1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/errno.h> 29 #include <sys/vfs.h> 30 #include <sys/vnode.h> 31 #include <sys/cred.h> 32 #include <sys/cmn_err.h> 33 #include <sys/systm.h> 34 #include <sys/kmem.h> 35 #include <sys/pathname.h> 36 #include <sys/utsname.h> 37 #include <sys/debug.h> 38 #include <sys/door.h> 39 #include <sys/sdt.h> 40 #include <sys/thread.h> 41 #include <sys/avl.h> 42 43 #include <rpc/types.h> 44 #include <rpc/auth.h> 45 #include <rpc/clnt.h> 46 47 #include <nfs/nfs.h> 48 #include <nfs/export.h> 49 #include <nfs/nfs_clnt.h> 50 #include <nfs/auth.h> 51 52 static struct kmem_cache *exi_cache_handle; 53 static void exi_cache_reclaim(void *); 54 static void exi_cache_trim(struct exportinfo *exi); 55 56 extern pri_t minclsyspri; 57 58 volatile uint_t nfsauth_cache_hit; 59 volatile uint_t nfsauth_cache_miss; 60 volatile uint_t nfsauth_cache_refresh; 61 volatile uint_t nfsauth_cache_reclaim; 62 63 /* 64 * The lifetime of an auth cache entry: 65 * ------------------------------------ 66 * 67 * An auth cache entry is created with both the auth_time 68 * and auth_freshness times set to the current time. 69 * 70 * Upon every client access which results in a hit, the 71 * auth_time will be updated. 72 * 73 * If a client access determines that the auth_freshness 74 * indicates that the entry is STALE, then it will be 75 * refreshed. Note that this will explicitly reset 76 * auth_time. 77 * 78 * When the REFRESH successfully occurs, then the 79 * auth_freshness is updated. 80 * 81 * There are two ways for an entry to leave the cache: 82 * 83 * 1) Purged by an action on the export (remove or changed) 84 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM) 85 * 86 * For 2) we check the timeout value against auth_time. 87 */ 88 89 /* 90 * Number of seconds until we mark for refresh an auth cache entry. 91 */ 92 #define NFSAUTH_CACHE_REFRESH 600 93 94 /* 95 * Number of idle seconds until we yield to backpressure 96 * to trim a cache entry. 97 */ 98 #define NFSAUTH_CACHE_TRIM 3600 99 100 /* 101 * While we could encapuslate the exi_list inside the 102 * exi structure, we can't do that for the auth_list. 103 * So, to keep things looking clean, we keep them both 104 * in these external lists. 105 */ 106 typedef struct refreshq_exi_node { 107 struct exportinfo *ren_exi; 108 list_t ren_authlist; 109 list_node_t ren_node; 110 } refreshq_exi_node_t; 111 112 typedef struct refreshq_auth_node { 113 struct auth_cache *ran_auth; 114 char *ran_netid; 115 list_node_t ran_node; 116 } refreshq_auth_node_t; 117 118 /* 119 * Used to manipulate things on the refreshq_queue. 120 * Note that the refresh thread will effectively 121 * pop a node off of the queue, at which point it 122 * will no longer need to hold the mutex. 123 */ 124 static kmutex_t refreshq_lock; 125 static list_t refreshq_queue; 126 static kcondvar_t refreshq_cv; 127 128 /* 129 * If there is ever a problem with loading the 130 * module, then nfsauth_fini() needs to be called 131 * to remove state. In that event, since the 132 * refreshq thread has been started, they need to 133 * work together to get rid of state. 134 */ 135 typedef enum nfsauth_refreshq_thread_state { 136 REFRESHQ_THREAD_RUNNING, 137 REFRESHQ_THREAD_FINI_REQ, 138 REFRESHQ_THREAD_HALTED 139 } nfsauth_refreshq_thread_state_t; 140 141 nfsauth_refreshq_thread_state_t 142 refreshq_thread_state = REFRESHQ_THREAD_HALTED; 143 144 static void nfsauth_free_node(struct auth_cache *); 145 static void nfsauth_refresh_thread(void); 146 147 static int nfsauth_cache_compar(const void *, const void *); 148 149 /* 150 * mountd is a server-side only daemon. This will need to be 151 * revisited if the NFS server is ever made zones-aware. 152 */ 153 kmutex_t mountd_lock; 154 door_handle_t mountd_dh; 155 156 void 157 mountd_args(uint_t did) 158 { 159 mutex_enter(&mountd_lock); 160 if (mountd_dh != NULL) 161 door_ki_rele(mountd_dh); 162 mountd_dh = door_ki_lookup(did); 163 mutex_exit(&mountd_lock); 164 } 165 166 void 167 nfsauth_init(void) 168 { 169 /* 170 * mountd can be restarted by smf(5). We need to make sure 171 * the updated door handle will safely make it to mountd_dh 172 */ 173 mutex_init(&mountd_lock, NULL, MUTEX_DEFAULT, NULL); 174 175 mutex_init(&refreshq_lock, NULL, MUTEX_DEFAULT, NULL); 176 list_create(&refreshq_queue, sizeof (refreshq_exi_node_t), 177 offsetof(refreshq_exi_node_t, ren_node)); 178 179 cv_init(&refreshq_cv, NULL, CV_DEFAULT, NULL); 180 181 /* 182 * Allocate nfsauth cache handle 183 */ 184 exi_cache_handle = kmem_cache_create("exi_cache_handle", 185 sizeof (struct auth_cache), 0, NULL, NULL, 186 exi_cache_reclaim, NULL, NULL, 0); 187 188 refreshq_thread_state = REFRESHQ_THREAD_RUNNING; 189 (void) zthread_create(NULL, 0, nfsauth_refresh_thread, 190 NULL, 0, minclsyspri); 191 } 192 193 /* 194 * Finalization routine for nfsauth. It is important to call this routine 195 * before destroying the exported_lock. 196 */ 197 void 198 nfsauth_fini(void) 199 { 200 refreshq_exi_node_t *ren; 201 202 /* 203 * Prevent the nfsauth_refresh_thread from getting new 204 * work. 205 */ 206 mutex_enter(&refreshq_lock); 207 if (refreshq_thread_state != REFRESHQ_THREAD_HALTED) { 208 refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ; 209 cv_broadcast(&refreshq_cv); 210 211 /* 212 * Also, wait for nfsauth_refresh_thread() to exit. 213 */ 214 while (refreshq_thread_state != REFRESHQ_THREAD_HALTED) { 215 cv_wait(&refreshq_cv, &refreshq_lock); 216 } 217 } 218 mutex_exit(&refreshq_lock); 219 220 /* 221 * Walk the exi_list and in turn, walk the auth_lists and free all 222 * lists. In addition, free INVALID auth_cache entries. 