1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T. 31 * All Rights Reserved 32 */ 33 34 /* 35 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 36 */ 37 38 #include <sys/param.h> 39 #include <sys/types.h> 40 #include <sys/systm.h> 41 #include <sys/cred.h> 42 #include <sys/time.h> 43 #include <sys/vnode.h> 44 #include <sys/vfs.h> 45 #include <sys/vfs_opreg.h> 46 #include <sys/file.h> 47 #include <sys/filio.h> 48 #include <sys/uio.h> 49 #include <sys/buf.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/dirent.h> 53 #include <sys/debug.h> 54 #include <sys/vmsystm.h> 55 #include <sys/fcntl.h> 56 #include <sys/flock.h> 57 #include <sys/swap.h> 58 #include <sys/errno.h> 59 #include <sys/strsubr.h> 60 #include <sys/sysmacros.h> 61 #include <sys/kmem.h> 62 #include <sys/cmn_err.h> 63 #include <sys/pathconf.h> 64 #include <sys/utsname.h> 65 #include <sys/dnlc.h> 66 #include <sys/acl.h> 67 #include <sys/systeminfo.h> 68 #include <sys/policy.h> 69 #include <sys/sdt.h> 70 #include <sys/list.h> 71 #include <sys/stat.h> 72 #include <sys/zone.h> 73 74 #include <rpc/types.h> 75 #include <rpc/auth.h> 76 #include <rpc/clnt.h> 77 78 #include <nfs/nfs.h> 79 #include <nfs/nfs_clnt.h> 80 #include <nfs/nfs_acl.h> 81 #include <nfs/lm.h> 82 #include <nfs/nfs4.h> 83 #include <nfs/nfs4_kprot.h> 84 #include <nfs/rnode4.h> 85 #include <nfs/nfs4_clnt.h> 86 87 #include <vm/hat.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/pvn.h> 91 #include <vm/seg.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_kpm.h> 94 #include <vm/seg_vn.h> 95 96 #include <fs/fs_subr.h> 97 98 #include <sys/ddi.h> 99 #include <sys/int_fmtio.h> 100 #include <sys/fs/autofs.h> 101 102 typedef struct { 103 nfs4_ga_res_t *di_garp; 104 cred_t *di_cred; 105 hrtime_t di_time_call; 106 } dirattr_info_t; 107 108 typedef enum nfs4_acl_op { 109 NFS4_ACL_GET, 110 NFS4_ACL_SET 111 } nfs4_acl_op_t; 112 113 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi); 114 115 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *, 116 char *, dirattr_info_t *); 117 118 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *, 119 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t, 120 nfs4_error_t *, int *); 121 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 122 cred_t *); 123 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *, 124 stable_how4 *); 125 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *, 126 cred_t *, bool_t, struct uio *); 127 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *, 128 vsecattr_t *); 129 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *); 130 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int); 131 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *); 132 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *); 133 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *); 134 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl, 135 int, vnode_t **, cred_t *); 136 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **, 137 cred_t *, int, int, enum createmode4, int); 138 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 139 caller_context_t *); 140 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *, 141 vnode_t *, char *, cred_t *, nfsstat4 *); 142 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *, 143 vnode_t *, char *, cred_t *, nfsstat4 *); 144 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 145 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *); 146 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t); 147 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 148 page_t *[], size_t, struct seg *, caddr_t, 149 enum seg_rw, cred_t *); 150 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 151 cred_t *); 152 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 153 int, cred_t *); 154 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 155 int, cred_t *); 156 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *); 157 static void nfs4_set_mod(vnode_t *); 158 static void nfs4_get_commit(vnode_t *); 159 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t); 160 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *); 161 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int); 162 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3, 163 cred_t *); 164 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3, 165 cred_t *); 166 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *, 167 hrtime_t, vnode_t *, cred_t *); 168 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *); 169 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *); 170 static void nfs4_register_lock_locally(vnode_t *, struct flock64 *, int, 171 u_offset_t); 172 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *); 173 static int nfs4_block_and_wait(clock_t *, rnode4_t *); 174 static cred_t *state_to_cred(nfs4_open_stream_t *); 175 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *); 176 static pid_t lo_to_pid(lock_owner4 *); 177 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *, 178 cred_t *, nfs4_lock_owner_t *); 179 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *, 180 nfs4_lock_owner_t *); 181 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **); 182 static void nfs4_delmap_callback(struct as *, void *, uint_t); 183 static void nfs4_free_delmapcall(nfs4_delmapcall_t *); 184 static nfs4_delmapcall_t *nfs4_init_delmapcall(); 185 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *); 186 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t); 187 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *, 188 uid_t, gid_t, int); 189 190 /* 191 * Routines that implement the setting of v4 args for the misc. ops 192 */ 193 static void nfs4args_lock_free(nfs_argop4 *); 194 static void nfs4args_lockt_free(nfs_argop4 *); 195 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *, 196 int, rnode4_t *, cred_t *, bitmap4, int *, 197 nfs4_stateid_types_t *); 198 static void nfs4args_setattr_free(nfs_argop4 *); 199 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4, 200 bitmap4); 201 static void nfs4args_verify_free(nfs_argop4 *); 202 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *, 203 WRITE4args **, nfs4_stateid_types_t *); 204 205 /* 206 * These are the vnode ops functions that implement the vnode interface to 207 * the networked file system. See more comments below at nfs4_vnodeops. 208 */ 209 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *); 210 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *, 211 caller_context_t *); 212 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *, 213 caller_context_t *); 214 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *, 215 caller_context_t *); 216 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 217 caller_context_t *); 218 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *, 219 caller_context_t *); 220 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *); 221 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *, 222 caller_context_t *); 223 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *); 224 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl, 225 int, vnode_t **, cred_t *, int, caller_context_t *, 226 vsecattr_t *); 227 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *, 228 int); 229 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *, 230 caller_context_t *, int); 231 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 232 caller_context_t *, int); 233 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 234 cred_t *, caller_context_t *, int, vsecattr_t *); 235 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 236 caller_context_t *, int); 237 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *, 238 cred_t *, caller_context_t *, int); 239 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *, 240 caller_context_t *, int); 241 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 242 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *, 243 page_t *[], size_t, struct seg *, caddr_t, 244 enum seg_rw, cred_t *, caller_context_t *); 245 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 246 caller_context_t *); 247 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 248 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 249 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 250 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 251 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *); 252 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 253 struct flk_callback *, cred_t *, caller_context_t *); 254 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t, 255 cred_t *, caller_context_t *); 256 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 257 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 258 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 259 cred_t *, caller_context_t *); 260 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *, 261 caller_context_t *); 262 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 263 caller_context_t *); 264 /* 265 * These vnode ops are required to be called from outside this source file, 266 * e.g. by ephemeral mount stub vnode ops, and so may not be declared 267 * as static. 268 */ 269 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *, 270 caller_context_t *); 271 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *); 272 int nfs4_lookup(vnode_t *, char *, vnode_t **, 273 struct pathname *, int, vnode_t *, cred_t *, 274 caller_context_t *, int *, pathname_t *); 275 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *); 276 int nfs4_rwlock(vnode_t *, int, caller_context_t *); 277 void nfs4_rwunlock(vnode_t *, int, caller_context_t *); 278 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *); 279 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *, 280 caller_context_t *); 281 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 282 caller_context_t *); 283 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 284 caller_context_t *); 285 286 /* 287 * Used for nfs4_commit_vp() to indicate if we should 288 * wait on pending writes. 289 */ 290 #define NFS4_WRITE_NOWAIT 0 291 #define NFS4_WRITE_WAIT 1 292 293 #define NFS4_BASE_WAIT_TIME 1 /* 1 second */ 294 295 /* 296 * Error flags used to pass information about certain special errors 297 * which need to be handled specially. 298 */ 299 #define NFS_EOF -98 300 #define NFS_VERF_MISMATCH -97 301 302 /* 303 * Flags used to differentiate between which operation drove the 304 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary) 305 */ 306 #define NFS4_CLOSE_OP 0x1 307 #define NFS4_DELMAP_OP 0x2 308 #define NFS4_INACTIVE_OP 0x3 309 310 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO)) 311 312 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */ 313 #define ALIGN64(x, ptr, sz) \ 314 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \ 315 if (x) { \ 316 x = sizeof (uint64_t) - (x); \ 317 sz -= (x); \ 318 ptr += (x); \ 319 } 320 321 #ifdef DEBUG 322 int nfs4_client_attr_debug = 0; 323 int nfs4_client_state_debug = 0; 324 int nfs4_client_shadow_debug = 0; 325 int nfs4_client_lock_debug = 0; 326 int nfs4_seqid_sync = 0; 327 int nfs4_client_map_debug = 0; 328 static int nfs4_pageio_debug = 0; 329 int nfs4_client_inactive_debug = 0; 330 int nfs4_client_recov_debug = 0; 331 int nfs4_client_failover_debug = 0; 332 int nfs4_client_call_debug = 0; 333 int nfs4_client_lookup_debug = 0; 334 int nfs4_client_zone_debug = 0; 335 int nfs4_lost_rqst_debug = 0; 336 int nfs4_rdattrerr_debug = 0; 337 int nfs4_open_stream_debug = 0; 338 339 int nfs4read_error_inject; 340 341 static int nfs4_create_misses = 0; 342 343 static int nfs4_readdir_cache_shorts = 0; 344 static int nfs4_readdir_readahead = 0; 345 346 static int nfs4_bio_do_stop = 0; 347 348 static int nfs4_lostpage = 0; /* number of times we lost original page */ 349 350 int nfs4_mmap_debug = 0; 351 352 static int nfs4_pathconf_cache_hits = 0; 353 static int nfs4_pathconf_cache_misses = 0; 354 355 int nfs4close_all_cnt; 356 int nfs4close_one_debug = 0; 357 int nfs4close_notw_debug = 0; 358 359 int denied_to_flk_debug = 0; 360 void *lockt_denied_debug; 361 362 #endif 363 364 /* 365 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT 366 * or NFS4ERR_RESOURCE. 367 */ 368 static int confirm_retry_sec = 30; 369 370 static int nfs4_lookup_neg_cache = 1; 371 372 /* 373 * number of pages to read ahead 374 * optimized for 100 base-T. 375 */ 376 static int nfs4_nra = 4; 377 378 static int nfs4_do_symlink_cache = 1; 379 380 static int nfs4_pathconf_disable_cache = 0; 381 382 /* 383 * These are the vnode ops routines which implement the vnode interface to 384 * the networked file system. These routines just take their parameters, 385 * make them look networkish by putting the right info into interface structs, 386 * and then calling the appropriate remote routine(s) to do the work. 387 * 388 * Note on directory name lookup cacheing: If we detect a stale fhandle, 389 * we purge the directory cache relative to that vnode. This way, the 390 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for 391 * more details on rnode locking. 392 */ 393 394 struct vnodeops *nfs4_vnodeops; 395 396 const fs_operation_def_t nfs4_vnodeops_template[] = { 397 VOPNAME_OPEN, { .vop_open = nfs4_open }, 398 VOPNAME_CLOSE, { .vop_close = nfs4_close }, 399 VOPNAME_READ, { .vop_read = nfs4_read }, 400 VOPNAME_WRITE, { .vop_write = nfs4_write }, 401 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl }, 402 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr }, 403 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr }, 404 VOPNAME_ACCESS, { .vop_access = nfs4_access }, 405 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup }, 406 VOPNAME_CREATE, { .vop_create = nfs4_create }, 407 VOPNAME_REMOVE, { .vop_remove = nfs4_remove }, 408 VOPNAME_LINK, { .vop_link = nfs4_link }, 409 VOPNAME_RENAME, { .vop_rename = nfs4_rename }, 410 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir }, 411 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir }, 412 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir }, 413 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink }, 414 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink }, 415 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync }, 416 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive }, 417 VOPNAME_FID, { .vop_fid = nfs4_fid }, 418 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock }, 419 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock }, 420 VOPNAME_SEEK, { .vop_seek = nfs4_seek }, 421 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock }, 422 VOPNAME_SPACE, { .vop_space = nfs4_space }, 423 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp }, 424 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage }, 425 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage }, 426 VOPNAME_MAP, { .vop_map = nfs4_map }, 427 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap }, 428 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap }, 429 /* no separate nfs4_dump */ 430 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 431 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf }, 432 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio }, 433 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose }, 434 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr }, 435 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr }, 436 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock }, 437 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 438 NULL, NULL 439 }; 440 441 /* 442 * The following are subroutines and definitions to set args or get res 443 * for the different nfsv4 ops 444 */ 445 446 void 447 nfs4args_lookup_free(nfs_argop4 *argop, int arglen) 448 { 449 int i; 450 451 for (i = 0; i < arglen; i++) { 452 if (argop[i].argop == OP_LOOKUP) { 453 kmem_free( 454 argop[i].nfs_argop4_u.oplookup. 455 objname.utf8string_val, 456 argop[i].nfs_argop4_u.oplookup. 457 objname.utf8string_len); 458 } 459 } 460 } 461 462 static void 463 nfs4args_lock_free(nfs_argop4 *argop) 464 { 465 locker4 *locker = &argop->nfs_argop4_u.oplock.locker; 466 467 if (locker->new_lock_owner == TRUE) { 468 open_to_lock_owner4 *open_owner; 469 470 open_owner = &locker->locker4_u.open_owner; 471 if (open_owner->lock_owner.owner_val != NULL) { 472 kmem_free(open_owner->lock_owner.owner_val, 473 open_owner->lock_owner.owner_len); 474 } 475 } 476 } 477 478 static void 479 nfs4args_lockt_free(nfs_argop4 *argop) 480 { 481 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner; 482 483 if (lowner->owner_val != NULL) { 484 kmem_free(lowner->owner_val, lowner->owner_len); 485 } 486 } 487 488 static void 489 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags, 490 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error, 491 nfs4_stateid_types_t *sid_types) 492 { 493 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes; 494 mntinfo4_t *mi; 495 496 argop->argop = OP_SETATTR; 497 /* 498 * The stateid is set to 0 if client is not modifying the size 499 * and otherwise to whatever nfs4_get_stateid() returns. 500 * 501 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no 502 * state struct could be found for the process/file pair. We may 503 * want to change this in the future (by OPENing the file). See 504 * bug # 4474852. 