1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 29 * All Rights Reserved 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/cred.h> 38 #include <sys/time.h> 39 #include <sys/vnode.h> 40 #include <sys/vfs.h> 41 #include <sys/file.h> 42 #include <sys/filio.h> 43 #include <sys/uio.h> 44 #include <sys/buf.h> 45 #include <sys/mman.h> 46 #include <sys/pathname.h> 47 #include <sys/dirent.h> 48 #include <sys/debug.h> 49 #include <sys/vmsystm.h> 50 #include <sys/fcntl.h> 51 #include <sys/flock.h> 52 #include <sys/swap.h> 53 #include <sys/errno.h> 54 #include <sys/strsubr.h> 55 #include <sys/sysmacros.h> 56 #include <sys/kmem.h> 57 #include <sys/cmn_err.h> 58 #include <sys/pathconf.h> 59 #include <sys/utsname.h> 60 #include <sys/dnlc.h> 61 #include <sys/acl.h> 62 #include <sys/systeminfo.h> 63 #include <sys/policy.h> 64 #include <sys/sdt.h> 65 #include <sys/list.h> 66 #include <sys/stat.h> 67 68 #include <rpc/types.h> 69 #include <rpc/auth.h> 70 #include <rpc/clnt.h> 71 72 #include <nfs/nfs.h> 73 #include <nfs/nfs_clnt.h> 74 #include <nfs/nfs_acl.h> 75 #include <nfs/lm.h> 76 #include <nfs/nfs4.h> 77 #include <nfs/nfs4_kprot.h> 78 #include <nfs/rnode4.h> 79 #include <nfs/nfs4_clnt.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg.h> 86 #include <vm/seg_map.h> 87 #include <vm/seg_kpm.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/ddi.h> 93 #include <sys/int_fmtio.h> 94 95 typedef struct { 96 nfs4_ga_res_t *di_garp; 97 cred_t *di_cred; 98 hrtime_t di_time_call; 99 } dirattr_info_t; 100 101 typedef enum nfs4_acl_op { 102 NFS4_ACL_GET, 103 NFS4_ACL_SET 104 } nfs4_acl_op_t; 105 106 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 107 char *, dirattr_info_t *); 108 109 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 110 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 111 nfs4_error_t *, int *); 112 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 113 cred_t *); 114 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 115 stable_how4 *); 116 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 117 cred_t *, bool_t, struct uio *); 118 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 119 vsecattr_t *); 120 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 121 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 122 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 123 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 124 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 125 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 126 int, vnode_t **, cred_t *); 127 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 128 cred_t *, int, int, enum createmode4, int); 129 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 130 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 131 vnode_t *, char *, cred_t *, nfsstat4 *); 132 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 133 vnode_t *, char *, cred_t *, nfsstat4 *); 134 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 135 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 136 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 137 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 138 page_t *[], size_t, struct seg *, caddr_t, 139 enum seg_rw, cred_t *); 140 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 141 cred_t *); 142 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 143 int, cred_t *); 144 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 145 int, cred_t *); 146 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 147 static void nfs4_set_mod(vnode_t *); 148 static void nfs4_get_commit(vnode_t *); 149 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 150 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 151 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 152 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 153 cred_t *); 154 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 155 cred_t *); 156 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 157 hrtime_t, vnode_t *, cred_t *); 158 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 159 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 160 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 161 u_offset_t); 162 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 163 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 164 static cred_t *state_to_cred(nfs4_open_stream_t *); 165 static int vtoname(vnode_t *, char *, ssize_t); 166 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 167 static pid_t lo_to_pid(lock_owner4 *); 168 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 169 cred_t *, nfs4_lock_owner_t *); 170 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 171 nfs4_lock_owner_t *); 172 static nfs4_open_stream_t *open_and_get_osp(vnode_t *, cred_t *, mntinfo4_t *); 173 static void nfs4_delmap_callback(struct as *, void *, uint_t); 174 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 175 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 176 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 177 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 178 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 179 uid_t, gid_t, int); 180 181 /* 182 * Routines that implement the setting of v4 args for the misc. ops 183 */ 184 static void nfs4args_lock_free(nfs_argop4 *); 185 static void nfs4args_lockt_free(nfs_argop4 *); 186 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 187 int, rnode4_t *, cred_t *, bitmap4, int *, 188 nfs4_stateid_types_t *); 189 static void nfs4args_setattr_free(nfs_argop4 *); 190 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 191 bitmap4); 192 static void nfs4args_verify_free(nfs_argop4 *); 193 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 194 WRITE4args **, nfs4_stateid_types_t *); 195 196 /* 197 * These are the vnode ops functions that implement the vnode interface to 198 * the networked file system. See more comments below at nfs4_vnodeops. 199 */ 200 static int nfs4_open(vnode_t **, int, cred_t *); 201 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *); 202 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 203 caller_context_t *); 204 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 205 caller_context_t *); 206 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 207 static int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *); 208 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 209 caller_context_t *); 210 static int nfs4_access(vnode_t *, int, int, cred_t *); 211 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *); 212 static int nfs4_fsync(vnode_t *, int, cred_t *); 213 static void nfs4_inactive(vnode_t *, cred_t *); 214 static int nfs4_lookup(vnode_t *, char *, vnode_t **, 215 struct pathname *, int, vnode_t *, cred_t *); 216 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 217 int, vnode_t **, cred_t *, int); 218 static int nfs4_remove(vnode_t *, char *, cred_t *); 219 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *); 220 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 221 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, 222 vnode_t **, cred_t *); 223 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 224 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 225 cred_t *); 226 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *); 227 static int nfs4_fid(vnode_t *, fid_t *); 228 static int nfs4_rwlock(vnode_t *, int, caller_context_t *); 229 static void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 230 static int nfs4_seek(vnode_t *, offset_t, offset_t *); 231 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 232 page_t *[], size_t, struct seg *, caddr_t, 233 enum seg_rw, cred_t *); 234 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 235 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, 236 size_t, uchar_t, uchar_t, uint_t, cred_t *); 237 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, 238 size_t, uchar_t, uchar_t, uint_t, cred_t *); 239 static int nfs4_cmp(vnode_t *, vnode_t *); 240 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 241 struct flk_callback *, cred_t *); 242 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 243 cred_t *, caller_context_t *); 244 static int nfs4_realvp(vnode_t *, vnode_t **); 245 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, 246 size_t, uint_t, uint_t, uint_t, cred_t *); 247 static int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *); 248 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 249 cred_t *); 250 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *); 251 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 252 static int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 253 static int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 254 255 /* 256 * Used for nfs4_commit_vp() to indicate if we should 257 * wait on pending writes. 258 */ 259 #define NFS4_WRITE_NOWAIT 0 260 #define NFS4_WRITE_WAIT 1 261 262 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 263 264 /* 265 * Error flags used to pass information about certain special errors 266 * which need to be handled specially. 267 */ 268 #define NFS_EOF -98 269 #define NFS_VERF_MISMATCH -97 270 271 /* 272 * Flags used to differentiate between which operation drove the 273 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 274 */ 275 #define NFS4_CLOSE_OP 0x1 276 #define NFS4_DELMAP_OP 0x2 277 #define NFS4_INACTIVE_OP 0x3 278 279 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 280 281 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 282 #define ALIGN64(x, ptr, sz) \ 283 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 284 if (x) { \ 285 x = sizeof (uint64_t) - (x); \ 286 sz -= (x); \ 287 ptr += (x); \ 288 } 289 290 #ifdef DEBUG 291 int nfs4_client_attr_debug = 0; 292 int nfs4_client_state_debug = 0; 293 int nfs4_client_shadow_debug = 0; 294 int nfs4_client_lock_debug = 0; 295 int nfs4_seqid_sync = 0; 296 int nfs4_client_map_debug = 0; 297 static int nfs4_pageio_debug = 0; 298 int nfs4_client_inactive_debug = 0; 299 int nfs4_client_recov_debug = 0; 300 int nfs4_client_recov_stub_debug = 0; 301 int nfs4_client_failover_debug = 0; 302 int nfs4_client_call_debug = 0; 303 int nfs4_client_lookup_debug = 0; 304 int nfs4_client_zone_debug = 0; 305 int nfs4_lost_rqst_debug = 0; 306 int nfs4_rdattrerr_debug = 0; 307 int nfs4_open_stream_debug = 0; 308 309 int nfs4read_error_inject; 310 311 static int nfs4_create_misses = 0; 312 313 static int nfs4_readdir_cache_shorts = 0; 314 static int nfs4_readdir_readahead = 0; 315 316 static int nfs4_bio_do_stop = 0; 317 318 static int nfs4_lostpage = 0; /* number of times we lost original page */ 319 320 int nfs4_mmap_debug = 0; 321 322 static int nfs4_pathconf_cache_hits = 0; 323 static int nfs4_pathconf_cache_misses = 0; 324 325 int nfs4close_all_cnt; 326 int nfs4close_one_debug = 0; 327 int nfs4close_notw_debug = 0; 328 329 int denied_to_flk_debug = 0; 330 void *lockt_denied_debug; 331 332 #endif 333 334 /* 335 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 336 * or NFS4ERR_RESOURCE. 337 */ 338 static int confirm_retry_sec = 30; 339 340 static int nfs4_lookup_neg_cache = 1; 341 342 /* 343 * number of pages to read ahead 344 * optimized for 100 base-T. 345 */ 346 static int nfs4_nra = 4; 347 348 static int nfs4_do_symlink_cache = 1; 349 350 static int nfs4_pathconf_disable_cache = 0; 351 352 /* 353 * These are the vnode ops routines which implement the vnode interface to 354 * the networked file system. These routines just take their parameters, 355 * make them look networkish by putting the right info into interface structs, 356 * and then calling the appropriate remote routine(s) to do the work. 357 * 358 * Note on directory name lookup cacheing: If we detect a stale fhandle, 359 * we purge the directory cache relative to that vnode. This way, the 360 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 361 * more details on rnode locking. 362 */ 363 364 struct vnodeops *nfs4_vnodeops; 365 366 const fs_operation_def_t nfs4_vnodeops_template[] = { 367 VOPNAME_OPEN, nfs4_open, 368 VOPNAME_CLOSE, nfs4_close, 369 VOPNAME_READ, nfs4_read, 370 VOPNAME_WRITE, nfs4_write, 371 VOPNAME_IOCTL, nfs4_ioctl, 372 VOPNAME_GETATTR, nfs4_getattr, 373 VOPNAME_SETATTR, nfs4_setattr, 374 VOPNAME_ACCESS, nfs4_access, 375 VOPNAME_LOOKUP, nfs4_lookup, 376 VOPNAME_CREATE, nfs4_create, 377 VOPNAME_REMOVE, nfs4_remove, 378 VOPNAME_LINK, nfs4_link, 379 VOPNAME_RENAME, nfs4_rename, 380 VOPNAME_MKDIR, nfs4_mkdir, 381 VOPNAME_RMDIR, nfs4_rmdir, 382 VOPNAME_READDIR, nfs4_readdir, 383 VOPNAME_SYMLINK, nfs4_symlink, 384 VOPNAME_READLINK, nfs4_readlink, 385 VOPNAME_FSYNC, nfs4_fsync, 386 VOPNAME_INACTIVE, (fs_generic_func_p) nfs4_inactive, 387 VOPNAME_FID, nfs4_fid, 388 VOPNAME_RWLOCK, nfs4_rwlock, 389 VOPNAME_RWUNLOCK, (fs_generic_func_p) nfs4_rwunlock, 390 VOPNAME_SEEK, nfs4_seek, 391 VOPNAME_FRLOCK, nfs4_frlock, 392 VOPNAME_SPACE, nfs4_space, 393 VOPNAME_REALVP, nfs4_realvp, 394 VOPNAME_GETPAGE, nfs4_getpage, 395 VOPNAME_PUTPAGE, nfs4_putpage, 396 VOPNAME_MAP, (fs_generic_func_p) nfs4_map, 397 VOPNAME_ADDMAP, (fs_generic_func_p) nfs4_addmap, 398 VOPNAME_DELMAP, nfs4_delmap, 399 VOPNAME_DUMP, nfs_dump, /* there is no separate nfs4_dump */ 400 VOPNAME_PATHCONF, nfs4_pathconf, 401 VOPNAME_PAGEIO, nfs4_pageio, 402 VOPNAME_DISPOSE, (fs_generic_func_p) nfs4_dispose, 403 VOPNAME_SETSECATTR, nfs4_setsecattr, 404 VOPNAME_GETSECATTR, nfs4_getsecattr, 405 VOPNAME_SHRLOCK, nfs4_shrlock, 406 NULL, NULL 407 }; 408 409 /* 410 * The following are subroutines and definitions to set args or get res 411 * for the different nfsv4 ops 412 */ 413 414 void 415 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 416 { 417 int i; 418 419 for (i = 0; i < arglen; i++) { 420 if (argop[i].argop == OP_LOOKUP) 421 kmem_free( 422 argop[i].nfs_argop4_u.oplookup.objname.utf8string_val, 423 argop[i].nfs_argop4_u.oplookup.objname.utf8string_len); 424 } 425 } 426 427 static void 428 nfs4args_lock_free(nfs_argop4 *argop) 429 { 430 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 431 432 if (locker->new_lock_owner == TRUE) { 433 open_to_lock_owner4 *open_owner; 434 435 open_owner = &locker->locker4_u.open_owner; 436 if (open_owner->lock_owner.owner_val != NULL) { 437 kmem_free(open_owner->lock_owner.owner_val, 438 open_owner->lock_owner.owner_len); 439 } 440 } 441 } 442 443 static void 444 nfs4args_lockt_free(nfs_argop4 *argop) 445 { 446 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 447 448 if (lowner->owner_val != NULL) { 449 kmem_free(lowner->owner_val, lowner->owner_len); 450 } 451 } 452 453 static void 454 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 455 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 456 nfs4_stateid_types_t *sid_types) 457 { 458 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 459 mntinfo4_t *mi; 460 461 argop->argop = OP_SETATTR; 462 /* 463 * The stateid is set to 0 if client is not modifying the size 464 * and otherwise to whatever nfs4_get_stateid() returns. 465 * 466 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 467 * state struct could be found for the process/file pair. We may 468 * want to change this in the future (by OPENing the file). See 469 * bug # 4474852. 470 */ 471 if (vap->va_mask & AT_SIZE) { 472 473 ASSERT(rp != NULL); 474 mi = VTOMI4(RTOV4(rp)); 475 476 argop->nfs_argop4_u.opsetattr.stateid = 477 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 478 OP_SETATTR, sid_types, FALSE); 479 } else { 480 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 481 sizeof (stateid4)); 482 } 483 484 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 485 if (*error) 486 bzero(attr, sizeof (*attr)); 487 } 488 489 static void 490 nfs4args_setattr_free(nfs_argop4 *argop) 491 { 492 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 493 } 494 495 static int 496 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 497 bitmap4 supp) 498 { 499 fattr4 *attr; 500 int error = 0; 501 502 argop->argop = op; 503 switch (op) { 504 case OP_VERIFY: 505 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 506 break; 507 case OP_NVERIFY: 508 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 509 break; 510 default: 511 return (EINVAL); 512 /*NOTREACHED*/ 513 break; 514 } 515 if (!error) 516 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 517 if (error) 518 bzero(attr, sizeof (*attr)); 519 return (error); 520 } 521 522 static void 523 nfs4args_verify_free(nfs_argop4 *argop) 524 { 525 switch (argop->argop) { 526 case OP_VERIFY: 527 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 528 break; 529 case OP_NVERIFY: 530 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 531 break; 532 default: 533 break; 534 } 535 } 536 537 static void 538 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 539 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 540 { 541 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 542 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 543 544 argop->argop = OP_WRITE; 545 wargs->stable = stable; 546 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 547 mi, OP_WRITE, sid_tp); 548 wargs->mblk = NULL; 549 *wargs_pp = wargs; 550 } 551 552 void 553 nfs4args_copen_free(OPEN4cargs *open_args) 554 { 555 if (open_args->owner.owner_val) { 556 kmem_free(open_args->owner.owner_val, 557 open_args->owner.owner_len); 558 } 559 if ((open_args->opentype == OPEN4_CREATE) && 560 (open_args->mode != EXCLUSIVE4)) { 561 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 562 } 563 } 564 565 /* 566 * XXX: This is referenced in modstubs.s 567 */ 568 struct vnodeops * 569 nfs4_getvnodeops(void) 570 { 571 return (nfs4_vnodeops); 572 } 573 574 /* 575 * The OPEN operation opens a regular file. 576 * 577 * ARGSUSED 578 */ 579 static int 580 nfs4_open(vnode_t **vpp, int flag, cred_t *cr) 581 { 582 vnode_t *dvp = NULL; 583 rnode4_t *rp; 584 int error; 585 int just_been_created; 586 char fn[MAXNAMELEN]; 587 588 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 589 if (curproc->p_zone != VTOMI4(*vpp)->mi_zone) 590 return (EIO); 591 rp = VTOR4(*vpp); 592 593 /* 594 * Check to see if opening something besides a regular file; 595 * if so skip the OTW call 596 */ 597 if ((*vpp)->v_type != VREG) { 598 error = nfs4_open_non_reg_file(vpp, flag, cr); 599 return (error); 600 } 601 602 /* 603 * XXX - would like a check right here to know if the file is 604 * executable or not, so as to skip OTW 605 */ 606 607 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) 608 return (error); 609 610 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 611 return (error); 612 613 /* 614 * See if this file has just been CREATEd. 615 * If so, clear the flag and update the dnlc, which was previously 616 * skipped in nfs4_create. 617 * XXX need better serilization on this. 618 * XXX move this into the nf4open_otw call, after we have 619 * XXX acquired the open owner seqid sync. 620 */ 621 mutex_enter(&rp->r_statev4_lock); 622 if (rp->created_v4) { 623 rp->created_v4 = 0; 624 dnlc_update(dvp, fn, *vpp); 625 /* This is needed so we don't bump the open ref count */ 626 just_been_created = 1; 627 } else { 628 just_been_created = 0; 629 } 630 mutex_exit(&rp->r_statev4_lock); 631 632 /* 633 * If caller specified O_TRUNC/FTRUNC, then be sure to set 634 * FWRITE (to drive successful setattr(size=0) after open) 635 */ 636 if (flag & FTRUNC) 637 flag |= FWRITE; 638 639 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 640 just_been_created); 641 642 if (!error && !((*vpp)->v_flag & VROOT)) 643 dnlc_update(dvp, fn, *vpp); 644 645 /* release the hold from vtodv */ 646 VN_RELE(dvp); 647 648 /* exchange the shadow for the master vnode, if needed */ 649 650 if (error == 0 && IS_SHADOW(*vpp, rp)) 651 sv_exchange(vpp); 652 653 return (error); 654 } 655 656 /* 657 * See if there's a "lost open" request to be saved and recovered. 658 */ 659 static void 660 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 661 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 662 vnode_t *dvp, OPEN4cargs *open_args) 663 { 664 vfs_t *vfsp; 665 char *srccfp; 666 667 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 668 669 if (error != ETIMEDOUT && error != EINTR && 670 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 671 lost_rqstp->lr_op = 0; 672 return; 673 } 674 675 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 676 "nfs4open_save_lost_rqst: error %d", error)); 677 678 lost_rqstp->lr_op = OP_OPEN; 679 /* 680 * The vp (if it is not NULL) and dvp are held and rele'd via 681 * the recovery code. See nfs4_save_lost_rqst. 682 */ 683 lost_rqstp->lr_vp = vp; 684 lost_rqstp->lr_dvp = dvp; 685 lost_rqstp->lr_oop = oop; 686 lost_rqstp->lr_osp = NULL; 687 lost_rqstp->lr_lop = NULL; 688 lost_rqstp->lr_cr = cr; 689 lost_rqstp->lr_flk = NULL; 690 lost_rqstp->lr_oacc = open_args->share_access; 691 lost_rqstp->lr_odeny = open_args->share_deny; 692 lost_rqstp->lr_oclaim = open_args->claim; 693 if (open_args->claim == CLAIM_DELEGATE_CUR) { 694 lost_rqstp->lr_ostateid = 695 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 696 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 697 } else { 698 srccfp = open_args->open_claim4_u.cfile; 699 } 700 lost_rqstp->lr_ofile.utf8string_len = 0; 701 lost_rqstp->lr_ofile.utf8string_val = NULL; 702 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 703 lost_rqstp->lr_putfirst = FALSE; 704 } 705 706 struct nfs4_excl_time { 707 uint32 seconds; 708 uint32 nseconds; 709 }; 710 711 /* 712 * The OPEN operation creates and/or opens a regular file 713 * 714 * ARGSUSED 715 */ 716 static int 717 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 718 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 719 enum createmode4 createmode, int file_just_been_created) 720 { 721 rnode4_t *rp; 722 rnode4_t *drp = VTOR4(dvp); 723 vnode_t *vp = NULL; 724 vnode_t *vpi = *vpp; 725 bool_t needrecov = FALSE; 726 727 int doqueue = 1; 728 729 COMPOUND4args_clnt args; 730 COMPOUND4res_clnt res; 731 nfs_argop4 *argop; 732 nfs_resop4 *resop; 733 int argoplist_size; 734 int idx_open, idx_fattr; 735 736 GETFH4res *gf_res = NULL; 737 OPEN4res *op_res = NULL; 738 nfs4_ga_res_t *garp; 739 fattr4 *attr = NULL; 740 struct nfs4_excl_time verf; 741 bool_t did_excl_setup = FALSE; 742 int created_osp; 743 744 OPEN4cargs *open_args; 745 nfs4_open_owner_t *oop = NULL; 746 nfs4_open_stream_t *osp = NULL; 747 seqid4 seqid = 0; 748 bool_t retry_open = FALSE; 749 nfs4_recov_state_t recov_state; 750 nfs4_lost_rqst_t lost_rqst; 751 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 752 hrtime_t t; 753 int acc = 0; 754 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 755 cred_t *ncr = NULL; 756 757 nfs4_sharedfh_t *otw_sfh; 758 nfs4_sharedfh_t *orig_sfh; 759 int fh_differs = 0; 760 int numops, setgid_flag; 761 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 762 763 /* 764 * Make sure we properly deal with setting the right gid on 765 * a newly created file to reflect the parent's setgid bit 766 */ 767 setgid_flag = 0; 768 if (create_flag && in_va) { 769 770 /* 771 * If the parent's directory has the setgid bit set 772 * _and_ the client was able to get a valid mapping 773 * for the parent dir's owner_group, we want to 774 * append NVERIFY(owner_group == dva.va_gid) and 775 * SETATTR to the CREATE compound. 776 */ 777 mutex_enter(&drp->r_statelock); 778 if (drp->r_attr.va_mode & VSGID && 779 drp->r_attr.va_gid != GID_NOBODY) { 780 in_va->va_gid = drp->r_attr.va_gid; 781 setgid_flag = 1; 782 } 783 mutex_exit(&drp->r_statelock); 784 } 785 786 /* 787 * Normal/non-create compound: 788 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 789 * 790 * Open(create) compound no setgid: 791 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 792 * RESTOREFH + GETATTR 793 * 794 * Open(create) setgid: 795 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 796 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 797 * NVERIFY(grp) + SETATTR 798 */ 799 if (setgid_flag) { 800 numops = 10; 801 idx_open = 1; 802 idx_fattr = 3; 803 } else if (create_flag) { 804 numops = 7; 805 idx_open = 2; 806 idx_fattr = 4; 807 } else { 808 numops = 4; 809 idx_open = 1; 810 idx_fattr = 3; 811 } 812 813 args.array_len = numops; 814 argoplist_size = numops * sizeof (nfs_argop4); 815 argop = kmem_alloc(argoplist_size, KM_SLEEP); 816 817 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 818 "open %s open flag 0x%x cred %p", file_name, open_flag, 819 (void *)cr)); 820 821 ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); 822 if (create_flag) { 823 /* 824 * We are to create a file. Initialize the passed in vnode 825 * pointer. 826 */ 827 vpi = NULL; 828 } else { 829 /* 830 * Check to see if the client owns a read delegation and is 831 * trying to open for write. If so, then return the delegation 832 * to avoid the server doing a cb_recall and returning DELAY. 833 * NB - we don't use the statev4_lock here because we'd have 834 * to drop the lock anyway and the result would be stale. 835 */ 836 if ((open_flag & FWRITE) && 837 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 838 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 839 840 /* 841 * If the file has a delegation, then do an access check up 842 * front. This avoids having to an access check later after 843 * we've already done start_op, which could deadlock. 844 */ 845 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 846 if (open_flag & FREAD && 847 nfs4_access(vpi, VREAD, 0, cr) == 0) 848 acc |= VREAD; 849 if (open_flag & FWRITE && 850 nfs4_access(vpi, VWRITE, 0, cr) == 0) 851 acc |= VWRITE; 852 } 853 } 854 855 drp = VTOR4(dvp); 856 857 recov_state.rs_flags = 0; 858 recov_state.rs_num_retry_despite_err = 0; 859 cred_otw = cr; 860 861 recov_retry: 862 fh_differs = 0; 863 nfs4_error_zinit(&e); 864 865 /* argop is empty here */ 866 867 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 868 if (ncr != NULL) 869 crfree(ncr); 870 kmem_free(argop, argoplist_size); 871 return (EINTR); 872 } 873 874 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 875 if (e.error) { 876 nfs_rw_exit(&drp->r_rwlock); 877 if (ncr != NULL) 878 crfree(ncr); 879 kmem_free(argop, argoplist_size); 880 return (e.error); 881 } 882 883 args.ctag = TAG_OPEN; 884 args.array_len = numops; 885 args.array = argop; 886 887 /* putfh directory fh */ 888 argop[0].argop = OP_CPUTFH; 889 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 890 891 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 892 argop[idx_open].argop = OP_COPEN; 893 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 894 open_args->claim = CLAIM_NULL; 895 896 /* name of file */ 897 open_args->open_claim4_u.cfile = file_name; 898 open_args->owner.owner_len = 0; 899 open_args->owner.owner_val = NULL; 900 901 if (create_flag) { 902 /* CREATE a file */ 903 open_args->opentype = OPEN4_CREATE; 904 open_args->mode = createmode; 905 if (createmode == EXCLUSIVE4) { 906 if (did_excl_setup == FALSE) { 907 verf.seconds = nfs_atoi(hw_serial); 908 if (verf.seconds != 0) 909 verf.nseconds = newnum(); 910 else { 911 timestruc_t now; 912 913 gethrestime(&now); 914 verf.seconds = now.tv_sec; 915 verf.nseconds = now.tv_nsec; 916 } 917 /* 918 * Since the server will use this value for the 919 * mtime, make sure that it can't overflow. Zero 920 * out the MSB. The actual value does not matter 921 * here, only its uniqeness. 922 */ 923 verf.seconds &= INT32_MAX; 924 did_excl_setup = TRUE; 925 } 926 927 /* Now copy over verifier to OPEN4args. */ 928 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 929 } else { 930 int v_error; 931 bitmap4 supp_attrs; 932 servinfo4_t *svp; 933 934 attr = &open_args->createhow4_u.createattrs; 935 936 svp = drp->r_server; 937 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 938 supp_attrs = svp->sv_supp_attrs; 939 nfs_rw_exit(&svp->sv_lock); 940 941 /* GUARDED4 or UNCHECKED4 */ 942 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 943 supp_attrs); 944 if (v_error) { 945 bzero(attr, sizeof (*attr)); 946 nfs4args_copen_free(open_args); 947 nfs_rw_exit(&drp->r_rwlock); 948 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 949 &recov_state, FALSE); 950 if (ncr != NULL) 951 crfree(ncr); 952 kmem_free(argop, argoplist_size); 953 return (v_error); 954 } 955 } 956 } else { 957 /* NO CREATE */ 958 open_args->opentype = OPEN4_NOCREATE; 959 } 960 961 if (recov_state.rs_sp != NULL) { 962 mutex_enter(&recov_state.rs_sp->s_lock); 963 open_args->owner.clientid = recov_state.rs_sp->clientid; 964 mutex_exit(&recov_state.rs_sp->s_lock); 965 } else { 966 /* XXX should we just fail here? */ 967 open_args->owner.clientid = 0; 968 } 969 970 /* 971 * This increments oop's ref count or creates a temporary 'just_created' 972 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 973 * completes. 974 */ 975 mutex_enter(&VTOMI4(dvp)->mi_lock); 976 977 /* See if a permanent or just created open owner exists */ 978 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 979 if (!oop) { 980 /* 981 * This open owner does not exist so create a temporary 982 * just created one. 983 */ 984 oop = create_open_owner(cr, VTOMI4(dvp)); 985 ASSERT(oop != NULL); 986 } 987 mutex_exit(&VTOMI4(dvp)->mi_lock); 988 989 /* this length never changes, do alloc before seqid sync */ 990 open_args->owner.owner_len = sizeof (oop->oo_name); 991 open_args->owner.owner_val = 992 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 993 994 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 995 if (e.error == EAGAIN) { 996 open_owner_rele(oop); 997 nfs4args_copen_free(open_args); 998 nfs_rw_exit(&drp->r_rwlock); 999 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1000 if (ncr != NULL) { 1001 crfree(ncr); 1002 ncr = NULL; 1003 } 1004 goto recov_retry; 1005 } 1006 1007 /* Check to see if we need to do the OTW call */ 1008 if (!create_flag) { 1009 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1010 file_just_been_created, &e.error, acc, &recov_state)) { 1011 1012 /* 1013 * The OTW open is not necessary. Either 1014 * the open can succeed without it (eg. 1015 * delegation, error == 0) or the open 1016 * must fail due to an access failure 1017 * (error != 0). In either case, tidy 1018 * up and return. 1019 */ 1020 1021 nfs4_end_open_seqid_sync(oop); 1022 open_owner_rele(oop); 1023 nfs4args_copen_free(open_args); 1024 nfs_rw_exit(&drp->r_rwlock); 1025 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1026 if (ncr != NULL) 1027 crfree(ncr); 1028 kmem_free(argop, argoplist_size); 1029 return (e.error); 1030 } 1031 } 1032 1033 bcopy(&oop->oo_name, open_args->owner.owner_val, 1034 open_args->owner.owner_len); 1035 1036 seqid = nfs4_get_open_seqid(oop) + 1; 1037 open_args->seqid = seqid; 1038 open_args->share_access = 0; 1039 if (open_flag & FREAD) 1040 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1041 if (open_flag & FWRITE) 1042 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1043 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1044 1045 1046 1047 /* 1048 * getfh w/sanity check for idx_open/idx_fattr 1049 */ 1050 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1051 argop[idx_open + 1].argop = OP_GETFH; 1052 1053 /* getattr */ 1054 argop[idx_fattr].argop = OP_GETATTR; 1055 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1056 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1057 1058 if (setgid_flag) { 1059 vattr_t _v; 1060 servinfo4_t *svp; 1061 bitmap4 supp_attrs; 1062 1063 svp = drp->r_server; 1064 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1065 supp_attrs = svp->sv_supp_attrs; 1066 nfs_rw_exit(&svp->sv_lock); 1067 1068 /* 1069 * For setgid case, we need to: 1070 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1071 */ 1072 argop[4].argop = OP_SAVEFH; 1073 1074 argop[5].argop = OP_CPUTFH; 1075 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1076 1077 argop[6].argop = OP_GETATTR; 1078 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1079 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1080 1081 argop[7].argop = OP_RESTOREFH; 1082 1083 /* 1084 * nverify 1085 */ 1086 _v.va_mask = AT_GID; 1087 _v.va_gid = in_va->va_gid; 1088 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1089 supp_attrs))) { 1090 1091 /* 1092 * setattr 1093 * 1094 * We _know_ we're not messing with AT_SIZE or 1095 * AT_XTIME, so no need for stateid or flags. 1096 * Also we specify NULL rp since we're only 1097 * interested in setting owner_group attributes. 1098 */ 1099 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1100 supp_attrs, &e.error, 0); 1101 if (e.error) 1102 nfs4args_verify_free(&argop[8]); 1103 } 1104 1105 if (e.error) { 1106 /* 1107 * XXX - Revisit the last argument to nfs4_end_op() 1108 * once 5020486 is fixed. 1109 */ 1110 nfs4_end_open_seqid_sync(oop); 1111 open_owner_rele(oop); 1112 nfs4args_copen_free(open_args); 1113 nfs_rw_exit(&drp->r_rwlock); 1114 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1115 if (ncr != NULL) 1116 crfree(ncr); 1117 kmem_free(argop, argoplist_size); 1118 return (e.error); 1119 } 1120 } else if (create_flag) { 1121 /* 1122 * For setgid case, we need to: 1123 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1124 */ 1125 argop[1].argop = OP_SAVEFH; 1126 1127 argop[5].argop = OP_RESTOREFH; 1128 1129 argop[6].argop = OP_GETATTR; 1130 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1131 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1132 } 1133 1134 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1135 "nfs4open_otw: %s call, nm %s, rp %s", 1136 needrecov ? "recov" : "first", file_name, 1137 rnode4info(VTOR4(dvp)))); 1138 1139 t = gethrtime(); 1140 1141 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1142 1143 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1144 nfs4_set_open_seqid(seqid, oop, args.ctag); 1145 1146 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1147 1148 if (e.error || needrecov) { 1149 bool_t abort = FALSE; 1150 1151 if (needrecov) { 1152 nfs4_bseqid_entry_t *bsep = NULL; 1153 1154 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1155 cred_otw, vpi, dvp, open_args); 1156 1157 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1158 bsep = nfs4_create_bseqid_entry(oop, NULL, 1159 vpi, 0, args.ctag, open_args->seqid); 1160 num_bseqid_retry--; 1161 } 1162 1163 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1164 NULL, lost_rqst.lr_op == OP_OPEN ? 1165 &lost_rqst : NULL, OP_OPEN, bsep); 1166 1167 if (bsep) 1168 kmem_free(bsep, sizeof (*bsep)); 1169 /* give up if we keep getting BAD_SEQID */ 1170 if (num_bseqid_retry == 0) 1171 abort = TRUE; 1172 if (abort == TRUE && e.error == 0) 1173 e.error = geterrno4(res.status); 1174 } 1175 nfs4_end_open_seqid_sync(oop); 1176 open_owner_rele(oop); 1177 nfs_rw_exit(&drp->r_rwlock); 1178 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1179 nfs4args_copen_free(open_args); 1180 if (setgid_flag) { 1181 nfs4args_verify_free(&argop[8]); 1182 nfs4args_setattr_free(&argop[9]); 1183 } 1184 if (!e.error) 1185 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1186 if (ncr != NULL) { 1187 crfree(ncr); 1188 ncr = NULL; 1189 } 1190 if (!needrecov || abort == TRUE || e.error == EINTR || 1191 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1192 kmem_free(argop, argoplist_size); 1193 return (e.error); 1194 } 1195 goto recov_retry; 1196 } 1197 1198 /* 1199 * Will check and update lease after checking the rflag for 1200 * OPEN_CONFIRM in the successful OPEN call. 1201 */ 1202 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1203 1204 /* 1205 * XXX what if we're crossing mount points from server1:/drp 1206 * to server2:/drp/rp. 1207 */ 1208 1209 /* Signal our end of use of the open seqid */ 1210 nfs4_end_open_seqid_sync(oop); 1211 1212 /* 1213 * This will destroy the open owner if it was just created, 1214 * and no one else has put a reference on it. 1215 */ 1216 open_owner_rele(oop); 1217 if (create_flag && (createmode != EXCLUSIVE4) && 1218 res.status == NFS4ERR_BADOWNER) 1219 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1220 1221 e.error = geterrno4(res.status); 1222 nfs4args_copen_free(open_args); 1223 if (setgid_flag) { 1224 nfs4args_verify_free(&argop[8]); 1225 nfs4args_setattr_free(&argop[9]); 1226 } 1227 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1228 nfs_rw_exit(&drp->r_rwlock); 1229 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1230 /* 1231 * If the reply is NFS4ERR_ACCESS, it may be because 1232 * we are root (no root net access). If the real uid 1233 * is not root, then retry with the real uid instead. 1234 */ 1235 if (ncr != NULL) { 1236 crfree(ncr); 1237 ncr = NULL; 1238 } 1239 if (res.status == NFS4ERR_ACCESS && 1240 (ncr = crnetadjust(cred_otw)) != NULL) { 1241 cred_otw = ncr; 1242 goto recov_retry; 1243 } 1244 kmem_free(argop, argoplist_size); 1245 return (e.error); 1246 } 1247 1248 resop = &res.array[idx_open]; /* open res */ 1249 op_res = &resop->nfs_resop4_u.opopen; 1250 1251 #ifdef DEBUG 1252 /* 1253 * verify attrset bitmap 1254 */ 1255 if (create_flag && 1256 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1257 /* make sure attrset returned is what we asked for */ 1258 /* XXX Ignore this 'error' for now */ 1259 if (attr->attrmask != op_res->attrset) 1260 /* EMPTY */; 1261 } 1262 #endif 1263 1264 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1265 mutex_enter(&VTOMI4(dvp)->mi_lock); 1266 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1267 mutex_exit(&VTOMI4(dvp)->mi_lock); 1268 } 1269 1270 resop = &res.array[idx_open + 1]; /* getfh res */ 1271 gf_res = &resop->nfs_resop4_u.opgetfh; 1272 1273 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1274 1275 /* 1276 * The open stateid has been updated on the server but not 1277 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1278 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1279 * WRITE call. That, however, will use the old stateid, so go ahead 1280 * and upate the open stateid now, before any call to makenfs4node. 1281 */ 1282 if (vpi) { 1283 nfs4_open_stream_t *tmp_osp; 1284 rnode4_t *tmp_rp = VTOR4(vpi); 1285 1286 tmp_osp = find_open_stream(oop, tmp_rp); 1287 if (tmp_osp) { 1288 tmp_osp->open_stateid = op_res->stateid; 1289 mutex_exit(&tmp_osp->os_sync_lock); 1290 open_stream_rele(tmp_osp, tmp_rp); 1291 } 1292 1293 /* 1294 * We must determine if the file handle given by the otw open 1295 * is the same as the file handle which was passed in with 1296 * *vpp. This case can be reached if the file we are trying 1297 * to open has been removed and another file has been created 1298 * having the same file name. The passed in vnode is released 1299 * later. 1300 */ 1301 orig_sfh = VTOR4(vpi)->r_fh; 1302 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1303 } 1304 1305 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1306 1307 if (create_flag || fh_differs) { 1308 int rnode_err = 0; 1309 1310 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1311 dvp, fn_get(VTOSV(dvp)->sv_name, file_name)); 1312 1313 if (e.error) 1314 PURGE_ATTRCACHE4(vp); 1315 /* 1316 * For the newly created vp case, make sure the rnode 1317 * isn't bad before using it. 1318 */ 1319 mutex_enter(&(VTOR4(vp))->r_statelock); 1320 if (VTOR4(vp)->r_flags & R4RECOVERR) 1321 rnode_err = EIO; 1322 mutex_exit(&(VTOR4(vp))->r_statelock); 1323 1324 if (rnode_err) { 1325 nfs4_end_open_seqid_sync(oop); 1326 nfs4args_copen_free(open_args); 1327 if (setgid_flag) { 1328 nfs4args_verify_free(&argop[8]); 1329 nfs4args_setattr_free(&argop[9]); 1330 } 1331 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1332 nfs_rw_exit(&drp->r_rwlock); 1333 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1334 needrecov); 1335 open_owner_rele(oop); 1336 VN_RELE(vp); 1337 if (ncr != NULL) 1338 crfree(ncr); 1339 sfh4_rele(&otw_sfh); 1340 kmem_free(argop, argoplist_size); 1341 return (EIO); 1342 } 1343 } else { 1344 vp = vpi; 1345 } 1346 sfh4_rele(&otw_sfh); 1347 1348 /* 1349 * It seems odd to get a full set of attrs and then not update 1350 * the object's attrcache in the non-create case. Create case uses 1351 * the attrs since makenfs4node checks to see if the attrs need to 1352 * be updated (and then updates them). The non-create case should 1353 * update attrs also. 1354 */ 1355 if (! create_flag && ! fh_differs && !e.error) { 1356 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1357 } 1358 1359 nfs4_error_zinit(&e); 1360 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1361 /* This does not do recovery for vp explicitly. */ 1362 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1363 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1364 1365 if (e.error || e.stat) { 1366 nfs4_end_open_seqid_sync(oop); 1367 nfs4args_copen_free(open_args); 1368 if (setgid_flag) { 1369 nfs4args_verify_free(&argop[8]); 1370 nfs4args_setattr_free(&argop[9]); 1371 } 1372 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1373 nfs_rw_exit(&drp->r_rwlock); 1374 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1375 needrecov); 1376 open_owner_rele(oop); 1377 if (create_flag || fh_differs) { 1378 /* rele the makenfs4node */ 1379 VN_RELE(vp); 1380 } 1381 if (ncr != NULL) { 1382 crfree(ncr); 1383 ncr = NULL; 1384 } 1385 if (retry_open == TRUE) { 1386 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1387 "nfs4open_otw: retry the open since OPEN " 1388 "CONFIRM failed with error %d stat %d", 1389 e.error, e.stat)); 1390 if (create_flag && createmode == GUARDED4) { 1391 NFS4_DEBUG(nfs4_client_recov_debug, 1392 (CE_NOTE, "nfs4open_otw: switch " 1393 "createmode from GUARDED4 to " 1394 "UNCHECKED4")); 1395 createmode = UNCHECKED4; 1396 } 1397 goto recov_retry; 1398 } 1399 if (!e.error) { 1400 if (create_flag && (createmode != EXCLUSIVE4) && 1401 e.stat == NFS4ERR_BADOWNER) 1402 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1403 1404 e.error = geterrno4(e.stat); 1405 } 1406 kmem_free(argop, argoplist_size); 1407 return (e.error); 1408 } 1409 } 1410 1411 rp = VTOR4(vp); 1412 1413 mutex_enter(&rp->r_statev4_lock); 1414 if (create_flag) 1415 rp->created_v4 = 1; 1416 mutex_exit(&rp->r_statev4_lock); 1417 1418 mutex_enter(&oop->oo_lock); 1419 /* Doesn't matter if 'oo_just_created' already was set as this */ 1420 oop->oo_just_created = NFS4_PERM_CREATED; 1421 if (oop->oo_cred_otw) 1422 crfree(oop->oo_cred_otw); 1423 oop->oo_cred_otw = cred_otw; 1424 crhold(oop->oo_cred_otw); 1425 mutex_exit(&oop->oo_lock); 1426 1427 /* returns with 'os_sync_lock' held */ 1428 osp = find_or_create_open_stream(oop, rp, &created_osp); 1429 if (!osp) { 1430 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1431 "nfs4open_otw: failed to create an open stream")); 1432 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1433 "signal our end of use of the open seqid")); 1434 1435 nfs4_end_open_seqid_sync(oop); 1436 open_owner_rele(oop); 1437 nfs4args_copen_free(open_args); 1438 if (setgid_flag) { 1439 nfs4args_verify_free(&argop[8]); 1440 nfs4args_setattr_free(&argop[9]); 1441 } 1442 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1443 nfs_rw_exit(&drp->r_rwlock); 1444 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1445 if (create_flag || fh_differs) 1446 VN_RELE(vp); 1447 if (ncr != NULL) 1448 crfree(ncr); 1449 1450 kmem_free(argop, argoplist_size); 1451 return (EINVAL); 1452 1453 } 1454 1455 osp->open_stateid = op_res->stateid; 1456 1457 if (open_flag & FREAD) 1458 osp->os_share_acc_read++; 1459 if (open_flag & FWRITE) 1460 osp->os_share_acc_write++; 1461 osp->os_share_deny_none++; 1462 1463 /* 1464 * Need to reset this bitfield for the possible case where we were 1465 * going to OTW CLOSE the file, got a non-recoverable error, and before 1466 * we could retry the CLOSE, OPENed the file again. 1467 */ 1468 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1469 osp->os_final_close = 0; 1470 osp->os_force_close = 0; 1471 #ifdef DEBUG 1472 if (osp->os_failed_reopen) 1473 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1474 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1475 (void *)osp, (void *)cr, rnode4info(rp))); 1476 #endif 1477 osp->os_failed_reopen = 0; 1478 1479 mutex_exit(&osp->os_sync_lock); 1480 1481 nfs4_end_open_seqid_sync(oop); 1482 1483 if (created_osp && recov_state.rs_sp != NULL) { 1484 mutex_enter(&recov_state.rs_sp->s_lock); 1485 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1486 mutex_exit(&recov_state.rs_sp->s_lock); 1487 } 1488 1489 /* get rid of our reference to find oop */ 1490 open_owner_rele(oop); 1491 1492 open_stream_rele(osp, rp); 1493 1494 /* accept delegation, if any */ 1495 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1496 1497 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1498 1499 if (createmode == EXCLUSIVE4 && 1500 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1501 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1502 " EXCLUSIVE4: sending a SETATTR")); 1503 /* 1504 * If doing an exclusive create, then generate 1505 * a SETATTR to set the initial attributes. 1506 * Try to set the mtime and the atime to the 1507 * server's current time. It is somewhat 1508 * expected that these fields will be used to 1509 * store the exclusive create cookie. If not, 1510 * server implementors will need to know that 1511 * a SETATTR will follow an exclusive create 1512 * and the cookie should be destroyed if 1513 * appropriate. 1514 * 1515 * The AT_GID and AT_SIZE bits are turned off 1516 * so that the SETATTR request will not attempt 1517 * to process these. The gid will be set 1518 * separately if appropriate. The size is turned 1519 * off because it is assumed that a new file will 1520 * be created empty and if the file wasn't empty, 1521 * then the exclusive create will have failed 1522 * because the file must have existed already. 1523 * Therefore, no truncate operation is needed. 1524 */ 1525 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1526 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1527 1528 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1529 if (e.error) { 1530 /* 1531 * Couldn't correct the attributes of 1532 * the newly created file and the 1533 * attributes are wrong. Remove the 1534 * file and return an error to the 1535 * application. 1536 */ 1537 /* XXX will this take care of client state ? */ 1538 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1539 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1540 " remove file", e.error)); 1541 VN_RELE(vp); 1542 (void) nfs4_remove(dvp, file_name, cr); 1543 nfs_rw_exit(&drp->r_rwlock); 1544 goto skip_rwlock_exit; 1545 } 1546 } 1547 1548 /* 1549 * If we created or found the correct vnode, due to create_flag or 1550 * fh_differs being set, then update directory cache attribute, readdir 1551 * and dnlc caches. 1552 */ 1553 if (create_flag || fh_differs) { 1554 dirattr_info_t dinfo, *dinfop; 1555 1556 /* 1557 * Make sure getattr succeeded before using results. 1558 * note: op 7 is getattr(dir) for both flavors of 1559 * open(create). 1560 */ 1561 if (create_flag && res.status == NFS4_OK) { 1562 dinfo.di_time_call = t; 1563 dinfo.di_cred = cr; 1564 dinfo.di_garp = 1565 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1566 dinfop = &dinfo; 1567 } else { 1568 dinfop = NULL; 1569 } 1570 1571 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1572 dinfop); 1573 } 1574 nfs_rw_exit(&drp->r_rwlock); 1575 skip_rwlock_exit: 1576 1577 /* 1578 * If the page cache for this file was flushed from actions 1579 * above, it was done asynchronously and if that is true, 1580 * there is a need to wait here for it to complete. This must 1581 * be done outside of start_fop/end_fop. 1582 */ 1583 (void) nfs4_waitfor_purge_complete(vp); 1584 1585 /* 1586 * It is implicit that we are in the open case (create_flag == 0) since 1587 * fh_differs can only be set to a non-zero value in the open case. 1588 */ 1589 if (fh_differs != 0 && vpi != NULL) 1590 VN_RELE(vpi); 1591 1592 /* 1593 * Be sure to set *vpp to the correct value before returning. 1594 */ 1595 *vpp = vp; 1596 1597 nfs4args_copen_free(open_args); 1598 if (setgid_flag) { 1599 nfs4args_verify_free(&argop[8]); 1600 nfs4args_setattr_free(&argop[9]); 1601 } 1602 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1603 1604 if (ncr) 1605 crfree(ncr); 1606 kmem_free(argop, argoplist_size); 1607 return (e.error); 1608 } 1609 1610 /* 1611 * Reopen an open instance. cf. nfs4open_otw(). 1612 * 1613 * Errors are returned by the nfs4_error_t parameter. 1614 * - ep->error contains an errno value or zero. 1615 * - if it is zero, ep->stat is set to an NFS status code, if any. 1616 * If the file could not be reopened, but the caller should continue, the 1617 * file is marked dead and no error values are returned. If the caller 1618 * should stop recovering open files and start over, either the ep->error 1619 * value or ep->stat will indicate an error (either something that requires 1620 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1621 * filehandles) may be handled silently by this routine. 1622 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1623 * will be started, so the caller should not do it. 1624 * 1625 * Gotos: 1626 * - kill_file : reopen failed in such a fashion to constitute marking the 1627 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1628 * is for cases where recovery is not possible. 1629 * - failed_reopen : same as above, except that the file has already been 1630 * marked dead, so no need to do it again. 1631 * - bailout : reopen failed but we are able to recover and retry the reopen - 1632 * either within this function immediatley or via the calling function. 1633 */ 1634 1635 void 1636 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1637 open_claim_type4 claim, bool_t frc_use_claim_previous, 1638 bool_t is_recov) 1639 { 1640 COMPOUND4args_clnt args; 1641 COMPOUND4res_clnt res; 1642 nfs_argop4 argop[4]; 1643 nfs_resop4 *resop; 1644 OPEN4res *op_res = NULL; 1645 OPEN4cargs *open_args; 1646 GETFH4res *gf_res; 1647 rnode4_t *rp = VTOR4(vp); 1648 int doqueue = 1; 1649 cred_t *cr = NULL, *cred_otw = NULL; 1650 nfs4_open_owner_t *oop = NULL; 1651 seqid4 seqid; 1652 nfs4_ga_res_t *garp; 1653 char fn[MAXNAMELEN]; 1654 nfs4_recov_state_t recov = {NULL, 0}; 1655 nfs4_lost_rqst_t lost_rqst; 1656 mntinfo4_t *mi = VTOMI4(vp); 1657 bool_t abort; 1658 char *failed_msg = ""; 1659 int fh_different; 1660 hrtime_t t; 1661 nfs4_bseqid_entry_t *bsep = NULL; 1662 1663 ASSERT(nfs4_consistent_type(vp)); 1664 ASSERT(curproc->p_zone == mi->mi_zone); 1665 1666 nfs4_error_zinit(ep); 1667 1668 /* this is the cred used to find the open owner */ 1669 cr = state_to_cred(osp); 1670 if (cr == NULL) { 1671 failed_msg = "Couldn't reopen: no cred"; 1672 goto kill_file; 1673 } 1674 /* use this cred for OTW operations */ 1675 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1676 1677 top: 1678 nfs4_error_zinit(ep); 1679 1680 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1681 /* File system has been unmounted, quit */ 1682 ep->error = EIO; 1683 failed_msg = "Couldn't reopen: file system has been unmounted"; 1684 goto kill_file; 1685 } 1686 1687 oop = osp->os_open_owner; 1688 1689 ASSERT(oop != NULL); 1690 if (oop == NULL) { /* be defensive in non-DEBUG */ 1691 failed_msg = "can't reopen: no open owner"; 1692 goto kill_file; 1693 } 1694 open_owner_hold(oop); 1695 1696 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1697 if (ep->error) { 1698 open_owner_rele(oop); 1699 oop = NULL; 1700 goto bailout; 1701 } 1702 1703 /* 1704 * If the rnode has a delegation and the delegation has been 1705 * recovered and the server didn't request a recall and the caller 1706 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1707 * recovery) and the rnode hasn't been marked dead, then install 1708 * the delegation stateid in the open stream. Otherwise, proceed 1709 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1710 */ 1711 mutex_enter(&rp->r_statev4_lock); 1712 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1713 !rp->r_deleg_return_pending && 1714 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1715 !rp->r_deleg_needs_recall && 1716 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1717 !(rp->r_flags & R4RECOVERR)) { 1718 mutex_enter(&osp->os_sync_lock); 1719 osp->os_delegation = 1; 1720 osp->open_stateid = rp->r_deleg_stateid; 1721 mutex_exit(&osp->os_sync_lock); 1722 mutex_exit(&rp->r_statev4_lock); 1723 goto bailout; 1724 } 1725 mutex_exit(&rp->r_statev4_lock); 1726 1727 /* 1728 * If the file failed recovery, just quit. This failure need not 1729 * affect other reopens, so don't return an error. 1730 */ 1731 mutex_enter(&rp->r_statelock); 1732 if (rp->r_flags & R4RECOVERR) { 1733 mutex_exit(&rp->r_statelock); 1734 ep->error = 0; 1735 goto failed_reopen; 1736 } 1737 mutex_exit(&rp->r_statelock); 1738 1739 /* 1740 * argop is empty here 1741 * 1742 * PUTFH, OPEN, GETATTR 1743 */ 1744 args.ctag = TAG_REOPEN; 1745 args.array_len = 4; 1746 args.array = argop; 1747 1748 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1749 "nfs4_reopen: file is type %d, id %s", 1750 vp->v_type, rnode4info(VTOR4(vp)))); 1751 1752 argop[0].argop = OP_CPUTFH; 1753 1754 if (claim != CLAIM_PREVIOUS) { 1755 /* 1756 * if this is a file mount then 1757 * use the mntinfo parentfh 1758 */ 1759 argop[0].nfs_argop4_u.opcputfh.sfh = 1760 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1761 VTOSV(vp)->sv_dfh; 1762 } else { 1763 /* putfh fh to reopen */ 1764 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1765 } 1766 1767 argop[1].argop = OP_COPEN; 1768 open_args = &argop[1].nfs_argop4_u.opcopen; 1769 open_args->claim = claim; 1770 1771 if (claim == CLAIM_NULL) { 1772 1773 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1774 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1775 "failed for vp 0x%p for CLAIM_NULL with %m", 1776 (void *)vp); 1777 failed_msg = "Couldn't reopen: vtoname failed for " 1778 "CLAIM_NULL"; 1779 /* nothing allocated yet */ 1780 goto kill_file; 1781 } 1782 1783 open_args->open_claim4_u.cfile = fn; 1784 } else if (claim == CLAIM_PREVIOUS) { 1785 1786 /* 1787 * We have two cases to deal with here: 1788 * 1) We're being called to reopen files in order to satisfy 1789 * a lock operation request which requires us to explicitly 1790 * reopen files which were opened under a delegation. If 1791 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1792 * that case, frc_use_claim_previous is TRUE and we must 1793 * use the rnode's current delegation type (r_deleg_type). 1794 * 2) We're reopening files during some form of recovery. 1795 * In this case, frc_use_claim_previous is FALSE and we 1796 * use the delegation type appropriate for recovery 1797 * (r_deleg_needs_recovery). 1798 */ 1799 mutex_enter(&rp->r_statev4_lock); 1800 open_args->open_claim4_u.delegate_type = 1801 frc_use_claim_previous ? 1802 rp->r_deleg_type : 1803 rp->r_deleg_needs_recovery; 1804 mutex_exit(&rp->r_statev4_lock); 1805 1806 } else if (claim == CLAIM_DELEGATE_CUR) { 1807 1808 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1809 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1810 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1811 "with %m", (void *)vp); 1812 failed_msg = "Couldn't reopen: vtoname failed for " 1813 "CLAIM_DELEGATE_CUR"; 1814 /* nothing allocated yet */ 1815 goto kill_file; 1816 } 1817 1818 mutex_enter(&rp->r_statev4_lock); 1819 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1820 rp->r_deleg_stateid; 1821 mutex_exit(&rp->r_statev4_lock); 1822 1823 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1824 } 1825 open_args->opentype = OPEN4_NOCREATE; 1826 open_args->owner.clientid = mi2clientid(mi); 1827 open_args->owner.owner_len = sizeof (oop->oo_name); 1828 open_args->owner.owner_val = 1829 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1830 bcopy(&oop->oo_name, open_args->owner.owner_val, 1831 open_args->owner.owner_len); 1832 open_args->share_access = 0; 1833 open_args->share_deny = 0; 1834 1835 mutex_enter(&osp->os_sync_lock); 1836 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1837 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1838 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1839 (void *)osp, (void *)rp, osp->os_share_acc_read, 1840 osp->os_share_acc_write, osp->os_open_ref_count, 1841 osp->os_mmap_read, osp->os_mmap_write, claim)); 1842 1843 if (osp->os_share_acc_read || osp->os_mmap_read) 1844 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1845 if (osp->os_share_acc_write || osp->os_mmap_write) 1846 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1847 if (osp->os_share_deny_read) 1848 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1849 if (osp->os_share_deny_write) 1850 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1851 mutex_exit(&osp->os_sync_lock); 1852 1853 seqid = nfs4_get_open_seqid(oop) + 1; 1854 open_args->seqid = seqid; 1855 1856 /* Construct the getfh part of the compound */ 1857 argop[2].argop = OP_GETFH; 1858 1859 /* Construct the getattr part of the compound */ 1860 argop[3].argop = OP_GETATTR; 1861 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1862 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1863 1864 t = gethrtime(); 1865 1866 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1867 1868 if (ep->error) { 1869 if (!is_recov && !frc_use_claim_previous && 1870 (ep->error == EINTR || ep->error == ETIMEDOUT || 1871 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1872 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1873 cred_otw, vp, NULL, open_args); 1874 abort = nfs4_start_recovery(ep, 1875 VTOMI4(vp), vp, NULL, NULL, 1876 lost_rqst.lr_op == OP_OPEN ? 