223 */ 224 while ((ren = list_remove_head(&refreshq_queue))) { 225 refreshq_auth_node_t *ran; 226 227 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) { 228 struct auth_cache *p = ran->ran_auth; 229 if (p->auth_state == NFS_AUTH_INVALID) 230 nfsauth_free_node(p); 231 strfree(ran->ran_netid); 232 kmem_free(ran, sizeof (refreshq_auth_node_t)); 233 } 234 235 list_destroy(&ren->ren_authlist); 236 exi_rele(ren->ren_exi); 237 kmem_free(ren, sizeof (refreshq_exi_node_t)); 238 } 239 list_destroy(&refreshq_queue); 240 241 cv_destroy(&refreshq_cv); 242 mutex_destroy(&refreshq_lock); 243 244 mutex_destroy(&mountd_lock); 245 246 /* 247 * Deallocate nfsauth cache handle 248 */ 249 kmem_cache_destroy(exi_cache_handle); 250 } 251 252 /* 253 * Convert the address in a netbuf to 254 * a hash index for the auth_cache table. 255 */ 256 static int 257 hash(struct netbuf *a) 258 { 259 int i, h = 0; 260 261 for (i = 0; i < a->len; i++) 262 h ^= a->buf[i]; 263 264 return (h & (AUTH_TABLESIZE - 1)); 265 } 266 267 /* 268 * Mask out the components of an 269 * address that do not identify 270 * a host. For socket addresses the 271 * masking gets rid of the port number. 272 */ 273 static void 274 addrmask(struct netbuf *addr, struct netbuf *mask) 275 { 276 int i; 277 278 for (i = 0; i < addr->len; i++) 279 addr->buf[i] &= mask->buf[i]; 280 } 281 282 /* 283 * nfsauth4_access is used for NFS V4 auth checking. Besides doing 284 * the common nfsauth_access(), it will check if the client can 285 * have a limited access to this vnode even if the security flavor 286 * used does not meet the policy. 287 */ 288 int 289 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req, 290 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 291 { 292 int access; 293 294 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids); 295 296 /* 297 * There are cases that the server needs to allow the client 298 * to have a limited view. 299 * 300 * e.g. 301 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw" 302 * /export/home is shared as "sec=sys,rw" 303 * 304 * When the client mounts /export with sec=sys, the client 305 * would get a limited view with RO access on /export to see 306 * "home" only because the client is allowed to access 307 * /export/home with auth_sys. 308 */ 309 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { 310 /* 311 * Allow ro permission with LIMITED view if there is a 312 * sub-dir exported under vp. 313 */ 314 if (has_visible(exi, vp)) 315 return (NFSAUTH_LIMITED); 316 } 317 318 return (access); 319 } 320 321 static void 322 sys_log(const char *msg) 323 { 324 static time_t tstamp = 0; 325 time_t now; 326 327 /* 328 * msg is shown (at most) once per minute 329 */ 330 now = gethrestime_sec(); 331 if ((tstamp + 60) < now) { 332 tstamp = now; 333 cmn_err(CE_WARN, msg); 334 } 335 } 336 337 /* 338 * Callup to the mountd to get access information in the kernel. 339 */ 340 static bool_t 341 nfsauth_retrieve(struct exportinfo *exi, char *req_netid, int flavor, 342 struct netbuf *addr, int *access, uid_t clnt_uid, gid_t clnt_gid, 343 uint_t clnt_gids_cnt, const gid_t *clnt_gids, uid_t *srv_uid, 344 gid_t *srv_gid, uint_t *srv_gids_cnt, gid_t **srv_gids) 345 { 346 varg_t varg = {0}; 347 nfsauth_res_t res = {0}; 348 XDR xdrs; 349 size_t absz; 350 caddr_t abuf; 351 int last = 0; 352 door_arg_t da; 353 door_info_t di; 354 door_handle_t dh; 355 uint_t ntries = 0; 356 357 /* 358 * No entry in the cache for this client/flavor 359 * so we need to call the nfsauth service in the 360 * mount daemon. 361 */ 362 363 varg.vers = V_PROTO; 364 varg.arg_u.arg.cmd = NFSAUTH_ACCESS; 365 varg.arg_u.arg.areq.req_client.n_len = addr->len; 366 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf; 367 varg.arg_u.arg.areq.req_netid = req_netid; 368 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path; 369 varg.arg_u.arg.areq.req_flavor = flavor; 370 varg.arg_u.arg.areq.req_clnt_uid = clnt_uid; 371 varg.arg_u.arg.areq.req_clnt_gid = clnt_gid; 372 varg.arg_u.arg.areq.req_clnt_gids.len = clnt_gids_cnt; 373 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)clnt_gids; 374 375 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg); 376 377 /* 378 * Setup the XDR stream for encoding the arguments. Notice that 379 * in addition to the args having variable fields (req_netid and 380 * req_path), the argument data structure is itself versioned, 381 * so we need to make sure we can size the arguments buffer 382 * appropriately to encode all the args. If we can't get sizing 383 * info _or_ properly encode the arguments, there's really no 384 * point in continuting, so we fail the request. 