xref: /titanic_51/usr/src/uts/common/fs/nfs/nfs_client.c (revision 853389e344087efe23a5cc688693e5301a1cb90d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  *  	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
26  *	All rights reserved.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/thread.h>
35 #include <sys/t_lock.h>
36 #include <sys/time.h>
37 #include <sys/vnode.h>
38 #include <sys/vfs.h>
39 #include <sys/errno.h>
40 #include <sys/buf.h>
41 #include <sys/stat.h>
42 #include <sys/cred.h>
43 #include <sys/kmem.h>
44 #include <sys/debug.h>
45 #include <sys/dnlc.h>
46 #include <sys/vmsystm.h>
47 #include <sys/flock.h>
48 #include <sys/share.h>
49 #include <sys/cmn_err.h>
50 #include <sys/tiuser.h>
51 #include <sys/sysmacros.h>
52 #include <sys/callb.h>
53 #include <sys/acl.h>
54 #include <sys/kstat.h>
55 #include <sys/signal.h>
56 #include <sys/list.h>
57 #include <sys/zone.h>
58 
59 #include <rpc/types.h>
60 #include <rpc/xdr.h>
61 #include <rpc/auth.h>
62 #include <rpc/clnt.h>
63 
64 #include <nfs/nfs.h>
65 #include <nfs/nfs_clnt.h>
66 
67 #include <nfs/rnode.h>
68 #include <nfs/nfs_acl.h>
69 #include <nfs/lm.h>
70 
71 #include <vm/hat.h>
72 #include <vm/as.h>
73 #include <vm/page.h>
74 #include <vm/pvn.h>
75 #include <vm/seg.h>
76 #include <vm/seg_map.h>
77 #include <vm/seg_vn.h>
78 
79 static void	nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t,
80 			cred_t *);
81 static int	nfs_getattr_cache(vnode_t *, struct vattr *);
82 static int	nfs_remove_locking_id(vnode_t *, int, char *, char *, int *);
83 
84 struct mi_globals {
85 	kmutex_t	mig_lock;  /* lock protecting mig_list */
86 	list_t		mig_list;  /* list of NFS v2 or v3 mounts in zone */
87 	boolean_t	mig_destructor_called;
88 };
89 
90 static zone_key_t mi_list_key;
91 
92 /* Debugging flag for PC file shares. */
93 extern int	share_debug;
94 
95 /*
96  * Attributes caching:
97  *
98  * Attributes are cached in the rnode in struct vattr form.
99  * There is a time associated with the cached attributes (r_attrtime)
100  * which tells whether the attributes are valid. The time is initialized
101  * to the difference between current time and the modify time of the vnode
102  * when new attributes are cached. This allows the attributes for
103  * files that have changed recently to be timed out sooner than for files
104  * that have not changed for a long time. There are minimum and maximum
105  * timeout values that can be set per mount point.
106  */
107 
108 int
109 nfs_waitfor_purge_complete(vnode_t *vp)
110 {
111 	rnode_t *rp;
112 	k_sigset_t smask;
113 
114 	rp = VTOR(vp);
115 	if (rp->r_serial != NULL && rp->r_serial != curthread) {
116 		mutex_enter(&rp->r_statelock);
117 		sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
118 		while (rp->r_serial != NULL) {
119 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
120 				sigunintr(&smask);
121 				mutex_exit(&rp->r_statelock);
122 				return (EINTR);
123 			}
124 		}
125 		sigunintr(&smask);
126 		mutex_exit(&rp->r_statelock);
127 	}
128 	return (0);
129 }
130 
131 /*
132  * Validate caches by checking cached attributes. If the cached
133  * attributes have timed out, then get new attributes from the server.
134  * As a side affect, this will do cache invalidation if the attributes
135  * have changed.
136  *
137  * If the attributes have not timed out and if there is a cache
138  * invalidation being done by some other thread, then wait until that
139  * thread has completed the cache invalidation.
140  */
141 int
142 nfs_validate_caches(vnode_t *vp, cred_t *cr)
143 {
144 	int error;
145 	struct vattr va;
146 
147 	if (ATTRCACHE_VALID(vp)) {
148 		error = nfs_waitfor_purge_complete(vp);
149 		if (error)
150 			return (error);
151 		return (0);
152 	}
153 
154 	va.va_mask = AT_ALL;
155 	return (nfs_getattr_otw(vp, &va, cr));
156 }
157 
158 /*
159  * Validate caches by checking cached attributes. If the cached
160  * attributes have timed out, then get new attributes from the server.
161  * As a side affect, this will do cache invalidation if the attributes
162  * have changed.
163  *
164  * If the attributes have not timed out and if there is a cache
165  * invalidation being done by some other thread, then wait until that
166  * thread has completed the cache invalidation.
167  */
168 int
169 nfs3_validate_caches(vnode_t *vp, cred_t *cr)
170 {
171 	int error;
172 	struct vattr va;
173 
174 	if (ATTRCACHE_VALID(vp)) {
175 		error = nfs_waitfor_purge_complete(vp);
176 		if (error)
177 			return (error);
178 		return (0);
179 	}
180 
181 	va.va_mask = AT_ALL;
182 	return (nfs3_getattr_otw(vp, &va, cr));
183 }
184 
185 /*
186  * Purge all of the various NFS `data' caches.
187  */
188 void
189 nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr)
190 {
191 	rnode_t *rp;
192 	char *contents;
193 	int size;
194 	int error;
195 
196 	/*
197 	 * Purge the DNLC for any entries which refer to this file.
198 	 * Avoid recursive entry into dnlc_purge_vp() in case of a directory.
199 	 */
200 	rp = VTOR(vp);
201 	mutex_enter(&rp->r_statelock);
202 	if (vp->v_count > 1 &&
203 	    (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) &&
204 	    !(rp->r_flags & RINDNLCPURGE)) {
205 		/*
206 		 * Set the RINDNLCPURGE flag to prevent recursive entry
207 		 * into dnlc_purge_vp()
208 		 */
209 		if (vp->v_type == VDIR)
210 			rp->r_flags |= RINDNLCPURGE;
211 		mutex_exit(&rp->r_statelock);
212 		dnlc_purge_vp(vp);
213 		mutex_enter(&rp->r_statelock);
214 		if (rp->r_flags & RINDNLCPURGE)
215 			rp->r_flags &= ~RINDNLCPURGE;
216 	}
217 
218 	/*
219 	 * Clear any readdir state bits and purge the readlink response cache.
220 	 */
221 	contents = rp->r_symlink.contents;
222 	size = rp->r_symlink.size;
223 	rp->r_symlink.contents = NULL;
224 	mutex_exit(&rp->r_statelock);
225 
226 	if (contents != NULL) {
227 
228 		kmem_free((void *)contents, size);
229 	}
230 
231 	/*
232 	 * Flush the page cache.
233 	 */
234 	if (vn_has_cached_data(vp)) {
235 		error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
236 		if (error && (error == ENOSPC || error == EDQUOT)) {
237 			mutex_enter(&rp->r_statelock);
238 			if (!rp->r_error)
239 				rp->r_error = error;
240 			mutex_exit(&rp->r_statelock);
241 		}
242 	}
243 
244 	/*
245 	 * Flush the readdir response cache.
246 	 */
247 	if (HAVE_RDDIR_CACHE(rp))
248 		nfs_purge_rddir_cache(vp);
249 }
250 
251 /*
252  * Purge the readdir cache of all entries
253  */
254 void
255 nfs_purge_rddir_cache(vnode_t *vp)
256 {
257 	rnode_t *rp;
258 	rddir_cache *rdc;
259 	rddir_cache *nrdc;
260 
261 	rp = VTOR(vp);
262 top:
263 	mutex_enter(&rp->r_statelock);
264 	rp->r_direof = NULL;
265 	rp->r_flags &= ~RLOOKUP;
266 	rp->r_flags |= RREADDIRPLUS;
267 	rdc = avl_first(&rp->r_dir);
268 	while (rdc != NULL) {
269 		nrdc = AVL_NEXT(&rp->r_dir, rdc);
270 		avl_remove(&rp->r_dir, rdc);
271 		rddir_cache_rele(rdc);
272 		rdc = nrdc;
273 	}
274 	mutex_exit(&rp->r_statelock);
275 }
276 
277 /*
278  * Do a cache check based on the post-operation attributes.
279  * Then make them the new cached attributes.  If no attributes
280  * were returned, then mark the attributes as timed out.
281  */
282 void
283 nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr)
284 {
285 	vattr_t attr;
286 
287 	if (!poap->attributes) {
288 		PURGE_ATTRCACHE(vp);
289 		return;
290 	}
291 	(void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr);
292 }
293 
294 /*
295  * Same as above, but using a vattr
296  */
297 void
298 nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t,
299     cred_t *cr)
300 {
301 	if (!poap->attributes) {
302 		PURGE_ATTRCACHE(vp);
303 		return;
304 	}
305 	nfs_attr_cache(vp, poap->fres.vap, t, cr);
306 }
307 
308 /*
309  * Do a cache check based on the weak cache consistency attributes.
310  * These consist of a small set of pre-operation attributes and the
311  * full set of post-operation attributes.
312  *
313  * If we are given the pre-operation attributes, then use them to
314  * check the validity of the various caches.  Then, if we got the
315  * post-operation attributes, make them the new cached attributes.
316  * If we didn't get the post-operation attributes, then mark the
317  * attribute cache as timed out so that the next reference will
318  * cause a GETATTR to the server to refresh with the current
319  * attributes.
320  *
321  * Otherwise, if we didn't get the pre-operation attributes, but
322  * we did get the post-operation attributes, then use these
323  * attributes to check the validity of the various caches.  This
324  * will probably cause a flush of the caches because if the
325  * operation succeeded, the attributes of the object were changed
326  * in some way from the old post-operation attributes.  This
327  * should be okay because it is the safe thing to do.  After
328  * checking the data caches, then we make these the new cached
329  * attributes.
330  *
331  * Otherwise, we didn't get either the pre- or post-operation
332  * attributes.  Simply mark the attribute cache as timed out so
333  * the next reference will cause a GETATTR to the server to
334  * refresh with the current attributes.
335  *
336  * If an error occurred trying to convert the over the wire
337  * attributes to a vattr, then simply mark the attribute cache as
338  * timed out.
339  */
340 void
341 nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr)
342 {
343 	vattr_t bva;
344 	vattr_t ava;
345 
346 	if (wccp->after.attributes) {
347 		if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) {
348 			PURGE_ATTRCACHE(vp);
349 			return;
350 		}
351 		if (wccp->before.attributes) {
352 			bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds;
353 			bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds;
354 			bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds;
355 			bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds;
356 			bva.va_size = wccp->before.attr.size;
357 			nfs3_attr_cache(vp, &bva, &ava, t, cr);
358 		} else
359 			nfs_attr_cache(vp, &ava, t, cr);
360 	} else {
361 		PURGE_ATTRCACHE(vp);
362 	}
363 }
364 
365 /*
366  * Set attributes cache for given vnode using nfsattr.
367  *
368  * This routine does not do cache validation with the attributes.
369  *
370  * If an error occurred trying to convert the over the wire
371  * attributes to a vattr, then simply mark the attribute cache as
372  * timed out.
373  */
374 void
375 nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t)
376 {
377 	rnode_t *rp;
378 	struct vattr va;
379 
380 	if (!nattr_to_vattr(vp, na, &va)) {
381 		rp = VTOR(vp);
382 		mutex_enter(&rp->r_statelock);
383 		if (rp->r_mtime <= t)
384 			nfs_attrcache_va(vp, &va);
385 		mutex_exit(&rp->r_statelock);
386 	} else {
387 		PURGE_ATTRCACHE(vp);
388 	}
389 }
390 
391 /*
392  * Set attributes cache for given vnode using fattr3.
393  *
394  * This routine does not do cache validation with the attributes.
395  *
396  * If an error occurred trying to convert the over the wire
397  * attributes to a vattr, then simply mark the attribute cache as
398  * timed out.
399  */
400 void
401 nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t)
402 {
403 	rnode_t *rp;
404 	struct vattr va;
405 
406 	if (!fattr3_to_vattr(vp, na, &va)) {
407 		rp = VTOR(vp);
408 		mutex_enter(&rp->r_statelock);
409 		if (rp->r_mtime <= t)
410 			nfs_attrcache_va(vp, &va);
411 		mutex_exit(&rp->r_statelock);
412 	} else {
413 		PURGE_ATTRCACHE(vp);
414 	}
415 }
416 
417 /*
418  * Do a cache check based on attributes returned over the wire.  The
419  * new attributes are cached.
420  *
421  * If an error occurred trying to convert the over the wire attributes
422  * to a vattr, then just return that error.
423  *
424  * As a side affect, the vattr argument is filled in with the converted
425  * attributes.
426  */
427 int
428 nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t,
429     cred_t *cr)
430 {
431 	int error;
432 
433 	error = nattr_to_vattr(vp, na, vap);
434 	if (error)
435 		return (error);
436 	nfs_attr_cache(vp, vap, t, cr);
437 	return (0);
438 }
439 
440 /*
441  * Do a cache check based on attributes returned over the wire.  The
442  * new attributes are cached.
443  *
444  * If an error occurred trying to convert the over the wire attributes
445  * to a vattr, then just return that error.
446  *
447  * As a side affect, the vattr argument is filled in with the converted
448  * attributes.
449  */
450 int
451 nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr)
452 {
453 	int error;
454 
455 	error = fattr3_to_vattr(vp, na, vap);
456 	if (error)
457 		return (error);
458 	nfs_attr_cache(vp, vap, t, cr);
459 	return (0);
460 }
461 
462 /*
463  * Use the passed in virtual attributes to check to see whether the
464  * data and metadata caches are valid, cache the new attributes, and
465  * then do the cache invalidation if required.
466  *
467  * The cache validation and caching of the new attributes is done
468  * atomically via the use of the mutex, r_statelock.  If required,
469  * the cache invalidation is done atomically w.r.t. the cache
470  * validation and caching of the attributes via the pseudo lock,
471  * r_serial.
472  *
473  * This routine is used to do cache validation and attributes caching
474  * for operations with a single set of post operation attributes.