1877 &lost_rqst : NULL, OP_OPEN, NULL); 1878 nfs4args_copen_free(open_args); 1879 goto bailout; 1880 } 1881 1882 nfs4args_copen_free(open_args); 1883 1884 if (ep->error == EACCES && cred_otw != cr) { 1885 crfree(cred_otw); 1886 cred_otw = cr; 1887 crhold(cred_otw); 1888 nfs4_end_open_seqid_sync(oop); 1889 open_owner_rele(oop); 1890 oop = NULL; 1891 goto top; 1892 } 1893 if (ep->error == ETIMEDOUT) 1894 goto bailout; 1895 failed_msg = "Couldn't reopen: rpc error"; 1896 goto kill_file; 1897 } 1898 1899 if (nfs4_need_to_bump_seqid(&res)) 1900 nfs4_set_open_seqid(seqid, oop, args.ctag); 1901 1902 switch (res.status) { 1903 case NFS4_OK: 1904 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1905 mutex_enter(&rp->r_statelock); 1906 rp->r_delay_interval = 0; 1907 mutex_exit(&rp->r_statelock); 1908 } 1909 break; 1910 case NFS4ERR_BAD_SEQID: 1911 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1912 args.ctag, open_args->seqid); 1913 1914 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1915 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1916 NULL, OP_OPEN, bsep); 1917 1918 nfs4args_copen_free(open_args); 1919 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1920 nfs4_end_open_seqid_sync(oop); 1921 open_owner_rele(oop); 1922 oop = NULL; 1923 kmem_free(bsep, sizeof (*bsep)); 1924 1925 goto kill_file; 1926 case NFS4ERR_NO_GRACE: 1927 nfs4args_copen_free(open_args); 1928 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1929 nfs4_end_open_seqid_sync(oop); 1930 open_owner_rele(oop); 1931 oop = NULL; 1932 if (claim == CLAIM_PREVIOUS) { 1933 /* 1934 * Retry as a plain open. We don't need to worry about 1935 * checking the changeinfo: it is acceptable for a 1936 * client to re-open a file and continue processing 1937 * (in the absence of locks). 1938 */ 1939 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1940 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1941 "will retry as CLAIM_NULL")); 1942 claim = CLAIM_NULL; 1943 nfs4_mi_kstat_inc_no_grace(mi); 1944 goto top; 1945 } 1946 failed_msg = 1947 "Couldn't reopen: tried reclaim outside grace period. "; 1948 goto kill_file; 1949 case NFS4ERR_GRACE: 1950 nfs4_set_grace_wait(mi); 1951 nfs4args_copen_free(open_args); 1952 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1953 nfs4_end_open_seqid_sync(oop); 1954 open_owner_rele(oop); 1955 oop = NULL; 1956 ep->error = nfs4_wait_for_grace(mi, &recov); 1957 if (ep->error != 0) 1958 goto bailout; 1959 goto top; 1960 case NFS4ERR_DELAY: 1961 nfs4_set_delay_wait(vp); 1962 nfs4args_copen_free(open_args); 1963 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1964 nfs4_end_open_seqid_sync(oop); 1965 open_owner_rele(oop); 1966 oop = NULL; 1967 ep->error = nfs4_wait_for_delay(vp, &recov); 1968 nfs4_mi_kstat_inc_delay(mi); 1969 if (ep->error != 0) 1970 goto bailout; 1971 goto top; 1972 case NFS4ERR_FHEXPIRED: 1973 /* recover filehandle and retry */ 1974 abort = nfs4_start_recovery(ep, 1975 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL); 1976 nfs4args_copen_free(open_args); 1977 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1978 nfs4_end_open_seqid_sync(oop); 1979 open_owner_rele(oop); 1980 oop = NULL; 1981 if (abort == FALSE) 1982 goto top; 1983 failed_msg = "Couldn't reopen: recovery aborted"; 1984 goto kill_file; 1985 case NFS4ERR_RESOURCE: 1986 case NFS4ERR_STALE_CLIENTID: 1987 case NFS4ERR_WRONGSEC: 1988 case NFS4ERR_EXPIRED: 1989 /* 1990 * Do not mark the file dead and let the calling 1991 * function initiate recovery. 1992 */ 1993 nfs4args_copen_free(open_args); 1994 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1995 nfs4_end_open_seqid_sync(oop); 1996 open_owner_rele(oop); 1997 oop = NULL; 1998 goto bailout; 1999 case NFS4ERR_ACCESS: 2000 if (cred_otw != cr) { 2001 crfree(cred_otw); 2002 cred_otw = cr; 2003 crhold(cred_otw); 2004 nfs4args_copen_free(open_args); 2005 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2006 nfs4_end_open_seqid_sync(oop); 2007 open_owner_rele(oop); 2008 oop = NULL; 2009 goto top; 2010 } 2011 /* fall through */ 2012 default: 2013 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2014 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2015 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2016 rnode4info(VTOR4(vp)))); 2017 failed_msg = "Couldn't reopen: NFSv4 error"; 2018 nfs4args_copen_free(open_args); 2019 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2020 goto kill_file; 2021 } 2022 2023 resop = &res.array[1]; /* open res */ 2024 op_res = &resop->nfs_resop4_u.opopen; 2025 2026 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2027 2028 /* 2029 * Check if the path we reopened really is the same 2030 * file. We could end up in a situation where the file 2031 * was removed and a new file created with the same name. 2032 */ 2033 resop = &res.array[2]; 2034 gf_res = &resop->nfs_resop4_u.opgetfh; 2035 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2036 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2037 if (fh_different) { 2038 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2039 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2040 /* Oops, we don't have the same file */ 2041 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2042 failed_msg = "Couldn't reopen: Persistent " 2043 "file handle changed"; 2044 else 2045 failed_msg = "Couldn't reopen: Volatile " 2046 "(no expire on open) file handle changed"; 2047 2048 nfs4args_copen_free(open_args); 2049 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2050 nfs_rw_exit(&mi->mi_fh_lock); 2051 goto kill_file; 2052 2053 } else { 2054 /* 2055 * We have volatile file handles that don't compare. 2056 * If the fids are the same then we assume that the 2057 * file handle expired but the rnode still refers to 2058 * the same file object. 2059 * 2060 * First check that we have fids or not. 2061 * If we don't we have a dumb server so we will 2062 * just assume every thing is ok for now. 2063 */ 2064 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2065 rp->r_attr.va_mask & AT_NODEID && 2066 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2067 /* 2068 * We have fids, but they don't 2069 * compare. So kill the file. 2070 */ 2071 failed_msg = 2072 "Couldn't reopen: file handle changed" 2073 " due to mismatched fids"; 2074 nfs4args_copen_free(open_args); 2075 (void) xdr_free(xdr_COMPOUND4res_clnt, 2076 (caddr_t)&res); 2077 nfs_rw_exit(&mi->mi_fh_lock); 2078 goto kill_file; 2079 } else { 2080 /* 2081 * We have volatile file handles that refers 2082 * to the same file (at least they have the 2083 * same fid) or we don't have fids so we 2084 * can't tell. :(. We'll be a kind and accepting 2085 * client so we'll update the rnode's file 2086 * handle with the otw handle. 2087 * 2088 * We need to drop mi->mi_fh_lock since 2089 * sh4_update acquires it. Since there is 2090 * only one recovery thread there is no 2091 * race. 2092 */ 2093 nfs_rw_exit(&mi->mi_fh_lock); 2094 sfh4_update(rp->r_fh, &gf_res->object); 2095 } 2096 } 2097 } else { 2098 nfs_rw_exit(&mi->mi_fh_lock); 2099 } 2100 2101 ASSERT(nfs4_consistent_type(vp)); 2102 2103 /* 2104 * If the server wanted an OPEN_CONFIRM but that fails, just start 2105 * over. Presumably if there is a persistent error it will show up 2106 * when we resend the OPEN. 2107 */ 2108 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2109 bool_t retry_open = FALSE; 2110 2111 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2112 cred_otw, is_recov, &retry_open, 2113 oop, FALSE, ep, NULL); 2114 if (ep->error || ep->stat) { 2115 nfs4args_copen_free(open_args); 2116 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2117 nfs4_end_open_seqid_sync(oop); 2118 open_owner_rele(oop); 2119 oop = NULL; 2120 goto top; 2121 } 2122 } 2123 2124 mutex_enter(&osp->os_sync_lock); 2125 osp->open_stateid = op_res->stateid; 2126 osp->os_delegation = 0; 2127 /* 2128 * Need to reset this bitfield for the possible case where we were 2129 * going to OTW CLOSE the file, got a non-recoverable error, and before 2130 * we could retry the CLOSE, OPENed the file again. 2131 */ 2132 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2133 osp->os_final_close = 0; 2134 osp->os_force_close = 0; 2135 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2136 osp->os_dc_openacc = open_args->share_access; 2137 mutex_exit(&osp->os_sync_lock); 2138 2139 nfs4_end_open_seqid_sync(oop); 2140 2141 /* accept delegation, if any */ 2142 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2143 2144 nfs4args_copen_free(open_args); 2145 2146 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2147 2148 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2149 2150 ASSERT(nfs4_consistent_type(vp)); 2151 2152 open_owner_rele(oop); 2153 crfree(cr); 2154 crfree(cred_otw); 2155 return; 2156 2157 kill_file: 2158 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2159 failed_reopen: 2160 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2161 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2162 (void *)osp, (void *)cr, rnode4info(rp))); 2163 mutex_enter(&osp->os_sync_lock); 2164 osp->os_failed_reopen = 1; 2165 mutex_exit(&osp->os_sync_lock); 2166 bailout: 2167 if (oop != NULL) { 2168 nfs4_end_open_seqid_sync(oop); 2169 open_owner_rele(oop); 2170 } 2171 if (cr != NULL) 2172 crfree(cr); 2173 if (cred_otw != NULL) 2174 crfree(cred_otw); 2175 } 2176 2177 /* for . and .. OPENs */ 2178 /* ARGSUSED */ 2179 static int 2180 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2181 { 2182 rnode4_t *rp; 2183 nfs4_ga_res_t gar; 2184 2185 ASSERT(curproc->p_zone == VTOMI4(*vpp)->mi_zone); 2186 2187 /* 2188 * If close-to-open consistency checking is turned off or 2189 * if there is no cached data, we can avoid 2190 * the over the wire getattr. Otherwise, force a 2191 * call to the server to get fresh attributes and to 2192 * check caches. This is required for close-to-open 2193 * consistency. 2194 */ 2195 rp = VTOR4(*vpp); 2196 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2197 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2198 return (0); 2199 2200 gar.n4g_va.va_mask = AT_ALL; 2201 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2202 } 2203 2204 /* 2205 * CLOSE a file 2206 */ 2207 static int 2208 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 2209 { 2210 rnode4_t *rp; 2211 int pc_err = 0; 2212 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2213 2214 /* 2215 * Remove client state for this (lockowner, file) pair. 2216 * Issue otw v4 call to have the server do the same. 2217 */ 2218 2219 rp = VTOR4(vp); 2220 2221 /* 2222 * zone_enter(2) prevents processes from changing zones with NFS files 2223 * open; if we happen to get here from the wrong zone we can't do 2224 * anything over the wire. 2225 */ 2226 if (VTOMI4(vp)->mi_zone != curproc->p_zone) { 2227 /* 2228 * We could attempt to clean up locks, except we're sure 2229 * that the current process didn't acquire any locks on 2230 * the file: any attempt to lock a file belong to another zone 2231 * will fail, and one can't lock an NFS file and then change 2232 * zones, as that fails too. 2233 * 2234 * Returning an error here is the sane thing to do. A 2235 * subsequent call to VN_RELE() which translates to a 2236 * nfs4_inactive() will clean up state: if the zone of the 2237 * vnode's origin is still alive and kicking, the inactive 2238 * thread will handle the request (from the correct zone), and 2239 * everything (minus the OTW close call) should be OK. If the 2240 * zone is going away nfs4_async_inactive() will throw away 2241 * delegations, open streams and cached pages inline. 2242 */ 2243 return (EIO); 2244 } 2245 2246 /* 2247 * If we are using local locking for this filesystem, then 2248 * release all of the SYSV style record locks. Otherwise, 2249 * we are doing network locking and we need to release all 2250 * of the network locks. All of the locks held by this 2251 * process on this file are released no matter what the 2252 * incoming reference count is. 2253 */ 2254 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2255 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2256 cleanshares(vp, ttoproc(curthread)->p_pid); 2257 } else 2258 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2259 2260 if (e.error) 2261 return (e.error); 2262 2263 if (count > 1) 2264 return (0); 2265 2266 /* 2267 * If the file has been `unlinked', then purge the 2268 * DNLC so that this vnode will get reycled quicker 2269 * and the .nfs* file on the server will get removed. 2270 */ 2271 if (rp->r_unldvp != NULL) 2272 dnlc_purge_vp(vp); 2273 2274 /* 2275 * If the file was open for write and there are pages, 2276 * do a synchronous flush and commit of all of the 2277 * dirty and uncommitted pages. 2278 */ 2279 ASSERT(!e.error); 2280 if ((flag & FWRITE) && nfs4_has_pages(vp)) { 2281 pc_err = nfs4_putpage_commit(vp, 0, 0, cr); 2282 } 2283 2284 mutex_enter(&rp->r_statelock); 2285 e.error = rp->r_error; 2286 rp->r_error = 0; 2287 mutex_exit(&rp->r_statelock); 2288 2289 /* Check to see if we need to close the file */ 2290 2291 if (vp->v_type != VREG) 2292 return (pc_err ? pc_err : e.error); 2293 2294 /* Let nfs4close_one figure out if an OTW close is needed. */ 2295 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2296 2297 if (pc_err) 2298 return (pc_err); 2299 2300 return (e.error ? e.error : geterrno4(e.stat)); 2301 } 2302 2303 /* 2304 * Initialize *lost_rqstp. 2305 */ 2306 2307 static void 2308 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2309 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2310 vnode_t *vp) 2311 { 2312 if (error != ETIMEDOUT && error != EINTR && 2313 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2314 lost_rqstp->lr_op = 0; 2315 return; 2316 } 2317 2318 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2319 "nfs4close_save_lost_rqst: error %d", error)); 2320 2321 lost_rqstp->lr_op = OP_CLOSE; 2322 /* 2323 * The vp is held and rele'd via the recovery code. 2324 * See nfs4_save_lost_rqst. 2325 */ 2326 lost_rqstp->lr_vp = vp; 2327 lost_rqstp->lr_dvp = NULL; 2328 lost_rqstp->lr_oop = oop; 2329 lost_rqstp->lr_osp = osp; 2330 ASSERT(osp != NULL); 2331 ASSERT(mutex_owned(&osp->os_sync_lock)); 2332 osp->os_pending_close = 1; 2333 lost_rqstp->lr_lop = NULL; 2334 lost_rqstp->lr_cr = cr; 2335 lost_rqstp->lr_flk = NULL; 2336 lost_rqstp->lr_putfirst = FALSE; 2337 } 2338 2339 /* 2340 * Assumes you already have the open seqid sync grabbed as well as the 2341 * 'os_sync_lock'. Note: this will release the open seqid sync and 2342 * 'os_sync_lock' if client recovery starts. Calling functions have to 2343 * be prepared to handle this. 2344 * 2345 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2346 * was needed and was started, and that the calling function should retry 2347 * this function; otherwise it is returned as 0. 2348 * 2349 * Errors are returned via the nfs4_error_t parameter. 2350 */ 2351 static void 2352 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2353 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2354 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2355 { 2356 COMPOUND4args_clnt args; 2357 COMPOUND4res_clnt res; 2358 CLOSE4args *close_args; 2359 nfs_resop4 *resop; 2360 nfs_argop4 argop[3]; 2361 int doqueue = 1; 2362 mntinfo4_t *mi; 2363 seqid4 seqid; 2364 vnode_t *vp; 2365 bool_t needrecov = FALSE; 2366 nfs4_lost_rqst_t lost_rqst; 2367 hrtime_t t; 2368 2369 ASSERT(curproc->p_zone == VTOMI4(RTOV4(rp))->mi_zone); 2370 2371 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2372 2373 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2374 2375 /* Only set this to 1 if recovery is started */ 2376 *recov = 0; 2377 2378 /* do the OTW call to close the file */ 2379 2380 if (close_type == CLOSE_RESEND) 2381 args.ctag = TAG_CLOSE_LOST; 2382 else if (close_type == CLOSE_AFTER_RESEND) 2383 args.ctag = TAG_CLOSE_UNDO; 2384 else 2385 args.ctag = TAG_CLOSE; 2386 2387 args.array_len = 3; 2388 args.array = argop; 2389 2390 vp = RTOV4(rp); 2391 2392 mi = VTOMI4(vp); 2393 2394 /* putfh target fh */ 2395 argop[0].argop = OP_CPUTFH; 2396 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2397 2398 argop[1].argop = OP_GETATTR; 2399 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2400 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2401 2402 argop[2].argop = OP_CLOSE; 2403 close_args = &argop[2].nfs_argop4_u.opclose; 2404 2405 seqid = nfs4_get_open_seqid(oop) + 1; 2406 2407 close_args->seqid = seqid; 2408 close_args->open_stateid = osp->open_stateid; 2409 2410 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2411 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2412 rnode4info(rp))); 2413 2414 t = gethrtime(); 2415 2416 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2417 2418 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2419 nfs4_set_open_seqid(seqid, oop, args.ctag); 2420 } 2421 2422 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2423 if (ep->error && !needrecov) { 2424 /* 2425 * if there was an error and no recovery is to be done 2426 * then then set up the file to flush its cache if 2427 * needed for the next caller. 2428 */ 2429 mutex_enter(&rp->r_statelock); 2430 PURGE_ATTRCACHE4_LOCKED(rp); 2431 rp->r_flags &= ~R4WRITEMODIFIED; 2432 mutex_exit(&rp->r_statelock); 2433 return; 2434 } 2435 2436 if (needrecov) { 2437 bool_t abort; 2438 nfs4_bseqid_entry_t *bsep = NULL; 2439 2440 if (close_type != CLOSE_RESEND) 2441 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2442 osp, cred_otw, vp); 2443 2444 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2445 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2446 0, args.ctag, close_args->seqid); 2447 2448 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2449 "nfs4close_otw: initiating recovery. error %d " 2450 "res.status %d", ep->error, res.status)); 2451 2452 /* 2453 * Drop the 'os_sync_lock' here so we don't hit 2454 * a potential recursive mutex_enter via an 2455 * 'open_stream_hold()'. 2456 */ 2457 mutex_exit(&osp->os_sync_lock); 2458 *have_sync_lockp = 0; 2459 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2460 (close_type != CLOSE_RESEND && 2461 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2462 OP_CLOSE, bsep); 2463 2464 /* drop open seq sync, and let the calling function regrab it */ 2465 nfs4_end_open_seqid_sync(oop); 2466 *did_start_seqid_syncp = 0; 2467 2468 if (bsep) 2469 kmem_free(bsep, sizeof (*bsep)); 2470 /* 2471 * For signals, the caller wants to quit, so don't say to 2472 * retry. For forced unmount, if it's a user thread, it 2473 * wants to quit. If it's a recovery thread, the retry 2474 * will happen higher-up on the call stack. Either way, 2475 * don't say to retry. 2476 */ 2477 if (abort == FALSE && ep->error != EINTR && 2478 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2479 close_type != CLOSE_RESEND && 2480 close_type != CLOSE_AFTER_RESEND) 2481 *recov = 1; 2482 else 2483 *recov = 0; 2484 2485 if (!ep->error) 2486 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2487 return; 2488 } 2489 2490 if (res.status) { 2491 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2492 return; 2493 } 2494 2495 mutex_enter(&rp->r_statev4_lock); 2496 rp->created_v4 = 0; 2497 mutex_exit(&rp->r_statev4_lock); 2498 2499 resop = &res.array[2]; 2500 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2501 osp->os_valid = 0; 2502 2503 /* 2504 * This removes the reference obtained at OPEN; ie, when the 2505 * open stream structure was created. 2506 * 2507 * We don't have to worry about calling 'open_stream_rele' 2508 * since we our currently holding a reference to the open 2509 * stream which means the count cannot go to 0 with this 2510 * decrement. 2511 */ 2512 ASSERT(osp->os_ref_count >= 2); 2513 osp->os_ref_count--; 2514 2515 if (!ep->error) 2516 nfs4_attr_cache(vp, 2517 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2518 t, cred_otw, TRUE, NULL); 2519 2520 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2521 " returning %d", ep->error)); 2522 2523 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2524 } 2525 2526 /* ARGSUSED */ 2527 static int 2528 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2529 caller_context_t *ct) 2530 { 2531 rnode4_t *rp; 2532 u_offset_t off; 2533 offset_t diff; 2534 uint_t on; 2535 uint_t n; 2536 caddr_t base; 2537 uint_t flags; 2538 int error; 2539 mntinfo4_t *mi; 2540 2541 rp = VTOR4(vp); 2542 2543 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2544 2545 if (IS_SHADOW(vp, rp)) 2546 vp = RTOV4(rp); 2547 2548 if (vp->v_type != VREG) 2549 return (EISDIR); 2550 2551 mi = VTOMI4(vp); 2552 2553 if (curproc->p_zone != mi->mi_zone) 2554 return (EIO); 2555 2556 if (uiop->uio_resid == 0) 2557 return (0); 2558 2559 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2560 return (EINVAL); 2561 2562 mutex_enter(&rp->r_statelock); 2563 if (rp->r_flags & R4RECOVERRP) 2564 error = (rp->r_error ? rp->r_error : EIO); 2565 else 2566 error = 0; 2567 mutex_exit(&rp->r_statelock); 2568 if (error) 2569 return (error); 2570 2571 /* 2572 * Bypass VM if caching has been disabled (e.g., locking) or if 2573 * using client-side direct I/O and the file is not mmap'd and 2574 * there are no cached pages. 2575 */ 2576 if ((vp->v_flag & VNOCACHE) || 2577 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2578 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2579 size_t resid = 0; 2580 2581 return (nfs4read(vp, NULL, uiop->uio_loffset, 2582 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2583 } 2584 2585 error = 0; 2586 2587 do { 2588 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2589 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2590 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2591 2592 if (error = nfs4_validate_caches(vp, cr)) 2593 break; 2594 2595 mutex_enter(&rp->r_statelock); 2596 diff = rp->r_size - uiop->uio_loffset; 2597 mutex_exit(&rp->r_statelock); 2598 if (diff <= 0) 2599 break; 2600 if (diff < n) 2601 n = (uint_t)diff; 2602 2603 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ); 2604 2605 error = uiomove(base + on, n, UIO_READ, uiop); 2606 2607 if (!error) { 2608 /* 2609 * If read a whole block or read to eof, 2610 * won't need this buffer again soon. 2611 */ 2612 mutex_enter(&rp->r_statelock); 2613 if (n + on == MAXBSIZE || 2614 uiop->uio_loffset == rp->r_size) 2615 flags = SM_DONTNEED; 2616 else 2617 flags = 0; 2618 mutex_exit(&rp->r_statelock); 2619 error = segmap_release(segkmap, base, flags); 2620 } else 2621 (void) segmap_release(segkmap, base, 0); 2622 } while (!error && uiop->uio_resid > 0); 2623 2624 return (error); 2625 } 2626 2627 /* ARGSUSED */ 2628 static int 2629 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2630 caller_context_t *ct) 2631 { 2632 rlim64_t limit = uiop->uio_llimit; 2633 rnode4_t *rp; 2634 u_offset_t off; 2635 caddr_t base; 2636 uint_t flags; 2637 int remainder; 2638 size_t n; 2639 int on; 2640 int error; 2641 int resid; 2642 u_offset_t offset; 2643 mntinfo4_t *mi; 2644 uint_t bsize; 2645 2646 rp = VTOR4(vp); 2647 2648 if (IS_SHADOW(vp, rp)) 2649 vp = RTOV4(rp); 2650 2651 if (vp->v_type != VREG) 2652 return (EISDIR); 2653 2654 mi = VTOMI4(vp); 2655 2656 if (curproc->p_zone != mi->mi_zone) 2657 return (EIO); 2658 2659 if (uiop->uio_resid == 0) 2660 return (0); 2661 2662 mutex_enter(&rp->r_statelock); 2663 if (rp->r_flags & R4RECOVERRP) 2664 error = (rp->r_error ? rp->r_error : EIO); 2665 else 2666 error = 0; 2667 mutex_exit(&rp->r_statelock); 2668 if (error) 2669 return (error); 2670 2671 if (ioflag & FAPPEND) { 2672 struct vattr va; 2673 2674 /* 2675 * Must serialize if appending. 2676 */ 2677 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2678 nfs_rw_exit(&rp->r_rwlock); 2679 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2680 INTR(vp))) 2681 return (EINTR); 2682 } 2683 2684 va.va_mask = AT_SIZE; 2685 error = nfs4getattr(vp, &va, cr); 2686 if (error) 2687 return (error); 2688 uiop->uio_loffset = va.va_size; 2689 } 2690 2691 offset = uiop->uio_loffset + uiop->uio_resid; 2692 2693 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2694 return (EINVAL); 2695 2696 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2697 limit = MAXOFFSET_T; 2698 2699 /* 2700 * Check to make sure that the process will not exceed 2701 * its limit on file size. It is okay to write up to 2702 * the limit, but not beyond. Thus, the write which 2703 * reaches the limit will be short and the next write 2704 * will return an error. 2705 */ 2706 remainder = 0; 2707 if (offset > uiop->uio_llimit) { 2708 remainder = offset - uiop->uio_llimit; 2709 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2710 if (uiop->uio_resid <= 0) { 2711 proc_t *p = ttoproc(curthread); 2712 2713 uiop->uio_resid += remainder; 2714 mutex_enter(&p->p_lock); 2715 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2716 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2717 mutex_exit(&p->p_lock); 2718 return (EFBIG); 2719 } 2720 } 2721 2722 /* update the change attribute, if we have a write delegation */ 2723 2724 mutex_enter(&rp->r_statev4_lock); 2725 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2726 rp->r_deleg_change++; 2727 2728 mutex_exit(&rp->r_statev4_lock); 2729 2730 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2731 return (EINTR); 2732 2733 /* 2734 * Bypass VM if caching has been disabled (e.g., locking) or if 2735 * using client-side direct I/O and the file is not mmap'd and 2736 * there are no cached pages. 2737 */ 2738 if ((vp->v_flag & VNOCACHE) || 2739 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2740 rp->r_mapcnt == 0 && !nfs4_has_pages(vp))) { 2741 size_t bufsize; 2742 int count; 2743 u_offset_t org_offset; 2744 stable_how4 stab_comm; 2745 nfs4_fwrite: 2746 if (rp->r_flags & R4STALE) { 2747 resid = uiop->uio_resid; 2748 offset = uiop->uio_loffset; 2749 error = rp->r_error; 2750 goto bottom; 2751 } 2752 2753 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2754 base = kmem_alloc(bufsize, KM_SLEEP); 2755 do { 2756 if (ioflag & FDSYNC) 2757 stab_comm = DATA_SYNC4; 2758 else 2759 stab_comm = FILE_SYNC4; 2760 resid = uiop->uio_resid; 2761 offset = uiop->uio_loffset; 2762 count = MIN(uiop->uio_resid, bufsize); 2763 org_offset = uiop->uio_loffset; 2764 error = uiomove(base, count, UIO_WRITE, uiop); 2765 if (!error) { 2766 error = nfs4write(vp, base, org_offset, 2767 count, cr, &stab_comm); 2768 if (!error) { 2769 mutex_enter(&rp->r_statelock); 2770 if (rp->r_size < uiop->uio_loffset) 2771 rp->r_size = uiop->uio_loffset; 2772 mutex_exit(&rp->r_statelock); 2773 } 2774 } 2775 } while (!error && uiop->uio_resid > 0); 2776 kmem_free(base, bufsize); 2777 goto bottom; 2778 } 2779 2780 bsize = vp->v_vfsp->vfs_bsize; 2781 2782 do { 2783 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2784 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2785 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2786 2787 resid = uiop->uio_resid; 2788 offset = uiop->uio_loffset; 2789 2790 if (rp->r_flags & R4STALE) { 2791 error = rp->r_error; 2792 break; 2793 } 2794 2795 /* 2796 * Don't create dirty pages faster than they 2797 * can be cleaned so that the system doesn't 2798 * get imbalanced. If the async queue is 2799 * maxed out, then wait for it to drain before 2800 * creating more dirty pages. Also, wait for 2801 * any threads doing pagewalks in the vop_getattr 2802 * entry points so that they don't block for 2803 * long periods. 2804 */ 2805 mutex_enter(&rp->r_statelock); 2806 while ((mi->mi_max_threads != 0 && 2807 rp->r_awcount > 2 * mi->mi_max_threads) || 2808 rp->r_gcount > 0) 2809 cv_wait(&rp->r_cv, &rp->r_statelock); 2810 mutex_exit(&rp->r_statelock); 2811 2812 if (segmap_kpm) { 2813 int pon = uiop->uio_loffset & PAGEOFFSET; 2814 size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid); 2815 int pagecreate; 2816 2817 mutex_enter(&rp->r_statelock); 2818 pagecreate = (pon == 0) && (pn == PAGESIZE || 2819 uiop->uio_loffset + pn >= rp->r_size); 2820 mutex_exit(&rp->r_statelock); 2821 2822 base = segmap_getmapflt(segkmap, vp, off + on, 2823 pn, !pagecreate, S_WRITE); 2824 2825 error = writerp4(rp, base + pon, n, uiop, pagecreate); 2826 2827 } else { 2828 base = segmap_getmapflt(segkmap, vp, off + on, 2829 n, 0, S_READ); 2830 error = writerp4(rp, base + on, n, uiop, 0); 2831 } 2832 2833 if (!error) { 2834 if (mi->mi_flags & MI4_NOAC) 2835 flags = SM_WRITE; 2836 else if ((uiop->uio_loffset % bsize) == 0 || 2837 IS_SWAPVP(vp)) { 2838 /* 2839 * Have written a whole block. 2840 * Start an asynchronous write 2841 * and mark the buffer to 2842 * indicate that it won't be 2843 * needed again soon. 2844 */ 2845 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2846 } else 2847 flags = 0; 2848 if ((ioflag & (FSYNC|FDSYNC)) || 2849 (rp->r_flags & R4OUTOFSPACE)) { 2850 flags &= ~SM_ASYNC; 2851 flags |= SM_WRITE; 2852 } 2853 error = segmap_release(segkmap, base, flags); 2854 } else { 2855 (void) segmap_release(segkmap, base, 0); 2856 /* 2857 * In the event that we got an access error while 2858 * faulting in a page for a write-only file just 2859 * force a write. 2860 */ 2861 if (error == EACCES) 2862 goto nfs4_fwrite; 2863 } 2864 } while (!error && uiop->uio_resid > 0); 2865 2866 bottom: 2867 if (error) { 2868 uiop->uio_resid = resid + remainder; 2869 uiop->uio_loffset = offset; 2870 } else { 2871 uiop->uio_resid += remainder; 2872 2873 mutex_enter(&rp->r_statev4_lock); 2874 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 2875 gethrestime(&rp->r_attr.va_mtime); 2876 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 2877 } 2878 mutex_exit(&rp->r_statev4_lock); 2879 } 2880 2881 nfs_rw_exit(&rp->r_lkserlock); 2882 2883 return (error); 2884 } 2885 2886 /* 2887 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2888 */ 2889 static int 2890 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 2891 int flags, cred_t *cr) 2892 { 2893 struct buf *bp; 2894 int error; 2895 page_t *savepp; 2896 uchar_t fsdata; 2897 stable_how4 stab_comm; 2898 2899 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 2900 bp = pageio_setup(pp, len, vp, flags); 2901 ASSERT(bp != NULL); 2902 2903 /* 2904 * pageio_setup should have set b_addr to 0. This 2905 * is correct since we want to do I/O on a page 2906 * boundary. bp_mapin will use this addr to calculate 2907 * an offset, and then set b_addr to the kernel virtual 2908 * address it allocated for us. 2909 */ 2910 ASSERT(bp->b_un.b_addr == 0); 2911 2912 bp->b_edev = 0; 2913 bp->b_dev = 0; 2914 bp->b_lblkno = lbtodb(off); 2915 bp->b_file = vp; 2916 bp->b_offset = (offset_t)off; 2917 bp_mapin(bp); 2918 2919 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 2920 freemem > desfree) 2921 stab_comm = UNSTABLE4; 2922 else 2923 stab_comm = FILE_SYNC4; 2924 2925 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 2926 2927 bp_mapout(bp); 2928 pageio_done(bp); 2929 2930 if (stab_comm == UNSTABLE4) 2931 fsdata = C_DELAYCOMMIT; 2932 else 2933 fsdata = C_NOCOMMIT; 2934 2935 savepp = pp; 2936 do { 2937 pp->p_fsdata = fsdata; 2938 } while ((pp = pp->p_next) != savepp); 2939 2940 return (error); 2941 } 2942 2943 /* 2944 */ 2945 static int 2946 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 2947 { 2948 nfs4_open_owner_t *oop; 2949 nfs4_open_stream_t *osp; 2950 rnode4_t *rp = VTOR4(vp); 2951 mntinfo4_t *mi = VTOMI4(vp); 2952 int reopen_needed; 2953 2954 ASSERT(curproc->p_zone == mi->mi_zone); 2955 2956 2957 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 2958 if (!oop) 2959 return (EIO); 2960 2961 /* returns with 'os_sync_lock' held */ 2962 osp = find_open_stream(oop, rp); 2963 if (!osp) { 2964 open_owner_rele(oop); 2965 return (EIO); 2966 } 2967 2968 if (osp->os_failed_reopen) { 2969 mutex_exit(&osp->os_sync_lock); 2970 open_stream_rele(osp, rp); 2971 open_owner_rele(oop); 2972 return (EIO); 2973 } 2974 2975 /* 2976 * Determine whether a reopen is needed. If this 2977 * is a delegation open stream, then the os_delegation bit 2978 * should be set. 2979 */ 2980 2981 reopen_needed = osp->os_delegation; 2982 2983 mutex_exit(&osp->os_sync_lock); 2984 open_owner_rele(oop); 2985 2986 if (reopen_needed) { 2987 nfs4_error_zinit(ep); 2988 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 2989 mutex_enter(&osp->os_sync_lock); 2990 if (ep->error || ep->stat || osp->os_failed_reopen) { 2991 mutex_exit(&osp->os_sync_lock); 2992 open_stream_rele(osp, rp); 2993 return (EIO); 2994 } 2995 mutex_exit(&osp->os_sync_lock); 2996 } 2997 open_stream_rele(osp, rp); 2998 2999 return (0); 3000 } 3001 3002 /* 3003 * Write to file. Writes to remote server in largest size 3004 * chunks that the server can handle. Write is synchronous. 3005 */ 3006 static int 3007 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3008 stable_how4 *stab_comm) 3009 { 3010 mntinfo4_t *mi; 3011 COMPOUND4args_clnt args; 3012 COMPOUND4res_clnt res; 3013 WRITE4args *wargs; 3014 WRITE4res *wres; 3015 nfs_argop4 argop[2]; 3016 nfs_resop4 *resop; 3017 int tsize; 3018 stable_how4 stable; 3019 rnode4_t *rp; 3020 int doqueue = 1; 3021 bool_t needrecov; 3022 nfs4_recov_state_t recov_state; 3023 nfs4_stateid_types_t sid_types; 3024 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3025 3026 rp = VTOR4(vp); 3027 mi = VTOMI4(vp); 3028 3029 ASSERT(curproc->p_zone == mi->mi_zone); 3030 3031 stable = *stab_comm; 3032 *stab_comm = FILE_SYNC4; 3033 3034 needrecov = FALSE; 3035 recov_state.rs_flags = 0; 3036 recov_state.rs_num_retry_despite_err = 0; 3037 nfs4_init_stateid_types(&sid_types); 3038 3039 recov_retry: 3040 args.ctag = TAG_WRITE; 3041 args.array_len = 2; 3042 args.array = argop; 3043 3044 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3045 &recov_state, NULL); 3046 if (e.error) 3047 return (e.error); 3048 3049 /* 0. putfh target fh */ 3050 argop[0].argop = OP_CPUTFH; 3051 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3052 3053 /* 1. write */ 3054 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3055 3056 do { 3057 3058 wargs->offset = (offset4)offset; 3059 wargs->data_val = base; 3060 3061 if (mi->mi_io_kstats) { 3062 mutex_enter(&mi->mi_lock); 3063 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3064 mutex_exit(&mi->mi_lock); 3065 } 3066 3067 if ((vp->v_flag & VNOCACHE) || 3068 (rp->r_flags & R4DIRECTIO) || 3069 (mi->mi_flags & MI4_DIRECTIO)) 3070 tsize = MIN(mi->mi_stsize, count); 3071 else 3072 tsize = MIN(mi->mi_curwrite, count); 3073 wargs->data_len = (uint_t)tsize; 3074 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3075 3076 if (mi->mi_io_kstats) { 3077 mutex_enter(&mi->mi_lock); 3078 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3079 mutex_exit(&mi->mi_lock); 3080 } 3081 3082 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3083 if (e.error && !needrecov) { 3084 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3085 &recov_state, needrecov); 3086 return (e.error); 3087 } 3088 3089 3090 /* 3091 * Do handling of OLD_STATEID outside 3092 * of the normal recovery framework. 3093 * 3094 * If write receives a BAD stateid error while using a 3095 * delegation stateid, retry using the open stateid (if it 3096 * exists). If it doesn't have an open stateid, reopen the 3097 * file first, then retry. 3098 */ 3099 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3100 sid_types.cur_sid_type != SPEC_SID) { 3101 nfs4_save_stateid(&wargs->stateid, &sid_types); 3102 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3103 &recov_state, needrecov); 3104 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3105 goto recov_retry; 3106 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3107 sid_types.cur_sid_type == DEL_SID) { 3108 nfs4_save_stateid(&wargs->stateid, &sid_types); 3109 mutex_enter(&rp->r_statev4_lock); 3110 rp->r_deleg_return_pending = TRUE; 3111 mutex_exit(&rp->r_statev4_lock); 3112 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3113 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3114 &recov_state, needrecov); 3115 (void) xdr_free(xdr_COMPOUND4res_clnt, 3116 (caddr_t)&res); 3117 return (EIO); 3118 } 3119 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3120 &recov_state, needrecov); 3121 /* hold needed for nfs4delegreturn_thread */ 3122 VN_HOLD(vp); 3123 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3124 NFS4_DR_DISCARD), FALSE); 3125 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3126 goto recov_retry; 3127 } 3128 3129 if (needrecov) { 3130 bool_t abort; 3131 3132 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3133 "nfs4write: client got error %d, res.status %d" 3134 ", so start recovery", e.error, res.status)); 3135 3136 abort = nfs4_start_recovery(&e, 3137 VTOMI4(vp), vp, NULL, &wargs->stateid, 3138 NULL, OP_WRITE, NULL); 3139 if (!e.error) { 3140 e.error = geterrno4(res.status); 3141 (void) xdr_free(xdr_COMPOUND4res_clnt, 3142 (caddr_t)&res); 3143 } 3144 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3145 &recov_state, needrecov); 3146 if (abort == FALSE) 3147 goto recov_retry; 3148 return (e.error); 3149 } 3150 3151 if (res.status) { 3152 e.error = geterrno4(res.status); 3153 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3154 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3155 &recov_state, needrecov); 3156 return (e.error); 3157 } 3158 3159 resop = &res.array[1]; /* write res */ 3160 wres = &resop->nfs_resop4_u.opwrite; 3161 3162 if ((int)wres->count > tsize) { 3163 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3164 3165 zcmn_err(getzoneid(), CE_WARN, 3166 "nfs4write: server wrote %u, requested was %u", 3167 (int)wres->count, tsize); 3168 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3169 &recov_state, needrecov); 3170 return (EIO); 3171 } 3172 if (wres->committed == UNSTABLE4) { 3173 *stab_comm = UNSTABLE4; 3174 if (wargs->stable == DATA_SYNC4 || 3175 wargs->stable == FILE_SYNC4) { 3176 (void) xdr_free(xdr_COMPOUND4res_clnt, 3177 (caddr_t)&res); 3178 zcmn_err(getzoneid(), CE_WARN, 3179 "nfs4write: server %s did not commit " 3180 "to stable storage", 3181 rp->r_server->sv_hostname); 3182 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3183 &recov_state, needrecov); 3184 return (EIO); 3185 } 3186 } 3187 3188 tsize = (int)wres->count; 3189 count -= tsize; 3190 base += tsize; 3191 offset += tsize; 3192 if (mi->mi_io_kstats) { 3193 mutex_enter(&mi->mi_lock); 3194 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3195 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3196 tsize; 3197 mutex_exit(&mi->mi_lock); 3198 } 3199 lwp_stat_update(LWP_STAT_OUBLK, 1); 3200 mutex_enter(&rp->r_statelock); 3201 if (rp->r_flags & R4HAVEVERF) { 3202 if (rp->r_writeverf != wres->writeverf) { 3203 nfs4_set_mod(vp); 3204 rp->r_writeverf = wres->writeverf; 3205 } 3206 } else { 3207 rp->r_writeverf = wres->writeverf; 3208 rp->r_flags |= R4HAVEVERF; 3209 } 3210 PURGE_ATTRCACHE4_LOCKED(rp); 3211 rp->r_flags |= R4WRITEMODIFIED; 3212 gethrestime(&rp->r_attr.va_mtime); 3213 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3214 mutex_exit(&rp->r_statelock); 3215 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3216 } while (count); 3217 3218 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, needrecov); 3219 3220 return (e.error); 3221 } 3222 3223 /* 3224 * Read from a file. Reads data in largest chunks our interface can handle. 3225 */ 3226 static int 3227 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3228 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3229 { 3230 mntinfo4_t *mi; 3231 COMPOUND4args_clnt args; 3232 COMPOUND4res_clnt res; 3233 READ4args *rargs; 3234 nfs_argop4 argop[2]; 3235 int tsize; 3236 int doqueue; 3237 rnode4_t *rp; 3238 int data_len; 3239 bool_t is_eof; 3240 bool_t needrecov = FALSE; 3241 nfs4_recov_state_t recov_state; 3242 nfs4_stateid_types_t sid_types; 3243 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3244 3245 rp = VTOR4(vp); 3246 mi = VTOMI4(vp); 3247 doqueue = 1; 3248 3249 ASSERT(curproc->p_zone == mi->mi_zone); 3250 3251 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3252 3253 args.array_len = 2; 3254 args.array = argop; 3255 3256 nfs4_init_stateid_types(&sid_types); 3257 3258 recov_state.rs_flags = 0; 3259 recov_state.rs_num_retry_despite_err = 0; 3260 3261 recov_retry: 3262 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3263 &recov_state, NULL); 3264 if (e.error) 3265 return (e.error); 3266 3267 /* putfh target fh */ 3268 argop[0].argop = OP_CPUTFH; 3269 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3270 3271 /* read */ 3272 argop[1].argop = OP_READ; 3273 rargs = &argop[1].nfs_argop4_u.opread; 3274 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3275 OP_READ, &sid_types, async); 3276 3277 do { 3278 if (mi->mi_io_kstats) { 3279 mutex_enter(&mi->mi_lock); 3280 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3281 mutex_exit(&mi->mi_lock); 3282 } 3283 3284 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3285 "nfs4read: %s call, rp %s", 3286 needrecov ? "recov" : "first", 3287 rnode4info(rp))); 3288 3289 if ((vp->v_flag & VNOCACHE) || 3290 (rp->r_flags & R4DIRECTIO) || 3291 (mi->mi_flags & MI4_DIRECTIO)) 3292 tsize = MIN(mi->mi_tsize, count); 3293 else 3294 tsize = MIN(mi->mi_curread, count); 3295 rargs->offset = (offset4)offset; 3296 rargs->count = (count4)tsize; 3297 rargs->res_data_val_alt = NULL; 3298 rargs->res_mblk = NULL; 3299 rargs->res_uiop = NULL; 3300 rargs->res_maxsize = 0; 3301 if (uiop) 3302 rargs->res_uiop = uiop; 3303 else 3304 rargs->res_data_val_alt = base; 3305 rargs->res_maxsize = tsize; 3306 3307 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3308 #ifdef DEBUG 3309 if (nfs4read_error_inject) { 3310 res.status = nfs4read_error_inject; 3311 nfs4read_error_inject = 0; 3312 } 3313 #endif 3314 3315 if (mi->mi_io_kstats) { 3316 mutex_enter(&mi->mi_lock); 3317 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3318 mutex_exit(&mi->mi_lock); 3319 } 3320 3321 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3322 if (e.error != 0 && !needrecov) { 3323 nfs4_end_fop(mi, vp, NULL, OH_READ, 3324 &recov_state, needrecov); 3325 return (e.error); 3326 } 3327 3328 /* 3329 * Do proper retry for OLD and BAD stateid errors outside 3330 * of the normal recovery framework. There are two differences 3331 * between async and sync reads. The first is that we allow 3332 * retry on BAD_STATEID for async reads, but not sync reads. 3333 * The second is that we mark the file dead for a failed 3334 * attempt with a special stateid for sync reads, but just 3335 * return EIO for async reads. 3336 * 3337 * If a sync read receives a BAD stateid error while using a 3338 * delegation stateid, retry using the open stateid (if it 3339 * exists). If it doesn't have an open stateid, reopen the 3340 * file first, then retry. 3341 */ 3342 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3343 res.status == NFS4ERR_BAD_STATEID) && async) { 3344 nfs4_end_fop(mi, vp, NULL, OH_READ, 3345 &recov_state, needrecov); 3346 if (sid_types.cur_sid_type == SPEC_SID) { 3347 (void) xdr_free(xdr_COMPOUND4res_clnt, 3348 (caddr_t)&res); 3349 return (EIO); 3350 } 3351 nfs4_save_stateid(&rargs->stateid, &sid_types); 3352 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3353 goto recov_retry; 3354 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3355 !async && sid_types.cur_sid_type != SPEC_SID) { 3356 nfs4_save_stateid(&rargs->stateid, &sid_types); 3357 nfs4_end_fop(mi, vp, NULL, OH_READ, 3358 &recov_state, needrecov); 3359 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3360 goto recov_retry; 3361 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3362 sid_types.cur_sid_type == DEL_SID) { 3363 nfs4_save_stateid(&rargs->stateid, &sid_types); 3364 mutex_enter(&rp->r_statev4_lock); 3365 rp->r_deleg_return_pending = TRUE; 3366 mutex_exit(&rp->r_statev4_lock); 3367 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3368 nfs4_end_fop(mi, vp, NULL, OH_READ, 3369 &recov_state, needrecov); 3370 (void) xdr_free(xdr_COMPOUND4res_clnt, 3371 (caddr_t)&res); 3372 return (EIO); 3373 } 3374 nfs4_end_fop(mi, vp, NULL, OH_READ, 3375 &recov_state, needrecov); 3376 /* hold needed for nfs4delegreturn_thread */ 3377 VN_HOLD(vp); 3378 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3379 NFS4_DR_DISCARD), FALSE); 3380 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3381 goto recov_retry; 3382 } 3383 if (needrecov) { 3384 bool_t abort; 3385 3386 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3387 "nfs4read: initiating recovery\n")); 3388 3389 abort = nfs4_start_recovery(&e, 3390 mi, vp, NULL, &rargs->stateid, 3391 NULL, OP_READ, NULL); 3392 nfs4_end_fop(mi, vp, NULL, OH_READ, 3393 &recov_state, needrecov); 3394 /* 3395 * Do not retry if we got OLD_STATEID using a special 3396 * stateid. This avoids looping with a broken server. 3397 */ 3398 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3399 sid_types.cur_sid_type == SPEC_SID) 3400 abort = TRUE; 3401 3402 if (abort == FALSE) { 3403 /* 3404 * Need to retry all possible stateids in 3405 * case the recovery error wasn't stateid 3406 * related or the stateids have become 3407 * stale (server reboot). 3408 */ 3409 nfs4_init_stateid_types(&sid_types); 3410 (void) xdr_free(xdr_COMPOUND4res_clnt, 3411 (caddr_t)&res); 3412 goto recov_retry; 3413 } 3414 3415 if (!e.error) { 3416 e.error = geterrno4(res.status); 3417 (void) xdr_free(xdr_COMPOUND4res_clnt, 3418 (caddr_t)&res); 3419 } 3420 return (e.error); 3421 } 3422 3423 if (res.status) { 3424 e.error = geterrno4(res.status); 3425 nfs4_end_fop(mi, vp, NULL, OH_READ, 3426 &recov_state, needrecov); 3427 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3428 return (e.error); 3429 } 3430 3431 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3432 count -= data_len; 3433 if (base) 3434 base += data_len; 3435 offset += data_len; 3436 if (mi->mi_io_kstats) { 3437 mutex_enter(&mi->mi_lock); 3438 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3439 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3440 mutex_exit(&mi->mi_lock); 3441 } 3442 lwp_stat_update(LWP_STAT_INBLK, 1); 3443 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3444 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3445 3446 } while (count && !is_eof); 3447 3448 *residp = count; 3449 3450 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3451 3452 return (e.error); 3453 } 3454 3455 /* ARGSUSED */ 3456 static int 3457 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 3458 { 3459 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 3460 return (EIO); 3461 switch (cmd) { 3462 case _FIODIRECTIO: 3463 return (nfs4_directio(vp, (int)arg, cr)); 3464 default: 3465 return (ENOTTY); 3466 } 3467 } 3468 3469 static int 3470 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 3471 { 3472 int error; 3473 rnode4_t *rp = VTOR4(vp); 3474 3475 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 3476 return (EIO); 3477 /* 3478 * If it has been specified that the return value will 3479 * just be used as a hint, and we are only being asked 3480 * for size, fsid or rdevid, then return the client's 3481 * notion of these values without checking to make sure 3482 * that the attribute cache is up to date. 3483 * The whole point is to avoid an over the wire GETATTR 3484 * call. 3485 */ 3486 if (flags & ATTR_HINT) { 3487 if (vap->va_mask == 3488 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 3489 mutex_enter(&rp->r_statelock); 3490 if (vap->va_mask | AT_SIZE) 3491 vap->va_size = rp->r_size; 3492 if (vap->va_mask | AT_FSID) 3493 vap->va_fsid = rp->r_attr.va_fsid; 3494 if (vap->va_mask | AT_RDEV) 3495 vap->va_rdev = rp->r_attr.va_rdev; 3496 mutex_exit(&rp->r_statelock); 3497 return (0); 3498 } 3499 } 3500 3501 /* 3502 * Only need to flush pages if asking for the mtime 3503 * and if there any dirty pages or any outstanding 3504 * asynchronous (write) requests for this file. 3505 */ 3506 if (vap->va_mask & AT_MTIME) { 3507 rp = VTOR4(vp); 3508 if (nfs4_has_pages(vp)) { 3509 mutex_enter(&rp->r_statev4_lock); 3510 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3511 mutex_exit(&rp->r_statev4_lock); 3512 if (rp->r_flags & R4DIRTY || 3513 rp->r_awcount > 0) { 3514 mutex_enter(&rp->r_statelock); 3515 rp->r_gcount++; 3516 mutex_exit(&rp->r_statelock); 3517 error = 3518 nfs4_putpage(vp, (u_offset_t)0, 3519 0, 0, cr); 3520 mutex_enter(&rp->r_statelock); 3521 if (error && (error == ENOSPC || 3522 error == EDQUOT)) { 3523 if (!rp->r_error) 3524 rp->r_error = error; 3525 } 3526 if (--rp->r_gcount == 0) 3527 cv_broadcast(&rp->r_cv); 3528 mutex_exit(&rp->r_statelock); 3529 } 3530 } else { 3531 mutex_exit(&rp->r_statev4_lock); 3532 } 3533 } 3534 } 3535 return (nfs4getattr(vp, vap, cr)); 3536 } 3537 3538 int 3539 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3540 { 3541 /* 3542 * If these are the only two bits cleared 3543 * on the server then return 0 (OK) else 3544 * return 1 (BAD). 3545 */ 3546 on_client &= ~(S_ISUID|S_ISGID); 3547 if (on_client == from_server) 3548 return (0); 3549 else 3550 return (1); 3551 } 3552 3553 /*ARGSUSED4*/ 3554 static int 3555 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3556 caller_context_t *ct) 3557 { 3558 if (vap->va_mask & AT_NOSET) 3559 return (EINVAL); 3560 3561 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 3562 return (EIO); 3563 3564 /* 3565 * Don't call secpolicy_vnode_setattr, the client cannot 3566 * use its cached attributes to make security decisions 3567 * as the server may be faking mode bits or mapping uid/gid. 3568 * Always just let the server to the checking. 3569 * If we provide the ability to remove basic priviledges 3570 * to setattr (e.g. basic without chmod) then we will 3571 * need to add a check here before calling the server. 3572 */ 3573 3574 return (nfs4setattr(vp, vap, flags, cr, NULL)); 3575 } 3576 3577 /* 3578 * To replace the "guarded" version 3 setattr, we use two types of compound 3579 * setattr requests: 3580 * 1. The "normal" setattr, used when the size of the file isn't being 3581 * changed - { Putfh <fh>; Setattr; Getattr }/ 3582 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3583 * with only ctime as the argument. If the server ctime differs from 3584 * what is cached on the client, the verify will fail, but we would 3585 * already have the ctime from the preceding getattr, so just set it 3586 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3587 * Setattr; Getattr }. 3588 * 3589 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3590 * this setattr and NULL if they are not. 3591 */ 3592 static int 3593 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3594 vsecattr_t *vsap) 3595 { 3596 COMPOUND4args_clnt args; 3597 COMPOUND4res_clnt res, *resp = NULL; 3598 nfs4_ga_res_t *garp = NULL; 3599 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3600 nfs_argop4 argop[5]; 3601 int verify_argop = -1; 3602 int setattr_argop = 1; 3603 nfs_resop4 *resop; 3604 vattr_t va; 3605 rnode4_t *rp; 3606 int doqueue = 1; 3607 uint_t mask = vap->va_mask; 3608 mode_t omode; 3609 vsecattr_t *vsp; 3610 timestruc_t ctime; 3611 bool_t needrecov = FALSE; 3612 nfs4_recov_state_t recov_state; 3613 nfs4_stateid_types_t sid_types; 3614 stateid4 stateid; 3615 hrtime_t t; 3616 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3617 servinfo4_t *svp; 3618 bitmap4 supp_attrs; 3619 3620 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 3621 rp = VTOR4(vp); 3622 nfs4_init_stateid_types(&sid_types); 3623 3624 /* 3625 * Only need to flush pages if there are any pages and 3626 * if the file is marked as dirty in some fashion. The 3627 * file must be flushed so that we can accurately 3628 * determine the size of the file and the cached data 3629 * after the SETATTR returns. A file is considered to 3630 * be dirty if it is either marked with R4DIRTY, has 3631 * outstanding i/o's active, or is mmap'd. In this 3632 * last case, we can't tell whether there are dirty 3633 * pages, so we flush just to be sure. 3634 */ 3635 if (nfs4_has_pages(vp) && 3636 ((rp->r_flags & R4DIRTY) || 3637 rp->r_count > 0 || 3638 rp->r_mapcnt > 0)) { 3639 ASSERT(vp->v_type != VCHR); 3640 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr); 3641 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3642 mutex_enter(&rp->r_statelock); 3643 if (!rp->r_error) 3644 rp->r_error = e.error; 3645 mutex_exit(&rp->r_statelock); 3646 } 3647 } 3648 3649 if (mask & AT_SIZE) { 3650 /* 3651 * Verification setattr compound for non-deleg AT_SIZE: 3652 * { Putfh; Getattr; Verify; Setattr; Getattr } 3653 * Set ctime local here (outside the do_again label) 3654 * so that subsequent retries (after failed VERIFY) 3655 * will use ctime from GETATTR results (from failed 3656 * verify compound) as VERIFY arg. 3657 * If file has delegation, then VERIFY(time_metadata) 3658 * is of little added value, so don't bother. 3659 */ 3660 mutex_enter(&rp->r_statev4_lock); 3661 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3662 rp->r_deleg_return_pending) { 3663 numops = 5; 3664 ctime = rp->r_attr.va_ctime; 3665 } 3666 mutex_exit(&rp->r_statev4_lock); 3667 } 3668 3669 recov_state.rs_flags = 0; 3670 recov_state.rs_num_retry_despite_err = 0; 3671 3672 args.ctag = TAG_SETATTR; 3673 do_again: 3674 recov_retry: 3675 setattr_argop = numops - 2; 3676 3677 args.array = argop; 3678 args.array_len = numops; 3679 3680 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3681 if (e.error) 3682 return (e.error); 3683 3684 3685 /* putfh target fh */ 3686 argop[0].argop = OP_CPUTFH; 3687 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3688 3689 if (numops == 5) { 3690 /* 3691 * We only care about the ctime, but need to get mtime 3692 * and size for proper cache update. 3693 */ 3694 /* getattr */ 3695 argop[1].argop = OP_GETATTR; 3696 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3697 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3698 3699 /* verify - set later in loop */ 3700 verify_argop = 2; 3701 } 3702 3703 /* setattr */ 3704 svp = rp->r_server; 3705 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3706 supp_attrs = svp->sv_supp_attrs; 3707 nfs_rw_exit(&svp->sv_lock); 3708 3709 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3710 supp_attrs, &e.error, &sid_types); 3711 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3712 if (e.error) { 3713 /* req time field(s) overflow - return immediately */ 3714 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3715 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3716 opsetattr.obj_attributes); 3717 return (e.error); 3718 } 3719 omode = rp->r_attr.va_mode; 3720 3721 /* getattr */ 3722 argop[numops-1].argop = OP_GETATTR; 3723 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3724 /* 3725 * If we are setting the ACL (indicated only by vsap != NULL), request 3726 * the ACL in this getattr. The ACL returned from this getattr will be 3727 * used in updating the ACL cache. 3728 */ 3729 if (vsap != NULL) 3730 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3731 FATTR4_ACL_MASK; 3732 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3733 3734 /* 3735 * setattr iterates if the object size is set and the cached ctime 3736 * does not match the file ctime. In that case, verify the ctime first. 3737 */ 3738 3739 do { 3740 if (verify_argop != -1) { 3741 /* 3742 * Verify that the ctime match before doing setattr. 3743 */ 3744 va.va_mask = AT_CTIME; 3745 va.va_ctime = ctime; 3746 svp = rp->r_server; 3747 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3748 supp_attrs = svp->sv_supp_attrs; 3749 nfs_rw_exit(&svp->sv_lock); 3750 e.error = nfs4args_verify(&argop[verify_argop], &va, 3751 OP_VERIFY, supp_attrs); 3752 if (e.error) { 3753 /* req time field(s) overflow - return */ 3754 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3755 needrecov); 3756 break; 3757 } 3758 } 3759 3760 doqueue = 1; 3761 3762 t = gethrtime(); 3763 3764 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3765 3766 /* 3767 * Purge the access cache and ACL cache if changing either the 3768 * owner of the file, the group owner, or the mode. These may 3769 * change the access permissions of the file, so purge old 3770 * information and start over again. 3771 */ 3772 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3773 (void) nfs4_access_purge_rp(rp); 3774 if (rp->r_secattr != NULL) { 3775 mutex_enter(&rp->r_statelock); 3776 vsp = rp->r_secattr; 3777 rp->r_secattr = NULL; 3778 mutex_exit(&rp->r_statelock); 3779 if (vsp != NULL) 3780 nfs4_acl_free_cache(vsp); 3781 } 3782 } 3783 3784 /* 3785 * If res.array_len == numops, then everything succeeded, 3786 * except for possibly the final getattr. If only the 3787 * last getattr failed, give up, and don't try recovery. 3788 */ 3789 if (res.array_len == numops) { 3790 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3791 needrecov); 3792 if (! e.error) 3793 resp = &res; 3794 break; 3795 } 3796 3797 /* 3798 * if either rpc call failed or completely succeeded - done 3799 */ 3800 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3801 if (e.error) { 3802 PURGE_ATTRCACHE4(vp); 3803 if (!needrecov) { 3804 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3805 needrecov); 3806 break; 3807 } 3808 } 3809 3810 /* 3811 * Do proper retry for OLD_STATEID outside of the normal 3812 * recovery framework. 3813 */ 3814 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3815 sid_types.cur_sid_type != SPEC_SID && 3816 sid_types.cur_sid_type != NO_SID) { 3817 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3818 needrecov); 3819 nfs4_save_stateid(&stateid, &sid_types); 3820 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3821 opsetattr.obj_attributes); 3822 if (verify_argop != -1) { 3823 nfs4args_verify_free(&argop[verify_argop]); 3824 verify_argop = -1; 3825 } 3826 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3827 goto recov_retry; 3828 } 3829 3830 if (needrecov) { 3831 bool_t abort; 3832 3833 abort = nfs4_start_recovery(&e, 3834 VTOMI4(vp), vp, NULL, NULL, NULL, 3835 OP_SETATTR, NULL); 3836 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3837 needrecov); 3838 /* 3839 * Do not retry if we failed with OLD_STATEID using 3840 * a special stateid. This is done to avoid looping 3841 * with a broken server. 3842 */ 3843 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3844 (sid_types.cur_sid_type == SPEC_SID || 3845 sid_types.cur_sid_type == NO_SID)) 3846 abort = TRUE; 3847 if (!e.error) { 3848 if (res.status == NFS4ERR_BADOWNER) 3849 nfs4_log_badowner(VTOMI4(vp), 3850 OP_SETATTR); 3851 3852 e.error = geterrno4(res.status); 3853 (void) xdr_free(xdr_COMPOUND4res_clnt, 3854 (caddr_t)&res); 3855 } 3856 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3857 opsetattr.obj_attributes); 3858 if (verify_argop != -1) { 3859 nfs4args_verify_free(&argop[verify_argop]); 3860 verify_argop = -1; 3861 } 3862 if (abort == FALSE) { 3863 /* 3864 * Need to retry all possible stateids in 3865 * case the recovery error wasn't stateid 3866 * related or the stateids have become 3867 * stale (server reboot). 3868 */ 3869 nfs4_init_stateid_types(&sid_types); 3870 goto recov_retry; 3871 } 3872 return (e.error); 3873 } 3874 3875 /* 3876 * Need to call nfs4_end_op before nfs4getattr to 3877 * avoid potential nfs4_start_op deadlock. See RFE 3878 * 4777612. Calls to nfs4_invalidate_pages() and 3879 * nfs4_purge_stale_fh() might also generate over the 3880 * wire calls which my cause nfs4_start_op() deadlock. 