385 */ 386 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) { 387 *access = NFSAUTH_DENIED; 388 return (FALSE); 389 } 390 391 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP); 392 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE); 393 if (!xdr_varg(&xdrs, &varg)) { 394 XDR_DESTROY(&xdrs); 395 goto fail; 396 } 397 XDR_DESTROY(&xdrs); 398 399 /* 400 * Prepare the door arguments 401 * 402 * We don't know the size of the message the daemon 403 * will pass back to us. By setting rbuf to NULL, 404 * we force the door code to allocate a buf of the 405 * appropriate size. We must set rsize > 0, however, 406 * else the door code acts as if no response was 407 * expected and doesn't pass the data to us. 408 */ 409 da.data_ptr = (char *)abuf; 410 da.data_size = absz; 411 da.desc_ptr = NULL; 412 da.desc_num = 0; 413 da.rbuf = NULL; 414 da.rsize = 1; 415 416 retry: 417 mutex_enter(&mountd_lock); 418 dh = mountd_dh; 419 if (dh != NULL) 420 door_ki_hold(dh); 421 mutex_exit(&mountd_lock); 422 423 if (dh == NULL) { 424 /* 425 * The rendezvous point has not been established yet! 426 * This could mean that either mountd(1m) has not yet 427 * been started or that _this_ routine nuked the door 428 * handle after receiving an EINTR for a REVOKED door. 429 * 430 * Returning NFSAUTH_DROP will cause the NFS client 431 * to retransmit the request, so let's try to be more 432 * rescillient and attempt for ntries before we bail. 433 */ 434 if (++ntries % NFSAUTH_DR_TRYCNT) { 435 delay(hz); 436 goto retry; 437 } 438 439 kmem_free(abuf, absz); 440 441 sys_log("nfsauth: mountd has not established door"); 442 *access = NFSAUTH_DROP; 443 return (FALSE); 444 } 445 446 ntries = 0; 447 448 /* 449 * Now that we've got what we need, place the call. 450 */ 451 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) { 452 case 0: /* Success */ 453 door_ki_rele(dh); 454 455 if (da.data_ptr == NULL && da.data_size == 0) { 456 /* 457 * The door_return that contained the data 458 * failed! We're here because of the 2nd 459 * door_return (w/o data) such that we can 460 * get control of the thread (and exit 461 * gracefully). 462 */ 463 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil, 464 door_arg_t *, &da); 465 goto fail; 466 } 467 468 break; 469 470 case EAGAIN: 471 /* 472 * Server out of resources; back off for a bit 473 */ 474 door_ki_rele(dh); 475 delay(hz); 476 goto retry; 477 /* NOTREACHED */ 478 479 case EINTR: 480 if (!door_ki_info(dh, &di)) { 481 door_ki_rele(dh); 482 483 if (di.di_attributes & DOOR_REVOKED) { 484 /* 485 * The server barfed and revoked 486 * the (existing) door on us; we 487 * want to wait to give smf(5) a 488 * chance to restart mountd(1m) 489 * and establish a new door handle. 490 */ 491 mutex_enter(&mountd_lock); 492 if (dh == mountd_dh) { 493 door_ki_rele(mountd_dh); 494 mountd_dh = NULL; 495 } 496 mutex_exit(&mountd_lock); 497 delay(hz); 498 goto retry; 499 } 500 /* 501 * If the door was _not_ revoked on us, 502 * then more than likely we took an INTR, 503 * so we need to fail the operation. 504 */ 505 goto fail; 506 } 507 /* 508 * The only failure that can occur from getting 509 * the door info is EINVAL, so we let the code 510 * below handle it. 511 */ 512 /* FALLTHROUGH */ 513 514 case EBADF: 515 case EINVAL: 516 default: 517 /* 518 * If we have a stale door handle, give smf a last 519 * chance to start it by sleeping for a little bit. 520 * If we're still hosed, we'll fail the call. 521 * 522 * Since we're going to reacquire the door handle 523 * upon the retry, we opt to sleep for a bit and 524 * _not_ to clear mountd_dh. If mountd restarted 525 * and was able to set mountd_dh, we should see 526 * the new instance; if not, we won't get caught 527 * up in the retry/DELAY loop. 528 */ 529 door_ki_rele(dh); 530 if (!last) { 531 delay(hz); 532 last++; 533 goto retry; 534 } 535 sys_log("nfsauth: stale mountd door handle"); 536 goto fail; 537 } 538 539 ASSERT(da.rbuf != NULL); 540 541 /* 542 * No door errors encountered; setup the XDR stream for decoding 543 * the results. If we fail to decode the results, we've got no 544 * other recourse than to fail the request. 545 */ 546 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE); 547 if (!xdr_nfsauth_res(&xdrs, &res)) { 548 xdr_free(xdr_nfsauth_res, (char *)&res); 549 XDR_DESTROY(&xdrs); 550 kmem_free(da.rbuf, da.rsize); 551 goto fail; 552 } 553 XDR_DESTROY(&xdrs); 554 kmem_free(da.rbuf, da.rsize); 555 556 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res); 557 switch (res.stat) { 558 case NFSAUTH_DR_OKAY: 559 *access = res.ares.auth_perm; 560 *srv_uid = res.ares.auth_srv_uid; 561 *srv_gid = res.ares.auth_srv_gid; 562 *srv_gids_cnt = res.ares.auth_srv_gids.len; 563 *srv_gids = kmem_alloc(*srv_gids_cnt * sizeof (gid_t), 564 KM_SLEEP); 565 bcopy(res.ares.auth_srv_gids.val, *srv_gids, 566 *srv_gids_cnt * sizeof (gid_t)); 567 break; 568 569 case NFSAUTH_DR_EFAIL: 570 case NFSAUTH_DR_DECERR: 571 case NFSAUTH_DR_BADCMD: 572 default: 573 xdr_free(xdr_nfsauth_res, (char *)&res); 574 fail: 575 *access = NFSAUTH_DENIED; 576 kmem_free(abuf, absz); 577 return (FALSE); 578 /* NOTREACHED */ 579 } 580 581 xdr_free(xdr_nfsauth_res, (char *)&res); 582 kmem_free(abuf, absz); 583 584 return (TRUE); 585 } 586 587 static void 588 nfsauth_refresh_thread(void) 589 { 590 refreshq_exi_node_t *ren; 591 refreshq_auth_node_t *ran; 592 593 struct exportinfo *exi; 594 595 int access; 596 bool_t