475  */
476 void
477 nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr)
478 {
479 	rnode_t *rp;
480 	int mtime_changed = 0;
481 	int ctime_changed = 0;
482 	vsecattr_t *vsp;
483 	int was_serial;
484 	len_t preattr_rsize;
485 	boolean_t writeattr_set = B_FALSE;
486 	boolean_t cachepurge_set = B_FALSE;
487 
488 	rp = VTOR(vp);
489 
490 	mutex_enter(&rp->r_statelock);
491 
492 	if (rp->r_serial != curthread) {
493 		klwp_t *lwp = ttolwp(curthread);
494 
495 		was_serial = 0;
496 		if (lwp != NULL)
497 			lwp->lwp_nostop++;
498 		while (rp->r_serial != NULL) {
499 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
500 				mutex_exit(&rp->r_statelock);
501 				if (lwp != NULL)
502 					lwp->lwp_nostop--;
503 				return;
504 			}
505 		}
506 		if (lwp != NULL)
507 			lwp->lwp_nostop--;
508 	} else
509 		was_serial = 1;
510 
511 	if (rp->r_mtime > t) {
512 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
513 			PURGE_ATTRCACHE_LOCKED(rp);
514 		mutex_exit(&rp->r_statelock);
515 		return;
516 	}
517 
518 	/*
519 	 * Write thread after writing data to file on remote server,
520 	 * will always set RWRITEATTR to indicate that file on remote
521 	 * server was modified with a WRITE operation and would have
522 	 * marked attribute cache as timed out. If RWRITEATTR
523 	 * is set, then do not check for mtime and ctime change.
524 	 */
525 	if (!(rp->r_flags & RWRITEATTR)) {
526 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
527 			mtime_changed = 1;
528 
529 		if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec ||
530 		    rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec)
531 			ctime_changed = 1;
532 	} else {
533 		writeattr_set = B_TRUE;
534 	}
535 
536 	preattr_rsize = rp->r_size;
537 
538 	nfs_attrcache_va(vp, vap);
539 
540 	/*
541 	 * If we have updated filesize in nfs_attrcache_va, as soon as we
542 	 * drop statelock we will be in transition of purging all
543 	 * our caches and updating them. It is possible for another
544 	 * thread to pick this new file size and read in zeroed data.
545 	 * stall other threads till cache purge is complete.
546 	 */
547 	if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
548 		/*
549 		 * If RWRITEATTR was set and we have updated the file
550 		 * size, Server's returned file size need not necessarily
551 		 * be because of this Client's WRITE. We need to purge
552 		 * all caches.
553 		 */
554 		if (writeattr_set)
555 			mtime_changed = 1;
556 
557 		if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
558 			rp->r_flags |= RINCACHEPURGE;
559 			cachepurge_set = B_TRUE;
560 		}
561 	}
562 
563 	if (!mtime_changed && !ctime_changed) {
564 		mutex_exit(&rp->r_statelock);
565 		return;
566 	}
567 
568 	rp->r_serial = curthread;
569 
570 	mutex_exit(&rp->r_statelock);
571 
572 	if (mtime_changed)
573 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
574 
575 	if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
576 		mutex_enter(&rp->r_statelock);
577 		rp->r_flags &= ~RINCACHEPURGE;
578 		cv_broadcast(&rp->r_cv);
579 		mutex_exit(&rp->r_statelock);
580 		cachepurge_set = B_FALSE;
581 	}
582 
583 	if (ctime_changed) {
584 		(void) nfs_access_purge_rp(rp);
585 		if (rp->r_secattr != NULL) {
586 			mutex_enter(&rp->r_statelock);
587 			vsp = rp->r_secattr;
588 			rp->r_secattr = NULL;
589 			mutex_exit(&rp->r_statelock);
590 			if (vsp != NULL)
591 				nfs_acl_free(vsp);
592 		}
593 	}
594 
595 	if (!was_serial) {
596 		mutex_enter(&rp->r_statelock);
597 		rp->r_serial = NULL;
598 		cv_broadcast(&rp->r_cv);
599 		mutex_exit(&rp->r_statelock);
600 	}
601 }
602 
603 /*
604  * Use the passed in "before" virtual attributes to check to see
605  * whether the data and metadata caches are valid, cache the "after"
606  * new attributes, and then do the cache invalidation if required.
607  *
608  * The cache validation and caching of the new attributes is done
609  * atomically via the use of the mutex, r_statelock.  If required,
610  * the cache invalidation is done atomically w.r.t. the cache
611  * validation and caching of the attributes via the pseudo lock,
612  * r_serial.
613  *
614  * This routine is used to do cache validation and attributes caching
615  * for operations with both pre operation attributes and post operation
616  * attributes.
617  */
618 static void
619 nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t,
620     cred_t *cr)
621 {
622 	rnode_t *rp;
623 	int mtime_changed = 0;
624 	int ctime_changed = 0;
625 	vsecattr_t *vsp;
626 	int was_serial;
627 	len_t preattr_rsize;
628 	boolean_t writeattr_set = B_FALSE;
629 	boolean_t cachepurge_set = B_FALSE;
630 
631 	rp = VTOR(vp);
632 
633 	mutex_enter(&rp->r_statelock);
634 
635 	if (rp->r_serial != curthread) {
636 		klwp_t *lwp = ttolwp(curthread);
637 
638 		was_serial = 0;
639 		if (lwp != NULL)
640 			lwp->lwp_nostop++;
641 		while (rp->r_serial != NULL) {
642 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
643 				mutex_exit(&rp->r_statelock);
644 				if (lwp != NULL)
645 					lwp->lwp_nostop--;
646 				return;
647 			}
648 		}
649 		if (lwp != NULL)
650 			lwp->lwp_nostop--;
651 	} else
652 		was_serial = 1;
653 
654 	if (rp->r_mtime > t) {
655 		if (!CACHE_VALID(rp, avap->va_mtime, avap->va_size))
656 			PURGE_ATTRCACHE_LOCKED(rp);
657 		mutex_exit(&rp->r_statelock);
658 		return;
659 	}
660 
661 	/*
662 	 * Write thread after writing data to file on remote server,
663 	 * will always set RWRITEATTR to indicate that file on remote
664 	 * server was modified with a WRITE operation and would have
665 	 * marked attribute cache as timed out. If RWRITEATTR
666 	 * is set, then do not check for mtime and ctime change.
667 	 */
668 	if (!(rp->r_flags & RWRITEATTR)) {
669 		if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size))
670 			mtime_changed = 1;
671 
672 		if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec ||
673 		    rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec)
674 			ctime_changed = 1;
675 	} else {
676 		writeattr_set = B_TRUE;
677 	}
678 
679 	preattr_rsize = rp->r_size;
680 
681 	nfs_attrcache_va(vp, avap);
682 
683 	/*
684 	 * If we have updated filesize in nfs_attrcache_va, as soon as we
685 	 * drop statelock we will be in transition of purging all
686 	 * our caches and updating them. It is possible for another
687 	 * thread to pick this new file size and read in zeroed data.
688 	 * stall other threads till cache purge is complete.
689 	 */
690 	if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
691 		/*
692 		 * If RWRITEATTR was set and we have updated the file
693 		 * size, Server's returned file size need not necessarily
694 		 * be because of this Client's WRITE. We need to purge
695 		 * all caches.
696 		 */
697 		if (writeattr_set)
698 			mtime_changed = 1;
699 
700 		if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
701 			rp->r_flags |= RINCACHEPURGE;
702 			cachepurge_set = B_TRUE;
703 		}
704 	}
705 
706 	if (!mtime_changed && !ctime_changed) {
707 		mutex_exit(&rp->r_statelock);
708 		return;
709 	}
710 
711 	rp->r_serial = curthread;
712 
713 	mutex_exit(&rp->r_statelock);
714 
715 	if (mtime_changed)
716 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
717 
718 	if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
719 		mutex_enter(&rp->r_statelock);
720 		rp->r_flags &= ~RINCACHEPURGE;
721 		cv_broadcast(&rp->r_cv);
722 		mutex_exit(&rp->r_statelock);
723 		cachepurge_set = B_FALSE;
724 	}
725 
726 	if (ctime_changed) {
727 		(void) nfs_access_purge_rp(rp);
728 		if (rp->r_secattr != NULL) {
729 			mutex_enter(&rp->r_statelock);
730 			vsp = rp->r_secattr;
731 			rp->r_secattr = NULL;
732 			mutex_exit(&rp->r_statelock);
733 			if (vsp != NULL)
734 				nfs_acl_free(vsp);
735 		}
736 	}
737 
738 	if (!was_serial) {
739 		mutex_enter(&rp->r_statelock);
740 		rp->r_serial = NULL;
741 		cv_broadcast(&rp->r_cv);
742 		mutex_exit(&rp->r_statelock);
743 	}
744 }
745 
746 /*
747  * Set attributes cache for given vnode using virtual attributes.
748  *
749  * Set the timeout value on the attribute cache and fill it
750  * with the passed in attributes.
751  *
752  * The caller must be holding r_statelock.
753  */
754 void
755 nfs_attrcache_va(vnode_t *vp, struct vattr *va)
756 {
757 	rnode_t *rp;
758 	mntinfo_t *mi;
759 	hrtime_t delta;
760 	hrtime_t now;
761 
762 	rp = VTOR(vp);
763 
764 	ASSERT(MUTEX_HELD(&rp->r_statelock));
765 
766 	now = gethrtime();
767 
768 	mi = VTOMI(vp);
769 
770 	/*
771 	 * Delta is the number of nanoseconds that we will
772 	 * cache the attributes of the file.  It is based on
773 	 * the number of nanoseconds since the last time that
774 	 * we detected a change.  The assumption is that files
775 	 * that changed recently are likely to change again.
776 	 * There is a minimum and a maximum for regular files
777 	 * and for directories which is enforced though.
778 	 *
779 	 * Using the time since last change was detected
780 	 * eliminates direct comparison or calculation
781 	 * using mixed client and server times.  NFS does
782 	 * not make any assumptions regarding the client
783 	 * and server clocks being synchronized.
784 	 */
785 	if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
786 	    va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
787 	    va->va_size != rp->r_attr.va_size)
788 		rp->r_mtime = now;
789 
790 	if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE))
791 		delta = 0;
792 	else {
793 		delta = now - rp->r_mtime;
794 		if (vp->v_type == VDIR) {
795 			if (delta < mi->mi_acdirmin)
796 				delta = mi->mi_acdirmin;
797 			else if (delta > mi->mi_acdirmax)
798 				delta = mi->mi_acdirmax;
799 		} else {
800 			if (delta < mi->mi_acregmin)
801 				delta = mi->mi_acregmin;
802 			else if (delta > mi->mi_acregmax)
803 				delta = mi->mi_acregmax;
804 		}
805 	}
806 	rp->r_attrtime = now + delta;
807 	rp->r_attr = *va;
808 	/*
809 	 * Update the size of the file if there is no cached data or if
810 	 * the cached data is clean and there is no data being written
811 	 * out.
812 	 */
813 	if (rp->r_size != va->va_size &&
814 	    (!vn_has_cached_data(vp) ||
815 	    (!(rp->r_flags & RDIRTY) && rp->r_count == 0)))
816 		rp->r_size = va->va_size;
817 	nfs_setswaplike(vp, va);
818 	rp->r_flags &= ~RWRITEATTR;
819 }
820 
821 /*
822  * Fill in attribute from the cache.
823  * If valid, then return 0 to indicate that no error occurred,
824  * otherwise return 1 to indicate that an error occurred.
825  */
826 static int
827 nfs_getattr_cache(vnode_t *vp, struct vattr *vap)
828 {
829 	rnode_t *rp;
830 
831 	rp = VTOR(vp);
832 	mutex_enter(&rp->r_statelock);
833 	if (ATTRCACHE_VALID(vp)) {
834 		/*
835 		 * Cached attributes are valid
836 		 */
837 		*vap = rp->r_attr;
838 		mutex_exit(&rp->r_statelock);
839 		return (0);
840 	}
841 	mutex_exit(&rp->r_statelock);
842 	return (1);
843 }
844 
845 /*
846  * Get attributes over-the-wire and update attributes cache
847  * if no error occurred in the over-the-wire operation.
848  * Return 0 if successful, otherwise error.
849  */
850 int
851 nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
852 {
853 	int error;
854 	struct nfsattrstat ns;
855 	int douprintf;
856 	mntinfo_t *mi;
857 	failinfo_t fi;
858 	hrtime_t t;
859 
860 	mi = VTOMI(vp);
861 	fi.vp = vp;
862 	fi.fhp = NULL;		/* no need to update, filehandle not copied */
863 	fi.copyproc = nfscopyfh;
864 	fi.lookupproc = nfslookup;
865 	fi.xattrdirproc = acl_getxattrdir2;
866 
867 	if (mi->mi_flags & MI_ACL) {
868 		error = acl_getattr2_otw(vp, vap, cr);
869 		if (mi->mi_flags & MI_ACL)
870 			return (error);
871 	}
872 
873 	douprintf = 1;
874 
875 	t = gethrtime();
876 
877 	error = rfs2call(mi, RFS_GETATTR,
878 			xdr_fhandle, (caddr_t)VTOFH(vp),
879 			xdr_attrstat, (caddr_t)&ns, cr,
880 			&douprintf, &ns.ns_status, 0, &fi);
881 
882 	if (!error) {
883 		error = geterrno(ns.ns_status);
884 		if (!error)
885 			error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr);
886 		else {
887 			PURGE_STALE_FH(error, vp, cr);
888 		}
889 	}
890 
891 	return (error);
892 }
893 
894 /*
895  * Return either cached ot remote attributes. If get remote attr
896  * use them to check and invalidate caches, then cache the new attributes.
897  */
898 int
899 nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
900 {
901 	int error;
902 	rnode_t *rp;
903 
904 	/*
905 	 * If we've got cached attributes, we're done, otherwise go
906 	 * to the server to get attributes, which will update the cache
907 	 * in the process.
908 	 */
909 	error = nfs_getattr_cache(vp, vap);
910 	if (error)
911 		error = nfs_getattr_otw(vp, vap, cr);
912 
913 	/* Return the client's view of file size */
914 	rp = VTOR(vp);
915 	mutex_enter(&rp->r_statelock);
916 	vap->va_size = rp->r_size;
917 	mutex_exit(&rp->r_statelock);
918 
919 	return (error);
920 }
921 
922 /*
923  * Get attributes over-the-wire and update attributes cache
924  * if no error occurred in the over-the-wire operation.
925  * Return 0 if successful, otherwise error.