3881 */ 3882 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3883 3884 /* 3885 * Check to update lease. 3886 */ 3887 resp = &res; 3888 if (res.status == NFS4_OK) { 3889 break; 3890 } 3891 3892 /* 3893 * Check if verify failed to see if try again 3894 */ 3895 if ((verify_argop == -1) || (res.array_len != 3)) { 3896 /* 3897 * can't continue... 3898 */ 3899 if (res.status == NFS4ERR_BADOWNER) 3900 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 3901 3902 e.error = geterrno4(res.status); 3903 } else { 3904 /* 3905 * When the verify request fails, the client ctime is 3906 * not in sync with the server. This is the same as 3907 * the version 3 "not synchronized" error, and we 3908 * handle it in a similar manner (XXX do we need to???). 3909 * Use the ctime returned in the first getattr for 3910 * the input to the next verify. 3911 * If we couldn't get the attributes, then we give up 3912 * because we can't complete the operation as required. 3913 */ 3914 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 3915 } 3916 if (e.error) { 3917 PURGE_ATTRCACHE4(vp); 3918 nfs4_purge_stale_fh(e.error, vp, cr); 3919 } else { 3920 /* 3921 * retry with a new verify value 3922 */ 3923 ctime = garp->n4g_va.va_ctime; 3924 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3925 resp = NULL; 3926 } 3927 if (!e.error) { 3928 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3929 opsetattr.obj_attributes); 3930 if (verify_argop != -1) { 3931 nfs4args_verify_free(&argop[verify_argop]); 3932 verify_argop = -1; 3933 } 3934 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3935 goto do_again; 3936 } 3937 } while (!e.error); 3938 3939 if (e.error) { 3940 /* 3941 * If we are here, rfs4call has an irrecoverable error - return 3942 */ 3943 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3944 opsetattr.obj_attributes); 3945 if (verify_argop != -1) { 3946 nfs4args_verify_free(&argop[verify_argop]); 3947 verify_argop = -1; 3948 } 3949 if (resp) 3950 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 3951 return (e.error); 3952 } 3953 3954 3955 3956 /* 3957 * If changing the size of the file, invalidate 3958 * any local cached data which is no longer part 3959 * of the file. We also possibly invalidate the 3960 * last page in the file. We could use 3961 * pvn_vpzero(), but this would mark the page as 3962 * modified and require it to be written back to 3963 * the server for no particularly good reason. 3964 * This way, if we access it, then we bring it 3965 * back in. A read should be cheaper than a 3966 * write. 3967 */ 3968 if (mask & AT_SIZE) { 3969 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 3970 } 3971 3972 /* either no error or one of the postop getattr failed */ 3973 3974 /* 3975 * XXX Perform a simplified version of wcc checking. Instead of 3976 * have another getattr to get pre-op, just purge cache if 3977 * any of the ops prior to and including the getattr failed. 3978 * If the getattr succeeded then update the attrcache accordingly. 3979 */ 3980 3981 garp = NULL; 3982 if (res.status == NFS4_OK) { 3983 /* 3984 * Last getattr 3985 */ 3986 resop = &res.array[numops - 1]; 3987 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 3988 } 3989 /* 3990 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 3991 * rather than filling it. See the function itself for details. 3992 */ 3993 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 3994 if (garp != NULL) { 3995 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 3996 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 3997 vs_ace4_destroy(&garp->n4g_vsa); 3998 } else { 3999 if (vsap != NULL) { 4000 /* 4001 * The ACL was supposed to be set and to be 4002 * returned in the last getattr of this 4003 * compound, but for some reason the getattr 4004 * result doesn't contain the ACL. In this 4005 * case, purge the ACL cache. 4006 */ 4007 if (rp->r_secattr != NULL) { 4008 mutex_enter(&rp->r_statelock); 4009 vsp = rp->r_secattr; 4010 rp->r_secattr = NULL; 4011 mutex_exit(&rp->r_statelock); 4012 if (vsp != NULL) 4013 nfs4_acl_free_cache(vsp); 4014 } 4015 } 4016 } 4017 } 4018 4019 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4020 /* 4021 * Set the size, rather than relying on getting it updated 4022 * via a GETATTR. With delegations the client tries to 4023 * suppress GETATTR calls. 4024 */ 4025 mutex_enter(&rp->r_statelock); 4026 rp->r_size = vap->va_size; 4027 mutex_exit(&rp->r_statelock); 4028 } 4029 4030 /* 4031 * Can free up request args and res 4032 */ 4033 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4034 opsetattr.obj_attributes); 4035 if (verify_argop != -1) { 4036 nfs4args_verify_free(&argop[verify_argop]); 4037 verify_argop = -1; 4038 } 4039 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4040 4041 /* 4042 * Some servers will change the mode to clear the setuid 4043 * and setgid bits when changing the uid or gid. The 4044 * client needs to compensate appropriately. 4045 */ 4046 if (mask & (AT_UID | AT_GID)) { 4047 int terror, do_setattr; 4048 4049 do_setattr = 0; 4050 va.va_mask = AT_MODE; 4051 terror = nfs4getattr(vp, &va, cr); 4052 if (!terror && 4053 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4054 (!(mask & AT_MODE) && va.va_mode != omode))) { 4055 va.va_mask = AT_MODE; 4056 if (mask & AT_MODE) { 4057 /* 4058 * We asked the mode to be changed and what 4059 * we just got from the server in getattr is 4060 * not what we wanted it to be, so set it now. 4061 */ 4062 va.va_mode = vap->va_mode; 4063 do_setattr = 1; 4064 } else { 4065 /* 4066 * We did not ask the mode to be changed, 4067 * Check to see that the server just cleared 4068 * I_SUID and I_GUID from it. If not then 4069 * set mode to omode with UID/GID cleared. 4070 */ 4071 if (nfs4_compare_modes(va.va_mode, omode)) { 4072 omode &= ~(S_ISUID|S_ISGID); 4073 va.va_mode = omode; 4074 do_setattr = 1; 4075 } 4076 } 4077 4078 if (do_setattr) 4079 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4080 } 4081 } 4082 4083 return (e.error); 4084 } 4085 4086 /* ARGSUSED */ 4087 static int 4088 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr) 4089 { 4090 COMPOUND4args_clnt args; 4091 COMPOUND4res_clnt res; 4092 int doqueue; 4093 uint32_t acc, resacc, argacc; 4094 rnode4_t *rp; 4095 cred_t *cred; 4096 nfs4_access_type_t cacc; 4097 int num_ops; 4098 nfs_argop4 argop[3]; 4099 nfs_resop4 *resop; 4100 bool_t needrecov = FALSE, do_getattr; 4101 nfs4_recov_state_t recov_state; 4102 int rpc_error; 4103 hrtime_t t; 4104 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4105 mntinfo4_t *mi = VTOMI4(vp); 4106 4107 if (curproc->p_zone != mi->mi_zone) 4108 return (EIO); 4109 4110 acc = 0; 4111 if (mode & VREAD) 4112 acc |= ACCESS4_READ; 4113 if (mode & VWRITE) { 4114 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4115 return (EROFS); 4116 if (vp->v_type == VDIR) 4117 acc |= ACCESS4_DELETE; 4118 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4119 } 4120 if (mode & VEXEC) { 4121 if (vp->v_type == VDIR) 4122 acc |= ACCESS4_LOOKUP; 4123 else 4124 acc |= ACCESS4_EXECUTE; 4125 } 4126 4127 if (VTOR4(vp)->r_acache != NULL) { 4128 e.error = nfs4_validate_caches(vp, cr); 4129 if (e.error) 4130 return (e.error); 4131 } 4132 4133 rp = VTOR4(vp); 4134 cacc = nfs4_access_check(rp, acc, cr); 4135 if (cacc == NFS4_ACCESS_ALLOWED) 4136 return (0); 4137 if (cacc == NFS4_ACCESS_DENIED) 4138 return (EACCES); 4139 if (vp->v_type == VDIR) { 4140 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4141 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4142 } else { 4143 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4144 ACCESS4_EXECUTE; 4145 } 4146 recov_state.rs_flags = 0; 4147 recov_state.rs_num_retry_despite_err = 0; 4148 4149 cred = cr; 4150 4151 tryagain: 4152 recov_retry: 4153 /* 4154 * Don't take with r_statev4_lock here. r_deleg_type could 4155 * change as soon as lock is released. Since it is an int, 4156 * there is no atomicity issue. 4157 */ 4158 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4159 num_ops = do_getattr ? 3 : 2; 4160 4161 args.ctag = TAG_ACCESS; 4162 4163 args.array_len = num_ops; 4164 args.array = argop; 4165 4166 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4167 &recov_state, NULL)) { 4168 return (e.error); 4169 } 4170 4171 /* putfh target fh */ 4172 argop[0].argop = OP_CPUTFH; 4173 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4174 4175 /* access */ 4176 argop[1].argop = OP_ACCESS; 4177 argop[1].nfs_argop4_u.opaccess.access = argacc; 4178 4179 /* getattr */ 4180 if (do_getattr) { 4181 argop[2].argop = OP_GETATTR; 4182 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4183 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4184 } 4185 4186 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4187 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4188 rnode4info(VTOR4(vp)))); 4189 4190 doqueue = 1; 4191 t = gethrtime(); 4192 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4193 rpc_error = e.error; 4194 4195 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4196 if (needrecov) { 4197 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4198 "nfs4_access: initiating recovery\n")); 4199 4200 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4201 NULL, OP_ACCESS, NULL) == FALSE) { 4202 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4203 &recov_state, needrecov); 4204 if (!e.error) 4205 (void) xdr_free(xdr_COMPOUND4res_clnt, 4206 (caddr_t)&res); 4207 goto recov_retry; 4208 } 4209 } 4210 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4211 4212 if (e.error) 4213 goto out; 4214 4215 if (res.status) { 4216 e.error = geterrno4(res.status); 4217 /* 4218 * This might generate over the wire calls throught 4219 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4220 * here to avoid a deadlock. 4221 */ 4222 nfs4_purge_stale_fh(e.error, vp, cr); 4223 goto out; 4224 } 4225 resop = &res.array[1]; /* access res */ 4226 4227 resacc = resop->nfs_resop4_u.opaccess.access; 4228 4229 if (do_getattr) { 4230 resop++; /* getattr res */ 4231 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4232 t, cr, FALSE, NULL); 4233 } 4234 4235 if (!e.error) { 4236 /* XXX check the supported bits too? */ 4237 if ((acc & resacc) != acc) { 4238 /* 4239 * The following code implements the semantic 4240 * that a setuid root program has *at least* the 4241 * permissions of the user that is running the 4242 * program. See rfs3call() for more portions 4243 * of the implementation of this functionality. 4244 */ 4245 /* XXX-LP */ 4246 if (crgetuid(cred) == 0 && crgetruid(cred) != 0) { 4247 cred_t *ncr = crnetadjust(cred); 4248 4249 if (ncr != NULL) { 4250 (void) xdr_free(xdr_COMPOUND4res_clnt, 4251 (caddr_t)&res); 4252 cred = ncr; 4253 goto tryagain; 4254 } 4255 } 4256 e.error = EACCES; 4257 } 4258 nfs4_access_cache(rp, argacc, resacc, cr); 4259 } 4260 4261 out: 4262 if (!rpc_error) 4263 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4264 4265 if (cred != cr) 4266 crfree(cred); 4267 4268 return (e.error); 4269 } 4270 4271 static int 4272 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 4273 { 4274 COMPOUND4args_clnt args; 4275 COMPOUND4res_clnt res; 4276 int doqueue; 4277 rnode4_t *rp; 4278 nfs_argop4 argop[3]; 4279 nfs_resop4 *resop; 4280 READLINK4res *lr_res; 4281 nfs4_ga_res_t *garp; 4282 uint_t len; 4283 char *linkdata; 4284 bool_t needrecov = FALSE; 4285 nfs4_recov_state_t recov_state; 4286 hrtime_t t; 4287 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4288 4289 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 4290 return (EIO); 4291 /* 4292 * Can't readlink anything other than a symbolic link. 4293 */ 4294 if (vp->v_type != VLNK) 4295 return (EINVAL); 4296 4297 rp = VTOR4(vp); 4298 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4299 e.error = nfs4_validate_caches(vp, cr); 4300 if (e.error) 4301 return (e.error); 4302 mutex_enter(&rp->r_statelock); 4303 if (rp->r_symlink.contents != NULL) { 4304 e.error = uiomove(rp->r_symlink.contents, 4305 rp->r_symlink.len, UIO_READ, uiop); 4306 mutex_exit(&rp->r_statelock); 4307 return (e.error); 4308 } 4309 mutex_exit(&rp->r_statelock); 4310 } 4311 recov_state.rs_flags = 0; 4312 recov_state.rs_num_retry_despite_err = 0; 4313 4314 recov_retry: 4315 args.array_len = 3; 4316 args.array = argop; 4317 args.ctag = TAG_READLINK; 4318 4319 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4320 if (e.error) { 4321 return (e.error); 4322 } 4323 4324 /* 0. putfh symlink fh */ 4325 argop[0].argop = OP_CPUTFH; 4326 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4327 4328 /* 1. readlink */ 4329 argop[1].argop = OP_READLINK; 4330 4331 /* 2. getattr */ 4332 argop[2].argop = OP_GETATTR; 4333 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4334 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4335 4336 doqueue = 1; 4337 4338 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4339 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4340 rnode4info(VTOR4(vp)))); 4341 4342 t = gethrtime(); 4343 4344 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4345 4346 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4347 if (needrecov) { 4348 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4349 "nfs4_readlink: initiating recovery\n")); 4350 4351 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4352 NULL, OP_READLINK, NULL) == FALSE) { 4353 if (!e.error) 4354 (void) xdr_free(xdr_COMPOUND4res_clnt, 4355 (caddr_t)&res); 4356 4357 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4358 needrecov); 4359 goto recov_retry; 4360 } 4361 } 4362 4363 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4364 4365 if (e.error) 4366 return (e.error); 4367 4368 /* 4369 * There is an path in the code below which calls 4370 * nfs4_purge_stale_fh(), which may generate otw calls through 4371 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4372 * here to avoid nfs4_start_op() deadlock. 4373 */ 4374 4375 if (res.status && (res.array_len < args.array_len)) { 4376 /* 4377 * either Putfh or Link failed 4378 */ 4379 e.error = geterrno4(res.status); 4380 nfs4_purge_stale_fh(e.error, vp, cr); 4381 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4382 return (e.error); 4383 } 4384 4385 resop = &res.array[1]; /* readlink res */ 4386 lr_res = &resop->nfs_resop4_u.opreadlink; 4387 4388 /* 4389 * treat symlink names as data 4390 */ 4391 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4392 if (linkdata != NULL) { 4393 int uio_len = len - 1; 4394 /* len includes null byte, which we won't uiomove */ 4395 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4396 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4397 mutex_enter(&rp->r_statelock); 4398 if (rp->r_symlink.contents == NULL) { 4399 rp->r_symlink.contents = linkdata; 4400 rp->r_symlink.len = uio_len; 4401 rp->r_symlink.size = len; 4402 mutex_exit(&rp->r_statelock); 4403 } else { 4404 mutex_exit(&rp->r_statelock); 4405 kmem_free(linkdata, len); 4406 } 4407 } else { 4408 kmem_free(linkdata, len); 4409 } 4410 } 4411 if (res.status == NFS4_OK) { 4412 resop++; /* getattr res */ 4413 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4414 } 4415 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4416 4417 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4418 4419 /* 4420 * The over the wire error for attempting to readlink something 4421 * other than a symbolic link is ENXIO. However, we need to 4422 * return EINVAL instead of ENXIO, so we map it here. 4423 */ 4424 return (e.error == ENXIO ? EINVAL : e.error); 4425 } 4426 4427 /* 4428 * Flush local dirty pages to stable storage on the server. 4429 * 4430 * If FNODSYNC is specified, then there is nothing to do because 4431 * metadata changes are not cached on the client before being 4432 * sent to the server. 4433 */ 4434 static int 4435 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr) 4436 { 4437 int error; 4438 4439 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4440 return (0); 4441 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 4442 return (EIO); 4443 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4444 if (!error) 4445 error = VTOR4(vp)->r_error; 4446 return (error); 4447 } 4448 4449 /* 4450 * Weirdness: if the file was removed or the target of a rename 4451 * operation while it was open, it got renamed instead. Here we 4452 * remove the renamed file. 4453 */ 4454 static void 4455 nfs4_inactive(vnode_t *vp, cred_t *cr) 4456 { 4457 rnode4_t *rp; 4458 4459 ASSERT(vp != DNLC_NO_VNODE); 4460 4461 rp = VTOR4(vp); 4462 4463 if (IS_SHADOW(vp, rp)) { 4464 sv_inactive(vp); 4465 return; 4466 } 4467 4468 /* 4469 * If this is coming from the wrong zone, we let someone in the right 4470 * zone take care of it asynchronously. We can get here due to 4471 * VN_RELE() being called from pageout() or fsflush(). This call may 4472 * potentially turn into an expensive no-op if, for instance, v_count 4473 * gets incremented in the meantime, but it's still correct. 4474 */ 4475 if (curproc->p_zone != VTOMI4(vp)->mi_zone) { 4476 nfs4_async_inactive(vp, cr); 4477 return; 4478 } 4479 4480 /* 4481 * Some of the cleanup steps might require over-the-wire 4482 * operations. Since VOP_INACTIVE can get called as a result of 4483 * other over-the-wire operations (e.g., an attribute cache update 4484 * can lead to a DNLC purge), doing those steps now would lead to a 4485 * nested call to the recovery framework, which can deadlock. So 4486 * do any over-the-wire cleanups asynchronously, in a separate 4487 * thread. 4488 */ 4489 4490 mutex_enter(&rp->r_os_lock); 4491 mutex_enter(&rp->r_statelock); 4492 mutex_enter(&rp->r_statev4_lock); 4493 4494 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4495 mutex_exit(&rp->r_statev4_lock); 4496 mutex_exit(&rp->r_statelock); 4497 mutex_exit(&rp->r_os_lock); 4498 nfs4_async_inactive(vp, cr); 4499 return; 4500 } 4501 4502 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4503 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4504 mutex_exit(&rp->r_statev4_lock); 4505 mutex_exit(&rp->r_statelock); 4506 mutex_exit(&rp->r_os_lock); 4507 nfs4_async_inactive(vp, cr); 4508 return; 4509 } 4510 4511 if (rp->r_unldvp != NULL) { 4512 mutex_exit(&rp->r_statev4_lock); 4513 mutex_exit(&rp->r_statelock); 4514 mutex_exit(&rp->r_os_lock); 4515 nfs4_async_inactive(vp, cr); 4516 return; 4517 } 4518 mutex_exit(&rp->r_statev4_lock); 4519 mutex_exit(&rp->r_statelock); 4520 mutex_exit(&rp->r_os_lock); 4521 4522 rp4_addfree(rp, cr); 4523 } 4524 4525 /* 4526 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4527 * various bits of state. The caller must not refer to vp after this call. 4528 */ 4529 4530 void 4531 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4532 { 4533 rnode4_t *rp = VTOR4(vp); 4534 nfs4_recov_state_t recov_state; 4535 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4536 vnode_t *unldvp; 4537 char *unlname; 4538 cred_t *unlcred; 4539 COMPOUND4args_clnt args; 4540 COMPOUND4res_clnt res, *resp; 4541 nfs_argop4 argop[2]; 4542 int doqueue; 4543 #ifdef DEBUG 4544 char *name; 4545 #endif 4546 4547 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 4548 ASSERT(!IS_SHADOW(vp, rp)); 4549 4550 #ifdef DEBUG 4551 name = fn_name(VTOSV(vp)->sv_name); 4552 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4553 "release vnode %s", name)); 4554 kmem_free(name, MAXNAMELEN); 4555 #endif 4556 4557 if (vp->v_type == VREG) { 4558 bool_t recov_failed = FALSE; 4559 4560 e.error = nfs4close_all(vp, cr); 4561 if (e.error) { 4562 /* Check to see if recovery failed */ 4563 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4564 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4565 recov_failed = TRUE; 4566 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4567 if (!recov_failed) { 4568 mutex_enter(&rp->r_statelock); 4569 if (rp->r_flags & R4RECOVERR) 4570 recov_failed = TRUE; 4571 mutex_exit(&rp->r_statelock); 4572 } 4573 if (recov_failed) { 4574 NFS4_DEBUG(nfs4_client_recov_debug, 4575 (CE_NOTE, "nfs4_inactive_otw: " 4576 "close failed (recovery failure)")); 4577 } 4578 } 4579 } 4580 4581 redo: 4582 if (rp->r_unldvp == NULL) { 4583 rp4_addfree(rp, cr); 4584 return; 4585 } 4586 4587 /* 4588 * Save the vnode pointer for the directory where the 4589 * unlinked-open file got renamed, then set it to NULL 4590 * to prevent another thread from getting here before 4591 * we're done with the remove. While we have the 4592 * statelock, make local copies of the pertinent rnode 4593 * fields. If we weren't to do this in an atomic way, the 4594 * the unl* fields could become inconsistent with respect 4595 * to each other due to a race condition between this 4596 * code and nfs_remove(). See bug report 1034328. 4597 */ 4598 mutex_enter(&rp->r_statelock); 4599 if (rp->r_unldvp == NULL) { 4600 mutex_exit(&rp->r_statelock); 4601 rp4_addfree(rp, cr); 4602 return; 4603 } 4604 4605 unldvp = rp->r_unldvp; 4606 rp->r_unldvp = NULL; 4607 unlname = rp->r_unlname; 4608 rp->r_unlname = NULL; 4609 unlcred = rp->r_unlcred; 4610 rp->r_unlcred = NULL; 4611 mutex_exit(&rp->r_statelock); 4612 4613 /* 4614 * If there are any dirty pages left, then flush 4615 * them. This is unfortunate because they just 4616 * may get thrown away during the remove operation, 4617 * but we have to do this for correctness. 4618 */ 4619 if (nfs4_has_pages(vp) && 4620 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4621 ASSERT(vp->v_type != VCHR); 4622 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 4623 if (e.error) { 4624 mutex_enter(&rp->r_statelock); 4625 if (!rp->r_error) 4626 rp->r_error = e.error; 4627 mutex_exit(&rp->r_statelock); 4628 } 4629 } 4630 4631 recov_state.rs_flags = 0; 4632 recov_state.rs_num_retry_despite_err = 0; 4633 recov_retry_remove: 4634 /* 4635 * Do the remove operation on the renamed file 4636 */ 4637 args.ctag = TAG_INACTIVE; 4638 4639 /* 4640 * Remove ops: putfh dir; remove 4641 */ 4642 args.array_len = 2; 4643 args.array = argop; 4644 4645 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4646 if (e.error) { 4647 kmem_free(unlname, MAXNAMELEN); 4648 crfree(unlcred); 4649 VN_RELE(unldvp); 4650 /* 4651 * Try again; this time around r_unldvp will be NULL, so we'll 4652 * just call rp4_addfree() and return. 4653 */ 4654 goto redo; 4655 } 4656 4657 /* putfh directory */ 4658 argop[0].argop = OP_CPUTFH; 4659 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4660 4661 /* remove */ 4662 argop[1].argop = OP_CREMOVE; 4663 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4664 4665 doqueue = 1; 4666 resp = &res; 4667 4668 #if 0 /* notyet */ 4669 /* 4670 * Can't do this yet. We may be being called from 4671 * dnlc_purge_XXX while that routine is holding a 4672 * mutex lock to the nc_rele list. The calls to 4673 * nfs3_cache_wcc_data may result in calls to 4674 * dnlc_purge_XXX. This will result in a deadlock. 4675 */ 4676 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4677 if (e.error) { 4678 PURGE_ATTRCACHE4(unldvp); 4679 resp = NULL; 4680 } else if (res.status) { 4681 e.error = geterrno4(res.status); 4682 PURGE_ATTRCACHE4(unldvp); 4683 /* 4684 * This code is inactive right now 4685 * but if made active there should 4686 * be a nfs4_end_op() call before 4687 * nfs4_purge_stale_fh to avoid start_op() 4688 * deadlock. See BugId: 4948726 4689 */ 4690 nfs4_purge_stale_fh(error, unldvp, cr); 4691 } else { 4692 nfs_resop4 *resop; 4693 REMOVE4res *rm_res; 4694 4695 resop = &res.array[1]; 4696 rm_res = &resop->nfs_resop4_u.opremove; 4697 /* 4698 * Update directory cache attribute, 4699 * readdir and dnlc caches. 4700 */ 4701 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4702 } 4703 #else 4704 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4705 4706 PURGE_ATTRCACHE4(unldvp); 4707 #endif 4708 4709 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4710 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4711 NULL, NULL, OP_REMOVE, NULL) == FALSE) { 4712 if (!e.error) 4713 (void) xdr_free(xdr_COMPOUND4res_clnt, 4714 (caddr_t)&res); 4715 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4716 &recov_state, TRUE); 4717 goto recov_retry_remove; 4718 } 4719 } 4720 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4721 4722 /* 4723 * Release stuff held for the remove 4724 */ 4725 VN_RELE(unldvp); 4726 if (!e.error && resp) 4727 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4728 4729 kmem_free(unlname, MAXNAMELEN); 4730 crfree(unlcred); 4731 goto redo; 4732 } 4733 4734 /* 4735 * Remote file system operations having to do with directory manipulation. 4736 */ 4737 /* ARGSUSED3 */ 4738 static int 4739 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4740 int flags, vnode_t *rdir, cred_t *cr) 4741 { 4742 int error; 4743 vnode_t *vp, *avp = NULL; 4744 rnode4_t *drp; 4745 4746 *vpp = NULL; 4747 if (curproc->p_zone != VTOMI4(dvp)->mi_zone) 4748 return (EPERM); 4749 /* 4750 * if LOOKUP_XATTR, must replace dvp (object) with 4751 * object's attrdir before continuing with lookup 4752 */ 4753 if (flags & LOOKUP_XATTR) { 4754 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4755 if (error) 4756 return (error); 4757 4758 dvp = avp; 4759 4760 /* 4761 * If lookup is for "", just return dvp now. The attrdir 4762 * has already been activated (from nfs4lookup_xattr), and 4763 * the caller will RELE the original dvp -- not 4764 * the attrdir. So, set vpp and return. 4765 * Currently, when the LOOKUP_XATTR flag is 4766 * passed to VOP_LOOKUP, the name is always empty, and 4767 * shortcircuiting here avoids 3 unneeded lock/unlock 4768 * pairs. 4769 * 4770 * If a non-empty name was provided, then it is the 4771 * attribute name, and it will be looked up below. 4772 */ 4773 if (*nm == '\0') { 4774 *vpp = dvp; 4775 return (0); 4776 } 4777 4778 /* 4779 * The vfs layer never sends a name when asking for the 4780 * attrdir, so we should never get here (unless of course 4781 * name is passed at some time in future -- at which time 4782 * we'll blow up here). 4783 */ 4784 ASSERT(0); 4785 } 4786 4787 drp = VTOR4(dvp); 4788 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4789 return (EINTR); 4790 4791 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4792 nfs_rw_exit(&drp->r_rwlock); 4793 4794 /* 4795 * If vnode is a device, create special vnode. 4796 */ 4797 if (!error && ISVDEV((*vpp)->v_type)) { 4798 vp = *vpp; 4799 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 4800 VN_RELE(vp); 4801 } 4802 4803 return (error); 4804 } 4805 4806 /* ARGSUSED */ 4807 static int 4808 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 4809 { 4810 int error; 4811 rnode4_t *drp; 4812 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 4813 mntinfo4_t *mi; 4814 4815 mi = VTOMI4(dvp); 4816 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR)) 4817 return (EINVAL); 4818 4819 drp = VTOR4(dvp); 4820 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4821 return (EINTR); 4822 4823 mutex_enter(&drp->r_statelock); 4824 /* 4825 * If the server doesn't support xattrs just return EINVAL 4826 */ 4827 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 4828 mutex_exit(&drp->r_statelock); 4829 nfs_rw_exit(&drp->r_rwlock); 4830 return (EINVAL); 4831 } 4832 4833 /* 4834 * If there is a cached xattr directory entry, 4835 * use it as long as the attributes are valid. If the 4836 * attributes are not valid, take the simple approach and 4837 * free the cached value and re-fetch a new value. 4838 * 4839 * We don't negative entry cache for now, if we did we 4840 * would need to check if the file has changed on every 4841 * lookup. But xattrs don't exist very often and failing 4842 * an openattr is not much more expensive than and NVERIFY or GETATTR 4843 * so do an openattr over the wire for now. 4844 */ 4845 if (drp->r_xattr_dir != NULL) { 4846 if (ATTRCACHE4_VALID(dvp)) { 4847 VN_HOLD(drp->r_xattr_dir); 4848 *vpp = drp->r_xattr_dir; 4849 mutex_exit(&drp->r_statelock); 4850 nfs_rw_exit(&drp->r_rwlock); 4851 return (0); 4852 } 4853 VN_RELE(drp->r_xattr_dir); 4854 drp->r_xattr_dir = NULL; 4855 } 4856 mutex_exit(&drp->r_statelock); 4857 4858 error = nfs4openattr(dvp, vpp, cflag, cr); 4859 4860 nfs_rw_exit(&drp->r_rwlock); 4861 4862 return (error); 4863 } 4864 4865 static int 4866 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 4867 { 4868 int error; 4869 rnode4_t *drp; 4870 4871 ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); 4872 4873 /* 4874 * If lookup is for "", just return dvp. Don't need 4875 * to send it over the wire, look it up in the dnlc, 4876 * or perform any access checks. 4877 */ 4878 if (*nm == '\0') { 4879 VN_HOLD(dvp); 4880 *vpp = dvp; 4881 return (0); 4882 } 4883 4884 /* 4885 * Can't do lookups in non-directories. 4886 */ 4887 if (dvp->v_type != VDIR) 4888 return (ENOTDIR); 4889 4890 /* 4891 * If lookup is for ".", just return dvp. Don't need 4892 * to send it over the wire or look it up in the dnlc, 4893 * just need to check access. 4894 */ 4895 if (nm[0] == '.' && nm[1] == '\0') { 4896 error = nfs4_access(dvp, VEXEC, 0, cr); 4897 if (error) 4898 return (error); 4899 VN_HOLD(dvp); 4900 *vpp = dvp; 4901 return (0); 4902 } 4903 4904 drp = VTOR4(dvp); 4905 if (!(drp->r_flags & R4LOOKUP)) { 4906 mutex_enter(&drp->r_statelock); 4907 drp->r_flags |= R4LOOKUP; 4908 mutex_exit(&drp->r_statelock); 4909 } 4910 4911 *vpp = NULL; 4912 /* 4913 * Lookup this name in the DNLC. If there is no entry 4914 * lookup over the wire. 4915 */ 4916 if (!skipdnlc) 4917 *vpp = dnlc_lookup(dvp, nm); 4918 if (*vpp == NULL) { 4919 /* 4920 * We need to go over the wire to lookup the name. 4921 */ 4922 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 4923 } 4924 4925 /* 4926 * We hit on the dnlc 4927 */ 4928 if (*vpp != DNLC_NO_VNODE || 4929 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 4930 /* 4931 * But our attrs may not be valid. 4932 */ 4933 if (ATTRCACHE4_VALID(dvp)) { 4934 error = nfs4_waitfor_purge_complete(dvp); 4935 if (error) { 4936 VN_RELE(*vpp); 4937 *vpp = NULL; 4938 return (error); 4939 } 4940 4941 /* 4942 * If after the purge completes, check to make sure 4943 * our attrs are still valid. 4944 */ 4945 if (ATTRCACHE4_VALID(dvp)) { 4946 /* 4947 * If we waited for a purge we may have 4948 * lost our vnode so look it up again. 4949 */ 4950 VN_RELE(*vpp); 4951 *vpp = dnlc_lookup(dvp, nm); 4952 if (*vpp == NULL) 4953 return (nfs4lookupnew_otw(dvp, 4954 nm, vpp, cr)); 4955 4956 /* 4957 * The access cache should almost always hit 4958 */ 4959 error = nfs4_access(dvp, VEXEC, 0, cr); 4960 4961 if (error) { 4962 VN_RELE(*vpp); 4963 *vpp = NULL; 4964 return (error); 4965 } 4966 if (*vpp == DNLC_NO_VNODE) { 4967 VN_RELE(*vpp); 4968 *vpp = NULL; 4969 return (ENOENT); 4970 } 4971 return (0); 4972 } 4973 } 4974 } 4975 4976 ASSERT(*vpp != NULL); 4977 4978 /* 4979 * We may have gotten here we have one of the following cases: 4980 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 4981 * need to validate them. 4982 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 4983 * must validate. 4984 * 4985 * Go to the server and check if the directory has changed, if 4986 * it hasn't we are done and can use the dnlc entry. 4987 */ 4988 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 4989 } 4990 4991 /* 4992 * Go to the server and check if the directory has changed, if 4993 * it hasn't we are done and can use the dnlc entry. If it 4994 * has changed we get a new copy of its attributes and check 4995 * the access for VEXEC, then relookup the filename and 4996 * get its filehandle and attributes. 4997 * 4998 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 4999 * if the NVERIFY failed we must 5000 * purge the caches 5001 * cache new attributes (will set r_time_attr_inval) 5002 * cache new access 5003 * recheck VEXEC access 5004 * add name to dnlc, possibly negative 5005 * if LOOKUP succeeded 5006 * cache new attributes 5007 * else 5008 * set a new r_time_attr_inval for dvp 5009 * check to make sure we have access 5010 * 5011 * The vpp returned is the vnode passed in if the directory is valid, 5012 * a new vnode if successful lookup, or NULL on error. 5013 */ 5014 static int 5015 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5016 { 5017 COMPOUND4args_clnt args; 5018 COMPOUND4res_clnt res; 5019 fattr4 *ver_fattr; 5020 fattr4_change dchange; 5021 int32_t *ptr; 5022 int argoplist_size = 7 * sizeof (nfs_argop4); 5023 nfs_argop4 *argop; 5024 int doqueue; 5025 mntinfo4_t *mi; 5026 nfs4_recov_state_t recov_state; 5027 hrtime_t t; 5028 int isdotdot; 5029 vnode_t *nvp; 5030 nfs_fh4 *fhp; 5031 nfs4_sharedfh_t *sfhp; 5032 nfs4_access_type_t cacc; 5033 rnode4_t *nrp; 5034 rnode4_t *drp = VTOR4(dvp); 5035 nfs4_ga_res_t *garp = NULL; 5036 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5037 5038 ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); 5039 ASSERT(nm != NULL); 5040 ASSERT(nm[0] != '\0'); 5041 ASSERT(dvp->v_type == VDIR); 5042 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5043 ASSERT(*vpp != NULL); 5044 5045 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5046 isdotdot = 1; 5047 args.ctag = TAG_LOOKUP_VPARENT; 5048 } else { 5049 /* 5050 * Do not allow crossing of server mount points. The 5051 * only visible entries in a SRVSTUB dir are . and .. 5052 * This code handles the non-.. case. We can't even get 5053 * this far if looking up ".". 5054 */ 5055 if (VTOR4(dvp)->r_flags & R4SRVSTUB) { 5056 VN_RELE(*vpp); 5057 *vpp = NULL; 5058 return (ENOENT); 5059 } 5060 isdotdot = 0; 5061 args.ctag = TAG_LOOKUP_VALID; 5062 } 5063 5064 mi = VTOMI4(dvp); 5065 recov_state.rs_flags = 0; 5066 recov_state.rs_num_retry_despite_err = 0; 5067 5068 nvp = NULL; 5069 5070 /* Save the original mount point security information */ 5071 (void) save_mnt_secinfo(mi->mi_curr_serv); 5072 5073 recov_retry: 5074 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5075 &recov_state, NULL); 5076 if (e.error) { 5077 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5078 VN_RELE(*vpp); 5079 *vpp = NULL; 5080 return (e.error); 5081 } 5082 5083 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5084 5085 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5086 args.array_len = 7; 5087 args.array = argop; 5088 5089 /* 0. putfh file */ 5090 argop[0].argop = OP_CPUTFH; 5091 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5092 5093 /* 1. nverify the change info */ 5094 argop[1].argop = OP_NVERIFY; 5095 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5096 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5097 ver_fattr->attrlist4 = (char *)&dchange; 5098 ptr = (int32_t *)&dchange; 5099 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5100 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5101 5102 /* 2. getattr directory */ 5103 argop[2].argop = OP_GETATTR; 5104 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5105 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5106 5107 /* 3. access directory */ 5108 argop[3].argop = OP_ACCESS; 5109 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5110 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5111 5112 /* 4. lookup name */ 5113 if (isdotdot) { 5114 argop[4].argop = OP_LOOKUPP; 5115 } else { 5116 argop[4].argop = OP_CLOOKUP; 5117 argop[4].nfs_argop4_u.opclookup.cname = nm; 5118 } 5119 5120 /* 5. resulting file handle */ 5121 argop[5].argop = OP_GETFH; 5122 5123 /* 6. resulting file attributes */ 5124 argop[6].argop = OP_GETATTR; 5125 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5126 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5127 5128 doqueue = 1; 5129 t = gethrtime(); 5130 5131 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5132 5133 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5134 /* 5135 * For WRONGSEC of a non-dotdot case, send secinfo directly 5136 * from this thread, do not go thru the recovery thread since 5137 * we need the nm information. 5138 * 5139 * Not doing dotdot case because there is no specification 5140 * for (PUTFH, SECINFO "..") yet. 5141 */ 5142 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5143 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5144 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5145 &recov_state, FALSE); 5146 } else { 5147 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5148 &recov_state, TRUE); 5149 } 5150 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5151 kmem_free(argop, argoplist_size); 5152 if (!e.error) 5153 goto recov_retry; 5154 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5155 VN_RELE(*vpp); 5156 *vpp = NULL; 5157 return (e.error); 5158 } 5159 5160 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5161 OP_LOOKUP, NULL) == FALSE) { 5162 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5163 &recov_state, TRUE); 5164 5165 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5166 kmem_free(argop, argoplist_size); 5167 goto recov_retry; 5168 } 5169 } 5170 5171 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5172 5173 if (e.error || res.array_len == 0) { 5174 /* 5175 * If e.error isn't set, then reply has no ops (or we couldn't 5176 * be here). The only legal way to reply without an op array 5177 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5178 * be in the reply for all other status values. 5179 * 5180 * For valid replies without an ops array, return ENOTSUP 5181 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5182 * return EIO -- don't trust status. 5183 */ 5184 if (e.error == 0) 5185 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5186 ENOTSUP : EIO; 5187 VN_RELE(*vpp); 5188 *vpp = NULL; 5189 kmem_free(argop, argoplist_size); 5190 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5191 return (e.error); 5192 } 5193 5194 if (res.status != NFS4ERR_SAME) { 5195 e.error = geterrno4(res.status); 5196 5197 /* 5198 * The NVERIFY "failed" so the directory has changed 5199 * First make sure PUTFH succeeded and NVERIFY "failed" 5200 * cleanly. 5201 */ 5202 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5203 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5204 nfs4_purge_stale_fh(e.error, dvp, cr); 5205 VN_RELE(*vpp); 5206 *vpp = NULL; 5207 goto exit; 5208 } 5209 5210 /* 5211 * We know the NVERIFY "failed" so we must: 5212 * purge the caches (access and indirectly dnlc if needed) 5213 */ 5214 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5215 5216 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5217 nfs4_purge_stale_fh(e.error, dvp, cr); 5218 VN_RELE(*vpp); 5219 *vpp = NULL; 5220 goto exit; 5221 } 5222 5223 /* 5224 * Install new cached attributes for the directory 5225 */ 5226 nfs4_attr_cache(dvp, 5227 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5228 t, cr, FALSE, NULL); 5229 5230 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5231 nfs4_purge_stale_fh(e.error, dvp, cr); 5232 VN_RELE(*vpp); 5233 *vpp = NULL; 5234 e.error = geterrno4(res.status); 5235 goto exit; 5236 } 5237 5238 /* 5239 * Now we know the directory is valid, 5240 * cache new directory access 5241 */ 5242 nfs4_access_cache(drp, 5243 args.array[3].nfs_argop4_u.opaccess.access, 5244 res.array[3].nfs_resop4_u.opaccess.access, cr); 5245 5246 /* 5247 * recheck VEXEC access 5248 */ 5249 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5250 if (cacc != NFS4_ACCESS_ALLOWED) { 5251 /* 5252 * Directory permissions might have been revoked 5253 */ 5254 if (cacc == NFS4_ACCESS_DENIED) { 5255 e.error = EACCES; 5256 VN_RELE(*vpp); 5257 *vpp = NULL; 5258 goto exit; 5259 } 5260 5261 /* 5262 * Somehow we must not have asked for enough 5263 * so try a singleton ACCESS, should never happen. 5264 */ 5265 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5266 if (e.error) { 5267 VN_RELE(*vpp); 5268 *vpp = NULL; 5269 goto exit; 5270 } 5271 } 5272 5273 e.error = geterrno4(res.status); 5274 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5275 /* 5276 * The lookup failed, probably no entry 5277 */ 5278 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5279 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5280 } else { 5281 /* 5282 * Might be some other error, so remove 5283 * the dnlc entry to make sure we start all 5284 * over again, next time. 5285 */ 5286 dnlc_remove(dvp, nm); 5287 } 5288 VN_RELE(*vpp); 5289 *vpp = NULL; 5290 goto exit; 5291 } 5292 5293 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5294 /* 5295 * The file exists but we can't get its fh for 5296 * some unknown reason. Remove it from the dnlc 5297 * and error out to be safe. 5298 */ 5299 dnlc_remove(dvp, nm); 5300 VN_RELE(*vpp); 5301 *vpp = NULL; 5302 goto exit; 5303 } 5304 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5305 if (fhp->nfs_fh4_len == 0) { 5306 /* 5307 * The file exists but a bogus fh 5308 * some unknown reason. Remove it from the dnlc 5309 * and error out to be safe. 5310 */ 5311 e.error = ENOENT; 5312 dnlc_remove(dvp, nm); 5313 VN_RELE(*vpp); 5314 *vpp = NULL; 5315 goto exit; 5316 } 5317 sfhp = sfh4_get(fhp, mi); 5318 5319 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5320 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5321 5322 /* 5323 * Make the new rnode 5324 */ 5325 if (isdotdot) { 5326 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5327 if (e.error) { 5328 sfh4_rele(&sfhp); 5329 VN_RELE(*vpp); 5330 *vpp = NULL; 5331 goto exit; 5332 } 5333 /* 5334 * XXX if nfs4_make_dotdot uses an existing rnode 5335 * XXX it doesn't update the attributes. 5336 * XXX for now just save them again to save an OTW 5337 */ 5338 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5339 } else { 5340 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5341 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5342 /* 5343 * If v_type == VNON, then garp was NULL because 5344 * the last op in the compound failed and makenfs4node 5345 * could not find the vnode for sfhp. It created 5346 * a new vnode, so we have nothing to purge here. 5347 */ 5348 if (nvp->v_type == VNON) { 5349 vattr_t vattr; 5350 5351 vattr.va_mask = AT_TYPE; 5352 /* 5353 * N.B. We've already called nfs4_end_fop above. 5354 */ 5355 e.error = nfs4getattr(nvp, &vattr, cr); 5356 if (e.error) { 5357 sfh4_rele(&sfhp); 5358 VN_RELE(*vpp); 5359 *vpp = NULL; 5360 VN_RELE(nvp); 5361 goto exit; 5362 } 5363 nvp->v_type = vattr.va_type; 5364 } 5365 } 5366 sfh4_rele(&sfhp); 5367 5368 nrp = VTOR4(nvp); 5369 mutex_enter(&nrp->r_statev4_lock); 5370 if (!nrp->created_v4) 5371 dnlc_update(dvp, nm, nvp); 5372 mutex_exit(&nrp->r_statev4_lock); 5373 5374 VN_RELE(*vpp); 5375 *vpp = nvp; 5376 } else { 5377 hrtime_t now; 5378 hrtime_t delta = 0; 5379 5380 e.error = 0; 5381 5382 /* 5383 * Because the NVERIFY "succeeded" we know that the 5384 * directory attributes are still valid 5385 * so update r_time_attr_inval 5386 */ 5387 now = gethrtime(); 5388 mutex_enter(&drp->r_statelock); 5389 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5390 delta = now - drp->r_time_attr_saved; 5391 if (delta < mi->mi_acdirmin) 5392 delta = mi->mi_acdirmin; 5393 else if (delta > mi->mi_acdirmax) 5394 delta = mi->mi_acdirmax; 5395 } 5396 drp->r_time_attr_inval = now + delta; 5397 mutex_exit(&drp->r_statelock); 5398 dnlc_update(dvp, nm, *vpp); 5399 5400 /* 5401 * Even though we have a valid directory attr cache 5402 * and dnlc entry, we may not have access. 5403 * This should almost always hit the cache. 5404 */ 5405 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5406 if (e.error) { 5407 VN_RELE(*vpp); 5408 *vpp = NULL; 5409 } 5410 5411 if (*vpp == DNLC_NO_VNODE) { 5412 VN_RELE(*vpp); 5413 *vpp = NULL; 5414 e.error = ENOENT; 5415 } 5416 } 5417 5418 exit: 5419 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5420 kmem_free(argop, argoplist_size); 5421 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5422 return (e.error); 5423 } 5424 5425 /* 5426 * We need to go over the wire to lookup the name, but 5427 * while we are there verify the directory has not 5428 * changed but if it has, get new attributes and check access 5429 * 5430 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5431 * NVERIFY GETATTR ACCESS 5432 * 5433 * With the results: 5434 * if the NVERIFY failed we must purge the caches, add new attributes, 5435 * and cache new access. 5436 * set a new r_time_attr_inval 5437 * add name to dnlc, possibly negative 5438 * if LOOKUP succeeded 5439 * cache new attributes 5440 */ 5441 static int 5442 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5443 { 5444 COMPOUND4args_clnt args; 5445 COMPOUND4res_clnt res; 5446 fattr4 *ver_fattr; 5447 fattr4_change dchange; 5448 int32_t *ptr; 5449 nfs4_ga_res_t *garp = NULL; 5450 int argoplist_size = 9 * sizeof (nfs_argop4); 5451 nfs_argop4 *argop; 5452 int doqueue; 5453 mntinfo4_t *mi; 5454 nfs4_recov_state_t recov_state; 5455 hrtime_t t; 5456 int isdotdot; 5457 vnode_t *nvp; 5458 nfs_fh4 *fhp; 5459 nfs4_sharedfh_t *sfhp; 5460 nfs4_access_type_t cacc; 5461 rnode4_t *nrp; 5462 rnode4_t *drp = VTOR4(dvp); 5463 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5464 5465 ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); 5466 ASSERT(nm != NULL); 5467 ASSERT(nm[0] != '\0'); 5468 ASSERT(dvp->v_type == VDIR); 5469 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5470 ASSERT(*vpp == NULL); 5471 5472 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5473 isdotdot = 1; 5474 args.ctag = TAG_LOOKUP_PARENT; 5475 } else { 5476 /* 5477 * Do not allow crossing of server mount points. The 5478 * only visible entries in a SRVSTUB dir are . and .. 5479 * This code handles the non-.. case. We can't even get 5480 * this far if looking up ".". 5481 */ 5482 if (VTOR4(dvp)->r_flags & R4SRVSTUB) 5483 return (ENOENT); 5484 5485 isdotdot = 0; 5486 args.ctag = TAG_LOOKUP; 5487 } 5488 5489 mi = VTOMI4(dvp); 5490 recov_state.rs_flags = 0; 5491 recov_state.rs_num_retry_despite_err = 0; 5492 5493 nvp = NULL; 5494 5495 /* Save the original mount point security information */ 5496 (void) save_mnt_secinfo(mi->mi_curr_serv); 5497 5498 recov_retry: 5499 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5500 &recov_state, NULL); 5501 if (e.error) { 5502 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5503 return (e.error); 5504 } 5505 5506 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5507 5508 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5509 args.array_len = 9; 5510 args.array = argop; 5511 5512 /* 0. putfh file */ 5513 argop[0].argop = OP_CPUTFH; 5514 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5515 5516 /* 1. savefh for the nverify */ 5517 argop[1].argop = OP_SAVEFH; 5518 5519 /* 2. lookup name */ 5520 if (isdotdot) { 5521 argop[2].argop = OP_LOOKUPP; 5522 } else { 5523 argop[2].argop = OP_CLOOKUP; 5524 argop[2].nfs_argop4_u.opclookup.cname = nm; 5525 } 5526 5527 /* 3. resulting file handle */ 5528 argop[3].argop = OP_GETFH; 5529 5530 /* 4. resulting file attributes */ 5531 argop[4].argop = OP_GETATTR; 5532 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5533 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5534 5535 /* 5. restorefh back the directory for the nverify */ 5536 argop[5].argop = OP_RESTOREFH; 5537 5538 /* 6. nverify the change info */ 5539 argop[6].argop = OP_NVERIFY; 5540 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5541 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5542 ver_fattr->attrlist4 = (char *)&dchange; 5543 ptr = (int32_t *)&dchange; 5544 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5545 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5546 5547 /* 7. getattr directory */ 5548 argop[7].argop = OP_GETATTR; 5549 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5550 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5551 5552 /* 8. access directory */ 5553 argop[8].argop = OP_ACCESS; 5554 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5555 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5556 5557 doqueue = 1; 5558 t = gethrtime(); 5559 5560 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5561 5562 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5563 /* 5564 * For WRONGSEC of a non-dotdot case, send secinfo directly 5565 * from this thread, do not go thru the recovery thread since 5566 * we need the nm information. 5567 * 5568 * Not doing dotdot case because there is no specification 5569 * for (PUTFH, SECINFO "..") yet. 5570 */ 5571 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5572 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) { 5573 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5574 &recov_state, FALSE); 5575 } else { 5576 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5577 &recov_state, TRUE); 5578 } 5579 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5580 kmem_free(argop, argoplist_size); 5581 if (!e.error) 5582 goto recov_retry; 5583 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5584 return (e.error); 5585 } 5586 5587 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5588 OP_LOOKUP, NULL) == FALSE) { 5589 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5590 &recov_state, TRUE); 5591 5592 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5593 kmem_free(argop, argoplist_size); 5594 goto recov_retry; 5595 } 5596 } 5597 5598 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5599 5600 if (e.error || res.array_len == 0) { 5601 /* 5602 * If e.error isn't set, then reply has no ops (or we couldn't 5603 * be here). The only legal way to reply without an op array 5604 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5605 * be in the reply for all other status values. 5606 * 5607 * For valid replies without an ops array, return ENOTSUP 5608 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5609 * return EIO -- don't trust status. 5610 */ 5611 if (e.error == 0) 5612 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5613 ENOTSUP : EIO; 5614 5615 kmem_free(argop, argoplist_size); 5616 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5617 return (e.error); 5618 } 5619 5620 e.error = geterrno4(res.status); 5621 5622 /* 5623 * The PUTFH and SAVEFH may have failed. 5624 */ 5625 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5626 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5627 nfs4_purge_stale_fh(e.error, dvp, cr); 5628 goto exit; 5629 } 5630 5631 /* 5632 * Check if the file exists, if it does delay entering 5633 * into the dnlc until after we update the directory 5634 * attributes so we don't cause it to get purged immediately. 5635 */ 5636 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5637 /* 5638 * The lookup failed, probably no entry 5639 */ 5640 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5641 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5642 } 5643 goto exit; 5644 } 5645 5646 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5647 /* 5648 * The file exists but we can't get its fh for 5649 * some unknown reason. Error out to be safe. 5650 */ 5651 goto exit; 5652 } 5653 5654 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5655 if (fhp->nfs_fh4_len == 0) { 5656 /* 5657 * The file exists but a bogus fh 5658 * some unknown reason. Error out to be safe. 5659 */ 5660 e.error = EIO; 5661 goto exit; 5662 } 5663 sfhp = sfh4_get(fhp, mi); 5664 5665 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5666 sfh4_rele(&sfhp); 5667 e.error = EIO; 5668 goto exit; 5669 } 5670 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5671 5672 /* 5673 * The RESTOREFH may have failed 5674 */ 5675 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5676 sfh4_rele(&sfhp); 5677 e.error = EIO; 5678 goto exit; 5679 } 5680 5681 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5682 /* 5683 * First make sure the NVERIFY failed as we expected, 5684 * if it didn't then be conservative and error out 5685 * as we can't trust the directory. 5686 */ 5687 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5688 sfh4_rele(&sfhp); 5689 e.error = EIO; 5690 goto exit; 5691 } 5692 5693 /* 5694 * We know the NVERIFY "failed" so the directory has changed, 5695 * so we must: 5696 * purge the caches (access and indirectly dnlc if needed) 5697 */ 5698 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5699 5700 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5701 sfh4_rele(&sfhp); 5702 goto exit; 5703 } 5704 nfs4_attr_cache(dvp, 5705 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5706 t, cr, FALSE, NULL); 5707 5708 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5709 nfs4_purge_stale_fh(e.error, dvp, cr); 5710 sfh4_rele(&sfhp); 5711 e.error = geterrno4(res.status); 5712 goto exit; 5713 } 5714 5715 /* 5716 * Now we know the directory is valid, 5717 * cache new directory access 5718 */ 5719 nfs4_access_cache(drp, 5720 args.array[8].nfs_argop4_u.opaccess.access, 5721 res.array[8].nfs_resop4_u.opaccess.access, cr); 5722 5723 /* 5724 * recheck VEXEC access 5725 */ 5726 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5727 if (cacc != NFS4_ACCESS_ALLOWED) { 5728 /* 5729 * Directory permissions might have been revoked 5730 */ 5731 if (cacc == NFS4_ACCESS_DENIED) { 5732 sfh4_rele(&sfhp); 5733 e.error = EACCES; 5734 goto exit; 5735 } 5736 5737 /* 5738 * Somehow we must not have asked for enough 5739 * so try a singleton ACCESS should never happen 5740 */ 5741 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5742 if (e.error) { 5743 sfh4_rele(&sfhp); 5744 goto exit; 5745 } 5746 } 5747 5748 e.error = geterrno4(res.status); 5749 } else { 5750 hrtime_t now; 5751 hrtime_t delta = 0; 5752 5753 e.error = 0; 5754 5755 /* 5756 * Because the NVERIFY "succeeded" we know that the 5757 * directory attributes are still valid 5758 * so update r_time_attr_inval 5759 */ 5760 now = gethrtime(); 5761 mutex_enter(&drp->r_statelock); 5762 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5763 delta = now - drp->r_time_attr_saved; 5764 if (delta < mi->mi_acdirmin) 5765 delta = mi->mi_acdirmin; 5766 else if (delta > mi->mi_acdirmax) 5767 delta = mi->mi_acdirmax; 5768 } 5769 drp->r_time_attr_inval = now + delta; 5770 mutex_exit(&drp->r_statelock); 5771 5772 /* 5773 * Even though we have a valid directory attr cache, 5774 * we may not have access. 5775 * This should almost always hit the cache. 5776 */ 5777 e.error = nfs4_access(dvp, VEXEC, 0, cr); 5778 if (e.error) { 5779 sfh4_rele(&sfhp); 5780 goto exit; 5781 } 5782 } 5783 5784 /* 5785 * Now we have successfully completed the lookup, if the 5786 * directory has changed we now have the valid attributes. 5787 * We also know we have directory access. 5788 * Create the new rnode and insert it in the dnlc. 5789 */ 5790 if (isdotdot) { 5791 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5792 if (e.error) { 5793 sfh4_rele(&sfhp); 5794 goto exit; 5795 } 5796 /* 5797 * XXX if nfs4_make_dotdot uses an existing rnode 5798 * XXX it doesn't update the attributes. 5799 * XXX for now just save them again to save an OTW 5800 */ 5801 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5802 } else { 5803 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5804 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 5805 } 5806 sfh4_rele(&sfhp); 5807 5808 nrp = VTOR4(nvp); 5809 mutex_enter(&nrp->r_statev4_lock); 5810 if (!nrp->created_v4) 5811 dnlc_update(dvp, nm, nvp); 5812 mutex_exit(&nrp->r_statev4_lock); 5813 5814 *vpp = nvp; 5815 5816 exit: 5817 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5818 kmem_free(argop, argoplist_size); 5819 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5820 return (e.error); 5821 } 5822 5823 #ifdef DEBUG 5824 void 5825 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 5826 { 5827 uint_t i, len; 5828 zoneid_t zoneid = getzoneid(); 5829 char *s; 5830 5831 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 5832 for (i = 0; i < argcnt; i++) { 5833 nfs_argop4 *op = &argbase[i]; 5834 switch (op->argop) { 5835 case OP_CPUTFH: 5836 case OP_PUTFH: 5837 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 5838 break; 5839 case OP_PUTROOTFH: 5840 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 5841 break; 5842 case OP_CLOOKUP: 5843 s = op->nfs_argop4_u.opclookup.cname; 5844 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5845 break; 5846 case OP_LOOKUP: 5847 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 5848 &len, NULL); 5849 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 5850 kmem_free(s, len); 5851 break; 5852 case OP_LOOKUPP: 5853 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 5854 break; 5855 case OP_GETFH: 5856 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 5857 break; 5858 case OP_GETATTR: 5859 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 5860 break; 5861 case OP_OPENATTR: 5862 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 5863 break; 5864 default: 5865 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 5866 op->argop); 5867 break; 5868 } 5869 } 5870 } 5871 #endif 5872 5873 /* 5874 * nfs4lookup_setup - constructs a multi-lookup compound request. 5875 * 5876 * Given the path "nm1/nm2/.../nmn", the following compound requests 5877 * may be created: 5878 * 5879 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 5880 * is faster, for now. 5881 * 5882 * l4_getattrs indicates the type of compound requested. 5883 * 5884 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 5885 * 5886 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 5887 * 5888 * total number of ops is n + 1. 5889 * 5890 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 5891 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 5892 * before the last component, and only get attributes 5893 * for the last component. Note that the second-to-last 5894 * pathname component is XATTR_RPATH, which does NOT go 5895 * over-the-wire as a lookup. 5896 * 5897 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 5898 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 5899 * 5900 * and total number of ops is n + 5. 5901 * 5902 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 5903 * attribute directory: create lookups plus an OPENATTR 5904 * replacing the last lookup. Note that the last pathname 5905 * component is XATTR_RPATH, which does NOT go over-the-wire 5906 * as a lookup. 5907 * 5908 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 5909 * Openattr; Getfh; Getattr } 5910 * 5911 * and total number of ops is n + 5. 5912 * 5913 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 5914 * nodes too. 5915 * 5916 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 5917 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 5918 * 5919 * and total number of ops is 3*n + 1. 