retrieval; 597 598 callb_cpr_t cprinfo; 599 600 CALLB_CPR_INIT(&cprinfo, &refreshq_lock, callb_generic_cpr, 601 "nfsauth_refresh"); 602 603 for (;;) { 604 mutex_enter(&refreshq_lock); 605 if (refreshq_thread_state != REFRESHQ_THREAD_RUNNING) { 606 /* Keep the hold on the lock! */ 607 break; 608 } 609 610 ren = list_remove_head(&refreshq_queue); 611 if (ren == NULL) { 612 CALLB_CPR_SAFE_BEGIN(&cprinfo); 613 cv_wait(&refreshq_cv, &refreshq_lock); 614 CALLB_CPR_SAFE_END(&cprinfo, &refreshq_lock); 615 mutex_exit(&refreshq_lock); 616 continue; 617 } 618 mutex_exit(&refreshq_lock); 619 620 exi = ren->ren_exi; 621 ASSERT(exi != NULL); 622 623 /* 624 * Since the ren was removed from the refreshq_queue above, 625 * this is the only thread aware about the ren existence, so we 626 * have the exclusive ownership of it and we do not need to 627 * protect it by any lock. 628 */ 629 while ((ran = list_remove_head(&ren->ren_authlist))) { 630 uid_t uid; 631 gid_t gid; 632 uint_t ngids; 633 gid_t *gids; 634 struct auth_cache *p = ran->ran_auth; 635 char *netid = ran->ran_netid; 636 637 ASSERT(p != NULL); 638 ASSERT(netid != NULL); 639 640 kmem_free(ran, sizeof (refreshq_auth_node_t)); 641 642 mutex_enter(&p->auth_lock); 643 644 /* 645 * Once the entry goes INVALID, it can not change 646 * state. 647 * 648 * No need to refresh entries also in a case we are 649 * just shutting down. 650 * 651 * In general, there is no need to hold the 652 * refreshq_lock to test the refreshq_thread_state. We 653 * do hold it at other places because there is some 654 * related thread synchronization (or some other tasks) 655 * close to the refreshq_thread_state check. 656 * 657 * The check for the refreshq_thread_state value here 658 * is purely advisory to allow the faster 659 * nfsauth_refresh_thread() shutdown. In a case we 660 * will miss such advisory, nothing catastrophic 661 * happens: we will just spin longer here before the 662 * shutdown. 663 */ 664 if (p->auth_state == NFS_AUTH_INVALID || 665 refreshq_thread_state != REFRESHQ_THREAD_RUNNING) { 666 mutex_exit(&p->auth_lock); 667 668 if (p->auth_state == NFS_AUTH_INVALID) 669 nfsauth_free_node(p); 670 671 strfree(netid); 672 673 continue; 674 } 675 676 /* 677 * Make sure the state is valid. Note that once we 678 * change the state to NFS_AUTH_REFRESHING, no other 679 * thread will be able to work on this entry. 680 */ 681 ASSERT(p->auth_state == NFS_AUTH_STALE); 682 683 p->auth_state = NFS_AUTH_REFRESHING; 684 mutex_exit(&p->auth_lock); 685 686 DTRACE_PROBE2(nfsauth__debug__cache__refresh, 687 struct exportinfo *, exi, 688 struct auth_cache *, p); 689 690 /* 691 * The first caching of the access rights 692 * is done with the netid pulled out of the 693 * request from the client. All subsequent 694 * users of the cache may or may not have 695 * the same netid. It doesn't matter. So 696 * when we refresh, we simply use the netid 697 * of the request which triggered the 698 * refresh attempt. 699 */ 700 retrieval = nfsauth_retrieve(exi, netid, 701 p->auth_flavor, &p->auth_clnt->authc_addr, &access, 702 p->auth_clnt_uid, p->auth_clnt_gid, 703 p->auth_clnt_ngids, p->auth_clnt_gids, &uid, &gid, 704 &ngids, &gids); 705 706 /* 707 * This can only be set in one other place 708 * and the state has to be NFS_AUTH_FRESH. 709 */ 710 strfree(netid); 711 712 mutex_enter(&p->auth_lock); 713 if (p->auth_state == NFS_AUTH_INVALID) { 714 mutex_exit(&p->auth_lock); 715 nfsauth_free_node(p); 716 if (retrieval == TRUE) 717 kmem_free(gids, ngids * sizeof (gid_t)); 718 } else { 719 /* 720 * If we got an error, do not reset the 721 * time. This will cause the next access 722 * check for the client to reschedule this 723 * node. 724 */ 725 if (retrieval == TRUE) { 726 p->auth_access = access; 727 728 p->auth_srv_uid = uid; 729 p->auth_srv_gid = gid; 730 kmem_free(p->auth_srv_gids, 731 p->auth_srv_ngids * sizeof (gid_t)); 732 p->auth_srv_ngids = ngids; 733 p->auth_srv_gids = gids; 734 735 p->auth_freshness = gethrestime_sec(); 736 } 737 p->auth_state = NFS_AUTH_FRESH; 738 739 cv_broadcast(&p->auth_cv); 740 mutex_exit(&p->auth_lock); 741 } 742 } 743 744 list_destroy(&ren->ren_authlist); 745 exi_rele(ren->ren_exi); 746 kmem_free(ren, sizeof (refreshq_exi_node_t)); 747 } 748 749 refreshq_thread_state = REFRESHQ_THREAD_HALTED; 750 cv_broadcast(&refreshq_cv); 751 CALLB_CPR_EXIT(&cprinfo); 752 zthread_exit(); 753 } 754 755 int 756 nfsauth_cache_clnt_compar(const void *v1, const void *v2) 757 { 758 int c; 759 760 const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1; 761 const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2; 762 763 if (a1->authc_addr.len < a2->authc_addr.len) 764 return (-1); 765 if (a1->authc_addr.len > a2->authc_addr.len) 766 return (1); 767 768 c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len); 769 if (c < 0) 770 return (-1); 771 if (c > 0) 772 return (1); 773 774 return (0); 775 } 776 777 static int 778 nfsauth_cache_compar(const void *v1, const void *v2) 779 { 780 const struct auth_cache *a1 = (const struct auth_cache *)v1; 781 const struct auth_cache *a2 = (const struct auth_cache *)v2; 782 783 if (a1->auth_flavor < a2->auth_flavor) 784 return (-1); 785 if (a1->auth_flavor > a2->auth_flavor) 786 return (1); 787 788 if (a1->auth_clnt_uid < a2->auth_clnt_uid) 789 return (-1); 790 if (a1->auth_clnt_uid > a2->auth_clnt_uid) 791 return (1); 792 793 if (a1->auth_clnt_gid < a2->auth_clnt_gid) 794 return (-1); 795 if (a1->auth_clnt_gid > a2->auth_clnt_gid) 796 return (1); 797 798 return (0); 799 } 800 801 /* 802 * Get the access information from the cache or callup to the mountd 803 * to get and cache the access information in the kernel. 