926  */
927 int
928 nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
929 {
930 	int error;
931 	GETATTR3args args;
932 	GETATTR3vres res;
933 	int douprintf;
934 	failinfo_t fi;
935 	hrtime_t t;
936 
937 	args.object = *VTOFH3(vp);
938 	fi.vp = vp;
939 	fi.fhp = (caddr_t)&args.object;
940 	fi.copyproc = nfs3copyfh;
941 	fi.lookupproc = nfs3lookup;
942 	fi.xattrdirproc = acl_getxattrdir3;
943 	res.fres.vp = vp;
944 	res.fres.vap = vap;
945 
946 	douprintf = 1;
947 
948 	t = gethrtime();
949 
950 	error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR,
951 	    xdr_nfs_fh3, (caddr_t)&args,
952 	    xdr_GETATTR3vres, (caddr_t)&res, cr,
953 	    &douprintf, &res.status, 0, &fi);
954 
955 	if (error)
956 		return (error);
957 
958 	error = geterrno3(res.status);
959 	if (error) {
960 		PURGE_STALE_FH(error, vp, cr);
961 		return (error);
962 	}
963 
964 	/*
965 	 * Catch status codes that indicate fattr3 to vattr translation failure
966 	 */
967 	if (res.fres.status)
968 		return (res.fres.status);
969 
970 	nfs_attr_cache(vp, vap, t, cr);
971 	return (0);
972 }
973 
974 /*
975  * Return either cached or remote attributes. If get remote attr
976  * use them to check and invalidate caches, then cache the new attributes.
977  */
978 int
979 nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
980 {
981 	int error;
982 	rnode_t *rp;
983 
984 	/*
985 	 * If we've got cached attributes, we're done, otherwise go
986 	 * to the server to get attributes, which will update the cache
987 	 * in the process.
988 	 */
989 	error = nfs_getattr_cache(vp, vap);
990 	if (error)
991 		error = nfs3_getattr_otw(vp, vap, cr);
992 
993 	/* Return the client's view of file size */
994 	rp = VTOR(vp);
995 	mutex_enter(&rp->r_statelock);
996 	vap->va_size = rp->r_size;
997 	mutex_exit(&rp->r_statelock);
998 
999 	return (error);
1000 }
1001 
1002 vtype_t nf_to_vt[] = {
1003 	VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK
1004 };
1005 /*
1006  * Convert NFS Version 2 over the network attributes to the local
1007  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1008  * network representation and the local representation is done here.
1009  * Returns 0 for success, error if failed due to overflow.
1010  */
1011 int
1012 nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap)
1013 {
1014 	/* overflow in time attributes? */
1015 #ifndef _LP64
1016 	if (!NFS2_FATTR_TIME_OK(na))
1017 		return (EOVERFLOW);
1018 #endif
1019 
1020 	if (na->na_type < NFNON || na->na_type > NFSOC)
1021 		vap->va_type = VBAD;
1022 	else
1023 		vap->va_type = nf_to_vt[na->na_type];
1024 	vap->va_mode = na->na_mode;
1025 	vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid;
1026 	vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid;
1027 	vap->va_fsid = vp->v_vfsp->vfs_dev;
1028 	vap->va_nodeid = na->na_nodeid;
1029 	vap->va_nlink = na->na_nlink;
1030 	vap->va_size = na->na_size;	/* keep for cache validation */
1031 	/*
1032 	 * nfs protocol defines times as unsigned so don't extend sign,
1033 	 * unless sysadmin set nfs_allow_preepoch_time.
1034 	 */
1035 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec);
1036 	vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000);
1037 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec);
1038 	vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000);
1039 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec);
1040 	vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000);
1041 	/*
1042 	 * Shannon's law - uncompress the received dev_t
1043 	 * if the top half of is zero indicating a response
1044 	 * from an `older style' OS. Except for when it is a
1045 	 * `new style' OS sending the maj device of zero,
1046 	 * in which case the algorithm still works because the
1047 	 * fact that it is a new style server
1048 	 * is hidden by the minor device not being greater
1049 	 * than 255 (a requirement in this case).
1050 	 */
1051 	if ((na->na_rdev & 0xffff0000) == 0)
1052 		vap->va_rdev = nfsv2_expdev(na->na_rdev);
1053 	else
1054 		vap->va_rdev = expldev(na->na_rdev);
1055 
1056 	vap->va_nblocks = na->na_blocks;
1057 	switch (na->na_type) {
1058 	case NFBLK:
1059 		vap->va_blksize = DEV_BSIZE;
1060 		break;
1061 
1062 	case NFCHR:
1063 		vap->va_blksize = MAXBSIZE;
1064 		break;
1065 
1066 	case NFSOC:
1067 	default:
1068 		vap->va_blksize = na->na_blocksize;
1069 		break;
1070 	}
1071 	/*
1072 	 * This bit of ugliness is a hack to preserve the
1073 	 * over-the-wire protocols for named-pipe vnodes.
1074 	 * It remaps the special over-the-wire type to the
1075 	 * VFIFO type. (see note in nfs.h)
1076 	 */
1077 	if (NA_ISFIFO(na)) {
1078 		vap->va_type = VFIFO;
1079 		vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO;
1080 		vap->va_rdev = 0;
1081 		vap->va_blksize = na->na_blocksize;
1082 	}
1083 	vap->va_seq = 0;
1084 	return (0);
1085 }
1086 
1087 /*
1088  * Convert NFS Version 3 over the network attributes to the local
1089  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1090  * network representation and the local representation is done here.
1091  */
1092 vtype_t nf3_to_vt[] = {
1093 	VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO
1094 };
1095 
1096 int
1097 fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap)
1098 {
1099 
1100 #ifndef _LP64
1101 	/* overflow in time attributes? */
1102 	if (!NFS3_FATTR_TIME_OK(na))
1103 		return (EOVERFLOW);
1104 #endif
1105 	if (!NFS3_SIZE_OK(na->size))
1106 		/* file too big */
1107 		return (EFBIG);
1108 
1109 	vap->va_mask = AT_ALL;
1110 
1111 	if (na->type < NF3REG || na->type > NF3FIFO)
1112 		vap->va_type = VBAD;
1113 	else
1114 		vap->va_type = nf3_to_vt[na->type];
1115 	vap->va_mode = na->mode;
1116 	vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid;
1117 	vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid;
1118 	vap->va_fsid = vp->v_vfsp->vfs_dev;
1119 	vap->va_nodeid = na->fileid;
1120 	vap->va_nlink = na->nlink;
1121 	vap->va_size = na->size;
1122 
1123 	/*
1124 	 * nfs protocol defines times as unsigned so don't extend sign,
1125 	 * unless sysadmin set nfs_allow_preepoch_time.
1126 	 */
1127 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds);
1128 	vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds;
1129 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds);
1130 	vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds;
1131 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds);
1132 	vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds;
1133 
1134 	switch (na->type) {
1135 	case NF3BLK:
1136 		vap->va_rdev = makedevice(na->rdev.specdata1,
1137 					na->rdev.specdata2);
1138 		vap->va_blksize = DEV_BSIZE;
1139 		vap->va_nblocks = 0;
1140 		break;
1141 	case NF3CHR:
1142 		vap->va_rdev = makedevice(na->rdev.specdata1,
1143 					na->rdev.specdata2);
1144 		vap->va_blksize = MAXBSIZE;
1145 		vap->va_nblocks = 0;
1146 		break;
1147 	case NF3REG:
1148 	case NF3DIR:
1149 	case NF3LNK:
1150 		vap->va_rdev = 0;
1151 		vap->va_blksize = MAXBSIZE;
1152 		vap->va_nblocks = (u_longlong_t)
1153 		    ((na->used + (size3)DEV_BSIZE - (size3)1) /
1154 		    (size3)DEV_BSIZE);
1155 		break;
1156 	case NF3SOCK:
1157 	case NF3FIFO:
1158 	default:
1159 		vap->va_rdev = 0;
1160 		vap->va_blksize = MAXBSIZE;
1161 		vap->va_nblocks = 0;
1162 		break;
1163 	}
1164 	vap->va_seq = 0;
1165 	return (0);
1166 }
1167 
1168 /*
1169  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1170  * for the demand-based allocation of async threads per-mount.  The
1171  * nfs_async_timeout is the amount of time a thread will live after it
1172  * becomes idle, unless new I/O requests are received before the thread
1173  * dies.  See nfs_async_putpage and nfs_async_start.
1174  */
1175 
1176 int nfs_async_timeout = -1;	/* uninitialized */
1177 
1178 static void	nfs_async_start(struct vfs *);
1179 
1180 static void
1181 free_async_args(struct nfs_async_reqs *args)
1182 {
1183 	rnode_t *rp;
1184 
1185 	if (args->a_io != NFS_INACTIVE) {
1186 		rp = VTOR(args->a_vp);
1187 		mutex_enter(&rp->r_statelock);
1188 		rp->r_count--;
1189 		if (args->a_io == NFS_PUTAPAGE ||
1190 		    args->a_io == NFS_PAGEIO)
1191 			rp->r_awcount--;
1192 		cv_broadcast(&rp->r_cv);
1193 		mutex_exit(&rp->r_statelock);
1194 		VN_RELE(args->a_vp);
1195 	}
1196 	crfree(args->a_cred);
1197 	kmem_free(args, sizeof (*args));
1198 }
1199 
1200 /*
1201  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1202  * pageout(), running in the global zone, have legitimate reasons to do
1203  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1204  * use of a a per-mount "asynchronous requests manager thread" which is
1205  * signaled by the various asynchronous work routines when there is
1206  * asynchronous work to be done.  It is responsible for creating new
1207  * worker threads if necessary, and notifying existing worker threads
1208  * that there is work to be done.
1209  *
1210  * In other words, it will "take the specifications from the customers and
1211  * give them to the engineers."
1212  *
1213  * Worker threads die off of their own accord if they are no longer
1214  * needed.
1215  *
1216  * This thread is killed when the zone is going away or the filesystem
1217  * is being unmounted.
1218  */
1219 void
1220 nfs_async_manager(vfs_t *vfsp)
1221 {
1222 	callb_cpr_t cprinfo;
1223 	mntinfo_t *mi;
1224 	uint_t max_threads;
1225 
1226 	mi = VFTOMI(vfsp);
1227 
1228 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1229 		    "nfs_async_manager");
1230 
1231 	mutex_enter(&mi->mi_async_lock);
1232 	/*
1233 	 * We want to stash the max number of threads that this mount was
1234 	 * allowed so we can use it later when the variable is set to zero as
1235 	 * part of the zone/mount going away.
1236 	 *
1237 	 * We want to be able to create at least one thread to handle
1238 	 * asyncrhonous inactive calls.
1239 	 */
1240 	max_threads = MAX(mi->mi_max_threads, 1);
1241 	mutex_enter(&mi->mi_lock);
1242 	/*
1243 	 * We don't want to wait for mi_max_threads to go to zero, since that
1244 	 * happens as part of a failed unmount, but this thread should only
1245 	 * exit when the mount/zone is really going away.
1246 	 *
1247 	 * Once MI_ASYNC_MGR_STOP is set, no more async operations will be
1248 	 * attempted: the various _async_*() functions know to do things
1249 	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1250 	 * outstanding requests.
1251 	 *
1252 	 * Note that we still create zthreads even if we notice the zone is
1253 	 * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone
1254 	 * shutdown sequence to take slightly longer in some cases, but
1255 	 * doesn't violate the protocol, as all threads will exit as soon as
1256 	 * they're done processing the remaining requests.
1257 	 */
1258 	while (!(mi->mi_flags & MI_ASYNC_MGR_STOP) ||
1259 	    mi->mi_async_req_count > 0) {
1260 		mutex_exit(&mi->mi_lock);
1261 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1262 		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1263 		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1264 		while (mi->mi_async_req_count > 0) {
1265 			/*
1266 			 * Paranoia: If the mount started out having
1267 			 * (mi->mi_max_threads == 0), and the value was
1268 			 * later changed (via a debugger or somesuch),
1269 			 * we could be confused since we will think we
1270 			 * can't create any threads, and the calling
1271 			 * code (which looks at the current value of
1272 			 * mi->mi_max_threads, now non-zero) thinks we
1273 			 * can.
1274 			 *
1275 			 * So, because we're paranoid, we create threads
1276 			 * up to the maximum of the original and the
1277 			 * current value. This means that future
1278 			 * (debugger-induced) lowerings of
1279 			 * mi->mi_max_threads are ignored for our
1280 			 * purposes, but who told them they could change
1281 			 * random values on a live kernel anyhow?
1282 			 */
1283 			if (mi->mi_threads <
1284 			    MAX(mi->mi_max_threads, max_threads)) {
1285 				mi->mi_threads++;
1286 				mutex_exit(&mi->mi_async_lock);
1287 				VFS_HOLD(vfsp);	/* hold for new thread */
1288 				(void) zthread_create(NULL, 0, nfs_async_start,
1289 				    vfsp, 0, minclsyspri);
1290 				mutex_enter(&mi->mi_async_lock);
1291 			}
1292 			cv_signal(&mi->mi_async_work_cv);
1293 			ASSERT(mi->mi_async_req_count != 0);
1294 			mi->mi_async_req_count--;
1295 		}
1296 		mutex_enter(&mi->mi_lock);
1297 	}
1298 	mutex_exit(&mi->mi_lock);
1299 	/*
1300 	 * Let everyone know we're done.
1301 	 */
1302 	mi->mi_manager_thread = NULL;
1303 	cv_broadcast(&mi->mi_async_cv);
1304 
1305 	/*
1306 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1307 	 * since CALLB_CPR_EXIT is actually responsible for releasing
1308 	 * 'mi_async_lock'.
1309 	 */
1310 	CALLB_CPR_EXIT(&cprinfo);
1311 	VFS_RELE(vfsp);	/* release thread's hold */
1312 	zthread_exit();
1313 }
1314 
1315 /*
1316  * Signal (and wait for) the async manager thread to clean up and go away.
1317  */
1318 void
1319 nfs_async_manager_stop(vfs_t *vfsp)
1320 {
1321 	mntinfo_t *mi = VFTOMI(vfsp);
1322 
1323 	mutex_enter(&mi->mi_async_lock);
1324 	mutex_enter(&mi->mi_lock);
1325 	mi->mi_flags |= MI_ASYNC_MGR_STOP;
1326 	mutex_exit(&mi->mi_lock);
1327 	cv_broadcast(&mi->mi_async_reqs_cv);
1328 	while (mi->mi_manager_thread != NULL)
1329 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1330 	mutex_exit(&mi->mi_async_lock);
1331 }
1332 
1333 int
1334 nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1335 	struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1336 	u_offset_t, caddr_t, struct seg *, cred_t *))
1337 {
1338 	rnode_t *rp;
1339 	mntinfo_t *mi;
1340 	struct nfs_async_reqs *args;
1341 
1342 	rp = VTOR(vp);
1343 	ASSERT(rp->r_freef == NULL);
1344 
1345 	mi = VTOMI(vp);
1346 
1347 	/*
1348 	 * If addr falls in a different segment, don't bother doing readahead.