5920 * 5921 * All cases: returns the index in the arg array of the final LOOKUP op, or 5922 * -1 if no LOOKUPs were used. 5923 */ 5924 int 5925 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 5926 { 5927 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 5928 nfs_argop4 *argbase, *argop; 5929 int arglen, argcnt; 5930 int n = 1; /* number of components */ 5931 int nga = 1; /* number of Getattr's in request */ 5932 char c = '\0', *s, *p; 5933 int lookup_idx = -1; 5934 int argoplist_size; 5935 5936 /* set lookuparg response result to 0 */ 5937 lookupargp->resp->status = NFS4_OK; 5938 5939 /* skip leading "/" or "." e.g. ".//./" if there is */ 5940 for (; ; nm++) { 5941 if (*nm != '/' && *nm != '.') 5942 break; 5943 5944 /* ".." is counted as 1 component */ 5945 if (*nm == '.' && *(nm + 1) == '.') 5946 break; 5947 } 5948 5949 /* 5950 * Find n = number of components - nm must be null terminated 5951 * Skip "." components. 5952 */ 5953 if (*nm != '\0') { 5954 for (n = 1, s = nm; *s != '\0'; s++) { 5955 if ((*s == '/') && (*(s + 1) != '/') && 5956 (*(s + 1) != '\0') && 5957 !(*(s + 1) == '.' && (*(s + 2) == '/' || 5958 *(s + 2) == '\0'))) 5959 n++; 5960 } 5961 } else 5962 n = 0; 5963 5964 /* 5965 * nga is number of components that need Getfh+Getattr 5966 */ 5967 switch (l4_getattrs) { 5968 case LKP4_NO_ATTRIBUTES: 5969 nga = 0; 5970 break; 5971 case LKP4_ALL_ATTRIBUTES: 5972 nga = n; 5973 /* 5974 * Always have at least 1 getfh, getattr pair 5975 */ 5976 if (nga == 0) 5977 nga++; 5978 break; 5979 case LKP4_LAST_ATTRDIR: 5980 case LKP4_LAST_NAMED_ATTR: 5981 nga = n+1; 5982 break; 5983 } 5984 5985 /* 5986 * If change to use the filehandle attr instead of getfh 5987 * the following line can be deleted. 5988 */ 5989 nga *= 2; 5990 5991 /* 5992 * calculate number of ops in request as 5993 * header + trailer + lookups + getattrs 5994 */ 5995 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 5996 5997 argoplist_size = arglen * sizeof (nfs_argop4); 5998 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 5999 lookupargp->argsp->array = argop; 6000 6001 argcnt = lookupargp->header_len; 6002 argop += argcnt; 6003 6004 /* 6005 * loop and create a lookup op and possibly getattr/getfh for 6006 * each component. Skip "." components. 6007 */ 6008 for (s = nm; *s != '\0'; s = p) { 6009 /* 6010 * Set up a pathname struct for each component if needed 6011 */ 6012 while (*s == '/') 6013 s++; 6014 if (*s == '\0') 6015 break; 6016 for (p = s; (*p != '/') && (*p != '\0'); p++); 6017 c = *p; 6018 *p = '\0'; 6019 6020 if (s[0] == '.' && s[1] == '\0') { 6021 *p = c; 6022 continue; 6023 } 6024 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6025 strcmp(s, XATTR_RPATH) == 0) { 6026 /* getfh XXX may not be needed in future */ 6027 argop->argop = OP_GETFH; 6028 argop++; 6029 argcnt++; 6030 6031 /* getattr */ 6032 argop->argop = OP_GETATTR; 6033 argop->nfs_argop4_u.opgetattr.attr_request = 6034 lookupargp->ga_bits; 6035 argop->nfs_argop4_u.opgetattr.mi = 6036 lookupargp->mi; 6037 argop++; 6038 argcnt++; 6039 6040 /* openattr */ 6041 argop->argop = OP_OPENATTR; 6042 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6043 strcmp(s, XATTR_RPATH) == 0) { 6044 /* openattr */ 6045 argop->argop = OP_OPENATTR; 6046 argop++; 6047 argcnt++; 6048 6049 /* getfh XXX may not be needed in future */ 6050 argop->argop = OP_GETFH; 6051 argop++; 6052 argcnt++; 6053 6054 /* getattr */ 6055 argop->argop = OP_GETATTR; 6056 argop->nfs_argop4_u.opgetattr.attr_request = 6057 lookupargp->ga_bits; 6058 argop->nfs_argop4_u.opgetattr.mi = 6059 lookupargp->mi; 6060 argop++; 6061 argcnt++; 6062 *p = c; 6063 continue; 6064 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6065 /* lookupp */ 6066 argop->argop = OP_LOOKUPP; 6067 } else { 6068 /* lookup */ 6069 argop->argop = OP_LOOKUP; 6070 (void) str_to_utf8(s, 6071 &argop->nfs_argop4_u.oplookup.objname); 6072 } 6073 lookup_idx = argcnt; 6074 argop++; 6075 argcnt++; 6076 6077 *p = c; 6078 6079 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6080 /* getfh XXX may not be needed in future */ 6081 argop->argop = OP_GETFH; 6082 argop++; 6083 argcnt++; 6084 6085 /* getattr */ 6086 argop->argop = OP_GETATTR; 6087 argop->nfs_argop4_u.opgetattr.attr_request = 6088 lookupargp->ga_bits; 6089 argop->nfs_argop4_u.opgetattr.mi = 6090 lookupargp->mi; 6091 argop++; 6092 argcnt++; 6093 } 6094 } 6095 6096 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6097 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6098 if (needgetfh) { 6099 /* stick in a post-lookup getfh */ 6100 argop->argop = OP_GETFH; 6101 argcnt++; 6102 argop++; 6103 } 6104 /* post-lookup getattr */ 6105 argop->argop = OP_GETATTR; 6106 argop->nfs_argop4_u.opgetattr.attr_request = 6107 lookupargp->ga_bits; 6108 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6109 argcnt++; 6110 } 6111 argcnt += lookupargp->trailer_len; /* actual op count */ 6112 lookupargp->argsp->array_len = argcnt; 6113 lookupargp->arglen = arglen; 6114 6115 #ifdef DEBUG 6116 if (nfs4_client_lookup_debug) 6117 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6118 #endif 6119 6120 return (lookup_idx); 6121 } 6122 6123 static int 6124 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6125 { 6126 COMPOUND4args_clnt args; 6127 COMPOUND4res_clnt res; 6128 GETFH4res *gf_res = NULL; 6129 nfs_argop4 argop[4]; 6130 nfs_resop4 *resop = NULL; 6131 nfs4_sharedfh_t *sfhp; 6132 hrtime_t t; 6133 nfs4_error_t e; 6134 6135 rnode4_t *drp; 6136 int doqueue = 1; 6137 vnode_t *vp; 6138 int needrecov = 0; 6139 nfs4_recov_state_t recov_state; 6140 6141 ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); 6142 6143 *avp = NULL; 6144 recov_state.rs_flags = 0; 6145 recov_state.rs_num_retry_despite_err = 0; 6146 6147 recov_retry: 6148 /* COMPOUND: putfh, openattr, getfh, getattr */ 6149 args.array_len = 4; 6150 args.array = argop; 6151 args.ctag = TAG_OPENATTR; 6152 6153 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6154 if (e.error) 6155 return (e.error); 6156 6157 drp = VTOR4(dvp); 6158 6159 /* putfh */ 6160 argop[0].argop = OP_CPUTFH; 6161 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6162 6163 /* openattr */ 6164 argop[1].argop = OP_OPENATTR; 6165 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6166 6167 /* getfh */ 6168 argop[2].argop = OP_GETFH; 6169 6170 /* getattr */ 6171 argop[3].argop = OP_GETATTR; 6172 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6173 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6174 6175 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6176 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6177 rnode4info(drp))); 6178 6179 t = gethrtime(); 6180 6181 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6182 6183 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6184 if (needrecov) { 6185 bool_t abort; 6186 6187 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6188 "nfs4openattr: initiating recovery\n")); 6189 6190 abort = nfs4_start_recovery(&e, 6191 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6192 OP_OPENATTR, NULL); 6193 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6194 if (!e.error) { 6195 e.error = geterrno4(res.status); 6196 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6197 } 6198 if (abort == FALSE) 6199 goto recov_retry; 6200 return (e.error); 6201 } 6202 6203 if (e.error) { 6204 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6205 return (e.error); 6206 } 6207 6208 if (res.status) { 6209 /* 6210 * If OTW errro is NOTSUPP, then it should be 6211 * translated to EINVAL. All Solaris file system 6212 * implementations return EINVAL to the syscall layer 6213 * when the attrdir cannot be created due to an 6214 * implementation restriction or noxattr mount option. 6215 */ 6216 if (res.status == NFS4ERR_NOTSUPP) { 6217 mutex_enter(&drp->r_statelock); 6218 if (drp->r_xattr_dir) 6219 VN_RELE(drp->r_xattr_dir); 6220 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6221 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6222 mutex_exit(&drp->r_statelock); 6223 6224 e.error = EINVAL; 6225 } else { 6226 e.error = geterrno4(res.status); 6227 } 6228 6229 if (e.error) { 6230 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6231 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6232 needrecov); 6233 return (e.error); 6234 } 6235 } 6236 6237 resop = &res.array[0]; /* putfh res */ 6238 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6239 6240 resop = &res.array[1]; /* openattr res */ 6241 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6242 6243 resop = &res.array[2]; /* getfh res */ 6244 gf_res = &resop->nfs_resop4_u.opgetfh; 6245 if (gf_res->object.nfs_fh4_len == 0) { 6246 *avp = NULL; 6247 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6248 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6249 return (ENOENT); 6250 } 6251 6252 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6253 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6254 dvp->v_vfsp, t, cr, dvp, 6255 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH)); 6256 sfh4_rele(&sfhp); 6257 6258 if (e.error) 6259 PURGE_ATTRCACHE4(vp); 6260 6261 mutex_enter(&vp->v_lock); 6262 vp->v_flag |= V_XATTRDIR; 6263 mutex_exit(&vp->v_lock); 6264 6265 *avp = vp; 6266 6267 mutex_enter(&drp->r_statelock); 6268 if (drp->r_xattr_dir) 6269 VN_RELE(drp->r_xattr_dir); 6270 VN_HOLD(vp); 6271 drp->r_xattr_dir = vp; 6272 6273 /* 6274 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6275 * NULL. xattrs could be created at any time, and we have no 6276 * way to update pc4_xattr_exists in the base object if/when 6277 * it happens. 6278 */ 6279 drp->r_pathconf.pc4_xattr_valid = 0; 6280 6281 mutex_exit(&drp->r_statelock); 6282 6283 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6284 6285 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6286 6287 return (0); 6288 } 6289 6290 /* ARGSUSED */ 6291 static int 6292 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6293 int mode, vnode_t **vpp, cred_t *cr, int flags) 6294 { 6295 int error; 6296 vnode_t *vp = NULL; 6297 rnode4_t *rp; 6298 struct vattr vattr; 6299 rnode4_t *drp; 6300 vnode_t *tempvp; 6301 enum createmode4 createmode; 6302 bool_t must_trunc = FALSE; 6303 6304 if (curproc->p_zone != VTOMI4(dvp)->mi_zone) 6305 return (EPERM); 6306 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6307 return (EINVAL); 6308 } 6309 6310 /* . and .. have special meaning in the protocol, reject them. */ 6311 6312 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6313 return (EISDIR); 6314 6315 drp = VTOR4(dvp); 6316 6317 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6318 return (EINTR); 6319 6320 top: 6321 /* 6322 * We make a copy of the attributes because the caller does not 6323 * expect us to change what va points to. 6324 */ 6325 vattr = *va; 6326 6327 /* 6328 * If the pathname is "", then dvp is the root vnode of 6329 * a remote file mounted over a local directory. 6330 * All that needs to be done is access 6331 * checking and truncation. Note that we avoid doing 6332 * open w/ create because the parent directory might 6333 * be in pseudo-fs and the open would fail. 6334 */ 6335 if (*nm == '\0') { 6336 error = 0; 6337 VN_HOLD(dvp); 6338 vp = dvp; 6339 must_trunc = TRUE; 6340 } else { 6341 /* 6342 * We need to go over the wire, just to be sure whether the 6343 * file exists or not. Using the DNLC can be dangerous in 6344 * this case when making a decision regarding existence. 6345 */ 6346 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6347 } 6348 6349 if (exclusive) 6350 createmode = EXCLUSIVE4; 6351 else 6352 createmode = GUARDED4; 6353 6354 /* 6355 * error would be set if the file does not exist on the 6356 * server, so lets go create it. 6357 */ 6358 if (error) { 6359 goto create_otw; 6360 } 6361 6362 /* 6363 * File does exist on the server 6364 */ 6365 if (exclusive == EXCL) 6366 error = EEXIST; 6367 else if (vp->v_type == VDIR && (mode & VWRITE)) 6368 error = EISDIR; 6369 else { 6370 /* 6371 * If vnode is a device, create special vnode. 6372 */ 6373 if (ISVDEV(vp->v_type)) { 6374 tempvp = vp; 6375 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6376 VN_RELE(tempvp); 6377 } 6378 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 6379 if ((vattr.va_mask & AT_SIZE) && 6380 vp->v_type == VREG) { 6381 rp = VTOR4(vp); 6382 /* 6383 * Check here for large file handled 6384 * by LF-unaware process (as 6385 * ufs_create() does) 6386 */ 6387 if (!(flags & FOFFMAX)) { 6388 mutex_enter(&rp->r_statelock); 6389 if (rp->r_size > MAXOFF32_T) 6390 error = EOVERFLOW; 6391 mutex_exit(&rp->r_statelock); 6392 } 6393 6394 /* if error is set then we need to return */ 6395 if (error) { 6396 nfs_rw_exit(&drp->r_rwlock); 6397 VN_RELE(vp); 6398 return (error); 6399 } 6400 6401 if (must_trunc) { 6402 vattr.va_mask = AT_SIZE; 6403 error = nfs4setattr(vp, &vattr, 0, cr, 6404 NULL); 6405 } else { 6406 /* 6407 * we know we have a regular file that already 6408 * exists and we may end up truncating the file 6409 * as a result of the open_otw, so flush out 6410 * any dirty pages for this file first. 6411 */ 6412 if (nfs4_has_pages(vp) && 6413 ((rp->r_flags & R4DIRTY) || 6414 rp->r_count > 0 || 6415 rp->r_mapcnt > 0)) { 6416 error = nfs4_putpage(vp, 6417 (offset_t)0, 0, 0, cr); 6418 if (error && (error == ENOSPC || 6419 error == EDQUOT)) { 6420 mutex_enter( 6421 &rp->r_statelock); 6422 if (!rp->r_error) 6423 rp->r_error = 6424 error; 6425 mutex_exit( 6426 &rp->r_statelock); 6427 } 6428 } 6429 vattr.va_mask = (AT_SIZE | 6430 AT_TYPE | AT_MODE); 6431 vattr.va_type = VREG; 6432 createmode = UNCHECKED4; 6433 goto create_otw; 6434 } 6435 } 6436 } 6437 } 6438 nfs_rw_exit(&drp->r_rwlock); 6439 if (error) { 6440 VN_RELE(vp); 6441 } else { 6442 *vpp = vp; 6443 } 6444 return (error); 6445 6446 create_otw: 6447 dnlc_remove(dvp, nm); 6448 6449 ASSERT(vattr.va_mask & AT_TYPE); 6450 6451 /* 6452 * If not a regular file let nfs4mknod() handle it. 6453 */ 6454 if (vattr.va_type != VREG) { 6455 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6456 nfs_rw_exit(&drp->r_rwlock); 6457 return (error); 6458 } 6459 6460 /* 6461 * It _is_ a regular file. 6462 */ 6463 ASSERT(vattr.va_mask & AT_MODE); 6464 if (MANDMODE(vattr.va_mode)) { 6465 nfs_rw_exit(&drp->r_rwlock); 6466 return (EACCES); 6467 } 6468 6469 /* 6470 * If this happens to be a mknod of a regular file, then flags will 6471 * have neither FREAD or FWRITE. However, we must set at least one 6472 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6473 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6474 * set (based on openmode specified by app). 6475 */ 6476 if ((flags & (FREAD|FWRITE)) == 0) 6477 flags |= (FREAD|FWRITE); 6478 6479 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6480 6481 if (vp != NULL) { 6482 /* if create was successful, throw away the file's pages */ 6483 if (!error && (vattr.va_mask & AT_SIZE)) 6484 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6485 cr); 6486 /* release the lookup hold */ 6487 VN_RELE(vp); 6488 vp = NULL; 6489 } 6490 6491 /* 6492 * validate that we opened a regular file. This handles a misbehaving 6493 * server that returns an incorrect FH. 6494 */ 6495 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6496 error = EISDIR; 6497 VN_RELE(*vpp); 6498 } 6499 6500 /* 6501 * If this is not an exclusive create, then the CREATE 6502 * request will be made with the GUARDED mode set. This 6503 * means that the server will return EEXIST if the file 6504 * exists. The file could exist because of a retransmitted 6505 * request. In this case, we recover by starting over and 6506 * checking to see whether the file exists. This second 6507 * time through it should and a CREATE request will not be 6508 * sent. 6509 * 6510 * This handles the problem of a dangling CREATE request 6511 * which contains attributes which indicate that the file 6512 * should be truncated. This retransmitted request could 6513 * possibly truncate valid data in the file if not caught 6514 * by the duplicate request mechanism on the server or if 6515 * not caught by other means. The scenario is: 6516 * 6517 * Client transmits CREATE request with size = 0 6518 * Client times out, retransmits request. 6519 * Response to the first request arrives from the server 6520 * and the client proceeds on. 6521 * Client writes data to the file. 6522 * The server now processes retransmitted CREATE request 6523 * and truncates file. 6524 * 6525 * The use of the GUARDED CREATE request prevents this from 6526 * happening because the retransmitted CREATE would fail 6527 * with EEXIST and would not truncate the file. 6528 */ 6529 if (error == EEXIST && exclusive == NONEXCL) { 6530 #ifdef DEBUG 6531 nfs4_create_misses++; 6532 #endif 6533 goto top; 6534 } 6535 nfs_rw_exit(&drp->r_rwlock); 6536 return (error); 6537 } 6538 6539 /* 6540 * Create compound (for mkdir, mknod, symlink): 6541 * { Putfh <dfh>; Create; Getfh; Getattr } 6542 * It's okay if setattr failed to set gid - this is not considered 6543 * an error, but purge attrs in that case. 6544 */ 6545 static int 6546 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6547 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6548 { 6549 int need_end_op = FALSE; 6550 COMPOUND4args_clnt args; 6551 COMPOUND4res_clnt res, *resp = NULL; 6552 nfs_argop4 *argop; 6553 nfs_resop4 *resop; 6554 int doqueue; 6555 mntinfo4_t *mi; 6556 rnode4_t *drp = VTOR4(dvp); 6557 change_info4 *cinfo; 6558 GETFH4res *gf_res; 6559 struct vattr vattr; 6560 vnode_t *vp; 6561 fattr4 *crattr; 6562 bool_t needrecov = FALSE; 6563 nfs4_recov_state_t recov_state; 6564 nfs4_sharedfh_t *sfhp = NULL; 6565 hrtime_t t; 6566 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6567 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6568 dirattr_info_t dinfo, *dinfop; 6569 servinfo4_t *svp; 6570 bitmap4 supp_attrs; 6571 6572 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6573 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6574 6575 mi = VTOMI4(dvp); 6576 6577 /* 6578 * Make sure we properly deal with setting the right gid 6579 * on a new directory to reflect the parent's setgid bit 6580 */ 6581 setgid_flag = 0; 6582 if (type == NF4DIR) { 6583 struct vattr dva; 6584 6585 va->va_mode &= ~VSGID; 6586 dva.va_mask = AT_MODE | AT_GID; 6587 if (VOP_GETATTR(dvp, &dva, 0, cr) == 0) { 6588 6589 /* 6590 * If the parent's directory has the setgid bit set 6591 * _and_ the client was able to get a valid mapping 6592 * for the parent dir's owner_group, we want to 6593 * append NVERIFY(owner_group == dva.va_gid) and 6594 * SETTATTR to the CREATE compound. 6595 */ 6596 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6597 setgid_flag = 1; 6598 va->va_mode |= VSGID; 6599 if (dva.va_gid != GID_NOBODY) { 6600 va->va_mask |= AT_GID; 6601 va->va_gid = dva.va_gid; 6602 } 6603 } 6604 } 6605 } 6606 6607 /* 6608 * Create ops: 6609 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6610 * 5:restorefh(dir) 6:getattr(dir) 6611 * 6612 * if (setgid) 6613 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6614 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6615 * 8:nverify 9:setattr 6616 */ 6617 if (setgid_flag) { 6618 numops = 10; 6619 idx_create = 1; 6620 idx_fattr = 3; 6621 } else { 6622 numops = 7; 6623 idx_create = 2; 6624 idx_fattr = 4; 6625 } 6626 6627 ASSERT(curproc->p_zone == mi->mi_zone); 6628 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6629 return (EINTR); 6630 } 6631 recov_state.rs_flags = 0; 6632 recov_state.rs_num_retry_despite_err = 0; 6633 6634 argoplist_size = numops * sizeof (nfs_argop4); 6635 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6636 6637 recov_retry: 6638 if (type == NF4LNK) 6639 args.ctag = TAG_SYMLINK; 6640 else if (type == NF4DIR) 6641 args.ctag = TAG_MKDIR; 6642 else 6643 args.ctag = TAG_MKNOD; 6644 6645 args.array_len = numops; 6646 args.array = argop; 6647 6648 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6649 nfs_rw_exit(&drp->r_rwlock); 6650 kmem_free(argop, argoplist_size); 6651 return (e.error); 6652 } 6653 need_end_op = TRUE; 6654 6655 6656 /* 0: putfh directory */ 6657 argop[0].argop = OP_CPUTFH; 6658 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6659 6660 /* 1/2: Create object */ 6661 argop[idx_create].argop = OP_CCREATE; 6662 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6663 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6664 if (type == NF4LNK) { 6665 /* 6666 * symlink, treat name as data 6667 */ 6668 ASSERT(data != NULL); 6669 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6670 (char *)data; 6671 } 6672 if (type == NF4BLK || type == NF4CHR) { 6673 ASSERT(data != NULL); 6674 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6675 *((specdata4 *)data); 6676 } 6677 6678 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6679 6680 svp = drp->r_server; 6681 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6682 supp_attrs = svp->sv_supp_attrs; 6683 nfs_rw_exit(&svp->sv_lock); 6684 6685 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6686 nfs_rw_exit(&drp->r_rwlock); 6687 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6688 e.error = EINVAL; 6689 kmem_free(argop, argoplist_size); 6690 return (e.error); 6691 } 6692 6693 /* 2/3: getfh fh of created object */ 6694 ASSERT(idx_create + 1 == idx_fattr - 1); 6695 argop[idx_create + 1].argop = OP_GETFH; 6696 6697 /* 3/4: getattr of new object */ 6698 argop[idx_fattr].argop = OP_GETATTR; 6699 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6700 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6701 6702 if (setgid_flag) { 6703 vattr_t _v; 6704 6705 argop[4].argop = OP_SAVEFH; 6706 6707 argop[5].argop = OP_CPUTFH; 6708 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6709 6710 argop[6].argop = OP_GETATTR; 6711 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6712 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6713 6714 argop[7].argop = OP_RESTOREFH; 6715 6716 /* 6717 * nverify 6718 * 6719 * XXX - Revisit the last argument to nfs4_end_op() 6720 * once 5020486 is fixed. 6721 */ 6722 _v.va_mask = AT_GID; 6723 _v.va_gid = va->va_gid; 6724 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6725 supp_attrs)) { 6726 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6727 nfs_rw_exit(&drp->r_rwlock); 6728 nfs4_fattr4_free(crattr); 6729 kmem_free(argop, argoplist_size); 6730 return (e.error); 6731 } 6732 6733 /* 6734 * setattr 6735 * 6736 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6737 * so no need for stateid or flags. Also we specify NULL 6738 * rp since we're only interested in setting owner_group 6739 * attributes. 6740 */ 6741 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6742 &e.error, 0); 6743 6744 if (e.error) { 6745 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6746 nfs_rw_exit(&drp->r_rwlock); 6747 nfs4_fattr4_free(crattr); 6748 nfs4args_verify_free(&argop[8]); 6749 kmem_free(argop, argoplist_size); 6750 return (e.error); 6751 } 6752 } else { 6753 argop[1].argop = OP_SAVEFH; 6754 6755 argop[5].argop = OP_RESTOREFH; 6756 6757 argop[6].argop = OP_GETATTR; 6758 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6759 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6760 } 6761 6762 dnlc_remove(dvp, nm); 6763 6764 doqueue = 1; 6765 t = gethrtime(); 6766 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 6767 6768 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 6769 if (e.error) { 6770 PURGE_ATTRCACHE4(dvp); 6771 if (!needrecov) 6772 goto out; 6773 } 6774 6775 if (needrecov) { 6776 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 6777 OP_CREATE, NULL) == FALSE) { 6778 nfs4_end_op(mi, dvp, NULL, &recov_state, 6779 needrecov); 6780 need_end_op = FALSE; 6781 nfs4_fattr4_free(crattr); 6782 if (setgid_flag) { 6783 nfs4args_verify_free(&argop[8]); 6784 nfs4args_setattr_free(&argop[9]); 6785 } 6786 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6787 goto recov_retry; 6788 } 6789 } 6790 6791 resp = &res; 6792 6793 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 6794 6795 if (res.status == NFS4ERR_BADOWNER) 6796 nfs4_log_badowner(mi, OP_CREATE); 6797 6798 e.error = geterrno4(res.status); 6799 6800 /* 6801 * This check is left over from when create was implemented 6802 * using a setattr op (instead of createattrs). If the 6803 * putfh/create/getfh failed, the error was returned. If 6804 * setattr/getattr failed, we keep going. 6805 * 6806 * It might be better to get rid of the GETFH also, and just 6807 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 6808 * Then if any of the operations failed, we could return the 6809 * error now, and remove much of the error code below. 6810 */ 6811 if (res.array_len <= idx_fattr) { 6812 /* 6813 * Either Putfh, Create or Getfh failed. 6814 */ 6815 PURGE_ATTRCACHE4(dvp); 6816 /* 6817 * nfs4_purge_stale_fh() may generate otw calls through 6818 * nfs4_invalidate_pages. Hence the need to call 6819 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 6820 */ 6821 nfs4_end_op(mi, dvp, NULL, &recov_state, 6822 needrecov); 6823 need_end_op = FALSE; 6824 nfs4_purge_stale_fh(e.error, dvp, cr); 6825 goto out; 6826 } 6827 } 6828 6829 resop = &res.array[idx_create]; /* create res */ 6830 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 6831 6832 resop = &res.array[idx_create + 1]; /* getfh res */ 6833 gf_res = &resop->nfs_resop4_u.opgetfh; 6834 6835 sfhp = sfh4_get(&gf_res->object, mi); 6836 if (e.error) { 6837 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 6838 fn_get(VTOSV(dvp)->sv_name, nm)); 6839 if (vp->v_type == VNON) { 6840 vattr.va_mask = AT_TYPE; 6841 /* 6842 * Need to call nfs4_end_op before nfs4getattr to avoid 6843 * potential nfs4_start_op deadlock. See RFE 4777612. 6844 */ 6845 nfs4_end_op(mi, dvp, NULL, &recov_state, 6846 needrecov); 6847 need_end_op = FALSE; 6848 e.error = nfs4getattr(vp, &vattr, cr); 6849 if (e.error) { 6850 VN_RELE(vp); 6851 *vpp = NULL; 6852 goto out; 6853 } 6854 vp->v_type = vattr.va_type; 6855 } 6856 e.error = 0; 6857 } else { 6858 *vpp = vp = makenfs4node(sfhp, 6859 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 6860 dvp->v_vfsp, t, cr, 6861 dvp, fn_get(VTOSV(dvp)->sv_name, nm)); 6862 } 6863 6864 /* 6865 * If compound succeeded, then update dir attrs 6866 */ 6867 if (res.status == NFS4_OK) { 6868 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 6869 dinfo.di_cred = cr; 6870 dinfo.di_time_call = t; 6871 dinfop = &dinfo; 6872 } else 6873 dinfop = NULL; 6874 6875 /* Update directory cache attribute, readdir and dnlc caches */ 6876 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 6877 6878 out: 6879 if (sfhp != NULL) 6880 sfh4_rele(&sfhp); 6881 nfs_rw_exit(&drp->r_rwlock); 6882 nfs4_fattr4_free(crattr); 6883 if (setgid_flag) { 6884 nfs4args_verify_free(&argop[8]); 6885 nfs4args_setattr_free(&argop[9]); 6886 } 6887 if (resp) 6888 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 6889 if (need_end_op) 6890 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6891 6892 kmem_free(argop, argoplist_size); 6893 return (e.error); 6894 } 6895 6896 /* ARGSUSED */ 6897 static int 6898 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6899 int mode, vnode_t **vpp, cred_t *cr) 6900 { 6901 int error; 6902 vnode_t *vp; 6903 nfs_ftype4 type; 6904 specdata4 spec, *specp = NULL; 6905 6906 ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); 6907 6908 switch (va->va_type) { 6909 case VCHR: 6910 case VBLK: 6911 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 6912 spec.specdata1 = getmajor(va->va_rdev); 6913 spec.specdata2 = getminor(va->va_rdev); 6914 specp = &spec; 6915 break; 6916 6917 case VFIFO: 6918 type = NF4FIFO; 6919 break; 6920 case VSOCK: 6921 type = NF4SOCK; 6922 break; 6923 6924 default: 6925 return (EINVAL); 6926 } 6927 6928 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 6929 if (error) { 6930 return (error); 6931 } 6932 6933 /* 6934 * This might not be needed any more; special case to deal 6935 * with problematic v2/v3 servers. Since create was unable 6936 * to set group correctly, not sure what hope setattr has. 6937 */ 6938 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 6939 va->va_mask = AT_GID; 6940 (void) nfs4setattr(vp, va, 0, cr, NULL); 6941 } 6942 6943 /* 6944 * If vnode is a device create special vnode 6945 */ 6946 if (ISVDEV(vp->v_type)) { 6947 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6948 VN_RELE(vp); 6949 } else { 6950 *vpp = vp; 6951 } 6952 return (error); 6953 } 6954 6955 /* 6956 * Remove requires that the current fh be the target directory. 6957 * After the operation, the current fh is unchanged. 6958 * The compound op structure is: 6959 * PUTFH(targetdir), REMOVE 6960 * 6961 * Weirdness: if the vnode to be removed is open 6962 * we rename it instead of removing it and nfs_inactive 6963 * will remove the new name. 6964 */ 6965 static int 6966 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr) 6967 { 6968 COMPOUND4args_clnt args; 6969 COMPOUND4res_clnt res, *resp = NULL; 6970 REMOVE4res *rm_res; 6971 nfs_argop4 argop[3]; 6972 nfs_resop4 *resop; 6973 vnode_t *vp; 6974 char *tmpname; 6975 int doqueue; 6976 mntinfo4_t *mi; 6977 rnode4_t *rp; 6978 rnode4_t *drp; 6979 int needrecov = 0; 6980 nfs4_recov_state_t recov_state; 6981 int isopen; 6982 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6983 dirattr_info_t dinfo; 6984 6985 if (curproc->p_zone != VTOMI4(dvp)->mi_zone) 6986 return (EPERM); 6987 drp = VTOR4(dvp); 6988 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6989 return (EINTR); 6990 6991 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 6992 if (e.error) { 6993 nfs_rw_exit(&drp->r_rwlock); 6994 return (e.error); 6995 } 6996 6997 if (vp->v_type == VDIR) { 6998 VN_RELE(vp); 6999 nfs_rw_exit(&drp->r_rwlock); 7000 return (EISDIR); 7001 } 7002 7003 /* 7004 * First just remove the entry from the name cache, as it 7005 * is most likely the only entry for this vp. 7006 */ 7007 dnlc_remove(dvp, nm); 7008 7009 rp = VTOR4(vp); 7010 7011 /* 7012 * For regular file types, check to see if the file is open by looking 7013 * at the open streams. 7014 * For all other types, check the reference count on the vnode. Since 7015 * they are not opened OTW they never have an open stream. 7016 * 7017 * If the file is open, rename it to .nfsXXXX. 7018 */ 7019 if (vp->v_type != VREG) { 7020 /* 7021 * If the file has a v_count > 1 then there may be more than one 7022 * entry in the name cache due multiple links or an open file, 7023 * but we don't have the real reference count so flush all 7024 * possible entries. 7025 */ 7026 if (vp->v_count > 1) 7027 dnlc_purge_vp(vp); 7028 7029 /* 7030 * Now we have the real reference count. 7031 */ 7032 isopen = vp->v_count > 1; 7033 } else { 7034 mutex_enter(&rp->r_os_lock); 7035 isopen = list_head(&rp->r_open_streams) != NULL; 7036 mutex_exit(&rp->r_os_lock); 7037 } 7038 7039 mutex_enter(&rp->r_statelock); 7040 if (isopen && 7041 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7042 mutex_exit(&rp->r_statelock); 7043 tmpname = newname(); 7044 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr); 7045 if (e.error) 7046 kmem_free(tmpname, MAXNAMELEN); 7047 else { 7048 mutex_enter(&rp->r_statelock); 7049 if (rp->r_unldvp == NULL) { 7050 VN_HOLD(dvp); 7051 rp->r_unldvp = dvp; 7052 if (rp->r_unlcred != NULL) 7053 crfree(rp->r_unlcred); 7054 crhold(cr); 7055 rp->r_unlcred = cr; 7056 rp->r_unlname = tmpname; 7057 } else { 7058 kmem_free(rp->r_unlname, MAXNAMELEN); 7059 rp->r_unlname = tmpname; 7060 } 7061 mutex_exit(&rp->r_statelock); 7062 } 7063 VN_RELE(vp); 7064 nfs_rw_exit(&drp->r_rwlock); 7065 return (e.error); 7066 } 7067 /* 7068 * Actually remove the file/dir 7069 */ 7070 mutex_exit(&rp->r_statelock); 7071 7072 /* 7073 * We need to flush any dirty pages which happen to 7074 * be hanging around before removing the file. 7075 * This shouldn't happen very often since in NFSv4 7076 * we should be close to open consistent. 7077 */ 7078 if (nfs4_has_pages(vp) && 7079 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7080 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr); 7081 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7082 mutex_enter(&rp->r_statelock); 7083 if (!rp->r_error) 7084 rp->r_error = e.error; 7085 mutex_exit(&rp->r_statelock); 7086 } 7087 } 7088 7089 mi = VTOMI4(dvp); 7090 7091 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7092 recov_state.rs_flags = 0; 7093 recov_state.rs_num_retry_despite_err = 0; 7094 7095 recov_retry: 7096 /* 7097 * Remove ops: putfh dir; remove 7098 */ 7099 args.ctag = TAG_REMOVE; 7100 args.array_len = 3; 7101 args.array = argop; 7102 7103 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7104 if (e.error) { 7105 nfs_rw_exit(&drp->r_rwlock); 7106 VN_RELE(vp); 7107 return (e.error); 7108 } 7109 7110 /* putfh directory */ 7111 argop[0].argop = OP_CPUTFH; 7112 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7113 7114 /* remove */ 7115 argop[1].argop = OP_CREMOVE; 7116 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7117 7118 /* getattr dir */ 7119 argop[2].argop = OP_GETATTR; 7120 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7121 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7122 7123 doqueue = 1; 7124 dinfo.di_time_call = gethrtime(); 7125 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7126 7127 PURGE_ATTRCACHE4(vp); 7128 7129 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7130 if (e.error) 7131 PURGE_ATTRCACHE4(dvp); 7132 7133 if (needrecov) { 7134 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7135 NULL, NULL, NULL, OP_REMOVE, NULL) == FALSE) { 7136 if (!e.error) 7137 (void) xdr_free(xdr_COMPOUND4res_clnt, 7138 (caddr_t)&res); 7139 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7140 needrecov); 7141 goto recov_retry; 7142 } 7143 } 7144 7145 /* 7146 * Matching nfs4_end_op() for start_op() above. 7147 * There is a path in the code below which calls 7148 * nfs4_purge_stale_fh(), which may generate otw calls through 7149 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7150 * here to avoid nfs4_start_op() deadlock. 7151 */ 7152 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7153 7154 if (!e.error) { 7155 resp = &res; 7156 7157 if (res.status) { 7158 e.error = geterrno4(res.status); 7159 PURGE_ATTRCACHE4(dvp); 7160 nfs4_purge_stale_fh(e.error, dvp, cr); 7161 } else { 7162 resop = &res.array[1]; /* remove res */ 7163 rm_res = &resop->nfs_resop4_u.opremove; 7164 7165 dinfo.di_garp = 7166 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7167 dinfo.di_cred = cr; 7168 7169 /* Update directory attr, readdir and dnlc caches */ 7170 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7171 &dinfo); 7172 } 7173 } 7174 nfs_rw_exit(&drp->r_rwlock); 7175 if (resp) 7176 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7177 7178 VN_RELE(vp); 7179 return (e.error); 7180 } 7181 7182 /* 7183 * Link requires that the current fh be the target directory and the 7184 * saved fh be the source fh. After the operation, the current fh is unchanged. 7185 * Thus the compound op structure is: 7186 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7187 * GETATTR(file) 7188 */ 7189 static int 7190 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 7191 { 7192 COMPOUND4args_clnt args; 7193 COMPOUND4res_clnt res, *resp = NULL; 7194 LINK4res *ln_res; 7195 int argoplist_size = 7 * sizeof (nfs_argop4); 7196 nfs_argop4 *argop; 7197 nfs_resop4 *resop; 7198 vnode_t *realvp, *nvp; 7199 int doqueue; 7200 mntinfo4_t *mi; 7201 rnode4_t *tdrp; 7202 bool_t needrecov = FALSE; 7203 nfs4_recov_state_t recov_state; 7204 hrtime_t t; 7205 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7206 dirattr_info_t dinfo; 7207 7208 ASSERT(*tnm != '\0'); 7209 ASSERT(tdvp->v_type == VDIR); 7210 ASSERT(nfs4_consistent_type(tdvp)); 7211 ASSERT(nfs4_consistent_type(svp)); 7212 7213 if (curproc->p_zone != VTOMI4(tdvp)->mi_zone) 7214 return (EPERM); 7215 if (VOP_REALVP(svp, &realvp) == 0) { 7216 svp = realvp; 7217 ASSERT(nfs4_consistent_type(svp)); 7218 } 7219 7220 tdrp = VTOR4(tdvp); 7221 mi = VTOMI4(svp); 7222 7223 if (!(mi->mi_flags & MI4_LINK)) { 7224 return (EOPNOTSUPP); 7225 } 7226 recov_state.rs_flags = 0; 7227 recov_state.rs_num_retry_despite_err = 0; 7228 7229 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7230 return (EINTR); 7231 7232 recov_retry: 7233 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7234 7235 args.ctag = TAG_LINK; 7236 7237 /* 7238 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7239 * restorefh; getattr(fl) 7240 */ 7241 args.array_len = 7; 7242 args.array = argop; 7243 7244 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7245 if (e.error) { 7246 kmem_free(argop, argoplist_size); 7247 nfs_rw_exit(&tdrp->r_rwlock); 7248 return (e.error); 7249 } 7250 7251 /* 0. putfh file */ 7252 argop[0].argop = OP_CPUTFH; 7253 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7254 7255 /* 1. save current fh to free up the space for the dir */ 7256 argop[1].argop = OP_SAVEFH; 7257 7258 /* 2. putfh targetdir */ 7259 argop[2].argop = OP_CPUTFH; 7260 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7261 7262 /* 3. link: current_fh is targetdir, saved_fh is source */ 7263 argop[3].argop = OP_CLINK; 7264 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7265 7266 /* 4. Get attributes of dir */ 7267 argop[4].argop = OP_GETATTR; 7268 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7269 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7270 7271 /* 5. If link was successful, restore current vp to file */ 7272 argop[5].argop = OP_RESTOREFH; 7273 7274 /* 6. Get attributes of linked object */ 7275 argop[6].argop = OP_GETATTR; 7276 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7277 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7278 7279 dnlc_remove(tdvp, tnm); 7280 7281 doqueue = 1; 7282 t = gethrtime(); 7283 7284 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7285 7286 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7287 if (e.error != 0 && !needrecov) { 7288 PURGE_ATTRCACHE4(tdvp); 7289 PURGE_ATTRCACHE4(svp); 7290 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7291 goto out; 7292 } 7293 7294 if (needrecov) { 7295 bool_t abort; 7296 7297 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7298 NULL, NULL, OP_LINK, NULL); 7299 if (abort == FALSE) { 7300 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7301 needrecov); 7302 kmem_free(argop, argoplist_size); 7303 if (!e.error) 7304 (void) xdr_free(xdr_COMPOUND4res_clnt, 7305 (caddr_t)&res); 7306 goto recov_retry; 7307 } else { 7308 if (e.error != 0) { 7309 PURGE_ATTRCACHE4(tdvp); 7310 PURGE_ATTRCACHE4(svp); 7311 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7312 &recov_state, needrecov); 7313 goto out; 7314 } 7315 /* fall through for res.status case */ 7316 } 7317 } 7318 7319 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7320 7321 resp = &res; 7322 if (res.status) { 7323 /* If link succeeded, then don't return error */ 7324 e.error = geterrno4(res.status); 7325 if (res.array_len <= 4) { 7326 /* 7327 * Either Putfh, Savefh, Putfh dir, or Link failed 7328 */ 7329 PURGE_ATTRCACHE4(svp); 7330 PURGE_ATTRCACHE4(tdvp); 7331 if (e.error == EOPNOTSUPP) { 7332 mutex_enter(&mi->mi_lock); 7333 mi->mi_flags &= ~MI4_LINK; 7334 mutex_exit(&mi->mi_lock); 7335 } 7336 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7337 /* XXX-LP */ 7338 if (e.error == EISDIR && crgetuid(cr) != 0) 7339 e.error = EPERM; 7340 goto out; 7341 } 7342 } 7343 7344 /* either no error or one of the postop getattr failed */ 7345 7346 /* 7347 * XXX - if LINK succeeded, but no attrs were returned for link 7348 * file, purge its cache. 7349 * 7350 * XXX Perform a simplified version of wcc checking. Instead of 7351 * have another getattr to get pre-op, just purge cache if 7352 * any of the ops prior to and including the getattr failed. 7353 * If the getattr succeeded then update the attrcache accordingly. 7354 */ 7355 7356 /* 7357 * update cache with link file postattrs. 7358 * Note: at this point resop points to link res. 7359 */ 7360 resop = &res.array[3]; /* link res */ 7361 ln_res = &resop->nfs_resop4_u.oplink; 7362 if (res.status == NFS4_OK) { 7363 e.error = nfs4_update_attrcache(res.status, 7364 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7365 t, svp, cr); 7366 } 7367 7368 /* 7369 * Call makenfs4node to create the new shadow vp for tnm. 7370 * We pass NULL attrs because we just cached attrs for 7371 * the src object. All we're trying to accomplish is to 7372 * to create the new shadow vnode. 7373 */ 7374 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7375 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm)); 7376 7377 /* Update target cache attribute, readdir and dnlc caches */ 7378 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7379 dinfo.di_time_call = t; 7380 dinfo.di_cred = cr; 7381 7382 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7383 ASSERT(nfs4_consistent_type(tdvp)); 7384 ASSERT(nfs4_consistent_type(svp)); 7385 ASSERT(nfs4_consistent_type(nvp)); 7386 VN_RELE(nvp); 7387 7388 out: 7389 kmem_free(argop, argoplist_size); 7390 if (resp) 7391 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7392 7393 nfs_rw_exit(&tdrp->r_rwlock); 7394 7395 return (e.error); 7396 } 7397 7398 static int 7399 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7400 { 7401 vnode_t *realvp; 7402 7403 if (curproc->p_zone != VTOMI4(odvp)->mi_zone) 7404 return (EPERM); 7405 if (VOP_REALVP(ndvp, &realvp) == 0) 7406 ndvp = realvp; 7407 7408 return (nfs4rename(odvp, onm, ndvp, nnm, cr)); 7409 } 7410 7411 /* 7412 * nfs4rename does the real work of renaming in NFS Version 4. 7413 * 7414 * A file handle is considered volatile for renaming purposes if either 7415 * of the volatile bits are turned on. However, the compound may differ 7416 * based on the likelihood of the filehandle to change during rename. 7417 */ 7418 static int 7419 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 7420 { 7421 int error; 7422 mntinfo4_t *mi; 7423 vnode_t *nvp; 7424 vnode_t *ovp = NULL; 7425 char *tmpname = NULL; 7426 rnode4_t *rp; 7427 rnode4_t *odrp; 7428 rnode4_t *ndrp; 7429 int did_link = 0; 7430 int do_link = 1; 7431 nfsstat4 stat = NFS4_OK; 7432 7433 ASSERT(curproc->p_zone == VTOMI4(odvp)->mi_zone); 7434 ASSERT(nfs4_consistent_type(odvp)); 7435 ASSERT(nfs4_consistent_type(ndvp)); 7436 7437 if (onm[0] == '.' && (onm[1] == '\0' || 7438 (onm[1] == '.' && onm[2] == '\0'))) 7439 return (EINVAL); 7440 7441 if (nnm[0] == '.' && (nnm[1] == '\0' || 7442 (nnm[1] == '.' && nnm[2] == '\0'))) 7443 return (EINVAL); 7444 7445 odrp = VTOR4(odvp); 7446 ndrp = VTOR4(ndvp); 7447 if ((intptr_t)odrp < (intptr_t)ndrp) { 7448 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7449 return (EINTR); 7450 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7451 nfs_rw_exit(&odrp->r_rwlock); 7452 return (EINTR); 7453 } 7454 } else { 7455 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7456 return (EINTR); 7457 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7458 nfs_rw_exit(&ndrp->r_rwlock); 7459 return (EINTR); 7460 } 7461 } 7462 7463 /* 7464 * Lookup the target file. If it exists, it needs to be 7465 * checked to see whether it is a mount point and whether 7466 * it is active (open). 7467 */ 7468 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7469 if (!error) { 7470 int isactive; 7471 7472 ASSERT(nfs4_consistent_type(nvp)); 7473 /* 7474 * If this file has been mounted on, then just 7475 * return busy because renaming to it would remove 7476 * the mounted file system from the name space. 7477 */ 7478 if (vn_ismntpt(nvp)) { 7479 VN_RELE(nvp); 7480 nfs_rw_exit(&odrp->r_rwlock); 7481 nfs_rw_exit(&ndrp->r_rwlock); 7482 return (EBUSY); 7483 } 7484 7485 /* 7486 * First just remove the entry from the name cache, as it 7487 * is most likely the only entry for this vp. 7488 */ 7489 dnlc_remove(ndvp, nnm); 7490 7491 rp = VTOR4(nvp); 7492 7493 if (nvp->v_type != VREG) { 7494 /* 7495 * Purge the name cache of all references to this vnode 7496 * so that we can check the reference count to infer 7497 * whether it is active or not. 7498 */ 7499 if (nvp->v_count > 1) 7500 dnlc_purge_vp(nvp); 7501 7502 isactive = nvp->v_count > 1; 7503 } else { 7504 mutex_enter(&rp->r_os_lock); 7505 isactive = list_head(&rp->r_open_streams) != NULL; 7506 mutex_exit(&rp->r_os_lock); 7507 } 7508 7509 /* 7510 * If the vnode is active and is not a directory, 7511 * arrange to rename it to a 7512 * temporary file so that it will continue to be 7513 * accessible. This implements the "unlink-open-file" 7514 * semantics for the target of a rename operation. 7515 * Before doing this though, make sure that the 7516 * source and target files are not already the same. 7517 */ 7518 if (isactive && nvp->v_type != VDIR) { 7519 /* 7520 * Lookup the source name. 7521 */ 7522 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7523 7524 /* 7525 * The source name *should* already exist. 7526 */ 7527 if (error) { 7528 VN_RELE(nvp); 7529 nfs_rw_exit(&odrp->r_rwlock); 7530 nfs_rw_exit(&ndrp->r_rwlock); 7531 return (error); 7532 } 7533 7534 ASSERT(nfs4_consistent_type(ovp)); 7535 7536 /* 7537 * Compare the two vnodes. If they are the same, 7538 * just release all held vnodes and return success. 7539 */ 7540 if (VN_CMP(ovp, nvp)) { 7541 VN_RELE(ovp); 7542 VN_RELE(nvp); 7543 nfs_rw_exit(&odrp->r_rwlock); 7544 nfs_rw_exit(&ndrp->r_rwlock); 7545 return (0); 7546 } 7547 7548 /* 7549 * Can't mix and match directories and non- 7550 * directories in rename operations. We already 7551 * know that the target is not a directory. If 7552 * the source is a directory, return an error. 7553 */ 7554 if (ovp->v_type == VDIR) { 7555 VN_RELE(ovp); 7556 VN_RELE(nvp); 7557 nfs_rw_exit(&odrp->r_rwlock); 7558 nfs_rw_exit(&ndrp->r_rwlock); 7559 return (ENOTDIR); 7560 } 7561 link_call: 7562 /* 7563 * The target file exists, is not the same as 7564 * the source file, and is active. We first 7565 * try to Link it to a temporary filename to 7566 * avoid having the server removing the file 7567 * completely (which could cause data loss to 7568 * the user's POV in the event the Rename fails 7569 * -- see bug 1165874). 7570 */ 7571 /* 7572 * The do_link and did_link booleans are 7573 * introduced in the event we get NFS4ERR_FILE_OPEN 7574 * returned for the Rename. Some servers can 7575 * not Rename over an Open file, so they return 7576 * this error. The client needs to Remove the 7577 * newly created Link and do two Renames, just 7578 * as if the server didn't support LINK. 7579 */ 7580 tmpname = newname(); 7581 error = 0; 7582 7583 if (do_link) { 7584 error = nfs4_link(ndvp, nvp, tmpname, cr); 7585 } 7586 if (error == EOPNOTSUPP || !do_link) { 7587 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7588 cr); 7589 did_link = 0; 7590 } else { 7591 did_link = 1; 7592 } 7593 if (error) { 7594 kmem_free(tmpname, MAXNAMELEN); 7595 VN_RELE(ovp); 7596 VN_RELE(nvp); 7597 nfs_rw_exit(&odrp->r_rwlock); 7598 nfs_rw_exit(&ndrp->r_rwlock); 7599 return (error); 7600 } 7601 7602 mutex_enter(&rp->r_statelock); 7603 if (rp->r_unldvp == NULL) { 7604 VN_HOLD(ndvp); 7605 rp->r_unldvp = ndvp; 7606 if (rp->r_unlcred != NULL) 7607 crfree(rp->r_unlcred); 7608 crhold(cr); 7609 rp->r_unlcred = cr; 7610 rp->r_unlname = tmpname; 7611 } else { 7612 if (rp->r_unlname) 7613 kmem_free(rp->r_unlname, MAXNAMELEN); 7614 rp->r_unlname = tmpname; 7615 } 7616 mutex_exit(&rp->r_statelock); 7617 } 7618 7619 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7620 7621 ASSERT(nfs4_consistent_type(nvp)); 7622 VN_RELE(nvp); 7623 } 7624 7625 if (ovp == NULL) { 7626 /* 7627 * When renaming directories to be a subdirectory of a 7628 * different parent, the dnlc entry for ".." will no 7629 * longer be valid, so it must be removed. 7630 * 7631 * We do a lookup here to determine whether we are renaming 7632 * a directory and we need to check if we are renaming 7633 * an unlinked file. This might have already been done 7634 * in previous code, so we check ovp == NULL to avoid 7635 * doing it twice. 7636 */ 7637 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7638 /* 7639 * The source name *should* already exist. 7640 */ 7641 if (error) { 7642 nfs_rw_exit(&odrp->r_rwlock); 7643 nfs_rw_exit(&ndrp->r_rwlock); 7644 return (error); 7645 } 7646 ASSERT(ovp != NULL); 7647 ASSERT(nfs4_consistent_type(ovp)); 7648 } 7649 7650 /* 7651 * Is the object being renamed a dir, and if so, is 7652 * it being renamed to a child of itself? The underlying 7653 * fs should ultimately return EINVAL for this case; 7654 * however, buggy beta non-Solaris NFSv4 servers at 7655 * interop testing events have allowed this behavior, 7656 * and it caused our client to panic due to a recursive 7657 * mutex_enter in fn_move. 7658 * 7659 * The tedious locking in fn_move could be changed to 7660 * deal with this case, and the client could avoid the 7661 * panic; however, the client would just confuse itself 7662 * later and misbehave. A better way to handle the broken 7663 * server is to detect this condition and return EINVAL 7664 * without ever sending the the bogus rename to the server. 7665 * We know the rename is invalid -- just fail it now. 7666 */ 7667 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7668 VN_RELE(ovp); 7669 nfs_rw_exit(&odrp->r_rwlock); 7670 nfs_rw_exit(&ndrp->r_rwlock); 7671 return (EINVAL); 7672 } 7673 7674 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7675 7676 /* 7677 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7678 * possible for the filehandle to change due to the rename. 7679 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7680 * the fh will not change because of the rename, but we still need 7681 * to update its rnode entry with the new name for 7682 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7683 * has no effect on these for now, but for future improvements, 7684 * we might want to use it too to simplify handling of files 7685 * that are open with that flag on. (XXX) 7686 */ 7687 mi = VTOMI4(odvp); 7688 if (NFS4_VOLATILE_FH(mi)) { 7689 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7690 &stat); 7691 } else { 7692 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7693 &stat); 7694 } 7695 ASSERT(nfs4_consistent_type(odvp)); 7696 ASSERT(nfs4_consistent_type(ndvp)); 7697 ASSERT(nfs4_consistent_type(ovp)); 7698 7699 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7700 do_link = 0; 7701 /* 7702 * Before the 'link_call' code, we did a nfs4_lookup 7703 * that puts a VN_HOLD on nvp. After the nfs4_link 7704 * call we call VN_RELE to match that hold. We need 7705 * to place an additional VN_HOLD here since we will 7706 * be hitting that VN_RELE again. 7707 */ 7708 VN_HOLD(nvp); 7709 7710 (void) nfs4_remove(ndvp, tmpname, cr); 7711 7712 /* Undo the unlinked file naming stuff we just did */ 7713 mutex_enter(&rp->r_statelock); 7714 if (rp->r_unldvp) { 7715 VN_RELE(ndvp); 7716 rp->r_unldvp = NULL; 7717 if (rp->r_unlcred != NULL) 7718 crfree(rp->r_unlcred); 7719 rp->r_unlcred = NULL; 7720 /* rp->r_unlanme points to tmpname */ 7721 if (rp->r_unlname) 7722 kmem_free(rp->r_unlname, MAXNAMELEN); 7723 rp->r_unlname = NULL; 7724 } 7725 mutex_exit(&rp->r_statelock); 7726 7727 goto link_call; 7728 } 7729 7730 if (error) { 7731 VN_RELE(ovp); 7732 nfs_rw_exit(&odrp->r_rwlock); 7733 nfs_rw_exit(&ndrp->r_rwlock); 7734 return (error); 7735 } 7736 7737 /* 7738 * when renaming directories to be a subdirectory of a 7739 * different parent, the dnlc entry for ".." will no 7740 * longer be valid, so it must be removed 7741 */ 7742 rp = VTOR4(ovp); 7743 if (ndvp != odvp) { 7744 if (ovp->v_type == VDIR) { 7745 dnlc_remove(ovp, ".."); 7746 if (rp->r_dir != NULL) 7747 nfs4_purge_rddir_cache(ovp); 7748 } 7749 } 7750 7751 /* 7752 * If we are renaming the unlinked file, update the 7753 * r_unldvp and r_unlname as needed. 7754 */ 7755 mutex_enter(&rp->r_statelock); 7756 if (rp->r_unldvp != NULL) { 7757 if (strcmp(rp->r_unlname, onm) == 0) { 7758 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 7759 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 7760 if (ndvp != rp->r_unldvp) { 7761 VN_RELE(rp->r_unldvp); 7762 rp->r_unldvp = ndvp; 7763 VN_HOLD(ndvp); 7764 } 7765 } 7766 } 7767 mutex_exit(&rp->r_statelock); 7768 7769 VN_RELE(ovp); 7770 7771 nfs_rw_exit(&odrp->r_rwlock); 7772 nfs_rw_exit(&ndrp->r_rwlock); 7773 7774 return (error); 7775 } 7776 7777 /* 7778 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 7779 * when it is known that the filehandle is persistent through rename. 7780 * 7781 * Rename requires that the current fh be the target directory and the 7782 * saved fh be the source directory. After the operation, the current fh 7783 * is unchanged. 7784 * The compound op structure for persistent fh rename is: 7785 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 7786 * Rather than bother with the directory postop args, we'll simply 7787 * update that a change occured in the cache, so no post-op getattrs. 7788 */ 7789 static int 7790 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 7791 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 7792 { 7793 COMPOUND4args_clnt args; 7794 COMPOUND4res_clnt res, *resp = NULL; 7795 nfs_argop4 *argop; 7796 nfs_resop4 *resop; 7797 int doqueue, argoplist_size; 7798 mntinfo4_t *mi; 7799 rnode4_t *odrp = VTOR4(odvp); 7800 rnode4_t *ndrp = VTOR4(ndvp); 7801 RENAME4res *rn_res; 7802 bool_t needrecov; 7803 nfs4_recov_state_t recov_state; 7804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7805 dirattr_info_t dinfo, *dinfop; 7806 7807 ASSERT(curproc->p_zone == VTOMI4(odvp)->mi_zone); 7808 7809 recov_state.rs_flags = 0; 7810 recov_state.rs_num_retry_despite_err = 0; 7811 7812 /* 7813 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 7814 * 7815 * If source/target are different dirs, then append putfh(src); getattr 7816 */ 7817 args.array_len = (odvp == ndvp) ? 5 : 7; 7818 argoplist_size = args.array_len * sizeof (nfs_argop4); 7819 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 7820 7821 recov_retry: 7822 *statp = NFS4_OK; 7823 7824 /* No need to Lookup the file, persistent fh */ 7825 args.ctag = TAG_RENAME; 7826 7827 mi = VTOMI4(odvp); 7828 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 7829 if (e.error) { 7830 kmem_free(argop, argoplist_size); 7831 return (e.error); 7832 } 7833 7834 /* 0: putfh source directory */ 7835 argop[0].argop = OP_CPUTFH; 7836 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 7837 7838 /* 1: Save source fh to free up current for target */ 7839 argop[1].argop = OP_SAVEFH; 7840 7841 /* 2: putfh targetdir */ 7842 argop[2].argop = OP_CPUTFH; 7843 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 7844 7845 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 7846 argop[3].argop = OP_CRENAME; 7847 argop[3].nfs_argop4_u.opcrename.coldname = onm; 7848 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 7849 7850 /* 4: getattr (targetdir) */ 7851 argop[4].argop = OP_GETATTR; 7852 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7853 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7854 7855 if (ndvp != odvp) { 7856 7857 /* 5: putfh (sourcedir) */ 7858 argop[5].argop = OP_CPUTFH; 7859 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 7860 7861 /* 6: getattr (sourcedir) */ 7862 argop[6].argop = OP_GETATTR; 7863 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7864 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7865 } 7866 7867 dnlc_remove(odvp, onm); 7868 dnlc_remove(ndvp, nnm); 7869 7870 doqueue = 1; 7871 dinfo.di_time_call = gethrtime(); 7872 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7873 7874 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7875 if (e.error) { 7876 PURGE_ATTRCACHE4(odvp); 7877 PURGE_ATTRCACHE4(ndvp); 7878 } else { 7879 *statp = res.status; 7880 } 7881 7882 if (needrecov) { 7883 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 7884 OP_RENAME, NULL) == FALSE) { 7885 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 7886 if (!e.error) 7887 (void) xdr_free(xdr_COMPOUND4res_clnt, 7888 (caddr_t)&res); 7889 goto recov_retry; 7890 } 7891 } 7892 7893 if (!e.error) { 7894 resp = &res; 7895 /* 7896 * as long as OP_RENAME 7897 */ 7898 if (res.status != NFS4_OK && res.array_len <= 4) { 7899 e.error = geterrno4(res.status); 7900 PURGE_ATTRCACHE4(odvp); 7901 PURGE_ATTRCACHE4(ndvp); 7902 /* 7903 * System V defines rename to return EEXIST, not 7904 * ENOTEMPTY if the target directory is not empty. 7905 * Over the wire, the error is NFSERR_ENOTEMPTY 7906 * which geterrno4 maps to ENOTEMPTY. 7907 */ 7908 if (e.error == ENOTEMPTY) 7909 e.error = EEXIST; 7910 } else { 7911 7912 resop = &res.array[3]; /* rename res */ 7913 rn_res = &resop->nfs_resop4_u.oprename; 7914 7915 if (res.status == NFS4_OK) { 7916 /* 7917 * Update target attribute, readdir and dnlc 7918 * caches. 7919 */ 7920 dinfo.di_garp = 7921 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7922 dinfo.di_cred = cr; 7923 dinfop = &dinfo; 7924 } else 7925 dinfop = NULL; 7926 7927 nfs4_update_dircaches(&rn_res->target_cinfo, 7928 ndvp, NULL, NULL, dinfop); 7929 7930 /* 7931 * Update source attribute, readdir and dnlc caches 7932 * 7933 */ 7934 if (ndvp != odvp) { 7935 if (dinfop) 7936 dinfo.di_garp = 7937 &(res.array[6].nfs_resop4_u. 7938 opgetattr.ga_res); 7939 7940 nfs4_update_dircaches(&rn_res->source_cinfo, 7941 odvp, NULL, NULL, dinfop); 7942 } 7943 7944 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 7945 nnm); 7946 } 7947 } 7948 7949 if (resp) 7950 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7951 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 7952 kmem_free(argop, argoplist_size); 7953 7954 return (e.error); 7955 } 7956 7957 /* 7958 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 7959 * it is possible for the filehandle to change due to the rename. 7960 * 7961 * The compound req in this case includes a post-rename lookup and getattr 7962 * to ensure that we have the correct fh and attributes for the object. 7963 * 7964 * Rename requires that the current fh be the target directory and the 7965 * saved fh be the source directory. After the operation, the current fh 7966 * is unchanged. 7967 * 7968 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 7969 * update the filehandle for the renamed object. We also get the old 7970 * filehandle for historical reasons; this should be taken out sometime. 7971 * This results in a rather cumbersome compound... 