505 */ 506 if (vap->va_mask & AT_SIZE) { 507 508 ASSERT(rp != NULL); 509 mi = VTOMI4(RTOV4(rp)); 510 511 argop->nfs_argop4_u.opsetattr.stateid = 512 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 513 OP_SETATTR, sid_types, FALSE); 514 } else { 515 bzero(&argop->nfs_argop4_u.opsetattr.stateid, 516 sizeof (stateid4)); 517 } 518 519 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp); 520 if (*error) 521 bzero(attr, sizeof (*attr)); 522 } 523 524 static void 525 nfs4args_setattr_free(nfs_argop4 *argop) 526 { 527 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes); 528 } 529 530 static int 531 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op, 532 bitmap4 supp) 533 { 534 fattr4 *attr; 535 int error = 0; 536 537 argop->argop = op; 538 switch (op) { 539 case OP_VERIFY: 540 attr = &argop->nfs_argop4_u.opverify.obj_attributes; 541 break; 542 case OP_NVERIFY: 543 attr = &argop->nfs_argop4_u.opnverify.obj_attributes; 544 break; 545 default: 546 return (EINVAL); 547 } 548 if (!error) 549 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp); 550 if (error) 551 bzero(attr, sizeof (*attr)); 552 return (error); 553 } 554 555 static void 556 nfs4args_verify_free(nfs_argop4 *argop) 557 { 558 switch (argop->argop) { 559 case OP_VERIFY: 560 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes); 561 break; 562 case OP_NVERIFY: 563 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes); 564 break; 565 default: 566 break; 567 } 568 } 569 570 static void 571 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr, 572 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp) 573 { 574 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite; 575 mntinfo4_t *mi = VTOMI4(RTOV4(rp)); 576 577 argop->argop = OP_WRITE; 578 wargs->stable = stable; 579 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id, 580 mi, OP_WRITE, sid_tp); 581 wargs->mblk = NULL; 582 *wargs_pp = wargs; 583 } 584 585 void 586 nfs4args_copen_free(OPEN4cargs *open_args) 587 { 588 if (open_args->owner.owner_val) { 589 kmem_free(open_args->owner.owner_val, 590 open_args->owner.owner_len); 591 } 592 if ((open_args->opentype == OPEN4_CREATE) && 593 (open_args->mode != EXCLUSIVE4)) { 594 nfs4_fattr4_free(&open_args->createhow4_u.createattrs); 595 } 596 } 597 598 /* 599 * XXX: This is referenced in modstubs.s 600 */ 601 struct vnodeops * 602 nfs4_getvnodeops(void) 603 { 604 return (nfs4_vnodeops); 605 } 606 607 /* 608 * The OPEN operation opens a regular file. 609 */ 610 /*ARGSUSED3*/ 611 static int 612 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 613 { 614 vnode_t *dvp = NULL; 615 rnode4_t *rp, *drp; 616 int error; 617 int just_been_created; 618 char fn[MAXNAMELEN]; 619 620 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: ")); 621 if (nfs_zone() != VTOMI4(*vpp)->mi_zone) 622 return (EIO); 623 rp = VTOR4(*vpp); 624 625 /* 626 * Check to see if opening something besides a regular file; 627 * if so skip the OTW call 628 */ 629 if ((*vpp)->v_type != VREG) { 630 error = nfs4_open_non_reg_file(vpp, flag, cr); 631 return (error); 632 } 633 634 /* 635 * XXX - would like a check right here to know if the file is 636 * executable or not, so as to skip OTW 637 */ 638 639 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0) 640 return (error); 641 642 drp = VTOR4(dvp); 643 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 644 return (EINTR); 645 646 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) { 647 nfs_rw_exit(&drp->r_rwlock); 648 return (error); 649 } 650 651 /* 652 * See if this file has just been CREATEd. 653 * If so, clear the flag and update the dnlc, which was previously 654 * skipped in nfs4_create. 655 * XXX need better serilization on this. 656 * XXX move this into the nf4open_otw call, after we have 657 * XXX acquired the open owner seqid sync. 658 */ 659 mutex_enter(&rp->r_statev4_lock); 660 if (rp->created_v4) { 661 rp->created_v4 = 0; 662 mutex_exit(&rp->r_statev4_lock); 663 664 dnlc_update(dvp, fn, *vpp); 665 /* This is needed so we don't bump the open ref count */ 666 just_been_created = 1; 667 } else { 668 mutex_exit(&rp->r_statev4_lock); 669 just_been_created = 0; 670 } 671 672 /* 673 * If caller specified O_TRUNC/FTRUNC, then be sure to set 674 * FWRITE (to drive successful setattr(size=0) after open) 675 */ 676 if (flag & FTRUNC) 677 flag |= FWRITE; 678 679 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0, 680 just_been_created); 681 682 if (!error && !((*vpp)->v_flag & VROOT)) 683 dnlc_update(dvp, fn, *vpp); 684 685 nfs_rw_exit(&drp->r_rwlock); 686 687 /* release the hold from vtodv */ 688 VN_RELE(dvp); 689 690 /* exchange the shadow for the master vnode, if needed */ 691 692 if (error == 0 && IS_SHADOW(*vpp, rp)) 693 sv_exchange(vpp); 694 695 return (error); 696 } 697 698 /* 699 * See if there's a "lost open" request to be saved and recovered. 700 */ 701 static void 702 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 703 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp, 704 vnode_t *dvp, OPEN4cargs *open_args) 705 { 706 vfs_t *vfsp; 707 char *srccfp; 708 709 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp); 710 711 if (error != ETIMEDOUT && error != EINTR && 712 !NFS4_FRC_UNMT_ERR(error, vfsp)) { 713 lost_rqstp->lr_op = 0; 714 return; 715 } 716 717 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 718 "nfs4open_save_lost_rqst: error %d", error)); 719 720 lost_rqstp->lr_op = OP_OPEN; 721 722 /* 723 * The vp (if it is not NULL) and dvp are held and rele'd via 724 * the recovery code. See nfs4_save_lost_rqst. 725 */ 726 lost_rqstp->lr_vp = vp; 727 lost_rqstp->lr_dvp = dvp; 728 lost_rqstp->lr_oop = oop; 729 lost_rqstp->lr_osp = NULL; 730 lost_rqstp->lr_lop = NULL; 731 lost_rqstp->lr_cr = cr; 732 lost_rqstp->lr_flk = NULL; 733 lost_rqstp->lr_oacc = open_args->share_access; 734 lost_rqstp->lr_odeny = open_args->share_deny; 735 lost_rqstp->lr_oclaim = open_args->claim; 736 if (open_args->claim == CLAIM_DELEGATE_CUR) { 737 lost_rqstp->lr_ostateid = 738 open_args->open_claim4_u.delegate_cur_info.delegate_stateid; 739 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile; 740 } else { 741 srccfp = open_args->open_claim4_u.cfile; 742 } 743 lost_rqstp->lr_ofile.utf8string_len = 0; 744 lost_rqstp->lr_ofile.utf8string_val = NULL; 745 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile); 746 lost_rqstp->lr_putfirst = FALSE; 747 } 748 749 struct nfs4_excl_time { 750 uint32 seconds; 751 uint32 nseconds; 752 }; 753 754 /* 755 * The OPEN operation creates and/or opens a regular file 756 * 757 * ARGSUSED 758 */ 759 static int 760 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va, 761 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag, 762 enum createmode4 createmode, int file_just_been_created) 763 { 764 rnode4_t *rp; 765 rnode4_t *drp = VTOR4(dvp); 766 vnode_t *vp = NULL; 767 vnode_t *vpi = *vpp; 768 bool_t needrecov = FALSE; 769 770 int doqueue = 1; 771 772 COMPOUND4args_clnt args; 773 COMPOUND4res_clnt res; 774 nfs_argop4 *argop; 775 nfs_resop4 *resop; 776 int argoplist_size; 777 int idx_open, idx_fattr; 778 779 GETFH4res *gf_res = NULL; 780 OPEN4res *op_res = NULL; 781 nfs4_ga_res_t *garp; 782 fattr4 *attr = NULL; 783 struct nfs4_excl_time verf; 784 bool_t did_excl_setup = FALSE; 785 int created_osp; 786 787 OPEN4cargs *open_args; 788 nfs4_open_owner_t *oop = NULL; 789 nfs4_open_stream_t *osp = NULL; 790 seqid4 seqid = 0; 791 bool_t retry_open = FALSE; 792 nfs4_recov_state_t recov_state; 793 nfs4_lost_rqst_t lost_rqst; 794 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 795 hrtime_t t; 796 int acc = 0; 797 cred_t *cred_otw = NULL; /* cred used to do the RPC call */ 798 cred_t *ncr = NULL; 799 800 nfs4_sharedfh_t *otw_sfh; 801 nfs4_sharedfh_t *orig_sfh; 802 int fh_differs = 0; 803 int numops, setgid_flag; 804 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1; 805 806 /* 807 * Make sure we properly deal with setting the right gid on 808 * a newly created file to reflect the parent's setgid bit 809 */ 810 setgid_flag = 0; 811 if (create_flag && in_va) { 812 813 /* 814 * If there is grpid mount flag used or 815 * the parent's directory has the setgid bit set 816 * _and_ the client was able to get a valid mapping 817 * for the parent dir's owner_group, we want to 818 * append NVERIFY(owner_group == dva.va_gid) and 819 * SETATTR to the CREATE compound. 820 */ 821 mutex_enter(&drp->r_statelock); 822 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID || 823 drp->r_attr.va_mode & VSGID) && 824 drp->r_attr.va_gid != GID_NOBODY) { 825 in_va->va_mask |= AT_GID; 826 in_va->va_gid = drp->r_attr.va_gid; 827 setgid_flag = 1; 828 } 829 mutex_exit(&drp->r_statelock); 830 } 831 832 /* 833 * Normal/non-create compound: 834 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) 835 * 836 * Open(create) compound no setgid: 837 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) + 838 * RESTOREFH + GETATTR 839 * 840 * Open(create) setgid: 841 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) + 842 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH + 843 * NVERIFY(grp) + SETATTR 844 */ 845 if (setgid_flag) { 846 numops = 10; 847 idx_open = 1; 848 idx_fattr = 3; 849 } else if (create_flag) { 850 numops = 7; 851 idx_open = 2; 852 idx_fattr = 4; 853 } else { 854 numops = 4; 855 idx_open = 1; 856 idx_fattr = 3; 857 } 858 859 args.array_len = numops; 860 argoplist_size = numops * sizeof (nfs_argop4); 861 argop = kmem_alloc(argoplist_size, KM_SLEEP); 862 863 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: " 864 "open %s open flag 0x%x cred %p", file_name, open_flag, 865 (void *)cr)); 866 867 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 868 if (create_flag) { 869 /* 870 * We are to create a file. Initialize the passed in vnode 871 * pointer. 872 */ 873 vpi = NULL; 874 } else { 875 /* 876 * Check to see if the client owns a read delegation and is 877 * trying to open for write. If so, then return the delegation 878 * to avoid the server doing a cb_recall and returning DELAY. 879 * NB - we don't use the statev4_lock here because we'd have 880 * to drop the lock anyway and the result would be stale. 881 */ 882 if ((open_flag & FWRITE) && 883 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ) 884 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN); 885 886 /* 887 * If the file has a delegation, then do an access check up 888 * front. This avoids having to an access check later after 889 * we've already done start_op, which could deadlock. 890 */ 891 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) { 892 if (open_flag & FREAD && 893 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0) 894 acc |= VREAD; 895 if (open_flag & FWRITE && 896 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0) 897 acc |= VWRITE; 898 } 899 } 900 901 drp = VTOR4(dvp); 902 903 recov_state.rs_flags = 0; 904 recov_state.rs_num_retry_despite_err = 0; 905 cred_otw = cr; 906 907 recov_retry: 908 fh_differs = 0; 909 nfs4_error_zinit(&e); 910 911 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state); 912 if (e.error) { 913 if (ncr != NULL) 914 crfree(ncr); 915 kmem_free(argop, argoplist_size); 916 return (e.error); 917 } 918 919 args.ctag = TAG_OPEN; 920 args.array_len = numops; 921 args.array = argop; 922 923 /* putfh directory fh */ 924 argop[0].argop = OP_CPUTFH; 925 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 926 927 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */ 928 argop[idx_open].argop = OP_COPEN; 929 open_args = &argop[idx_open].nfs_argop4_u.opcopen; 930 open_args->claim = CLAIM_NULL; 931 932 /* name of file */ 933 open_args->open_claim4_u.cfile = file_name; 934 open_args->owner.owner_len = 0; 935 open_args->owner.owner_val = NULL; 936 937 if (create_flag) { 938 /* CREATE a file */ 939 open_args->opentype = OPEN4_CREATE; 940 open_args->mode = createmode; 941 if (createmode == EXCLUSIVE4) { 942 if (did_excl_setup == FALSE) { 943 verf.seconds = zone_get_hostid(NULL); 944 if (verf.seconds != 0) 945 verf.nseconds = newnum(); 946 else { 947 timestruc_t now; 948 949 gethrestime(&now); 950 verf.seconds = now.tv_sec; 951 verf.nseconds = now.tv_nsec; 952 } 953 /* 954 * Since the server will use this value for the 955 * mtime, make sure that it can't overflow. Zero 956 * out the MSB. The actual value does not matter 957 * here, only its uniqeness. 958 */ 959 verf.seconds &= INT32_MAX; 960 did_excl_setup = TRUE; 961 } 962 963 /* Now copy over verifier to OPEN4args. */ 964 open_args->createhow4_u.createverf = *(uint64_t *)&verf; 965 } else { 966 int v_error; 967 bitmap4 supp_attrs; 968 servinfo4_t *svp; 969 970 attr = &open_args->createhow4_u.createattrs; 971 972 svp = drp->r_server; 973 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 974 supp_attrs = svp->sv_supp_attrs; 975 nfs_rw_exit(&svp->sv_lock); 976 977 /* GUARDED4 or UNCHECKED4 */ 978 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN, 979 supp_attrs); 980 if (v_error) { 981 bzero(attr, sizeof (*attr)); 982 nfs4args_copen_free(open_args); 983 nfs4_end_op(VTOMI4(dvp), dvp, vpi, 984 &recov_state, FALSE); 985 if (ncr != NULL) 986 crfree(ncr); 987 kmem_free(argop, argoplist_size); 988 return (v_error); 989 } 990 } 991 } else { 992 /* NO CREATE */ 993 open_args->opentype = OPEN4_NOCREATE; 994 } 995 996 if (recov_state.rs_sp != NULL) { 997 mutex_enter(&recov_state.rs_sp->s_lock); 998 open_args->owner.clientid = recov_state.rs_sp->clientid; 999 mutex_exit(&recov_state.rs_sp->s_lock); 1000 } else { 1001 /* XXX should we just fail here? */ 1002 open_args->owner.clientid = 0; 1003 } 1004 1005 /* 1006 * This increments oop's ref count or creates a temporary 'just_created' 1007 * open owner that will become valid when this OPEN/OPEN_CONFIRM call 1008 * completes. 1009 */ 1010 mutex_enter(&VTOMI4(dvp)->mi_lock); 1011 1012 /* See if a permanent or just created open owner exists */ 1013 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp)); 1014 if (!oop) { 1015 /* 1016 * This open owner does not exist so create a temporary 1017 * just created one. 1018 */ 1019 oop = create_open_owner(cr, VTOMI4(dvp)); 1020 ASSERT(oop != NULL); 1021 } 1022 mutex_exit(&VTOMI4(dvp)->mi_lock); 1023 1024 /* this length never changes, do alloc before seqid sync */ 1025 open_args->owner.owner_len = sizeof (oop->oo_name); 1026 open_args->owner.owner_val = 1027 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1028 1029 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp)); 1030 if (e.error == EAGAIN) { 1031 open_owner_rele(oop); 1032 nfs4args_copen_free(open_args); 1033 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1034 if (ncr != NULL) { 1035 crfree(ncr); 1036 ncr = NULL; 1037 } 1038 goto recov_retry; 1039 } 1040 1041 /* Check to see if we need to do the OTW call */ 1042 if (!create_flag) { 1043 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi, 1044 file_just_been_created, &e.error, acc, &recov_state)) { 1045 1046 /* 1047 * The OTW open is not necessary. Either 1048 * the open can succeed without it (eg. 1049 * delegation, error == 0) or the open 1050 * must fail due to an access failure 1051 * (error != 0). In either case, tidy 1052 * up and return. 1053 */ 1054 1055 nfs4_end_open_seqid_sync(oop); 1056 open_owner_rele(oop); 1057 nfs4args_copen_free(open_args); 1058 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE); 1059 if (ncr != NULL) 1060 crfree(ncr); 1061 kmem_free(argop, argoplist_size); 1062 return (e.error); 1063 } 1064 } 1065 1066 bcopy(&oop->oo_name, open_args->owner.owner_val, 1067 open_args->owner.owner_len); 1068 1069 seqid = nfs4_get_open_seqid(oop) + 1; 1070 open_args->seqid = seqid; 1071 open_args->share_access = 0; 1072 if (open_flag & FREAD) 1073 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1074 if (open_flag & FWRITE) 1075 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1076 open_args->share_deny = OPEN4_SHARE_DENY_NONE; 1077 1078 1079 1080 /* 1081 * getfh w/sanity check for idx_open/idx_fattr 1082 */ 1083 ASSERT((idx_open + 1) == (idx_fattr - 1)); 1084 argop[idx_open + 1].argop = OP_GETFH; 1085 1086 /* getattr */ 1087 argop[idx_fattr].argop = OP_GETATTR; 1088 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1089 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1090 1091 if (setgid_flag) { 1092 vattr_t _v; 1093 servinfo4_t *svp; 1094 bitmap4 supp_attrs; 1095 1096 svp = drp->r_server; 1097 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1098 supp_attrs = svp->sv_supp_attrs; 1099 nfs_rw_exit(&svp->sv_lock); 1100 1101 /* 1102 * For setgid case, we need to: 1103 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 1104 */ 1105 argop[4].argop = OP_SAVEFH; 1106 1107 argop[5].argop = OP_CPUTFH; 1108 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 1109 1110 argop[6].argop = OP_GETATTR; 1111 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1112 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1113 1114 argop[7].argop = OP_RESTOREFH; 1115 1116 /* 1117 * nverify 1118 */ 1119 _v.va_mask = AT_GID; 1120 _v.va_gid = in_va->va_gid; 1121 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 1122 supp_attrs))) { 1123 1124 /* 1125 * setattr 1126 * 1127 * We _know_ we're not messing with AT_SIZE or 1128 * AT_XTIME, so no need for stateid or flags. 1129 * Also we specify NULL rp since we're only 1130 * interested in setting owner_group attributes. 1131 */ 1132 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, 1133 supp_attrs, &e.error, 0); 1134 if (e.error) 1135 nfs4args_verify_free(&argop[8]); 1136 } 1137 1138 if (e.error) { 1139 /* 1140 * XXX - Revisit the last argument to nfs4_end_op() 1141 * once 5020486 is fixed. 1142 */ 1143 nfs4_end_open_seqid_sync(oop); 1144 open_owner_rele(oop); 1145 nfs4args_copen_free(open_args); 1146 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE); 1147 if (ncr != NULL) 1148 crfree(ncr); 1149 kmem_free(argop, argoplist_size); 1150 return (e.error); 1151 } 1152 } else if (create_flag) { 1153 argop[1].argop = OP_SAVEFH; 1154 1155 argop[5].argop = OP_RESTOREFH; 1156 1157 argop[6].argop = OP_GETATTR; 1158 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1159 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 1160 } 1161 1162 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1163 "nfs4open_otw: %s call, nm %s, rp %s", 1164 needrecov ? "recov" : "first", file_name, 1165 rnode4info(VTOR4(dvp)))); 1166 1167 t = gethrtime(); 1168 1169 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e); 1170 1171 if (!e.error && nfs4_need_to_bump_seqid(&res)) 1172 nfs4_set_open_seqid(seqid, oop, args.ctag); 1173 1174 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp); 1175 1176 if (e.error || needrecov) { 1177 bool_t abort = FALSE; 1178 1179 if (needrecov) { 1180 nfs4_bseqid_entry_t *bsep = NULL; 1181 1182 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop, 1183 cred_otw, vpi, dvp, open_args); 1184 1185 if (!e.error && res.status == NFS4ERR_BAD_SEQID) { 1186 bsep = nfs4_create_bseqid_entry(oop, NULL, 1187 vpi, 0, args.ctag, open_args->seqid); 1188 num_bseqid_retry--; 1189 } 1190 1191 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi, 1192 NULL, lost_rqst.lr_op == OP_OPEN ? 