1349 	 */
1350 	if (addr >= seg->s_base + seg->s_size)
1351 		return (-1);
1352 
1353 	/*
1354 	 * If we can't allocate a request structure, punt on the readahead.
1355 	 */
1356 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1357 		return (-1);
1358 
1359 	/*
1360 	 * If a lock operation is pending, don't initiate any new
1361 	 * readaheads.  Otherwise, bump r_count to indicate the new
1362 	 * asynchronous I/O.
1363 	 */
1364 	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1365 		kmem_free(args, sizeof (*args));
1366 		return (-1);
1367 	}
1368 	mutex_enter(&rp->r_statelock);
1369 	rp->r_count++;
1370 	mutex_exit(&rp->r_statelock);
1371 	nfs_rw_exit(&rp->r_lkserlock);
1372 
1373 	args->a_next = NULL;
1374 #ifdef DEBUG
1375 	args->a_queuer = curthread;
1376 #endif
1377 	VN_HOLD(vp);
1378 	args->a_vp = vp;
1379 	ASSERT(cr != NULL);
1380 	crhold(cr);
1381 	args->a_cred = cr;
1382 	args->a_io = NFS_READ_AHEAD;
1383 	args->a_nfs_readahead = readahead;
1384 	args->a_nfs_blkoff = blkoff;
1385 	args->a_nfs_seg = seg;
1386 	args->a_nfs_addr = addr;
1387 
1388 	mutex_enter(&mi->mi_async_lock);
1389 
1390 	/*
1391 	 * If asyncio has been disabled, don't bother readahead.
1392 	 */
1393 	if (mi->mi_max_threads == 0) {
1394 		mutex_exit(&mi->mi_async_lock);
1395 		goto noasync;
1396 	}
1397 
1398 	/*
1399 	 * Link request structure into the async list and
1400 	 * wakeup async thread to do the i/o.
1401 	 */
1402 	if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) {
1403 		mi->mi_async_reqs[NFS_READ_AHEAD] = args;
1404 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1405 	} else {
1406 		mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args;
1407 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1408 	}
1409 
1410 	if (mi->mi_io_kstats) {
1411 		mutex_enter(&mi->mi_lock);
1412 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1413 		mutex_exit(&mi->mi_lock);
1414 	}
1415 
1416 	mi->mi_async_req_count++;
1417 	ASSERT(mi->mi_async_req_count != 0);
1418 	cv_signal(&mi->mi_async_reqs_cv);
1419 	mutex_exit(&mi->mi_async_lock);
1420 	return (0);
1421 
1422 noasync:
1423 	mutex_enter(&rp->r_statelock);
1424 	rp->r_count--;
1425 	cv_broadcast(&rp->r_cv);
1426 	mutex_exit(&rp->r_statelock);
1427 	VN_RELE(vp);
1428 	crfree(cr);
1429 	kmem_free(args, sizeof (*args));
1430 	return (-1);
1431 }
1432 
1433 int
1434 nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1435 	int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1436 	u_offset_t, size_t, int, cred_t *))
1437 {
1438 	rnode_t *rp;
1439 	mntinfo_t *mi;
1440 	struct nfs_async_reqs *args;
1441 
1442 	ASSERT(flags & B_ASYNC);
1443 	ASSERT(vp->v_vfsp != NULL);
1444 
1445 	rp = VTOR(vp);
1446 	ASSERT(rp->r_count > 0);
1447 
1448 	mi = VTOMI(vp);
1449 
1450 	/*
1451 	 * If we can't allocate a request structure, do the putpage
1452 	 * operation synchronously in this thread's context.
1453 	 */
1454 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1455 		goto noasync;
1456 
1457 	args->a_next = NULL;
1458 #ifdef DEBUG
1459 	args->a_queuer = curthread;
1460 #endif
1461 	VN_HOLD(vp);
1462 	args->a_vp = vp;
1463 	ASSERT(cr != NULL);
1464 	crhold(cr);
1465 	args->a_cred = cr;
1466 	args->a_io = NFS_PUTAPAGE;
1467 	args->a_nfs_putapage = putapage;
1468 	args->a_nfs_pp = pp;
1469 	args->a_nfs_off = off;
1470 	args->a_nfs_len = (uint_t)len;
1471 	args->a_nfs_flags = flags;
1472 
1473 	mutex_enter(&mi->mi_async_lock);
1474 
1475 	/*
1476 	 * If asyncio has been disabled, then make a synchronous request.
1477 	 * This check is done a second time in case async io was diabled
1478 	 * while this thread was blocked waiting for memory pressure to
1479 	 * reduce or for the queue to drain.
1480 	 */
1481 	if (mi->mi_max_threads == 0) {
1482 		mutex_exit(&mi->mi_async_lock);
1483 		goto noasync;
1484 	}
1485 
1486 	/*
1487 	 * Link request structure into the async list and
1488 	 * wakeup async thread to do the i/o.
1489 	 */
1490 	if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) {
1491 		mi->mi_async_reqs[NFS_PUTAPAGE] = args;
1492 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1493 	} else {
1494 		mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args;
1495 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1496 	}
1497 
1498 	mutex_enter(&rp->r_statelock);
1499 	rp->r_count++;
1500 	rp->r_awcount++;
1501 	mutex_exit(&rp->r_statelock);
1502 
1503 	if (mi->mi_io_kstats) {
1504 		mutex_enter(&mi->mi_lock);
1505 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1506 		mutex_exit(&mi->mi_lock);
1507 	}
1508 
1509 	mi->mi_async_req_count++;
1510 	ASSERT(mi->mi_async_req_count != 0);
1511 	cv_signal(&mi->mi_async_reqs_cv);
1512 	mutex_exit(&mi->mi_async_lock);
1513 	return (0);
1514 
1515 noasync:
1516 	if (args != NULL) {
1517 		VN_RELE(vp);
1518 		crfree(cr);
1519 		kmem_free(args, sizeof (*args));
1520 	}
1521 
1522 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1523 		/*
1524 		 * If we get here in the context of the pageout/fsflush,
1525 		 * we refuse to do a sync write, because this may hang
1526 		 * pageout (and the machine). In this case, we just
1527 		 * re-mark the page as dirty and punt on the page.
1528 		 *
1529 		 * Make sure B_FORCE isn't set.  We can re-mark the
1530 		 * pages as dirty and unlock the pages in one swoop by
1531 		 * passing in B_ERROR to pvn_write_done().  However,
1532 		 * we should make sure B_FORCE isn't set - we don't
1533 		 * want the page tossed before it gets written out.
1534 		 */
1535 		if (flags & B_FORCE)
1536 			flags &= ~(B_INVAL | B_FORCE);
1537 		pvn_write_done(pp, flags | B_ERROR);
1538 		return (0);
1539 	}
1540 	if (nfs_zone() != mi->mi_zone) {
1541 		/*
1542 		 * So this was a cross-zone sync putpage.  We pass in B_ERROR
1543 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1544 		 * them.
1545 		 *
1546 		 * We don't want to clear B_FORCE here as the caller presumably
1547 		 * knows what they're doing if they set it.
1548 		 */
1549 		pvn_write_done(pp, flags | B_ERROR);
1550 		return (EPERM);
1551 	}
1552 	return ((*putapage)(vp, pp, off, len, flags, cr));
1553 }
1554 
1555 int
1556 nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1557 	int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1558 	size_t, int, cred_t *))
1559 {
1560 	rnode_t *rp;
1561 	mntinfo_t *mi;
1562 	struct nfs_async_reqs *args;
1563 
1564 	ASSERT(flags & B_ASYNC);
1565 	ASSERT(vp->v_vfsp != NULL);
1566 
1567 	rp = VTOR(vp);
1568 	ASSERT(rp->r_count > 0);
1569 
1570 	mi = VTOMI(vp);
1571 
1572 	/*
1573 	 * If we can't allocate a request structure, do the pageio
1574 	 * request synchronously in this thread's context.
1575 	 */
1576 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1577 		goto noasync;
1578 
1579 	args->a_next = NULL;
1580 #ifdef DEBUG
1581 	args->a_queuer = curthread;
1582 #endif
1583 	VN_HOLD(vp);
1584 	args->a_vp = vp;
1585 	ASSERT(cr != NULL);
1586 	crhold(cr);
1587 	args->a_cred = cr;
1588 	args->a_io = NFS_PAGEIO;
1589 	args->a_nfs_pageio = pageio;
1590 	args->a_nfs_pp = pp;
1591 	args->a_nfs_off = io_off;
1592 	args->a_nfs_len = (uint_t)io_len;
1593 	args->a_nfs_flags = flags;
1594 
1595 	mutex_enter(&mi->mi_async_lock);
1596 
1597 	/*
1598 	 * If asyncio has been disabled, then make a synchronous request.
1599 	 * This check is done a second time in case async io was diabled
1600 	 * while this thread was blocked waiting for memory pressure to
1601 	 * reduce or for the queue to drain.
1602 	 */
1603 	if (mi->mi_max_threads == 0) {
1604 		mutex_exit(&mi->mi_async_lock);
1605 		goto noasync;
1606 	}
1607 
1608 	/*
1609 	 * Link request structure into the async list and
1610 	 * wakeup async thread to do the i/o.
1611 	 */
1612 	if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) {
1613 		mi->mi_async_reqs[NFS_PAGEIO] = args;
1614 		mi->mi_async_tail[NFS_PAGEIO] = args;
1615 	} else {
1616 		mi->mi_async_tail[NFS_PAGEIO]->a_next = args;
1617 		mi->mi_async_tail[NFS_PAGEIO] = args;
1618 	}
1619 
1620 	mutex_enter(&rp->r_statelock);
1621 	rp->r_count++;
1622 	rp->r_awcount++;
1623 	mutex_exit(&rp->r_statelock);
1624 
1625 	if (mi->mi_io_kstats) {
1626 		mutex_enter(&mi->mi_lock);
1627 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1628 		mutex_exit(&mi->mi_lock);
1629 	}
1630 
1631 	mi->mi_async_req_count++;
1632 	ASSERT(mi->mi_async_req_count != 0);
1633 	cv_signal(&mi->mi_async_reqs_cv);
1634 	mutex_exit(&mi->mi_async_lock);
1635 	return (0);
1636 
1637 noasync:
1638 	if (args != NULL) {
1639 		VN_RELE(vp);
1640 		crfree(cr);
1641 		kmem_free(args, sizeof (*args));
1642 	}
1643 
1644 	/*
1645 	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1646 	 * the page list), for writes we do it synchronously, except for
1647 	 * proc_pageout/proc_fsflush as described below.
1648 	 */
1649 	if (flags & B_READ) {
1650 		pvn_read_done(pp, flags | B_ERROR);
1651 		return (0);
1652 	}
1653 
1654 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1655 		/*
1656 		 * If we get here in the context of the pageout/fsflush,
1657 		 * we refuse to do a sync write, because this may hang
1658 		 * pageout/fsflush (and the machine). In this case, we just
1659 		 * re-mark the page as dirty and punt on the page.
1660 		 *
1661 		 * Make sure B_FORCE isn't set.  We can re-mark the
1662 		 * pages as dirty and unlock the pages in one swoop by
1663 		 * passing in B_ERROR to pvn_write_done().  However,
1664 		 * we should make sure B_FORCE isn't set - we don't
1665 		 * want the page tossed before it gets written out.
1666 		 */
1667 		if (flags & B_FORCE)
1668 			flags &= ~(B_INVAL | B_FORCE);
1669 		pvn_write_done(pp, flags | B_ERROR);
1670 		return (0);
1671 	}
1672 
1673 	if (nfs_zone() != mi->mi_zone) {
1674 		/*
1675 		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1676 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1677 		 * them.
1678 		 *
1679 		 * We don't want to clear B_FORCE here as the caller presumably
1680 		 * knows what they're doing if they set it.
1681 		 */
1682 		pvn_write_done(pp, flags | B_ERROR);
1683 		return (EPERM);
1684 	}
1685 	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1686 }
1687 
1688 void
1689 nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr,
1690 	int (*readdir)(vnode_t *, rddir_cache *, cred_t *))
1691 {
1692 	rnode_t *rp;
1693 	mntinfo_t *mi;
1694 	struct nfs_async_reqs *args;
1695 
1696 	rp = VTOR(vp);
1697 	ASSERT(rp->r_freef == NULL);
1698 
1699 	mi = VTOMI(vp);
1700 
1701 	/*
1702 	 * If we can't allocate a request structure, do the readdir
1703 	 * operation synchronously in this thread's context.
1704 	 */
1705 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1706 		goto noasync;
1707 
1708 	args->a_next = NULL;
1709 #ifdef DEBUG
1710 	args->a_queuer = curthread;
1711 #endif
1712 	VN_HOLD(vp);
1713 	args->a_vp = vp;
1714 	ASSERT(cr != NULL);
1715 	crhold(cr);
1716 	args->a_cred = cr;
1717 	args->a_io = NFS_READDIR;
1718 	args->a_nfs_readdir = readdir;
1719 	args->a_nfs_rdc = rdc;
1720 
1721 	mutex_enter(&mi->mi_async_lock);
1722 
1723 	/*
1724 	 * If asyncio has been disabled, then make a synchronous request.
1725 	 */
1726 	if (mi->mi_max_threads == 0) {
1727 		mutex_exit(&mi->mi_async_lock);
1728 		goto noasync;
1729 	}
1730 
1731 	/*
1732 	 * Link request structure into the async list and
1733 	 * wakeup async thread to do the i/o.