7972 * 7973 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 7974 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 7975 * 7976 */ 7977 static int 7978 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 7979 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 7980 { 7981 COMPOUND4args_clnt args; 7982 COMPOUND4res_clnt res, *resp = NULL; 7983 int argoplist_size; 7984 nfs_argop4 *argop; 7985 nfs_resop4 *resop; 7986 int doqueue; 7987 mntinfo4_t *mi; 7988 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 7989 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 7990 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 7991 RENAME4res *rn_res; 7992 GETFH4res *ngf_res; 7993 bool_t needrecov; 7994 nfs4_recov_state_t recov_state; 7995 hrtime_t t; 7996 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7997 dirattr_info_t dinfo, *dinfop = &dinfo; 7998 7999 ASSERT(curproc->p_zone == VTOMI4(odvp)->mi_zone); 8000 8001 recov_state.rs_flags = 0; 8002 recov_state.rs_num_retry_despite_err = 0; 8003 8004 recov_retry: 8005 *statp = NFS4_OK; 8006 8007 /* 8008 * There is a window between the RPC and updating the path and 8009 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8010 * code, so that it doesn't try to use the old path during that 8011 * window. 8012 */ 8013 mutex_enter(&orp->r_statelock); 8014 while (orp->r_flags & R4RECEXPFH) { 8015 klwp_t *lwp = ttolwp(curthread); 8016 8017 if (lwp != NULL) 8018 lwp->lwp_nostop++; 8019 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8020 mutex_exit(&orp->r_statelock); 8021 if (lwp != NULL) 8022 lwp->lwp_nostop--; 8023 return (EINTR); 8024 } 8025 if (lwp != NULL) 8026 lwp->lwp_nostop--; 8027 } 8028 orp->r_flags |= R4RECEXPFH; 8029 mutex_exit(&orp->r_statelock); 8030 8031 mi = VTOMI4(odvp); 8032 8033 args.ctag = TAG_RENAME_VFH; 8034 args.array_len = (odvp == ndvp) ? 10 : 12; 8035 argoplist_size = args.array_len * sizeof (nfs_argop4); 8036 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8037 8038 /* 8039 * Rename ops: 8040 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8041 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8042 * LOOKUP(trgt), GETFH(new), GETATTR, 8043 * 8044 * if (odvp != ndvp) 8045 * add putfh(sourcedir), getattr(sourcedir) } 8046 */ 8047 args.array = argop; 8048 8049 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8050 &recov_state, NULL); 8051 if (e.error) { 8052 kmem_free(argop, argoplist_size); 8053 mutex_enter(&orp->r_statelock); 8054 orp->r_flags &= ~R4RECEXPFH; 8055 cv_broadcast(&orp->r_cv); 8056 mutex_exit(&orp->r_statelock); 8057 return (e.error); 8058 } 8059 8060 /* 0: putfh source directory */ 8061 argop[0].argop = OP_CPUTFH; 8062 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8063 8064 /* 1: Save source fh to free up current for target */ 8065 argop[1].argop = OP_SAVEFH; 8066 8067 /* 2: Lookup pre-rename fh of renamed object */ 8068 argop[2].argop = OP_CLOOKUP; 8069 argop[2].nfs_argop4_u.opclookup.cname = onm; 8070 8071 /* 3: getfh fh of renamed object (before rename) */ 8072 argop[3].argop = OP_GETFH; 8073 8074 /* 4: putfh targetdir */ 8075 argop[4].argop = OP_CPUTFH; 8076 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8077 8078 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8079 argop[5].argop = OP_CRENAME; 8080 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8081 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8082 8083 /* 6: getattr of target dir (post op attrs) */ 8084 argop[6].argop = OP_GETATTR; 8085 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8086 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8087 8088 /* 7: Lookup post-rename fh of renamed object */ 8089 argop[7].argop = OP_CLOOKUP; 8090 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8091 8092 /* 8: getfh fh of renamed object (after rename) */ 8093 argop[8].argop = OP_GETFH; 8094 8095 /* 9: getattr of renamed object */ 8096 argop[9].argop = OP_GETATTR; 8097 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8098 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8099 8100 /* 8101 * If source/target dirs are different, then get new post-op 8102 * attrs for source dir also. 8103 */ 8104 if (ndvp != odvp) { 8105 /* 10: putfh (sourcedir) */ 8106 argop[10].argop = OP_CPUTFH; 8107 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8108 8109 /* 11: getattr (sourcedir) */ 8110 argop[11].argop = OP_GETATTR; 8111 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8112 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8113 } 8114 8115 dnlc_remove(odvp, onm); 8116 dnlc_remove(ndvp, nnm); 8117 8118 doqueue = 1; 8119 t = gethrtime(); 8120 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8121 8122 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8123 if (e.error) { 8124 PURGE_ATTRCACHE4(odvp); 8125 PURGE_ATTRCACHE4(ndvp); 8126 if (!needrecov) { 8127 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8128 &recov_state, needrecov); 8129 goto out; 8130 } 8131 } else { 8132 *statp = res.status; 8133 } 8134 8135 if (needrecov) { 8136 bool_t abort; 8137 8138 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8139 OP_RENAME, NULL); 8140 if (abort == FALSE) { 8141 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8142 &recov_state, needrecov); 8143 kmem_free(argop, argoplist_size); 8144 if (!e.error) 8145 (void) xdr_free(xdr_COMPOUND4res_clnt, 8146 (caddr_t)&res); 8147 mutex_enter(&orp->r_statelock); 8148 orp->r_flags &= ~R4RECEXPFH; 8149 cv_broadcast(&orp->r_cv); 8150 mutex_exit(&orp->r_statelock); 8151 goto recov_retry; 8152 } else { 8153 if (e.error != 0) { 8154 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8155 &recov_state, needrecov); 8156 goto out; 8157 } 8158 /* fall through for res.status case */ 8159 } 8160 } 8161 8162 resp = &res; 8163 /* 8164 * If OP_RENAME (or any prev op) failed, then return an error. 8165 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8166 */ 8167 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8168 /* 8169 * Error in an op other than last Getattr 8170 */ 8171 e.error = geterrno4(res.status); 8172 PURGE_ATTRCACHE4(odvp); 8173 PURGE_ATTRCACHE4(ndvp); 8174 /* 8175 * System V defines rename to return EEXIST, not 8176 * ENOTEMPTY if the target directory is not empty. 8177 * Over the wire, the error is NFSERR_ENOTEMPTY 8178 * which geterrno4 maps to ENOTEMPTY. 8179 */ 8180 if (e.error == ENOTEMPTY) 8181 e.error = EEXIST; 8182 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8183 needrecov); 8184 goto out; 8185 } 8186 8187 /* rename results */ 8188 rn_res = &res.array[5].nfs_resop4_u.oprename; 8189 8190 if (res.status == NFS4_OK) { 8191 /* Update target attribute, readdir and dnlc caches */ 8192 dinfo.di_garp = 8193 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8194 dinfo.di_cred = cr; 8195 dinfo.di_time_call = t; 8196 } else 8197 dinfop = NULL; 8198 8199 /* Update source cache attribute, readdir and dnlc caches */ 8200 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8201 8202 /* Update source cache attribute, readdir and dnlc caches */ 8203 if (ndvp != odvp) { 8204 8205 /* 8206 * If dinfop is non-NULL, then compound succeded, so 8207 * set di_garp to attrs for source dir. dinfop is only 8208 * set to NULL when compound fails. 8209 */ 8210 if (dinfop) 8211 dinfo.di_garp = 8212 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8213 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8214 dinfop); 8215 } 8216 8217 /* 8218 * Update the rnode with the new component name and args, 8219 * and if the file handle changed, also update it with the new fh. 8220 * This is only necessary if the target object has an rnode 8221 * entry and there is no need to create one for it. 8222 */ 8223 resop = &res.array[8]; /* getfh new res */ 8224 ngf_res = &resop->nfs_resop4_u.opgetfh; 8225 8226 /* 8227 * Update the path and filehandle for the renamed object. 8228 */ 8229 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8230 8231 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8232 8233 if (res.status == NFS4_OK) { 8234 resop++; /* getattr res */ 8235 e.error = nfs4_update_attrcache(res.status, 8236 &resop->nfs_resop4_u.opgetattr.ga_res, 8237 t, ovp, cr); 8238 } 8239 8240 out: 8241 kmem_free(argop, argoplist_size); 8242 if (resp) 8243 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8244 mutex_enter(&orp->r_statelock); 8245 orp->r_flags &= ~R4RECEXPFH; 8246 cv_broadcast(&orp->r_cv); 8247 mutex_exit(&orp->r_statelock); 8248 8249 return (e.error); 8250 } 8251 8252 static int 8253 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 8254 { 8255 int error; 8256 vnode_t *vp; 8257 8258 if (curproc->p_zone != VTOMI4(dvp)->mi_zone) 8259 return (EPERM); 8260 /* 8261 * As ".." has special meaning and rather than send a mkdir 8262 * over the wire to just let the server freak out, we just 8263 * short circuit it here and return EEXIST 8264 */ 8265 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8266 return (EEXIST); 8267 8268 /* 8269 * Decision to get the right gid and setgid bit of the 8270 * new directory is now made in call_nfs4_create_req. 8271 */ 8272 va->va_mask |= AT_MODE; 8273 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8274 if (error) 8275 return (error); 8276 8277 *vpp = vp; 8278 return (0); 8279 } 8280 8281 8282 /* 8283 * rmdir is using the same remove v4 op as does remove. 8284 * Remove requires that the current fh be the target directory. 8285 * After the operation, the current fh is unchanged. 8286 * The compound op structure is: 8287 * PUTFH(targetdir), REMOVE 8288 */ 8289 static int 8290 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 8291 { 8292 int need_end_op = FALSE; 8293 COMPOUND4args_clnt args; 8294 COMPOUND4res_clnt res, *resp = NULL; 8295 REMOVE4res *rm_res; 8296 nfs_argop4 argop[3]; 8297 nfs_resop4 *resop; 8298 vnode_t *vp; 8299 int doqueue; 8300 mntinfo4_t *mi; 8301 rnode4_t *drp; 8302 bool_t needrecov = FALSE; 8303 nfs4_recov_state_t recov_state; 8304 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8305 dirattr_info_t dinfo, *dinfop; 8306 8307 if (curproc->p_zone != VTOMI4(dvp)->mi_zone) 8308 return (EPERM); 8309 /* 8310 * As ".." has special meaning and rather than send a rmdir 8311 * over the wire to just let the server freak out, we just 8312 * short circuit it here and return EEXIST 8313 */ 8314 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8315 return (EEXIST); 8316 8317 drp = VTOR4(dvp); 8318 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8319 return (EINTR); 8320 8321 /* 8322 * Attempt to prevent a rmdir(".") from succeeding. 8323 */ 8324 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8325 if (e.error) { 8326 nfs_rw_exit(&drp->r_rwlock); 8327 return (e.error); 8328 } 8329 if (vp == cdir) { 8330 VN_RELE(vp); 8331 nfs_rw_exit(&drp->r_rwlock); 8332 return (EINVAL); 8333 } 8334 8335 /* 8336 * Since nfsv4 remove op works on both files and directories, 8337 * check that the removed object is indeed a directory. 8338 */ 8339 if (vp->v_type != VDIR) { 8340 VN_RELE(vp); 8341 nfs_rw_exit(&drp->r_rwlock); 8342 return (ENOTDIR); 8343 } 8344 8345 /* 8346 * First just remove the entry from the name cache, as it 8347 * is most likely an entry for this vp. 8348 */ 8349 dnlc_remove(dvp, nm); 8350 8351 /* 8352 * If there vnode reference count is greater than one, then 8353 * there may be additional references in the DNLC which will 8354 * need to be purged. First, trying removing the entry for 8355 * the parent directory and see if that removes the additional 8356 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8357 * to completely remove any references to the directory which 8358 * might still exist in the DNLC. 8359 */ 8360 if (vp->v_count > 1) { 8361 dnlc_remove(vp, ".."); 8362 if (vp->v_count > 1) 8363 dnlc_purge_vp(vp); 8364 } 8365 8366 mi = VTOMI4(dvp); 8367 recov_state.rs_flags = 0; 8368 recov_state.rs_num_retry_despite_err = 0; 8369 8370 recov_retry: 8371 args.ctag = TAG_RMDIR; 8372 8373 /* 8374 * Rmdir ops: putfh dir; remove 8375 */ 8376 args.array_len = 3; 8377 args.array = argop; 8378 8379 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8380 if (e.error) { 8381 nfs_rw_exit(&drp->r_rwlock); 8382 return (e.error); 8383 } 8384 need_end_op = TRUE; 8385 8386 /* putfh directory */ 8387 argop[0].argop = OP_CPUTFH; 8388 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8389 8390 /* remove */ 8391 argop[1].argop = OP_CREMOVE; 8392 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8393 8394 /* getattr (postop attrs for dir that contained removed dir) */ 8395 argop[2].argop = OP_GETATTR; 8396 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8397 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8398 8399 dinfo.di_time_call = gethrtime(); 8400 doqueue = 1; 8401 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8402 8403 PURGE_ATTRCACHE4(vp); 8404 8405 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8406 if (e.error) { 8407 PURGE_ATTRCACHE4(dvp); 8408 } 8409 8410 if (needrecov) { 8411 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8412 NULL, OP_REMOVE, NULL) == FALSE) { 8413 if (!e.error) 8414 (void) xdr_free(xdr_COMPOUND4res_clnt, 8415 (caddr_t)&res); 8416 8417 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8418 needrecov); 8419 need_end_op = FALSE; 8420 goto recov_retry; 8421 } 8422 } 8423 8424 if (!e.error) { 8425 resp = &res; 8426 8427 /* 8428 * Only return error if first 2 ops (OP_REMOVE or earlier) 8429 * failed. 8430 */ 8431 if (res.status != NFS4_OK && res.array_len <= 2) { 8432 e.error = geterrno4(res.status); 8433 PURGE_ATTRCACHE4(dvp); 8434 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8435 &recov_state, needrecov); 8436 need_end_op = FALSE; 8437 nfs4_purge_stale_fh(e.error, dvp, cr); 8438 /* 8439 * System V defines rmdir to return EEXIST, not 8440 * ENOTEMPTY if the directory is not empty. Over 8441 * the wire, the error is NFSERR_ENOTEMPTY which 8442 * geterrno4 maps to ENOTEMPTY. 8443 */ 8444 if (e.error == ENOTEMPTY) 8445 e.error = EEXIST; 8446 } else { 8447 resop = &res.array[1]; /* remove res */ 8448 rm_res = &resop->nfs_resop4_u.opremove; 8449 8450 if (res.status == NFS4_OK) { 8451 resop = &res.array[2]; /* dir attrs */ 8452 dinfo.di_garp = 8453 &resop->nfs_resop4_u.opgetattr.ga_res; 8454 dinfo.di_cred = cr; 8455 dinfop = &dinfo; 8456 } else 8457 dinfop = NULL; 8458 8459 /* Update dir attribute, readdir and dnlc caches */ 8460 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8461 dinfop); 8462 8463 /* destroy rddir cache for dir that was removed */ 8464 if (VTOR4(vp)->r_dir != NULL) 8465 nfs4_purge_rddir_cache(vp); 8466 } 8467 } 8468 8469 if (need_end_op) 8470 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8471 8472 nfs_rw_exit(&drp->r_rwlock); 8473 8474 if (resp) 8475 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8476 8477 VN_RELE(vp); 8478 8479 return (e.error); 8480 } 8481 8482 static int 8483 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 8484 { 8485 int error; 8486 vnode_t *vp; 8487 rnode4_t *rp; 8488 char *contents; 8489 mntinfo4_t *mi = VTOMI4(dvp); 8490 8491 if (curproc->p_zone != mi->mi_zone) 8492 return (EPERM); 8493 if (!(mi->mi_flags & MI4_SYMLINK)) 8494 return (EOPNOTSUPP); 8495 8496 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8497 if (error) { 8498 return (error); 8499 } 8500 8501 ASSERT(nfs4_consistent_type(vp)); 8502 rp = VTOR4(vp); 8503 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8504 8505 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8506 8507 if (contents != NULL) { 8508 mutex_enter(&rp->r_statelock); 8509 if (rp->r_symlink.contents == NULL) { 8510 rp->r_symlink.len = strlen(tnm); 8511 bcopy(tnm, contents, rp->r_symlink.len); 8512 rp->r_symlink.contents = contents; 8513 rp->r_symlink.size = MAXPATHLEN; 8514 mutex_exit(&rp->r_statelock); 8515 } else { 8516 mutex_exit(&rp->r_statelock); 8517 kmem_free((void *)contents, MAXPATHLEN); 8518 } 8519 } 8520 } 8521 VN_RELE(vp); 8522 8523 return (error); 8524 } 8525 8526 8527 /* 8528 * Read directory entries. 8529 * There are some weird things to look out for here. The uio_loffset 8530 * field is either 0 or it is the offset returned from a previous 8531 * readdir. It is an opaque value used by the server to find the 8532 * correct directory block to read. The count field is the number 8533 * of blocks to read on the server. This is advisory only, the server 8534 * may return only one block's worth of entries. Entries may be compressed 8535 * on the server. 8536 */ 8537 static int 8538 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 8539 { 8540 int error; 8541 uint_t count; 8542 rnode4_t *rp; 8543 rddir4_cache *rdc; 8544 rddir4_cache *rrdc; 8545 8546 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 8547 return (EIO); 8548 rp = VTOR4(vp); 8549 8550 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8551 8552 /* 8553 * Make sure that the directory cache is valid. 8554 */ 8555 if (rp->r_dir != NULL) { 8556 if (nfs_disable_rddir_cache != 0) { 8557 /* 8558 * Setting nfs_disable_rddir_cache in /etc/system 8559 * allows interoperability with servers that do not 8560 * properly update the attributes of directories. 8561 * Any cached information gets purged before an 8562 * access is made to it. 8563 */ 8564 nfs4_purge_rddir_cache(vp); 8565 } 8566 8567 error = nfs4_validate_caches(vp, cr); 8568 if (error) 8569 return (error); 8570 } 8571 8572 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8573 8574 /* 8575 * Short circuit last readdir which always returns 0 bytes. 8576 * This can be done after the directory has been read through 8577 * completely at least once. This will set r_direof which 8578 * can be used to find the value of the last cookie. 8579 */ 8580 mutex_enter(&rp->r_statelock); 8581 if (rp->r_direof != NULL && 8582 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8583 mutex_exit(&rp->r_statelock); 8584 #ifdef DEBUG 8585 nfs4_readdir_cache_shorts++; 8586 #endif 8587 if (eofp) 8588 *eofp = 1; 8589 return (0); 8590 } 8591 8592 /* 8593 * Look for a cache entry. Cache entries are identified 8594 * by the NFS cookie value and the byte count requested. 8595 */ 8596 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8597 8598 /* 8599 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8600 */ 8601 if (rdc == NULL) { 8602 mutex_exit(&rp->r_statelock); 8603 return (EINTR); 8604 } 8605 8606 /* 8607 * Check to see if we need to fill this entry in. 8608 */ 8609 if (rdc->flags & RDDIRREQ) { 8610 rdc->flags &= ~RDDIRREQ; 8611 rdc->flags |= RDDIR; 8612 mutex_exit(&rp->r_statelock); 8613 8614 /* 8615 * Do the readdir. 8616 */ 8617 nfs4readdir(vp, rdc, cr); 8618 8619 /* 8620 * Reaquire the lock, so that we can continue 8621 */ 8622 mutex_enter(&rp->r_statelock); 8623 /* 8624 * The entry is now complete 8625 */ 8626 rdc->flags &= ~RDDIR; 8627 } 8628 8629 ASSERT(!(rdc->flags & RDDIR)); 8630 8631 /* 8632 * If an error occurred while attempting 8633 * to fill the cache entry, mark the entry invalid and 8634 * just return the error. 8635 */ 8636 if (rdc->error) { 8637 error = rdc->error; 8638 rdc->flags |= RDDIRREQ; 8639 rddir4_cache_rele(rp, rdc); 8640 mutex_exit(&rp->r_statelock); 8641 return (error); 8642 } 8643 8644 /* 8645 * The cache entry is complete and good, 8646 * copyout the dirent structs to the calling 8647 * thread. 8648 */ 8649 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 8650 8651 /* 8652 * If no error occurred during the copyout, 8653 * update the offset in the uio struct to 8654 * contain the value of the next NFS 4 cookie 8655 * and set the eof value appropriately. 8656 */ 8657 if (!error) { 8658 uiop->uio_loffset = rdc->nfs4_ncookie; 8659 if (eofp) 8660 *eofp = rdc->eof; 8661 } 8662 8663 /* 8664 * Decide whether to do readahead. Don't if we 8665 * have already read to the end of directory. 8666 */ 8667 if (rdc->eof) { 8668 /* 8669 * Make the entry the direof only if it is cached 8670 */ 8671 if (rdc->flags & RDDIRCACHED) 8672 rp->r_direof = rdc; 8673 rddir4_cache_rele(rp, rdc); 8674 mutex_exit(&rp->r_statelock); 8675 return (error); 8676 } 8677 8678 /* Determine if a readdir readahead should be done */ 8679 if (!(rp->r_flags & R4LOOKUP)) { 8680 rddir4_cache_rele(rp, rdc); 8681 mutex_exit(&rp->r_statelock); 8682 return (error); 8683 } 8684 8685 /* 8686 * Now look for a readahead entry. 8687 * 8688 * Check to see whether we found an entry for the readahead. 8689 * If so, we don't need to do anything further, so free the new 8690 * entry if one was allocated. Otherwise, allocate a new entry, add 8691 * it to the cache, and then initiate an asynchronous readdir 8692 * operation to fill it. 8693 */ 8694 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 8695 8696 /* 8697 * A readdir cache entry could not be obtained for the readahead. In 8698 * this case we skip the readahead and return. 8699 */ 8700 if (rrdc == NULL) { 8701 rddir4_cache_rele(rp, rdc); 8702 mutex_exit(&rp->r_statelock); 8703 return (error); 8704 } 8705 8706 /* 8707 * Check to see if we need to fill this entry in. 8708 */ 8709 if (rrdc->flags & RDDIRREQ) { 8710 rrdc->flags &= ~RDDIRREQ; 8711 rrdc->flags |= RDDIR; 8712 rddir4_cache_rele(rp, rdc); 8713 mutex_exit(&rp->r_statelock); 8714 #ifdef DEBUG 8715 nfs4_readdir_readahead++; 8716 #endif 8717 /* 8718 * Do the readdir. 8719 */ 8720 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 8721 return (error); 8722 } 8723 8724 rddir4_cache_rele(rp, rrdc); 8725 rddir4_cache_rele(rp, rdc); 8726 mutex_exit(&rp->r_statelock); 8727 return (error); 8728 } 8729 8730 static int 8731 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8732 { 8733 int error; 8734 rnode4_t *rp; 8735 8736 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 8737 8738 rp = VTOR4(vp); 8739 8740 /* 8741 * Obtain the readdir results for the caller. 8742 */ 8743 nfs4readdir(vp, rdc, cr); 8744 8745 mutex_enter(&rp->r_statelock); 8746 /* 8747 * The entry is now complete 8748 */ 8749 rdc->flags &= ~RDDIR; 8750 8751 error = rdc->error; 8752 if (error) 8753 rdc->flags |= RDDIRREQ; 8754 rddir4_cache_rele(rp, rdc); 8755 mutex_exit(&rp->r_statelock); 8756 8757 return (error); 8758 } 8759 8760 static void 8761 nfs4readdir_stub(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8762 { 8763 int stublength; 8764 dirent64_t *dp; 8765 u_longlong_t nodeid, pnodeid; 8766 vnode_t *dotdotvp = NULL; 8767 rnode4_t *rp = VTOR4(vp); 8768 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 8769 8770 rdc->error = 0; 8771 rdc->entries = 0; 8772 rdc->actlen = rdc->entlen = 0; 8773 rdc->eof = TRUE; 8774 8775 /* Check for EOF case for readdir of stub */ 8776 if (cookie != 0 && cookie != 1) 8777 return; 8778 8779 nodeid = rp->r_attr.va_nodeid; 8780 if (vp->v_flag & VROOT) { 8781 pnodeid = nodeid; /* root of mount point */ 8782 } else { 8783 if (rdc->error = nfs4_lookup(vp, "..", &dotdotvp, 0, 0, 0, cr)) 8784 return; 8785 pnodeid = VTOR4(dotdotvp)->r_attr.va_nodeid; 8786 VN_RELE(dotdotvp); 8787 } 8788 8789 stublength = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8790 rdc->entries = kmem_alloc(stublength, KM_SLEEP); 8791 rdc->entlen = rdc->buflen = stublength; 8792 rdc->eof = TRUE; 8793 8794 dp = (dirent64_t *)rdc->entries; 8795 8796 if (rdc->nfs4_cookie == (nfs_cookie4)0) { 8797 bcopy(nfs4_dot_entries, rdc->entries, 8798 DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2)); 8799 dp->d_ino = nodeid; 8800 dp = (struct dirent64 *)(((char *)dp) + DIRENT64_RECLEN(1)); 8801 dp->d_ino = pnodeid; 8802 rdc->actlen = DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2); 8803 } else { /* for ".." entry */ 8804 bcopy(nfs4_dot_dot_entry, rdc->entries, DIRENT64_RECLEN(2)); 8805 dp->d_ino = pnodeid; 8806 rdc->actlen = DIRENT64_RECLEN(2); 8807 } 8808 rdc->nfs4_ncookie = rdc->actlen; 8809 } 8810 8811 /* 8812 * Read directory entries. 8813 * There are some weird things to look out for here. The uio_loffset 8814 * field is either 0 or it is the offset returned from a previous 8815 * readdir. It is an opaque value used by the server to find the 8816 * correct directory block to read. The count field is the number 8817 * of blocks to read on the server. This is advisory only, the server 8818 * may return only one block's worth of entries. Entries may be compressed 8819 * on the server. 8820 * 8821 * Generates the following compound request: 8822 * 1. If readdir offset is zero and no dnlc entry for parent exists, 8823 * must include a Lookupp as well. In this case, send: 8824 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 8825 * 2. Otherwise just do: { Putfh <fh>; Readdir } 8826 * 8827 * Get complete attributes and filehandles for entries if this is the 8828 * first read of the directory. Otherwise, just get fileid's. 8829 */ 8830 static void 8831 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 8832 { 8833 COMPOUND4args_clnt args; 8834 COMPOUND4res_clnt res; 8835 READDIR4args *rargs; 8836 READDIR4res_clnt *rd_res; 8837 bitmap4 rd_bitsval; 8838 nfs_argop4 argop[5]; 8839 nfs_resop4 *resop; 8840 rnode4_t *rp = VTOR4(vp); 8841 mntinfo4_t *mi = VTOMI4(vp); 8842 int doqueue; 8843 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 8844 vnode_t *dvp; 8845 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 8846 int num_ops, res_opcnt; 8847 bool_t needrecov = FALSE; 8848 nfs4_recov_state_t recov_state; 8849 hrtime_t t; 8850 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8851 8852 ASSERT(curproc->p_zone == mi->mi_zone); 8853 ASSERT(rdc->flags & RDDIR); 8854 ASSERT(rdc->entries == NULL); 8855 8856 if (rp->r_flags & R4SRVSTUB) { 8857 nfs4readdir_stub(vp, rdc, cr); 8858 return; 8859 } 8860 8861 num_ops = 2; 8862 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 8863 /* 8864 * Since nfsv4 readdir may not return entries for "." and "..", 8865 * the client must recreate them: 8866 * To find the correct nodeid, do the following: 8867 * For current node, get nodeid from dnlc. 8868 * - if current node is rootvp, set pnodeid to nodeid. 8869 * - else if parent is in the dnlc, get its nodeid from there. 8870 * - else add LOOKUPP+GETATTR to compound. 8871 */ 8872 nodeid = rp->r_attr.va_nodeid; 8873 if (vp->v_flag & VROOT) { 8874 pnodeid = nodeid; /* root of mount point */ 8875 } else { 8876 dvp = dnlc_lookup(vp, ".."); 8877 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 8878 /* parent in dnlc cache - no need for otw */ 8879 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 8880 } else { 8881 /* 8882 * parent not in dnlc cache, 8883 * do lookupp to get its id 8884 */ 8885 num_ops = 5; 8886 pnodeid = 0; /* set later by getattr parent */ 8887 } 8888 if (dvp) 8889 VN_RELE(dvp); 8890 } 8891 } 8892 recov_state.rs_flags = 0; 8893 recov_state.rs_num_retry_despite_err = 0; 8894 8895 /* Save the original mount point security flavor */ 8896 (void) save_mnt_secinfo(mi->mi_curr_serv); 8897 8898 recov_retry: 8899 args.ctag = TAG_READDIR; 8900 8901 args.array = argop; 8902 args.array_len = num_ops; 8903 8904 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 8905 &recov_state, NULL)) { 8906 /* 8907 * If readdir a node that is a stub for a crossed mount point, 8908 * keep the original secinfo flavor for the current file 8909 * system, not the crossed one. 8910 */ 8911 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 8912 rdc->error = e.error; 8913 return; 8914 } 8915 8916 /* 8917 * Determine which attrs to request for dirents. This code 8918 * must be protected by nfs4_start/end_fop because of r_server 8919 * (which will change during failover recovery). 8920 * 8921 */ 8922 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 8923 /* 8924 * Get all vattr attrs plus filehandle and rdattr_error 8925 */ 8926 rd_bitsval = NFS4_VATTR_MASK | 8927 FATTR4_RDATTR_ERROR_MASK | 8928 FATTR4_FILEHANDLE_MASK; 8929 8930 if (rp->r_flags & R4READDIRWATTR) { 8931 mutex_enter(&rp->r_statelock); 8932 rp->r_flags &= ~R4READDIRWATTR; 8933 mutex_exit(&rp->r_statelock); 8934 } 8935 } else { 8936 servinfo4_t *svp = rp->r_server; 8937 8938 /* 8939 * Already read directory. Use readdir with 8940 * no attrs (except for mounted_on_fileid) for updates. 8941 */ 8942 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 8943 8944 /* 8945 * request mounted on fileid if supported, else request 8946 * fileid. maybe we should verify that fileid is supported 8947 * and request something else if not. 8948 */ 8949 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 8950 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 8951 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 8952 nfs_rw_exit(&svp->sv_lock); 8953 } 8954 8955 /* putfh directory fh */ 8956 argop[0].argop = OP_CPUTFH; 8957 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 8958 8959 argop[1].argop = OP_READDIR; 8960 rargs = &argop[1].nfs_argop4_u.opreaddir; 8961 /* 8962 * 1 and 2 are reserved for client "." and ".." entry offset. 8963 * cookie 0 should be used over-the-wire to start reading at 8964 * the beginning of the directory excluding "." and "..". 8965 */ 8966 if (rdc->nfs4_cookie == 0 || 8967 rdc->nfs4_cookie == 1 || 8968 rdc->nfs4_cookie == 2) { 8969 rargs->cookie = (nfs_cookie4)0; 8970 rargs->cookieverf = 0; 8971 } else { 8972 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 8973 mutex_enter(&rp->r_statelock); 8974 rargs->cookieverf = rp->r_cookieverf4; 8975 mutex_exit(&rp->r_statelock); 8976 } 8977 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 8978 rargs->maxcount = mi->mi_tsize; 8979 rargs->attr_request = rd_bitsval; 8980 rargs->rdc = rdc; 8981 rargs->dvp = vp; 8982 rargs->mi = mi; 8983 rargs->cr = cr; 8984 8985 8986 /* 8987 * If count < than the minimum required, we return no entries 8988 * and fail with EINVAL 8989 */ 8990 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 8991 rdc->error = EINVAL; 8992 goto out; 8993 } 8994 8995 if (args.array_len == 5) { 8996 /* 8997 * Add lookupp and getattr for parent nodeid. 8998 */ 8999 argop[2].argop = OP_LOOKUPP; 9000 9001 argop[3].argop = OP_GETFH; 9002 9003 /* getattr parent */ 9004 argop[4].argop = OP_GETATTR; 9005 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9006 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9007 } 9008 9009 doqueue = 1; 9010 9011 if (mi->mi_io_kstats) { 9012 mutex_enter(&mi->mi_lock); 9013 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9014 mutex_exit(&mi->mi_lock); 9015 } 9016 9017 /* capture the time of this call */ 9018 rargs->t = t = gethrtime(); 9019 9020 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9021 9022 if (mi->mi_io_kstats) { 9023 mutex_enter(&mi->mi_lock); 9024 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9025 mutex_exit(&mi->mi_lock); 9026 } 9027 9028 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9029 9030 /* 9031 * If RPC error occurred and it isn't an error that 9032 * triggers recovery, then go ahead and fail now. 9033 */ 9034 if (e.error != 0 && !needrecov) { 9035 rdc->error = e.error; 9036 goto out; 9037 } 9038 9039 if (needrecov) { 9040 bool_t abort; 9041 9042 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9043 "nfs4readdir: initiating recovery.\n")); 9044 9045 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9046 NULL, OP_READDIR, NULL); 9047 if (abort == FALSE) { 9048 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9049 &recov_state, needrecov); 9050 if (!e.error) 9051 (void) xdr_free(xdr_COMPOUND4res_clnt, 9052 (caddr_t)&res); 9053 if (rdc->entries != NULL) { 9054 kmem_free(rdc->entries, rdc->entlen); 9055 rdc->entries = NULL; 9056 } 9057 goto recov_retry; 9058 } 9059 9060 if (e.error != 0) { 9061 rdc->error = e.error; 9062 goto out; 9063 } 9064 9065 /* fall through for res.status case */ 9066 } 9067 9068 res_opcnt = res.array_len; 9069 9070 /* 9071 * If compound failed first 2 ops (PUTFH+READDIR), then return 9072 * failure here. Subsequent ops are for filling out dot-dot 9073 * dirent, and if they fail, we still want to give the caller 9074 * the dirents returned by (the successful) READDIR op, so we need 9075 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9076 * 9077 * One example where PUTFH+READDIR ops would succeed but 9078 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9079 * but lacks x. In this case, a POSIX server's VOP_READDIR 9080 * would succeed; however, VOP_LOOKUP(..) would fail since no 9081 * x perm. We need to come up with a non-vendor-specific way 9082 * for a POSIX server to return d_ino from dotdot's dirent if 9083 * client only requests mounted_on_fileid, and just say the 9084 * LOOKUPP succeeded and fill out the GETATTR. However, if 9085 * client requested any mandatory attrs, server would be required 9086 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9087 * for dotdot. 9088 */ 9089 9090 if (res.status) { 9091 if (res_opcnt <= 2) { 9092 e.error = geterrno4(res.status); 9093 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9094 &recov_state, needrecov); 9095 nfs4_purge_stale_fh(e.error, vp, cr); 9096 rdc->error = e.error; 9097 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9098 if (rdc->entries != NULL) { 9099 kmem_free(rdc->entries, rdc->entlen); 9100 rdc->entries = NULL; 9101 } 9102 /* 9103 * If readdir a node that is a stub for a 9104 * crossed mount point, keep the original 9105 * secinfo flavor for the current file system, 9106 * not the crossed one. 9107 */ 9108 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9109 return; 9110 } 9111 } 9112 9113 resop = &res.array[1]; /* readdir res */ 9114 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9115 9116 mutex_enter(&rp->r_statelock); 9117 rp->r_cookieverf4 = rd_res->cookieverf; 9118 mutex_exit(&rp->r_statelock); 9119 9120 /* 9121 * For "." and ".." entries 9122 * e.g. 9123 * seek(cookie=0) -> "." entry with d_off = 1 9124 * seek(cookie=1) -> ".." entry with d_off = 2 9125 */ 9126 if (cookie == (nfs_cookie4) 0) { 9127 if (rd_res->dotp) 9128 rd_res->dotp->d_ino = nodeid; 9129 if (rd_res->dotdotp) 9130 rd_res->dotdotp->d_ino = pnodeid; 9131 } 9132 if (cookie == (nfs_cookie4) 1) { 9133 if (rd_res->dotdotp) 9134 rd_res->dotdotp->d_ino = pnodeid; 9135 } 9136 9137 9138 /* LOOKUPP+GETATTR attemped */ 9139 if (args.array_len == 5 && rd_res->dotdotp) { 9140 if (res.status == NFS4_OK && res_opcnt == 5) { 9141 nfs_fh4 *fhp; 9142 nfs4_sharedfh_t *sfhp; 9143 vnode_t *pvp; 9144 nfs4_ga_res_t *garp; 9145 9146 resop++; /* lookupp */ 9147 resop++; /* getfh */ 9148 fhp = &resop->nfs_resop4_u.opgetfh.object; 9149 9150 resop++; /* getattr of parent */ 9151 9152 /* 9153 * First, take care of finishing the 9154 * readdir results. 9155 */ 9156 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9157 /* 9158 * The d_ino of .. must be the inode number 9159 * of the mounted filesystem. 9160 */ 9161 if (garp->n4g_va.va_mask & AT_NODEID) 9162 rd_res->dotdotp->d_ino = 9163 garp->n4g_va.va_nodeid; 9164 9165 9166 /* 9167 * Next, create the ".." dnlc entry 9168 */ 9169 sfhp = sfh4_get(fhp, mi); 9170 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9171 dnlc_update(vp, "..", pvp); 9172 VN_RELE(pvp); 9173 } 9174 sfh4_rele(&sfhp); 9175 } 9176 } 9177 9178 if (mi->mi_io_kstats) { 9179 mutex_enter(&mi->mi_lock); 9180 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9181 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9182 mutex_exit(&mi->mi_lock); 9183 } 9184 9185 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9186 9187 out: 9188 /* 9189 * If readdir a node that is a stub for a crossed mount point, 9190 * keep the original secinfo flavor for the current file system, 9191 * not the crossed one. 9192 */ 9193 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9194 9195 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9196 } 9197 9198 9199 static int 9200 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9201 { 9202 rnode4_t *rp = VTOR4(bp->b_vp); 9203 int count; 9204 int error; 9205 cred_t *cred_otw = NULL; 9206 offset_t offset; 9207 nfs4_open_stream_t *osp = NULL; 9208 bool_t first_time = TRUE; /* first time getting otw cred */ 9209 bool_t last_time = FALSE; /* last time getting otw cred */ 9210 9211 ASSERT(curproc->p_zone == VTOMI4(bp->b_vp)->mi_zone); 9212 9213 DTRACE_IO1(start, struct buf *, bp); 9214 offset = ldbtob(bp->b_lblkno); 9215 9216 if (bp->b_flags & B_READ) { 9217 read_again: 9218 /* 9219 * Releases the osp, if it is provided. 9220 * Puts a hold on the cred_otw and the new osp (if found). 9221 */ 9222 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9223 &first_time, &last_time); 9224 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9225 offset, bp->b_bcount, 9226 &bp->b_resid, cred_otw, 9227 readahead, NULL); 9228 crfree(cred_otw); 9229 if (!error) { 9230 if (bp->b_resid) { 9231 /* 9232 * Didn't get it all because we hit EOF, 9233 * zero all the memory beyond the EOF. 9234 */ 9235 /* bzero(rdaddr + */ 9236 bzero(bp->b_un.b_addr + 9237 bp->b_bcount - bp->b_resid, bp->b_resid); 9238 } 9239 mutex_enter(&rp->r_statelock); 9240 if (bp->b_resid == bp->b_bcount && 9241 offset >= rp->r_size) { 9242 /* 9243 * We didn't read anything at all as we are 9244 * past EOF. Return an error indicator back 9245 * but don't destroy the pages (yet). 9246 */ 9247 error = NFS_EOF; 9248 } 9249 mutex_exit(&rp->r_statelock); 9250 } else if (error == EACCES && last_time == FALSE) { 9251 goto read_again; 9252 } 9253 } else { 9254 if (!(rp->r_flags & R4STALE)) { 9255 write_again: 9256 /* 9257 * Releases the osp, if it is provided. 9258 * Puts a hold on the cred_otw and the new 9259 * osp (if found). 9260 */ 9261 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9262 &first_time, &last_time); 9263 mutex_enter(&rp->r_statelock); 9264 count = MIN(bp->b_bcount, rp->r_size - offset); 9265 mutex_exit(&rp->r_statelock); 9266 if (count < 0) 9267 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9268 #ifdef DEBUG 9269 if (count == 0) { 9270 zoneid_t zoneid = getzoneid(); 9271 9272 zcmn_err(zoneid, CE_WARN, 9273 "nfs4_bio: zero length write at %lld", 9274 offset); 9275 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9276 "b_bcount=%ld, file size=%lld", 9277 rp->r_flags, (long)bp->b_bcount, 9278 rp->r_size); 9279 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9280 if (nfs4_bio_do_stop) 9281 debug_enter("nfs4_bio"); 9282 } 9283 #endif 9284 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9285 count, cred_otw, stab_comm); 9286 if (error == EACCES && last_time == FALSE) { 9287 crfree(cred_otw); 9288 goto write_again; 9289 } 9290 bp->b_error = error; 9291 if (error && error != EINTR && 9292 !(bp->b_vp->v_vfsp->vfs_flag && VFS_UNMOUNTED)) { 9293 /* 9294 * Don't print EDQUOT errors on the console. 9295 * Don't print asynchronous EACCES errors. 9296 * Don't print EFBIG errors. 9297 * Print all other write errors. 9298 */ 9299 if (error != EDQUOT && error != EFBIG && 9300 (error != EACCES || 9301 !(bp->b_flags & B_ASYNC))) 9302 nfs4_write_error(bp->b_vp, 9303 error, cred_otw); 9304 /* 9305 * Update r_error and r_flags as appropriate. 9306 * If the error was ESTALE, then mark the 9307 * rnode as not being writeable and save 9308 * the error status. Otherwise, save any 9309 * errors which occur from asynchronous 9310 * page invalidations. Any errors occurring 9311 * from other operations should be saved 9312 * by the caller. 9313 */ 9314 mutex_enter(&rp->r_statelock); 9315 if (error == ESTALE) { 9316 rp->r_flags |= R4STALE; 9317 if (!rp->r_error) 9318 rp->r_error = error; 9319 } else if (!rp->r_error && 9320 (bp->b_flags & 9321 (B_INVAL|B_FORCE|B_ASYNC)) == 9322 (B_INVAL|B_FORCE|B_ASYNC)) { 9323 rp->r_error = error; 9324 } 9325 mutex_exit(&rp->r_statelock); 9326 } 9327 crfree(cred_otw); 9328 } else 9329 error = rp->r_error; 9330 } 9331 9332 if (error != 0 && error != NFS_EOF) 9333 bp->b_flags |= B_ERROR; 9334 9335 if (osp) 9336 open_stream_rele(osp, rp); 9337 9338 DTRACE_IO1(done, struct buf *, bp); 9339 9340 return (error); 9341 } 9342 9343 /* ARGSUSED */ 9344 static int 9345 nfs4_fid(vnode_t *vp, fid_t *fidp) 9346 { 9347 return (EREMOTE); 9348 } 9349 9350 /* ARGSUSED2 */ 9351 static int 9352 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9353 { 9354 rnode4_t *rp = VTOR4(vp); 9355 9356 if (!write_lock) { 9357 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9358 return (V_WRITELOCK_FALSE); 9359 } 9360 9361 if ((rp->r_flags & R4DIRECTIO) || 9362 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9363 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9364 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9365 return (V_WRITELOCK_FALSE); 9366 nfs_rw_exit(&rp->r_rwlock); 9367 } 9368 9369 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9370 return (V_WRITELOCK_TRUE); 9371 } 9372 9373 /* ARGSUSED */ 9374 static void 9375 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9376 { 9377 rnode4_t *rp = VTOR4(vp); 9378 9379 nfs_rw_exit(&rp->r_rwlock); 9380 } 9381 9382 /* ARGSUSED */ 9383 static int 9384 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 9385 { 9386 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 9387 return (EIO); 9388 9389 /* 9390 * Because we stuff the readdir cookie into the offset field 9391 * someone may attempt to do an lseek with the cookie which 9392 * we want to succeed. 9393 */ 9394 if (vp->v_type == VDIR) 9395 return (0); 9396 if (*noffp < 0) 9397 return (EINVAL); 9398 return (0); 9399 } 9400 9401 9402 /* 9403 * Return all the pages from [off..off+len) in file 9404 */ 9405 static int 9406 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9407 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9408 enum seg_rw rw, cred_t *cr) 9409 { 9410 rnode4_t *rp; 9411 int error; 9412 mntinfo4_t *mi; 9413 9414 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 9415 return (EIO); 9416 rp = VTOR4(vp); 9417 if (IS_SHADOW(vp, rp)) 9418 vp = RTOV4(rp); 9419 9420 if (vp->v_flag & VNOMAP) 9421 return (ENOSYS); 9422 9423 if (protp != NULL) 9424 *protp = PROT_ALL; 9425 9426 /* 9427 * Now validate that the caches are up to date. 9428 */ 9429 if (error = nfs4_validate_caches(vp, cr)) 9430 return (error); 9431 9432 mi = VTOMI4(vp); 9433 retry: 9434 mutex_enter(&rp->r_statelock); 9435 9436 /* 9437 * Don't create dirty pages faster than they 9438 * can be cleaned so that the system doesn't 9439 * get imbalanced. If the async queue is 9440 * maxed out, then wait for it to drain before 9441 * creating more dirty pages. Also, wait for 9442 * any threads doing pagewalks in the vop_getattr 9443 * entry points so that they don't block for 9444 * long periods. 9445 */ 9446 if (rw == S_CREATE) { 9447 while ((mi->mi_max_threads != 0 && 9448 rp->r_awcount > 2 * mi->mi_max_threads) || 9449 rp->r_gcount > 0) 9450 cv_wait(&rp->r_cv, &rp->r_statelock); 9451 } 9452 9453 /* 9454 * If we are getting called as a side effect of an nfs_write() 9455 * operation the local file size might not be extended yet. 9456 * In this case we want to be able to return pages of zeroes. 9457 */ 9458 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9459 NFS4_DEBUG(nfs4_pageio_debug, 9460 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9461 "len=%llu, size=%llu, attrsize =%llu", off, 9462 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9463 mutex_exit(&rp->r_statelock); 9464 return (EFAULT); /* beyond EOF */ 9465 } 9466 9467 mutex_exit(&rp->r_statelock); 9468 9469 if (len <= PAGESIZE) { 9470 error = nfs4_getapage(vp, off, len, protp, pl, plsz, 9471 seg, addr, rw, cr); 9472 NFS4_DEBUG(nfs4_pageio_debug && error, 9473 (CE_NOTE, "getpage error %d; off=%lld, " 9474 "len=%lld", error, off, (u_longlong_t)len)); 9475 } else { 9476 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9477 pl, plsz, seg, addr, rw, cr); 9478 NFS4_DEBUG(nfs4_pageio_debug && error, 9479 (CE_NOTE, "getpages error %d; off=%lld, " 9480 "len=%lld", error, off, (u_longlong_t)len)); 9481 } 9482 9483 switch (error) { 9484 case NFS_EOF: 9485 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9486 goto retry; 9487 case ESTALE: 9488 nfs4_purge_stale_fh(error, vp, cr); 9489 } 9490 9491 return (error); 9492 } 9493 9494 /* 9495 * Called from pvn_getpages or nfs4_getpage to get a particular page. 9496 */ 9497 /* ARGSUSED */ 9498 static int 9499 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9500 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9501 enum seg_rw rw, cred_t *cr) 9502 { 9503 rnode4_t *rp; 9504 uint_t bsize; 9505 struct buf *bp; 9506 page_t *pp; 9507 u_offset_t lbn; 9508 u_offset_t io_off; 9509 u_offset_t blkoff; 9510 u_offset_t rablkoff; 9511 size_t io_len; 9512 uint_t blksize; 9513 int error; 9514 int readahead; 9515 int readahead_issued = 0; 9516 int ra_window; /* readahead window */ 9517 page_t *pagefound; 9518 page_t *savepp; 9519 9520 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 9521 return (EIO); 9522 9523 rp = VTOR4(vp); 9524 ASSERT(!IS_SHADOW(vp, rp)); 9525 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9526 9527 reread: 9528 bp = NULL; 9529 pp = NULL; 9530 pagefound = NULL; 9531 9532 if (pl != NULL) 9533 pl[0] = NULL; 9534 9535 error = 0; 9536 lbn = off / bsize; 9537 blkoff = lbn * bsize; 9538 9539 /* 9540 * Queueing up the readahead before doing the synchronous read 9541 * results in a significant increase in read throughput because 9542 * of the increased parallelism between the async threads and 9543 * the process context. 9544 */ 9545 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9546 rw != S_CREATE && 9547 !(vp->v_flag & VNOCACHE)) { 9548 mutex_enter(&rp->r_statelock); 9549 9550 /* 9551 * Calculate the number of readaheads to do. 9552 * a) No readaheads at offset = 0. 9553 * b) Do maximum(nfs4_nra) readaheads when the readahead 9554 * window is closed. 9555 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9556 * upon how far the readahead window is open or close. 9557 * d) No readaheads if rp->r_nextr is not within the scope 9558 * of the readahead window (random i/o). 9559 */ 9560 9561 if (off == 0) 9562 readahead = 0; 9563 else if (blkoff == rp->r_nextr) 9564 readahead = nfs4_nra; 9565 else if (rp->r_nextr > blkoff && 9566 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9567 <= (nfs4_nra - 1))) 9568 readahead = nfs4_nra - ra_window; 9569 else 9570 readahead = 0; 9571 9572 rablkoff = rp->r_nextr; 9573 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9574 mutex_exit(&rp->r_statelock); 9575 if (nfs4_async_readahead(vp, rablkoff + bsize, 9576 addr + (rablkoff + bsize - off), 9577 seg, cr, nfs4_readahead) < 0) { 9578 mutex_enter(&rp->r_statelock); 9579 break; 9580 } 9581 readahead--; 9582 rablkoff += bsize; 9583 /* 9584 * Indicate that we did a readahead so 9585 * readahead offset is not updated 9586 * by the synchronous read below. 9587 */ 9588 readahead_issued = 1; 9589 mutex_enter(&rp->r_statelock); 9590 /* 9591 * set readahead offset to 9592 * offset of last async readahead 9593 * request. 9594 */ 9595 rp->r_nextr = rablkoff; 9596 } 9597 mutex_exit(&rp->r_statelock); 9598 } 9599 9600 again: 9601 if ((pagefound = page_exists(vp, off)) == NULL) { 9602 if (pl == NULL) { 9603 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9604 nfs4_readahead); 9605 } else if (rw == S_CREATE) { 9606 /* 9607 * Block for this page is not allocated, or the offset 9608 * is beyond the current allocation size, or we're 9609 * allocating a swap slot and the page was not found, 9610 * so allocate it and return a zero page. 9611 */ 9612 if ((pp = page_create_va(vp, off, 9613 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9614 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9615 io_len = PAGESIZE; 9616 mutex_enter(&rp->r_statelock); 9617 rp->r_nextr = off + PAGESIZE; 9618 mutex_exit(&rp->r_statelock); 9619 } else { 9620 /* 9621 * Need to go to server to get a block 9622 */ 9623 mutex_enter(&rp->r_statelock); 9624 if (blkoff < rp->r_size && 9625 blkoff + bsize > rp->r_size) { 9626 /* 9627 * If less than a block left in 9628 * file read less than a block. 9629 */ 9630 if (rp->r_size <= off) { 9631 /* 9632 * Trying to access beyond EOF, 9633 * set up to get at least one page. 9634 */ 9635 blksize = off + PAGESIZE - blkoff; 9636 } else 9637 blksize = rp->r_size - blkoff; 9638 } else if ((off == 0) || 9639 (off != rp->r_nextr && !readahead_issued)) { 9640 blksize = PAGESIZE; 9641 blkoff = off; /* block = page here */ 9642 } else 9643 blksize = bsize; 9644 mutex_exit(&rp->r_statelock); 9645 9646 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9647 &io_len, blkoff, blksize, 0); 9648 9649 /* 9650 * Some other thread has entered the page, 9651 * so just use it. 9652 */ 9653 if (pp == NULL) 9654 goto again; 9655 9656 /* 9657 * Now round the request size up to page boundaries. 9658 * This ensures that the entire page will be 9659 * initialized to zeroes if EOF is encountered. 9660 */ 9661 io_len = ptob(btopr(io_len)); 9662 9663 bp = pageio_setup(pp, io_len, vp, B_READ); 9664 ASSERT(bp != NULL); 9665 9666 /* 9667 * pageio_setup should have set b_addr to 0. This 9668 * is correct since we want to do I/O on a page 9669 * boundary. bp_mapin will use this addr to calculate 9670 * an offset, and then set b_addr to the kernel virtual 9671 * address it allocated for us. 9672 */ 9673 ASSERT(bp->b_un.b_addr == 0); 9674 9675 bp->b_edev = 0; 9676 bp->b_dev = 0; 9677 bp->b_lblkno = lbtodb(io_off); 9678 bp->b_file = vp; 9679 bp->b_offset = (offset_t)off; 9680 bp_mapin(bp); 9681 9682 /* 9683 * If doing a write beyond what we believe is EOF, 9684 * don't bother trying to read the pages from the 9685 * server, we'll just zero the pages here. We 9686 * don't check that the rw flag is S_WRITE here 9687 * because some implementations may attempt a 9688 * read access to the buffer before copying data. 9689 */ 9690 mutex_enter(&rp->r_statelock); 9691 if (io_off >= rp->r_size && seg == segkmap) { 9692 mutex_exit(&rp->r_statelock); 9693 bzero(bp->b_un.b_addr, io_len); 9694 } else { 9695 mutex_exit(&rp->r_statelock); 9696 error = nfs4_bio(bp, NULL, cr, FALSE); 9697 } 9698 9699 /* 9700 * Unmap the buffer before freeing it. 9701 */ 9702 bp_mapout(bp); 9703 pageio_done(bp); 9704 9705 savepp = pp; 9706 do { 9707 pp->p_fsdata = C_NOCOMMIT; 9708 } while ((pp = pp->p_next) != savepp); 9709 9710 if (error == NFS_EOF) { 9711 /* 9712 * If doing a write system call just return 9713 * zeroed pages, else user tried to get pages 9714 * beyond EOF, return error. We don't check 9715 * that the rw flag is S_WRITE here because 9716 * some implementations may attempt a read 9717 * access to the buffer before copying data. 9718 */ 9719 if (seg == segkmap) 9720 error = 0; 9721 else 9722 error = EFAULT; 9723 } 9724 9725 if (!readahead_issued && !error) { 9726 mutex_enter(&rp->r_statelock); 9727 rp->r_nextr = io_off + io_len; 9728 mutex_exit(&rp->r_statelock); 9729 } 9730 } 9731 } 9732 9733 out: 9734 if (pl == NULL) 9735 return (error); 9736 9737 if (error) { 9738 if (pp != NULL) 9739 pvn_read_done(pp, B_ERROR); 9740 return (error); 9741 } 9742 9743 if (pagefound) { 9744 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 9745 9746 /* 9747 * Page exists in the cache, acquire the appropriate lock. 9748 * If this fails, start all over again. 9749 */ 9750 if ((pp = page_lookup(vp, off, se)) == NULL) { 9751 #ifdef DEBUG 9752 nfs4_lostpage++; 9753 #endif 9754 goto reread; 9755 } 9756 pl[0] = pp; 9757 pl[1] = NULL; 9758 return (0); 9759 } 9760 9761 if (pp != NULL) 9762 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 9763 9764 return (error); 9765 } 9766 9767 static void 9768 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 9769 cred_t *cr) 9770 { 9771 int error; 9772 page_t *pp; 9773 u_offset_t io_off; 9774 size_t io_len; 9775 struct buf *bp; 9776 uint_t bsize, blksize; 9777 rnode4_t *rp = VTOR4(vp); 9778 page_t *savepp; 9779 9780 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 9781 9782 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9783 9784 mutex_enter(&rp->r_statelock); 9785 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 9786 /* 9787 * If less than a block left in file read less 9788 * than a block. 9789 */ 9790 blksize = rp->r_size - blkoff; 9791 } else 9792 blksize = bsize; 9793 mutex_exit(&rp->r_statelock); 9794 9795 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 9796 &io_off, &io_len, blkoff, blksize, 1); 9797 /* 9798 * The isra flag passed to the kluster function is 1, we may have 9799 * gotten a return value of NULL for a variety of reasons (# of free 9800 * pages < minfree, someone entered the page on the vnode etc). In all 9801 * cases, we want to punt on the readahead. 9802 */ 9803 if (pp == NULL) 9804 return; 9805 9806 /* 9807 * Now round the request size up to page boundaries. 9808 * This ensures that the entire page will be 9809 * initialized to zeroes if EOF is encountered. 9810 */ 9811 io_len = ptob(btopr(io_len)); 9812 9813 bp = pageio_setup(pp, io_len, vp, B_READ); 9814 ASSERT(bp != NULL); 9815 9816 /* 9817 * pageio_setup should have set b_addr to 0. This is correct since 9818 * we want to do I/O on a page boundary. bp_mapin() will use this addr 9819 * to calculate an offset, and then set b_addr to the kernel virtual 9820 * address it allocated for us. 9821 */ 9822 ASSERT(bp->b_un.b_addr == 0); 9823 9824 bp->b_edev = 0; 9825 bp->b_dev = 0; 9826 bp->b_lblkno = lbtodb(io_off); 9827 bp->b_file = vp; 9828 bp->b_offset = (offset_t)blkoff; 9829 bp_mapin(bp); 9830 9831 /* 9832 * If doing a write beyond what we believe is EOF, don't bother trying 9833 * to read the pages from the server, we'll just zero the pages here. 9834 * We don't check that the rw flag is S_WRITE here because some 9835 * implementations may attempt a read access to the buffer before 9836 * copying data. 9837 */ 9838 mutex_enter(&rp->r_statelock); 9839 if (io_off >= rp->r_size && seg == segkmap) { 9840 mutex_exit(&rp->r_statelock); 9841 bzero(bp->b_un.b_addr, io_len); 9842 error = 0; 9843 } else { 9844 mutex_exit(&rp->r_statelock); 9845 error = nfs4_bio(bp, NULL, cr, TRUE); 9846 if (error == NFS_EOF) 9847 error = 0; 9848 } 9849 9850 /* 9851 * Unmap the buffer before freeing it. 9852 */ 9853 bp_mapout(bp); 9854 pageio_done(bp); 9855 9856 savepp = pp; 9857 do { 9858 pp->p_fsdata = C_NOCOMMIT; 9859 } while ((pp = pp->p_next) != savepp); 9860 9861 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 9862 9863 /* 9864 * In case of error set readahead offset 9865 * to the lowest offset. 9866 * pvn_read_done() calls VN_DISPOSE to destroy the pages 9867 */ 9868 if (error && rp->r_nextr > io_off) { 9869 mutex_enter(&rp->r_statelock); 9870 if (rp->r_nextr > io_off) 9871 rp->r_nextr = io_off; 9872 mutex_exit(&rp->r_statelock); 9873 } 9874 } 9875 9876 /* 9877 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 9878 * If len == 0, do from off to EOF. 9879 * 9880 * The normal cases should be len == 0 && off == 0 (entire vp list) or 9881 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 9882 * (from pageout). 9883 */ 9884 static int 9885 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 9886 { 9887 int error; 9888 rnode4_t *rp; 9889 9890 ASSERT(cr != NULL); 9891 9892 if (!(flags & B_ASYNC) && curproc->p_zone != VTOMI4(vp)->mi_zone) 9893 return (EIO); 9894 9895 rp = VTOR4(vp); 9896 if (IS_SHADOW(vp, rp)) 9897 vp = RTOV4(rp); 9898 9899 /* 9900 * XXX - Why should this check be made here? 9901 */ 9902 if (vp->v_flag & VNOMAP) 9903 return (ENOSYS); 9904 9905 if (len == 0 && !(flags & B_INVAL) && 9906 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 9907 return (0); 9908 9909 mutex_enter(&rp->r_statelock); 9910 rp->r_count++; 9911 mutex_exit(&rp->r_statelock); 9912 error = nfs4_putpages(vp, off, len, flags, cr); 9913 mutex_enter(&rp->r_statelock); 9914 rp->r_count--; 9915 cv_broadcast(&rp->r_cv); 9916 mutex_exit(&rp->r_statelock); 9917 9918 return (error); 9919 } 9920 9921 /* 9922 * Write out a single page, possibly klustering adjacent dirty pages. 9923 */ 9924 int 9925 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 9926 int flags, cred_t *cr) 9927 { 9928 u_offset_t io_off; 9929 u_offset_t lbn_off; 9930 u_offset_t lbn; 9931 size_t io_len; 9932 uint_t bsize; 9933 int error; 9934 rnode4_t *rp; 9935 9936 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 9937 ASSERT(pp != NULL); 9938 ASSERT(cr != NULL); 9939 ASSERT((flags & B_ASYNC) || curproc->p_zone == VTOMI4(vp)->mi_zone); 9940 9941 rp = VTOR4(vp); 9942 ASSERT(rp->r_count > 0); 9943 ASSERT(!IS_SHADOW(vp, rp)); 9944 9945 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9946 lbn = pp->p_offset / bsize; 9947 lbn_off = lbn * bsize; 9948 9949 /* 9950 * Find a kluster that fits in one block, or in 9951 * one page if pages are bigger than blocks. If 9952 * there is less file space allocated than a whole 9953 * page, we'll shorten the i/o request below. 9954 */ 9955 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 9956 roundup(bsize, PAGESIZE), flags); 9957 9958 /* 9959 * pvn_write_kluster shouldn't have returned a page with offset 9960 * behind the original page we were given. Verify that. 9961 */ 9962 ASSERT((pp->p_offset / bsize) >= lbn); 9963 9964 /* 9965 * Now pp will have the list of kept dirty pages marked for 9966 * write back. It will also handle invalidation and freeing 9967 * of pages that are not dirty. Check for page length rounding 9968 * problems. 9969 */ 9970 if (io_off + io_len > lbn_off + bsize) { 9971 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 9972 io_len = lbn_off + bsize - io_off; 9973 } 9974 /* 9975 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 9976 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 9977 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 9978 * progress and the r_size has not been made consistent with the 9979 * new size of the file. When the uiomove() completes the r_size is 9980 * updated and the R4MODINPROGRESS flag is cleared. 9981 * 9982 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 9983 * consistent value of r_size. Without this handshaking, it is 9984 * possible that nfs4_bio() picks up the old value of r_size 9985 * before the uiomove() in writerp4() completes. This will result 9986 * in the write through nfs4_bio() being dropped. 9987 * 9988 * More precisely, there is a window between the time the uiomove() 9989 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 9990 * operation intervenes in this window, the page will be picked up, 9991 * because it is dirty (it will be unlocked, unless it was 9992 * pagecreate'd). When the page is picked up as dirty, the dirty 9993 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 9994 * checked. This will still be the old size. Therefore the page will 9995 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 9996 * the page will be found to be clean and the write will be dropped. 