804 */ 805 static int 806 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor, 807 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 808 { 809 struct netbuf *taddrmask; 810 struct netbuf addr; /* temporary copy of client's address */ 811 const struct netbuf *claddr; 812 avl_tree_t *tree; 813 struct auth_cache ac; /* used as a template for avl_find() */ 814 struct auth_cache_clnt *c; 815 struct auth_cache_clnt acc; /* used as a template for avl_find() */ 816 struct auth_cache *p = NULL; 817 int access; 818 819 uid_t tmpuid; 820 gid_t tmpgid; 821 uint_t tmpngids; 822 gid_t *tmpgids; 823 824 avl_index_t where; /* used for avl_find()/avl_insert() */ 825 826 ASSERT(cr != NULL); 827 828 /* 829 * Now check whether this client already 830 * has an entry for this flavor in the cache 831 * for this export. 832 * Get the caller's address, mask off the 833 * parts of the address that do not identify 834 * the host (port number, etc), and then hash 835 * it to find the chain of cache entries. 836 */ 837 838 claddr = svc_getrpccaller(req->rq_xprt); 839 addr = *claddr; 840 addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP); 841 bcopy(claddr->buf, addr.buf, claddr->len); 842 843 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask); 844 ASSERT(taddrmask != NULL); 845 addrmask(&addr, taddrmask); 846 847 ac.auth_flavor = flavor; 848 ac.auth_clnt_uid = crgetuid(cr); 849 ac.auth_clnt_gid = crgetgid(cr); 850 851 acc.authc_addr = addr; 852 853 tree = exi->exi_cache[hash(&addr)]; 854 855 rw_enter(&exi->exi_cache_lock, RW_READER); 856 c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL); 857 858 if (c == NULL) { 859 struct auth_cache_clnt *nc; 860 861 rw_exit(&exi->exi_cache_lock); 862 863 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP | KM_NORMALPRI); 864 if (nc == NULL) 865 goto retrieve; 866 867 /* 868 * Initialize the new auth_cache_clnt 869 */ 870 nc->authc_addr = addr; 871 nc->authc_addr.buf = kmem_alloc(addr.maxlen, 872 KM_NOSLEEP | KM_NORMALPRI); 873 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) { 874 kmem_free(nc, sizeof (*nc)); 875 goto retrieve; 876 } 877 bcopy(addr.buf, nc->authc_addr.buf, addr.len); 878 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL); 879 avl_create(&nc->authc_tree, nfsauth_cache_compar, 880 sizeof (struct auth_cache), 881 offsetof(struct auth_cache, auth_link)); 882 883 rw_enter(&exi->exi_cache_lock, RW_WRITER); 884 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where); 885 if (c == NULL) { 886 avl_insert(tree, nc, where); 887 rw_downgrade(&exi->exi_cache_lock); 888 c = nc; 889 } else { 890 rw_downgrade(&exi->exi_cache_lock); 891 892 avl_destroy(&nc->authc_tree); 893 rw_destroy(&nc->authc_lock); 894 kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen); 895 kmem_free(nc, sizeof (*nc)); 896 } 897 } 898 899 ASSERT(c != NULL); 900 901 rw_enter(&c->authc_lock, RW_READER); 902 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL); 903 904 if (p == NULL) { 905 struct auth_cache *np; 906 907 rw_exit(&c->authc_lock); 908 909 np = kmem_cache_alloc(exi_cache_handle, 910 KM_NOSLEEP | KM_NORMALPRI); 911 if (np == NULL) { 912 rw_exit(&exi->exi_cache_lock); 913 goto retrieve; 914 } 915 916 /* 917 * Initialize the new auth_cache 918 */ 919 np->auth_clnt = c; 920 np->auth_flavor = flavor; 921 np->auth_clnt_uid = crgetuid(cr); 922 np->auth_clnt_gid = crgetgid(cr); 923 np->auth_clnt_ngids = 0; 924 np->auth_clnt_gids = NULL; 925 np->auth_srv_ngids = 0; 926 np->auth_srv_gids = NULL; 927 np->auth_time = np->auth_freshness = gethrestime_sec(); 928 np->auth_state = NFS_AUTH_NEW; 929 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL); 930 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL); 931 932 rw_enter(&c->authc_lock, RW_WRITER); 933 rw_exit(&exi->exi_cache_lock); 934 935 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where); 936 if (p == NULL) { 937 avl_insert(&c->authc_tree, np, where); 938 rw_downgrade(&c->authc_lock); 939 p = np; 940 } else { 941 rw_downgrade(&c->authc_lock); 942 943 cv_destroy(&np->auth_cv); 944 mutex_destroy(&np->auth_lock); 945 kmem_cache_free(exi_cache_handle, np); 946 } 947 } else { 948 rw_exit(&exi->exi_cache_lock); 949 } 950 951 mutex_enter(&p->auth_lock); 952 rw_exit(&c->authc_lock); 953 954 wait: 955 /* 956 * If the entry is in the WAITING state then some other thread is just 957 * retrieving the required info. The entry was either NEW, or the list 958 * of client's supplemental groups is going to be changed (either by 959 * this thread, or by some other thread). We need to wait until the 960 * nfsauth_retrieve() is done. 961 */ 962 while (p->auth_state == NFS_AUTH_WAITING) 963 cv_wait(&p->auth_cv, &p->auth_lock); 964 965 /* 966 * Here the entry cannot be in WAITING or INVALID state. 