1734 	 */
1735 	if (mi->mi_async_reqs[NFS_READDIR] == NULL) {
1736 		mi->mi_async_reqs[NFS_READDIR] = args;
1737 		mi->mi_async_tail[NFS_READDIR] = args;
1738 	} else {
1739 		mi->mi_async_tail[NFS_READDIR]->a_next = args;
1740 		mi->mi_async_tail[NFS_READDIR] = args;
1741 	}
1742 
1743 	mutex_enter(&rp->r_statelock);
1744 	rp->r_count++;
1745 	mutex_exit(&rp->r_statelock);
1746 
1747 	if (mi->mi_io_kstats) {
1748 		mutex_enter(&mi->mi_lock);
1749 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1750 		mutex_exit(&mi->mi_lock);
1751 	}
1752 
1753 	mi->mi_async_req_count++;
1754 	ASSERT(mi->mi_async_req_count != 0);
1755 	cv_signal(&mi->mi_async_reqs_cv);
1756 	mutex_exit(&mi->mi_async_lock);
1757 	return;
1758 
1759 noasync:
1760 	if (args != NULL) {
1761 		VN_RELE(vp);
1762 		crfree(cr);
1763 		kmem_free(args, sizeof (*args));
1764 	}
1765 
1766 	rdc->entries = NULL;
1767 	mutex_enter(&rp->r_statelock);
1768 	ASSERT(rdc->flags & RDDIR);
1769 	rdc->flags &= ~RDDIR;
1770 	rdc->flags |= RDDIRREQ;
1771 	/*
1772 	 * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT
1773 	 * is set, wakeup the thread sleeping in cv_wait_sig().
1774 	 * The woken up thread will reset the flag to RDDIR and will
1775 	 * continue with the readdir opeartion.
1776 	 */
1777 	if (rdc->flags & RDDIRWAIT) {
1778 		rdc->flags &= ~RDDIRWAIT;
1779 		cv_broadcast(&rdc->cv);
1780 	}
1781 	mutex_exit(&rp->r_statelock);
1782 	rddir_cache_rele(rdc);
1783 }
1784 
1785 void
1786 nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1787 	cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
1788 	cred_t *))
1789 {
1790 	rnode_t *rp;
1791 	mntinfo_t *mi;
1792 	struct nfs_async_reqs *args;
1793 	page_t *pp;
1794 
1795 	rp = VTOR(vp);
1796 	mi = VTOMI(vp);
1797 
1798 	/*
1799 	 * If we can't allocate a request structure, do the commit
1800 	 * operation synchronously in this thread's context.
1801 	 */
1802 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1803 		goto noasync;
1804 
1805 	args->a_next = NULL;
1806 #ifdef DEBUG
1807 	args->a_queuer = curthread;
1808 #endif
1809 	VN_HOLD(vp);
1810 	args->a_vp = vp;
1811 	ASSERT(cr != NULL);
1812 	crhold(cr);
1813 	args->a_cred = cr;
1814 	args->a_io = NFS_COMMIT;
1815 	args->a_nfs_commit = commit;
1816 	args->a_nfs_plist = plist;
1817 	args->a_nfs_offset = offset;
1818 	args->a_nfs_count = count;
1819 
1820 	mutex_enter(&mi->mi_async_lock);
1821 
1822 	/*
1823 	 * If asyncio has been disabled, then make a synchronous request.
1824 	 * This check is done a second time in case async io was diabled
1825 	 * while this thread was blocked waiting for memory pressure to
1826 	 * reduce or for the queue to drain.
1827 	 */
1828 	if (mi->mi_max_threads == 0) {
1829 		mutex_exit(&mi->mi_async_lock);
1830 		goto noasync;
1831 	}
1832 
1833 	/*
1834 	 * Link request structure into the async list and
1835 	 * wakeup async thread to do the i/o.
1836 	 */
1837 	if (mi->mi_async_reqs[NFS_COMMIT] == NULL) {
1838 		mi->mi_async_reqs[NFS_COMMIT] = args;
1839 		mi->mi_async_tail[NFS_COMMIT] = args;
1840 	} else {
1841 		mi->mi_async_tail[NFS_COMMIT]->a_next = args;
1842 		mi->mi_async_tail[NFS_COMMIT] = args;
1843 	}
1844 
1845 	mutex_enter(&rp->r_statelock);
1846 	rp->r_count++;
1847 	mutex_exit(&rp->r_statelock);
1848 
1849 	if (mi->mi_io_kstats) {
1850 		mutex_enter(&mi->mi_lock);
1851 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1852 		mutex_exit(&mi->mi_lock);
1853 	}
1854 
1855 	mi->mi_async_req_count++;
1856 	ASSERT(mi->mi_async_req_count != 0);
1857 	cv_signal(&mi->mi_async_reqs_cv);
1858 	mutex_exit(&mi->mi_async_lock);
1859 	return;
1860 
1861 noasync:
1862 	if (args != NULL) {
1863 		VN_RELE(vp);
1864 		crfree(cr);
1865 		kmem_free(args, sizeof (*args));
1866 	}
1867 
1868 	if (curproc == proc_pageout || curproc == proc_fsflush ||
1869 	    nfs_zone() != mi->mi_zone) {
1870 		while (plist != NULL) {
1871 			pp = plist;
1872 			page_sub(&plist, pp);
1873 			pp->p_fsdata = C_COMMIT;
1874 			page_unlock(pp);
1875 		}
1876 		return;
1877 	}
1878 	(*commit)(vp, plist, offset, count, cr);
1879 }
1880 
1881 void
1882 nfs_async_inactive(vnode_t *vp, cred_t *cr,
1883     void (*inactive)(vnode_t *, cred_t *, caller_context_t *))
1884 {
1885 	mntinfo_t *mi;
1886 	struct nfs_async_reqs *args;
1887 
1888 	mi = VTOMI(vp);
1889 
1890 	args = kmem_alloc(sizeof (*args), KM_SLEEP);
1891 	args->a_next = NULL;
1892 #ifdef DEBUG
1893 	args->a_queuer = curthread;
1894 #endif
1895 	args->a_vp = vp;
1896 	ASSERT(cr != NULL);
1897 	crhold(cr);
1898 	args->a_cred = cr;
1899 	args->a_io = NFS_INACTIVE;
1900 	args->a_nfs_inactive = inactive;
1901 
1902 	/*
1903 	 * Note that we don't check mi->mi_max_threads here, since we
1904 	 * *need* to get rid of this vnode regardless of whether someone
1905 	 * set nfs3_max_threads/nfs_max_threads to zero in /etc/system.
1906 	 *
1907 	 * The manager thread knows about this and is willing to create
1908 	 * at least one thread to accommodate us.
1909 	 */
1910 	mutex_enter(&mi->mi_async_lock);
1911 	if (mi->mi_manager_thread == NULL) {
1912 		rnode_t *rp = VTOR(vp);
1913 
1914 		mutex_exit(&mi->mi_async_lock);
1915 		crfree(cr);	/* drop our reference */
1916 		kmem_free(args, sizeof (*args));
1917 		/*
1918 		 * We can't do an over-the-wire call since we're in the wrong
1919 		 * zone, so we need to clean up state as best we can and then
1920 		 * throw away the vnode.
1921 		 */
1922 		mutex_enter(&rp->r_statelock);
1923 		if (rp->r_unldvp != NULL) {
1924 			vnode_t *unldvp;
1925 			char *unlname;
1926 			cred_t *unlcred;
1927 
1928 			unldvp = rp->r_unldvp;
1929 			rp->r_unldvp = NULL;
1930 			unlname = rp->r_unlname;
1931 			rp->r_unlname = NULL;
1932 			unlcred = rp->r_unlcred;
1933 			rp->r_unlcred = NULL;
1934 			mutex_exit(&rp->r_statelock);
1935 
1936 			VN_RELE(unldvp);
1937 			kmem_free(unlname, MAXNAMELEN);
1938 			crfree(unlcred);
1939 		} else {
1940 			mutex_exit(&rp->r_statelock);
1941 		}
1942 		/*
1943 		 * No need to explicitly throw away any cached pages.  The
1944 		 * eventual rinactive() will attempt a synchronous
1945 		 * VOP_PUTPAGE() which will immediately fail since the request
1946 		 * is coming from the wrong zone, and then will proceed to call
1947 		 * nfs_invalidate_pages() which will clean things up for us.
1948 		 */
1949 		rp_addfree(VTOR(vp), cr);
1950 		return;
1951 	}
1952 
1953 	if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) {
1954 		mi->mi_async_reqs[NFS_INACTIVE] = args;
1955 	} else {
1956 		mi->mi_async_tail[NFS_INACTIVE]->a_next = args;
1957 	}
1958 	mi->mi_async_tail[NFS_INACTIVE] = args;
1959 	/*
1960 	 * Don't increment r_count, since we're trying to get rid of the vnode.
1961 	 */
1962 
1963 	mi->mi_async_req_count++;
1964 	ASSERT(mi->mi_async_req_count != 0);
1965 	cv_signal(&mi->mi_async_reqs_cv);
1966 	mutex_exit(&mi->mi_async_lock);
1967 }
1968 
1969 /*
1970  * The async queues for each mounted file system are arranged as a
1971  * set of queues, one for each async i/o type.  Requests are taken
1972  * from the queues in a round-robin fashion.  A number of consecutive
1973  * requests are taken from each queue before moving on to the next
1974  * queue.  This functionality may allow the NFS Version 2 server to do
1975  * write clustering, even if the client is mixing writes and reads
1976  * because it will take multiple write requests from the queue
1977  * before processing any of the other async i/o types.
1978  *
1979  * XXX The nfs_async_start thread is unsafe in the light of the present
1980  * model defined by cpr to suspend the system. Specifically over the
1981  * wire calls are cpr-unsafe. The thread should be reevaluated in
1982  * case of future updates to the cpr model.
1983  */
1984 static void
1985 nfs_async_start(struct vfs *vfsp)
1986 {
1987 	struct nfs_async_reqs *args;
1988 	mntinfo_t *mi = VFTOMI(vfsp);
1989 	clock_t time_left = 1;
1990 	callb_cpr_t cprinfo;
1991 	int i;
1992 
1993 	/*
1994 	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1995 	 * built in an implementation independent manner.
1996 	 */
1997 	if (nfs_async_timeout == -1)
1998 		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1999 
2000 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
2001 
2002 	mutex_enter(&mi->mi_async_lock);
2003 	for (;;) {
2004 		/*
2005 		 * Find the next queue containing an entry.  We start
2006 		 * at the current queue pointer and then round robin
2007 		 * through all of them until we either find a non-empty
2008 		 * queue or have looked through all of them.
2009 		 */
2010 		for (i = 0; i < NFS_ASYNC_TYPES; i++) {
2011 			args = *mi->mi_async_curr;
2012 			if (args != NULL)
2013 				break;
2014 			mi->mi_async_curr++;
2015 			if (mi->mi_async_curr ==
2016 			    &mi->mi_async_reqs[NFS_ASYNC_TYPES])
2017 				mi->mi_async_curr = &mi->mi_async_reqs[0];
2018 		}
2019 		/*
2020 		 * If we didn't find a entry, then block until woken up
2021 		 * again and then look through the queues again.
2022 		 */
2023 		if (args == NULL) {
2024 			/*
2025 			 * Exiting is considered to be safe for CPR as well
2026 			 */
2027 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2028 
2029 			/*
2030 			 * Wakeup thread waiting to unmount the file
2031 			 * system only if all async threads are inactive.
2032 			 *
2033 			 * If we've timed-out and there's nothing to do,
2034 			 * then get rid of this thread.
2035 			 */
2036 			if (mi->mi_max_threads == 0 || time_left <= 0) {
2037 				if (--mi->mi_threads == 0)
2038 					cv_signal(&mi->mi_async_cv);
2039 				CALLB_CPR_EXIT(&cprinfo);
2040 				VFS_RELE(vfsp);	/* release thread's hold */
2041 				zthread_exit();
2042 				/* NOTREACHED */
2043 			}
2044 			time_left = cv_timedwait(&mi->mi_async_work_cv,
2045 			    &mi->mi_async_lock, nfs_async_timeout + lbolt);
2046 
2047 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
2048 
2049 			continue;
2050 		}
2051 		time_left = 1;
2052 
2053 		/*
2054 		 * Remove the request from the async queue and then
2055 		 * update the current async request queue pointer.  If
2056 		 * the current queue is empty or we have removed enough
2057 		 * consecutive entries from it, then reset the counter
2058 		 * for this queue and then move the current pointer to
2059 		 * the next queue.
2060 		 */
2061 		*mi->mi_async_curr = args->a_next;
2062 		if (*mi->mi_async_curr == NULL ||
2063 		    --mi->mi_async_clusters[args->a_io] == 0) {
2064 			mi->mi_async_clusters[args->a_io] =
2065 						mi->mi_async_init_clusters;
2066 			mi->mi_async_curr++;
2067 			if (mi->mi_async_curr ==
2068 			    &mi->mi_async_reqs[NFS_ASYNC_TYPES])
2069 				mi->mi_async_curr = &mi->mi_async_reqs[0];
2070 		}
2071 
2072 		if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) {
2073 			mutex_enter(&mi->mi_lock);
2074 			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
2075 			mutex_exit(&mi->mi_lock);
2076 		}
2077 
2078 		mutex_exit(&mi->mi_async_lock);
2079 
2080 		/*
2081 		 * Obtain arguments from the async request structure.
2082 		 */
2083 		if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) {
2084 			(*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff,
2085 					args->a_nfs_addr, args->a_nfs_seg,
2086 					args->a_cred);
2087 		} else if (args->a_io == NFS_PUTAPAGE) {
2088 			(void) (*args->a_nfs_putapage)(args->a_vp,
2089 					args->a_nfs_pp, args->a_nfs_off,
2090 					args->a_nfs_len, args->a_nfs_flags,
2091 					args->a_cred);
2092 		} else if (args->a_io == NFS_PAGEIO) {
2093 			(void) (*args->a_nfs_pageio)(args->a_vp,
2094 					args->a_nfs_pp, args->a_nfs_off,
2095 					args->a_nfs_len, args->a_nfs_flags,
2096 					args->a_cred);
2097 		} else if (args->a_io == NFS_READDIR) {
2098 			(void) ((*args->a_nfs_readdir)(args->a_vp,
2099 					args->a_nfs_rdc, args->a_cred));
2100 		} else if (args->a_io == NFS_COMMIT) {
2101 			(*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist,
2102 					args->a_nfs_offset, args->a_nfs_count,
2103 					args->a_cred);
2104 		} else if (args->a_io == NFS_INACTIVE) {
2105 			(*args->a_nfs_inactive)(args->a_vp, args->a_cred, NULL);
2106 		}
2107 
2108 		/*
2109 		 * Now, release the vnode and free the credentials
2110 		 * structure.
2111 		 */
2112 		free_async_args(args);
2113 		/*
2114 		 * Reacquire the mutex because it will be needed above.