1193 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL); 1194 1195 if (bsep) 1196 kmem_free(bsep, sizeof (*bsep)); 1197 /* give up if we keep getting BAD_SEQID */ 1198 if (num_bseqid_retry == 0) 1199 abort = TRUE; 1200 if (abort == TRUE && e.error == 0) 1201 e.error = geterrno4(res.status); 1202 } 1203 nfs4_end_open_seqid_sync(oop); 1204 open_owner_rele(oop); 1205 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1206 nfs4args_copen_free(open_args); 1207 if (setgid_flag) { 1208 nfs4args_verify_free(&argop[8]); 1209 nfs4args_setattr_free(&argop[9]); 1210 } 1211 if (!e.error) 1212 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1213 if (ncr != NULL) { 1214 crfree(ncr); 1215 ncr = NULL; 1216 } 1217 if (!needrecov || abort == TRUE || e.error == EINTR || 1218 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) { 1219 kmem_free(argop, argoplist_size); 1220 return (e.error); 1221 } 1222 goto recov_retry; 1223 } 1224 1225 /* 1226 * Will check and update lease after checking the rflag for 1227 * OPEN_CONFIRM in the successful OPEN call. 1228 */ 1229 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 1230 1231 /* 1232 * XXX what if we're crossing mount points from server1:/drp 1233 * to server2:/drp/rp. 1234 */ 1235 1236 /* Signal our end of use of the open seqid */ 1237 nfs4_end_open_seqid_sync(oop); 1238 1239 /* 1240 * This will destroy the open owner if it was just created, 1241 * and no one else has put a reference on it. 1242 */ 1243 open_owner_rele(oop); 1244 if (create_flag && (createmode != EXCLUSIVE4) && 1245 res.status == NFS4ERR_BADOWNER) 1246 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1247 1248 e.error = geterrno4(res.status); 1249 nfs4args_copen_free(open_args); 1250 if (setgid_flag) { 1251 nfs4args_verify_free(&argop[8]); 1252 nfs4args_setattr_free(&argop[9]); 1253 } 1254 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1255 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1256 /* 1257 * If the reply is NFS4ERR_ACCESS, it may be because 1258 * we are root (no root net access). If the real uid 1259 * is not root, then retry with the real uid instead. 1260 */ 1261 if (ncr != NULL) { 1262 crfree(ncr); 1263 ncr = NULL; 1264 } 1265 if (res.status == NFS4ERR_ACCESS && 1266 (ncr = crnetadjust(cred_otw)) != NULL) { 1267 cred_otw = ncr; 1268 goto recov_retry; 1269 } 1270 kmem_free(argop, argoplist_size); 1271 return (e.error); 1272 } 1273 1274 resop = &res.array[idx_open]; /* open res */ 1275 op_res = &resop->nfs_resop4_u.opopen; 1276 1277 #ifdef DEBUG 1278 /* 1279 * verify attrset bitmap 1280 */ 1281 if (create_flag && 1282 (createmode == UNCHECKED4 || createmode == GUARDED4)) { 1283 /* make sure attrset returned is what we asked for */ 1284 /* XXX Ignore this 'error' for now */ 1285 if (attr->attrmask != op_res->attrset) 1286 /* EMPTY */; 1287 } 1288 #endif 1289 1290 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) { 1291 mutex_enter(&VTOMI4(dvp)->mi_lock); 1292 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK; 1293 mutex_exit(&VTOMI4(dvp)->mi_lock); 1294 } 1295 1296 resop = &res.array[idx_open + 1]; /* getfh res */ 1297 gf_res = &resop->nfs_resop4_u.opgetfh; 1298 1299 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp)); 1300 1301 /* 1302 * The open stateid has been updated on the server but not 1303 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache-> 1304 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW 1305 * WRITE call. That, however, will use the old stateid, so go ahead 1306 * and upate the open stateid now, before any call to makenfs4node. 1307 */ 1308 if (vpi) { 1309 nfs4_open_stream_t *tmp_osp; 1310 rnode4_t *tmp_rp = VTOR4(vpi); 1311 1312 tmp_osp = find_open_stream(oop, tmp_rp); 1313 if (tmp_osp) { 1314 tmp_osp->open_stateid = op_res->stateid; 1315 mutex_exit(&tmp_osp->os_sync_lock); 1316 open_stream_rele(tmp_osp, tmp_rp); 1317 } 1318 1319 /* 1320 * We must determine if the file handle given by the otw open 1321 * is the same as the file handle which was passed in with 1322 * *vpp. This case can be reached if the file we are trying 1323 * to open has been removed and another file has been created 1324 * having the same file name. The passed in vnode is released 1325 * later. 1326 */ 1327 orig_sfh = VTOR4(vpi)->r_fh; 1328 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh); 1329 } 1330 1331 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res; 1332 1333 if (create_flag || fh_differs) { 1334 int rnode_err = 0; 1335 1336 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr, 1337 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh)); 1338 1339 if (e.error) 1340 PURGE_ATTRCACHE4(vp); 1341 /* 1342 * For the newly created vp case, make sure the rnode 1343 * isn't bad before using it. 1344 */ 1345 mutex_enter(&(VTOR4(vp))->r_statelock); 1346 if (VTOR4(vp)->r_flags & R4RECOVERR) 1347 rnode_err = EIO; 1348 mutex_exit(&(VTOR4(vp))->r_statelock); 1349 1350 if (rnode_err) { 1351 nfs4_end_open_seqid_sync(oop); 1352 nfs4args_copen_free(open_args); 1353 if (setgid_flag) { 1354 nfs4args_verify_free(&argop[8]); 1355 nfs4args_setattr_free(&argop[9]); 1356 } 1357 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1358 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1359 needrecov); 1360 open_owner_rele(oop); 1361 VN_RELE(vp); 1362 if (ncr != NULL) 1363 crfree(ncr); 1364 sfh4_rele(&otw_sfh); 1365 kmem_free(argop, argoplist_size); 1366 return (EIO); 1367 } 1368 } else { 1369 vp = vpi; 1370 } 1371 sfh4_rele(&otw_sfh); 1372 1373 /* 1374 * It seems odd to get a full set of attrs and then not update 1375 * the object's attrcache in the non-create case. Create case uses 1376 * the attrs since makenfs4node checks to see if the attrs need to 1377 * be updated (and then updates them). The non-create case should 1378 * update attrs also. 1379 */ 1380 if (! create_flag && ! fh_differs && !e.error) { 1381 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 1382 } 1383 1384 nfs4_error_zinit(&e); 1385 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 1386 /* This does not do recovery for vp explicitly. */ 1387 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE, 1388 &retry_open, oop, FALSE, &e, &num_bseqid_retry); 1389 1390 if (e.error || e.stat) { 1391 nfs4_end_open_seqid_sync(oop); 1392 nfs4args_copen_free(open_args); 1393 if (setgid_flag) { 1394 nfs4args_verify_free(&argop[8]); 1395 nfs4args_setattr_free(&argop[9]); 1396 } 1397 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1398 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, 1399 needrecov); 1400 open_owner_rele(oop); 1401 if (create_flag || fh_differs) { 1402 /* rele the makenfs4node */ 1403 VN_RELE(vp); 1404 } 1405 if (ncr != NULL) { 1406 crfree(ncr); 1407 ncr = NULL; 1408 } 1409 if (retry_open == TRUE) { 1410 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1411 "nfs4open_otw: retry the open since OPEN " 1412 "CONFIRM failed with error %d stat %d", 1413 e.error, e.stat)); 1414 if (create_flag && createmode == GUARDED4) { 1415 NFS4_DEBUG(nfs4_client_recov_debug, 1416 (CE_NOTE, "nfs4open_otw: switch " 1417 "createmode from GUARDED4 to " 1418 "UNCHECKED4")); 1419 createmode = UNCHECKED4; 1420 } 1421 goto recov_retry; 1422 } 1423 if (!e.error) { 1424 if (create_flag && (createmode != EXCLUSIVE4) && 1425 e.stat == NFS4ERR_BADOWNER) 1426 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN); 1427 1428 e.error = geterrno4(e.stat); 1429 } 1430 kmem_free(argop, argoplist_size); 1431 return (e.error); 1432 } 1433 } 1434 1435 rp = VTOR4(vp); 1436 1437 mutex_enter(&rp->r_statev4_lock); 1438 if (create_flag) 1439 rp->created_v4 = 1; 1440 mutex_exit(&rp->r_statev4_lock); 1441 1442 mutex_enter(&oop->oo_lock); 1443 /* Doesn't matter if 'oo_just_created' already was set as this */ 1444 oop->oo_just_created = NFS4_PERM_CREATED; 1445 if (oop->oo_cred_otw) 1446 crfree(oop->oo_cred_otw); 1447 oop->oo_cred_otw = cred_otw; 1448 crhold(oop->oo_cred_otw); 1449 mutex_exit(&oop->oo_lock); 1450 1451 /* returns with 'os_sync_lock' held */ 1452 osp = find_or_create_open_stream(oop, rp, &created_osp); 1453 if (!osp) { 1454 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1455 "nfs4open_otw: failed to create an open stream")); 1456 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: " 1457 "signal our end of use of the open seqid")); 1458 1459 nfs4_end_open_seqid_sync(oop); 1460 open_owner_rele(oop); 1461 nfs4args_copen_free(open_args); 1462 if (setgid_flag) { 1463 nfs4args_verify_free(&argop[8]); 1464 nfs4args_setattr_free(&argop[9]); 1465 } 1466 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1467 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1468 if (create_flag || fh_differs) 1469 VN_RELE(vp); 1470 if (ncr != NULL) 1471 crfree(ncr); 1472 1473 kmem_free(argop, argoplist_size); 1474 return (EINVAL); 1475 1476 } 1477 1478 osp->open_stateid = op_res->stateid; 1479 1480 if (open_flag & FREAD) 1481 osp->os_share_acc_read++; 1482 if (open_flag & FWRITE) 1483 osp->os_share_acc_write++; 1484 osp->os_share_deny_none++; 1485 1486 /* 1487 * Need to reset this bitfield for the possible case where we were 1488 * going to OTW CLOSE the file, got a non-recoverable error, and before 1489 * we could retry the CLOSE, OPENed the file again. 1490 */ 1491 ASSERT(osp->os_open_owner->oo_seqid_inuse); 1492 osp->os_final_close = 0; 1493 osp->os_force_close = 0; 1494 #ifdef DEBUG 1495 if (osp->os_failed_reopen) 1496 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:" 1497 " clearing os_failed_reopen for osp %p, cr %p, rp %s", 1498 (void *)osp, (void *)cr, rnode4info(rp))); 1499 #endif 1500 osp->os_failed_reopen = 0; 1501 1502 mutex_exit(&osp->os_sync_lock); 1503 1504 nfs4_end_open_seqid_sync(oop); 1505 1506 if (created_osp && recov_state.rs_sp != NULL) { 1507 mutex_enter(&recov_state.rs_sp->s_lock); 1508 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp)); 1509 mutex_exit(&recov_state.rs_sp->s_lock); 1510 } 1511 1512 /* get rid of our reference to find oop */ 1513 open_owner_rele(oop); 1514 1515 open_stream_rele(osp, rp); 1516 1517 /* accept delegation, if any */ 1518 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw); 1519 1520 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov); 1521 1522 if (createmode == EXCLUSIVE4 && 1523 (in_va->va_mask & ~(AT_GID | AT_SIZE))) { 1524 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:" 1525 " EXCLUSIVE4: sending a SETATTR")); 1526 /* 1527 * If doing an exclusive create, then generate 1528 * a SETATTR to set the initial attributes. 1529 * Try to set the mtime and the atime to the 1530 * server's current time. It is somewhat 1531 * expected that these fields will be used to 1532 * store the exclusive create cookie. If not, 1533 * server implementors will need to know that 1534 * a SETATTR will follow an exclusive create 1535 * and the cookie should be destroyed if 1536 * appropriate. 1537 * 1538 * The AT_GID and AT_SIZE bits are turned off 1539 * so that the SETATTR request will not attempt 1540 * to process these. The gid will be set 1541 * separately if appropriate. The size is turned 1542 * off because it is assumed that a new file will 1543 * be created empty and if the file wasn't empty, 1544 * then the exclusive create will have failed 1545 * because the file must have existed already. 1546 * Therefore, no truncate operation is needed. 1547 */ 1548 in_va->va_mask &= ~(AT_GID | AT_SIZE); 1549 in_va->va_mask |= (AT_MTIME | AT_ATIME); 1550 1551 e.error = nfs4setattr(vp, in_va, 0, cr, NULL); 1552 if (e.error) { 1553 /* 1554 * Couldn't correct the attributes of 1555 * the newly created file and the 1556 * attributes are wrong. Remove the 1557 * file and return an error to the 1558 * application. 1559 */ 1560 /* XXX will this take care of client state ? */ 1561 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 1562 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:" 1563 " remove file", e.error)); 1564 VN_RELE(vp); 1565 (void) nfs4_remove(dvp, file_name, cr, NULL, 0); 1566 /* 1567 * Since we've reled the vnode and removed 1568 * the file we now need to return the error. 1569 * At this point we don't want to update the 1570 * dircaches, call nfs4_waitfor_purge_complete 1571 * or set vpp to vp so we need to skip these 1572 * as well. 1573 */ 1574 goto skip_update_dircaches; 1575 } 1576 } 1577 1578 /* 1579 * If we created or found the correct vnode, due to create_flag or 1580 * fh_differs being set, then update directory cache attribute, readdir 1581 * and dnlc caches. 1582 */ 1583 if (create_flag || fh_differs) { 1584 dirattr_info_t dinfo, *dinfop; 1585 1586 /* 1587 * Make sure getattr succeeded before using results. 1588 * note: op 7 is getattr(dir) for both flavors of 1589 * open(create). 1590 */ 1591 if (create_flag && res.status == NFS4_OK) { 1592 dinfo.di_time_call = t; 1593 dinfo.di_cred = cr; 1594 dinfo.di_garp = 1595 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 1596 dinfop = &dinfo; 1597 } else { 1598 dinfop = NULL; 1599 } 1600 1601 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name, 1602 dinfop); 1603 } 1604 1605 /* 1606 * If the page cache for this file was flushed from actions 1607 * above, it was done asynchronously and if that is true, 1608 * there is a need to wait here for it to complete. This must 1609 * be done outside of start_fop/end_fop. 1610 */ 1611 (void) nfs4_waitfor_purge_complete(vp); 1612 1613 /* 1614 * It is implicit that we are in the open case (create_flag == 0) since 1615 * fh_differs can only be set to a non-zero value in the open case. 1616 */ 1617 if (fh_differs != 0 && vpi != NULL) 1618 VN_RELE(vpi); 1619 1620 /* 1621 * Be sure to set *vpp to the correct value before returning. 1622 */ 1623 *vpp = vp; 1624 1625 skip_update_dircaches: 1626 1627 nfs4args_copen_free(open_args); 1628 if (setgid_flag) { 1629 nfs4args_verify_free(&argop[8]); 1630 nfs4args_setattr_free(&argop[9]); 1631 } 1632 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1633 1634 if (ncr) 1635 crfree(ncr); 1636 kmem_free(argop, argoplist_size); 1637 return (e.error); 1638 } 1639 1640 /* 1641 * Reopen an open instance. cf. nfs4open_otw(). 1642 * 1643 * Errors are returned by the nfs4_error_t parameter. 1644 * - ep->error contains an errno value or zero. 1645 * - if it is zero, ep->stat is set to an NFS status code, if any. 1646 * If the file could not be reopened, but the caller should continue, the 1647 * file is marked dead and no error values are returned. If the caller 1648 * should stop recovering open files and start over, either the ep->error 1649 * value or ep->stat will indicate an error (either something that requires 1650 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile 1651 * filehandles) may be handled silently by this routine. 1652 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state 1653 * will be started, so the caller should not do it. 1654 * 1655 * Gotos: 1656 * - kill_file : reopen failed in such a fashion to constitute marking the 1657 * file dead and setting the open stream's 'os_failed_reopen' as 1. This 1658 * is for cases where recovery is not possible. 1659 * - failed_reopen : same as above, except that the file has already been 1660 * marked dead, so no need to do it again. 1661 * - bailout : reopen failed but we are able to recover and retry the reopen - 1662 * either within this function immediately or via the calling function. 1663 */ 1664 1665 void 1666 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep, 1667 open_claim_type4 claim, bool_t frc_use_claim_previous, 1668 bool_t is_recov) 1669 { 1670 COMPOUND4args_clnt args; 1671 COMPOUND4res_clnt res; 1672 nfs_argop4 argop[4]; 1673 nfs_resop4 *resop; 1674 OPEN4res *op_res = NULL; 1675 OPEN4cargs *open_args; 1676 GETFH4res *gf_res; 1677 rnode4_t *rp = VTOR4(vp); 1678 int doqueue = 1; 1679 cred_t *cr = NULL, *cred_otw = NULL; 1680 nfs4_open_owner_t *oop = NULL; 1681 seqid4 seqid; 1682 nfs4_ga_res_t *garp; 1683 char fn[MAXNAMELEN]; 1684 nfs4_recov_state_t recov = {NULL, 0}; 1685 nfs4_lost_rqst_t lost_rqst; 1686 mntinfo4_t *mi = VTOMI4(vp); 1687 bool_t abort; 1688 char *failed_msg = ""; 1689 int fh_different; 1690 hrtime_t t; 1691 nfs4_bseqid_entry_t *bsep = NULL; 1692 1693 ASSERT(nfs4_consistent_type(vp)); 1694 ASSERT(nfs_zone() == mi->mi_zone); 1695 1696 nfs4_error_zinit(ep); 1697 1698 /* this is the cred used to find the open owner */ 1699 cr = state_to_cred(osp); 1700 if (cr == NULL) { 1701 failed_msg = "Couldn't reopen: no cred"; 1702 goto kill_file; 1703 } 1704 /* use this cred for OTW operations */ 1705 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner); 1706 1707 top: 1708 nfs4_error_zinit(ep); 1709 1710 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) { 1711 /* File system has been unmounted, quit */ 1712 ep->error = EIO; 1713 failed_msg = "Couldn't reopen: file system has been unmounted"; 1714 goto kill_file; 1715 } 1716 1717 oop = osp->os_open_owner; 1718 1719 ASSERT(oop != NULL); 1720 if (oop == NULL) { /* be defensive in non-DEBUG */ 1721 failed_msg = "can't reopen: no open owner"; 1722 goto kill_file; 1723 } 1724 open_owner_hold(oop); 1725 1726 ep->error = nfs4_start_open_seqid_sync(oop, mi); 1727 if (ep->error) { 1728 open_owner_rele(oop); 1729 oop = NULL; 1730 goto bailout; 1731 } 1732 1733 /* 1734 * If the rnode has a delegation and the delegation has been 1735 * recovered and the server didn't request a recall and the caller 1736 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during 1737 * recovery) and the rnode hasn't been marked dead, then install 1738 * the delegation stateid in the open stream. Otherwise, proceed 1739 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN. 1740 */ 1741 mutex_enter(&rp->r_statev4_lock); 1742 if (rp->r_deleg_type != OPEN_DELEGATE_NONE && 1743 !rp->r_deleg_return_pending && 1744 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) && 1745 !rp->r_deleg_needs_recall && 1746 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous && 1747 !(rp->r_flags & R4RECOVERR)) { 1748 mutex_enter(&osp->os_sync_lock); 1749 osp->os_delegation = 1; 1750 osp->open_stateid = rp->r_deleg_stateid; 1751 mutex_exit(&osp->os_sync_lock); 1752 mutex_exit(&rp->r_statev4_lock); 1753 goto bailout; 1754 } 1755 mutex_exit(&rp->r_statev4_lock); 1756 1757 /* 1758 * If the file failed recovery, just quit. This failure need not 1759 * affect other reopens, so don't return an error. 