967 */ 968 ASSERT(p->auth_state != NFS_AUTH_WAITING); 969 ASSERT(p->auth_state != NFS_AUTH_INVALID); 970 971 /* 972 * In a case the client's list of supplemental groups changed (or, the 973 * list is not initialized yet) we need to (re)allocate it and make 974 * sure the auth_cache entry is (re)retrieved. 975 */ 976 if (p->auth_clnt_ngids != crgetngroups(cr) || 977 bcmp(p->auth_clnt_gids, crgetgroups(cr), 978 p->auth_clnt_ngids * sizeof (gid_t)) != 0) { 979 980 /* 981 * If the refresh thread is just working on this entry then 982 * wait for it so we do not modify the list of supplemental 983 * groups in the middle of its processing. 984 */ 985 if (p->auth_state == NFS_AUTH_REFRESHING) { 986 p->auth_state = NFS_AUTH_WAITING; 987 goto wait; 988 } 989 990 /* 991 * We won't modify (and use) the STALE entries here since they 992 * are already in the refreshq_queue list. Such entries will 993 * be updated later. 994 */ 995 if (p->auth_state == NFS_AUTH_STALE) { 996 mutex_exit(&p->auth_lock); 997 998 p = NULL; 999 1000 goto retrieve; 1001 } 1002 1003 p->auth_state = NFS_AUTH_NEW; 1004 1005 /* 1006 * If the number of supplemental groups differ, we need to 1007 * reallocate first. 1008 */ 1009 if (p->auth_clnt_ngids != crgetngroups(cr)) { 1010 kmem_free(p->auth_clnt_gids, 1011 p->auth_clnt_ngids * sizeof (gid_t)); 1012 1013 p->auth_clnt_ngids = crgetngroups(cr); 1014 p->auth_clnt_gids = kmem_alloc( 1015 p->auth_clnt_ngids * sizeof (gid_t), 1016 KM_NOSLEEP | KM_NORMALPRI); 1017 1018 /* 1019 * If we failed to preallocate the memory for 1020 * supplemental groups, we won't cache the retrieved 1021 * data. 1022 */ 1023 if (p->auth_clnt_ngids != 0 && 1024 p->auth_clnt_gids == NULL) { 1025 p->auth_clnt_ngids = 0; 1026 mutex_exit(&p->auth_lock); 1027 1028 p = NULL; 1029 1030 goto retrieve; 1031 } 1032 } 1033 1034 /* 1035 * Fill the client's supplemental groups. 1036 */ 1037 bcopy(crgetgroups(cr), p->auth_clnt_gids, 1038 p->auth_clnt_ngids * sizeof (gid_t)); 1039 } 1040 1041 /* 1042 * If the cache entry is not valid yet, we need to retrieve the 1043 * info ourselves. 1044 */ 1045 if (p->auth_state == NFS_AUTH_NEW) { 1046 bool_t res; 1047 /* 1048 * NFS_AUTH_NEW is the default output auth_state value in a 1049 * case we failed somewhere below. 1050 */ 1051 auth_state_t state = NFS_AUTH_NEW; 1052 1053 p->auth_state = NFS_AUTH_WAITING; 1054 mutex_exit(&p->auth_lock); 1055 kmem_free(addr.buf, addr.maxlen); 1056 addr = p->auth_clnt->authc_addr; 1057 1058 atomic_inc_uint(&nfsauth_cache_miss); 1059 1060 res = nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, 1061 &addr, &access, crgetuid(cr), crgetgid(cr), 1062 crgetngroups(cr), crgetgroups(cr), &tmpuid, &tmpgid, 1063 &tmpngids, &tmpgids); 1064 1065 p->auth_access = access; 1066 p->auth_time = p->auth_freshness = gethrestime_sec(); 1067 1068 if (res == TRUE) { 1069 if (uid != NULL) 1070 *uid = tmpuid; 1071 if (gid != NULL) 1072 *gid = tmpgid; 1073 if (ngids != NULL && gids != NULL) { 1074 *ngids = tmpngids; 1075 *gids = tmpgids; 1076 1077 /* 1078 * We need a copy of gids for the 1079 * auth_cache entry 1080 */ 1081 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t), 1082 KM_NOSLEEP | KM_NORMALPRI); 1083 if (tmpgids != NULL) 1084 bcopy(*gids, tmpgids, 1085 tmpngids * sizeof (gid_t)); 1086 } 1087 1088 if (tmpgids != NULL || tmpngids == 0) { 1089 p->auth_srv_uid = tmpuid; 1090 p->auth_srv_gid = tmpgid; 1091 p->auth_srv_ngids = tmpngids; 1092 p->auth_srv_gids = tmpgids; 1093 1094 state = NFS_AUTH_FRESH; 1095 } 1096 } 1097 1098 /* 1099 * Set the auth_state and notify waiters. 1100 */ 1101 mutex_enter(&p->auth_lock); 1102 p->auth_state = state; 1103 cv_broadcast(&p->auth_cv); 1104 mutex_exit(&p->auth_lock); 1105 } else { 1106 uint_t nach; 1107 time_t refresh; 1108 1109 refresh = gethrestime_sec() - p->auth_freshness; 1110 1111 p->auth_time = gethrestime_sec(); 1112 1113 if (uid != NULL) 1114 *uid = p->auth_srv_uid; 1115 if (gid != NULL) 1116 *gid = p->auth_srv_gid; 1117 if (ngids != NULL && gids != NULL) { 1118 *ngids = p->auth_srv_ngids; 1119 *gids = kmem_alloc(*ngids * sizeof (gid_t), KM_SLEEP); 1120 bcopy(p->auth_srv_gids, *gids, *ngids * sizeof (gid_t)); 1121 } 1122 1123 access = p->auth_access; 1124 1125 if ((refresh > NFSAUTH_CACHE_REFRESH) && 1126 p->auth_state == NFS_AUTH_FRESH) { 1127 refreshq_auth_node_t *ran; 1128 uint_t nacr; 1129 1130 p->auth_state = NFS_AUTH_STALE; 1131 mutex_exit(&p->auth_lock); 1132 1133 nacr = atomic_inc_uint_nv(&nfsauth_cache_refresh); 1134 DTRACE_PROBE3(nfsauth__debug__cache__stale, 1135 struct exportinfo *, exi, 1136 struct auth_cache *, p, 1137 uint_t, nacr); 1138 1139 ran = kmem_alloc(sizeof (refreshq_auth_node_t), 1140 KM_SLEEP); 1141 ran->ran_auth = p; 1142 ran->ran_netid = strdup(svc_getnetid(req->rq_xprt)); 1143 1144 mutex_enter(&refreshq_lock); 1145 /* 1146 * We should not add a work queue 1147 * item if the thread is not 1148 * accepting them. 1149 */ 1150 if (refreshq_thread_state == REFRESHQ_THREAD_RUNNING) { 1151 refreshq_exi_node_t *ren; 1152 1153 /* 1154 * Is there an existing exi_list? 1155 */ 1156 for (ren = list_head(&refreshq_queue); 1157 ren != NULL; 1158 ren = list_next(&refreshq_queue, ren)) { 1159 if (ren->ren_exi == exi) { 1160 list_insert_tail( 1161 &ren->ren_authlist, ran); 1162 break; 