2115 		 */
2116 		mutex_enter(&mi->mi_async_lock);
2117 	}
2118 }
2119 
2120 void
2121 nfs_async_stop(struct vfs *vfsp)
2122 {
2123 	mntinfo_t *mi = VFTOMI(vfsp);
2124 
2125 	/*
2126 	 * Wait for all outstanding async operations to complete and for the
2127 	 * worker threads to exit.
2128 	 */
2129 	mutex_enter(&mi->mi_async_lock);
2130 	mi->mi_max_threads = 0;
2131 	cv_broadcast(&mi->mi_async_work_cv);
2132 	while (mi->mi_threads != 0)
2133 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2134 	mutex_exit(&mi->mi_async_lock);
2135 }
2136 
2137 /*
2138  * nfs_async_stop_sig:
2139  * Wait for all outstanding putpage operation to complete. If a signal
2140  * is deliver we will abort and return non-zero. If we can put all the
2141  * pages we will return 0. This routine is called from nfs_unmount and
2142  * nfs3_unmount to make these operations interruptible.
2143  */
2144 int
2145 nfs_async_stop_sig(struct vfs *vfsp)
2146 {
2147 	mntinfo_t *mi = VFTOMI(vfsp);
2148 	ushort_t omax;
2149 	int rval;
2150 
2151 	/*
2152 	 * Wait for all outstanding async operations to complete and for the
2153 	 * worker threads to exit.
2154 	 */
2155 	mutex_enter(&mi->mi_async_lock);
2156 	omax = mi->mi_max_threads;
2157 	mi->mi_max_threads = 0;
2158 	/*
2159 	 * Tell all the worker threads to exit.
2160 	 */
2161 	cv_broadcast(&mi->mi_async_work_cv);
2162 	while (mi->mi_threads != 0) {
2163 		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock))
2164 			break;
2165 	}
2166 	rval = (mi->mi_threads != 0);	/* Interrupted */
2167 	if (rval)
2168 		mi->mi_max_threads = omax;
2169 	mutex_exit(&mi->mi_async_lock);
2170 
2171 	return (rval);
2172 }
2173 
2174 int
2175 writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2176 {
2177 	int pagecreate;
2178 	int n;
2179 	int saved_n;
2180 	caddr_t saved_base;
2181 	u_offset_t offset;
2182 	int error;
2183 	int sm_error;
2184 	vnode_t *vp = RTOV(rp);
2185 
2186 	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2187 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2188 	if (!vpm_enable) {
2189 		ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2190 	}
2191 
2192 	/*
2193 	 * Move bytes in at most PAGESIZE chunks. We must avoid
2194 	 * spanning pages in uiomove() because page faults may cause
2195 	 * the cache to be invalidated out from under us. The r_size is not
2196 	 * updated until after the uiomove. If we push the last page of a
2197 	 * file before r_size is correct, we will lose the data written past
2198 	 * the current (and invalid) r_size.
2199 	 */
2200 	do {
2201 		offset = uio->uio_loffset;
2202 		pagecreate = 0;
2203 
2204 		/*
2205 		 * n is the number of bytes required to satisfy the request
2206 		 *   or the number of bytes to fill out the page.
2207 		 */
2208 		n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2209 
2210 		/*
2211 		 * Check to see if we can skip reading in the page
2212 		 * and just allocate the memory.  We can do this
2213 		 * if we are going to rewrite the entire mapping
2214 		 * or if we are going to write to or beyond the current
2215 		 * end of file from the beginning of the mapping.
2216 		 *
2217 		 * The read of r_size is now protected by r_statelock.
2218 		 */
2219 		mutex_enter(&rp->r_statelock);
2220 		/*
2221 		 * When pgcreated is nonzero the caller has already done
2222 		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2223 		 * segkpm this means we already have at least one page
2224 		 * created and mapped at base.
2225 		 */
2226 		pagecreate = pgcreated ||
2227 			((offset & PAGEOFFSET) == 0 &&
2228 			(n == PAGESIZE || ((offset + n) >= rp->r_size)));
2229 
2230 		mutex_exit(&rp->r_statelock);
2231 		if (!vpm_enable && pagecreate) {
2232 			/*
2233 			 * The last argument tells segmap_pagecreate() to
2234 			 * always lock the page, as opposed to sometimes
2235 			 * returning with the page locked. This way we avoid a
2236 			 * fault on the ensuing uiomove(), but also
2237 			 * more importantly (to fix bug 1094402) we can
2238 			 * call segmap_fault() to unlock the page in all
2239 			 * cases. An alternative would be to modify
2240 			 * segmap_pagecreate() to tell us when it is
2241 			 * locking a page, but that's a fairly major
2242 			 * interface change.
2243 			 */
2244 			if (pgcreated == 0)
2245 				(void) segmap_pagecreate(segkmap, base,
2246 							(uint_t)n, 1);
2247 			saved_base = base;
2248 			saved_n = n;
2249 		}
2250 
2251 		/*
2252 		 * The number of bytes of data in the last page can not
2253 		 * be accurately be determined while page is being
2254 		 * uiomove'd to and the size of the file being updated.
2255 		 * Thus, inform threads which need to know accurately
2256 		 * how much data is in the last page of the file.  They
2257 		 * will not do the i/o immediately, but will arrange for
2258 		 * the i/o to happen later when this modify operation
2259 		 * will have finished.
2260 		 */
2261 		ASSERT(!(rp->r_flags & RMODINPROGRESS));
2262 		mutex_enter(&rp->r_statelock);
2263 		rp->r_flags |= RMODINPROGRESS;
2264 		rp->r_modaddr = (offset & MAXBMASK);
2265 		mutex_exit(&rp->r_statelock);
2266 
2267 		if (vpm_enable) {
2268 			/*
2269 			 * Copy data. If new pages are created, part of
2270 			 * the page that is not written will be initizliazed
2271 			 * with zeros.
2272 			 */
2273 			error = vpm_data_copy(vp, offset, n, uio,
2274 				!pagecreate, NULL, 0, S_WRITE);
2275 		} else {
2276 			error = uiomove(base, n, UIO_WRITE, uio);
2277 		}
2278 
2279 		/*
2280 		 * r_size is the maximum number of
2281 		 * bytes known to be in the file.
2282 		 * Make sure it is at least as high as the
2283 		 * first unwritten byte pointed to by uio_loffset.
2284 		 */
2285 		mutex_enter(&rp->r_statelock);
2286 		if (rp->r_size < uio->uio_loffset)
2287 			rp->r_size = uio->uio_loffset;
2288 		rp->r_flags &= ~RMODINPROGRESS;
2289 		rp->r_flags |= RDIRTY;
2290 		mutex_exit(&rp->r_statelock);
2291 
2292 		/* n = # of bytes written */
2293 		n = (int)(uio->uio_loffset - offset);
2294 
2295 		if (!vpm_enable) {
2296 			base += n;
2297 		}
2298 		tcount -= n;
2299 		/*
2300 		 * If we created pages w/o initializing them completely,
2301 		 * we need to zero the part that wasn't set up.
2302 		 * This happens on a most EOF write cases and if
2303 		 * we had some sort of error during the uiomove.
2304 		 */
2305 		if (!vpm_enable && pagecreate) {
2306 			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2307 				(void) kzero(base, PAGESIZE - n);
2308 
2309 			if (pgcreated) {
2310 				/*
2311 				 * Caller is responsible for this page,
2312 				 * it was not created in this loop.
2313 				 */
2314 				pgcreated = 0;
2315 			} else {
2316 				/*
2317 				 * For bug 1094402: segmap_pagecreate locks
2318 				 * page. Unlock it. This also unlocks the
2319 				 * pages allocated by page_create_va() in
2320 				 * segmap_pagecreate().
2321 				 */
2322 				sm_error = segmap_fault(kas.a_hat, segkmap,
2323 					saved_base, saved_n,
2324 					F_SOFTUNLOCK, S_WRITE);
2325 				if (error == 0)
2326 					error = sm_error;
2327 			}
2328 		}
2329 	} while (tcount > 0 && error == 0);
2330 
2331 	return (error);
2332 }
2333 
2334 int
2335 nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2336 {
2337 	rnode_t *rp;
2338 	page_t *pp;
2339 	u_offset_t eoff;
2340 	u_offset_t io_off;
2341 	size_t io_len;
2342 	int error;
2343 	int rdirty;
2344 	int err;
2345 
2346 	rp = VTOR(vp);
2347 	ASSERT(rp->r_count > 0);
2348 
2349 	if (!vn_has_cached_data(vp))
2350 		return (0);
2351 
2352 	ASSERT(vp->v_type != VCHR);
2353 
2354 	/*
2355 	 * If ROUTOFSPACE is set, then all writes turn into B_INVAL
2356 	 * writes.  B_FORCE is set to force the VM system to actually
2357 	 * invalidate the pages, even if the i/o failed.  The pages
2358 	 * need to get invalidated because they can't be written out
2359 	 * because there isn't any space left on either the server's
2360 	 * file system or in the user's disk quota.  The B_FREE bit
2361 	 * is cleared to avoid confusion as to whether this is a
2362 	 * request to place the page on the freelist or to destroy
2363 	 * it.
2364 	 */
2365 	if ((rp->r_flags & ROUTOFSPACE) ||
2366 	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2367 		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2368 
2369 	if (len == 0) {
2370 		/*
2371 		 * If doing a full file synchronous operation, then clear
2372 		 * the RDIRTY bit.  If a page gets dirtied while the flush
2373 		 * is happening, then RDIRTY will get set again.  The
2374 		 * RDIRTY bit must get cleared before the flush so that
2375 		 * we don't lose this information.
2376 		 *
2377 		 * If there are no full file async write operations
2378 		 * pending and RDIRTY bit is set, clear it.
2379 		 */
2380 		if (off == (u_offset_t)0 &&
2381 		    !(flags & B_ASYNC) &&
2382 		    (rp->r_flags & RDIRTY)) {
2383 			mutex_enter(&rp->r_statelock);
2384 			rdirty = (rp->r_flags & RDIRTY);
2385 			rp->r_flags &= ~RDIRTY;
2386 			mutex_exit(&rp->r_statelock);
2387 		} else if (flags & B_ASYNC && off == (u_offset_t)0) {
2388 			mutex_enter(&rp->r_statelock);
2389 			if (rp->r_flags & RDIRTY && rp->r_awcount == 0) {
2390 				rdirty = (rp->r_flags & RDIRTY);
2391 				rp->r_flags &= ~RDIRTY;
2392 			}
2393 			mutex_exit(&rp->r_statelock);
2394 		} else
2395 			rdirty = 0;
2396 
2397 		/*
2398 		 * Search the entire vp list for pages >= off, and flush
2399 		 * the dirty pages.
2400 		 */
2401 		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2402 					flags, cr);
2403 
2404 		/*
2405 		 * If an error occurred and the file was marked as dirty
2406 		 * before and we aren't forcibly invalidating pages, then
2407 		 * reset the RDIRTY flag.
2408 		 */
2409 		if (error && rdirty &&
2410 		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2411 			mutex_enter(&rp->r_statelock);
2412 			rp->r_flags |= RDIRTY;
2413 			mutex_exit(&rp->r_statelock);
2414 		}
2415 	} else {
2416 		/*
2417 		 * Do a range from [off...off + len) looking for pages
2418 		 * to deal with.
2419 		 */
2420 		error = 0;
2421 #ifdef lint
2422 		io_len = 0;
2423 #endif
2424 		eoff = off + len;
2425 		mutex_enter(&rp->r_statelock);
2426 		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2427 		    io_off += io_len) {
2428 			mutex_exit(&rp->r_statelock);
2429 			/*
2430 			 * If we are not invalidating, synchronously
2431 			 * freeing or writing pages use the routine
2432 			 * page_lookup_nowait() to prevent reclaiming
2433 			 * them from the free list.
2434 			 */
2435 			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2436 				pp = page_lookup(vp, io_off,
2437 				    (flags & (B_INVAL | B_FREE)) ?
2438 				    SE_EXCL : SE_SHARED);
2439 			} else {
2440 				pp = page_lookup_nowait(vp, io_off,
2441 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2442 			}
2443 
2444 			if (pp == NULL || !pvn_getdirty(pp, flags))
2445 				io_len = PAGESIZE;
2446 			else {
2447 				err = (*rp->r_putapage)(vp, pp, &io_off,
2448 				    &io_len, flags, cr);
2449 				if (!error)
2450 					error = err;
2451 				/*
2452 				 * "io_off" and "io_len" are returned as
2453 				 * the range of pages we actually wrote.
2454 				 * This allows us to skip ahead more quickly
2455 				 * since several pages may've been dealt
2456 				 * with by this iteration of the loop.
2457 				 */
2458 			}
2459 			mutex_enter(&rp->r_statelock);
2460 		}
2461 		mutex_exit(&rp->r_statelock);
2462 	}
2463 
2464 	return (error);
2465 }
2466 
2467 void
2468 nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2469 {
2470 	rnode_t *rp;
2471 
2472 	rp = VTOR(vp);
2473 	mutex_enter(&rp->r_statelock);
2474 	while (rp->r_flags & RTRUNCATE)
2475 		cv_wait(&rp->r_cv, &rp->r_statelock);
2476 	rp->r_flags |= RTRUNCATE;
2477 	if (off == (u_offset_t)0) {
2478 		rp->r_flags &= ~RDIRTY;
2479 		if (!(rp->r_flags & RSTALE))
2480 			rp->r_error = 0;
2481 	}
2482 	rp->r_truncaddr = off;
2483 	mutex_exit(&rp->r_statelock);
2484 	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2485 		B_INVAL | B_TRUNC, cr);
2486 	mutex_enter(&rp->r_statelock);
2487 	rp->r_flags &= ~RTRUNCATE;
2488 	cv_broadcast(&rp->r_cv);
2489 	mutex_exit(&rp->r_statelock);
2490 }
2491 
2492 static int nfs_write_error_to_cons_only = 0;
2493 #define	MSG(x)	(nfs_write_error_to_cons_only ? (x) : (x) + 1)
2494 
2495 /*
2496  * Print a file handle
2497  */
2498 void
2499 nfs_printfhandle(nfs_fhandle *fhp)
2500 {
2501 	int *ip;
2502 	char *buf;
2503 	size_t bufsize;
2504 	char *cp;
2505 
2506 	/*
2507 	 * 13 == "(file handle:"
2508 	 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2509 	 *	1 == ' '
2510 	 *	8 == maximum strlen of "%x"
2511 	 * 3 == ")\n\0"
2512 	 */
2513 	bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2514 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
2515 	if (buf == NULL)
2516 		return;
2517 
2518 	cp = buf;
2519 	(void) strcpy(cp, "(file handle:");
2520 	while (*cp != '\0')
2521 		cp++;
2522 	for (ip = (int *)fhp->fh_buf;
2523 	    ip < (int *)&fhp->fh_buf[fhp->fh_len];
2524 	    ip++) {
2525 		(void) sprintf(cp, " %x", *ip);
2526 		while (*cp != '\0')
2527 			cp++;
2528 	}
2529 	(void) strcpy(cp, ")\n");
2530 
2531 	zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf);
2532 
2533 	kmem_free(buf, bufsize);
2534 }
2535 
2536 /*
2537  * Notify the system administrator that an NFS write error has
2538  * occurred.