1760 */ 1761 mutex_enter(&rp->r_statelock); 1762 if (rp->r_flags & R4RECOVERR) { 1763 mutex_exit(&rp->r_statelock); 1764 ep->error = 0; 1765 goto failed_reopen; 1766 } 1767 mutex_exit(&rp->r_statelock); 1768 1769 /* 1770 * argop is empty here 1771 * 1772 * PUTFH, OPEN, GETATTR 1773 */ 1774 args.ctag = TAG_REOPEN; 1775 args.array_len = 4; 1776 args.array = argop; 1777 1778 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 1779 "nfs4_reopen: file is type %d, id %s", 1780 vp->v_type, rnode4info(VTOR4(vp)))); 1781 1782 argop[0].argop = OP_CPUTFH; 1783 1784 if (claim != CLAIM_PREVIOUS) { 1785 /* 1786 * if this is a file mount then 1787 * use the mntinfo parentfh 1788 */ 1789 argop[0].nfs_argop4_u.opcputfh.sfh = 1790 (vp->v_flag & VROOT) ? mi->mi_srvparentfh : 1791 VTOSV(vp)->sv_dfh; 1792 } else { 1793 /* putfh fh to reopen */ 1794 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 1795 } 1796 1797 argop[1].argop = OP_COPEN; 1798 open_args = &argop[1].nfs_argop4_u.opcopen; 1799 open_args->claim = claim; 1800 1801 if (claim == CLAIM_NULL) { 1802 1803 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1804 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1805 "failed for vp 0x%p for CLAIM_NULL with %m", 1806 (void *)vp); 1807 failed_msg = "Couldn't reopen: vtoname failed for " 1808 "CLAIM_NULL"; 1809 /* nothing allocated yet */ 1810 goto kill_file; 1811 } 1812 1813 open_args->open_claim4_u.cfile = fn; 1814 } else if (claim == CLAIM_PREVIOUS) { 1815 1816 /* 1817 * We have two cases to deal with here: 1818 * 1) We're being called to reopen files in order to satisfy 1819 * a lock operation request which requires us to explicitly 1820 * reopen files which were opened under a delegation. If 1821 * we're in recovery, we *must* use CLAIM_PREVIOUS. In 1822 * that case, frc_use_claim_previous is TRUE and we must 1823 * use the rnode's current delegation type (r_deleg_type). 1824 * 2) We're reopening files during some form of recovery. 1825 * In this case, frc_use_claim_previous is FALSE and we 1826 * use the delegation type appropriate for recovery 1827 * (r_deleg_needs_recovery). 1828 */ 1829 mutex_enter(&rp->r_statev4_lock); 1830 open_args->open_claim4_u.delegate_type = 1831 frc_use_claim_previous ? 1832 rp->r_deleg_type : 1833 rp->r_deleg_needs_recovery; 1834 mutex_exit(&rp->r_statev4_lock); 1835 1836 } else if (claim == CLAIM_DELEGATE_CUR) { 1837 1838 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) { 1839 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname " 1840 "failed for vp 0x%p for CLAIM_DELEGATE_CUR " 1841 "with %m", (void *)vp); 1842 failed_msg = "Couldn't reopen: vtoname failed for " 1843 "CLAIM_DELEGATE_CUR"; 1844 /* nothing allocated yet */ 1845 goto kill_file; 1846 } 1847 1848 mutex_enter(&rp->r_statev4_lock); 1849 open_args->open_claim4_u.delegate_cur_info.delegate_stateid = 1850 rp->r_deleg_stateid; 1851 mutex_exit(&rp->r_statev4_lock); 1852 1853 open_args->open_claim4_u.delegate_cur_info.cfile = fn; 1854 } 1855 open_args->opentype = OPEN4_NOCREATE; 1856 open_args->owner.clientid = mi2clientid(mi); 1857 open_args->owner.owner_len = sizeof (oop->oo_name); 1858 open_args->owner.owner_val = 1859 kmem_alloc(open_args->owner.owner_len, KM_SLEEP); 1860 bcopy(&oop->oo_name, open_args->owner.owner_val, 1861 open_args->owner.owner_len); 1862 open_args->share_access = 0; 1863 open_args->share_deny = 0; 1864 1865 mutex_enter(&osp->os_sync_lock); 1866 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp " 1867 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: " 1868 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ", 1869 (void *)osp, (void *)rp, osp->os_share_acc_read, 1870 osp->os_share_acc_write, osp->os_open_ref_count, 1871 osp->os_mmap_read, osp->os_mmap_write, claim)); 1872 1873 if (osp->os_share_acc_read || osp->os_mmap_read) 1874 open_args->share_access |= OPEN4_SHARE_ACCESS_READ; 1875 if (osp->os_share_acc_write || osp->os_mmap_write) 1876 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE; 1877 if (osp->os_share_deny_read) 1878 open_args->share_deny |= OPEN4_SHARE_DENY_READ; 1879 if (osp->os_share_deny_write) 1880 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE; 1881 mutex_exit(&osp->os_sync_lock); 1882 1883 seqid = nfs4_get_open_seqid(oop) + 1; 1884 open_args->seqid = seqid; 1885 1886 /* Construct the getfh part of the compound */ 1887 argop[2].argop = OP_GETFH; 1888 1889 /* Construct the getattr part of the compound */ 1890 argop[3].argop = OP_GETATTR; 1891 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 1892 argop[3].nfs_argop4_u.opgetattr.mi = mi; 1893 1894 t = gethrtime(); 1895 1896 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 1897 1898 if (ep->error) { 1899 if (!is_recov && !frc_use_claim_previous && 1900 (ep->error == EINTR || ep->error == ETIMEDOUT || 1901 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) { 1902 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop, 1903 cred_otw, vp, NULL, open_args); 1904 abort = nfs4_start_recovery(ep, 1905 VTOMI4(vp), vp, NULL, NULL, 1906 lost_rqst.lr_op == OP_OPEN ? 1907 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL); 1908 nfs4args_copen_free(open_args); 1909 goto bailout; 1910 } 1911 1912 nfs4args_copen_free(open_args); 1913 1914 if (ep->error == EACCES && cred_otw != cr) { 1915 crfree(cred_otw); 1916 cred_otw = cr; 1917 crhold(cred_otw); 1918 nfs4_end_open_seqid_sync(oop); 1919 open_owner_rele(oop); 1920 oop = NULL; 1921 goto top; 1922 } 1923 if (ep->error == ETIMEDOUT) 1924 goto bailout; 1925 failed_msg = "Couldn't reopen: rpc error"; 1926 goto kill_file; 1927 } 1928 1929 if (nfs4_need_to_bump_seqid(&res)) 1930 nfs4_set_open_seqid(seqid, oop, args.ctag); 1931 1932 switch (res.status) { 1933 case NFS4_OK: 1934 if (recov.rs_flags & NFS4_RS_DELAY_MSG) { 1935 mutex_enter(&rp->r_statelock); 1936 rp->r_delay_interval = 0; 1937 mutex_exit(&rp->r_statelock); 1938 } 1939 break; 1940 case NFS4ERR_BAD_SEQID: 1941 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0, 1942 args.ctag, open_args->seqid); 1943 1944 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 1945 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst : 1946 NULL, OP_OPEN, bsep, NULL, NULL); 1947 1948 nfs4args_copen_free(open_args); 1949 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1950 nfs4_end_open_seqid_sync(oop); 1951 open_owner_rele(oop); 1952 oop = NULL; 1953 kmem_free(bsep, sizeof (*bsep)); 1954 1955 goto kill_file; 1956 case NFS4ERR_NO_GRACE: 1957 nfs4args_copen_free(open_args); 1958 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1959 nfs4_end_open_seqid_sync(oop); 1960 open_owner_rele(oop); 1961 oop = NULL; 1962 if (claim == CLAIM_PREVIOUS) { 1963 /* 1964 * Retry as a plain open. We don't need to worry about 1965 * checking the changeinfo: it is acceptable for a 1966 * client to re-open a file and continue processing 1967 * (in the absence of locks). 1968 */ 1969 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1970 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; " 1971 "will retry as CLAIM_NULL")); 1972 claim = CLAIM_NULL; 1973 nfs4_mi_kstat_inc_no_grace(mi); 1974 goto top; 1975 } 1976 failed_msg = 1977 "Couldn't reopen: tried reclaim outside grace period. "; 1978 goto kill_file; 1979 case NFS4ERR_GRACE: 1980 nfs4_set_grace_wait(mi); 1981 nfs4args_copen_free(open_args); 1982 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1983 nfs4_end_open_seqid_sync(oop); 1984 open_owner_rele(oop); 1985 oop = NULL; 1986 ep->error = nfs4_wait_for_grace(mi, &recov); 1987 if (ep->error != 0) 1988 goto bailout; 1989 goto top; 1990 case NFS4ERR_DELAY: 1991 nfs4_set_delay_wait(vp); 1992 nfs4args_copen_free(open_args); 1993 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1994 nfs4_end_open_seqid_sync(oop); 1995 open_owner_rele(oop); 1996 oop = NULL; 1997 ep->error = nfs4_wait_for_delay(vp, &recov); 1998 nfs4_mi_kstat_inc_delay(mi); 1999 if (ep->error != 0) 2000 goto bailout; 2001 goto top; 2002 case NFS4ERR_FHEXPIRED: 2003 /* recover filehandle and retry */ 2004 abort = nfs4_start_recovery(ep, 2005 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL); 2006 nfs4args_copen_free(open_args); 2007 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2008 nfs4_end_open_seqid_sync(oop); 2009 open_owner_rele(oop); 2010 oop = NULL; 2011 if (abort == FALSE) 2012 goto top; 2013 failed_msg = "Couldn't reopen: recovery aborted"; 2014 goto kill_file; 2015 case NFS4ERR_RESOURCE: 2016 case NFS4ERR_STALE_CLIENTID: 2017 case NFS4ERR_WRONGSEC: 2018 case NFS4ERR_EXPIRED: 2019 /* 2020 * Do not mark the file dead and let the calling 2021 * function initiate recovery. 2022 */ 2023 nfs4args_copen_free(open_args); 2024 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2025 nfs4_end_open_seqid_sync(oop); 2026 open_owner_rele(oop); 2027 oop = NULL; 2028 goto bailout; 2029 case NFS4ERR_ACCESS: 2030 if (cred_otw != cr) { 2031 crfree(cred_otw); 2032 cred_otw = cr; 2033 crhold(cred_otw); 2034 nfs4args_copen_free(open_args); 2035 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2036 nfs4_end_open_seqid_sync(oop); 2037 open_owner_rele(oop); 2038 oop = NULL; 2039 goto top; 2040 } 2041 /* fall through */ 2042 default: 2043 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 2044 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s", 2045 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv, 2046 rnode4info(VTOR4(vp)))); 2047 failed_msg = "Couldn't reopen: NFSv4 error"; 2048 nfs4args_copen_free(open_args); 2049 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2050 goto kill_file; 2051 } 2052 2053 resop = &res.array[1]; /* open res */ 2054 op_res = &resop->nfs_resop4_u.opopen; 2055 2056 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res; 2057 2058 /* 2059 * Check if the path we reopened really is the same 2060 * file. We could end up in a situation where the file 2061 * was removed and a new file created with the same name. 2062 */ 2063 resop = &res.array[2]; 2064 gf_res = &resop->nfs_resop4_u.opgetfh; 2065 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0); 2066 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0); 2067 if (fh_different) { 2068 if (mi->mi_fh_expire_type == FH4_PERSISTENT || 2069 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) { 2070 /* Oops, we don't have the same file */ 2071 if (mi->mi_fh_expire_type == FH4_PERSISTENT) 2072 failed_msg = "Couldn't reopen: Persistent " 2073 "file handle changed"; 2074 else 2075 failed_msg = "Couldn't reopen: Volatile " 2076 "(no expire on open) file handle changed"; 2077 2078 nfs4args_copen_free(open_args); 2079 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2080 nfs_rw_exit(&mi->mi_fh_lock); 2081 goto kill_file; 2082 2083 } else { 2084 /* 2085 * We have volatile file handles that don't compare. 2086 * If the fids are the same then we assume that the 2087 * file handle expired but the rnode still refers to 2088 * the same file object. 2089 * 2090 * First check that we have fids or not. 2091 * If we don't we have a dumb server so we will 2092 * just assume every thing is ok for now. 2093 */ 2094 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID && 2095 rp->r_attr.va_mask & AT_NODEID && 2096 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) { 2097 /* 2098 * We have fids, but they don't 2099 * compare. So kill the file. 2100 */ 2101 failed_msg = 2102 "Couldn't reopen: file handle changed" 2103 " due to mismatched fids"; 2104 nfs4args_copen_free(open_args); 2105 (void) xdr_free(xdr_COMPOUND4res_clnt, 2106 (caddr_t)&res); 2107 nfs_rw_exit(&mi->mi_fh_lock); 2108 goto kill_file; 2109 } else { 2110 /* 2111 * We have volatile file handles that refers 2112 * to the same file (at least they have the 2113 * same fid) or we don't have fids so we 2114 * can't tell. :(. We'll be a kind and accepting 2115 * client so we'll update the rnode's file 2116 * handle with the otw handle. 2117 * 2118 * We need to drop mi->mi_fh_lock since 2119 * sh4_update acquires it. Since there is 2120 * only one recovery thread there is no 2121 * race. 2122 */ 2123 nfs_rw_exit(&mi->mi_fh_lock); 2124 sfh4_update(rp->r_fh, &gf_res->object); 2125 } 2126 } 2127 } else { 2128 nfs_rw_exit(&mi->mi_fh_lock); 2129 } 2130 2131 ASSERT(nfs4_consistent_type(vp)); 2132 2133 /* 2134 * If the server wanted an OPEN_CONFIRM but that fails, just start 2135 * over. Presumably if there is a persistent error it will show up 2136 * when we resend the OPEN. 2137 */ 2138 if (op_res->rflags & OPEN4_RESULT_CONFIRM) { 2139 bool_t retry_open = FALSE; 2140 2141 nfs4open_confirm(vp, &seqid, &op_res->stateid, 2142 cred_otw, is_recov, &retry_open, 2143 oop, FALSE, ep, NULL); 2144 if (ep->error || ep->stat) { 2145 nfs4args_copen_free(open_args); 2146 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2147 nfs4_end_open_seqid_sync(oop); 2148 open_owner_rele(oop); 2149 oop = NULL; 2150 goto top; 2151 } 2152 } 2153 2154 mutex_enter(&osp->os_sync_lock); 2155 osp->open_stateid = op_res->stateid; 2156 osp->os_delegation = 0; 2157 /* 2158 * Need to reset this bitfield for the possible case where we were 2159 * going to OTW CLOSE the file, got a non-recoverable error, and before 2160 * we could retry the CLOSE, OPENed the file again. 2161 */ 2162 ASSERT(osp->os_open_owner->oo_seqid_inuse); 2163 osp->os_final_close = 0; 2164 osp->os_force_close = 0; 2165 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS) 2166 osp->os_dc_openacc = open_args->share_access; 2167 mutex_exit(&osp->os_sync_lock); 2168 2169 nfs4_end_open_seqid_sync(oop); 2170 2171 /* accept delegation, if any */ 2172 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw); 2173 2174 nfs4args_copen_free(open_args); 2175 2176 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL); 2177 2178 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2179 2180 ASSERT(nfs4_consistent_type(vp)); 2181 2182 open_owner_rele(oop); 2183 crfree(cr); 2184 crfree(cred_otw); 2185 return; 2186 2187 kill_file: 2188 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat); 2189 failed_reopen: 2190 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 2191 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s", 2192 (void *)osp, (void *)cr, rnode4info(rp))); 2193 mutex_enter(&osp->os_sync_lock); 2194 osp->os_failed_reopen = 1; 2195 mutex_exit(&osp->os_sync_lock); 2196 bailout: 2197 if (oop != NULL) { 2198 nfs4_end_open_seqid_sync(oop); 2199 open_owner_rele(oop); 2200 } 2201 if (cr != NULL) 2202 crfree(cr); 2203 if (cred_otw != NULL) 2204 crfree(cred_otw); 2205 } 2206 2207 /* for . and .. OPENs */ 2208 /* ARGSUSED */ 2209 static int 2210 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr) 2211 { 2212 rnode4_t *rp; 2213 nfs4_ga_res_t gar; 2214 2215 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone); 2216 2217 /* 2218 * If close-to-open consistency checking is turned off or 2219 * if there is no cached data, we can avoid 2220 * the over the wire getattr. Otherwise, force a 2221 * call to the server to get fresh attributes and to 2222 * check caches. This is required for close-to-open 2223 * consistency. 2224 */ 2225 rp = VTOR4(*vpp); 2226 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO || 2227 (rp->r_dir == NULL && !nfs4_has_pages(*vpp))) 2228 return (0); 2229 2230 gar.n4g_va.va_mask = AT_ALL; 2231 return (nfs4_getattr_otw(*vpp, &gar, cr, 0)); 2232 } 2233 2234 /* 2235 * CLOSE a file 2236 */ 2237 /* ARGSUSED */ 2238 static int 2239 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 2240 caller_context_t *ct) 2241 { 2242 rnode4_t *rp; 2243 int error = 0; 2244 int r_error = 0; 2245 int n4error = 0; 2246 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 2247 2248 /* 2249 * Remove client state for this (lockowner, file) pair. 2250 * Issue otw v4 call to have the server do the same. 2251 */ 2252 2253 rp = VTOR4(vp); 2254 2255 /* 2256 * zone_enter(2) prevents processes from changing zones with NFS files 2257 * open; if we happen to get here from the wrong zone we can't do 2258 * anything over the wire. 2259 */ 2260 if (VTOMI4(vp)->mi_zone != nfs_zone()) { 2261 /* 2262 * We could attempt to clean up locks, except we're sure 2263 * that the current process didn't acquire any locks on 2264 * the file: any attempt to lock a file belong to another zone 2265 * will fail, and one can't lock an NFS file and then change 2266 * zones, as that fails too. 2267 * 2268 * Returning an error here is the sane thing to do. A 2269 * subsequent call to VN_RELE() which translates to a 2270 * nfs4_inactive() will clean up state: if the zone of the 2271 * vnode's origin is still alive and kicking, the inactive 2272 * thread will handle the request (from the correct zone), and 2273 * everything (minus the OTW close call) should be OK. If the 2274 * zone is going away nfs4_async_inactive() will throw away 2275 * delegations, open streams and cached pages inline. 2276 */ 2277 return (EIO); 2278 } 2279 2280 /* 2281 * If we are using local locking for this filesystem, then 2282 * release all of the SYSV style record locks. Otherwise, 2283 * we are doing network locking and we need to release all 2284 * of the network locks. All of the locks held by this 2285 * process on this file are released no matter what the 2286 * incoming reference count is. 2287 */ 2288 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) { 2289 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 2290 cleanshares(vp, ttoproc(curthread)->p_pid); 2291 } else 2292 e.error = nfs4_lockrelease(vp, flag, offset, cr); 2293 2294 if (e.error) { 2295 struct lm_sysid *lmsid; 2296 lmsid = nfs4_find_sysid(VTOMI4(vp)); 2297 if (lmsid == NULL) { 2298 DTRACE_PROBE2(unknown__sysid, int, e.error, 2299 vnode_t *, vp); 2300 } else { 2301 cleanlocks(vp, ttoproc(curthread)->p_pid, 2302 (lm_sysidt(lmsid) | LM_SYSID_CLIENT)); 2303 } 2304 return (e.error); 2305 } 2306 2307 if (count > 1) 2308 return (0); 2309 2310 /* 2311 * If the file has been `unlinked', then purge the 2312 * DNLC so that this vnode will get reycled quicker 2313 * and the .nfs* file on the server will get removed. 2314 */ 2315 if (rp->r_unldvp != NULL) 2316 dnlc_purge_vp(vp); 2317 2318 /* 2319 * If the file was open for write and there are pages, 2320 * do a synchronous flush and commit of all of the 2321 * dirty and uncommitted pages. 