1163 } 1164 } 1165 1166 if (ren == NULL) { 1167 ren = kmem_alloc( 1168 sizeof (refreshq_exi_node_t), 1169 KM_SLEEP); 1170 1171 exi_hold(exi); 1172 ren->ren_exi = exi; 1173 1174 list_create(&ren->ren_authlist, 1175 sizeof (refreshq_auth_node_t), 1176 offsetof(refreshq_auth_node_t, 1177 ran_node)); 1178 1179 list_insert_tail(&ren->ren_authlist, 1180 ran); 1181 list_insert_tail(&refreshq_queue, ren); 1182 } 1183 1184 cv_broadcast(&refreshq_cv); 1185 } else { 1186 strfree(ran->ran_netid); 1187 kmem_free(ran, sizeof (refreshq_auth_node_t)); 1188 } 1189 1190 mutex_exit(&refreshq_lock); 1191 } else { 1192 mutex_exit(&p->auth_lock); 1193 } 1194 1195 nach = atomic_inc_uint_nv(&nfsauth_cache_hit); 1196 DTRACE_PROBE2(nfsauth__debug__cache__hit, 1197 uint_t, nach, 1198 time_t, refresh); 1199 1200 kmem_free(addr.buf, addr.maxlen); 1201 } 1202 1203 return (access); 1204 1205 retrieve: 1206 /* 1207 * Retrieve the required data without caching. 1208 */ 1209 1210 ASSERT(p == NULL); 1211 1212 atomic_inc_uint(&nfsauth_cache_miss); 1213 1214 if (nfsauth_retrieve(exi, svc_getnetid(req->rq_xprt), flavor, &addr, 1215 &access, crgetuid(cr), crgetgid(cr), crgetngroups(cr), 1216 crgetgroups(cr), &tmpuid, &tmpgid, &tmpngids, &tmpgids)) { 1217 if (uid != NULL) 1218 *uid = tmpuid; 1219 if (gid != NULL) 1220 *gid = tmpgid; 1221 if (ngids != NULL && gids != NULL) { 1222 *ngids = tmpngids; 1223 *gids = tmpgids; 1224 } else { 1225 kmem_free(tmpgids, tmpngids * sizeof (gid_t)); 1226 } 1227 } 1228 1229 kmem_free(addr.buf, addr.maxlen); 1230 1231 return (access); 1232 } 1233 1234 /* 1235 * Check if the requesting client has access to the filesystem with 1236 * a given nfs flavor number which is an explicitly shared flavor. 1237 */ 1238 int 1239 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req, 1240 int flavor, int perm, cred_t *cr) 1241 { 1242 int access; 1243 1244 if (! (perm & M_4SEC_EXPORTED)) { 1245 return (NFSAUTH_DENIED); 1246 } 1247 1248 /* 1249 * Optimize if there are no lists 1250 */ 1251 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) { 1252 perm &= ~M_4SEC_EXPORTED; 1253 if (perm == M_RO) 1254 return (NFSAUTH_RO); 1255 if (perm == M_RW) 1256 return (NFSAUTH_RW); 1257 } 1258 1259 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL, 1260 NULL); 1261 1262 return (access); 1263 } 1264 1265 int 1266 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr, 1267 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids) 1268 { 1269 int access, mapaccess; 1270 struct secinfo *sp; 1271 int i, flavor, perm; 1272 int authnone_entry = -1; 1273 1274 /* 1275 * By default root is mapped to anonymous user. 1276 * This might get overriden later in nfsauth_cache_get(). 1277 */ 1278 if (crgetuid(cr) == 0) { 1279 if (uid != NULL) 1280 *uid = exi->exi_export.ex_anon; 1281 if (gid != NULL) 1282 *gid = exi->exi_export.ex_anon; 1283 } else { 1284 if (uid != NULL) 1285 *uid = crgetuid(cr); 1286 if (gid != NULL) 1287 *gid = crgetgid(cr); 1288 } 1289 1290 if (ngids != NULL) 1291 *ngids = 0; 1292 if (gids != NULL) 1293 *gids = NULL; 1294 1295 /* 1296 * Get the nfs flavor number from xprt. 1297 */ 1298 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie; 1299 1300 /* 1301 * First check the access restrictions on the filesystem. If 1302 * there are no lists associated with this flavor then there's no 1303 * need to make an expensive call to the nfsauth service or to 1304 * cache anything. 1305 */ 1306 1307 sp = exi->exi_export.ex_secinfo; 1308 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 1309 if (flavor != sp[i].s_secinfo.sc_nfsnum) { 1310 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) 1311 authnone_entry = i; 1312 continue; 1313 } 1314 break; 1315 } 1316 1317 mapaccess = 0; 1318 1319 if (i >= exi->exi_export.ex_seccnt) { 1320 /* 1321 * Flavor not found, but use AUTH_NONE if it exists 1322 */ 1323 if (authnone_entry == -1) 1324 return (NFSAUTH_DENIED); 1325 flavor = AUTH_NONE; 1326 mapaccess = NFSAUTH_MAPNONE; 1327 i = authnone_entry; 1328 } 1329 1330 /* 1331 * If the flavor is in the ex_secinfo list, but not an explicitly 1332 * shared flavor by the user, it is a result of the nfsv4 server 1333 * namespace setup. We will grant an RO permission similar for 1334 * a pseudo node except that this node is a shared one. 1335 * 1336 * e.g. flavor in (flavor) indicates that it is not explictly 1337 * shared by the user: 1338 * 1339 * / (sys, krb5) 1340 * | 1341 * export #share -o sec=sys (krb5) 1342 * | 1343 * secure #share -o sec=krb5 1344 * 1345 * In this case, when a krb5 request coming in to access 1346 * /export, RO permission is granted. 1347 */ 1348 if (!(sp[i].s_flags & M_4SEC_EXPORTED)) 1349 return (mapaccess | NFSAUTH_RO); 1350 1351 /* 1352 * Optimize if there are no lists. 1353 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups. 1354 */ 1355 perm = sp[i].s_flags; 1356 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS || 1357 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) { 1358 perm &= ~M_4SEC_EXPORTED; 1359 if (perm == M_RO) 1360 return (mapaccess | NFSAUTH_RO); 1361 if (perm == M_RW) 1362 return (mapaccess | NFSAUTH_RW); 1363 } 1364 1365 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids); 1366 1367 /* 1368 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about 1369 * the supplemental groups. 