2539  */
2540 
2541 /* seconds between ENOSPC/EDQUOT messages */
2542 clock_t nfs_write_error_interval = 5;
2543 
2544 void
2545 nfs_write_error(vnode_t *vp, int error, cred_t *cr)
2546 {
2547 	mntinfo_t *mi;
2548 
2549 	mi = VTOMI(vp);
2550 	/*
2551 	 * In case of forced unmount or zone shutdown, do not print any
2552 	 * messages since it can flood the console with error messages.
2553 	 */
2554 	if (FS_OR_ZONE_GONE(mi->mi_vfsp))
2555 		return;
2556 
2557 	/*
2558 	 * No use in flooding the console with ENOSPC
2559 	 * messages from the same file system.
2560 	 */
2561 	if ((error != ENOSPC && error != EDQUOT) ||
2562 	    lbolt - mi->mi_printftime > 0) {
2563 		zoneid_t zoneid = mi->mi_zone->zone_id;
2564 
2565 #ifdef DEBUG
2566 		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2567 		    mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL);
2568 #else
2569 		nfs_perror(error, "NFS write error on host %s: %m.\n",
2570 		    VTOR(vp)->r_server->sv_hostname, NULL);
2571 #endif
2572 		if (error == ENOSPC || error == EDQUOT) {
2573 			zcmn_err(zoneid, CE_CONT,
2574 			    MSG("^File: userid=%d, groupid=%d\n"),
2575 			    crgetuid(cr), crgetgid(cr));
2576 			if (crgetuid(CRED()) != crgetuid(cr) ||
2577 			    crgetgid(CRED()) != crgetgid(cr)) {
2578 				zcmn_err(zoneid, CE_CONT,
2579 				    MSG("^User: userid=%d, groupid=%d\n"),
2580 				    crgetuid(CRED()), crgetgid(CRED()));
2581 			}
2582 			mi->mi_printftime = lbolt +
2583 			    nfs_write_error_interval * hz;
2584 		}
2585 		nfs_printfhandle(&VTOR(vp)->r_fh);
2586 #ifdef DEBUG
2587 		if (error == EACCES) {
2588 			zcmn_err(zoneid, CE_CONT,
2589 			    MSG("^nfs_bio: cred is%s kcred\n"),
2590 			    cr == kcred ? "" : " not");
2591 		}
2592 #endif
2593 	}
2594 }
2595 
2596 /* ARGSUSED */
2597 static void *
2598 nfs_mi_init(zoneid_t zoneid)
2599 {
2600 	struct mi_globals *mig;
2601 
2602 	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2603 	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2604 	list_create(&mig->mig_list, sizeof (mntinfo_t),
2605 	    offsetof(mntinfo_t, mi_zone_node));
2606 	mig->mig_destructor_called = B_FALSE;
2607 	return (mig);
2608 }
2609 
2610 /*
2611  * Callback routine to tell all NFS mounts in the zone to stop creating new
2612  * threads.  Existing threads should exit.
2613  */
2614 /* ARGSUSED */
2615 static void
2616 nfs_mi_shutdown(zoneid_t zoneid, void *data)
2617 {
2618 	struct mi_globals *mig = data;
2619 	mntinfo_t *mi;
2620 
2621 	ASSERT(mig != NULL);
2622 again:
2623 	mutex_enter(&mig->mig_lock);
2624 	for (mi = list_head(&mig->mig_list); mi != NULL;
2625 	    mi = list_next(&mig->mig_list, mi)) {
2626 
2627 		/*
2628 		 * If we've done the shutdown work for this FS, skip.
2629 		 * Once we go off the end of the list, we're done.
2630 		 */
2631 		if (mi->mi_flags & MI_DEAD)
2632 			continue;
2633 
2634 		/*
2635 		 * We will do work, so not done.  Get a hold on the FS.
2636 		 */
2637 		VFS_HOLD(mi->mi_vfsp);
2638 
2639 		/*
2640 		 * purge the DNLC for this filesystem
2641 		 */
2642 		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2643 
2644 		mutex_enter(&mi->mi_async_lock);
2645 		/*
2646 		 * Tell existing async worker threads to exit.
2647 		 */
2648 		mi->mi_max_threads = 0;
2649 		cv_broadcast(&mi->mi_async_work_cv);
2650 		/*
2651 		 * Set MI_ASYNC_MGR_STOP so the async manager thread starts
2652 		 * getting ready to exit when it's done with its current work.
2653 		 * Also set MI_DEAD to note we've acted on this FS.
2654 		 */
2655 		mutex_enter(&mi->mi_lock);
2656 		mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD);
2657 		mutex_exit(&mi->mi_lock);
2658 		/*
2659 		 * Wake up the async manager thread.
2660 		 */
2661 		cv_broadcast(&mi->mi_async_reqs_cv);
2662 		mutex_exit(&mi->mi_async_lock);
2663 
2664 		/*
2665 		 * Drop lock and release FS, which may change list, then repeat.
2666 		 * We're done when every mi has been done or the list is empty.
2667 		 */
2668 		mutex_exit(&mig->mig_lock);
2669 		VFS_RELE(mi->mi_vfsp);
2670 		goto again;
2671 	}
2672 	mutex_exit(&mig->mig_lock);
2673 }
2674 
2675 static void
2676 nfs_mi_free_globals(struct mi_globals *mig)
2677 {
2678 	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2679 	mutex_destroy(&mig->mig_lock);
2680 	kmem_free(mig, sizeof (*mig));
2681 
2682 }
2683 
2684 /* ARGSUSED */
2685 static void
2686 nfs_mi_destroy(zoneid_t zoneid, void *data)
2687 {
2688 	struct mi_globals *mig = data;
2689 
2690 	ASSERT(mig != NULL);
2691 	mutex_enter(&mig->mig_lock);
2692 	if (list_head(&mig->mig_list) != NULL) {
2693 		/* Still waiting for VFS_FREEVFS() */
2694 		mig->mig_destructor_called = B_TRUE;
2695 		mutex_exit(&mig->mig_lock);
2696 		return;
2697 	}
2698 	nfs_mi_free_globals(mig);
2699 }
2700 
2701 /*
2702  * Add an NFS mount to the per-zone list of NFS mounts.
2703  */
2704 void
2705 nfs_mi_zonelist_add(mntinfo_t *mi)
2706 {
2707 	struct mi_globals *mig;
2708 
2709 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2710 	mutex_enter(&mig->mig_lock);
2711 	list_insert_head(&mig->mig_list, mi);
2712 	mutex_exit(&mig->mig_lock);
2713 }
2714 
2715 /*
2716  * Remove an NFS mount from the per-zone list of NFS mounts.
2717  */
2718 static void
2719 nfs_mi_zonelist_remove(mntinfo_t *mi)
2720 {
2721 	struct mi_globals *mig;
2722 
2723 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2724 	mutex_enter(&mig->mig_lock);
2725 	list_remove(&mig->mig_list, mi);
2726 	/*
2727 	 * We can be called asynchronously by VFS_FREEVFS() after the zone
2728 	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
2729 	 * mi globals.
2730 	 */
2731 	if (list_head(&mig->mig_list) == NULL &&
2732 	    mig->mig_destructor_called == B_TRUE) {
2733 		nfs_mi_free_globals(mig);
2734 		return;
2735 	}
2736 	mutex_exit(&mig->mig_lock);
2737 }
2738 
2739 /*
2740  * NFS Client initialization routine.  This routine should only be called
2741  * once.  It performs the following tasks:
2742  *	- Initalize all global locks
2743  * 	- Call sub-initialization routines (localize access to variables)
2744  */
2745 int
2746 nfs_clntinit(void)
2747 {
2748 #ifdef DEBUG
2749 	static boolean_t nfs_clntup = B_FALSE;
2750 #endif
2751 	int error;
2752 
2753 #ifdef DEBUG
2754 	ASSERT(nfs_clntup == B_FALSE);
2755 #endif
2756 
2757 	error = nfs_subrinit();
2758 	if (error)
2759 		return (error);
2760 
2761 	error = nfs_vfsinit();
2762 	if (error) {
2763 		/*
2764 		 * Cleanup nfs_subrinit() work
2765 		 */
2766 		nfs_subrfini();
2767 		return (error);
2768 	}
2769 	zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown,
2770 	    nfs_mi_destroy);
2771 
2772 	nfs4_clnt_init();
2773 
2774 #ifdef DEBUG
2775 	nfs_clntup = B_TRUE;
2776 #endif
2777 
2778 	return (0);
2779 }
2780 
2781 /*
2782  * This routine is only called if the NFS Client has been initialized but
2783  * the module failed to be installed. This routine will cleanup the previously
2784  * allocated/initialized work.
2785  */
2786 void
2787 nfs_clntfini(void)
2788 {
2789 	(void) zone_key_delete(mi_list_key);
2790 	nfs_subrfini();
2791 	nfs_vfsfini();
2792 	nfs4_clnt_fini();
2793 }
2794 
2795 /*
2796  * nfs_lockrelease:
2797  *
2798  * Release any locks on the given vnode that are held by the current
2799  * process.
2800  */
2801 void
2802 nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
2803 {
2804 	flock64_t ld;
2805 	struct shrlock shr;
2806 	char *buf;
2807 	int remote_lock_possible;
2808 	int ret;
2809 
2810 	ASSERT((uintptr_t)vp > KERNELBASE);
2811 
2812 	/*
2813 	 * Generate an explicit unlock operation for the entire file.  As a
2814 	 * partial optimization, only generate the unlock if there is a
2815 	 * lock registered for the file.  We could check whether this
2816 	 * particular process has any locks on the file, but that would
2817 	 * require the local locking code to provide yet another query
2818 	 * routine.  Note that no explicit synchronization is needed here.
2819 	 * At worst, flk_has_remote_locks() will return a false positive,
2820 	 * in which case the unlock call wastes time but doesn't harm
2821 	 * correctness.
2822 	 *
2823 	 * In addition, an unlock request is generated if the process
2824 	 * is listed as possibly having a lock on the file because the
2825 	 * server and client lock managers may have gotten out of sync.
2826 	 * N.B. It is important to make sure nfs_remove_locking_id() is
2827 	 * called here even if flk_has_remote_locks(vp) reports true.
2828 	 * If it is not called and there is an entry on the process id
2829 	 * list, that entry will never get removed.
2830 	 */
2831 	remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID,
2832 	    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2833 	if (remote_lock_possible || flk_has_remote_locks(vp)) {
2834 		ld.l_type = F_UNLCK;	/* set to unlock entire file */
2835 		ld.l_whence = 0;	/* unlock from start of file */
2836 		ld.l_start = 0;
2837 		ld.l_len = 0;		/* do entire file */
2838 		ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr,
2839 			NULL);
2840 
2841 		if (ret != 0) {
2842 			/*
2843 			 * If VOP_FRLOCK fails, make sure we unregister
2844 			 * local locks before we continue.
2845 			 */
2846 			ld.l_pid = ttoproc(curthread)->p_pid;
2847 			lm_register_lock_locally(vp, NULL, &ld, flag, offset);
2848 #ifdef DEBUG
2849 			nfs_perror(ret,
2850 			    "NFS lock release error on vp %p: %m.\n",
2851 			    (void *)vp, NULL);
2852 #endif
2853 		}
2854 
2855 		/*
2856 		 * The call to VOP_FRLOCK may put the pid back on the
2857 		 * list.  We need to remove it.
2858 		 */
2859 		(void) nfs_remove_locking_id(vp, RLMPL_PID,
2860 		    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2861 	}
2862 
2863 	/*
2864 	 * As long as the vp has a share matching our pid,
2865 	 * pluck it off and unshare it.  There are circumstances in
2866 	 * which the call to nfs_remove_locking_id() may put the
2867 	 * owner back on the list, in which case we simply do a
2868 	 * redundant and harmless unshare.
2869 	 */
2870 	buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP);
2871 	while (nfs_remove_locking_id(vp, RLMPL_OWNER,
2872 	    (char *)NULL, buf, &shr.s_own_len)) {
2873 		shr.s_owner = buf;
2874 		shr.s_access = 0;
2875 		shr.s_deny = 0;
2876 		shr.s_sysid = 0;
2877 		shr.s_pid = curproc->p_pid;
2878 
2879 		ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr, NULL);
2880 #ifdef DEBUG
2881 		if (ret != 0) {
2882 			nfs_perror(ret,
2883 			    "NFS share release error on vp %p: %m.\n",
2884 			    (void *)vp, NULL);
2885 		}
2886 #endif
2887 	}
2888 	kmem_free(buf, MAX_SHR_OWNER_LEN);
2889 }
2890 
2891 /*
2892  * nfs_lockcompletion:
2893  *
2894  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2895  * as non cachable (set VNOCACHE bit).
2896  */
2897 
2898 void
2899 nfs_lockcompletion(vnode_t *vp, int cmd)
2900 {
2901 #ifdef DEBUG
2902 	rnode_t *rp = VTOR(vp);
2903 
2904 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2905 #endif
2906 
2907 	if (cmd == F_SETLK || cmd == F_SETLKW) {
2908 		if (!lm_safemap(vp)) {
2909 			mutex_enter(&vp->v_lock);
2910 			vp->v_flag |= VNOCACHE;
2911 			mutex_exit(&vp->v_lock);
2912 		} else {
2913 			mutex_enter(&vp->v_lock);
2914 			vp->v_flag &= ~VNOCACHE;
2915 			mutex_exit(&vp->v_lock);
2916 		}
2917 	}
2918 	/*
2919 	 * The cached attributes of the file are stale after acquiring
2920 	 * the lock on the file. They were updated when the file was
2921 	 * opened, but not updated when the lock was acquired. Therefore the
2922 	 * cached attributes are invalidated after the lock is obtained.