2322 */ 2323 ASSERT(!e.error); 2324 if ((flag & FWRITE) && nfs4_has_pages(vp)) 2325 error = nfs4_putpage_commit(vp, 0, 0, cr); 2326 2327 mutex_enter(&rp->r_statelock); 2328 r_error = rp->r_error; 2329 rp->r_error = 0; 2330 mutex_exit(&rp->r_statelock); 2331 2332 /* 2333 * If this file type is one for which no explicit 'open' was 2334 * done, then bail now (ie. no need for protocol 'close'). If 2335 * there was an error w/the vm subsystem, return _that_ error, 2336 * otherwise, return any errors that may've been reported via 2337 * the rnode. 2338 */ 2339 if (vp->v_type != VREG) 2340 return (error ? error : r_error); 2341 2342 /* 2343 * The sync putpage commit may have failed above, but since 2344 * we're working w/a regular file, we need to do the protocol 2345 * 'close' (nfs4close_one will figure out if an otw close is 2346 * needed or not). Report any errors _after_ doing the protocol 2347 * 'close'. 2348 */ 2349 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0); 2350 n4error = e.error ? e.error : geterrno4(e.stat); 2351 2352 /* 2353 * Error reporting prio (Hi -> Lo) 2354 * 2355 * i) nfs4_putpage_commit (error) 2356 * ii) rnode's (r_error) 2357 * iii) nfs4close_one (n4error) 2358 */ 2359 return (error ? error : (r_error ? r_error : n4error)); 2360 } 2361 2362 /* 2363 * Initialize *lost_rqstp. 2364 */ 2365 2366 static void 2367 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp, 2368 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr, 2369 vnode_t *vp) 2370 { 2371 if (error != ETIMEDOUT && error != EINTR && 2372 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 2373 lost_rqstp->lr_op = 0; 2374 return; 2375 } 2376 2377 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 2378 "nfs4close_save_lost_rqst: error %d", error)); 2379 2380 lost_rqstp->lr_op = OP_CLOSE; 2381 /* 2382 * The vp is held and rele'd via the recovery code. 2383 * See nfs4_save_lost_rqst. 2384 */ 2385 lost_rqstp->lr_vp = vp; 2386 lost_rqstp->lr_dvp = NULL; 2387 lost_rqstp->lr_oop = oop; 2388 lost_rqstp->lr_osp = osp; 2389 ASSERT(osp != NULL); 2390 ASSERT(mutex_owned(&osp->os_sync_lock)); 2391 osp->os_pending_close = 1; 2392 lost_rqstp->lr_lop = NULL; 2393 lost_rqstp->lr_cr = cr; 2394 lost_rqstp->lr_flk = NULL; 2395 lost_rqstp->lr_putfirst = FALSE; 2396 } 2397 2398 /* 2399 * Assumes you already have the open seqid sync grabbed as well as the 2400 * 'os_sync_lock'. Note: this will release the open seqid sync and 2401 * 'os_sync_lock' if client recovery starts. Calling functions have to 2402 * be prepared to handle this. 2403 * 2404 * 'recov' is returned as 1 if the CLOSE operation detected client recovery 2405 * was needed and was started, and that the calling function should retry 2406 * this function; otherwise it is returned as 0. 2407 * 2408 * Errors are returned via the nfs4_error_t parameter. 2409 */ 2410 static void 2411 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop, 2412 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp, 2413 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp) 2414 { 2415 COMPOUND4args_clnt args; 2416 COMPOUND4res_clnt res; 2417 CLOSE4args *close_args; 2418 nfs_resop4 *resop; 2419 nfs_argop4 argop[3]; 2420 int doqueue = 1; 2421 mntinfo4_t *mi; 2422 seqid4 seqid; 2423 vnode_t *vp; 2424 bool_t needrecov = FALSE; 2425 nfs4_lost_rqst_t lost_rqst; 2426 hrtime_t t; 2427 2428 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 2429 2430 ASSERT(MUTEX_HELD(&osp->os_sync_lock)); 2431 2432 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw")); 2433 2434 /* Only set this to 1 if recovery is started */ 2435 *recov = 0; 2436 2437 /* do the OTW call to close the file */ 2438 2439 if (close_type == CLOSE_RESEND) 2440 args.ctag = TAG_CLOSE_LOST; 2441 else if (close_type == CLOSE_AFTER_RESEND) 2442 args.ctag = TAG_CLOSE_UNDO; 2443 else 2444 args.ctag = TAG_CLOSE; 2445 2446 args.array_len = 3; 2447 args.array = argop; 2448 2449 vp = RTOV4(rp); 2450 2451 mi = VTOMI4(vp); 2452 2453 /* putfh target fh */ 2454 argop[0].argop = OP_CPUTFH; 2455 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 2456 2457 argop[1].argop = OP_GETATTR; 2458 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 2459 argop[1].nfs_argop4_u.opgetattr.mi = mi; 2460 2461 argop[2].argop = OP_CLOSE; 2462 close_args = &argop[2].nfs_argop4_u.opclose; 2463 2464 seqid = nfs4_get_open_seqid(oop) + 1; 2465 2466 close_args->seqid = seqid; 2467 close_args->open_stateid = osp->open_stateid; 2468 2469 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 2470 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first", 2471 rnode4info(rp))); 2472 2473 t = gethrtime(); 2474 2475 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep); 2476 2477 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 2478 nfs4_set_open_seqid(seqid, oop, args.ctag); 2479 } 2480 2481 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 2482 if (ep->error && !needrecov) { 2483 /* 2484 * if there was an error and no recovery is to be done 2485 * then then set up the file to flush its cache if 2486 * needed for the next caller. 2487 */ 2488 mutex_enter(&rp->r_statelock); 2489 PURGE_ATTRCACHE4_LOCKED(rp); 2490 rp->r_flags &= ~R4WRITEMODIFIED; 2491 mutex_exit(&rp->r_statelock); 2492 return; 2493 } 2494 2495 if (needrecov) { 2496 bool_t abort; 2497 nfs4_bseqid_entry_t *bsep = NULL; 2498 2499 if (close_type != CLOSE_RESEND) 2500 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 2501 osp, cred_otw, vp); 2502 2503 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 2504 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 2505 0, args.ctag, close_args->seqid); 2506 2507 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 2508 "nfs4close_otw: initiating recovery. error %d " 2509 "res.status %d", ep->error, res.status)); 2510 2511 /* 2512 * Drop the 'os_sync_lock' here so we don't hit 2513 * a potential recursive mutex_enter via an 2514 * 'open_stream_hold()'. 2515 */ 2516 mutex_exit(&osp->os_sync_lock); 2517 *have_sync_lockp = 0; 2518 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 2519 (close_type != CLOSE_RESEND && 2520 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL, 2521 OP_CLOSE, bsep, NULL, NULL); 2522 2523 /* drop open seq sync, and let the calling function regrab it */ 2524 nfs4_end_open_seqid_sync(oop); 2525 *did_start_seqid_syncp = 0; 2526 2527 if (bsep) 2528 kmem_free(bsep, sizeof (*bsep)); 2529 /* 2530 * For signals, the caller wants to quit, so don't say to 2531 * retry. For forced unmount, if it's a user thread, it 2532 * wants to quit. If it's a recovery thread, the retry 2533 * will happen higher-up on the call stack. Either way, 2534 * don't say to retry. 2535 */ 2536 if (abort == FALSE && ep->error != EINTR && 2537 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) && 2538 close_type != CLOSE_RESEND && 2539 close_type != CLOSE_AFTER_RESEND) 2540 *recov = 1; 2541 else 2542 *recov = 0; 2543 2544 if (!ep->error) 2545 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2546 return; 2547 } 2548 2549 if (res.status) { 2550 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2551 return; 2552 } 2553 2554 mutex_enter(&rp->r_statev4_lock); 2555 rp->created_v4 = 0; 2556 mutex_exit(&rp->r_statev4_lock); 2557 2558 resop = &res.array[2]; 2559 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid; 2560 osp->os_valid = 0; 2561 2562 /* 2563 * This removes the reference obtained at OPEN; ie, when the 2564 * open stream structure was created. 2565 * 2566 * We don't have to worry about calling 'open_stream_rele' 2567 * since we our currently holding a reference to the open 2568 * stream which means the count cannot go to 0 with this 2569 * decrement. 2570 */ 2571 ASSERT(osp->os_ref_count >= 2); 2572 osp->os_ref_count--; 2573 2574 if (!ep->error) 2575 nfs4_attr_cache(vp, 2576 &res.array[1].nfs_resop4_u.opgetattr.ga_res, 2577 t, cred_otw, TRUE, NULL); 2578 2579 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:" 2580 " returning %d", ep->error)); 2581 2582 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2583 } 2584 2585 /* ARGSUSED */ 2586 static int 2587 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2588 caller_context_t *ct) 2589 { 2590 rnode4_t *rp; 2591 u_offset_t off; 2592 offset_t diff; 2593 uint_t on; 2594 uint_t n; 2595 caddr_t base; 2596 uint_t flags; 2597 int error; 2598 mntinfo4_t *mi; 2599 2600 rp = VTOR4(vp); 2601 2602 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2603 2604 if (IS_SHADOW(vp, rp)) 2605 vp = RTOV4(rp); 2606 2607 if (vp->v_type != VREG) 2608 return (EISDIR); 2609 2610 mi = VTOMI4(vp); 2611 2612 if (nfs_zone() != mi->mi_zone) 2613 return (EIO); 2614 2615 if (uiop->uio_resid == 0) 2616 return (0); 2617 2618 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0) 2619 return (EINVAL); 2620 2621 mutex_enter(&rp->r_statelock); 2622 if (rp->r_flags & R4RECOVERRP) 2623 error = (rp->r_error ? rp->r_error : EIO); 2624 else 2625 error = 0; 2626 mutex_exit(&rp->r_statelock); 2627 if (error) 2628 return (error); 2629 2630 /* 2631 * Bypass VM if caching has been disabled (e.g., locking) or if 2632 * using client-side direct I/O and the file is not mmap'd and 2633 * there are no cached pages. 2634 */ 2635 if ((vp->v_flag & VNOCACHE) || 2636 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2637 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2638 size_t resid = 0; 2639 2640 return (nfs4read(vp, NULL, uiop->uio_loffset, 2641 uiop->uio_resid, &resid, cr, FALSE, uiop)); 2642 } 2643 2644 error = 0; 2645 2646 do { 2647 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2648 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2649 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2650 2651 if (error = nfs4_validate_caches(vp, cr)) 2652 break; 2653 2654 mutex_enter(&rp->r_statelock); 2655 while (rp->r_flags & R4INCACHEPURGE) { 2656 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2657 mutex_exit(&rp->r_statelock); 2658 return (EINTR); 2659 } 2660 } 2661 diff = rp->r_size - uiop->uio_loffset; 2662 mutex_exit(&rp->r_statelock); 2663 if (diff <= 0) 2664 break; 2665 if (diff < n) 2666 n = (uint_t)diff; 2667 2668 if (vpm_enable) { 2669 /* 2670 * Copy data. 2671 */ 2672 error = vpm_data_copy(vp, off + on, n, uiop, 2673 1, NULL, 0, S_READ); 2674 } else { 2675 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, 2676 S_READ); 2677 2678 error = uiomove(base + on, n, UIO_READ, uiop); 2679 } 2680 2681 if (!error) { 2682 /* 2683 * If read a whole block or read to eof, 2684 * won't need this buffer again soon. 2685 */ 2686 mutex_enter(&rp->r_statelock); 2687 if (n + on == MAXBSIZE || 2688 uiop->uio_loffset == rp->r_size) 2689 flags = SM_DONTNEED; 2690 else 2691 flags = 0; 2692 mutex_exit(&rp->r_statelock); 2693 if (vpm_enable) { 2694 error = vpm_sync_pages(vp, off, n, flags); 2695 } else { 2696 error = segmap_release(segkmap, base, flags); 2697 } 2698 } else { 2699 if (vpm_enable) { 2700 (void) vpm_sync_pages(vp, off, n, 0); 2701 } else { 2702 (void) segmap_release(segkmap, base, 0); 2703 } 2704 } 2705 } while (!error && uiop->uio_resid > 0); 2706 2707 return (error); 2708 } 2709 2710 /* ARGSUSED */ 2711 static int 2712 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 2713 caller_context_t *ct) 2714 { 2715 rlim64_t limit = uiop->uio_llimit; 2716 rnode4_t *rp; 2717 u_offset_t off; 2718 caddr_t base; 2719 uint_t flags; 2720 int remainder; 2721 size_t n; 2722 int on; 2723 int error; 2724 int resid; 2725 u_offset_t offset; 2726 mntinfo4_t *mi; 2727 uint_t bsize; 2728 2729 rp = VTOR4(vp); 2730 2731 if (IS_SHADOW(vp, rp)) 2732 vp = RTOV4(rp); 2733 2734 if (vp->v_type != VREG) 2735 return (EISDIR); 2736 2737 mi = VTOMI4(vp); 2738 2739 if (nfs_zone() != mi->mi_zone) 2740 return (EIO); 2741 2742 if (uiop->uio_resid == 0) 2743 return (0); 2744 2745 mutex_enter(&rp->r_statelock); 2746 if (rp->r_flags & R4RECOVERRP) 2747 error = (rp->r_error ? rp->r_error : EIO); 2748 else 2749 error = 0; 2750 mutex_exit(&rp->r_statelock); 2751 if (error) 2752 return (error); 2753 2754 if (ioflag & FAPPEND) { 2755 struct vattr va; 2756 2757 /* 2758 * Must serialize if appending. 2759 */ 2760 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 2761 nfs_rw_exit(&rp->r_rwlock); 2762 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 2763 INTR4(vp))) 2764 return (EINTR); 2765 } 2766 2767 va.va_mask = AT_SIZE; 2768 error = nfs4getattr(vp, &va, cr); 2769 if (error) 2770 return (error); 2771 uiop->uio_loffset = va.va_size; 2772 } 2773 2774 offset = uiop->uio_loffset + uiop->uio_resid; 2775 2776 if (uiop->uio_loffset < (offset_t)0 || offset < 0) 2777 return (EINVAL); 2778 2779 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 2780 limit = MAXOFFSET_T; 2781 2782 /* 2783 * Check to make sure that the process will not exceed 2784 * its limit on file size. It is okay to write up to 2785 * the limit, but not beyond. Thus, the write which 2786 * reaches the limit will be short and the next write 2787 * will return an error. 2788 */ 2789 remainder = 0; 2790 if (offset > uiop->uio_llimit) { 2791 remainder = offset - uiop->uio_llimit; 2792 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset; 2793 if (uiop->uio_resid <= 0) { 2794 proc_t *p = ttoproc(curthread); 2795 2796 uiop->uio_resid += remainder; 2797 mutex_enter(&p->p_lock); 2798 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 2799 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 2800 mutex_exit(&p->p_lock); 2801 return (EFBIG); 2802 } 2803 } 2804 2805 /* update the change attribute, if we have a write delegation */ 2806 2807 mutex_enter(&rp->r_statev4_lock); 2808 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) 2809 rp->r_deleg_change++; 2810 2811 mutex_exit(&rp->r_statev4_lock); 2812 2813 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) 2814 return (EINTR); 2815 2816 /* 2817 * Bypass VM if caching has been disabled (e.g., locking) or if 2818 * using client-side direct I/O and the file is not mmap'd and 2819 * there are no cached pages. 2820 */ 2821 if ((vp->v_flag & VNOCACHE) || 2822 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) && 2823 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) { 2824 size_t bufsize; 2825 int count; 2826 u_offset_t org_offset; 2827 stable_how4 stab_comm; 2828 nfs4_fwrite: 2829 if (rp->r_flags & R4STALE) { 2830 resid = uiop->uio_resid; 2831 offset = uiop->uio_loffset; 2832 error = rp->r_error; 2833 /* 2834 * A close may have cleared r_error, if so, 2835 * propagate ESTALE error return properly 2836 */ 2837 if (error == 0) 2838 error = ESTALE; 2839 goto bottom; 2840 } 2841 2842 bufsize = MIN(uiop->uio_resid, mi->mi_stsize); 2843 base = kmem_alloc(bufsize, KM_SLEEP); 2844 do { 2845 if (ioflag & FDSYNC) 2846 stab_comm = DATA_SYNC4; 2847 else 2848 stab_comm = FILE_SYNC4; 2849 resid = uiop->uio_resid; 2850 offset = uiop->uio_loffset; 2851 count = MIN(uiop->uio_resid, bufsize); 2852 org_offset = uiop->uio_loffset; 2853 error = uiomove(base, count, UIO_WRITE, uiop); 2854 if (!error) { 2855 error = nfs4write(vp, base, org_offset, 2856 count, cr, &stab_comm); 2857 if (!error) { 2858 mutex_enter(&rp->r_statelock); 2859 if (rp->r_size < uiop->uio_loffset) 2860 rp->r_size = uiop->uio_loffset; 2861 mutex_exit(&rp->r_statelock); 2862 } 2863 } 2864 } while (!error && uiop->uio_resid > 0); 2865 kmem_free(base, bufsize); 2866 goto bottom; 2867 } 2868 2869 bsize = vp->v_vfsp->vfs_bsize; 2870 2871 do { 2872 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 2873 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 2874 n = MIN(MAXBSIZE - on, uiop->uio_resid); 2875 2876 resid = uiop->uio_resid; 2877 offset = uiop->uio_loffset; 2878 2879 if (rp->r_flags & R4STALE) { 2880 error = rp->r_error; 2881 /* 2882 * A close may have cleared r_error, if so, 2883 * propagate ESTALE error return properly 2884 */ 2885 if (error == 0) 2886 error = ESTALE; 2887 break; 2888 } 2889 2890 /* 2891 * Don't create dirty pages faster than they 2892 * can be cleaned so that the system doesn't 2893 * get imbalanced. If the async queue is 2894 * maxed out, then wait for it to drain before 2895 * creating more dirty pages. Also, wait for 2896 * any threads doing pagewalks in the vop_getattr 2897 * entry points so that they don't block for 2898 * long periods. 2899 */ 2900 mutex_enter(&rp->r_statelock); 2901 while ((mi->mi_max_threads != 0 && 2902 rp->r_awcount > 2 * mi->mi_max_threads) || 2903 rp->r_gcount > 0) { 2904 if (INTR4(vp)) { 2905 klwp_t *lwp = ttolwp(curthread); 2906 2907 if (lwp != NULL) 2908 lwp->lwp_nostop++; 2909 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 2910 mutex_exit(&rp->r_statelock); 2911 if (lwp != NULL) 2912 lwp->lwp_nostop--; 2913 error = EINTR; 2914 goto bottom; 2915 } 2916 if (lwp != NULL) 2917 lwp->lwp_nostop--; 2918 } else 2919 cv_wait(&rp->r_cv, &rp->r_statelock); 2920 } 2921 mutex_exit(&rp->r_statelock); 2922 2923 /* 2924 * Touch the page and fault it in if it is not in core 2925 * before segmap_getmapflt or vpm_data_copy can lock it. 2926 * This is to avoid the deadlock if the buffer is mapped 2927 * to the same file through mmap which we want to write. 2928 */ 2929 uio_prefaultpages((long)n, uiop); 2930 2931 if (vpm_enable) { 2932 /* 2933 * It will use kpm mappings, so no need to 2934 * pass an address. 2935 */ 2936 error = writerp4(rp, NULL, n, uiop, 0); 2937 } else { 2938 if (segmap_kpm) { 2939 int pon = uiop->uio_loffset & PAGEOFFSET; 2940 size_t pn = MIN(PAGESIZE - pon, 2941 uiop->uio_resid); 2942 int pagecreate; 2943 2944 mutex_enter(&rp->r_statelock); 2945 pagecreate = (pon == 0) && (pn == PAGESIZE || 2946 uiop->uio_loffset + pn >= rp->r_size); 2947 mutex_exit(&rp->r_statelock); 2948 2949 base = segmap_getmapflt(segkmap, vp, off + on, 2950 pn, !pagecreate, S_WRITE); 2951 2952 error = writerp4(rp, base + pon, n, uiop, 2953 pagecreate); 2954 2955 } else { 2956 base = segmap_getmapflt(segkmap, vp, off + on, 2957 n, 0, S_READ); 2958 error = writerp4(rp, base + on, n, uiop, 0); 2959 } 2960 } 2961 2962 if (!error) { 2963 if (mi->mi_flags & MI4_NOAC) 2964 flags = SM_WRITE; 2965 else if ((uiop->uio_loffset % bsize) == 0 || 2966 IS_SWAPVP(vp)) { 2967 /* 2968 * Have written a whole block. 