9997 */ 9998 if (rp->r_flags & R4MODINPROGRESS) { 9999 mutex_enter(&rp->r_statelock); 10000 if ((rp->r_flags & R4MODINPROGRESS) && 10001 rp->r_modaddr + MAXBSIZE > io_off && 10002 rp->r_modaddr < io_off + io_len) { 10003 page_t *plist; 10004 /* 10005 * A write is in progress for this region of the file. 10006 * If we did not detect R4MODINPROGRESS here then this 10007 * path through nfs_putapage() would eventually go to 10008 * nfs4_bio() and may not write out all of the data 10009 * in the pages. We end up losing data. So we decide 10010 * to set the modified bit on each page in the page 10011 * list and mark the rnode with R4DIRTY. This write 10012 * will be restarted at some later time. 10013 */ 10014 plist = pp; 10015 while (plist != NULL) { 10016 pp = plist; 10017 page_sub(&plist, pp); 10018 hat_setmod(pp); 10019 page_io_unlock(pp); 10020 page_unlock(pp); 10021 } 10022 rp->r_flags |= R4DIRTY; 10023 mutex_exit(&rp->r_statelock); 10024 if (offp) 10025 *offp = io_off; 10026 if (lenp) 10027 *lenp = io_len; 10028 return (0); 10029 } 10030 mutex_exit(&rp->r_statelock); 10031 } 10032 10033 if (flags & B_ASYNC) { 10034 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10035 nfs4_sync_putapage); 10036 } else 10037 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10038 10039 if (offp) 10040 *offp = io_off; 10041 if (lenp) 10042 *lenp = io_len; 10043 return (error); 10044 } 10045 10046 static int 10047 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10048 int flags, cred_t *cr) 10049 { 10050 int error; 10051 rnode4_t *rp; 10052 10053 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 10054 10055 flags |= B_WRITE; 10056 10057 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10058 10059 rp = VTOR4(vp); 10060 10061 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10062 error == EACCES) && 10063 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10064 if (!(rp->r_flags & R4OUTOFSPACE)) { 10065 mutex_enter(&rp->r_statelock); 10066 rp->r_flags |= R4OUTOFSPACE; 10067 mutex_exit(&rp->r_statelock); 10068 } 10069 flags |= B_ERROR; 10070 pvn_write_done(pp, flags); 10071 /* 10072 * If this was not an async thread, then try again to 10073 * write out the pages, but this time, also destroy 10074 * them whether or not the write is successful. This 10075 * will prevent memory from filling up with these 10076 * pages and destroying them is the only alternative 10077 * if they can't be written out. 10078 * 10079 * Don't do this if this is an async thread because 10080 * when the pages are unlocked in pvn_write_done, 10081 * some other thread could have come along, locked 10082 * them, and queued for an async thread. It would be 10083 * possible for all of the async threads to be tied 10084 * up waiting to lock the pages again and they would 10085 * all already be locked and waiting for an async 10086 * thread to handle them. Deadlock. 10087 */ 10088 if (!(flags & B_ASYNC)) { 10089 error = nfs4_putpage(vp, io_off, io_len, 10090 B_INVAL | B_FORCE, cr); 10091 } 10092 } else { 10093 if (error) 10094 flags |= B_ERROR; 10095 else if (rp->r_flags & R4OUTOFSPACE) { 10096 mutex_enter(&rp->r_statelock); 10097 rp->r_flags &= ~R4OUTOFSPACE; 10098 mutex_exit(&rp->r_statelock); 10099 } 10100 pvn_write_done(pp, flags); 10101 if (freemem < desfree) 10102 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10103 NFS4_WRITE_NOWAIT); 10104 } 10105 10106 return (error); 10107 } 10108 10109 #ifdef DEBUG 10110 int nfs4_force_open_before_mmap = 0; 10111 #endif 10112 10113 static int 10114 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10115 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10116 { 10117 struct segvn_crargs vn_a; 10118 int error = 0; 10119 rnode4_t *rp = VTOR4(vp); 10120 mntinfo4_t *mi = VTOMI4(vp); 10121 10122 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 10123 return (EIO); 10124 10125 if (vp->v_flag & VNOMAP) 10126 return (ENOSYS); 10127 10128 if (off < 0 || (off + len) < 0) 10129 return (ENXIO); 10130 10131 if (vp->v_type != VREG) 10132 return (ENODEV); 10133 10134 /* 10135 * If the file is delegated to the client don't do anything. 10136 * If the file is not delegated, then validate the data cache. 10137 */ 10138 mutex_enter(&rp->r_statev4_lock); 10139 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10140 mutex_exit(&rp->r_statev4_lock); 10141 error = nfs4_validate_caches(vp, cr); 10142 if (error) 10143 return (error); 10144 } else { 10145 mutex_exit(&rp->r_statev4_lock); 10146 } 10147 10148 /* 10149 * Check to see if the vnode is currently marked as not cachable. 10150 * This means portions of the file are locked (through VOP_FRLOCK). 10151 * In this case the map request must be refused. We use 10152 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10153 */ 10154 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 10155 return (EINTR); 10156 10157 if (vp->v_flag & VNOCACHE) { 10158 error = EAGAIN; 10159 goto done; 10160 } 10161 10162 /* 10163 * Don't allow concurrent locks and mapping if mandatory locking is 10164 * enabled. 10165 */ 10166 if (flk_has_remote_locks(vp)) { 10167 struct vattr va; 10168 va.va_mask = AT_MODE; 10169 error = nfs4getattr(vp, &va, cr); 10170 if (error != 0) 10171 goto done; 10172 if (MANDLOCK(vp, va.va_mode)) { 10173 error = EAGAIN; 10174 goto done; 10175 } 10176 } 10177 10178 /* 10179 * It is possible that the rnode has a lost lock request that we 10180 * are still trying to recover, and that the request conflicts with 10181 * this map request. 10182 * 10183 * An alternative approach would be for nfs4_safemap() to consider 10184 * queued lock requests when deciding whether to set or clear 10185 * VNOCACHE. This would require the frlock code path to call 10186 * nfs4_safemap() after enqueing a lost request. 10187 */ 10188 if (nfs4_map_lost_lock_conflict(vp)) { 10189 error = EAGAIN; 10190 goto done; 10191 } 10192 10193 as_rangelock(as); 10194 if (!(flags & MAP_FIXED)) { 10195 map_addr(addrp, len, off, 1, flags); 10196 if (*addrp == NULL) { 10197 as_rangeunlock(as); 10198 error = ENOMEM; 10199 goto done; 10200 } 10201 } else { 10202 /* 10203 * User specified address - blow away any previous mappings 10204 */ 10205 (void) as_unmap(as, *addrp, len); 10206 } 10207 10208 if (vp->v_type == VREG) { 10209 /* 10210 * We need to retrieve the open stream 10211 */ 10212 nfs4_open_stream_t *osp = NULL; 10213 nfs4_open_owner_t *oop = NULL; 10214 10215 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10216 if (oop != NULL) { 10217 /* returns with 'os_sync_lock' held */ 10218 osp = find_open_stream(oop, rp); 10219 open_owner_rele(oop); 10220 } 10221 if (osp == NULL) { 10222 #ifdef DEBUG 10223 if (nfs4_force_open_before_mmap) { 10224 error = EIO; 10225 goto done; 10226 } 10227 #endif 10228 /* returns with 'os_sync_lock' held */ 10229 osp = open_and_get_osp(vp, cr, mi); 10230 if (osp == NULL) { 10231 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10232 "nfs4_map: we tried to OPEN the file " 10233 "but again no osp, so fail with EIO")); 10234 error = EIO; 10235 goto done; 10236 } 10237 } 10238 10239 if (osp->os_failed_reopen) { 10240 mutex_exit(&osp->os_sync_lock); 10241 open_stream_rele(osp, rp); 10242 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10243 "nfs4_map: os_failed_reopen set on " 10244 "osp %p, cr %p, rp %s", (void *)osp, 10245 (void *)cr, rnode4info(rp))); 10246 error = EIO; 10247 goto done; 10248 } 10249 mutex_exit(&osp->os_sync_lock); 10250 open_stream_rele(osp, rp); 10251 } 10252 10253 vn_a.vp = vp; 10254 vn_a.offset = off; 10255 vn_a.type = (flags & MAP_TYPE); 10256 vn_a.prot = (uchar_t)prot; 10257 vn_a.maxprot = (uchar_t)maxprot; 10258 vn_a.flags = (flags & ~MAP_TYPE); 10259 vn_a.cred = cr; 10260 vn_a.amp = NULL; 10261 vn_a.szc = 0; 10262 vn_a.lgrp_mem_policy_flags = 0; 10263 10264 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10265 as_rangeunlock(as); 10266 10267 done: 10268 nfs_rw_exit(&rp->r_lkserlock); 10269 return (error); 10270 } 10271 10272 /* 10273 * We're most likely dealing with a kernel module that likes to READ 10274 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10275 * officially OPEN the file to create the necessary client state 10276 * for bookkeeping of os_mmap_read/write counts. 10277 * 10278 * Since VOP_MAP only passes in a pointer to the vnode rather than 10279 * a double pointer, we can't handle the case where nfs4open_otw() 10280 * returns a different vnode than the one passed into VOP_MAP (since 10281 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10282 * we return NULL and let nfs4_map() fail. Note: the only case where 10283 * this should happen is if the file got removed and replaced with the 10284 * same name on the server (in addition to the fact that we're trying 10285 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10286 */ 10287 static nfs4_open_stream_t * 10288 open_and_get_osp(vnode_t *map_vp, cred_t *cr, mntinfo4_t *mi) 10289 { 10290 rnode4_t *rp, *drp; 10291 vnode_t *dvp, *open_vp; 10292 char *file_name; 10293 int just_created; 10294 nfs4_sharedfh_t *sfh; 10295 nfs4_open_stream_t *osp; 10296 nfs4_open_owner_t *oop; 10297 10298 open_vp = map_vp; 10299 sfh = (open_vp->v_flag & VROOT) ? mi->mi_srvparentfh : 10300 VTOSV(open_vp)->sv_dfh; 10301 drp = r4find_unlocked(sfh, open_vp->v_vfsp); 10302 if (!drp) 10303 return (NULL); 10304 10305 file_name = fn_name(VTOSV(open_vp)->sv_name); 10306 10307 rp = VTOR4(open_vp); 10308 dvp = RTOV4(drp); 10309 mutex_enter(&rp->r_statev4_lock); 10310 if (rp->created_v4) { 10311 rp->created_v4 = 0; 10312 dnlc_update(dvp, file_name, open_vp); 10313 /* This is needed so we don't bump the open ref count */ 10314 just_created = 1; 10315 } else { 10316 just_created = 0; 10317 } 10318 mutex_exit(&rp->r_statev4_lock); 10319 10320 VN_HOLD(map_vp); 10321 10322 if (nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10323 just_created)) { 10324 kmem_free(file_name, MAXNAMELEN); 10325 VN_RELE(dvp); 10326 VN_RELE(map_vp); 10327 return (NULL); 10328 } 10329 10330 kmem_free(file_name, MAXNAMELEN); 10331 VN_RELE(dvp); 10332 10333 /* 10334 * If nfs4open_otw() returned a different vnode then "undo" 10335 * the open and return failure to the caller. 10336 */ 10337 if (!VN_CMP(open_vp, map_vp)) { 10338 nfs4_error_t e; 10339 10340 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10341 "open returned a different vnode")); 10342 /* 10343 * If there's an error, ignore it, 10344 * and let VOP_INACTIVE handle it. 10345 */ 10346 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10347 CLOSE_NORM, 0, 0, 0); 10348 VN_RELE(map_vp); 10349 return (NULL); 10350 } 10351 10352 VN_RELE(map_vp); 10353 10354 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10355 if (!oop) { 10356 nfs4_error_t e; 10357 10358 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10359 "no open owner")); 10360 /* 10361 * If there's an error, ignore it, 10362 * and let VOP_INACTIVE handle it. 10363 */ 10364 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10365 CLOSE_NORM, 0, 0, 0); 10366 return (NULL); 10367 } 10368 osp = find_open_stream(oop, rp); 10369 open_owner_rele(oop); 10370 return (osp); 10371 } 10372 10373 /* 10374 * Please be aware that when this function is called, the address space write 10375 * a_lock is held. Do not put over the wire calls in this function. 10376 */ 10377 /* ARGSUSED */ 10378 static int 10379 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10380 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 10381 { 10382 rnode4_t *rp; 10383 int error = 0; 10384 mntinfo4_t *mi; 10385 10386 mi = VTOMI4(vp); 10387 rp = VTOR4(vp); 10388 10389 if (curproc->p_zone != mi->mi_zone) 10390 return (EIO); 10391 if (vp->v_flag & VNOMAP) 10392 return (ENOSYS); 10393 10394 /* 10395 * Need to hold rwlock while incrementing the mapcnt so that 10396 * mmap'ing can be serialized with writes so that the caching 10397 * can be handled correctly. 10398 * 10399 * Don't need to update the open stream first, since this 10400 * mmap can't add any additional share access that isn't 10401 * already contained in the open stream (for the case where we 10402 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10403 * take into account os_mmap_read[write] counts). 10404 */ 10405 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 10406 return (EINTR); 10407 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10408 nfs_rw_exit(&rp->r_rwlock); 10409 10410 if (vp->v_type == VREG) { 10411 /* 10412 * We need to retrieve the open stream and update the counts. 10413 * If there is no open stream here, something is wrong. 10414 */ 10415 nfs4_open_stream_t *osp = NULL; 10416 nfs4_open_owner_t *oop = NULL; 10417 10418 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10419 if (oop != NULL) { 10420 /* returns with 'os_sync_lock' held */ 10421 osp = find_open_stream(oop, rp); 10422 open_owner_rele(oop); 10423 } 10424 if (osp == NULL) { 10425 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10426 "nfs4_addmap: we should have an osp" 10427 "but we don't, so fail with EIO")); 10428 error = EIO; 10429 goto out; 10430 } 10431 10432 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10433 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10434 10435 /* 10436 * Update the map count in the open stream. 10437 * This is necessary in the case where we 10438 * open/mmap/close/, then the server reboots, and we 10439 * attempt to reopen. If the mmap doesn't add share 10440 * access then we send an invalid reopen with 10441 * access = NONE. 10442 * 10443 * We need to specifically check each PROT_* so a mmap 10444 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10445 * read and write access. A simple comparison of prot 10446 * to ~PROT_WRITE to determine read access is insufficient 10447 * since prot can be |= with PROT_USER, etc. 10448 */ 10449 10450 /* 10451 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10452 */ 10453 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10454 osp->os_mmap_write += btopr(len); 10455 if (maxprot & PROT_READ) 10456 osp->os_mmap_read += btopr(len); 10457 if (maxprot & PROT_EXEC) 10458 osp->os_mmap_read += btopr(len); 10459 /* 10460 * Ensure that os_mmap_read gets incremented, even if 10461 * maxprot were to look like PROT_NONE. 10462 */ 10463 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10464 !(maxprot & PROT_EXEC)) 10465 osp->os_mmap_read += btopr(len); 10466 osp->os_mapcnt += btopr(len); 10467 mutex_exit(&osp->os_sync_lock); 10468 open_stream_rele(osp, rp); 10469 } 10470 10471 out: 10472 /* 10473 * If we got an error, then undo our 10474 * incrementing of 'r_mapcnt'. 10475 */ 10476 10477 if (error) { 10478 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10479 ASSERT(rp->r_mapcnt >= 0); 10480 } 10481 return (error); 10482 } 10483 10484 static int 10485 nfs4_cmp(vnode_t *vp1, vnode_t *vp2) 10486 { 10487 10488 return (VTOR4(vp1) == VTOR4(vp2)); 10489 } 10490 10491 static int 10492 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10493 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 10494 { 10495 int rc; 10496 u_offset_t start, end; 10497 rnode4_t *rp; 10498 int error = 0, intr = INTR4(vp); 10499 nfs4_error_t e; 10500 10501 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 10502 return (EIO); 10503 10504 /* check for valid cmd parameter */ 10505 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10506 return (EINVAL); 10507 10508 /* Verify l_type. */ 10509 switch (bfp->l_type) { 10510 case F_RDLCK: 10511 if (cmd != F_GETLK && !(flag & FREAD)) 10512 return (EBADF); 10513 break; 10514 case F_WRLCK: 10515 if (cmd != F_GETLK && !(flag & FWRITE)) 10516 return (EBADF); 10517 break; 10518 case F_UNLCK: 10519 intr = 0; 10520 break; 10521 10522 default: 10523 return (EINVAL); 10524 } 10525 10526 /* check the validity of the lock range */ 10527 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10528 return (rc); 10529 if (rc = flk_check_lock_data(start, end, MAXEND)) 10530 return (rc); 10531 10532 /* 10533 * If the filesystem is mounted using local locking, pass the 10534 * request off to the local locking code. 10535 */ 10536 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10537 if (cmd == F_SETLK || cmd == F_SETLKW) { 10538 /* 10539 * For complete safety, we should be holding 10540 * r_lkserlock. However, we can't call 10541 * nfs4_safelock and then fs_frlock while 10542 * holding r_lkserlock, so just invoke 10543 * nfs4_safelock and expect that this will 10544 * catch enough of the cases. 10545 */ 10546 if (!nfs4_safelock(vp, bfp, cr)) 10547 return (EAGAIN); 10548 } 10549 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 10550 } 10551 10552 rp = VTOR4(vp); 10553 10554 /* 10555 * Check whether the given lock request can proceed, given the 10556 * current file mappings. 10557 */ 10558 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10559 return (EINTR); 10560 if (cmd == F_SETLK || cmd == F_SETLKW) { 10561 if (!nfs4_safelock(vp, bfp, cr)) { 10562 rc = EAGAIN; 10563 goto done; 10564 } 10565 } 10566 10567 /* 10568 * Flush the cache after waiting for async I/O to finish. For new 10569 * locks, this is so that the process gets the latest bits from the 10570 * server. For unlocks, this is so that other clients see the 10571 * latest bits once the file has been unlocked. If currently dirty 10572 * pages can't be flushed, then don't allow a lock to be set. But 10573 * allow unlocks to succeed, to avoid having orphan locks on the 10574 * server. 10575 */ 10576 if (cmd != F_GETLK) { 10577 mutex_enter(&rp->r_statelock); 10578 while (rp->r_count > 0) { 10579 if (intr) { 10580 klwp_t *lwp = ttolwp(curthread); 10581 10582 if (lwp != NULL) 10583 lwp->lwp_nostop++; 10584 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 10585 if (lwp != NULL) 10586 lwp->lwp_nostop--; 10587 rc = EINTR; 10588 break; 10589 } 10590 if (lwp != NULL) 10591 lwp->lwp_nostop--; 10592 } else 10593 cv_wait(&rp->r_cv, &rp->r_statelock); 10594 } 10595 mutex_exit(&rp->r_statelock); 10596 if (rc != 0) 10597 goto done; 10598 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 10599 if (error) { 10600 if (error == ENOSPC || error == EDQUOT) { 10601 mutex_enter(&rp->r_statelock); 10602 if (!rp->r_error) 10603 rp->r_error = error; 10604 mutex_exit(&rp->r_statelock); 10605 } 10606 if (bfp->l_type != F_UNLCK) { 10607 rc = ENOLCK; 10608 goto done; 10609 } 10610 } 10611 } 10612 10613 /* 10614 * Call the lock manager to do the real work of contacting 10615 * the server and obtaining the lock. 10616 */ 10617 10618 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10619 cr, &e, NULL, NULL); 10620 rc = e.error; 10621 10622 if (rc == 0) 10623 nfs4_lockcompletion(vp, cmd); 10624 10625 done: 10626 nfs_rw_exit(&rp->r_lkserlock); 10627 10628 return (rc); 10629 } 10630 10631 /* 10632 * Free storage space associated with the specified vnode. The portion 10633 * to be freed is specified by bfp->l_start and bfp->l_len (already 10634 * normalized to a "whence" of 0). 10635 * 10636 * This is an experimental facility whose continued existence is not 10637 * guaranteed. Currently, we only support the special case 10638 * of l_len == 0, meaning free to end of file. 10639 */ 10640 /* ARGSUSED */ 10641 static int 10642 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10643 offset_t offset, cred_t *cr, caller_context_t *ct) 10644 { 10645 int error; 10646 10647 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 10648 return (EIO); 10649 ASSERT(vp->v_type == VREG); 10650 if (cmd != F_FREESP) 10651 return (EINVAL); 10652 10653 error = convoff(vp, bfp, 0, offset); 10654 if (!error) { 10655 ASSERT(bfp->l_start >= 0); 10656 if (bfp->l_len == 0) { 10657 struct vattr va; 10658 10659 va.va_mask = AT_SIZE; 10660 va.va_size = bfp->l_start; 10661 error = nfs4setattr(vp, &va, 0, cr, NULL); 10662 } else 10663 error = EINVAL; 10664 } 10665 10666 return (error); 10667 } 10668 10669 /* ARGSUSED */ 10670 static int 10671 nfs4_realvp(vnode_t *vp, vnode_t **vpp) 10672 { 10673 return (EINVAL); 10674 } 10675 10676 /* 10677 * Setup and add an address space callback to do the work of the delmap call. 10678 * The callback will (and must be) deleted in the actual callback function. 10679 * 10680 * This is done in order to take care of the problem that we have with holding 10681 * the address space's a_lock for a long period of time (e.g. if the NFS server 10682 * is down). Callbacks will be executed in the address space code while the 10683 * a_lock is not held. Holding the address space's a_lock causes things such 10684 * as ps and fork to hang because they are trying to acquire this lock as well. 10685 */ 10686 /* ARGSUSED */ 10687 static int 10688 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10689 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 10690 { 10691 int caller_found; 10692 int error; 10693 rnode4_t *rp; 10694 nfs4_delmap_args_t *dmapp; 10695 nfs4_delmapcall_t *delmap_call; 10696 10697 if (vp->v_flag & VNOMAP) 10698 return (ENOSYS); 10699 10700 /* 10701 * A process may not change zones if it has NFS pages mmap'ed 10702 * in, so we can't legitimately get here from the wrong zone. 10703 */ 10704 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 10705 10706 rp = VTOR4(vp); 10707 10708 /* 10709 * The way that the address space of this process deletes its mapping 10710 * of this file is via the following call chains: 10711 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10712 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 10713 * 10714 * With the use of address space callbacks we are allowed to drop the 10715 * address space lock, a_lock, while executing the NFS operations that 10716 * need to go over the wire. Returning EAGAIN to the caller of this 10717 * function is what drives the execution of the callback that we add 10718 * below. The callback will be executed by the address space code 10719 * after dropping the a_lock. When the callback is finished, since 10720 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 10721 * is called again on the same segment to finish the rest of the work 10722 * that needs to happen during unmapping. 10723 * 10724 * This action of calling back into the segment driver causes 10725 * nfs4_delmap() to get called again, but since the callback was 10726 * already executed at this point, it already did the work and there 10727 * is nothing left for us to do. 10728 * 10729 * To Summarize: 10730 * - The first time nfs4_delmap is called by the current thread is when 10731 * we add the caller associated with this delmap to the delmap caller 10732 * list, add the callback, and return EAGAIN. 10733 * - The second time in this call chain when nfs4_delmap is called we 10734 * will find this caller in the delmap caller list and realize there 10735 * is no more work to do thus removing this caller from the list and 10736 * returning the error that was set in the callback execution. 10737 */ 10738 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 10739 if (caller_found) { 10740 /* 10741 * 'error' is from the actual delmap operations. To avoid 10742 * hangs, we need to handle the return of EAGAIN differently 10743 * since this is what drives the callback execution. 10744 * In this case, we don't want to return EAGAIN and do the 10745 * callback execution because there are none to execute. 10746 */ 10747 if (error == EAGAIN) 10748 return (0); 10749 else 10750 return (error); 10751 } 10752 10753 /* current caller was not in the list */ 10754 delmap_call = nfs4_init_delmapcall(); 10755 10756 mutex_enter(&rp->r_statelock); 10757 list_insert_tail(&rp->r_indelmap, delmap_call); 10758 mutex_exit(&rp->r_statelock); 10759 10760 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 10761 10762 dmapp->vp = vp; 10763 dmapp->off = off; 10764 dmapp->addr = addr; 10765 dmapp->len = len; 10766 dmapp->prot = prot; 10767 dmapp->maxprot = maxprot; 10768 dmapp->flags = flags; 10769 dmapp->cr = cr; 10770 dmapp->caller = delmap_call; 10771 10772 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 10773 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 10774 10775 return (error ? error : EAGAIN); 10776 } 10777 10778 static nfs4_delmapcall_t * 10779 nfs4_init_delmapcall() 10780 { 10781 nfs4_delmapcall_t *delmap_call; 10782 10783 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 10784 delmap_call->call_id = curthread; 10785 delmap_call->error = 0; 10786 10787 return (delmap_call); 10788 } 10789 10790 static void 10791 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 10792 { 10793 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 10794 } 10795 10796 /* 10797 * Searches for the current delmap caller (based on curthread) in the list of 10798 * callers. If it is found, we remove it and free the delmap caller. 10799 * Returns: 10800 * 0 if the caller wasn't found 10801 * 1 if the caller was found, removed and freed. *errp will be set 10802 * to what the result of the delmap was. 10803 */ 10804 static int 10805 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 10806 { 10807 nfs4_delmapcall_t *delmap_call; 10808 10809 /* 10810 * If the list doesn't exist yet, we create it and return 10811 * that the caller wasn't found. No list = no callers. 10812 */ 10813 mutex_enter(&rp->r_statelock); 10814 if (!(rp->r_flags & R4DELMAPLIST)) { 10815 /* The list does not exist */ 10816 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 10817 offsetof(nfs4_delmapcall_t, call_node)); 10818 rp->r_flags |= R4DELMAPLIST; 10819 mutex_exit(&rp->r_statelock); 10820 return (0); 10821 } else { 10822 /* The list exists so search it */ 10823 for (delmap_call = list_head(&rp->r_indelmap); 10824 delmap_call != NULL; 10825 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 10826 if (delmap_call->call_id == curthread) { 10827 /* current caller is in the list */ 10828 *errp = delmap_call->error; 10829 list_remove(&rp->r_indelmap, delmap_call); 10830 mutex_exit(&rp->r_statelock); 10831 nfs4_free_delmapcall(delmap_call); 10832 return (1); 10833 } 10834 } 10835 } 10836 mutex_exit(&rp->r_statelock); 10837 return (0); 10838 } 10839 10840 /* 10841 * Remove some pages from an mmap'd vnode. Just update the 10842 * count of pages. If doing close-to-open, then flush and 10843 * commit all of the pages associated with this file. 10844 * Otherwise, start an asynchronous page flush to write out 10845 * any dirty pages. This will also associate a credential 10846 * with the rnode which can be used to write the pages. 10847 */ 10848 /* ARGSUSED */ 10849 static void 10850 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 10851 { 10852 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 10853 rnode4_t *rp; 10854 mntinfo4_t *mi; 10855 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 10856 10857 rp = VTOR4(dmapp->vp); 10858 mi = VTOMI4(dmapp->vp); 10859 10860 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 10861 ASSERT(rp->r_mapcnt >= 0); 10862 10863 /* 10864 * Initiate a page flush and potential commit if there are 10865 * pages, the file system was not mounted readonly, the segment 10866 * was mapped shared, and the pages themselves were writeable. 10867 */ 10868 if (nfs4_has_pages(dmapp->vp) && 10869 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 10870 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 10871 mutex_enter(&rp->r_statelock); 10872 rp->r_flags |= R4DIRTY; 10873 mutex_exit(&rp->r_statelock); 10874 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 10875 dmapp->len, dmapp->cr); 10876 if (!e.error) { 10877 mutex_enter(&rp->r_statelock); 10878 e.error = rp->r_error; 10879 rp->r_error = 0; 10880 mutex_exit(&rp->r_statelock); 10881 } 10882 } else 10883 e.error = 0; 10884 10885 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 10886 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 10887 B_INVAL, dmapp->cr); 10888 10889 if (e.error) { 10890 e.stat = puterrno4(e.error); 10891 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 10892 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 10893 dmapp->caller->error = e.error; 10894 } 10895 10896 /* Check to see if we need to close the file */ 10897 10898 if (dmapp->vp->v_type == VREG) { 10899 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 10900 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 10901 10902 if (e.error != 0 || e.stat != NFS4_OK) { 10903 /* 10904 * Since it is possible that e.error == 0 and 10905 * e.stat != NFS4_OK (and vice versa), 10906 * we do the proper checking in order to get both 10907 * e.error and e.stat reporting the correct info. 10908 */ 10909 if (e.stat == NFS4_OK) 10910 e.stat = puterrno4(e.error); 10911 if (e.error == 0) 10912 e.error = geterrno4(e.stat); 10913 10914 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 10915 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 10916 dmapp->caller->error = e.error; 10917 } 10918 } 10919 10920 (void) as_delete_callback(as, arg); 10921 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 10922 } 10923 10924 10925 static uint_t 10926 fattr4_maxfilesize_to_bits(uint64_t ll) 10927 { 10928 uint_t l = 1; 10929 10930 if (ll == 0) { 10931 return (0); 10932 } 10933 10934 if (ll & 0xffffffff00000000) { 10935 l += 32; ll >>= 32; 10936 } 10937 if (ll & 0xffff0000) { 10938 l += 16; ll >>= 16; 10939 } 10940 if (ll & 0xff00) { 10941 l += 8; ll >>= 8; 10942 } 10943 if (ll & 0xf0) { 10944 l += 4; ll >>= 4; 10945 } 10946 if (ll & 0xc) { 10947 l += 2; ll >>= 2; 10948 } 10949 if (ll & 0x2) { 10950 l += 1; 10951 } 10952 return (l); 10953 } 10954 10955 static int 10956 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 10957 { 10958 int error; 10959 hrtime_t t; 10960 rnode4_t *rp; 10961 nfs4_ga_res_t gar; 10962 nfs4_ga_ext_res_t ger; 10963 10964 gar.n4g_ext_res = &ger; 10965 10966 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 10967 return (EIO); 10968 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 10969 *valp = MAXPATHLEN; 10970 return (0); 10971 } 10972 if (cmd == _PC_ACL_ENABLED) { 10973 *valp = _ACL_ACE_ENABLED; 10974 return (0); 10975 } 10976 10977 rp = VTOR4(vp); 10978 if (cmd == _PC_XATTR_EXISTS) { 10979 /* 10980 * Eventually should attempt small client readdir before 10981 * going otw with GETATTR(FATTR4_NAMED_ATTR). For now 10982 * just drive the OTW getattr. This is required because 10983 * _PC_XATTR_EXISTS can only return true if attributes 10984 * exist -- simply checking for existance of the attrdir 10985 * is not sufficient. 10986 * 10987 * pc4_xattr_valid can be only be trusted when r_xattr_dir 10988 * is NULL. Once the xadir vp exists, we can create xattrs, 10989 * and we don't have any way to update the "base" object's 10990 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 10991 * could help out. 10992 */ 10993 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 10994 rp->r_xattr_dir == NULL) { 10995 *valp = rp->r_pathconf.pc4_xattr_exists; 10996 return (0); 10997 } 10998 } else { /* OLD CODE */ 10999 if (ATTRCACHE4_VALID(vp)) { 11000 mutex_enter(&rp->r_statelock); 11001 if (rp->r_pathconf.pc4_cache_valid) { 11002 error = 0; 11003 switch (cmd) { 11004 case _PC_FILESIZEBITS: 11005 *valp = 11006 rp->r_pathconf.pc4_filesizebits; 11007 break; 11008 case _PC_LINK_MAX: 11009 *valp = 11010 rp->r_pathconf.pc4_link_max; 11011 break; 11012 case _PC_NAME_MAX: 11013 *valp = 11014 rp->r_pathconf.pc4_name_max; 11015 break; 11016 case _PC_CHOWN_RESTRICTED: 11017 *valp = 11018 rp->r_pathconf.pc4_chown_restricted; 11019 break; 11020 case _PC_NO_TRUNC: 11021 *valp = 11022 rp->r_pathconf.pc4_no_trunc; 11023 break; 11024 default: 11025 error = EINVAL; 11026 break; 11027 } 11028 mutex_exit(&rp->r_statelock); 11029 #ifdef DEBUG 11030 nfs4_pathconf_cache_hits++; 11031 #endif 11032 return (error); 11033 } 11034 mutex_exit(&rp->r_statelock); 11035 } 11036 } 11037 #ifdef DEBUG 11038 nfs4_pathconf_cache_misses++; 11039 #endif 11040 11041 t = gethrtime(); 11042 11043 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11044 11045 if (error) { 11046 mutex_enter(&rp->r_statelock); 11047 rp->r_pathconf.pc4_cache_valid = FALSE; 11048 rp->r_pathconf.pc4_xattr_valid = FALSE; 11049 mutex_exit(&rp->r_statelock); 11050 return (error); 11051 } 11052 11053 /* interpret the max filesize */ 11054 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11055 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11056 11057 /* Store the attributes we just received */ 11058 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11059 11060 switch (cmd) { 11061 case _PC_FILESIZEBITS: 11062 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11063 break; 11064 case _PC_LINK_MAX: 11065 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11066 break; 11067 case _PC_NAME_MAX: 11068 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11069 break; 11070 case _PC_CHOWN_RESTRICTED: 11071 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11072 break; 11073 case _PC_NO_TRUNC: 11074 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11075 break; 11076 case _PC_XATTR_EXISTS: 11077 *valp = gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists; 11078 break; 11079 default: 11080 return (EINVAL); 11081 } 11082 11083 return (0); 11084 } 11085 11086 /* 11087 * Called by async thread to do synchronous pageio. Do the i/o, wait 11088 * for it to complete, and cleanup the page list when done. 11089 */ 11090 static int 11091 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11092 int flags, cred_t *cr) 11093 { 11094 int error; 11095 11096 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 11097 11098 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11099 if (flags & B_READ) 11100 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11101 else 11102 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11103 return (error); 11104 } 11105 11106 static int 11107 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11108 int flags, cred_t *cr) 11109 { 11110 int error; 11111 rnode4_t *rp; 11112 11113 if (!(flags & B_ASYNC) && curproc->p_zone != VTOMI4(vp)->mi_zone) 11114 return (EIO); 11115 11116 if (pp == NULL) 11117 return (EINVAL); 11118 11119 rp = VTOR4(vp); 11120 mutex_enter(&rp->r_statelock); 11121 rp->r_count++; 11122 mutex_exit(&rp->r_statelock); 11123 11124 if (flags & B_ASYNC) { 11125 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11126 nfs4_sync_pageio); 11127 } else 11128 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11129 mutex_enter(&rp->r_statelock); 11130 rp->r_count--; 11131 cv_broadcast(&rp->r_cv); 11132 mutex_exit(&rp->r_statelock); 11133 return (error); 11134 } 11135 11136 static void 11137 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr) 11138 { 11139 int error; 11140 rnode4_t *rp; 11141 page_t *plist; 11142 page_t *pptr; 11143 offset3 offset; 11144 count3 len; 11145 k_sigset_t smask; 11146 11147 /* 11148 * We should get called with fl equal to either B_FREE or 11149 * B_INVAL. Any other value is illegal. 11150 * 11151 * The page that we are either supposed to free or destroy 11152 * should be exclusive locked and its io lock should not 11153 * be held. 11154 */ 11155 ASSERT(fl == B_FREE || fl == B_INVAL); 11156 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11157 11158 rp = VTOR4(vp); 11159 11160 /* 11161 * If the page doesn't need to be committed or we shouldn't 11162 * even bother attempting to commit it, then just make sure 11163 * that the p_fsdata byte is clear and then either free or 11164 * destroy the page as appropriate. 11165 */ 11166 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11167 pp->p_fsdata = C_NOCOMMIT; 11168 if (fl == B_FREE) 11169 page_free(pp, dn); 11170 else 11171 page_destroy(pp, dn); 11172 return; 11173 } 11174 11175 /* 11176 * If there is a page invalidation operation going on, then 11177 * if this is one of the pages being destroyed, then just 11178 * clear the p_fsdata byte and then either free or destroy 11179 * the page as appropriate. 11180 */ 11181 mutex_enter(&rp->r_statelock); 11182 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11183 mutex_exit(&rp->r_statelock); 11184 pp->p_fsdata = C_NOCOMMIT; 11185 if (fl == B_FREE) 11186 page_free(pp, dn); 11187 else 11188 page_destroy(pp, dn); 11189 return; 11190 } 11191 11192 /* 11193 * If we are freeing this page and someone else is already 11194 * waiting to do a commit, then just unlock the page and 11195 * return. That other thread will take care of commiting 11196 * this page. The page can be freed sometime after the 11197 * commit has finished. Otherwise, if the page is marked 11198 * as delay commit, then we may be getting called from 11199 * pvn_write_done, one page at a time. This could result 11200 * in one commit per page, so we end up doing lots of small 11201 * commits instead of fewer larger commits. This is bad, 11202 * we want do as few commits as possible. 11203 */ 11204 if (fl == B_FREE) { 11205 if (rp->r_flags & R4COMMITWAIT) { 11206 page_unlock(pp); 11207 mutex_exit(&rp->r_statelock); 11208 return; 11209 } 11210 if (pp->p_fsdata == C_DELAYCOMMIT) { 11211 pp->p_fsdata = C_COMMIT; 11212 page_unlock(pp); 11213 mutex_exit(&rp->r_statelock); 11214 return; 11215 } 11216 } 11217 11218 /* 11219 * Check to see if there is a signal which would prevent an 11220 * attempt to commit the pages from being successful. If so, 11221 * then don't bother with all of the work to gather pages and 11222 * generate the unsuccessful RPC. Just return from here and 11223 * let the page be committed at some later time. 11224 */ 11225 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11226 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11227 sigunintr(&smask); 11228 page_unlock(pp); 11229 mutex_exit(&rp->r_statelock); 11230 return; 11231 } 11232 sigunintr(&smask); 11233 11234 /* 11235 * We are starting to need to commit pages, so let's try 11236 * to commit as many as possible at once to reduce the 11237 * overhead. 11238 * 11239 * Set the `commit inprogress' state bit. We must 11240 * first wait until any current one finishes. Then 11241 * we initialize the c_pages list with this page. 11242 */ 11243 while (rp->r_flags & R4COMMIT) { 11244 rp->r_flags |= R4COMMITWAIT; 11245 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11246 rp->r_flags &= ~R4COMMITWAIT; 11247 } 11248 rp->r_flags |= R4COMMIT; 11249 mutex_exit(&rp->r_statelock); 11250 ASSERT(rp->r_commit.c_pages == NULL); 11251 rp->r_commit.c_pages = pp; 11252 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11253 rp->r_commit.c_commlen = PAGESIZE; 11254 11255 /* 11256 * Gather together all other pages which can be committed. 11257 * They will all be chained off r_commit.c_pages. 11258 */ 11259 nfs4_get_commit(vp); 11260 11261 /* 11262 * Clear the `commit inprogress' status and disconnect 11263 * the list of pages to be committed from the rnode. 11264 * At this same time, we also save the starting offset 11265 * and length of data to be committed on the server. 11266 */ 11267 plist = rp->r_commit.c_pages; 11268 rp->r_commit.c_pages = NULL; 11269 offset = rp->r_commit.c_commbase; 11270 len = rp->r_commit.c_commlen; 11271 mutex_enter(&rp->r_statelock); 11272 rp->r_flags &= ~R4COMMIT; 11273 cv_broadcast(&rp->r_commit.c_cv); 11274 mutex_exit(&rp->r_statelock); 11275 11276 if (curproc == proc_pageout || curproc == proc_fsflush || 11277 curproc->p_zone != VTOMI4(vp)->mi_zone) { 11278 nfs4_async_commit(vp, plist, offset, len, 11279 cr, do_nfs4_async_commit); 11280 return; 11281 } 11282 11283 /* 11284 * Actually generate the COMMIT op over the wire operation. 11285 */ 11286 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11287 11288 /* 11289 * If we got an error during the commit, just unlock all 11290 * of the pages. The pages will get retransmitted to the 11291 * server during a putpage operation. 11292 */ 11293 if (error) { 11294 while (plist != NULL) { 11295 pptr = plist; 11296 page_sub(&plist, pptr); 11297 page_unlock(pptr); 11298 } 11299 return; 11300 } 11301 11302 /* 11303 * We've tried as hard as we can to commit the data to stable 11304 * storage on the server. We just unlock the rest of the pages 11305 * and clear the commit required state. They will be put 11306 * onto the tail of the cachelist if they are nolonger 11307 * mapped. 11308 */ 11309 while (plist != pp) { 11310 pptr = plist; 11311 page_sub(&plist, pptr); 11312 pptr->p_fsdata = C_NOCOMMIT; 11313 page_unlock(pptr); 11314 } 11315 11316 /* 11317 * It is possible that nfs4_commit didn't return error but 11318 * some other thread has modified the page we are going 11319 * to free/destroy. 11320 * In this case we need to rewrite the page. Do an explicit check 11321 * before attempting to free/destroy the page. If modified, needs to 11322 * be rewritten so unlock the page and return. 11323 */ 11324 if (hat_ismod(pp)) { 11325 pp->p_fsdata = C_NOCOMMIT; 11326 page_unlock(pp); 11327 return; 11328 } 11329 11330 /* 11331 * Now, as appropriate, either free or destroy the page 11332 * that we were called with. 11333 */ 11334 pp->p_fsdata = C_NOCOMMIT; 11335 if (fl == B_FREE) 11336 page_free(pp, dn); 11337 else 11338 page_destroy(pp, dn); 11339 } 11340 11341 /* 11342 * Commit requires that the current fh be the file written to. 11343 * The compound op structure is: 11344 * PUTFH(file), COMMIT 11345 */ 11346 static int 11347 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11348 { 11349 COMPOUND4args_clnt args; 11350 COMPOUND4res_clnt res; 11351 COMMIT4res *cm_res; 11352 nfs_argop4 argop[2]; 11353 nfs_resop4 *resop; 11354 int doqueue; 11355 mntinfo4_t *mi; 11356 rnode4_t *rp; 11357 cred_t *cred_otw = NULL; 11358 bool_t needrecov = FALSE; 11359 nfs4_recov_state_t recov_state; 11360 nfs4_open_stream_t *osp = NULL; 11361 bool_t first_time = TRUE; /* first time getting OTW cred */ 11362 bool_t last_time = FALSE; /* last time getting OTW cred */ 11363 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11364 11365 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 11366 11367 rp = VTOR4(vp); 11368 11369 mi = VTOMI4(vp); 11370 recov_state.rs_flags = 0; 11371 recov_state.rs_num_retry_despite_err = 0; 11372 get_commit_cred: 11373 /* 11374 * Releases the osp, if a valid open stream is provided. 11375 * Puts a hold on the cred_otw and the new osp (if found). 11376 */ 11377 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11378 &first_time, &last_time); 11379 args.ctag = TAG_COMMIT; 11380 recov_retry: 11381 /* 11382 * Commit ops: putfh file; commit 11383 */ 11384 args.array_len = 2; 11385 args.array = argop; 11386 11387 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11388 &recov_state, NULL); 11389 if (e.error) { 11390 crfree(cred_otw); 11391 if (osp != NULL) 11392 open_stream_rele(osp, rp); 11393 return (e.error); 11394 } 11395 11396 /* putfh directory */ 11397 argop[0].argop = OP_CPUTFH; 11398 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11399 11400 /* commit */ 11401 argop[1].argop = OP_COMMIT; 11402 argop[1].nfs_argop4_u.opcommit.offset = offset; 11403 argop[1].nfs_argop4_u.opcommit.count = count; 11404 11405 doqueue = 1; 11406 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11407 11408 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11409 if (!needrecov && e.error) { 11410 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11411 needrecov); 11412 crfree(cred_otw); 11413 if (e.error == EACCES && last_time == FALSE) 11414 goto get_commit_cred; 11415 if (osp != NULL) 11416 open_stream_rele(osp, rp); 11417 return (e.error); 11418 } 11419 11420 if (needrecov) { 11421 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11422 NULL, OP_COMMIT, NULL) == FALSE) { 11423 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11424 &recov_state, needrecov); 11425 if (!e.error) 11426 (void) xdr_free(xdr_COMPOUND4res_clnt, 11427 (caddr_t)&res); 11428 goto recov_retry; 11429 } 11430 if (e.error) { 11431 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11432 &recov_state, needrecov); 11433 crfree(cred_otw); 11434 if (osp != NULL) 11435 open_stream_rele(osp, rp); 11436 return (e.error); 11437 } 11438 /* fall through for res.status case */ 11439 } 11440 11441 if (res.status) { 11442 e.error = geterrno4(res.status); 11443 if (e.error == EACCES && last_time == FALSE) { 11444 crfree(cred_otw); 11445 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11446 &recov_state, needrecov); 11447 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11448 goto get_commit_cred; 11449 } 11450 /* 11451 * Can't do a nfs4_purge_stale_fh here because this 11452 * can cause a deadlock. nfs4_commit can 11453 * be called from nfs4_dispose which can be called 11454 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11455 * can call back to pvn_vplist_dirty. 11456 */ 11457 if (e.error == ESTALE) { 11458 mutex_enter(&rp->r_statelock); 11459 rp->r_flags |= R4STALE; 11460 if (!rp->r_error) 11461 rp->r_error = e.error; 11462 mutex_exit(&rp->r_statelock); 11463 PURGE_ATTRCACHE4(vp); 11464 } else { 11465 mutex_enter(&rp->r_statelock); 11466 if (!rp->r_error) 11467 rp->r_error = e.error; 11468 mutex_exit(&rp->r_statelock); 11469 } 11470 } else { 11471 ASSERT(rp->r_flags & R4HAVEVERF); 11472 resop = &res.array[1]; /* commit res */ 11473 cm_res = &resop->nfs_resop4_u.opcommit; 11474 mutex_enter(&rp->r_statelock); 11475 if (cm_res->writeverf == rp->r_writeverf) { 11476 mutex_exit(&rp->r_statelock); 11477 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11478 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11479 &recov_state, needrecov); 11480 crfree(cred_otw); 11481 if (osp != NULL) 11482 open_stream_rele(osp, rp); 11483 return (0); 11484 } 11485 nfs4_set_mod(vp); 11486 rp->r_writeverf = cm_res->writeverf; 11487 mutex_exit(&rp->r_statelock); 11488 e.error = NFS_VERF_MISMATCH; 11489 } 11490 11491 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11492 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11493 crfree(cred_otw); 11494 if (osp != NULL) 11495 open_stream_rele(osp, rp); 11496 11497 return (e.error); 11498 } 11499 11500 static void 11501 nfs4_set_mod(vnode_t *vp) 11502 { 11503 page_t *pp; 11504 kmutex_t *vphm; 11505 rnode4_t *rp; 11506 11507 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 11508 11509 /* make sure we're looking at the master vnode, not a shadow */ 11510 11511 rp = VTOR4(vp); 11512 if (IS_SHADOW(vp, rp)) 11513 vp = RTOV4(rp); 11514 11515 vphm = page_vnode_mutex(vp); 11516 mutex_enter(vphm); 11517 /* 11518 * If there are no pages associated with this vnode, then 11519 * just return. 11520 */ 11521 if ((pp = vp->v_pages) == NULL) { 11522 mutex_exit(vphm); 11523 return; 11524 } 11525 11526 do { 11527 if (pp->p_fsdata != C_NOCOMMIT) { 11528 hat_setmod(pp); 11529 pp->p_fsdata = C_NOCOMMIT; 11530 } 11531 } while ((pp = pp->p_vpnext) != vp->v_pages); 11532 mutex_exit(vphm); 11533 } 11534 11535 /* 11536 * This function is used to gather a page list of the pages which 11537 * can be committed on the server. 11538 * 11539 * The calling thread must have set R4COMMIT. This bit is used to 11540 * serialize access to the commit structure in the rnode. As long 11541 * as the thread has set R4COMMIT, then it can manipulate the commit 11542 * structure without requiring any other locks. 11543 * 11544 * When this function is called from nfs4_dispose() the page passed 11545 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11546 * will skip it. This is not a problem since we initially add the 11547 * page to the r_commit page list. 11548 * 11549 */ 11550 static void 11551 nfs4_get_commit(vnode_t *vp) 11552 { 11553 rnode4_t *rp; 11554 page_t *pp; 11555 kmutex_t *vphm; 11556 11557 rp = VTOR4(vp); 11558 11559 ASSERT(rp->r_flags & R4COMMIT); 11560 11561 /* make sure we're looking at the master vnode, not a shadow */ 11562 11563 if (IS_SHADOW(vp, rp)) 11564 vp = RTOV4(rp); 11565 11566 vphm = page_vnode_mutex(vp); 11567 mutex_enter(vphm); 11568 11569 /* 11570 * If there are no pages associated with this vnode, then 11571 * just return. 11572 */ 11573 if ((pp = vp->v_pages) == NULL) { 11574 mutex_exit(vphm); 11575 return; 11576 } 11577 11578 /* 11579 * Step through all of the pages associated with this vnode 11580 * looking for pages which need to be committed. 11581 */ 11582 do { 11583 /* 11584 * First short-cut everything (without the page_lock) 11585 * and see if this page does not need to be committed 11586 * or is modified if so then we'll just skip it. 11587 */ 11588 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11589 continue; 11590 11591 /* 11592 * Attempt to lock the page. If we can't, then 11593 * someone else is messing with it or we have been 11594 * called from nfs4_dispose and this is the page that 11595 * nfs4_dispose was called with.. anyway just skip it. 11596 */ 11597 if (!page_trylock(pp, SE_EXCL)) 11598 continue; 11599 11600 /* 11601 * Lets check again now that we have the page lock. 11602 */ 11603 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11604 page_unlock(pp); 11605 continue; 11606 } 11607 11608 /* this had better not be a free page */ 11609 ASSERT(PP_ISFREE(pp) == 0); 11610 11611 /* 11612 * The page needs to be committed and we locked it. 11613 * Update the base and length parameters and add it 11614 * to r_pages. 11615 */ 11616 if (rp->r_commit.c_pages == NULL) { 11617 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11618 rp->r_commit.c_commlen = PAGESIZE; 11619 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11620 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11621 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11622 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11623 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11624 <= pp->p_offset) { 11625 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11626 rp->r_commit.c_commbase + PAGESIZE; 11627 } 11628 page_add(&rp->r_commit.c_pages, pp); 11629 } while ((pp = pp->p_vpnext) != vp->v_pages); 11630 11631 mutex_exit(vphm); 11632 } 11633 11634 /* 11635 * This routine is used to gather together a page list of the pages 11636 * which are to be committed on the server. This routine must not 11637 * be called if the calling thread holds any locked pages. 11638 * 11639 * The calling thread must have set R4COMMIT. This bit is used to 11640 * serialize access to the commit structure in the rnode. As long 11641 * as the thread has set R4COMMIT, then it can manipulate the commit 11642 * structure without requiring any other locks. 11643 */ 11644 static void 11645 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11646 { 11647 11648 rnode4_t *rp; 11649 page_t *pp; 11650 u_offset_t end; 11651 u_offset_t off; 11652 ASSERT(len != 0); 11653 rp = VTOR4(vp); 11654 ASSERT(rp->r_flags & R4COMMIT); 11655 11656 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 11657 11658 /* make sure we're looking at the master vnode, not a shadow */ 11659 11660 if (IS_SHADOW(vp, rp)) 11661 vp = RTOV4(rp); 11662 11663 /* 11664 * If there are no pages associated with this vnode, then 11665 * just return. 11666 */ 11667 if ((pp = vp->v_pages) == NULL) 11668 return; 11669 /* 11670 * Calculate the ending offset. 11671 */ 11672 end = soff + len; 11673 for (off = soff; off < end; off += PAGESIZE) { 11674 /* 11675 * Lookup each page by vp, offset. 11676 */ 11677 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 11678 continue; 11679 /* 11680 * If this page does not need to be committed or is 11681 * modified, then just skip it. 11682 */ 11683 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11684 page_unlock(pp); 11685 continue; 11686 } 11687 11688 ASSERT(PP_ISFREE(pp) == 0); 11689 /* 11690 * The page needs to be committed and we locked it. 11691 * Update the base and length parameters and add it 11692 * to r_pages. 11693 */ 11694 if (rp->r_commit.c_pages == NULL) { 11695 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11696 rp->r_commit.c_commlen = PAGESIZE; 11697 } else { 11698 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11699 rp->r_commit.c_commbase + PAGESIZE; 11700 } 11701 page_add(&rp->r_commit.c_pages, pp); 11702 } 11703 } 11704 11705 /* 11706 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 11707 * Flushes and commits data to the server. 11708 */ 11709 static int 11710 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 11711 { 11712 int error; 11713 verifier4 write_verf; 11714 rnode4_t *rp = VTOR4(vp); 11715 11716 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 11717 11718 /* 11719 * Flush the data portion of the file and then commit any 11720 * portions which need to be committed. This may need to 11721 * be done twice if the server has changed state since 11722 * data was last written. The data will need to be 11723 * rewritten to the server and then a new commit done. 11724 * 11725 * In fact, this may need to be done several times if the 11726 * server is having problems and crashing while we are 11727 * attempting to do this. 11728 */ 11729 11730 top: 11731 /* 11732 * Do a flush based on the poff and plen arguments. This 11733 * will synchronously write out any modified pages in the 11734 * range specified by (poff, plen). This starts all of the 11735 * i/o operations which will be waited for in the next 11736 * call to nfs4_putpage 11737 */ 11738 11739 mutex_enter(&rp->r_statelock); 11740 write_verf = rp->r_writeverf; 11741 mutex_exit(&rp->r_statelock); 11742 11743 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr); 11744 if (error == EAGAIN) 11745 error = 0; 11746 11747 /* 11748 * Do a flush based on the poff and plen arguments. This 11749 * will synchronously write out any modified pages in the 11750 * range specified by (poff, plen) and wait until all of 11751 * the asynchronous i/o's in that range are done as well. 11752 */ 11753 if (!error) 11754 error = nfs4_putpage(vp, poff, plen, 0, cr); 11755 11756 if (error) 11757 return (error); 11758 11759 mutex_enter(&rp->r_statelock); 11760 if (rp->r_writeverf != write_verf) { 11761 mutex_exit(&rp->r_statelock); 11762 goto top; 11763 } 11764 mutex_exit(&rp->r_statelock); 11765 11766 /* 11767 * Now commit any pages which might need to be committed. 11768 * If the error, NFS_VERF_MISMATCH, is returned, then 11769 * start over with the flush operation. 11770 */ 11771 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 11772 11773 if (error == NFS_VERF_MISMATCH) 11774 goto top; 11775 11776 return (error); 11777 } 11778 11779 /* 11780 * nfs4_commit_vp() will wait for other pending commits and 11781 * will either commit the whole file or a range, plen dictates 11782 * if we commit whole file. a value of zero indicates the whole 11783 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 11784 */ 11785 static int 11786 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 11787 cred_t *cr, int wait_on_writes) 11788 { 11789 rnode4_t *rp; 11790 page_t *plist; 11791 offset3 offset; 11792 count3 len; 11793 11794 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 11795 11796 rp = VTOR4(vp); 11797 11798 /* 11799 * before we gather commitable pages make 11800 * sure there are no outstanding async writes 11801 */ 11802 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 11803 mutex_enter(&rp->r_statelock); 11804 while (rp->r_count > 0) { 11805 cv_wait(&rp->r_cv, &rp->r_statelock); 11806 } 11807 mutex_exit(&rp->r_statelock); 11808 } 11809 11810 /* 11811 * Set the `commit inprogress' state bit. We must 11812 * first wait until any current one finishes. 11813 */ 11814 mutex_enter(&rp->r_statelock); 11815 while (rp->r_flags & R4COMMIT) { 11816 rp->r_flags |= R4COMMITWAIT; 11817 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11818 rp->r_flags &= ~R4COMMITWAIT; 11819 } 11820 rp->r_flags |= R4COMMIT; 11821 mutex_exit(&rp->r_statelock); 11822 11823 /* 11824 * Gather all of the pages which need to be 11825 * committed. 11826 */ 11827 if (plen == 0) 11828 nfs4_get_commit(vp); 11829 else 11830 nfs4_get_commit_range(vp, poff, plen); 11831 11832 /* 11833 * Clear the `commit inprogress' bit and disconnect the 11834 * page list which was gathered by nfs4_get_commit. 11835 */ 11836 plist = rp->r_commit.c_pages; 11837 rp->r_commit.c_pages = NULL; 11838 offset = rp->r_commit.c_commbase; 11839 len = rp->r_commit.c_commlen; 11840 mutex_enter(&rp->r_statelock); 11841 rp->r_flags &= ~R4COMMIT; 11842 cv_broadcast(&rp->r_commit.c_cv); 11843 mutex_exit(&rp->r_statelock); 11844 11845 /* 11846 * If any pages need to be committed, commit them and 11847 * then unlock them so that they can be freed some 11848 * time later. 11849 */ 11850 if (plist == NULL) 11851 return (0); 11852 11853 /* 11854 * No error occurred during the flush portion 11855 * of this operation, so now attempt to commit 11856 * the data to stable storage on the server. 11857 * 11858 * This will unlock all of the pages on the list. 11859 */ 11860 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 11861 } 11862 11863 static int 11864 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 11865 cred_t *cr) 11866 { 11867 int error; 11868 page_t *pp; 11869 11870 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 11871 11872 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 11873 11874 /* 11875 * If we got an error, then just unlock all of the pages 11876 * on the list. 11877 */ 11878 if (error) { 11879 while (plist != NULL) { 11880 pp = plist; 11881 page_sub(&plist, pp); 11882 page_unlock(pp); 11883 } 11884 return (error); 11885 } 11886 /* 11887 * We've tried as hard as we can to commit the data to stable 11888 * storage on the server. We just unlock the pages and clear 11889 * the commit required state. They will get freed later. 11890 */ 11891 while (plist != NULL) { 11892 pp = plist; 11893 page_sub(&plist, pp); 11894 pp->p_fsdata = C_NOCOMMIT; 11895 page_unlock(pp); 11896 } 11897 11898 return (error); 11899 } 11900 11901 static void 11902 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 11903 cred_t *cr) 11904 { 11905 11906 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 11907 } 11908 11909 /*ARGSUSED*/ 11910 static int 11911 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 11912 { 11913 int error = 0; 11914 mntinfo4_t *mi; 11915 vattr_t va; 11916 vsecattr_t nfsace4_vsap; 11917 11918 mi = VTOMI4(vp); 11919 if (curproc->p_zone != mi->mi_zone) 11920 return (EIO); 11921 if (mi->mi_flags & MI4_ACL) { 11922 /* if we have a delegation, return it */ 11923 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 11924 (void) nfs4delegreturn(VTOR4(vp), 11925 NFS4_DR_REOPEN|NFS4_DR_PUSH); 11926 11927 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 11928 NFS4_ACL_SET); 11929 if (error) /* EINVAL */ 11930 return (error); 11931 11932 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 11933 /* 11934 * These are aclent_t type entries. 