2923 	 */
2924 	PURGE_ATTRCACHE(vp);
2925 }
2926 
2927 /*
2928  * The lock manager holds state making it possible for the client
2929  * and server to be out of sync.  For example, if the response from
2930  * the server granting a lock request is lost, the server will think
2931  * the lock is granted and the client will think the lock is lost.
2932  * The client can tell when it is not positive if it is in sync with
2933  * the server.
2934  *
2935  * To deal with this, a list of processes for which the client is
2936  * not sure if the server holds a lock is attached to the rnode.
2937  * When such a process closes the rnode, an unlock request is sent
2938  * to the server to unlock the entire file.
2939  *
2940  * The list is kept as a singularly linked NULL terminated list.
2941  * Because it is only added to under extreme error conditions, the
2942  * list shouldn't get very big.  DEBUG kernels print a message if
2943  * the list gets bigger than nfs_lmpl_high_water.  This is arbitrarily
2944  * choosen to be 8, but can be tuned at runtime.
2945  */
2946 #ifdef DEBUG
2947 /* int nfs_lmpl_high_water = 8; */
2948 int nfs_lmpl_high_water = 128;
2949 int nfs_cnt_add_locking_id = 0;
2950 int nfs_len_add_locking_id = 0;
2951 #endif /* DEBUG */
2952 
2953 /*
2954  * Record that the nfs lock manager server may be holding a lock on
2955  * a vnode for a process.
2956  *
2957  * Because the nfs lock manager server holds state, it is possible
2958  * for the server to get out of sync with the client.  This routine is called
2959  * from the client when it is no longer sure if the server is in sync
2960  * with the client.  nfs_lockrelease() will then notice this and send
2961  * an unlock request when the file is closed
2962  */
2963 void
2964 nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len)
2965 {
2966 	rnode_t *rp;
2967 	lmpl_t *new;
2968 	lmpl_t *cur;
2969 	lmpl_t **lmplp;
2970 #ifdef DEBUG
2971 	int list_len = 1;
2972 #endif /* DEBUG */
2973 
2974 #ifdef DEBUG
2975 	++nfs_cnt_add_locking_id;
2976 #endif /* DEBUG */
2977 	/*
2978 	 * allocate new lmpl_t now so we don't sleep
2979 	 * later after grabbing mutexes
2980 	 */
2981 	ASSERT(len < MAX_SHR_OWNER_LEN);
2982 	new = kmem_alloc(sizeof (*new), KM_SLEEP);
2983 	new->lmpl_type = type;
2984 	new->lmpl_pid = pid;
2985 	new->lmpl_owner = kmem_alloc(len, KM_SLEEP);
2986 	bcopy(id, new->lmpl_owner, len);
2987 	new->lmpl_own_len = len;
2988 	new->lmpl_next = (lmpl_t *)NULL;
2989 #ifdef DEBUG
2990 	if (type == RLMPL_PID) {
2991 		ASSERT(len == sizeof (pid_t));
2992 		ASSERT(pid == *(pid_t *)new->lmpl_owner);
2993 	} else {
2994 		ASSERT(type == RLMPL_OWNER);
2995 	}
2996 #endif
2997 
2998 	rp = VTOR(vp);
2999 	mutex_enter(&rp->r_statelock);
3000 
3001 	/*
3002 	 * Add this id to the list for this rnode only if the
3003 	 * rnode is active and the id is not already there.
3004 	 */
3005 	ASSERT(rp->r_flags & RHASHED);
3006 	lmplp = &(rp->r_lmpl);
3007 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3008 		if (cur->lmpl_pid == pid &&
3009 		    cur->lmpl_type == type &&
3010 		    cur->lmpl_own_len == len &&
3011 		    bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) {
3012 			kmem_free(new->lmpl_owner, len);
3013 			kmem_free(new, sizeof (*new));
3014 			break;
3015 		}
3016 		lmplp = &cur->lmpl_next;
3017 #ifdef DEBUG
3018 		++list_len;
3019 #endif /* DEBUG */
3020 	}
3021 	if (cur == (lmpl_t *)NULL) {
3022 		*lmplp = new;
3023 #ifdef DEBUG
3024 		if (list_len > nfs_len_add_locking_id) {
3025 			nfs_len_add_locking_id = list_len;
3026 		}
3027 		if (list_len > nfs_lmpl_high_water) {
3028 			cmn_err(CE_WARN, "nfs_add_locking_id: long list "
3029 			    "vp=%p is %d", (void *)vp, list_len);
3030 		}
3031 #endif /* DEBUG */
3032 	}
3033 
3034 #ifdef DEBUG
3035 	if (share_debug) {
3036 		int nitems = 0;
3037 		int npids = 0;
3038 		int nowners = 0;
3039 
3040 		/*
3041 		 * Count the number of things left on r_lmpl after the remove.
3042 		 */
3043 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3044 		    cur = cur->lmpl_next) {
3045 			nitems++;
3046 			if (cur->lmpl_type == RLMPL_PID) {
3047 				npids++;
3048 			} else if (cur->lmpl_type == RLMPL_OWNER) {
3049 				nowners++;
3050 			} else {
3051 				cmn_err(CE_PANIC, "nfs_add_locking_id: "
3052 				    "unrecognized lmpl_type %d",
3053 				    cur->lmpl_type);
3054 			}
3055 		}
3056 
3057 		cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d "
3058 		    "OWNs = %d items left on r_lmpl\n",
3059 		    (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems);
3060 	}
3061 #endif
3062 
3063 	mutex_exit(&rp->r_statelock);
3064 }
3065 
3066 /*
3067  * Remove an id from the lock manager id list.
3068  *
3069  * If the id is not in the list return 0.  If it was found and
3070  * removed, return 1.
3071  */
3072 static int
3073 nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen)
3074 {
3075 	lmpl_t *cur;
3076 	lmpl_t **lmplp;
3077 	rnode_t *rp;
3078 	int rv = 0;
3079 
3080 	ASSERT(type == RLMPL_PID || type == RLMPL_OWNER);
3081 
3082 	rp = VTOR(vp);
3083 
3084 	mutex_enter(&rp->r_statelock);
3085 	ASSERT(rp->r_flags & RHASHED);
3086 	lmplp = &(rp->r_lmpl);
3087 
3088 	/*
3089 	 * Search through the list and remove the entry for this id
3090 	 * if it is there.  The special case id == NULL allows removal
3091 	 * of the first share on the r_lmpl list belonging to the
3092 	 * current process (if any), without regard to further details
3093 	 * of its identity.
3094 	 */
3095 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3096 		if (cur->lmpl_type == type &&
3097 		    cur->lmpl_pid == curproc->p_pid &&
3098 		    (id == (char *)NULL ||
3099 		    bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) {
3100 			*lmplp = cur->lmpl_next;
3101 			ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN);
3102 			if (rid != NULL) {
3103 				bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len);
3104 				*rlen = cur->lmpl_own_len;
3105 			}
3106 			kmem_free(cur->lmpl_owner, cur->lmpl_own_len);
3107 			kmem_free(cur, sizeof (*cur));
3108 			rv = 1;
3109 			break;
3110 		}
3111 		lmplp = &cur->lmpl_next;
3112 	}
3113 
3114 #ifdef DEBUG
3115 	if (share_debug) {
3116 		int nitems = 0;
3117 		int npids = 0;
3118 		int nowners = 0;
3119 
3120 		/*
3121 		 * Count the number of things left on r_lmpl after the remove.
3122 		 */
3123 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3124 				cur = cur->lmpl_next) {
3125 			nitems++;
3126 			if (cur->lmpl_type == RLMPL_PID) {
3127 				npids++;
3128 			} else if (cur->lmpl_type == RLMPL_OWNER) {
3129 				nowners++;
3130 			} else {
3131 				cmn_err(CE_PANIC,
3132 					"nrli: unrecognized lmpl_type %d",
3133 					cur->lmpl_type);
3134 			}
3135 		}
3136 
3137 		cmn_err(CE_CONT,
3138 		"nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n",
3139 			(type == RLMPL_PID) ? "P" : "O",
3140 			npids,
3141 			nowners,
3142 			nitems);
3143 	}
3144 #endif
3145 
3146 	mutex_exit(&rp->r_statelock);
3147 	return (rv);
3148 }
3149 
3150 void
3151 nfs_free_mi(mntinfo_t *mi)
3152 {
3153 	ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP);
3154 	ASSERT(mi->mi_manager_thread == NULL);
3155 	ASSERT(mi->mi_threads == 0);
3156 
3157 	/*
3158 	 * Remove the node from the global list before we start tearing it down.
3159 	 */
3160 	nfs_mi_zonelist_remove(mi);
3161 	if (mi->mi_klmconfig) {
3162 		lm_free_config(mi->mi_klmconfig);
3163 		kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig));
3164 	}
3165 	mutex_destroy(&mi->mi_lock);
3166 	mutex_destroy(&mi->mi_remap_lock);
3167 	mutex_destroy(&mi->mi_async_lock);
3168 	cv_destroy(&mi->mi_failover_cv);
3169 	cv_destroy(&mi->mi_async_work_cv);
3170 	cv_destroy(&mi->mi_async_reqs_cv);
3171 	cv_destroy(&mi->mi_async_cv);
3172 	zone_rele(mi->mi_zone);
3173 	kmem_free(mi, sizeof (*mi));
3174 }
3175 
3176 static int
3177 mnt_kstat_update(kstat_t *ksp, int rw)
3178 {
3179 	mntinfo_t *mi;
3180 	struct mntinfo_kstat *mik;
3181 	vfs_t *vfsp;
3182 	int i;
3183 
3184 	/* this is a read-only kstat. Bail out on a write */
3185 	if (rw == KSTAT_WRITE)
3186 		return (EACCES);
3187 
3188 	/*
3189 	 * We don't want to wait here as kstat_chain_lock could be held by
3190 	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
3191 	 * and thus could lead to a deadlock.
3192 	 */
3193 	vfsp = (struct vfs *)ksp->ks_private;
3194 
3195 
3196 	mi = VFTOMI(vfsp);
3197 
3198 	mik = (struct mntinfo_kstat *)ksp->ks_data;
3199 
3200 	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
3201 	mik->mik_vers = (uint32_t)mi->mi_vers;
3202 	mik->mik_flags = mi->mi_flags;
3203 	mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod;
3204 	mik->mik_curread = (uint32_t)mi->mi_curread;
3205 	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
3206 	mik->mik_retrans = mi->mi_retrans;
3207 	mik->mik_timeo = mi->mi_timeo;
3208 	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
3209 	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
3210 	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
3211 	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
3212 	for (i = 0; i < NFS_CALLTYPES + 1; i++) {
3213 		mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt;
3214 		mik->mik_timers[i].deviate =
3215 		    (uint32_t)mi->mi_timers[i].rt_deviate;
3216 		mik->mik_timers[i].rtxcur =
3217 		    (uint32_t)mi->mi_timers[i].rt_rtxcur;
3218 	}
3219 	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
3220 	mik->mik_failover = (uint32_t)mi->mi_failover;
3221 	mik->mik_remap = (uint32_t)mi->mi_remap;
3222 	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
3223 
3224 	return (0);
3225 }
3226 
3227 void
3228 nfs_mnt_kstat_init(struct vfs *vfsp)
3229 {
3230 	mntinfo_t *mi = VFTOMI(vfsp);
3231 
3232 	/*
3233 	 * Create the version specific kstats.
3234 	 *
3235 	 * PSARC 2001/697 Contract Private Interface
3236 	 * All nfs kstats are under SunMC contract
3237 	 * Please refer to the PSARC listed above and contact
3238 	 * SunMC before making any changes!
3239 	 *
3240 	 * Changes must be reviewed by Solaris File Sharing
3241 	 * Changes must be communicated to contract-2001-697@sun.com
3242 	 *
3243 	 */
3244 
3245 	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
3246 	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
3247 	if (mi->mi_io_kstats) {
3248 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3249 			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
3250 		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
3251 		kstat_install(mi->mi_io_kstats);
3252 	}
3253 
3254 	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
3255 	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
3256 	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
3257 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3258 			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
3259 		mi->mi_ro_kstats->ks_update = mnt_kstat_update;
3260 		mi->mi_ro_kstats->ks_private = (void *)vfsp;
3261 		kstat_install(mi->mi_ro_kstats);
3262 	}
3263 }
3264 
3265 nfs_delmapcall_t *
3266 nfs_init_delmapcall()
3267 {
3268 	nfs_delmapcall_t	*delmap_call;
3269 
3270 	delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP);
3271 	delmap_call->call_id = curthread;
3272 	delmap_call->error = 0;
3273 
3274 	return (delmap_call);
3275 }
3276 
3277 void
3278 nfs_free_delmapcall(nfs_delmapcall_t *delmap_call)
3279 {
3280 	kmem_free(delmap_call, sizeof (nfs_delmapcall_t));
3281 }
3282 
3283 /*
3284  * Searches for the current delmap caller (based on curthread) in the list of
3285  * callers.  If it is found, we remove it and free the delmap caller.
3286  * Returns:
3287  *	0 if the caller wasn't found
3288  *	1 if the caller was found, removed and freed.  *errp is set to what
3289  * 	the result of the delmap was.
3290  */
3291 int
3292 nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp)
3293 {
3294 	nfs_delmapcall_t	*delmap_call;
3295 
3296 	/*
3297 	 * If the list doesn't exist yet, we create it and return
3298 	 * that the caller wasn't found.  No list = no callers.
3299 	 */
3300 	mutex_enter(&rp->r_statelock);
3301 	if (!(rp->r_flags & RDELMAPLIST)) {
3302 		/* The list does not exist */
3303 		list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t),
3304 		    offsetof(nfs_delmapcall_t, call_node));
3305 		rp->r_flags |= RDELMAPLIST;
3306 		mutex_exit(&rp->r_statelock);
3307 		return (0);
3308 	} else {
3309 		/* The list exists so search it */
3310 		for (delmap_call = list_head(&rp->r_indelmap);
3311 		    delmap_call != NULL;
3312 		    delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
3313 			if (delmap_call->call_id == curthread) {
3314 				/* current caller is in the list */
3315 				*errp = delmap_call->error;
3316 				list_remove(&rp->r_indelmap, delmap_call);
3317 				mutex_exit(&rp->r_statelock);
3318 				nfs_free_delmapcall(delmap_call);
3319 				return (1);
3320 			}
3321 		}
3322 	}
3323 	mutex_exit(&rp->r_statelock);
3324 	return (0);
3325 }
3326