2969 * Start an asynchronous write 2970 * and mark the buffer to 2971 * indicate that it won't be 2972 * needed again soon. 2973 */ 2974 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 2975 } else 2976 flags = 0; 2977 if ((ioflag & (FSYNC|FDSYNC)) || 2978 (rp->r_flags & R4OUTOFSPACE)) { 2979 flags &= ~SM_ASYNC; 2980 flags |= SM_WRITE; 2981 } 2982 if (vpm_enable) { 2983 error = vpm_sync_pages(vp, off, n, flags); 2984 } else { 2985 error = segmap_release(segkmap, base, flags); 2986 } 2987 } else { 2988 if (vpm_enable) { 2989 (void) vpm_sync_pages(vp, off, n, 0); 2990 } else { 2991 (void) segmap_release(segkmap, base, 0); 2992 } 2993 /* 2994 * In the event that we got an access error while 2995 * faulting in a page for a write-only file just 2996 * force a write. 2997 */ 2998 if (error == EACCES) 2999 goto nfs4_fwrite; 3000 } 3001 } while (!error && uiop->uio_resid > 0); 3002 3003 bottom: 3004 if (error) { 3005 uiop->uio_resid = resid + remainder; 3006 uiop->uio_loffset = offset; 3007 } else { 3008 uiop->uio_resid += remainder; 3009 3010 mutex_enter(&rp->r_statev4_lock); 3011 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 3012 gethrestime(&rp->r_attr.va_mtime); 3013 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3014 } 3015 mutex_exit(&rp->r_statev4_lock); 3016 } 3017 3018 nfs_rw_exit(&rp->r_lkserlock); 3019 3020 return (error); 3021 } 3022 3023 /* 3024 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 3025 */ 3026 static int 3027 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 3028 int flags, cred_t *cr) 3029 { 3030 struct buf *bp; 3031 int error; 3032 page_t *savepp; 3033 uchar_t fsdata; 3034 stable_how4 stab_comm; 3035 3036 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3037 bp = pageio_setup(pp, len, vp, flags); 3038 ASSERT(bp != NULL); 3039 3040 /* 3041 * pageio_setup should have set b_addr to 0. This 3042 * is correct since we want to do I/O on a page 3043 * boundary. bp_mapin will use this addr to calculate 3044 * an offset, and then set b_addr to the kernel virtual 3045 * address it allocated for us. 3046 */ 3047 ASSERT(bp->b_un.b_addr == 0); 3048 3049 bp->b_edev = 0; 3050 bp->b_dev = 0; 3051 bp->b_lblkno = lbtodb(off); 3052 bp->b_file = vp; 3053 bp->b_offset = (offset_t)off; 3054 bp_mapin(bp); 3055 3056 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) && 3057 freemem > desfree) 3058 stab_comm = UNSTABLE4; 3059 else 3060 stab_comm = FILE_SYNC4; 3061 3062 error = nfs4_bio(bp, &stab_comm, cr, FALSE); 3063 3064 bp_mapout(bp); 3065 pageio_done(bp); 3066 3067 if (stab_comm == UNSTABLE4) 3068 fsdata = C_DELAYCOMMIT; 3069 else 3070 fsdata = C_NOCOMMIT; 3071 3072 savepp = pp; 3073 do { 3074 pp->p_fsdata = fsdata; 3075 } while ((pp = pp->p_next) != savepp); 3076 3077 return (error); 3078 } 3079 3080 /* 3081 */ 3082 static int 3083 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr) 3084 { 3085 nfs4_open_owner_t *oop; 3086 nfs4_open_stream_t *osp; 3087 rnode4_t *rp = VTOR4(vp); 3088 mntinfo4_t *mi = VTOMI4(vp); 3089 int reopen_needed; 3090 3091 ASSERT(nfs_zone() == mi->mi_zone); 3092 3093 3094 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 3095 if (!oop) 3096 return (EIO); 3097 3098 /* returns with 'os_sync_lock' held */ 3099 osp = find_open_stream(oop, rp); 3100 if (!osp) { 3101 open_owner_rele(oop); 3102 return (EIO); 3103 } 3104 3105 if (osp->os_failed_reopen) { 3106 mutex_exit(&osp->os_sync_lock); 3107 open_stream_rele(osp, rp); 3108 open_owner_rele(oop); 3109 return (EIO); 3110 } 3111 3112 /* 3113 * Determine whether a reopen is needed. If this 3114 * is a delegation open stream, then the os_delegation bit 3115 * should be set. 3116 */ 3117 3118 reopen_needed = osp->os_delegation; 3119 3120 mutex_exit(&osp->os_sync_lock); 3121 open_owner_rele(oop); 3122 3123 if (reopen_needed) { 3124 nfs4_error_zinit(ep); 3125 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE); 3126 mutex_enter(&osp->os_sync_lock); 3127 if (ep->error || ep->stat || osp->os_failed_reopen) { 3128 mutex_exit(&osp->os_sync_lock); 3129 open_stream_rele(osp, rp); 3130 return (EIO); 3131 } 3132 mutex_exit(&osp->os_sync_lock); 3133 } 3134 open_stream_rele(osp, rp); 3135 3136 return (0); 3137 } 3138 3139 /* 3140 * Write to file. Writes to remote server in largest size 3141 * chunks that the server can handle. Write is synchronous. 3142 */ 3143 static int 3144 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr, 3145 stable_how4 *stab_comm) 3146 { 3147 mntinfo4_t *mi; 3148 COMPOUND4args_clnt args; 3149 COMPOUND4res_clnt res; 3150 WRITE4args *wargs; 3151 WRITE4res *wres; 3152 nfs_argop4 argop[2]; 3153 nfs_resop4 *resop; 3154 int tsize; 3155 stable_how4 stable; 3156 rnode4_t *rp; 3157 int doqueue = 1; 3158 bool_t needrecov; 3159 nfs4_recov_state_t recov_state; 3160 nfs4_stateid_types_t sid_types; 3161 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3162 int recov; 3163 3164 rp = VTOR4(vp); 3165 mi = VTOMI4(vp); 3166 3167 ASSERT(nfs_zone() == mi->mi_zone); 3168 3169 stable = *stab_comm; 3170 *stab_comm = FILE_SYNC4; 3171 3172 needrecov = FALSE; 3173 recov_state.rs_flags = 0; 3174 recov_state.rs_num_retry_despite_err = 0; 3175 nfs4_init_stateid_types(&sid_types); 3176 3177 /* Is curthread the recovery thread? */ 3178 mutex_enter(&mi->mi_lock); 3179 recov = (mi->mi_recovthread == curthread); 3180 mutex_exit(&mi->mi_lock); 3181 3182 recov_retry: 3183 args.ctag = TAG_WRITE; 3184 args.array_len = 2; 3185 args.array = argop; 3186 3187 if (!recov) { 3188 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3189 &recov_state, NULL); 3190 if (e.error) 3191 return (e.error); 3192 } 3193 3194 /* 0. putfh target fh */ 3195 argop[0].argop = OP_CPUTFH; 3196 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3197 3198 /* 1. write */ 3199 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types); 3200 3201 do { 3202 3203 wargs->offset = (offset4)offset; 3204 wargs->data_val = base; 3205 3206 if (mi->mi_io_kstats) { 3207 mutex_enter(&mi->mi_lock); 3208 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3209 mutex_exit(&mi->mi_lock); 3210 } 3211 3212 if ((vp->v_flag & VNOCACHE) || 3213 (rp->r_flags & R4DIRECTIO) || 3214 (mi->mi_flags & MI4_DIRECTIO)) 3215 tsize = MIN(mi->mi_stsize, count); 3216 else 3217 tsize = MIN(mi->mi_curwrite, count); 3218 wargs->data_len = (uint_t)tsize; 3219 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3220 3221 if (mi->mi_io_kstats) { 3222 mutex_enter(&mi->mi_lock); 3223 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3224 mutex_exit(&mi->mi_lock); 3225 } 3226 3227 if (!recov) { 3228 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3229 if (e.error && !needrecov) { 3230 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3231 &recov_state, needrecov); 3232 return (e.error); 3233 } 3234 } else { 3235 if (e.error) 3236 return (e.error); 3237 } 3238 3239 /* 3240 * Do handling of OLD_STATEID outside 3241 * of the normal recovery framework. 3242 * 3243 * If write receives a BAD stateid error while using a 3244 * delegation stateid, retry using the open stateid (if it 3245 * exists). If it doesn't have an open stateid, reopen the 3246 * file first, then retry. 3247 */ 3248 if (!e.error && res.status == NFS4ERR_OLD_STATEID && 3249 sid_types.cur_sid_type != SPEC_SID) { 3250 nfs4_save_stateid(&wargs->stateid, &sid_types); 3251 if (!recov) 3252 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3253 &recov_state, needrecov); 3254 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3255 goto recov_retry; 3256 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3257 sid_types.cur_sid_type == DEL_SID) { 3258 nfs4_save_stateid(&wargs->stateid, &sid_types); 3259 mutex_enter(&rp->r_statev4_lock); 3260 rp->r_deleg_return_pending = TRUE; 3261 mutex_exit(&rp->r_statev4_lock); 3262 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3263 if (!recov) 3264 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3265 &recov_state, needrecov); 3266 (void) xdr_free(xdr_COMPOUND4res_clnt, 3267 (caddr_t)&res); 3268 return (EIO); 3269 } 3270 if (!recov) 3271 nfs4_end_fop(mi, vp, NULL, OH_WRITE, 3272 &recov_state, needrecov); 3273 /* hold needed for nfs4delegreturn_thread */ 3274 VN_HOLD(vp); 3275 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3276 NFS4_DR_DISCARD), FALSE); 3277 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3278 goto recov_retry; 3279 } 3280 3281 if (needrecov) { 3282 bool_t abort; 3283 3284 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3285 "nfs4write: client got error %d, res.status %d" 3286 ", so start recovery", e.error, res.status)); 3287 3288 abort = nfs4_start_recovery(&e, 3289 VTOMI4(vp), vp, NULL, &wargs->stateid, 3290 NULL, OP_WRITE, NULL, NULL, NULL); 3291 if (!e.error) { 3292 e.error = geterrno4(res.status); 3293 (void) xdr_free(xdr_COMPOUND4res_clnt, 3294 (caddr_t)&res); 3295 } 3296 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3297 &recov_state, needrecov); 3298 if (abort == FALSE) 3299 goto recov_retry; 3300 return (e.error); 3301 } 3302 3303 if (res.status) { 3304 e.error = geterrno4(res.status); 3305 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3306 if (!recov) 3307 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3308 &recov_state, needrecov); 3309 return (e.error); 3310 } 3311 3312 resop = &res.array[1]; /* write res */ 3313 wres = &resop->nfs_resop4_u.opwrite; 3314 3315 if ((int)wres->count > tsize) { 3316 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3317 3318 zcmn_err(getzoneid(), CE_WARN, 3319 "nfs4write: server wrote %u, requested was %u", 3320 (int)wres->count, tsize); 3321 if (!recov) 3322 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, 3323 &recov_state, needrecov); 3324 return (EIO); 3325 } 3326 if (wres->committed == UNSTABLE4) { 3327 *stab_comm = UNSTABLE4; 3328 if (wargs->stable == DATA_SYNC4 || 3329 wargs->stable == FILE_SYNC4) { 3330 (void) xdr_free(xdr_COMPOUND4res_clnt, 3331 (caddr_t)&res); 3332 zcmn_err(getzoneid(), CE_WARN, 3333 "nfs4write: server %s did not commit " 3334 "to stable storage", 3335 rp->r_server->sv_hostname); 3336 if (!recov) 3337 nfs4_end_fop(VTOMI4(vp), vp, NULL, 3338 OH_WRITE, &recov_state, needrecov); 3339 return (EIO); 3340 } 3341 } 3342 3343 tsize = (int)wres->count; 3344 count -= tsize; 3345 base += tsize; 3346 offset += tsize; 3347 if (mi->mi_io_kstats) { 3348 mutex_enter(&mi->mi_lock); 3349 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 3350 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 3351 tsize; 3352 mutex_exit(&mi->mi_lock); 3353 } 3354 lwp_stat_update(LWP_STAT_OUBLK, 1); 3355 mutex_enter(&rp->r_statelock); 3356 if (rp->r_flags & R4HAVEVERF) { 3357 if (rp->r_writeverf != wres->writeverf) { 3358 nfs4_set_mod(vp); 3359 rp->r_writeverf = wres->writeverf; 3360 } 3361 } else { 3362 rp->r_writeverf = wres->writeverf; 3363 rp->r_flags |= R4HAVEVERF; 3364 } 3365 PURGE_ATTRCACHE4_LOCKED(rp); 3366 rp->r_flags |= R4WRITEMODIFIED; 3367 gethrestime(&rp->r_attr.va_mtime); 3368 rp->r_attr.va_ctime = rp->r_attr.va_mtime; 3369 mutex_exit(&rp->r_statelock); 3370 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3371 } while (count); 3372 3373 if (!recov) 3374 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state, 3375 needrecov); 3376 3377 return (e.error); 3378 } 3379 3380 /* 3381 * Read from a file. Reads data in largest chunks our interface can handle. 3382 */ 3383 static int 3384 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count, 3385 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop) 3386 { 3387 mntinfo4_t *mi; 3388 COMPOUND4args_clnt args; 3389 COMPOUND4res_clnt res; 3390 READ4args *rargs; 3391 nfs_argop4 argop[2]; 3392 int tsize; 3393 int doqueue; 3394 rnode4_t *rp; 3395 int data_len; 3396 bool_t is_eof; 3397 bool_t needrecov = FALSE; 3398 nfs4_recov_state_t recov_state; 3399 nfs4_stateid_types_t sid_types; 3400 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3401 3402 rp = VTOR4(vp); 3403 mi = VTOMI4(vp); 3404 doqueue = 1; 3405 3406 ASSERT(nfs_zone() == mi->mi_zone); 3407 3408 args.ctag = async ? TAG_READAHEAD : TAG_READ; 3409 3410 args.array_len = 2; 3411 args.array = argop; 3412 3413 nfs4_init_stateid_types(&sid_types); 3414 3415 recov_state.rs_flags = 0; 3416 recov_state.rs_num_retry_despite_err = 0; 3417 3418 recov_retry: 3419 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ, 3420 &recov_state, NULL); 3421 if (e.error) 3422 return (e.error); 3423 3424 /* putfh target fh */ 3425 argop[0].argop = OP_CPUTFH; 3426 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3427 3428 /* read */ 3429 argop[1].argop = OP_READ; 3430 rargs = &argop[1].nfs_argop4_u.opread; 3431 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi, 3432 OP_READ, &sid_types, async); 3433 3434 do { 3435 if (mi->mi_io_kstats) { 3436 mutex_enter(&mi->mi_lock); 3437 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3438 mutex_exit(&mi->mi_lock); 3439 } 3440 3441 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 3442 "nfs4read: %s call, rp %s", 3443 needrecov ? "recov" : "first", 3444 rnode4info(rp))); 3445 3446 if ((vp->v_flag & VNOCACHE) || 3447 (rp->r_flags & R4DIRECTIO) || 3448 (mi->mi_flags & MI4_DIRECTIO)) 3449 tsize = MIN(mi->mi_tsize, count); 3450 else 3451 tsize = MIN(mi->mi_curread, count); 3452 3453 rargs->offset = (offset4)offset; 3454 rargs->count = (count4)tsize; 3455 rargs->res_data_val_alt = NULL; 3456 rargs->res_mblk = NULL; 3457 rargs->res_uiop = NULL; 3458 rargs->res_maxsize = 0; 3459 rargs->wlist = NULL; 3460 3461 if (uiop) 3462 rargs->res_uiop = uiop; 3463 else 3464 rargs->res_data_val_alt = base; 3465 rargs->res_maxsize = tsize; 3466 3467 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 3468 #ifdef DEBUG 3469 if (nfs4read_error_inject) { 3470 res.status = nfs4read_error_inject; 3471 nfs4read_error_inject = 0; 3472 } 3473 #endif 3474 3475 if (mi->mi_io_kstats) { 3476 mutex_enter(&mi->mi_lock); 3477 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3478 mutex_exit(&mi->mi_lock); 3479 } 3480 3481 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 3482 if (e.error != 0 && !needrecov) { 3483 nfs4_end_fop(mi, vp, NULL, OH_READ, 3484 &recov_state, needrecov); 3485 return (e.error); 3486 } 3487 3488 /* 3489 * Do proper retry for OLD and BAD stateid errors outside 3490 * of the normal recovery framework. There are two differences 3491 * between async and sync reads. The first is that we allow 3492 * retry on BAD_STATEID for async reads, but not sync reads. 3493 * The second is that we mark the file dead for a failed 3494 * attempt with a special stateid for sync reads, but just 3495 * return EIO for async reads. 3496 * 3497 * If a sync read receives a BAD stateid error while using a 3498 * delegation stateid, retry using the open stateid (if it 3499 * exists). If it doesn't have an open stateid, reopen the 3500 * file first, then retry. 3501 */ 3502 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID || 3503 res.status == NFS4ERR_BAD_STATEID) && async) { 3504 nfs4_end_fop(mi, vp, NULL, OH_READ, 3505 &recov_state, needrecov); 3506 if (sid_types.cur_sid_type == SPEC_SID) { 3507 (void) xdr_free(xdr_COMPOUND4res_clnt, 3508 (caddr_t)&res); 3509 return (EIO); 3510 } 3511 nfs4_save_stateid(&rargs->stateid, &sid_types); 3512 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3513 goto recov_retry; 3514 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3515 !async && sid_types.cur_sid_type != SPEC_SID) { 3516 nfs4_save_stateid(&rargs->stateid, &sid_types); 3517 nfs4_end_fop(mi, vp, NULL, OH_READ, 3518 &recov_state, needrecov); 3519 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3520 goto recov_retry; 3521 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID && 3522 sid_types.cur_sid_type == DEL_SID) { 3523 nfs4_save_stateid(&rargs->stateid, &sid_types); 3524 mutex_enter(&rp->r_statev4_lock); 3525 rp->r_deleg_return_pending = TRUE; 3526 mutex_exit(&rp->r_statev4_lock); 3527 if (nfs4rdwr_check_osid(vp, &e, cr)) { 3528 nfs4_end_fop(mi, vp, NULL, OH_READ, 3529 &recov_state, needrecov); 3530 (void) xdr_free(xdr_COMPOUND4res_clnt, 3531 (caddr_t)&res); 3532 return (EIO); 3533 } 3534 nfs4_end_fop(mi, vp, NULL, OH_READ, 3535 &recov_state, needrecov); 3536 /* hold needed for nfs4delegreturn_thread */ 3537 VN_HOLD(vp); 3538 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN| 3539 NFS4_DR_DISCARD), FALSE); 3540 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3541 goto recov_retry; 3542 } 3543 if (needrecov) { 3544 bool_t abort; 3545 3546 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 3547 "nfs4read: initiating recovery\n")); 3548 abort = nfs4_start_recovery(&e, 3549 mi, vp, NULL, &rargs->stateid, 3550 NULL, OP_READ, NULL, NULL, NULL); 3551 nfs4_end_fop(mi, vp, NULL, OH_READ, 3552 &recov_state, needrecov); 3553 /* 3554 * Do not retry if we got OLD_STATEID using a special 3555 * stateid. This avoids looping with a broken server. 3556 */ 3557 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3558 sid_types.cur_sid_type == SPEC_SID) 3559 abort = TRUE; 3560 3561 if (abort == FALSE) { 3562 /* 3563 * Need to retry all possible stateids in 3564 * case the recovery error wasn't stateid 3565 * related or the stateids have become 3566 * stale (server reboot). 