11935 */ 11936 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 11937 vp->v_type == VDIR, FALSE); 11938 if (error) 11939 return (error); 11940 } else { 11941 /* 11942 * These are ace_t type entries. 11943 */ 11944 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 11945 vp->v_type == VDIR, FALSE); 11946 if (error) 11947 return (error); 11948 } 11949 bzero(&va, sizeof (va)); 11950 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 11951 vs_ace4_destroy(&nfsace4_vsap); 11952 return (error); 11953 } 11954 return (ENOSYS); 11955 } 11956 11957 static int 11958 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 11959 { 11960 int error; 11961 mntinfo4_t *mi; 11962 nfs4_ga_res_t gar; 11963 rnode4_t *rp = VTOR4(vp); 11964 11965 mi = VTOMI4(vp); 11966 if (curproc->p_zone != mi->mi_zone) 11967 return (EIO); 11968 11969 bzero(&gar, sizeof (gar)); 11970 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 11971 11972 /* 11973 * vsecattr->vsa_mask holds the original acl request mask. 11974 * This is needed when determining what to return. 11975 * (See: nfs4_create_getsecattr_return()) 11976 */ 11977 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 11978 if (error) /* EINVAL */ 11979 return (error); 11980 11981 if (mi->mi_flags & MI4_ACL) { 11982 /* 11983 * Check if the data is cached and the cache is valid. If it 11984 * is we don't go over the wire. 11985 */ 11986 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 11987 mutex_enter(&rp->r_statelock); 11988 if (rp->r_secattr != NULL) { 11989 error = nfs4_create_getsecattr_return( 11990 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 11991 rp->r_attr.va_gid, 11992 vp->v_type == VDIR); 11993 if (!error) { /* error == 0 - Success! */ 11994 mutex_exit(&rp->r_statelock); 11995 return (error); 11996 } 11997 } 11998 mutex_exit(&rp->r_statelock); 11999 } 12000 12001 /* 12002 * The getattr otw call will always get both the acl, in 12003 * the form of a list of nfsace4's, and the number of acl 12004 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12005 */ 12006 gar.n4g_va.va_mask = AT_ALL; 12007 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12008 if (error) { 12009 vs_ace4_destroy(&gar.n4g_vsa); 12010 if (error == ENOTSUP || error == EOPNOTSUPP) 12011 error = fs_fab_acl(vp, vsecattr, flag, cr); 12012 return (error); 12013 } 12014 12015 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12016 /* 12017 * No error was returned, but according to the response 12018 * bitmap, neither was an acl. 12019 */ 12020 vs_ace4_destroy(&gar.n4g_vsa); 12021 error = fs_fab_acl(vp, vsecattr, flag, cr); 12022 return (error); 12023 } 12024 12025 /* 12026 * Update the cache with the ACL. 12027 */ 12028 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12029 12030 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12031 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12032 vp->v_type == VDIR); 12033 vs_ace4_destroy(&gar.n4g_vsa); 12034 if ((error) && (vsecattr->vsa_mask & 12035 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12036 (error != EACCES)) { 12037 error = fs_fab_acl(vp, vsecattr, flag, cr); 12038 } 12039 return (error); 12040 } 12041 error = fs_fab_acl(vp, vsecattr, flag, cr); 12042 return (error); 12043 } 12044 12045 /* 12046 * The function returns: 12047 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12048 * - EINVAL if the passed in "acl_mask" is an invalid request. 12049 * 12050 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12051 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12052 * 12053 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12054 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12055 * - We have a count field set without the corresponding acl field set. (e.g. - 12056 * VSA_ACECNT is set, but VSA_ACE is not) 12057 */ 12058 static int 12059 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12060 { 12061 /* Shortcut the masks that are always valid. */ 12062 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12063 return (0); 12064 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12065 return (0); 12066 12067 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12068 /* 12069 * We can't have any VSA_ACL type stuff in the mask now. 12070 */ 12071 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12072 VSA_DFACLCNT)) 12073 return (EINVAL); 12074 12075 if (op == NFS4_ACL_SET) { 12076 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12077 return (EINVAL); 12078 } 12079 } 12080 12081 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12082 /* 12083 * We can't have any VSA_ACE type stuff in the mask now. 12084 */ 12085 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12086 return (EINVAL); 12087 12088 if (op == NFS4_ACL_SET) { 12089 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12090 return (EINVAL); 12091 12092 if ((acl_mask & VSA_DFACLCNT) && 12093 !(acl_mask & VSA_DFACL)) 12094 return (EINVAL); 12095 } 12096 } 12097 return (0); 12098 } 12099 12100 /* 12101 * The theory behind creating the correct getsecattr return is simply this: 12102 * "Don't return anything that the caller is not expecting to have to free." 12103 */ 12104 static int 12105 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12106 uid_t uid, gid_t gid, int isdir) 12107 { 12108 int error = 0; 12109 /* Save the mask since the translators modify it. */ 12110 uint_t orig_mask = vsap->vsa_mask; 12111 12112 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12113 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, 12114 isdir, FALSE, ((orig_mask & VSA_ACE) ? FALSE : TRUE)); 12115 12116 if (error) 12117 return (error); 12118 12119 /* 12120 * If the caller only asked for the ace count (VSA_ACECNT) 12121 * don't give them the full acl (VSA_ACE), free it. 12122 */ 12123 if (!orig_mask & VSA_ACE) { 12124 if (vsap->vsa_aclentp != NULL) { 12125 kmem_free(vsap->vsa_aclentp, 12126 vsap->vsa_aclcnt * sizeof (ace_t)); 12127 vsap->vsa_aclentp = NULL; 12128 } 12129 } 12130 vsap->vsa_mask = orig_mask; 12131 12132 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12133 VSA_DFACLCNT)) { 12134 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12135 isdir, FALSE, 12136 ((orig_mask & (VSA_ACL | VSA_DFACL)) ? FALSE : TRUE)); 12137 12138 if (error) 12139 return (error); 12140 12141 /* 12142 * If the caller only asked for the acl count (VSA_ACLCNT) 12143 * and/or the default acl count (VSA_DFACLCNT) don't give them 12144 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12145 */ 12146 if (!orig_mask & VSA_ACL) { 12147 if (vsap->vsa_aclentp != NULL) { 12148 kmem_free(vsap->vsa_aclentp, 12149 vsap->vsa_aclcnt * sizeof (aclent_t)); 12150 vsap->vsa_aclentp = NULL; 12151 } 12152 } 12153 12154 if (!orig_mask & VSA_DFACL) { 12155 if (vsap->vsa_dfaclentp != NULL) { 12156 kmem_free(vsap->vsa_dfaclentp, 12157 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12158 vsap->vsa_dfaclentp = NULL; 12159 } 12160 } 12161 vsap->vsa_mask = orig_mask; 12162 } 12163 return (0); 12164 } 12165 12166 static int 12167 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 12168 { 12169 int error; 12170 12171 if (curproc->p_zone != VTOMI4(vp)->mi_zone) 12172 return (EIO); 12173 /* 12174 * check for valid cmd parameter 12175 */ 12176 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12177 return (EINVAL); 12178 12179 /* 12180 * Check access permissions 12181 */ 12182 if ((cmd & F_SHARE) && 12183 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12184 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12185 return (EBADF); 12186 12187 /* 12188 * If the filesystem is mounted using local locking, pass the 12189 * request off to the local share code. 12190 */ 12191 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12192 return (fs_shrlock(vp, cmd, shr, flag, cr)); 12193 12194 switch (cmd) { 12195 case F_SHARE: 12196 case F_UNSHARE: 12197 /* 12198 * This will be properly implemented later, 12199 * see RFE: 4823948 . 12200 */ 12201 error = EAGAIN; 12202 break; 12203 12204 case F_HASREMOTELOCKS: 12205 /* 12206 * NFS client can't store remote locks itself 12207 */ 12208 shr->s_access = 0; 12209 error = 0; 12210 break; 12211 12212 default: 12213 error = EINVAL; 12214 break; 12215 } 12216 12217 return (error); 12218 } 12219 12220 /* 12221 * Common code called by directory ops to update the attrcache 12222 */ 12223 static int 12224 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12225 hrtime_t t, vnode_t *vp, cred_t *cr) 12226 { 12227 int error = 0; 12228 12229 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 12230 12231 if (status != NFS4_OK) { 12232 /* getattr not done or failed */ 12233 PURGE_ATTRCACHE4(vp); 12234 return (error); 12235 } 12236 12237 if (garp) { 12238 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12239 } else { 12240 PURGE_ATTRCACHE4(vp); 12241 } 12242 return (error); 12243 } 12244 12245 /* 12246 * Update directory caches for directory modification ops (link, rename, etc.) 12247 * When dinfo is NULL, manage dircaches in the old way. 12248 */ 12249 static void 12250 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12251 dirattr_info_t *dinfo) 12252 { 12253 rnode4_t *drp = VTOR4(dvp); 12254 12255 ASSERT(curproc->p_zone == VTOMI4(dvp)->mi_zone); 12256 12257 /* Purge rddir cache for dir since it changed */ 12258 if (drp->r_dir != NULL) 12259 nfs4_purge_rddir_cache(dvp); 12260 12261 /* 12262 * If caller provided dinfo, then use it to manage dir caches. 12263 */ 12264 if (dinfo != NULL) { 12265 if (vp != NULL) { 12266 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12267 if (!VTOR4(vp)->created_v4) { 12268 dnlc_update(dvp, nm, vp); 12269 } else { 12270 /* 12271 * XXX don't update if the created_v4 flag is 12272 * set 12273 */ 12274 NFS4_DEBUG(nfs4_client_state_debug, 12275 (CE_NOTE, "nfs4_update_dircaches: " 12276 "don't update dnlc: created_v4 flag")); 12277 } 12278 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12279 } 12280 12281 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12282 dinfo->di_cred, FALSE, cinfo); 12283 12284 return; 12285 } 12286 12287 /* 12288 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12289 * Since caller modified dir but didn't receive post-dirmod-op dir 12290 * attrs, the dir's attrs must be purged. 12291 * 12292 * XXX this check and dnlc update/purge should really be atomic, 12293 * XXX but can't use rnode statelock because it'll deadlock in 12294 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12295 * XXX does occur. 12296 * 12297 * XXX We also may want to check that atomic is true in the 12298 * XXX change_info struct. If it is not, the change_info may 12299 * XXX reflect changes by more than one clients which means that 12300 * XXX our cache may not be valid. 12301 */ 12302 PURGE_ATTRCACHE4(dvp); 12303 if (drp->r_change == cinfo->before) { 12304 /* no changes took place in the directory prior to our link */ 12305 if (vp != NULL) { 12306 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12307 if (!VTOR4(vp)->created_v4) { 12308 dnlc_update(dvp, nm, vp); 12309 } else { 12310 /* 12311 * XXX dont' update if the created_v4 flag 12312 * is set 12313 */ 12314 12315 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12316 "nfs4_update_dircaches: don't" 12317 " update dnlc: created_v4 flag")); 12318 } 12319 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12320 } 12321 } else { 12322 /* Another client modified directory - purge its dnlc cache */ 12323 dnlc_purge_vp(dvp); 12324 } 12325 } 12326 12327 /* 12328 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12329 * file. 12330 * 12331 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12332 * file (ie: client recovery) and otherwise set to FALSE. 12333 * 12334 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12335 * initiated) calling functions. 12336 * 12337 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12338 * of resending a 'lost' open request. 12339 * 12340 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12341 * server that hands out BAD_SEQID on open confirm. 12342 * 12343 * Errors are returned via the nfs4_error_t parameter. 12344 */ 12345 void 12346 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12347 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12348 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12349 { 12350 COMPOUND4args_clnt args; 12351 COMPOUND4res_clnt res; 12352 nfs_argop4 argop[2]; 12353 nfs_resop4 *resop; 12354 int doqueue = 1; 12355 mntinfo4_t *mi; 12356 OPEN_CONFIRM4args *open_confirm_args; 12357 int needrecov; 12358 12359 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 12360 #if DEBUG 12361 mutex_enter(&oop->oo_lock); 12362 ASSERT(oop->oo_seqid_inuse); 12363 mutex_exit(&oop->oo_lock); 12364 #endif 12365 12366 recov_retry_confirm: 12367 nfs4_error_zinit(ep); 12368 *retry_open = FALSE; 12369 12370 if (resend) 12371 args.ctag = TAG_OPEN_CONFIRM_LOST; 12372 else 12373 args.ctag = TAG_OPEN_CONFIRM; 12374 12375 args.array_len = 2; 12376 args.array = argop; 12377 12378 /* putfh target fh */ 12379 argop[0].argop = OP_CPUTFH; 12380 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12381 12382 argop[1].argop = OP_OPEN_CONFIRM; 12383 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12384 12385 (*seqid) += 1; 12386 open_confirm_args->seqid = *seqid; 12387 open_confirm_args->open_stateid = *stateid; 12388 12389 mi = VTOMI4(vp); 12390 12391 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12392 12393 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12394 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12395 } 12396 12397 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12398 if (!needrecov && ep->error) 12399 return; 12400 12401 if (needrecov) { 12402 bool_t abort = FALSE; 12403 12404 if (reopening_file == FALSE) { 12405 nfs4_bseqid_entry_t *bsep = NULL; 12406 12407 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12408 bsep = nfs4_create_bseqid_entry(oop, NULL, 12409 vp, 0, args.ctag, 12410 open_confirm_args->seqid); 12411 12412 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, 12413 NULL, NULL, NULL, OP_OPEN_CONFIRM, bsep); 12414 if (bsep) { 12415 kmem_free(bsep, sizeof (*bsep)); 12416 if (num_bseqid_retryp && 12417 --(*num_bseqid_retryp) == 0) 12418 abort = TRUE; 12419 } 12420 } 12421 if ((ep->error == ETIMEDOUT || 12422 res.status == NFS4ERR_RESOURCE) && 12423 abort == FALSE && resend == FALSE) { 12424 if (!ep->error) 12425 (void) xdr_free(xdr_COMPOUND4res_clnt, 12426 (caddr_t)&res); 12427 12428 delay(SEC_TO_TICK(confirm_retry_sec)); 12429 goto recov_retry_confirm; 12430 } 12431 /* State may have changed so retry the entire OPEN op */ 12432 if (abort == FALSE) 12433 *retry_open = TRUE; 12434 else 12435 *retry_open = FALSE; 12436 if (!ep->error) 12437 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12438 return; 12439 } 12440 12441 if (res.status) { 12442 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12443 return; 12444 } 12445 12446 resop = &res.array[1]; /* open confirm res */ 12447 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12448 stateid, sizeof (*stateid)); 12449 12450 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12451 } 12452 12453 /* 12454 * Return the credentials associated with a client state object. The 12455 * caller is responsible for freeing the credentials. 12456 */ 12457 12458 static cred_t * 12459 state_to_cred(nfs4_open_stream_t *osp) 12460 { 12461 cred_t *cr; 12462 12463 /* 12464 * It's ok to not lock the open stream and open owner to get 12465 * the oo_cred since this is only written once (upon creation) 12466 * and will not change. 12467 */ 12468 cr = osp->os_open_owner->oo_cred; 12469 crhold(cr); 12470 12471 return (cr); 12472 } 12473 12474 /* 12475 * nfs4_find_sysid 12476 * 12477 * Find the sysid for the knetconfig associated with the given mi. 12478 */ 12479 static struct lm_sysid * 12480 nfs4_find_sysid(mntinfo4_t *mi) 12481 { 12482 ASSERT(curproc->p_zone == mi->mi_zone); 12483 12484 /* 12485 * Switch from RDMA knconf to original mount knconf 12486 */ 12487 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12488 mi->mi_curr_serv->sv_hostname, NULL)); 12489 } 12490 12491 #ifdef DEBUG 12492 /* 12493 * Return a string version of the call type for easy reading. 12494 */ 12495 static char * 12496 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12497 { 12498 switch (ctype) { 12499 case NFS4_LCK_CTYPE_NORM: 12500 return ("NORMAL"); 12501 case NFS4_LCK_CTYPE_RECLAIM: 12502 return ("RECLAIM"); 12503 case NFS4_LCK_CTYPE_RESEND: 12504 return ("RESEND"); 12505 case NFS4_LCK_CTYPE_REINSTATE: 12506 return ("REINSTATE"); 12507 default: 12508 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12509 "type %d", ctype); 12510 return (""); 12511 } 12512 } 12513 #endif 12514 12515 /* 12516 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12517 * Unlock requests don't have an over-the-wire locktype, so we just return 12518 * something non-threatening. 12519 */ 12520 12521 static nfs_lock_type4 12522 flk_to_locktype(int cmd, int l_type) 12523 { 12524 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12525 12526 switch (l_type) { 12527 case F_UNLCK: 12528 return (READ_LT); 12529 case F_RDLCK: 12530 if (cmd == F_SETLK) 12531 return (READ_LT); 12532 else 12533 return (READW_LT); 12534 case F_WRLCK: 12535 if (cmd == F_SETLK) 12536 return (WRITE_LT); 12537 else 12538 return (WRITEW_LT); 12539 } 12540 panic("flk_to_locktype"); 12541 /*NOTREACHED*/ 12542 } 12543 12544 /* 12545 * Do some preliminary checks for nfs4frlock. 12546 */ 12547 static int 12548 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12549 u_offset_t offset) 12550 { 12551 int error = 0; 12552 12553 /* 12554 * If we are setting a lock, check that the file is opened 12555 * with the correct mode. 12556 */ 12557 if (cmd == F_SETLK || cmd == F_SETLKW) { 12558 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12559 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12560 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12561 "nfs4frlock_validate_args: file was opened with " 12562 "incorrect mode")); 12563 return (EBADF); 12564 } 12565 } 12566 12567 /* Convert the offset. It may need to be restored before returning. */ 12568 if (error = convoff(vp, flk, 0, offset)) { 12569 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12570 "nfs4frlock_validate_args: convoff => error= %d\n", 12571 error)); 12572 return (error); 12573 } 12574 12575 return (error); 12576 } 12577 12578 /* 12579 * Set the flock64's lm_sysid for nfs4frlock. 12580 */ 12581 static int 12582 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12583 { 12584 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 12585 12586 /* Find the lm_sysid */ 12587 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12588 12589 if (*lspp == NULL) { 12590 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12591 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12592 return (ENOLCK); 12593 } 12594 12595 flk->l_sysid = lm_sysidt(*lspp); 12596 12597 return (0); 12598 } 12599 12600 /* 12601 * Do the remaining preliminary setup for nfs4frlock. 12602 */ 12603 static void 12604 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12605 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12606 cred_t **cred_otw) 12607 { 12608 /* 12609 * set tick_delay to the base delay time. 12610 * (NFS4_BASE_WAIT_TIME is in secs) 12611 */ 12612 12613 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12614 12615 /* 12616 * If lock is relative to EOF, we need the newest length of the 12617 * file. Therefore invalidate the ATTR_CACHE. 12618 */ 12619 12620 *whencep = flk->l_whence; 12621 12622 if (*whencep == 2) /* SEEK_END */ 12623 PURGE_ATTRCACHE4(vp); 12624 12625 recov_statep->rs_flags = 0; 12626 recov_statep->rs_num_retry_despite_err = 0; 12627 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12628 } 12629 12630 /* 12631 * Initialize and allocate the data structures necessary for 12632 * the nfs4frlock call. 12633 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12634 */ 12635 static void 12636 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12637 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12638 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12639 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12640 { 12641 int argoplist_size; 12642 int num_ops = 2; 12643 12644 *retry = FALSE; 12645 *did_start_fop = FALSE; 12646 *skip_get_err = FALSE; 12647 lost_rqstp->lr_op = 0; 12648 argoplist_size = num_ops * sizeof (nfs_argop4); 12649 /* fill array with zero */ 12650 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 12651 12652 *argspp = argsp; 12653 *respp = NULL; 12654 12655 argsp->array_len = num_ops; 12656 argsp->array = *argopp; 12657 12658 /* initialize in case of error; will get real value down below */ 12659 argsp->ctag = TAG_NONE; 12660 12661 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 12662 *op_hintp = OH_LOCKU; 12663 else 12664 *op_hintp = OH_OTHER; 12665 } 12666 12667 /* 12668 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 12669 * the proper nfs4_server_t for this instance of nfs4frlock. 12670 * Returns 0 (success) or an errno value. 12671 */ 12672 static int 12673 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 12674 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 12675 bool_t *did_start_fop, bool_t *startrecovp) 12676 { 12677 int error = 0; 12678 rnode4_t *rp; 12679 12680 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 12681 12682 if (ctype == NFS4_LCK_CTYPE_NORM) { 12683 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 12684 recov_statep, startrecovp); 12685 if (error) 12686 return (error); 12687 *did_start_fop = TRUE; 12688 } else { 12689 *did_start_fop = FALSE; 12690 *startrecovp = FALSE; 12691 } 12692 12693 if (!error) { 12694 rp = VTOR4(vp); 12695 12696 /* If the file failed recovery, just quit. */ 12697 mutex_enter(&rp->r_statelock); 12698 if (rp->r_flags & R4RECOVERR) { 12699 error = EIO; 12700 } 12701 mutex_exit(&rp->r_statelock); 12702 } 12703 12704 return (error); 12705 } 12706 12707 /* 12708 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 12709 * resend nfs4frlock call is initiated by the recovery framework. 12710 * Acquires the lop and oop seqid synchronization. 12711 */ 12712 static void 12713 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 12714 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 12715 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 12716 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 12717 { 12718 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 12719 int error; 12720 12721 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 12722 (CE_NOTE, 12723 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 12724 ASSERT(resend_rqstp != NULL); 12725 ASSERT(resend_rqstp->lr_op == OP_LOCK || 12726 resend_rqstp->lr_op == OP_LOCKU); 12727 12728 *oopp = resend_rqstp->lr_oop; 12729 if (resend_rqstp->lr_oop) { 12730 open_owner_hold(resend_rqstp->lr_oop); 12731 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 12732 ASSERT(error == 0); /* recov thread always succeeds */ 12733 } 12734 12735 /* Must resend this lost lock/locku request. */ 12736 ASSERT(resend_rqstp->lr_lop != NULL); 12737 *lopp = resend_rqstp->lr_lop; 12738 lock_owner_hold(resend_rqstp->lr_lop); 12739 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 12740 ASSERT(error == 0); /* recov thread always succeeds */ 12741 12742 *ospp = resend_rqstp->lr_osp; 12743 if (*ospp) 12744 open_stream_hold(resend_rqstp->lr_osp); 12745 12746 if (resend_rqstp->lr_op == OP_LOCK) { 12747 LOCK4args *lock_args; 12748 12749 argop->argop = OP_LOCK; 12750 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 12751 lock_args->locktype = resend_rqstp->lr_locktype; 12752 lock_args->reclaim = 12753 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 12754 lock_args->offset = resend_rqstp->lr_flk->l_start; 12755 lock_args->length = resend_rqstp->lr_flk->l_len; 12756 if (lock_args->length == 0) 12757 lock_args->length = ~lock_args->length; 12758 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 12759 mi2clientid(mi), &lock_args->locker); 12760 12761 switch (resend_rqstp->lr_ctype) { 12762 case NFS4_LCK_CTYPE_RESEND: 12763 argsp->ctag = TAG_LOCK_RESEND; 12764 break; 12765 case NFS4_LCK_CTYPE_REINSTATE: 12766 argsp->ctag = TAG_LOCK_REINSTATE; 12767 break; 12768 case NFS4_LCK_CTYPE_RECLAIM: 12769 argsp->ctag = TAG_LOCK_RECLAIM; 12770 break; 12771 default: 12772 argsp->ctag = TAG_LOCK_UNKNOWN; 12773 break; 12774 } 12775 } else { 12776 LOCKU4args *locku_args; 12777 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 12778 12779 argop->argop = OP_LOCKU; 12780 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 12781 locku_args->locktype = READ_LT; 12782 locku_args->seqid = lop->lock_seqid + 1; 12783 mutex_enter(&lop->lo_lock); 12784 locku_args->lock_stateid = lop->lock_stateid; 12785 mutex_exit(&lop->lo_lock); 12786 locku_args->offset = resend_rqstp->lr_flk->l_start; 12787 locku_args->length = resend_rqstp->lr_flk->l_len; 12788 if (locku_args->length == 0) 12789 locku_args->length = ~locku_args->length; 12790 12791 switch (resend_rqstp->lr_ctype) { 12792 case NFS4_LCK_CTYPE_RESEND: 12793 argsp->ctag = TAG_LOCKU_RESEND; 12794 break; 12795 case NFS4_LCK_CTYPE_REINSTATE: 12796 argsp->ctag = TAG_LOCKU_REINSTATE; 12797 break; 12798 default: 12799 argsp->ctag = TAG_LOCK_UNKNOWN; 12800 break; 12801 } 12802 } 12803 } 12804 12805 /* 12806 * Setup the LOCKT4 arguments. 12807 */ 12808 static void 12809 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 12810 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 12811 rnode4_t *rp) 12812 { 12813 LOCKT4args *lockt_args; 12814 12815 ASSERT(curproc->p_zone == VTOMI4(RTOV4(rp))->mi_zone); 12816 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 12817 argop->argop = OP_LOCKT; 12818 argsp->ctag = TAG_LOCKT; 12819 lockt_args = &argop->nfs_argop4_u.oplockt; 12820 12821 /* 12822 * The locktype will be READ_LT unless it's 12823 * a write lock. We do this because the Solaris 12824 * system call allows the combination of 12825 * F_UNLCK and F_GETLK* and so in that case the 12826 * unlock is mapped to a read. 12827 */ 12828 if (flk->l_type == F_WRLCK) 12829 lockt_args->locktype = WRITE_LT; 12830 else 12831 lockt_args->locktype = READ_LT; 12832 12833 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 12834 /* set the lock owner4 args */ 12835 nfs4_setlockowner_args(&lockt_args->owner, rp, 12836 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 12837 flk->l_pid); 12838 lockt_args->offset = flk->l_start; 12839 lockt_args->length = flk->l_len; 12840 if (flk->l_len == 0) 12841 lockt_args->length = ~lockt_args->length; 12842 12843 *lockt_argsp = lockt_args; 12844 } 12845 12846 /* 12847 * If the client is holding a delegation, and the open stream to be used 12848 * with this lock request is a delegation open stream, then re-open the stream. 12849 * Sets the nfs4_error_t to all zeros unless the open stream has already 12850 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 12851 * means the caller should retry (like a recovery retry). 12852 */ 12853 static void 12854 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 12855 { 12856 open_delegation_type4 dt; 12857 bool_t reopen_needed, force; 12858 nfs4_open_stream_t *osp; 12859 open_claim_type4 oclaim; 12860 rnode4_t *rp = VTOR4(vp); 12861 mntinfo4_t *mi = VTOMI4(vp); 12862 12863 ASSERT(curproc->p_zone == mi->mi_zone); 12864 12865 nfs4_error_zinit(ep); 12866 12867 mutex_enter(&rp->r_statev4_lock); 12868 dt = rp->r_deleg_type; 12869 mutex_exit(&rp->r_statev4_lock); 12870 12871 if (dt != OPEN_DELEGATE_NONE) { 12872 nfs4_open_owner_t *oop; 12873 12874 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 12875 if (!oop) { 12876 ep->stat = NFS4ERR_IO; 12877 return; 12878 } 12879 /* returns with 'os_sync_lock' held */ 12880 osp = find_open_stream(oop, rp); 12881 if (!osp) { 12882 open_owner_rele(oop); 12883 ep->stat = NFS4ERR_IO; 12884 return; 12885 } 12886 12887 if (osp->os_failed_reopen) { 12888 NFS4_DEBUG((nfs4_open_stream_debug || 12889 nfs4_client_lock_debug), (CE_NOTE, 12890 "nfs4frlock_check_deleg: os_failed_reopen set " 12891 "for osp %p, cr %p, rp %s", (void *)osp, 12892 (void *)cr, rnode4info(rp))); 12893 mutex_exit(&osp->os_sync_lock); 12894 open_stream_rele(osp, rp); 12895 open_owner_rele(oop); 12896 ep->stat = NFS4ERR_IO; 12897 return; 12898 } 12899 12900 /* 12901 * Determine whether a reopen is needed. If this 12902 * is a delegation open stream, then send the open 12903 * to the server to give visibility to the open owner. 12904 * Even if it isn't a delegation open stream, we need 12905 * to check if the previous open CLAIM_DELEGATE_CUR 12906 * was sufficient. 12907 */ 12908 12909 reopen_needed = osp->os_delegation || 12910 ((lt == F_RDLCK && 12911 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 12912 (lt == F_WRLCK && 12913 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 12914 12915 mutex_exit(&osp->os_sync_lock); 12916 open_owner_rele(oop); 12917 12918 if (reopen_needed) { 12919 /* 12920 * Always use CLAIM_PREVIOUS after server reboot. 12921 * The server will reject CLAIM_DELEGATE_CUR if 12922 * it is used during the grace period. 12923 */ 12924 mutex_enter(&mi->mi_lock); 12925 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 12926 oclaim = CLAIM_PREVIOUS; 12927 force = TRUE; 12928 } else { 12929 oclaim = CLAIM_DELEGATE_CUR; 12930 force = FALSE; 12931 } 12932 mutex_exit(&mi->mi_lock); 12933 12934 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 12935 if (ep->error == EAGAIN) { 12936 nfs4_error_zinit(ep); 12937 ep->stat = NFS4ERR_DELAY; 12938 } 12939 } 12940 open_stream_rele(osp, rp); 12941 osp = NULL; 12942 } 12943 } 12944 12945 /* 12946 * Setup the LOCKU4 arguments. 12947 * Returns errors via the nfs4_error_t. 12948 * NFS4_OK no problems. *go_otwp is TRUE if call should go 12949 * over-the-wire. The caller must release the 12950 * reference on *lopp. 12951 * NFS4ERR_DELAY caller should retry (like recovery retry) 12952 * (other) unrecoverable error. 12953 */ 12954 static void 12955 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 12956 LOCKU4args **locku_argsp, flock64_t *flk, 12957 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 12958 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 12959 bool_t *skip_get_err, bool_t *go_otwp) 12960 { 12961 nfs4_lock_owner_t *lop = NULL; 12962 LOCKU4args *locku_args; 12963 pid_t pid; 12964 bool_t is_spec = FALSE; 12965 rnode4_t *rp = VTOR4(vp); 12966 12967 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 12968 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 12969 12970 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 12971 if (ep->error || ep->stat) 12972 return; 12973 12974 argop->argop = OP_LOCKU; 12975 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 12976 argsp->ctag = TAG_LOCKU_REINSTATE; 12977 else 12978 argsp->ctag = TAG_LOCKU; 12979 locku_args = &argop->nfs_argop4_u.oplocku; 12980 *locku_argsp = locku_args; 12981 12982 /* 12983 * XXX what should locku_args->locktype be? 12984 * setting to ALWAYS be READ_LT so at least 12985 * it is a valid locktype. 12986 */ 12987 12988 locku_args->locktype = READ_LT; 12989 12990 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 12991 flk->l_pid; 12992 12993 /* 12994 * Get the lock owner stateid. If no lock owner 12995 * exists, return success. 12996 */ 12997 lop = find_lock_owner(rp, pid, LOWN_ANY); 12998 *lopp = lop; 12999 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13000 is_spec = TRUE; 13001 if (!lop || is_spec) { 13002 /* 13003 * No lock owner so no locks to unlock. 13004 * Return success. If there was a failed 13005 * reclaim earlier, the lock might still be 13006 * registered with the local locking code, 13007 * so notify it of the unlock. 13008 * 13009 * If the lockowner is using a special stateid, 13010 * then the original lock request (that created 13011 * this lockowner) was never successful, so we 13012 * have no lock to undo OTW. 13013 */ 13014 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13015 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13016 "(%ld) so return success", (long)pid)); 13017 13018 if (ctype == NFS4_LCK_CTYPE_NORM) 13019 flk->l_pid = curproc->p_pid; 13020 nfs4_register_lock_locally(vp, flk, flag, offset); 13021 /* 13022 * Release our hold and NULL out so final_cleanup 13023 * doesn't try to end a lock seqid sync we 13024 * never started. 13025 */ 13026 if (is_spec) { 13027 lock_owner_rele(lop); 13028 *lopp = NULL; 13029 } 13030 *skip_get_err = TRUE; 13031 *go_otwp = FALSE; 13032 return; 13033 } 13034 13035 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13036 if (ep->error == EAGAIN) { 13037 lock_owner_rele(lop); 13038 *lopp = NULL; 13039 return; 13040 } 13041 13042 mutex_enter(&lop->lo_lock); 13043 locku_args->lock_stateid = lop->lock_stateid; 13044 mutex_exit(&lop->lo_lock); 13045 locku_args->seqid = lop->lock_seqid + 1; 13046 13047 /* leave the ref count on lop, rele after RPC call */ 13048 13049 locku_args->offset = flk->l_start; 13050 locku_args->length = flk->l_len; 13051 if (flk->l_len == 0) 13052 locku_args->length = ~locku_args->length; 13053 13054 *go_otwp = TRUE; 13055 } 13056 13057 /* 13058 * Setup the LOCK4 arguments. 13059 * 13060 * Returns errors via the nfs4_error_t. 13061 * NFS4_OK no problems 13062 * NFS4ERR_DELAY caller should retry (like recovery retry) 13063 * (other) unrecoverable error 13064 */ 13065 static void 13066 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13067 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13068 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13069 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13070 { 13071 LOCK4args *lock_args; 13072 nfs4_open_owner_t *oop = NULL; 13073 nfs4_open_stream_t *osp = NULL; 13074 nfs4_lock_owner_t *lop = NULL; 13075 pid_t pid; 13076 rnode4_t *rp = VTOR4(vp); 13077 13078 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 13079 13080 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13081 if (ep->error || ep->stat != NFS4_OK) 13082 return; 13083 13084 argop->argop = OP_LOCK; 13085 if (ctype == NFS4_LCK_CTYPE_NORM) 13086 argsp->ctag = TAG_LOCK; 13087 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13088 argsp->ctag = TAG_RELOCK; 13089 else 13090 argsp->ctag = TAG_LOCK_REINSTATE; 13091 lock_args = &argop->nfs_argop4_u.oplock; 13092 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13093 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13094 /* 13095 * Get the lock owner. If no lock owner exists, 13096 * create a 'temporary' one and grab the open seqid 13097 * synchronization (which puts a hold on the open 13098 * owner and open stream). 13099 * This also grabs the lock seqid synchronization. 13100 */ 13101 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13102 ep->stat = 13103 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13104 13105 if (ep->stat != NFS4_OK) 13106 goto out; 13107 13108 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13109 &lock_args->locker); 13110 13111 lock_args->offset = flk->l_start; 13112 lock_args->length = flk->l_len; 13113 if (flk->l_len == 0) 13114 lock_args->length = ~lock_args->length; 13115 *lock_argsp = lock_args; 13116 out: 13117 *oopp = oop; 13118 *ospp = osp; 13119 *lopp = lop; 13120 } 13121 13122 /* 13123 * After we get the reply from the server, record the proper information 13124 * for possible resend lock requests. 13125 * 13126 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13127 */ 13128 static void 13129 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13130 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13131 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13132 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13133 { 13134 bool_t unlock = (flk->l_type == F_UNLCK); 13135 13136 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 13137 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13138 ctype == NFS4_LCK_CTYPE_REINSTATE); 13139 13140 if (error != 0 && !unlock) { 13141 NFS4_DEBUG((nfs4_lost_rqst_debug || 13142 nfs4_client_lock_debug), (CE_NOTE, 13143 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13144 " for lop %p", (void *)lop)); 13145 ASSERT(lop != NULL); 13146 mutex_enter(&lop->lo_lock); 13147 lop->lo_pending_rqsts = 1; 13148 mutex_exit(&lop->lo_lock); 13149 } 13150 13151 lost_rqstp->lr_putfirst = FALSE; 13152 lost_rqstp->lr_op = 0; 13153 13154 /* 13155 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13156 * recovery purposes so that the lock request that was sent 13157 * can be saved and re-issued later. Ditto for EIO from a forced 13158 * unmount. This is done to have the client's local locking state 13159 * match the v4 server's state; that is, the request was 13160 * potentially received and accepted by the server but the client 13161 * thinks it was not. 13162 */ 13163 if (error == ETIMEDOUT || error == EINTR || 13164 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13165 NFS4_DEBUG((nfs4_lost_rqst_debug || 13166 nfs4_client_lock_debug), (CE_NOTE, 13167 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13168 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13169 (void *)lop, (void *)oop, (void *)osp)); 13170 if (unlock) 13171 lost_rqstp->lr_op = OP_LOCKU; 13172 else { 13173 lost_rqstp->lr_op = OP_LOCK; 13174 lost_rqstp->lr_locktype = locktype; 13175 } 13176 /* 13177 * Objects are held and rele'd via the recovery code. 13178 * See nfs4_save_lost_rqst. 13179 */ 13180 lost_rqstp->lr_vp = vp; 13181 lost_rqstp->lr_dvp = NULL; 13182 lost_rqstp->lr_oop = oop; 13183 lost_rqstp->lr_osp = osp; 13184 lost_rqstp->lr_lop = lop; 13185 lost_rqstp->lr_cr = cr; 13186 switch (ctype) { 13187 case NFS4_LCK_CTYPE_NORM: 13188 flk->l_pid = ttoproc(curthread)->p_pid; 13189 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13190 break; 13191 case NFS4_LCK_CTYPE_REINSTATE: 13192 lost_rqstp->lr_putfirst = TRUE; 13193 lost_rqstp->lr_ctype = ctype; 13194 break; 13195 default: 13196 break; 13197 } 13198 lost_rqstp->lr_flk = flk; 13199 } 13200 } 13201 13202 /* 13203 * Update lop's seqid. Also update the seqid stored in a resend request, 13204 * if any. (Some recovery errors increment the seqid, and we may have to 13205 * send the resend request again.) 13206 */ 13207 13208 static void 13209 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13210 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13211 { 13212 if (lock_args) { 13213 if (lock_args->locker.new_lock_owner == TRUE) 13214 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13215 else { 13216 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13217 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13218 } 13219 } else if (locku_args) { 13220 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13221 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13222 } 13223 } 13224 13225 /* 13226 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13227 * COMPOUND4 args/res for calls that need to retry. 13228 * Switches the *cred_otwp to base_cr. 13229 */ 13230 static void 13231 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13232 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13233 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13234 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13235 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13236 { 13237 nfs4_open_owner_t *oop = *oopp; 13238 nfs4_open_stream_t *osp = *ospp; 13239 nfs4_lock_owner_t *lop = *lopp; 13240 nfs_argop4 *argop = (*argspp)->array; 13241 13242 if (*did_start_fop) { 13243 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13244 needrecov); 13245 *did_start_fop = FALSE; 13246 } 13247 ASSERT((*argspp)->array_len == 2); 13248 if (argop[1].argop == OP_LOCK) 13249 nfs4args_lock_free(&argop[1]); 13250 else if (argop[1].argop == OP_LOCKT) 13251 nfs4args_lockt_free(&argop[1]); 13252 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13253 if (!error) 13254 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13255 *argspp = NULL; 13256 *respp = NULL; 13257 13258 if (lop) { 13259 nfs4_end_lock_seqid_sync(lop); 13260 lock_owner_rele(lop); 13261 *lopp = NULL; 13262 } 13263 13264 /* need to free up the reference on osp for lock args */ 13265 if (osp != NULL) { 13266 open_stream_rele(osp, VTOR4(vp)); 13267 *ospp = NULL; 13268 } 13269 13270 /* need to free up the reference on oop for lock args */ 13271 if (oop != NULL) { 13272 nfs4_end_open_seqid_sync(oop); 13273 open_owner_rele(oop); 13274 *oopp = NULL; 13275 } 13276 13277 crfree(*cred_otwp); 13278 *cred_otwp = base_cr; 13279 crhold(*cred_otwp); 13280 } 13281 13282 /* 13283 * Function to process the client's recovery for nfs4frlock. 13284 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13285 * 13286 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13287 * COMPOUND4 args/res for calls that need to retry. 13288 * 13289 * Note: the rp's r_lkserlock is *not* dropped during this path. 13290 */ 13291 static bool_t 13292 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13293 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13294 LOCK4args *lock_args, LOCKU4args *locku_args, 13295 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13296 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13297 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13298 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13299 { 13300 nfs4_open_owner_t *oop = *oopp; 13301 nfs4_open_stream_t *osp = *ospp; 13302 nfs4_lock_owner_t *lop = *lopp; 13303 nfs_argop4 *argop; 13304 13305 bool_t abort, retry; 13306 13307 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 13308 ASSERT((*argspp) != NULL); 13309 ASSERT((*respp) != NULL); 13310 if (lock_args || locku_args) 13311 ASSERT(lop != NULL); 13312 13313 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13314 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13315 13316 retry = TRUE; 13317 abort = FALSE; 13318 if (needrecov) { 13319 nfs4_bseqid_entry_t *bsep = NULL; 13320 nfs_opnum4 op; 13321 13322 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13323 13324 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13325 seqid4 seqid; 13326 13327 if (lock_args) { 13328 if (lock_args->locker.new_lock_owner == TRUE) 13329 seqid = lock_args->locker.locker4_u. 13330 open_owner.open_seqid; 13331 else 13332 seqid = lock_args->locker.locker4_u. 13333 lock_owner.lock_seqid; 13334 } else if (locku_args) { 13335 seqid = locku_args->seqid; 13336 } else { 13337 seqid = 0; 13338 } 13339 13340 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13341 flk->l_pid, (*argspp)->ctag, seqid); 13342 } 13343 13344 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13345 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13346 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13347 NULL, op, bsep); 13348 13349 if (bsep) 13350 kmem_free(bsep, sizeof (*bsep)); 13351 } 13352 13353 /* 13354 * Return that we do not want to retry the request for 3 cases: 13355 * 1. If we received EINTR or are bailing out because of a forced 13356 * unmount, we came into this code path just for the sake of 13357 * initiating recovery, we now need to return the error. 13358 * 2. If we have aborted recovery. 13359 * 3. We received NFS4ERR_BAD_SEQID. 13360 */ 13361 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13362 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13363 retry = FALSE; 13364 13365 if (*did_start_fop == TRUE) { 13366 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13367 needrecov); 13368 *did_start_fop = FALSE; 13369 } 13370 13371 argop = (*argspp)->array; 13372 ASSERT((*argspp)->array_len == 2); 13373 if (argop[1].argop == OP_LOCK) 13374 nfs4args_lock_free(&argop[1]); 13375 else if (argop[1].argop == OP_LOCKT) 13376 nfs4args_lockt_free(&argop[1]); 13377 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13378 if (!ep->error && retry == TRUE) { 13379 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13380 *respp = NULL; 13381 *argspp = NULL; 13382 } 13383 13384 if (lop != NULL) { 13385 nfs4_end_lock_seqid_sync(lop); 13386 lock_owner_rele(lop); 13387 } 13388 13389 *lopp = NULL; 13390 13391 /* need to free up the reference on osp for lock args */ 13392 if (osp != NULL) { 13393 open_stream_rele(osp, rp); 13394 *ospp = NULL; 13395 } 13396 13397 /* need to free up the reference on oop for lock args */ 13398 if (oop != NULL) { 13399 nfs4_end_open_seqid_sync(oop); 13400 open_owner_rele(oop); 13401 *oopp = NULL; 13402 } 13403 13404 return (retry); 13405 } 13406 13407 /* 13408 * Handles the succesful reply from the server for nfs4frlock. 13409 */ 13410 static void 13411 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13412 vnode_t *vp, int flag, u_offset_t offset, 13413 nfs4_lost_rqst_t *resend_rqstp) 13414 { 13415 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 13416 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13417 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13418 if (ctype == NFS4_LCK_CTYPE_NORM) { 13419 flk->l_pid = ttoproc(curthread)->p_pid; 13420 /* 13421 * We do not register lost locks locally in 13422 * the 'resend' case since the user/application 13423 * doesn't think we have the lock. 13424 */ 13425 ASSERT(!resend_rqstp); 13426 nfs4_register_lock_locally(vp, flk, flag, offset); 13427 } 13428 } 13429 } 13430 13431 /* 13432 * Handle the DENIED reply from the server for nfs4frlock. 13433 * Returns TRUE if we should retry the request; FALSE otherwise. 13434 * 13435 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13436 * COMPOUND4 args/res for calls that need to retry. Can also 13437 * drop and regrab the r_lkserlock. 13438 */ 13439 static bool_t 13440 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13441 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13442 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13443 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13444 nfs4_recov_state_t *recov_statep, int needrecov, 13445 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13446 clock_t *tick_delayp, short *whencep, int *errorp, 13447 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13448 bool_t *skip_get_err) 13449 { 13450 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 13451 13452 if (lock_args) { 13453 nfs4_open_owner_t *oop = *oopp; 13454 nfs4_open_stream_t *osp = *ospp; 13455 nfs4_lock_owner_t *lop = *lopp; 13456 int intr; 13457 13458 /* 13459 * Blocking lock needs to sleep and retry from the request. 13460 * 13461 * Do not block and wait for 'resend' or 'reinstate' 13462 * lock requests, just return the error. 13463 * 13464 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13465 */ 13466 if (cmd == F_SETLKW) { 13467 rnode4_t *rp = VTOR4(vp); 13468 nfs_argop4 *argop = (*argspp)->array; 13469 13470 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13471 13472 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13473 recov_statep, needrecov); 13474 *did_start_fop = FALSE; 13475 ASSERT((*argspp)->array_len == 2); 13476 if (argop[1].argop == OP_LOCK) 13477 nfs4args_lock_free(&argop[1]); 13478 else if (argop[1].argop == OP_LOCKT) 13479 nfs4args_lockt_free(&argop[1]); 13480 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13481 if (*respp) 13482 (void) xdr_free(xdr_COMPOUND4res_clnt, 13483 (caddr_t)*respp); 13484 *argspp = NULL; 13485 *respp = NULL; 13486 nfs4_end_lock_seqid_sync(lop); 13487 lock_owner_rele(lop); 13488 *lopp = NULL; 13489 if (osp != NULL) { 13490 open_stream_rele(osp, rp); 13491 *ospp = NULL; 13492 } 13493 if (oop != NULL) { 13494 nfs4_end_open_seqid_sync(oop); 13495 open_owner_rele(oop); 13496 *oopp = NULL; 13497 } 13498 13499 nfs_rw_exit(&rp->r_lkserlock); 13500 13501 intr = nfs4_block_and_wait(tick_delayp, rp); 13502 13503 if (intr) { 13504 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13505 RW_WRITER, FALSE); 13506 *errorp = EINTR; 13507 return (FALSE); 13508 } 13509 13510 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13511 RW_WRITER, FALSE); 13512 13513 /* 13514 * Make sure we are still safe to lock with 13515 * regards to mmapping. 13516 */ 13517 if (!nfs4_safelock(vp, flk, cr)) { 13518 *errorp = EAGAIN; 13519 return (FALSE); 13520 } 13521 13522 return (TRUE); 13523 } 13524 if (ctype == NFS4_LCK_CTYPE_NORM) 13525 *errorp = EAGAIN; 13526 *skip_get_err = TRUE; 13527 flk->l_whence = 0; 13528 *whencep = 0; 13529 return (FALSE); 13530 } else if (lockt_args) { 13531 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13532 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13533 13534 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13535 flk, lockt_args); 13536 13537 /* according to NLM code */ 13538 *errorp = 0; 13539 *whencep = 0; 13540 *skip_get_err = TRUE; 13541 return (FALSE); 13542 } 13543 return (FALSE); 13544 } 13545 13546 /* 13547 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13548 */ 13549 static void 13550 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13551 { 13552 switch (resp->status) { 13553 case NFS4ERR_ACCESS: 13554 case NFS4ERR_ADMIN_REVOKED: 13555 case NFS4ERR_BADHANDLE: 13556 case NFS4ERR_BAD_RANGE: 13557 case NFS4ERR_BAD_SEQID: 13558 case NFS4ERR_BAD_STATEID: 13559 case NFS4ERR_BADXDR: 13560 case NFS4ERR_DEADLOCK: 13561 case NFS4ERR_DELAY: 13562 case NFS4ERR_EXPIRED: 13563 case NFS4ERR_FHEXPIRED: 13564 case NFS4ERR_GRACE: 13565 case NFS4ERR_INVAL: 13566 case NFS4ERR_ISDIR: 13567 case NFS4ERR_LEASE_MOVED: 13568 case NFS4ERR_LOCK_NOTSUPP: 13569 case NFS4ERR_LOCK_RANGE: 13570 case NFS4ERR_MOVED: 13571 case NFS4ERR_NOFILEHANDLE: 13572 case NFS4ERR_NO_GRACE: 13573 case NFS4ERR_OLD_STATEID: 13574 case NFS4ERR_OPENMODE: 13575 case NFS4ERR_RECLAIM_BAD: 13576 case NFS4ERR_RECLAIM_CONFLICT: 13577 case NFS4ERR_RESOURCE: 13578 case NFS4ERR_SERVERFAULT: 13579 case NFS4ERR_STALE: 13580 case NFS4ERR_STALE_CLIENTID: 13581 case NFS4ERR_STALE_STATEID: 13582 return; 13583 default: 13584 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13585 "nfs4frlock_results_default: got unrecognizable " 13586 "res.status %d", resp->status)); 13587 *errorp = NFS4ERR_INVAL; 13588 } 13589 } 13590 13591 /* 13592 * The lock request was successful, so update the client's state. 13593 */ 13594 static void 13595 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13596 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13597 vnode_t *vp, flock64_t *flk, cred_t *cr, 13598 nfs4_lost_rqst_t *resend_rqstp) 13599 { 13600 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 13601 13602 if (lock_args) { 13603 LOCK4res *lock_res; 13604 13605 lock_res = &resop->nfs_resop4_u.oplock; 13606 /* update the stateid with server's response */ 13607 13608 if (lock_args->locker.new_lock_owner == TRUE) { 13609 mutex_enter(&lop->lo_lock); 13610 lop->lo_just_created = NFS4_PERM_CREATED; 13611 mutex_exit(&lop->lo_lock); 13612 } 13613 13614 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13615 13616 /* 13617 * If the lock was the result of a resending a lost 13618 * request, we've synched up the stateid and seqid 13619 * with the server, but now the server might be out of sync 13620 * with what the application thinks it has for locks. 13621 * Clean that up here. It's unclear whether we should do 13622 * this even if the filesystem has been forcibly unmounted. 13623 * For most servers, it's probably wasted effort, but 13624 * RFC3530 lets servers require that unlocks exactly match 13625 * the locks that are held. 13626 */ 13627 if (resend_rqstp != NULL && 13628 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13629 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13630 } else { 13631 flk->l_whence = 0; 13632 } 13633 } else if (locku_args) { 13634 LOCKU4res *locku_res; 13635 13636 locku_res = &resop->nfs_resop4_u.oplocku; 13637 13638 /* Update the stateid with the server's response */ 13639 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 13640 } else if (lockt_args) { 13641 /* Switch the lock type to express success, see fcntl */ 13642 flk->l_type = F_UNLCK; 13643 flk->l_whence = 0; 13644 } 13645 } 13646 13647 /* 13648 * Do final cleanup before exiting nfs4frlock. 13649 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13650 * COMPOUND4 args/res for calls that haven't already. 13651 */ 13652 static void 13653 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 13654 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 13655 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 13656 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13657 short whence, u_offset_t offset, struct lm_sysid *ls, 13658 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 13659 bool_t did_start_fop, bool_t skip_get_err, 13660 cred_t *cred_otw, cred_t *cred) 13661 { 13662 mntinfo4_t *mi = VTOMI4(vp); 13663 rnode4_t *rp = VTOR4(vp); 13664 int error = *errorp; 13665 nfs_argop4 *argop; 13666 13667 ASSERT(curproc->p_zone == mi->mi_zone); 13668 /* 13669 * The client recovery code wants the raw status information, 13670 * so don't map the NFS status code to an errno value for 13671 * non-normal call types. 13672 */ 13673 if (ctype == NFS4_LCK_CTYPE_NORM) { 13674 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 13675 *errorp = geterrno4(resp->status); 13676 if (did_start_fop == TRUE) 13677 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 13678 needrecov); 13679 13680 if (!error && resp && resp->status == NFS4_OK) { 13681 /* 13682 * We've established a new lock on the server, so invalidate 13683 * the pages associated with the vnode to get the most up to 13684 * date pages from the server after acquiring the lock. We 13685 * want to be sure that the read operation gets the newest data. 13686 * N.B. 13687 * We used to do this in nfs4frlock_results_ok but that doesn't 13688 * work since VOP_PUTPAGE can call nfs4_commit which calls 13689 * nfs4_start_fop. We flush the pages below after calling 13690 * nfs4_end_fop above 13691 */ 13692 int error; 13693 13694 error = VOP_PUTPAGE(vp, (u_offset_t)0, 13695 0, B_INVAL, cred); 13696 13697 if (error && (error == ENOSPC || error == EDQUOT)) { 13698 rnode4_t *rp = VTOR4(vp); 13699 13700 mutex_enter(&rp->r_statelock); 13701 if (!rp->r_error) 13702 rp->r_error = error; 13703 mutex_exit(&rp->r_statelock); 13704 } 13705 } 13706 } 13707 if (argsp) { 13708 ASSERT(argsp->array_len == 2); 13709 argop = argsp->array; 13710 if (argop[1].argop == OP_LOCK) 13711 nfs4args_lock_free(&argop[1]); 13712 else if (argop[1].argop == OP_LOCKT) 13713 nfs4args_lockt_free(&argop[1]); 13714 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13715 if (resp) 13716 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 13717 } 13718 13719 /* free the reference on the lock owner */ 13720 if (lop != NULL) { 13721 nfs4_end_lock_seqid_sync(lop); 13722 lock_owner_rele(lop); 13723 } 13724 13725 /* need to free up the reference on osp for lock args */ 13726 if (osp != NULL) 13727 open_stream_rele(osp, rp); 13728 13729 /* need to free up the reference on oop for lock args */ 13730 if (oop != NULL) { 13731 nfs4_end_open_seqid_sync(oop); 13732 open_owner_rele(oop); 13733 } 13734 13735 (void) convoff(vp, flk, whence, offset); 13736 13737 lm_rel_sysid(ls); 13738 13739 /* 13740 * Record debug information in the event we get EINVAL. 13741 */ 13742 mutex_enter(&mi->mi_lock); 13743 if (*errorp == EINVAL && (lock_args || locku_args) && 13744 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 13745 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 13746 zcmn_err(getzoneid(), CE_NOTE, 13747 "%s operation failed with " 13748 "EINVAL probably since the server, %s," 13749 " doesn't support POSIX style locking", 13750 lock_args ? "LOCK" : "LOCKU", 13751 mi->mi_curr_serv->sv_hostname); 13752 mi->mi_flags |= MI4_LOCK_DEBUG; 13753 } 13754 } 13755 mutex_exit(&mi->mi_lock); 13756 13757 if (cred_otw) 13758 crfree(cred_otw); 13759 } 13760 13761 /* 13762 * This calls the server and the local locking code. 13763 * 13764 * Client locks are registerred locally by oring the sysid with 13765 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 13766 * We need to distinguish between the two to avoid collision in case one 13767 * machine is used as both client and server. 13768 * 13769 * Blocking lock requests will continually retry to acquire the lock 13770 * forever. 13771 * 13772 * The ctype is defined as follows: 13773 * NFS4_LCK_CTYPE_NORM: normal lock request. 13774 * 13775 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 13776 * recovery, get the pid from flk instead of curproc, and don't reregister 13777 * the lock locally. 13778 * 13779 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 13780 * that we will use the information passed in via resend_rqstp to setup the 13781 * lock/locku request. This resend is the exact same request as the 'lost 13782 * lock', and is initiated by the recovery framework. A successful resend 13783 * request can initiate one or more reinstate requests. 13784 * 13785 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 13786 * does not trigger additional reinstate requests. This lock call type is 13787 * set for setting the v4 server's locking state back to match what the 13788 * client's local locking state is in the event of a received 'lost lock'. 13789 * 13790 * Errors are returned via the nfs4_error_t parameter. 