1370 */ 1371 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) { 1372 if (ngids != NULL && gids != NULL) { 1373 kmem_free(*gids, *ngids * sizeof (gid_t)); 1374 *ngids = 0; 1375 *gids = NULL; 1376 } 1377 } 1378 1379 /* 1380 * Client's security flavor doesn't match with "ro" or 1381 * "rw" list. Try again using AUTH_NONE if present. 1382 */ 1383 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) { 1384 /* 1385 * Have we already encountered AUTH_NONE ? 1386 */ 1387 if (authnone_entry != -1) { 1388 mapaccess = NFSAUTH_MAPNONE; 1389 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr, 1390 NULL, NULL, NULL, NULL); 1391 } else { 1392 /* 1393 * Check for AUTH_NONE presence. 1394 */ 1395 for (; i < exi->exi_export.ex_seccnt; i++) { 1396 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) { 1397 mapaccess = NFSAUTH_MAPNONE; 1398 access = nfsauth_cache_get(exi, req, 1399 AUTH_NONE, cr, NULL, NULL, NULL, 1400 NULL); 1401 break; 1402 } 1403 } 1404 } 1405 } 1406 1407 if (access & NFSAUTH_DENIED) 1408 access = NFSAUTH_DENIED; 1409 1410 return (access | mapaccess); 1411 } 1412 1413 static void 1414 nfsauth_free_clnt_node(struct auth_cache_clnt *p) 1415 { 1416 void *cookie = NULL; 1417 struct auth_cache *node; 1418 1419 while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL) 1420 nfsauth_free_node(node); 1421 avl_destroy(&p->authc_tree); 1422 1423 kmem_free(p->authc_addr.buf, p->authc_addr.maxlen); 1424 rw_destroy(&p->authc_lock); 1425 1426 kmem_free(p, sizeof (*p)); 1427 } 1428 1429 static void 1430 nfsauth_free_node(struct auth_cache *p) 1431 { 1432 kmem_free(p->auth_clnt_gids, p->auth_clnt_ngids * sizeof (gid_t)); 1433 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t)); 1434 mutex_destroy(&p->auth_lock); 1435 cv_destroy(&p->auth_cv); 1436 kmem_cache_free(exi_cache_handle, p); 1437 } 1438 1439 /* 1440 * Free the nfsauth cache for a given export 1441 */ 1442 void 1443 nfsauth_cache_free(struct exportinfo *exi) 1444 { 1445 int i; 1446 1447 /* 1448 * The only way we got here was with an exi_rele, which means that no 1449 * auth cache entry is being refreshed. 1450 */ 1451 1452 for (i = 0; i < AUTH_TABLESIZE; i++) { 1453 avl_tree_t *tree = exi->exi_cache[i]; 1454 void *cookie = NULL; 1455 struct auth_cache_clnt *node; 1456 1457 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 1458 nfsauth_free_clnt_node(node); 1459 } 1460 } 1461 1462 /* 1463 * Called by the kernel memory allocator when 1464 * memory is low. Free unused cache entries. 1465 * If that's not enough, the VM system will 1466 * call again for some more. 1467 */ 1468 /*ARGSUSED*/ 1469 void 1470 exi_cache_reclaim(void *cdrarg) 1471 { 1472 int i; 1473 struct exportinfo *exi; 1474 1475 rw_enter(&exported_lock, RW_READER); 1476 1477 for (i = 0; i < EXPTABLESIZE; i++) { 1478 for (exi = exptable[i]; exi; exi = exi->fid_hash.next) { 1479 exi_cache_trim(exi); 1480 } 1481 } 1482 1483 rw_exit(&exported_lock); 1484 1485 atomic_inc_uint(&nfsauth_cache_reclaim); 1486 } 1487 1488 void 1489 exi_cache_trim(struct exportinfo *exi) 1490 { 1491 struct auth_cache_clnt *c; 1492 struct auth_cache_clnt *nextc; 1493 struct auth_cache *p; 1494 struct auth_cache *next; 1495 int i; 1496 time_t stale_time; 1497 avl_tree_t *tree; 1498 1499 for (i = 0; i < AUTH_TABLESIZE; i++) { 1500 1501 tree = exi->exi_cache[i]; 1502 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM; 1503 1504 rw_enter(&exi->exi_cache_lock, RW_READER); 1505 1506 /* 1507 * Free entries that have not been 1508 * used for NFSAUTH_CACHE_TRIM seconds. 1509 */ 1510 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) { 1511 rw_enter(&c->authc_lock, RW_WRITER); 1512 for (p = avl_first(&c->authc_tree); p != NULL; 1513 p = next) { 1514 next = AVL_NEXT(&c->authc_tree, p); 1515 1516 ASSERT(p->auth_state != NFS_AUTH_INVALID); 1517 1518 mutex_enter(&p->auth_lock); 1519 1520 /* 1521 * We won't trim recently used and/or WAITING 1522 * entries. 1523 */ 1524 if (p->auth_time > stale_time || 1525 p->auth_state == NFS_AUTH_WAITING) { 1526 mutex_exit(&p->auth_lock); 1527 continue; 1528 } 1529 1530 DTRACE_PROBE1(nfsauth__debug__trim__state, 1531 auth_state_t, p->auth_state); 1532 1533 /* 1534 * STALE and REFRESHING entries needs to be 1535 * marked INVALID only because they are 1536 * referenced by some other structures or 1537 * threads. They will be freed later. 1538 */ 1539 if (p->auth_state == NFS_AUTH_STALE || 1540 p->auth_state == NFS_AUTH_REFRESHING) { 1541 p->auth_state = NFS_AUTH_INVALID; 1542 mutex_exit(&p->auth_lock); 1543 1544 avl_remove(&c->authc_tree, p); 1545 } else { 1546 mutex_exit(&p->auth_lock); 1547 1548 avl_remove(&c->authc_tree, p); 1549 nfsauth_free_node(p); 1550 } 1551 } 1552 rw_exit(&c->authc_lock); 1553 } 1554 1555 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) { 1556 rw_exit(&exi->exi_cache_lock); 1557 rw_enter(&exi->exi_cache_lock, RW_WRITER); 1558 } 1559 1560 for (c = avl_first(tree); c != NULL; c = nextc) { 1561 nextc = AVL_NEXT(tree, c); 1562 1563 if (avl_is_empty(&c->authc_tree) == B_FALSE) 1564 continue; 1565 1566 avl_remove(tree, c); 1567 1568 nfsauth_free_clnt_node(c); 1569 } 1570 1571 rw_exit(&exi->exi_cache_lock); 1572 } 1573 } 1574