query with 4759 * hardcoded constant based on the protocol. 4760 */ 4761 case _PC_FILESIZEBITS: 4762 *valp = 32; 4763 return (0); 4764 4765 case _PC_LINK_MAX: 4766 case _PC_NAME_MAX: 4767 case _PC_PATH_MAX: 4768 case _PC_SYMLINK_MAX: 4769 case _PC_CHOWN_RESTRICTED: 4770 case _PC_NO_TRUNC: { 4771 mntinfo_t *mi; 4772 struct pathcnf *pc; 4773 4774 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4775 return (EINVAL); 4776 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4777 switch (cmd) { 4778 case _PC_LINK_MAX: 4779 *valp = pc->pc_link_max; 4780 break; 4781 case _PC_NAME_MAX: 4782 *valp = pc->pc_name_max; 4783 break; 4784 case _PC_PATH_MAX: 4785 case _PC_SYMLINK_MAX: 4786 *valp = pc->pc_path_max; 4787 break; 4788 case _PC_CHOWN_RESTRICTED: 4789 /* 4790 * if we got here, error is really a boolean which 4791 * indicates whether cmd is set or not. 4792 */ 4793 *valp = error ? 1 : 0; /* see above */ 4794 error = 0; 4795 break; 4796 case _PC_NO_TRUNC: 4797 /* 4798 * if we got here, error is really a boolean which 4799 * indicates whether cmd is set or not. 4800 */ 4801 *valp = error ? 1 : 0; /* see above */ 4802 error = 0; 4803 break; 4804 } 4805 return (error ? EINVAL : 0); 4806 } 4807 4808 case _PC_XATTR_EXISTS: 4809 *valp = 0; 4810 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4811 vnode_t *avp; 4812 rnode_t *rp; 4813 mntinfo_t *mi = VTOMI(vp); 4814 4815 if (!(mi->mi_flags & MI_EXTATTR)) 4816 return (0); 4817 4818 rp = VTOR(vp); 4819 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4820 INTR(vp))) 4821 return (EINTR); 4822 4823 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4824 if (error || avp == NULL) 4825 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4826 4827 nfs_rw_exit(&rp->r_rwlock); 4828 4829 if (error == 0 && avp != NULL) { 4830 error = do_xattr_exists_check(avp, valp, cr); 4831 VN_RELE(avp); 4832 } 4833 } 4834 return (error ? EINVAL : 0); 4835 4836 case _PC_ACL_ENABLED: 4837 *valp = _ACL_ACLENT_ENABLED; 4838 return (0); 4839 4840 default: 4841 return (EINVAL); 4842 } 4843 } 4844 4845 /* 4846 * Called by async thread to do synchronous pageio. Do the i/o, wait 4847 * for it to complete, and cleanup the page list when done. 4848 */ 4849 static int 4850 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4851 int flags, cred_t *cr) 4852 { 4853 int error; 4854 4855 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4856 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4857 if (flags & B_READ) 4858 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4859 else 4860 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4861 return (error); 4862 } 4863 4864 /* ARGSUSED */ 4865 static int 4866 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4867 int flags, cred_t *cr, caller_context_t *ct) 4868 { 4869 int error; 4870 rnode_t *rp; 4871 4872 if (pp == NULL) 4873 return (EINVAL); 4874 4875 if (io_off > MAXOFF32_T) 4876 return (EFBIG); 4877 if (nfs_zone() != VTOMI(vp)->mi_zone) 4878 return (EIO); 4879 rp = VTOR(vp); 4880 mutex_enter(&rp->r_statelock); 4881 rp->r_count++; 4882 mutex_exit(&rp->r_statelock); 4883 4884 if (flags & B_ASYNC) { 4885 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4886 nfs_sync_pageio); 4887 } else 4888 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4889 mutex_enter(&rp->r_statelock); 4890 rp->r_count--; 4891 cv_broadcast(&rp->r_cv); 4892 mutex_exit(&rp->r_statelock); 4893 return (error); 4894 } 4895 4896 /* ARGSUSED */ 4897 static int 4898 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4899 caller_context_t *ct) 4900 { 4901 int error; 4902 mntinfo_t *mi; 4903 4904 mi = VTOMI(vp); 4905 4906 if (nfs_zone() != mi->mi_zone) 4907 return (EIO); 4908 if (mi->mi_flags & MI_ACL) { 4909 error = acl_setacl2(vp, vsecattr, flag, cr); 4910 if (mi->mi_flags & MI_ACL) 4911 return (error); 4912 } 4913 4914 return (ENOSYS); 4915 } 4916 4917 /* ARGSUSED */ 4918 static int 4919 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4920 caller_context_t *ct) 4921 { 4922 int error; 4923 mntinfo_t *mi; 4924 4925 mi = VTOMI(vp); 4926 4927 if (nfs_zone() != mi->mi_zone) 4928 return (EIO); 4929 if (mi->mi_flags & MI_ACL) { 4930 error = acl_getacl2(vp, vsecattr, flag, cr); 4931 if (mi->mi_flags & MI_ACL) 4932 return (error); 4933 } 4934 4935 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 4936 } 4937 4938 /* ARGSUSED */ 4939 static int 4940 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 4941 caller_context_t *ct) 4942 { 4943 int error; 4944 struct shrlock nshr; 4945 struct nfs_owner nfs_owner; 4946 netobj lm_fh; 4947 4948 if (nfs_zone() != VTOMI(vp)->mi_zone) 4949 return (EIO); 4950 4951 /* 4952 * check for valid cmd parameter 4953 */ 4954 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 4955 return (EINVAL); 4956 4957 /* 4958 * Check access permissions 4959 */ 4960 if (cmd == F_SHARE && 4961 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 4962 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 4963 return (EBADF); 4964 4965 /* 4966 * If the filesystem is mounted using local locking, pass the 4967 * request off to the local share code. 4968 */ 4969 if (VTOMI(vp)->mi_flags & MI_LLOCK) 4970 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 4971 4972 switch (cmd) { 4973 case F_SHARE: 4974 case F_UNSHARE: 4975 lm_fh.n_len = sizeof (fhandle_t); 4976 lm_fh.n_bytes = (char *)VTOFH(vp); 4977 4978 /* 4979 * If passed an owner that is too large to fit in an 4980 * nfs_owner it is likely a recursive call from the 4981 * lock manager client and pass it straight through. If 4982 * it is not a nfs_owner then simply return an error. 4983 */ 4984 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 4985 if (((struct nfs_owner *)shr->s_owner)->magic != 4986 NFS_OWNER_MAGIC) 4987 return (EINVAL); 4988 4989 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 4990 error = set_errno(error); 4991 } 4992 return (error); 4993 } 4994 /* 4995 * Remote share reservations owner is a combination of 4996 * a magic number, hostname, and the local owner 4997 */ 4998 bzero(&nfs_owner, sizeof (nfs_owner)); 4999 nfs_owner.magic = NFS_OWNER_MAGIC; 5000 (void) strncpy(nfs_owner.hname, uts_nodename(), 5001 sizeof (nfs_owner.hname)); 5002 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5003 nshr.s_access = shr->s_access; 5004 nshr.s_deny = shr->s_deny; 5005 nshr.s_sysid = 0; 5006 nshr.s_pid = ttoproc(curthread)->p_pid; 5007 nshr.s_own_len = sizeof (nfs_owner); 5008 nshr.s_owner = (caddr_t)&nfs_owner; 5009 5010 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5011 error = set_errno(error); 5012 } 5013 5014 break; 5015 5016 case F_HASREMOTELOCKS: 5017 /* 5018 * NFS client can't store remote locks itself 5019 */ 5020 shr->s_access = 0; 5021 error = 0; 5022 break; 5023 5024 default: 5025 error = EINVAL; 5026 break; 5027 } 5028 5029 return (error); 5030 } 5031