13791 */ 13792 void 13793 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 13794 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 13795 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 13796 { 13797 COMPOUND4args_clnt args, *argsp = NULL; 13798 COMPOUND4res_clnt res, *resp = NULL; 13799 nfs_argop4 *argop; 13800 nfs_resop4 *resop; 13801 rnode4_t *rp; 13802 int doqueue = 1; 13803 clock_t tick_delay; /* delay in clock ticks */ 13804 struct lm_sysid *ls; 13805 LOCK4args *lock_args = NULL; 13806 LOCKU4args *locku_args = NULL; 13807 LOCKT4args *lockt_args = NULL; 13808 nfs4_open_owner_t *oop = NULL; 13809 nfs4_open_stream_t *osp = NULL; 13810 nfs4_lock_owner_t *lop = NULL; 13811 bool_t needrecov = FALSE; 13812 nfs4_recov_state_t recov_state; 13813 short whence; 13814 nfs4_op_hint_t op_hint; 13815 nfs4_lost_rqst_t lost_rqst; 13816 bool_t retry = FALSE; 13817 bool_t did_start_fop = FALSE; 13818 bool_t skip_get_err = FALSE; 13819 cred_t *cred_otw = NULL; 13820 bool_t recovonly; /* just queue request */ 13821 int frc_no_reclaim = 0; 13822 #ifdef DEBUG 13823 char *name; 13824 #endif 13825 13826 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 13827 13828 #ifdef DEBUG 13829 name = fn_name(VTOSV(vp)->sv_name); 13830 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 13831 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 13832 "length %"PRIu64", pid %d, sysid %d, call type %s, " 13833 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 13834 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 13835 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 13836 resend_rqstp ? "TRUE" : "FALSE")); 13837 kmem_free(name, MAXNAMELEN); 13838 #endif 13839 13840 nfs4_error_zinit(ep); 13841 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 13842 if (ep->error) 13843 return; 13844 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 13845 if (ep->error) 13846 return; 13847 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 13848 vp, cr, &cred_otw); 13849 13850 recov_retry: 13851 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 13852 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 13853 rp = VTOR4(vp); 13854 13855 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 13856 &did_start_fop, &recovonly); 13857 13858 if (ep->error) 13859 goto out; 13860 13861 if (recovonly) { 13862 /* 13863 * Leave the request for the recovery system to deal with. 13864 */ 13865 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13866 ASSERT(cmd != F_GETLK); 13867 ASSERT(flk->l_type == F_UNLCK); 13868 13869 nfs4_error_init(ep, EINTR); 13870 needrecov = TRUE; 13871 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 13872 if (lop != NULL) { 13873 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 13874 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 13875 (void) nfs4_start_recovery(ep, 13876 VTOMI4(vp), vp, NULL, NULL, 13877 (lost_rqst.lr_op == OP_LOCK || 13878 lost_rqst.lr_op == OP_LOCKU) ? 13879 &lost_rqst : NULL, OP_LOCKU, NULL); 13880 lock_owner_rele(lop); 13881 lop = NULL; 13882 } 13883 flk->l_pid = curproc->p_pid; 13884 nfs4_register_lock_locally(vp, flk, flag, offset); 13885 goto out; 13886 } 13887 13888 /* putfh directory fh */ 13889 argop[0].argop = OP_CPUTFH; 13890 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 13891 13892 /* 13893 * Set up the over-the-wire arguments and get references to the 13894 * open owner, etc. 13895 */ 13896 13897 if (ctype == NFS4_LCK_CTYPE_RESEND || 13898 ctype == NFS4_LCK_CTYPE_REINSTATE) { 13899 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 13900 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 13901 } else { 13902 bool_t go_otw = TRUE; 13903 13904 ASSERT(resend_rqstp == NULL); 13905 13906 switch (cmd) { 13907 case F_GETLK: 13908 case F_O_GETLK: 13909 nfs4frlock_setup_lockt_args(ctype, &argop[1], 13910 &lockt_args, argsp, flk, rp); 13911 break; 13912 case F_SETLKW: 13913 case F_SETLK: 13914 if (flk->l_type == F_UNLCK) 13915 nfs4frlock_setup_locku_args(ctype, 13916 &argop[1], &locku_args, flk, 13917 &lop, ep, argsp, 13918 vp, flag, offset, cr, 13919 &skip_get_err, &go_otw); 13920 else 13921 nfs4frlock_setup_lock_args(ctype, 13922 &lock_args, &oop, &osp, &lop, &argop[1], 13923 argsp, flk, cmd, vp, cr, ep); 13924 13925 if (ep->error) 13926 goto out; 13927 13928 switch (ep->stat) { 13929 case NFS4_OK: 13930 break; 13931 case NFS4ERR_DELAY: 13932 /* recov thread never gets this error */ 13933 ASSERT(resend_rqstp == NULL); 13934 ASSERT(did_start_fop); 13935 13936 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13937 &recov_state, TRUE); 13938 did_start_fop = FALSE; 13939 if (argop[1].argop == OP_LOCK) 13940 nfs4args_lock_free(&argop[1]); 13941 else if (argop[1].argop == OP_LOCKT) 13942 nfs4args_lockt_free(&argop[1]); 13943 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13944 argsp = NULL; 13945 goto recov_retry; 13946 default: 13947 ep->error = EIO; 13948 goto out; 13949 } 13950 break; 13951 default: 13952 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13953 "nfs4_frlock: invalid cmd %d", cmd)); 13954 ep->error = EINVAL; 13955 goto out; 13956 } 13957 13958 if (!go_otw) 13959 goto out; 13960 } 13961 13962 /* XXX should we use the local reclock as a cache ? */ 13963 /* 13964 * Unregister the lock with the local locking code before 13965 * contacting the server. This avoids a potential race where 13966 * another process gets notified that it has been granted a lock 13967 * before we can unregister ourselves locally. 13968 */ 13969 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 13970 if (ctype == NFS4_LCK_CTYPE_NORM) 13971 flk->l_pid = ttoproc(curthread)->p_pid; 13972 nfs4_register_lock_locally(vp, flk, flag, offset); 13973 } 13974 13975 /* 13976 * Send the server the lock request. Continually loop with a delay 13977 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 13978 */ 13979 resp = &res; 13980 13981 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 13982 (CE_NOTE, 13983 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 13984 rnode4info(rp))); 13985 13986 if (lock_args && frc_no_reclaim) { 13987 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 13988 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13989 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 13990 lock_args->reclaim = FALSE; 13991 if (did_reclaimp) 13992 *did_reclaimp = 0; 13993 } 13994 13995 /* 13996 * Do the OTW call. 13997 */ 13998 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 13999 14000 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14001 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14002 14003 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14004 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14005 "nfs4frlock: needrecov %d", needrecov)); 14006 14007 if (ep->error != 0 && !needrecov && ep->error != EACCES) 14008 goto out; 14009 14010 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14011 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14012 args.ctag); 14013 14014 if ((ep->error == EACCES || 14015 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14016 cred_otw != cr) { 14017 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14018 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14019 cr, &cred_otw); 14020 goto recov_retry; 14021 } 14022 14023 if (needrecov) { 14024 /* 14025 * LOCKT requests don't need to recover from lost 14026 * requests since they don't create/modify state. 14027 */ 14028 if ((ep->error == EINTR || 14029 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14030 lockt_args) 14031 goto out; 14032 /* 14033 * Do not attempt recovery for requests initiated by 14034 * the recovery framework. Let the framework redrive them. 14035 */ 14036 if (ctype != NFS4_LCK_CTYPE_NORM) 14037 goto out; 14038 else { 14039 ASSERT(resend_rqstp == NULL); 14040 } 14041 14042 nfs4frlock_save_lost_rqst(ctype, ep->error, 14043 flk_to_locktype(cmd, flk->l_type), 14044 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14045 14046 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14047 &resp, lock_args, locku_args, &oop, &osp, &lop, 14048 rp, vp, &recov_state, op_hint, &did_start_fop, 14049 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14050 14051 if (retry) { 14052 ASSERT(oop == NULL); 14053 ASSERT(osp == NULL); 14054 ASSERT(lop == NULL); 14055 goto recov_retry; 14056 } 14057 goto out; 14058 } 14059 14060 /* 14061 * Process the reply. 14062 */ 14063 switch (resp->status) { 14064 case NFS4_OK: 14065 resop = &resp->array[1]; 14066 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14067 resend_rqstp); 14068 /* 14069 * Have a successful lock operation, now update state. 14070 */ 14071 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14072 resop, lop, vp, flk, cr, resend_rqstp); 14073 break; 14074 14075 case NFS4ERR_DENIED: 14076 resop = &resp->array[1]; 14077 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14078 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14079 &recov_state, needrecov, &argsp, &resp, 14080 &tick_delay, &whence, &ep->error, resop, cr, 14081 &did_start_fop, &skip_get_err); 14082 14083 if (retry) { 14084 ASSERT(oop == NULL); 14085 ASSERT(osp == NULL); 14086 ASSERT(lop == NULL); 14087 goto recov_retry; 14088 } 14089 break; 14090 /* 14091 * If the server won't let us reclaim, fall-back to trying to lock 14092 * the file from scratch. Code elsewhere will check the changeinfo 14093 * to ensure the file hasn't been changed. 14094 */ 14095 case NFS4ERR_NO_GRACE: 14096 if (lock_args && lock_args->reclaim == TRUE) { 14097 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14098 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14099 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14100 frc_no_reclaim = 1; 14101 /* clean up before retrying */ 14102 needrecov = 0; 14103 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14104 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14105 &recov_state, op_hint, &did_start_fop, NULL, flk); 14106 goto recov_retry; 14107 } 14108 /* FALLTHROUGH */ 14109 14110 default: 14111 nfs4frlock_results_default(resp, &ep->error); 14112 break; 14113 } 14114 out: 14115 /* 14116 * Process and cleanup from error. Make interrupted unlock 14117 * requests look successful, since they will be handled by the 14118 * client recovery code. 14119 */ 14120 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14121 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14122 lock_args, locku_args, did_start_fop, 14123 skip_get_err, cred_otw, cr); 14124 14125 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14126 (cmd == F_SETLK || cmd == F_SETLKW)) 14127 ep->error = 0; 14128 } 14129 14130 /* 14131 * nfs4_safelock: 14132 * 14133 * Return non-zero if the given lock request can be handled without 14134 * violating the constraints on concurrent mapping and locking. 14135 */ 14136 14137 static int 14138 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14139 { 14140 rnode4_t *rp = VTOR4(vp); 14141 struct vattr va; 14142 int error; 14143 14144 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 14145 ASSERT(rp->r_mapcnt >= 0); 14146 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14147 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14148 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14149 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14150 14151 if (rp->r_mapcnt == 0) 14152 return (1); /* always safe if not mapped */ 14153 14154 /* 14155 * If the file is already mapped and there are locks, then they 14156 * should be all safe locks. So adding or removing a lock is safe 14157 * as long as the new request is safe (i.e., whole-file, meaning 14158 * length and starting offset are both zero). 14159 */ 14160 14161 if (bfp->l_start != 0 || bfp->l_len != 0) { 14162 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14163 "cannot lock a memory mapped file unless locking the " 14164 "entire file: start %"PRIx64", len %"PRIx64, 14165 bfp->l_start, bfp->l_len)); 14166 return (0); 14167 } 14168 14169 /* mandatory locking and mapping don't mix */ 14170 va.va_mask = AT_MODE; 14171 error = VOP_GETATTR(vp, &va, 0, cr); 14172 if (error != 0) { 14173 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14174 "getattr error %d", error)); 14175 return (0); /* treat errors conservatively */ 14176 } 14177 if (MANDLOCK(vp, va.va_mode)) { 14178 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14179 "cannot mandatory lock and mmap a file")); 14180 return (0); 14181 } 14182 14183 return (1); 14184 } 14185 14186 14187 /* 14188 * Register the lock locally within Solaris. 14189 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14190 * recording locks locally. 14191 * 14192 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14193 * are registered locally. 14194 */ 14195 void 14196 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14197 u_offset_t offset) 14198 { 14199 int oldsysid; 14200 int error; 14201 #ifdef DEBUG 14202 char *name; 14203 #endif 14204 14205 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 14206 14207 #ifdef DEBUG 14208 name = fn_name(VTOSV(vp)->sv_name); 14209 NFS4_DEBUG(nfs4_client_lock_debug, 14210 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14211 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14212 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14213 flk->l_sysid)); 14214 kmem_free(name, MAXNAMELEN); 14215 #endif 14216 14217 /* register the lock with local locking */ 14218 oldsysid = flk->l_sysid; 14219 flk->l_sysid |= LM_SYSID_CLIENT; 14220 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14221 #ifdef DEBUG 14222 if (error != 0) { 14223 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14224 "nfs4_register_lock_locally: could not register with" 14225 " local locking")); 14226 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14227 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14228 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14229 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14230 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14231 flk->l_type, flk->l_start, flk->l_len)); 14232 (void) reclock(vp, flk, 0, flag, offset, NULL); 14233 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14234 "blocked by pid %d sysid 0x%x type %d " 14235 "off 0x%" PRIx64 " len 0x%" PRIx64, 14236 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14237 flk->l_len)); 14238 } 14239 #endif 14240 flk->l_sysid = oldsysid; 14241 } 14242 14243 /* 14244 * nfs4_lockrelease: 14245 * 14246 * Release any locks on the given vnode that are held by the current 14247 * process. Also removes the lock owner (if one exists) from the rnode's 14248 * list. 14249 */ 14250 static int 14251 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14252 { 14253 flock64_t ld; 14254 int ret, error; 14255 rnode4_t *rp; 14256 nfs4_lock_owner_t *lop; 14257 nfs4_recov_state_t recov_state; 14258 mntinfo4_t *mi; 14259 bool_t possible_orphan = FALSE; 14260 bool_t recovonly; 14261 14262 ASSERT((uintptr_t)vp > KERNELBASE); 14263 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 14264 14265 rp = VTOR4(vp); 14266 mi = VTOMI4(vp); 14267 14268 /* 14269 * If we have not locked anything then we can 14270 * just return since we have no work to do. 14271 */ 14272 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14273 return (0); 14274 } 14275 14276 /* 14277 * We need to comprehend that another thread may 14278 * kick off recovery and the lock_owner we have stashed 14279 * in lop might be invalid so we should NOT cache it 14280 * locally! 14281 */ 14282 recov_state.rs_flags = 0; 14283 recov_state.rs_num_retry_despite_err = 0; 14284 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14285 &recovonly); 14286 if (error) { 14287 mutex_enter(&rp->r_statelock); 14288 rp->r_flags |= R4LODANGLERS; 14289 mutex_exit(&rp->r_statelock); 14290 return (error); 14291 } 14292 14293 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14294 14295 /* 14296 * Check if the lock owner might have a lock (request was sent but 14297 * no response was received). Also check if there are any remote 14298 * locks on the file. (In theory we shouldn't have to make this 14299 * second check if there's no lock owner, but for now we'll be 14300 * conservative and do it anyway.) If either condition is true, 14301 * send an unlock for the entire file to the server. 14302 * 14303 * Note that no explicit synchronization is needed here. At worst, 14304 * flk_has_remote_locks() will return a false positive, in which case 14305 * the unlock call wastes time but doesn't harm correctness. 14306 */ 14307 14308 if (lop) { 14309 mutex_enter(&lop->lo_lock); 14310 possible_orphan = lop->lo_pending_rqsts; 14311 mutex_exit(&lop->lo_lock); 14312 lock_owner_rele(lop); 14313 } 14314 14315 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14316 14317 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14318 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14319 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14320 (void *)lop)); 14321 14322 if (possible_orphan || flk_has_remote_locks(vp)) { 14323 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14324 ld.l_whence = 0; /* unlock from start of file */ 14325 ld.l_start = 0; 14326 ld.l_len = 0; /* do entire file */ 14327 14328 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr); 14329 14330 if (ret != 0) { 14331 /* 14332 * If VOP_FRLOCK fails, make sure we unregister 14333 * local locks before we continue. 14334 */ 14335 ld.l_pid = ttoproc(curthread)->p_pid; 14336 nfs4_register_lock_locally(vp, &ld, flag, offset); 14337 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14338 "nfs4_lockrelease: lock release error on vp" 14339 " %p: error %d.\n", (void *)vp, ret)); 14340 } 14341 } 14342 14343 recov_state.rs_flags = 0; 14344 recov_state.rs_num_retry_despite_err = 0; 14345 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14346 &recovonly); 14347 if (error) { 14348 mutex_enter(&rp->r_statelock); 14349 rp->r_flags |= R4LODANGLERS; 14350 mutex_exit(&rp->r_statelock); 14351 return (error); 14352 } 14353 14354 /* 14355 * So, here we're going to need to retrieve the lock-owner 14356 * again (in case recovery has done a switch-a-roo) and 14357 * remove it because we can. 14358 */ 14359 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14360 14361 if (lop) { 14362 nfs4_rnode_remove_lock_owner(rp, lop); 14363 lock_owner_rele(lop); 14364 } 14365 14366 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14367 return (0); 14368 } 14369 14370 /* 14371 * Wait for 'tick_delay' clock ticks. 14372 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14373 * NOTE: lock_lease_time is in seconds. 14374 * 14375 * XXX For future improvements, should implement a waiting queue scheme. 14376 */ 14377 static int 14378 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14379 { 14380 long milliseconds_delay; 14381 time_t lock_lease_time; 14382 14383 /* wait tick_delay clock ticks or siginteruptus */ 14384 if (delay_sig(*tick_delay)) { 14385 return (EINTR); 14386 } 14387 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14388 "reissue the lock request: blocked for %ld clock ticks: %ld " 14389 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14390 14391 /* get the lease time */ 14392 lock_lease_time = r2lease_time(rp); 14393 14394 /* drv_hztousec converts ticks to microseconds */ 14395 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14396 if (milliseconds_delay < lock_lease_time * 1000) { 14397 *tick_delay = 2 * *tick_delay; 14398 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14399 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14400 } 14401 return (0); 14402 } 14403 14404 14405 void 14406 nfs4_vnops_init(void) 14407 { 14408 } 14409 14410 void 14411 nfs4_vnops_fini(void) 14412 { 14413 } 14414 14415 /* 14416 * Return a reference to the directory (parent) vnode for a given vnode, 14417 * using the saved pathname information and the directory file handle. The 14418 * caller is responsible for disposing of the reference. 14419 * Returns zero or an errno value. 14420 * 14421 * Caller should set need_start_op to FALSE if it is the recovery 14422 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14423 */ 14424 int 14425 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14426 { 14427 svnode_t *svnp; 14428 vnode_t *dvp = NULL; 14429 servinfo4_t *svp; 14430 nfs4_fname_t *mfname; 14431 int error; 14432 14433 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 14434 14435 if (vp->v_flag & VROOT) { 14436 nfs4_sharedfh_t *sfh; 14437 nfs_fh4 fh; 14438 mntinfo4_t *mi; 14439 14440 ASSERT(vp->v_type == VREG); 14441 14442 mi = VTOMI4(vp); 14443 svp = mi->mi_curr_serv; 14444 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14445 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14446 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14447 sfh = sfh4_get(&fh, VTOMI4(vp)); 14448 nfs_rw_exit(&svp->sv_lock); 14449 mfname = mi->mi_fname; 14450 fn_hold(mfname); 14451 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14452 sfh4_rele(&sfh); 14453 14454 if (dvp->v_type == VNON) 14455 dvp->v_type = VDIR; 14456 *dvpp = dvp; 14457 return (0); 14458 } 14459 14460 svnp = VTOSV(vp); 14461 14462 if (svnp == NULL) { 14463 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14464 "shadow node is NULL")); 14465 return (EINVAL); 14466 } 14467 14468 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14469 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14470 "shadow node name or dfh val == NULL")); 14471 return (EINVAL); 14472 } 14473 14474 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14475 (int)need_start_op); 14476 if (error != 0) { 14477 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14478 "nfs4_make_dotdot returned %d", error)); 14479 return (error); 14480 } 14481 if (!dvp) { 14482 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14483 "nfs4_make_dotdot returned a NULL dvp")); 14484 return (EIO); 14485 } 14486 if (dvp->v_type == VNON) 14487 dvp->v_type = VDIR; 14488 ASSERT(dvp->v_type == VDIR); 14489 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14490 mutex_enter(&dvp->v_lock); 14491 dvp->v_flag |= V_XATTRDIR; 14492 mutex_exit(&dvp->v_lock); 14493 } 14494 *dvpp = dvp; 14495 return (0); 14496 } 14497 14498 /* 14499 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14500 * length that fnamep can accept, including the trailing null. 14501 * Returns 0 if okay, returns an errno value if there was a problem. 14502 */ 14503 14504 int 14505 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14506 { 14507 char *fn; 14508 int err = 0; 14509 servinfo4_t *svp; 14510 svnode_t *shvp; 14511 14512 /* 14513 * If the file being opened has VROOT set, then this is 14514 * a "file" mount. sv_name will not be interesting, so 14515 * go back to the servinfo4 to get the original mount 14516 * path and strip off all but the final edge. Otherwise 14517 * just return the name from the shadow vnode. 14518 */ 14519 14520 if (vp->v_flag & VROOT) { 14521 14522 svp = VTOMI4(vp)->mi_curr_serv; 14523 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14524 14525 fn = strrchr(svp->sv_path, '/'); 14526 if (fn == NULL) 14527 err = EINVAL; 14528 else 14529 fn++; 14530 } else { 14531 shvp = VTOSV(vp); 14532 fn = fn_name(shvp->sv_name); 14533 } 14534 14535 if (err == 0) 14536 if (strlen(fn) < maxlen) 14537 (void) strcpy(fnamep, fn); 14538 else 14539 err = ENAMETOOLONG; 14540 14541 if (vp->v_flag & VROOT) 14542 nfs_rw_exit(&svp->sv_lock); 14543 else 14544 kmem_free(fn, MAXNAMELEN); 14545 14546 return (err); 14547 } 14548 14549 /* 14550 * If the vnode has pages, run the list and check for 14551 * any that are still dangling. We call this function 14552 * before the OTW CLOSE occurs so we can B_INVAL the 14553 * danglers. 14554 */ 14555 static int 14556 nfs4_dross_pages(vnode_t *vp) 14557 { 14558 page_t *pp; 14559 kmutex_t *vphm; 14560 rnode4_t *rp; 14561 14562 /* make sure we're looking at the master vnode, not a shadow */ 14563 rp = VTOR4(vp); 14564 if (IS_SHADOW(vp, rp)) 14565 vp = RTOV4(rp); 14566 14567 vphm = page_vnode_mutex(vp); 14568 mutex_enter(vphm); 14569 if ((pp = vp->v_pages) != NULL) { 14570 do { 14571 if (pp->p_fsdata != C_NOCOMMIT) { 14572 mutex_exit(vphm); 14573 return (1); 14574 } 14575 } while ((pp = pp->p_vpnext) != vp->v_pages); 14576 } 14577 mutex_exit(vphm); 14578 14579 return (0); 14580 } 14581 14582 /* 14583 * Bookkeeping for a close that doesn't need to go over the wire. 14584 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14585 * it is left at 1. 14586 */ 14587 void 14588 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14589 { 14590 rnode4_t *rp; 14591 mntinfo4_t *mi; 14592 14593 mi = VTOMI4(vp); 14594 rp = VTOR4(vp); 14595 14596 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14597 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14598 ASSERT(curproc->p_zone == mi->mi_zone); 14599 ASSERT(mutex_owned(&osp->os_sync_lock)); 14600 ASSERT(*have_lockp); 14601 14602 if (!osp->os_valid || 14603 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14604 return; 14605 } 14606 14607 /* 14608 * This removes the reference obtained at OPEN; ie, 14609 * when the open stream structure was created. 14610 * 14611 * We don't have to worry about calling 'open_stream_rele' 14612 * since we our currently holding a reference to this 14613 * open stream which means the count can not go to 0 with 14614 * this decrement. 14615 */ 14616 ASSERT(osp->os_ref_count >= 2); 14617 osp->os_ref_count--; 14618 osp->os_valid = 0; 14619 mutex_exit(&osp->os_sync_lock); 14620 *have_lockp = 0; 14621 14622 nfs4_dec_state_ref_count(mi); 14623 } 14624 14625 /* 14626 * Close all remaining open streams on the rnode. These open streams 14627 * could be here because: 14628 * - The close attempted at either close or delmap failed 14629 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14630 * - Someone did mknod on a regular file but never opened it 14631 */ 14632 int 14633 nfs4close_all(vnode_t *vp, cred_t *cr) 14634 { 14635 nfs4_open_stream_t *osp; 14636 int error; 14637 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14638 rnode4_t *rp; 14639 14640 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 14641 14642 error = 0; 14643 rp = VTOR4(vp); 14644 14645 /* 14646 * At this point, all we know is that the last time 14647 * someone called vn_rele, the count was 1. Since then, 14648 * the vnode could have been re-activated. We want to 14649 * loop through the open streams and close each one, but 14650 * we have to be careful since once we release the rnode 14651 * hash bucket lock, someone else is free to come in and 14652 * re-activate the rnode and add new open streams. The 14653 * strategy is take the rnode hash bucket lock, verify that 14654 * the count is still 1, grab the open stream off the 14655 * head of the list and mark it invalid, then release the 14656 * rnode hash bucket lock and proceed with that open stream. 14657 * This is ok because nfs4close_one() will acquire the proper 14658 * open/create to close/destroy synchronization for open 14659 * streams, and will ensure that if someone has reopened 14660 * the open stream after we've dropped the hash bucket lock 14661 * then we'll just simply return without destroying the 14662 * open stream. 14663 * Repeat until the list is empty. 14664 */ 14665 14666 for (;;) { 14667 14668 /* make sure vnode hasn't been reactivated */ 14669 rw_enter(&rp->r_hashq->r_lock, RW_READER); 14670 mutex_enter(&vp->v_lock); 14671 if (vp->v_count > 1) { 14672 mutex_exit(&vp->v_lock); 14673 rw_exit(&rp->r_hashq->r_lock); 14674 break; 14675 } 14676 /* 14677 * Grabbing r_os_lock before releasing v_lock prevents 14678 * a window where the rnode/open stream could get 14679 * reactivated (and os_force_close set to 0) before we 14680 * had a chance to set os_force_close to 1. 14681 */ 14682 mutex_enter(&rp->r_os_lock); 14683 mutex_exit(&vp->v_lock); 14684 14685 osp = list_head(&rp->r_open_streams); 14686 if (!osp) { 14687 /* nothing left to CLOSE OTW, so return */ 14688 mutex_exit(&rp->r_os_lock); 14689 rw_exit(&rp->r_hashq->r_lock); 14690 break; 14691 } 14692 14693 mutex_enter(&rp->r_statev4_lock); 14694 /* the file can't still be mem mapped */ 14695 ASSERT(rp->r_mapcnt == 0); 14696 if (rp->created_v4) 14697 rp->created_v4 = 0; 14698 mutex_exit(&rp->r_statev4_lock); 14699 14700 /* 14701 * Grab a ref on this open stream; nfs4close_one 14702 * will mark it as invalid 14703 */ 14704 mutex_enter(&osp->os_sync_lock); 14705 osp->os_ref_count++; 14706 osp->os_force_close = 1; 14707 mutex_exit(&osp->os_sync_lock); 14708 mutex_exit(&rp->r_os_lock); 14709 rw_exit(&rp->r_hashq->r_lock); 14710 14711 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 14712 14713 /* Update error if it isn't already non-zero */ 14714 if (error == 0) { 14715 if (e.error) 14716 error = e.error; 14717 else if (e.stat) 14718 error = geterrno4(e.stat); 14719 } 14720 14721 #ifdef DEBUG 14722 nfs4close_all_cnt++; 14723 #endif 14724 /* Release the ref on osp acquired above. */ 14725 open_stream_rele(osp, rp); 14726 14727 /* Proceed to the next open stream, if any */ 14728 } 14729 return (error); 14730 } 14731 14732 /* 14733 * nfs4close_one - close one open stream for a file if needed. 14734 * 14735 * "close_type" indicates which close path this is: 14736 * CLOSE_NORM: close initiated via VOP_CLOSE. 14737 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 14738 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 14739 * the close and release of client state for this open stream 14740 * (unless someone else has the open stream open). 14741 * CLOSE_RESEND: indicates the request is a replay of an earlier request 14742 * (e.g., due to abort because of a signal). 14743 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 14744 * 14745 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 14746 * recovery. Instead, the caller is expected to deal with retries. 14747 * 14748 * The caller can either pass in the osp ('provided_osp') or not. 14749 * 14750 * 'access_bits' represents the access we are closing/downgrading. 14751 * 14752 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 14753 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 14754 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 14755 * 14756 * Errors are returned via the nfs4_error_t. 14757 */ 14758 void 14759 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 14760 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 14761 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 14762 uint_t mmap_flags) 14763 { 14764 nfs4_open_owner_t *oop; 14765 nfs4_open_stream_t *osp = NULL; 14766 int retry = 0; 14767 int num_retries = NFS4_NUM_RECOV_RETRIES; 14768 rnode4_t *rp; 14769 mntinfo4_t *mi; 14770 nfs4_recov_state_t recov_state; 14771 cred_t *cred_otw = NULL; 14772 bool_t recovonly = FALSE; 14773 int isrecov; 14774 int force_close; 14775 int close_failed = 0; 14776 int did_dec_count = 0; 14777 int did_start_op = 0; 14778 int did_force_recovlock = 0; 14779 int did_start_seqid_sync = 0; 14780 int have_sync_lock = 0; 14781 14782 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 14783 14784 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 14785 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 14786 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 14787 len, maxprot, mmap_flags, access_bits)); 14788 14789 nfs4_error_zinit(ep); 14790 rp = VTOR4(vp); 14791 mi = VTOMI4(vp); 14792 isrecov = (close_type == CLOSE_RESEND || 14793 close_type == CLOSE_AFTER_RESEND); 14794 14795 /* 14796 * First get the open owner. 14797 */ 14798 if (!provided_osp) { 14799 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 14800 } else { 14801 oop = provided_osp->os_open_owner; 14802 ASSERT(oop != NULL); 14803 open_owner_hold(oop); 14804 } 14805 14806 if (!oop) { 14807 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 14808 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 14809 "close type %d", (void *)rp, (void *)mi, (void *)cr, 14810 (void *)provided_osp, close_type)); 14811 ep->error = EIO; 14812 goto out; 14813 } 14814 14815 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 14816 recov_retry: 14817 osp = NULL; 14818 close_failed = 0; 14819 force_close = (close_type == CLOSE_FORCE); 14820 retry = 0; 14821 did_start_op = 0; 14822 did_force_recovlock = 0; 14823 did_start_seqid_sync = 0; 14824 have_sync_lock = 0; 14825 recovonly = FALSE; 14826 recov_state.rs_flags = 0; 14827 recov_state.rs_num_retry_despite_err = 0; 14828 14829 /* 14830 * Second synchronize with recovery. 14831 */ 14832 if (!isrecov) { 14833 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 14834 &recov_state, &recovonly); 14835 if (!ep->error) { 14836 did_start_op = 1; 14837 } else { 14838 close_failed = 1; 14839 /* 14840 * If we couldn't get start_fop, but have to 14841 * cleanup state, then at least acquire the 14842 * mi_recovlock so we can synchronize with 14843 * recovery. 14844 */ 14845 if (close_type == CLOSE_FORCE) { 14846 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 14847 RW_READER, FALSE); 14848 did_force_recovlock = 1; 14849 } else 14850 goto out; 14851 } 14852 } 14853 14854 /* 14855 * We cannot attempt to get the open seqid sync if nfs4_start_fop 14856 * set 'recovonly' to TRUE since most likely this is due to 14857 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 14858 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 14859 * to retry, causing us to loop until recovery finishes. Plus we 14860 * don't need protection over the open seqid since we're not going 14861 * OTW, hence don't need to use the seqid. 14862 */ 14863 if (recovonly == FALSE) { 14864 /* need to grab the open owner sync before 'os_sync_lock' */ 14865 ep->error = nfs4_start_open_seqid_sync(oop, mi); 14866 if (ep->error == EAGAIN) { 14867 ASSERT(!isrecov); 14868 if (did_start_op) 14869 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 14870 &recov_state, TRUE); 14871 if (did_force_recovlock) 14872 nfs_rw_exit(&mi->mi_recovlock); 14873 goto recov_retry; 14874 } 14875 did_start_seqid_sync = 1; 14876 } 14877 14878 /* 14879 * Third get an open stream and acquire 'os_sync_lock' to 14880 * sychronize the opening/creating of an open stream with the 14881 * closing/destroying of an open stream. 14882 */ 14883 if (!provided_osp) { 14884 /* returns with 'os_sync_lock' held */ 14885 osp = find_open_stream(oop, rp); 14886 if (!osp) { 14887 ep->error = EIO; 14888 goto out; 14889 } 14890 } else { 14891 osp = provided_osp; 14892 open_stream_hold(osp); 14893 mutex_enter(&osp->os_sync_lock); 14894 } 14895 have_sync_lock = 1; 14896 14897 ASSERT(oop == osp->os_open_owner); 14898 14899 /* 14900 * Fourth, do any special pre-OTW CLOSE processing 14901 * based on the specific close type. 14902 */ 14903 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 14904 !did_dec_count) { 14905 ASSERT(osp->os_open_ref_count > 0); 14906 osp->os_open_ref_count--; 14907 did_dec_count = 1; 14908 if (osp->os_open_ref_count == 0) 14909 osp->os_final_close = 1; 14910 } 14911 14912 if (close_type == CLOSE_FORCE) { 14913 /* see if somebody reopened the open stream. */ 14914 if (!osp->os_force_close) { 14915 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 14916 "nfs4close_one: skip CLOSE_FORCE as osp %p " 14917 "was reopened, vp %p", (void *)osp, (void *)vp)); 14918 ep->error = 0; 14919 ep->stat = NFS4_OK; 14920 goto out; 14921 } 14922 14923 if (!osp->os_final_close && !did_dec_count) { 14924 osp->os_open_ref_count--; 14925 did_dec_count = 1; 14926 } 14927 14928 /* 14929 * We can't depend on os_open_ref_count being 0 due to the 14930 * way executables are opened (VN_RELE to match a VOP_OPEN). 14931 */ 14932 #ifdef NOTYET 14933 ASSERT(osp->os_open_ref_count == 0); 14934 #endif 14935 if (osp->os_open_ref_count != 0) { 14936 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 14937 "nfs4close_one: should panic here on an " 14938 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 14939 "since this is probably the exec problem.")); 14940 14941 osp->os_open_ref_count = 0; 14942 } 14943 14944 /* 14945 * There is the possibility that nfs4close_one() 14946 * for close_type == CLOSE_DELMAP couldn't find the 14947 * open stream, thus couldn't decrement its os_mapcnt; 14948 * therefore we can't use this ASSERT yet. 14949 */ 14950 #ifdef NOTYET 14951 ASSERT(osp->os_mapcnt == 0); 14952 #endif 14953 osp->os_mapcnt = 0; 14954 } 14955 14956 if (close_type == CLOSE_DELMAP && !did_dec_count) { 14957 ASSERT(osp->os_mapcnt >= btopr(len)); 14958 14959 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 14960 osp->os_mmap_write -= btopr(len); 14961 if (maxprot & PROT_READ) 14962 osp->os_mmap_read -= btopr(len); 14963 if (maxprot & PROT_EXEC) 14964 osp->os_mmap_read -= btopr(len); 14965 /* mirror the PROT_NONE check in nfs4_addmap() */ 14966 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 14967 !(maxprot & PROT_EXEC)) 14968 osp->os_mmap_read -= btopr(len); 14969 osp->os_mapcnt -= btopr(len); 14970 did_dec_count = 1; 14971 } 14972 14973 if (recovonly) { 14974 nfs4_lost_rqst_t lost_rqst; 14975 14976 /* request should not already be in recovery queue */ 14977 ASSERT(lrp == NULL); 14978 nfs4_error_init(ep, EINTR); 14979 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 14980 osp, cred_otw, vp); 14981 mutex_exit(&osp->os_sync_lock); 14982 have_sync_lock = 0; 14983 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 14984 lost_rqst.lr_op == OP_CLOSE ? 14985 &lost_rqst : NULL, OP_CLOSE, NULL); 14986 close_failed = 1; 14987 force_close = 0; 14988 goto close_cleanup; 14989 } 14990 14991 /* 14992 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 14993 * we stopped operating on the open owner's <old oo_name, old seqid> 14994 * space, which means we stopped operating on the open stream 14995 * too. So don't go OTW (as the seqid is likely bad, and the 14996 * stateid could be stale, potentially triggering a false 14997 * setclientid), and just clean up the client's internal state. 14998 */ 14999 if (osp->os_orig_oo_name != oop->oo_name) { 15000 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15001 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15002 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15003 "oo_name %" PRIx64")", 15004 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15005 oop->oo_name)); 15006 close_failed = 1; 15007 } 15008 15009 /* If the file failed recovery, just quit. */ 15010 mutex_enter(&rp->r_statelock); 15011 if (rp->r_flags & R4RECOVERR) { 15012 close_failed = 1; 15013 } 15014 mutex_exit(&rp->r_statelock); 15015 15016 /* 15017 * If the force close path failed to obtain start_fop 15018 * then skip the OTW close and just remove the state. 15019 */ 15020 if (close_failed) 15021 goto close_cleanup; 15022 15023 /* 15024 * Fifth, check to see if there are still mapped pages or other 15025 * opens using this open stream. If there are then we can't 15026 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15027 */ 15028 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15029 nfs4_lost_rqst_t new_lost_rqst; 15030 bool_t needrecov = FALSE; 15031 cred_t *odg_cred_otw = NULL; 15032 seqid4 open_dg_seqid = 0; 15033 15034 if (osp->os_delegation) { 15035 /* 15036 * If this open stream was never OPENed OTW then we 15037 * surely can't DOWNGRADE it (especially since the 15038 * osp->open_stateid is really a delegation stateid 15039 * when os_delegation is 1). 15040 */ 15041 if (access_bits & FREAD) 15042 osp->os_share_acc_read--; 15043 if (access_bits & FWRITE) 15044 osp->os_share_acc_write--; 15045 osp->os_share_deny_none--; 15046 nfs4_error_zinit(ep); 15047 goto out; 15048 } 15049 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15050 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15051 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15052 if (needrecov && !isrecov) { 15053 bool_t abort; 15054 nfs4_bseqid_entry_t *bsep = NULL; 15055 15056 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15057 bsep = nfs4_create_bseqid_entry(oop, NULL, 15058 vp, 0, 15059 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15060 open_dg_seqid); 15061 15062 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15063 oop, osp, odg_cred_otw, vp, access_bits, 0); 15064 mutex_exit(&osp->os_sync_lock); 15065 have_sync_lock = 0; 15066 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15067 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15068 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15069 bsep); 15070 if (odg_cred_otw) 15071 crfree(odg_cred_otw); 15072 if (bsep) 15073 kmem_free(bsep, sizeof (*bsep)); 15074 15075 if (abort == TRUE) 15076 goto out; 15077 15078 if (did_start_seqid_sync) { 15079 nfs4_end_open_seqid_sync(oop); 15080 did_start_seqid_sync = 0; 15081 } 15082 open_stream_rele(osp, rp); 15083 15084 if (did_start_op) 15085 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15086 &recov_state, FALSE); 15087 if (did_force_recovlock) 15088 nfs_rw_exit(&mi->mi_recovlock); 15089 15090 goto recov_retry; 15091 } else { 15092 if (odg_cred_otw) 15093 crfree(odg_cred_otw); 15094 } 15095 goto out; 15096 } 15097 15098 /* 15099 * If this open stream was created as the results of an open 15100 * while holding a delegation, then just release it; no need 15101 * to do an OTW close. Otherwise do a "normal" OTW close. 15102 */ 15103 if (osp->os_delegation) { 15104 nfs4close_notw(vp, osp, &have_sync_lock); 15105 nfs4_error_zinit(ep); 15106 goto out; 15107 } 15108 15109 /* 15110 * If this stream is not valid, we're done. 15111 */ 15112 if (!osp->os_valid) { 15113 nfs4_error_zinit(ep); 15114 goto out; 15115 } 15116 15117 /* 15118 * Last open or mmap ref has vanished, need to do an OTW close. 15119 * First check to see if a close is still necessary. 15120 */ 15121 if (osp->os_failed_reopen) { 15122 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15123 "don't close OTW osp %p since reopen failed.", 15124 (void *)osp)); 15125 /* 15126 * Reopen of the open stream failed, hence the 15127 * stateid of the open stream is invalid/stale, and 15128 * sending this OTW would incorrectly cause another 15129 * round of recovery. In this case, we need to set 15130 * the 'os_valid' bit to 0 so another thread doesn't 15131 * come in and re-open this open stream before 15132 * this "closing" thread cleans up state (decrementing 15133 * the nfs4_server_t's state_ref_count and decrementing 15134 * the os_ref_count). 15135 */ 15136 osp->os_valid = 0; 15137 /* 15138 * This removes the reference obtained at OPEN; ie, 15139 * when the open stream structure was created. 15140 * 15141 * We don't have to worry about calling 'open_stream_rele' 15142 * since we our currently holding a reference to this 15143 * open stream which means the count can not go to 0 with 15144 * this decrement. 15145 */ 15146 ASSERT(osp->os_ref_count >= 2); 15147 osp->os_ref_count--; 15148 nfs4_error_zinit(ep); 15149 close_failed = 0; 15150 goto close_cleanup; 15151 } 15152 15153 ASSERT(osp->os_ref_count > 1); 15154 15155 if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY) && 15156 nfs4_dross_pages(vp)) { 15157 nfs4_invalidate_pages(vp, 0, cred_otw); 15158 } 15159 15160 /* 15161 * Sixth, try the CLOSE OTW. 15162 */ 15163 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15164 close_type, ep, &have_sync_lock); 15165 15166 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15167 /* 15168 * Let the recovery thread be responsible for 15169 * removing the state for CLOSE. 15170 */ 15171 close_failed = 1; 15172 force_close = 0; 15173 retry = 0; 15174 } 15175 15176 /* See if we need to retry with a different cred */ 15177 if ((ep->error == EACCES || 15178 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15179 cred_otw != cr) { 15180 crfree(cred_otw); 15181 cred_otw = cr; 15182 crhold(cred_otw); 15183 retry = 1; 15184 } 15185 15186 if (ep->error || ep->stat) 15187 close_failed = 1; 15188 15189 if (retry && !isrecov && num_retries-- > 0) { 15190 if (have_sync_lock) { 15191 mutex_exit(&osp->os_sync_lock); 15192 have_sync_lock = 0; 15193 } 15194 if (did_start_seqid_sync) { 15195 nfs4_end_open_seqid_sync(oop); 15196 did_start_seqid_sync = 0; 15197 } 15198 open_stream_rele(osp, rp); 15199 15200 if (did_start_op) 15201 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15202 &recov_state, FALSE); 15203 if (did_force_recovlock) 15204 nfs_rw_exit(&mi->mi_recovlock); 15205 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15206 "nfs4close_one: need to retry the close " 15207 "operation")); 15208 goto recov_retry; 15209 } 15210 close_cleanup: 15211 /* 15212 * Seventh and lastly, process our results. 15213 */ 15214 if (close_failed && force_close) { 15215 /* 15216 * It's ok to drop and regrab the 'os_sync_lock' since 15217 * nfs4close_notw() will recheck to make sure the 15218 * "close"/removal of state should happen. 15219 */ 15220 if (!have_sync_lock) { 15221 mutex_enter(&osp->os_sync_lock); 15222 have_sync_lock = 1; 15223 } 15224 /* 15225 * This is last call, remove the ref on the open 15226 * stream created by open and clean everything up. 15227 */ 15228 osp->os_pending_close = 0; 15229 nfs4close_notw(vp, osp, &have_sync_lock); 15230 nfs4_error_zinit(ep); 15231 } 15232 15233 if (!close_failed) { 15234 if (have_sync_lock) { 15235 osp->os_pending_close = 0; 15236 mutex_exit(&osp->os_sync_lock); 15237 have_sync_lock = 0; 15238 } else { 15239 mutex_enter(&osp->os_sync_lock); 15240 osp->os_pending_close = 0; 15241 mutex_exit(&osp->os_sync_lock); 15242 } 15243 if (did_start_op && recov_state.rs_sp != NULL) { 15244 mutex_enter(&recov_state.rs_sp->s_lock); 15245 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15246 mutex_exit(&recov_state.rs_sp->s_lock); 15247 } else { 15248 nfs4_dec_state_ref_count(mi); 15249 } 15250 nfs4_error_zinit(ep); 15251 } 15252 15253 out: 15254 if (have_sync_lock) 15255 mutex_exit(&osp->os_sync_lock); 15256 if (did_start_op) 15257 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15258 recovonly ? TRUE : FALSE); 15259 if (did_force_recovlock) 15260 nfs_rw_exit(&mi->mi_recovlock); 15261 if (cred_otw) 15262 crfree(cred_otw); 15263 if (osp) 15264 open_stream_rele(osp, rp); 15265 if (oop) { 15266 if (did_start_seqid_sync) 15267 nfs4_end_open_seqid_sync(oop); 15268 open_owner_rele(oop); 15269 } 15270 } 15271 15272 /* 15273 * Convert information returned by the server in the LOCK4denied 15274 * structure to the form required by fcntl. 15275 */ 15276 static void 15277 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15278 { 15279 nfs4_lo_name_t *lo; 15280 15281 #ifdef DEBUG 15282 if (denied_to_flk_debug) { 15283 lockt_denied_debug = lockt_denied; 15284 debug_enter("lockt_denied"); 15285 } 15286 #endif 15287 15288 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15289 flk->l_whence = 0; /* aka SEEK_SET */ 15290 flk->l_start = lockt_denied->offset; 15291 flk->l_len = lockt_denied->length; 15292 15293 /* 15294 * If the blocking clientid matches our client id, then we can 15295 * interpret the lockowner (since we built it). If not, then 15296 * fabricate a sysid and pid. Note that the l_sysid field 15297 * in *flk already has the local sysid. 15298 */ 15299 15300 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15301 15302 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15303 lo = (nfs4_lo_name_t *) 15304 lockt_denied->owner.owner_val; 15305 15306 flk->l_pid = lo->ln_pid; 15307 } else { 15308 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15309 "denied_to_flk: bad lock owner length\n")); 15310 15311 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15312 } 15313 } else { 15314 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15315 "denied_to_flk: foreign clientid\n")); 15316 15317 /* 15318 * Construct a new sysid which should be different from 15319 * sysids of other systems. 15320 */ 15321 15322 flk->l_sysid++; 15323 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15324 } 15325 } 15326 15327 static pid_t 15328 lo_to_pid(lock_owner4 *lop) 15329 { 15330 pid_t pid = 0; 15331 uchar_t *cp; 15332 int i; 15333 15334 cp = (uchar_t *)&lop->clientid; 15335 15336 for (i = 0; i < sizeof (lop->clientid); i++) 15337 pid += (pid_t)*cp++; 15338 15339 cp = (uchar_t *)lop->owner_val; 15340 15341 for (i = 0; i < lop->owner_len; i++) 15342 pid += (pid_t)*cp++; 15343 15344 return (pid); 15345 } 15346 15347 /* 15348 * Given a lock pointer, returns the length of that lock. 15349 * "end" is the last locked offset the "l_len" covers from 15350 * the start of the lock. 15351 */ 15352 static off64_t 15353 lock_to_end(flock64_t *lock) 15354 { 15355 off64_t lock_end; 15356 15357 if (lock->l_len == 0) 15358 lock_end = (off64_t)MAXEND; 15359 else 15360 lock_end = lock->l_start + lock->l_len - 1; 15361 15362 return (lock_end); 15363 } 15364 15365 /* 15366 * Given the end of a lock, it will return you the length "l_len" for that lock. 15367 */ 15368 static off64_t 15369 end_to_len(off64_t start, off64_t end) 15370 { 15371 off64_t lock_len; 15372 15373 ASSERT(end >= start); 15374 if (end == MAXEND) 15375 lock_len = 0; 15376 else 15377 lock_len = end - start + 1; 15378 15379 return (lock_len); 15380 } 15381 15382 /* 15383 * On given end for a lock it determines if it is the last locked offset 15384 * or not, if so keeps it as is, else adds one to return the length for 15385 * valid start. 15386 */ 15387 static off64_t 15388 start_check(off64_t x) 15389 { 15390 if (x == MAXEND) 15391 return (x); 15392 else 15393 return (x + 1); 15394 } 15395 15396 /* 15397 * See if these two locks overlap, and if so return 1; 15398 * otherwise, return 0. 15399 */ 15400 static int 15401 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15402 { 15403 off64_t llfp_end, curfp_end; 15404 15405 llfp_end = lock_to_end(llfp); 15406 curfp_end = lock_to_end(curfp); 15407 15408 if (((llfp_end >= curfp->l_start) && 15409 (llfp->l_start <= curfp->l_start)) || 15410 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15411 return (1); 15412 return (0); 15413 } 15414 15415 /* 15416 * Determine what the interseting lock region is, and add that to the 15417 * 'nl_llpp' locklist in increasing order (by l_start). 15418 */ 15419 static void 15420 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15421 locklist_t **nl_llpp, vnode_t *vp) 15422 { 15423 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15424 off64_t lost_flp_end, local_flp_end, len, start; 15425 15426 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15427 15428 if (!locks_intersect(lost_flp, local_flp)) 15429 return; 15430 15431 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15432 "locks intersect")); 15433 15434 lost_flp_end = lock_to_end(lost_flp); 15435 local_flp_end = lock_to_end(local_flp); 15436 15437 /* Find the starting point of the intersecting region */ 15438 if (local_flp->l_start > lost_flp->l_start) 15439 start = local_flp->l_start; 15440 else 15441 start = lost_flp->l_start; 15442 15443 /* Find the lenght of the intersecting region */ 15444 if (lost_flp_end < local_flp_end) 15445 len = end_to_len(start, lost_flp_end); 15446 else 15447 len = end_to_len(start, local_flp_end); 15448 15449 /* 15450 * Prepare the flock structure for the intersection found and insert 15451 * it into the new list in increasing l_start order. This list contains 15452 * intersections of locks registered by the client with the local host 15453 * and the lost lock. 15454 * The lock type of this lock is the same as that of the local_flp. 15455 */ 15456 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15457 intersect_llp->ll_flock.l_start = start; 15458 intersect_llp->ll_flock.l_len = len; 15459 intersect_llp->ll_flock.l_type = local_flp->l_type; 15460 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15461 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15462 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15463 intersect_llp->ll_vp = vp; 15464 15465 tmp_fllp = *nl_llpp; 15466 cur_fllp = NULL; 15467 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15468 intersect_llp->ll_flock.l_start) { 15469 cur_fllp = tmp_fllp; 15470 tmp_fllp = tmp_fllp->ll_next; 15471 } 15472 if (cur_fllp == NULL) { 15473 /* first on the list */ 15474 intersect_llp->ll_next = *nl_llpp; 15475 *nl_llpp = intersect_llp; 15476 } else { 15477 intersect_llp->ll_next = cur_fllp->ll_next; 15478 cur_fllp->ll_next = intersect_llp; 15479 } 15480 15481 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15482 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15483 intersect_llp->ll_flock.l_start, 15484 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15485 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15486 } 15487 15488 /* 15489 * Our local locking current state is potentially different than 15490 * what the NFSv4 server thinks we have due to a lost lock that was 15491 * resent and then received. We need to reset our "NFSv4" locking 15492 * state to match the current local locking state for this pid since 15493 * that is what the user/application sees as what the world is. 15494 * 15495 * We cannot afford to drop the open/lock seqid sync since then we can 15496 * get confused about what the current local locking state "is" versus 15497 * "was". 15498 * 15499 * If we are unable to fix up the locks, we send SIGLOST to the affected 15500 * process. This is not done if the filesystem has been forcibly 15501 * unmounted, in case the process has already exited and a new process 15502 * exists with the same pid. 15503 */ 15504 static void 15505 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15506 nfs4_lock_owner_t *lop) 15507 { 15508 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15509 mntinfo4_t *mi = VTOMI4(vp); 15510 const int cmd = F_SETLK; 15511 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15512 flock64_t ul_fl; 15513 15514 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15515 "nfs4_reinstitute_local_lock_state")); 15516 15517 /* 15518 * Find active locks for this vp from the local locking code. 15519 * Scan through this list and find out the locks that intersect with 15520 * the lost lock. Once we find the lock that intersects, add the 15521 * intersection area as a new lock to a new list "ri_llp". The lock 15522 * type of the intersection region lock added to ri_llp is the same 15523 * as that found in the active lock list, "list". The intersecting 15524 * region locks are added to ri_llp in increasing l_start order. 15525 */ 15526 ASSERT(curproc->p_zone == mi->mi_zone); 15527 15528 locks = flk_active_locks_for_vp(vp); 15529 ri_llp = NULL; 15530 15531 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15532 ASSERT(llp->ll_vp == vp); 15533 /* 15534 * Pick locks that belong to this pid/lockowner 15535 */ 15536 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15537 continue; 15538 15539 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15540 } 15541 15542 /* 15543 * Now we have the list of intersections with the lost lock. These are 15544 * the locks that were/are active before the server replied to the 15545 * last/lost lock. Issue these locks to the server here. Playing these 15546 * locks to the server will re-establish aur current local locking state 15547 * with the v4 server. 15548 * If we get an error, send SIGLOST to the application for that lock. 15549 */ 15550 15551 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15552 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15553 "nfs4_reinstitute_local_lock_state: need to issue " 15554 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15555 llp->ll_flock.l_start, 15556 llp->ll_flock.l_start + llp->ll_flock.l_len, 15557 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15558 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15559 /* 15560 * No need to relock what we already have 15561 */ 15562 if (llp->ll_flock.l_type == lost_flp->l_type) 15563 continue; 15564 15565 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15566 } 15567 15568 /* 15569 * Now keeping the start of the lost lock as our reference parse the 15570 * newly created ri_llp locklist to find the ranges that we have locked 15571 * with the v4 server but not in the current local locking. We need 15572 * to unlock these ranges. 15573 * These ranges can also be reffered to as those ranges, where the lost 15574 * lock does not overlap with the locks in the ri_llp but are locked 15575 * since the server replied to the lost lock. 15576 */ 15577 cur_start = lost_flp->l_start; 15578 lost_flp_end = lock_to_end(lost_flp); 15579 15580 ul_fl.l_type = F_UNLCK; 15581 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15582 ul_fl.l_sysid = lost_flp->l_sysid; 15583 ul_fl.l_pid = lost_flp->l_pid; 15584 15585 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15586 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15587 15588 if (llp->ll_flock.l_start <= cur_start) { 15589 cur_start = start_check(llp_ll_flock_end); 15590 continue; 15591 } 15592 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15593 "nfs4_reinstitute_local_lock_state: " 15594 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15595 cur_start, llp->ll_flock.l_start)); 15596 15597 ul_fl.l_start = cur_start; 15598 ul_fl.l_len = end_to_len(cur_start, 15599 (llp->ll_flock.l_start - 1)); 15600 15601 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15602 cur_start = start_check(llp_ll_flock_end); 15603 } 15604 15605 /* 15606 * In the case where the lost lock ends after all intersecting locks, 15607 * unlock the last part of the lost lock range. 15608 */ 15609 if (cur_start != start_check(lost_flp_end)) { 15610 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15611 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15612 "lost lock region [%"PRIx64" - %"PRIx64"]", 15613 cur_start, lost_flp->l_start + lost_flp->l_len)); 15614 15615 ul_fl.l_start = cur_start; 15616 /* 15617 * Is it an to-EOF lock? if so unlock till the end 15618 */ 15619 if (lost_flp->l_len == 0) 15620 ul_fl.l_len = 0; 15621 else 15622 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15623 15624 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15625 } 15626 15627 if (locks != NULL) 15628 flk_free_locklist(locks); 15629 15630 /* Free up our newly created locklist */ 15631 for (llp = ri_llp; llp != NULL; ) { 15632 tmp_llp = llp->ll_next; 15633 kmem_free(llp, sizeof (locklist_t)); 15634 llp = tmp_llp; 15635 } 15636 15637 /* 15638 * Now return back to the original calling nfs4frlock() 15639 * and let us naturally drop our seqid syncs. 15640 */ 15641 } 15642 15643 /* 15644 * Create a lost state record for the given lock reinstantiation request 15645 * and push it onto the lost state queue. 15646 */ 15647 static void 15648 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15649 nfs4_lock_owner_t *lop) 15650 { 15651 nfs4_lost_rqst_t req; 15652 nfs_lock_type4 locktype; 15653 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15654 15655 ASSERT(curproc->p_zone == VTOMI4(vp)->mi_zone); 15656 15657 locktype = flk_to_locktype(cmd, flk->l_type); 15658 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15659 NULL, NULL, lop, flk, &req, cr, vp); 15660 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15661 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15662 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15663 NULL); 15664 } 15665