3567 */ 3568 nfs4_init_stateid_types(&sid_types); 3569 (void) xdr_free(xdr_COMPOUND4res_clnt, 3570 (caddr_t)&res); 3571 goto recov_retry; 3572 } 3573 3574 if (!e.error) { 3575 e.error = geterrno4(res.status); 3576 (void) xdr_free(xdr_COMPOUND4res_clnt, 3577 (caddr_t)&res); 3578 } 3579 return (e.error); 3580 } 3581 3582 if (res.status) { 3583 e.error = geterrno4(res.status); 3584 nfs4_end_fop(mi, vp, NULL, OH_READ, 3585 &recov_state, needrecov); 3586 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3587 return (e.error); 3588 } 3589 3590 data_len = res.array[1].nfs_resop4_u.opread.data_len; 3591 count -= data_len; 3592 if (base) 3593 base += data_len; 3594 offset += data_len; 3595 if (mi->mi_io_kstats) { 3596 mutex_enter(&mi->mi_lock); 3597 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3598 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len; 3599 mutex_exit(&mi->mi_lock); 3600 } 3601 lwp_stat_update(LWP_STAT_INBLK, 1); 3602 is_eof = res.array[1].nfs_resop4_u.opread.eof; 3603 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3604 3605 } while (count && !is_eof); 3606 3607 *residp = count; 3608 3609 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov); 3610 3611 return (e.error); 3612 } 3613 3614 /* ARGSUSED */ 3615 static int 3616 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 3617 caller_context_t *ct) 3618 { 3619 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3620 return (EIO); 3621 switch (cmd) { 3622 case _FIODIRECTIO: 3623 return (nfs4_directio(vp, (int)arg, cr)); 3624 default: 3625 return (ENOTTY); 3626 } 3627 } 3628 3629 /* ARGSUSED */ 3630 int 3631 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3632 caller_context_t *ct) 3633 { 3634 int error; 3635 rnode4_t *rp = VTOR4(vp); 3636 3637 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3638 return (EIO); 3639 /* 3640 * If it has been specified that the return value will 3641 * just be used as a hint, and we are only being asked 3642 * for size, fsid or rdevid, then return the client's 3643 * notion of these values without checking to make sure 3644 * that the attribute cache is up to date. 3645 * The whole point is to avoid an over the wire GETATTR 3646 * call. 3647 */ 3648 if (flags & ATTR_HINT) { 3649 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) { 3650 mutex_enter(&rp->r_statelock); 3651 if (vap->va_mask & AT_SIZE) 3652 vap->va_size = rp->r_size; 3653 if (vap->va_mask & AT_FSID) 3654 vap->va_fsid = rp->r_attr.va_fsid; 3655 if (vap->va_mask & AT_RDEV) 3656 vap->va_rdev = rp->r_attr.va_rdev; 3657 mutex_exit(&rp->r_statelock); 3658 return (0); 3659 } 3660 } 3661 3662 /* 3663 * Only need to flush pages if asking for the mtime 3664 * and if there any dirty pages or any outstanding 3665 * asynchronous (write) requests for this file. 3666 */ 3667 if (vap->va_mask & AT_MTIME) { 3668 rp = VTOR4(vp); 3669 if (nfs4_has_pages(vp)) { 3670 mutex_enter(&rp->r_statev4_lock); 3671 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) { 3672 mutex_exit(&rp->r_statev4_lock); 3673 if (rp->r_flags & R4DIRTY || 3674 rp->r_awcount > 0) { 3675 mutex_enter(&rp->r_statelock); 3676 rp->r_gcount++; 3677 mutex_exit(&rp->r_statelock); 3678 error = 3679 nfs4_putpage(vp, (u_offset_t)0, 3680 0, 0, cr, NULL); 3681 mutex_enter(&rp->r_statelock); 3682 if (error && (error == ENOSPC || 3683 error == EDQUOT)) { 3684 if (!rp->r_error) 3685 rp->r_error = error; 3686 } 3687 if (--rp->r_gcount == 0) 3688 cv_broadcast(&rp->r_cv); 3689 mutex_exit(&rp->r_statelock); 3690 } 3691 } else { 3692 mutex_exit(&rp->r_statev4_lock); 3693 } 3694 } 3695 } 3696 return (nfs4getattr(vp, vap, cr)); 3697 } 3698 3699 int 3700 nfs4_compare_modes(mode_t from_server, mode_t on_client) 3701 { 3702 /* 3703 * If these are the only two bits cleared 3704 * on the server then return 0 (OK) else 3705 * return 1 (BAD). 3706 */ 3707 on_client &= ~(S_ISUID|S_ISGID); 3708 if (on_client == from_server) 3709 return (0); 3710 else 3711 return (1); 3712 } 3713 3714 /*ARGSUSED4*/ 3715 static int 3716 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3717 caller_context_t *ct) 3718 { 3719 int error; 3720 3721 if (vap->va_mask & AT_NOSET) 3722 return (EINVAL); 3723 3724 if (nfs_zone() != VTOMI4(vp)->mi_zone) 3725 return (EIO); 3726 3727 /* 3728 * Don't call secpolicy_vnode_setattr, the client cannot 3729 * use its cached attributes to make security decisions 3730 * as the server may be faking mode bits or mapping uid/gid. 3731 * Always just let the server to the checking. 3732 * If we provide the ability to remove basic priviledges 3733 * to setattr (e.g. basic without chmod) then we will 3734 * need to add a check here before calling the server. 3735 */ 3736 error = nfs4setattr(vp, vap, flags, cr, NULL); 3737 3738 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0) 3739 vnevent_truncate(vp, ct); 3740 3741 return (error); 3742 } 3743 3744 /* 3745 * To replace the "guarded" version 3 setattr, we use two types of compound 3746 * setattr requests: 3747 * 1. The "normal" setattr, used when the size of the file isn't being 3748 * changed - { Putfh <fh>; Setattr; Getattr }/ 3749 * 2. If the size is changed, precede Setattr with: Getattr; Verify 3750 * with only ctime as the argument. If the server ctime differs from 3751 * what is cached on the client, the verify will fail, but we would 3752 * already have the ctime from the preceding getattr, so just set it 3753 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify; 3754 * Setattr; Getattr }. 3755 * 3756 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in 3757 * this setattr and NULL if they are not. 3758 */ 3759 static int 3760 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 3761 vsecattr_t *vsap) 3762 { 3763 COMPOUND4args_clnt args; 3764 COMPOUND4res_clnt res, *resp = NULL; 3765 nfs4_ga_res_t *garp = NULL; 3766 int numops = 3; /* { Putfh; Setattr; Getattr } */ 3767 nfs_argop4 argop[5]; 3768 int verify_argop = -1; 3769 int setattr_argop = 1; 3770 nfs_resop4 *resop; 3771 vattr_t va; 3772 rnode4_t *rp; 3773 int doqueue = 1; 3774 uint_t mask = vap->va_mask; 3775 mode_t omode; 3776 vsecattr_t *vsp; 3777 timestruc_t ctime; 3778 bool_t needrecov = FALSE; 3779 nfs4_recov_state_t recov_state; 3780 nfs4_stateid_types_t sid_types; 3781 stateid4 stateid; 3782 hrtime_t t; 3783 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 3784 servinfo4_t *svp; 3785 bitmap4 supp_attrs; 3786 3787 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 3788 rp = VTOR4(vp); 3789 nfs4_init_stateid_types(&sid_types); 3790 3791 /* 3792 * Only need to flush pages if there are any pages and 3793 * if the file is marked as dirty in some fashion. The 3794 * file must be flushed so that we can accurately 3795 * determine the size of the file and the cached data 3796 * after the SETATTR returns. A file is considered to 3797 * be dirty if it is either marked with R4DIRTY, has 3798 * outstanding i/o's active, or is mmap'd. In this 3799 * last case, we can't tell whether there are dirty 3800 * pages, so we flush just to be sure. 3801 */ 3802 if (nfs4_has_pages(vp) && 3803 ((rp->r_flags & R4DIRTY) || 3804 rp->r_count > 0 || 3805 rp->r_mapcnt > 0)) { 3806 ASSERT(vp->v_type != VCHR); 3807 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 3808 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 3809 mutex_enter(&rp->r_statelock); 3810 if (!rp->r_error) 3811 rp->r_error = e.error; 3812 mutex_exit(&rp->r_statelock); 3813 } 3814 } 3815 3816 if (mask & AT_SIZE) { 3817 /* 3818 * Verification setattr compound for non-deleg AT_SIZE: 3819 * { Putfh; Getattr; Verify; Setattr; Getattr } 3820 * Set ctime local here (outside the do_again label) 3821 * so that subsequent retries (after failed VERIFY) 3822 * will use ctime from GETATTR results (from failed 3823 * verify compound) as VERIFY arg. 3824 * If file has delegation, then VERIFY(time_metadata) 3825 * is of little added value, so don't bother. 3826 */ 3827 mutex_enter(&rp->r_statev4_lock); 3828 if (rp->r_deleg_type == OPEN_DELEGATE_NONE || 3829 rp->r_deleg_return_pending) { 3830 numops = 5; 3831 ctime = rp->r_attr.va_ctime; 3832 } 3833 mutex_exit(&rp->r_statev4_lock); 3834 } 3835 3836 recov_state.rs_flags = 0; 3837 recov_state.rs_num_retry_despite_err = 0; 3838 3839 args.ctag = TAG_SETATTR; 3840 do_again: 3841 recov_retry: 3842 setattr_argop = numops - 2; 3843 3844 args.array = argop; 3845 args.array_len = numops; 3846 3847 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 3848 if (e.error) 3849 return (e.error); 3850 3851 3852 /* putfh target fh */ 3853 argop[0].argop = OP_CPUTFH; 3854 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 3855 3856 if (numops == 5) { 3857 /* 3858 * We only care about the ctime, but need to get mtime 3859 * and size for proper cache update. 3860 */ 3861 /* getattr */ 3862 argop[1].argop = OP_GETATTR; 3863 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3864 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3865 3866 /* verify - set later in loop */ 3867 verify_argop = 2; 3868 } 3869 3870 /* setattr */ 3871 svp = rp->r_server; 3872 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3873 supp_attrs = svp->sv_supp_attrs; 3874 nfs_rw_exit(&svp->sv_lock); 3875 3876 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr, 3877 supp_attrs, &e.error, &sid_types); 3878 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid; 3879 if (e.error) { 3880 /* req time field(s) overflow - return immediately */ 3881 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 3882 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3883 opsetattr.obj_attributes); 3884 return (e.error); 3885 } 3886 omode = rp->r_attr.va_mode; 3887 3888 /* getattr */ 3889 argop[numops-1].argop = OP_GETATTR; 3890 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 3891 /* 3892 * If we are setting the ACL (indicated only by vsap != NULL), request 3893 * the ACL in this getattr. The ACL returned from this getattr will be 3894 * used in updating the ACL cache. 3895 */ 3896 if (vsap != NULL) 3897 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |= 3898 FATTR4_ACL_MASK; 3899 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 3900 3901 /* 3902 * setattr iterates if the object size is set and the cached ctime 3903 * does not match the file ctime. In that case, verify the ctime first. 3904 */ 3905 3906 do { 3907 if (verify_argop != -1) { 3908 /* 3909 * Verify that the ctime match before doing setattr. 3910 */ 3911 va.va_mask = AT_CTIME; 3912 va.va_ctime = ctime; 3913 svp = rp->r_server; 3914 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3915 supp_attrs = svp->sv_supp_attrs; 3916 nfs_rw_exit(&svp->sv_lock); 3917 e.error = nfs4args_verify(&argop[verify_argop], &va, 3918 OP_VERIFY, supp_attrs); 3919 if (e.error) { 3920 /* req time field(s) overflow - return */ 3921 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3922 needrecov); 3923 break; 3924 } 3925 } 3926 3927 doqueue = 1; 3928 3929 t = gethrtime(); 3930 3931 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 3932 3933 /* 3934 * Purge the access cache and ACL cache if changing either the 3935 * owner of the file, the group owner, or the mode. These may 3936 * change the access permissions of the file, so purge old 3937 * information and start over again. 3938 */ 3939 if (mask & (AT_UID | AT_GID | AT_MODE)) { 3940 (void) nfs4_access_purge_rp(rp); 3941 if (rp->r_secattr != NULL) { 3942 mutex_enter(&rp->r_statelock); 3943 vsp = rp->r_secattr; 3944 rp->r_secattr = NULL; 3945 mutex_exit(&rp->r_statelock); 3946 if (vsp != NULL) 3947 nfs4_acl_free_cache(vsp); 3948 } 3949 } 3950 3951 /* 3952 * If res.array_len == numops, then everything succeeded, 3953 * except for possibly the final getattr. If only the 3954 * last getattr failed, give up, and don't try recovery. 3955 */ 3956 if (res.array_len == numops) { 3957 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3958 needrecov); 3959 if (! e.error) 3960 resp = &res; 3961 break; 3962 } 3963 3964 /* 3965 * if either rpc call failed or completely succeeded - done 3966 */ 3967 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 3968 if (e.error) { 3969 PURGE_ATTRCACHE4(vp); 3970 if (!needrecov) { 3971 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3972 needrecov); 3973 break; 3974 } 3975 } 3976 3977 /* 3978 * Do proper retry for OLD_STATEID outside of the normal 3979 * recovery framework. 3980 */ 3981 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 3982 sid_types.cur_sid_type != SPEC_SID && 3983 sid_types.cur_sid_type != NO_SID) { 3984 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 3985 needrecov); 3986 nfs4_save_stateid(&stateid, &sid_types); 3987 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 3988 opsetattr.obj_attributes); 3989 if (verify_argop != -1) { 3990 nfs4args_verify_free(&argop[verify_argop]); 3991 verify_argop = -1; 3992 } 3993 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3994 goto recov_retry; 3995 } 3996 3997 if (needrecov) { 3998 bool_t abort; 3999 4000 abort = nfs4_start_recovery(&e, 4001 VTOMI4(vp), vp, NULL, NULL, NULL, 4002 OP_SETATTR, NULL, NULL, NULL); 4003 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4004 needrecov); 4005 /* 4006 * Do not retry if we failed with OLD_STATEID using 4007 * a special stateid. This is done to avoid looping 4008 * with a broken server. 4009 */ 4010 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID && 4011 (sid_types.cur_sid_type == SPEC_SID || 4012 sid_types.cur_sid_type == NO_SID)) 4013 abort = TRUE; 4014 if (!e.error) { 4015 if (res.status == NFS4ERR_BADOWNER) 4016 nfs4_log_badowner(VTOMI4(vp), 4017 OP_SETATTR); 4018 4019 e.error = geterrno4(res.status); 4020 (void) xdr_free(xdr_COMPOUND4res_clnt, 4021 (caddr_t)&res); 4022 } 4023 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4024 opsetattr.obj_attributes); 4025 if (verify_argop != -1) { 4026 nfs4args_verify_free(&argop[verify_argop]); 4027 verify_argop = -1; 4028 } 4029 if (abort == FALSE) { 4030 /* 4031 * Need to retry all possible stateids in 4032 * case the recovery error wasn't stateid 4033 * related or the stateids have become 4034 * stale (server reboot). 4035 */ 4036 nfs4_init_stateid_types(&sid_types); 4037 goto recov_retry; 4038 } 4039 return (e.error); 4040 } 4041 4042 /* 4043 * Need to call nfs4_end_op before nfs4getattr to 4044 * avoid potential nfs4_start_op deadlock. See RFE 4045 * 4777612. Calls to nfs4_invalidate_pages() and 4046 * nfs4_purge_stale_fh() might also generate over the 4047 * wire calls which my cause nfs4_start_op() deadlock. 4048 */ 4049 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4050 4051 /* 4052 * Check to update lease. 4053 */ 4054 resp = &res; 4055 if (res.status == NFS4_OK) { 4056 break; 4057 } 4058 4059 /* 4060 * Check if verify failed to see if try again 4061 */ 4062 if ((verify_argop == -1) || (res.array_len != 3)) { 4063 /* 4064 * can't continue... 4065 */ 4066 if (res.status == NFS4ERR_BADOWNER) 4067 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR); 4068 4069 e.error = geterrno4(res.status); 4070 } else { 4071 /* 4072 * When the verify request fails, the client ctime is 4073 * not in sync with the server. This is the same as 4074 * the version 3 "not synchronized" error, and we 4075 * handle it in a similar manner (XXX do we need to???). 4076 * Use the ctime returned in the first getattr for 4077 * the input to the next verify. 4078 * If we couldn't get the attributes, then we give up 4079 * because we can't complete the operation as required. 4080 */ 4081 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 4082 } 4083 if (e.error) { 4084 PURGE_ATTRCACHE4(vp); 4085 nfs4_purge_stale_fh(e.error, vp, cr); 4086 } else { 4087 /* 4088 * retry with a new verify value 4089 */ 4090 ctime = garp->n4g_va.va_ctime; 4091 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4092 resp = NULL; 4093 } 4094 if (!e.error) { 4095 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4096 opsetattr.obj_attributes); 4097 if (verify_argop != -1) { 4098 nfs4args_verify_free(&argop[verify_argop]); 4099 verify_argop = -1; 4100 } 4101 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4102 goto do_again; 4103 } 4104 } while (!e.error); 4105 4106 if (e.error) { 4107 /* 4108 * If we are here, rfs4call has an irrecoverable error - return 4109 */ 4110 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4111 opsetattr.obj_attributes); 4112 if (verify_argop != -1) { 4113 nfs4args_verify_free(&argop[verify_argop]); 4114 verify_argop = -1; 4115 } 4116 if (resp) 4117 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4118 return (e.error); 4119 } 4120 4121 4122 4123 /* 4124 * If changing the size of the file, invalidate 4125 * any local cached data which is no longer part 4126 * of the file. We also possibly invalidate the 4127 * last page in the file. We could use 4128 * pvn_vpzero(), but this would mark the page as 4129 * modified and require it to be written back to 4130 * the server for no particularly good reason. 4131 * This way, if we access it, then we bring it 4132 * back in. A read should be cheaper than a 4133 * write. 4134 */ 4135 if (mask & AT_SIZE) { 4136 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr); 4137 } 4138 4139 /* either no error or one of the postop getattr failed */ 4140 4141 /* 4142 * XXX Perform a simplified version of wcc checking. Instead of 4143 * have another getattr to get pre-op, just purge cache if 4144 * any of the ops prior to and including the getattr failed. 4145 * If the getattr succeeded then update the attrcache accordingly. 4146 */ 4147 4148 garp = NULL; 4149 if (res.status == NFS4_OK) { 4150 /* 4151 * Last getattr 4152 */ 4153 resop = &res.array[numops - 1]; 4154 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4155 } 4156 /* 4157 * In certain cases, nfs4_update_attrcache() will purge the attrcache, 4158 * rather than filling it. See the function itself for details. 4159 */ 4160 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4161 if (garp != NULL) { 4162 if (garp->n4g_resbmap & FATTR4_ACL_MASK) { 4163 nfs4_acl_fill_cache(rp, &garp->n4g_vsa); 4164 vs_ace4_destroy(&garp->n4g_vsa); 4165 } else { 4166 if (vsap != NULL) { 4167 /* 4168 * The ACL was supposed to be set and to be 4169 * returned in the last getattr of this 4170 * compound, but for some reason the getattr 4171 * result doesn't contain the ACL. In this 4172 * case, purge the ACL cache. 4173 */ 4174 if (rp->r_secattr != NULL) { 4175 mutex_enter(&rp->r_statelock); 4176 vsp = rp->r_secattr; 4177 rp->r_secattr = NULL; 4178 mutex_exit(&rp->r_statelock); 4179 if (vsp != NULL) 4180 nfs4_acl_free_cache(vsp); 4181 } 4182 } 4183 } 4184 } 4185 4186 if (res.status == NFS4_OK && (mask & AT_SIZE)) { 4187 /* 4188 * Set the size, rather than relying on getting it updated 4189 * via a GETATTR. With delegations the client tries to 4190 * suppress GETATTR calls. 4191 */ 4192 mutex_enter(&rp->r_statelock); 4193 rp->r_size = vap->va_size; 4194 mutex_exit(&rp->r_statelock); 4195 } 4196 4197 /* 4198 * Can free up request args and res 4199 */ 4200 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u. 4201 opsetattr.obj_attributes); 4202 if (verify_argop != -1) { 4203 nfs4args_verify_free(&argop[verify_argop]); 4204 verify_argop = -1; 4205 } 4206 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4207 4208 /* 4209 * Some servers will change the mode to clear the setuid 4210 * and setgid bits when changing the uid or gid. The 4211 * client needs to compensate appropriately. 4212 */ 4213 if (mask & (AT_UID | AT_GID)) { 4214 int terror, do_setattr; 4215 4216 do_setattr = 0; 4217 va.va_mask = AT_MODE; 4218 terror = nfs4getattr(vp, &va, cr); 4219 if (!terror && 4220 (((mask & AT_MODE) && va.va_mode != vap->va_mode) || 4221 (!(mask & AT_MODE) && va.va_mode != omode))) { 4222 va.va_mask = AT_MODE; 4223 if (mask & AT_MODE) { 4224 /* 4225 * We asked the mode to be changed and what 4226 * we just got from the server in getattr is 4227 * not what we wanted it to be, so set it now. 4228 */ 4229 va.va_mode = vap->va_mode; 4230 do_setattr = 1; 4231 } else { 4232 /* 4233 * We did not ask the mode to be changed, 4234 * Check to see that the server just cleared 4235 * I_SUID and I_GUID from it. If not then 4236 * set mode to omode with UID/GID cleared. 4237 */ 4238 if (nfs4_compare_modes(va.va_mode, omode)) { 4239 omode &= ~(S_ISUID|S_ISGID); 4240 va.va_mode = omode; 4241 do_setattr = 1; 4242 } 4243 } 4244 4245 if (do_setattr) 4246 (void) nfs4setattr(vp, &va, 0, cr, NULL); 4247 } 4248 } 4249 4250 return (e.error); 4251 } 4252 4253 /* ARGSUSED */ 4254 static int 4255 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 4256 { 4257 COMPOUND4args_clnt args; 4258 COMPOUND4res_clnt res; 4259 int doqueue; 4260 uint32_t acc, resacc, argacc; 4261 rnode4_t *rp; 4262 cred_t *cred, *ncr, *ncrfree = NULL; 4263 nfs4_access_type_t cacc; 4264 int num_ops; 4265 nfs_argop4 argop[3]; 4266 nfs_resop4 *resop; 4267 bool_t needrecov = FALSE, do_getattr; 4268 nfs4_recov_state_t recov_state; 4269 int rpc_error; 4270 hrtime_t t; 4271 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4272 mntinfo4_t *mi = VTOMI4(vp); 4273 4274 if (nfs_zone() != mi->mi_zone) 4275 return (EIO); 4276 4277 acc = 0; 4278 if (mode & VREAD) 4279 acc |= ACCESS4_READ; 4280 if (mode & VWRITE) { 4281 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type)) 4282 return (EROFS); 4283 if (vp->v_type == VDIR) 4284 acc |= ACCESS4_DELETE; 4285 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND; 4286 } 4287 if (mode & VEXEC) { 4288 if (vp->v_type == VDIR) 4289 acc |= ACCESS4_LOOKUP; 4290 else 4291 acc |= ACCESS4_EXECUTE; 4292 } 4293 4294 if (VTOR4(vp)->r_acache != NULL) { 4295 e.error = nfs4_validate_caches(vp, cr); 4296 if (e.error) 4297 return (e.error); 4298 } 4299 4300 rp = VTOR4(vp); 4301 if (vp->v_type == VDIR) 4302 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY | 4303 ACCESS4_EXTEND | ACCESS4_LOOKUP; 4304 else 4305 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND | 4306 ACCESS4_EXECUTE; 4307 recov_state.rs_flags = 0; 4308 recov_state.rs_num_retry_despite_err = 0; 4309 4310 cred = cr; 4311 /* 4312 * ncr and ncrfree both initially 4313 * point to the memory area returned 4314 * by crnetadjust(); 4315 * ncrfree not NULL when exiting means 4316 * that we need to release it 4317 */ 4318 ncr = crnetadjust(cred); 4319 ncrfree = ncr; 4320 4321 tryagain: 4322 cacc = nfs4_access_check(rp, acc, cred); 4323 if (cacc == NFS4_ACCESS_ALLOWED) { 4324 if (ncrfree != NULL) 4325 crfree(ncrfree); 4326 return (0); 4327 } 4328 if (cacc == NFS4_ACCESS_DENIED) { 4329 /* 4330 * If the cred can be adjusted, try again 4331 * with the new cred. 4332 */ 4333 if (ncr != NULL) { 4334 cred = ncr; 4335 ncr = NULL; 4336 goto tryagain; 4337 } 4338 if (ncrfree != NULL) 4339 crfree(ncrfree); 4340 return (EACCES); 4341 } 4342 4343 recov_retry: 4344 /* 4345 * Don't take with r_statev4_lock here. r_deleg_type could 4346 * change as soon as lock is released. Since it is an int, 4347 * there is no atomicity issue. 4348 */ 4349 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE); 4350 num_ops = do_getattr ? 3 : 2; 4351 4352 args.ctag = TAG_ACCESS; 4353 4354 args.array_len = num_ops; 4355 args.array = argop; 4356 4357 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS, 4358 &recov_state, NULL)) { 4359 if (ncrfree != NULL) 4360 crfree(ncrfree); 4361 return (e.error); 4362 } 4363 4364 /* putfh target fh */ 4365 argop[0].argop = OP_CPUTFH; 4366 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4367 4368 /* access */ 4369 argop[1].argop = OP_ACCESS; 4370 argop[1].nfs_argop4_u.opaccess.access = argacc; 4371 4372 /* getattr */ 4373 if (do_getattr) { 4374 argop[2].argop = OP_GETATTR; 4375 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4376 argop[2].nfs_argop4_u.opgetattr.mi = mi; 4377 } 4378 4379 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4380 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first", 4381 rnode4info(VTOR4(vp)))); 4382 4383 doqueue = 1; 4384 t = gethrtime(); 4385 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e); 4386 rpc_error = e.error; 4387 4388 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4389 if (needrecov) { 4390 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4391 "nfs4_access: initiating recovery\n")); 4392 4393 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4394 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) { 4395 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS, 4396 &recov_state, needrecov); 4397 if (!e.error) 4398 (void) xdr_free(xdr_COMPOUND4res_clnt, 4399 (caddr_t)&res); 4400 goto recov_retry; 4401 } 4402 } 4403 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov); 4404 4405 if (e.error) 4406 goto out; 4407 4408 if (res.status) { 4409 e.error = geterrno4(res.status); 4410 /* 4411 * This might generate over the wire calls throught 4412 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4413 * here to avoid a deadlock. 4414 */ 4415 nfs4_purge_stale_fh(e.error, vp, cr); 4416 goto out; 4417 } 4418 resop = &res.array[1]; /* access res */ 4419 4420 resacc = resop->nfs_resop4_u.opaccess.access; 4421 4422 if (do_getattr) { 4423 resop++; /* getattr res */ 4424 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res, 4425 t, cr, FALSE, NULL); 4426 } 4427 4428 if (!e.error) { 4429 nfs4_access_cache(rp, argacc, resacc, cred); 4430 /* 4431 * we just cached results with cred; if cred is the 4432 * adjusted credentials from crnetadjust, we do not want 4433 * to release them before exiting: hence setting ncrfree 4434 * to NULL 4435 */ 4436 if (cred != cr) 4437 ncrfree = NULL; 4438 /* XXX check the supported bits too? */ 4439 if ((acc & resacc) != acc) { 4440 /* 4441 * The following code implements the semantic 4442 * that a setuid root program has *at least* the 4443 * permissions of the user that is running the 4444 * program. See rfs3call() for more portions 4445 * of the implementation of this functionality. 4446 */ 4447 /* XXX-LP */ 4448 if (ncr != NULL) { 4449 (void) xdr_free(xdr_COMPOUND4res_clnt, 4450 (caddr_t)&res); 4451 cred = ncr; 4452 ncr = NULL; 4453 goto tryagain; 4454 } 4455 e.error = EACCES; 4456 } 4457 } 4458 4459 out: 4460 if (!rpc_error) 4461 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4462 4463 if (ncrfree != NULL) 4464 crfree(ncrfree); 4465 4466 return (e.error); 4467 } 4468 4469 /* ARGSUSED */ 4470 static int 4471 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 4472 { 4473 COMPOUND4args_clnt args; 4474 COMPOUND4res_clnt res; 4475 int doqueue; 4476 rnode4_t *rp; 4477 nfs_argop4 argop[3]; 4478 nfs_resop4 *resop; 4479 READLINK4res *lr_res; 4480 nfs4_ga_res_t *garp; 4481 uint_t len; 4482 char *linkdata; 4483 bool_t needrecov = FALSE; 4484 nfs4_recov_state_t recov_state; 4485 hrtime_t t; 4486 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4487 4488 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4489 return (EIO); 4490 /* 4491 * Can't readlink anything other than a symbolic link. 4492 */ 4493 if (vp->v_type != VLNK) 4494 return (EINVAL); 4495 4496 rp = VTOR4(vp); 4497 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) { 4498 e.error = nfs4_validate_caches(vp, cr); 4499 if (e.error) 4500 return (e.error); 4501 mutex_enter(&rp->r_statelock); 4502 if (rp->r_symlink.contents != NULL) { 4503 e.error = uiomove(rp->r_symlink.contents, 4504 rp->r_symlink.len, UIO_READ, uiop); 4505 mutex_exit(&rp->r_statelock); 4506 return (e.error); 4507 } 4508 mutex_exit(&rp->r_statelock); 4509 } 4510 recov_state.rs_flags = 0; 4511 recov_state.rs_num_retry_despite_err = 0; 4512 4513 recov_retry: 4514 args.array_len = 3; 4515 args.array = argop; 4516 args.ctag = TAG_READLINK; 4517 4518 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state); 4519 if (e.error) { 4520 return (e.error); 4521 } 4522 4523 /* 0. putfh symlink fh */ 4524 argop[0].argop = OP_CPUTFH; 4525 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 4526 4527 /* 1. readlink */ 4528 argop[1].argop = OP_READLINK; 4529 4530 /* 2. getattr */ 4531 argop[2].argop = OP_GETATTR; 4532 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 4533 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp); 4534 4535 doqueue = 1; 4536 4537 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 4538 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first", 4539 rnode4info(VTOR4(vp)))); 4540 4541 t = gethrtime(); 4542 4543 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e); 4544 4545 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp); 4546 if (needrecov) { 4547 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 4548 "nfs4_readlink: initiating recovery\n")); 4549 4550 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 4551 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { 4552 if (!e.error) 4553 (void) xdr_free(xdr_COMPOUND4res_clnt, 4554 (caddr_t)&res); 4555 4556 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, 4557 needrecov); 4558 goto recov_retry; 4559 } 4560 } 4561 4562 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov); 4563 4564 if (e.error) 4565 return (e.error); 4566 4567 /* 4568 * There is an path in the code below which calls 4569 * nfs4_purge_stale_fh(), which may generate otw calls through 4570 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 4571 * here to avoid nfs4_start_op() deadlock. 4572 */ 4573 4574 if (res.status && (res.array_len < args.array_len)) { 4575 /* 4576 * either Putfh or Link failed 4577 */ 4578 e.error = geterrno4(res.status); 4579 nfs4_purge_stale_fh(e.error, vp, cr); 4580 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4581 return (e.error); 4582 } 4583 4584 resop = &res.array[1]; /* readlink res */ 4585 lr_res = &resop->nfs_resop4_u.opreadlink; 4586 4587 /* 4588 * treat symlink names as data 4589 */ 4590 linkdata = utf8_to_str(&lr_res->link, &len, NULL); 4591 if (linkdata != NULL) { 4592 int uio_len = len - 1; 4593 /* len includes null byte, which we won't uiomove */ 4594 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop); 4595 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 4596 mutex_enter(&rp->r_statelock); 4597 if (rp->r_symlink.contents == NULL) { 4598 rp->r_symlink.contents = linkdata; 4599 rp->r_symlink.len = uio_len; 4600 rp->r_symlink.size = len; 4601 mutex_exit(&rp->r_statelock); 4602 } else { 4603 mutex_exit(&rp->r_statelock); 4604 kmem_free(linkdata, len); 4605 } 4606 } else { 4607 kmem_free(linkdata, len); 4608 } 4609 } 4610 if (res.status == NFS4_OK) { 4611 resop++; /* getattr res */ 4612 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 4613 } 4614 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr); 4615 4616 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 4617 4618 /* 4619 * The over the wire error for attempting to readlink something 4620 * other than a symbolic link is ENXIO. However, we need to 4621 * return EINVAL instead of ENXIO, so we map it here. 4622 */ 4623 return (e.error == ENXIO ? EINVAL : e.error); 4624 } 4625 4626 /* 4627 * Flush local dirty pages to stable storage on the server. 4628 * 4629 * If FNODSYNC is specified, then there is nothing to do because 4630 * metadata changes are not cached on the client before being 4631 * sent to the server. 4632 */ 4633 /* ARGSUSED */ 4634 static int 4635 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 4636 { 4637 int error; 4638 4639 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 4640 return (0); 4641 if (nfs_zone() != VTOMI4(vp)->mi_zone) 4642 return (EIO); 4643 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr); 4644 if (!error) 4645 error = VTOR4(vp)->r_error; 4646 return (error); 4647 } 4648 4649 /* 4650 * Weirdness: if the file was removed or the target of a rename 4651 * operation while it was open, it got renamed instead. Here we 4652 * remove the renamed file. 4653 */ 4654 /* ARGSUSED */ 4655 void 4656 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4657 { 4658 rnode4_t *rp; 4659 4660 ASSERT(vp != DNLC_NO_VNODE); 4661 4662 rp = VTOR4(vp); 4663 4664 if (IS_SHADOW(vp, rp)) { 4665 sv_inactive(vp); 4666 return; 4667 } 4668 4669 /* 4670 * If this is coming from the wrong zone, we let someone in the right 4671 * zone take care of it asynchronously. We can get here due to 4672 * VN_RELE() being called from pageout() or fsflush(). This call may 4673 * potentially turn into an expensive no-op if, for instance, v_count 4674 * gets incremented in the meantime, but it's still correct. 4675 */ 4676 if (nfs_zone() != VTOMI4(vp)->mi_zone) { 4677 nfs4_async_inactive(vp, cr); 4678 return; 4679 } 4680 4681 /* 4682 * Some of the cleanup steps might require over-the-wire 4683 * operations. Since VOP_INACTIVE can get called as a result of 4684 * other over-the-wire operations (e.g., an attribute cache update 4685 * can lead to a DNLC purge), doing those steps now would lead to a 4686 * nested call to the recovery framework, which can deadlock. So 4687 * do any over-the-wire cleanups asynchronously, in a separate 4688 * thread. 4689 */ 4690 4691 mutex_enter(&rp->r_os_lock); 4692 mutex_enter(&rp->r_statelock); 4693 mutex_enter(&rp->r_statev4_lock); 4694 4695 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) { 4696 mutex_exit(&rp->r_statev4_lock); 4697 mutex_exit(&rp->r_statelock); 4698 mutex_exit(&rp->r_os_lock); 4699 nfs4_async_inactive(vp, cr); 4700 return; 4701 } 4702 4703 if (rp->r_deleg_type == OPEN_DELEGATE_READ || 4704 rp->r_deleg_type == OPEN_DELEGATE_WRITE) { 4705 mutex_exit(&rp->r_statev4_lock); 4706 mutex_exit(&rp->r_statelock); 4707 mutex_exit(&rp->r_os_lock); 4708 nfs4_async_inactive(vp, cr); 4709 return; 4710 } 4711 4712 if (rp->r_unldvp != NULL) { 4713 mutex_exit(&rp->r_statev4_lock); 4714 mutex_exit(&rp->r_statelock); 4715 mutex_exit(&rp->r_os_lock); 4716 nfs4_async_inactive(vp, cr); 4717 return; 4718 } 4719 mutex_exit(&rp->r_statev4_lock); 4720 mutex_exit(&rp->r_statelock); 4721 mutex_exit(&rp->r_os_lock); 4722 4723 rp4_addfree(rp, cr); 4724 } 4725 4726 /* 4727 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up 4728 * various bits of state. The caller must not refer to vp after this call. 4729 */ 4730 4731 void 4732 nfs4_inactive_otw(vnode_t *vp, cred_t *cr) 4733 { 4734 rnode4_t *rp = VTOR4(vp); 4735 nfs4_recov_state_t recov_state; 4736 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 4737 vnode_t *unldvp; 4738 char *unlname; 4739 cred_t *unlcred; 4740 COMPOUND4args_clnt args; 4741 COMPOUND4res_clnt res, *resp; 4742 nfs_argop4 argop[2]; 4743 int doqueue; 4744 #ifdef DEBUG 4745 char *name; 4746 #endif 4747 4748 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 4749 ASSERT(!IS_SHADOW(vp, rp)); 4750 4751 #ifdef DEBUG 4752 name = fn_name(VTOSV(vp)->sv_name); 4753 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: " 4754 "release vnode %s", name)); 4755 kmem_free(name, MAXNAMELEN); 4756 #endif 4757 4758 if (vp->v_type == VREG) { 4759 bool_t recov_failed = FALSE; 4760 4761 e.error = nfs4close_all(vp, cr); 4762 if (e.error) { 4763 /* Check to see if recovery failed */ 4764 mutex_enter(&(VTOMI4(vp)->mi_lock)); 4765 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL) 4766 recov_failed = TRUE; 4767 mutex_exit(&(VTOMI4(vp)->mi_lock)); 4768 if (!recov_failed) { 4769 mutex_enter(&rp->r_statelock); 4770 if (rp->r_flags & R4RECOVERR) 4771 recov_failed = TRUE; 4772 mutex_exit(&rp->r_statelock); 4773 } 4774 if (recov_failed) { 4775 NFS4_DEBUG(nfs4_client_recov_debug, 4776 (CE_NOTE, "nfs4_inactive_otw: " 4777 "close failed (recovery failure)")); 4778 } 4779 } 4780 } 4781 4782 redo: 4783 if (rp->r_unldvp == NULL) { 4784 rp4_addfree(rp, cr); 4785 return; 4786 } 4787 4788 /* 4789 * Save the vnode pointer for the directory where the 4790 * unlinked-open file got renamed, then set it to NULL 4791 * to prevent another thread from getting here before 4792 * we're done with the remove. While we have the 4793 * statelock, make local copies of the pertinent rnode 4794 * fields. If we weren't to do this in an atomic way, the 4795 * the unl* fields could become inconsistent with respect 4796 * to each other due to a race condition between this 4797 * code and nfs_remove(). See bug report 1034328. 4798 */ 4799 mutex_enter(&rp->r_statelock); 4800 if (rp->r_unldvp == NULL) { 4801 mutex_exit(&rp->r_statelock); 4802 rp4_addfree(rp, cr); 4803 return; 4804 } 4805 4806 unldvp = rp->r_unldvp; 4807 rp->r_unldvp = NULL; 4808 unlname = rp->r_unlname; 4809 rp->r_unlname = NULL; 4810 unlcred = rp->r_unlcred; 4811 rp->r_unlcred = NULL; 4812 mutex_exit(&rp->r_statelock); 4813 4814 /* 4815 * If there are any dirty pages left, then flush 4816 * them. This is unfortunate because they just 4817 * may get thrown away during the remove operation, 4818 * but we have to do this for correctness. 4819 */ 4820 if (nfs4_has_pages(vp) && 4821 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 4822 ASSERT(vp->v_type != VCHR); 4823 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL); 4824 if (e.error) { 4825 mutex_enter(&rp->r_statelock); 4826 if (!rp->r_error) 4827 rp->r_error = e.error; 4828 mutex_exit(&rp->r_statelock); 4829 } 4830 } 4831 4832 recov_state.rs_flags = 0; 4833 recov_state.rs_num_retry_despite_err = 0; 4834 recov_retry_remove: 4835 /* 4836 * Do the remove operation on the renamed file 4837 */ 4838 args.ctag = TAG_INACTIVE; 4839 4840 /* 4841 * Remove ops: putfh dir; remove 4842 */ 4843 args.array_len = 2; 4844 args.array = argop; 4845 4846 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state); 4847 if (e.error) { 4848 kmem_free(unlname, MAXNAMELEN); 4849 crfree(unlcred); 4850 VN_RELE(unldvp); 4851 /* 4852 * Try again; this time around r_unldvp will be NULL, so we'll 4853 * just call rp4_addfree() and return. 4854 */ 4855 goto redo; 4856 } 4857 4858 /* putfh directory */ 4859 argop[0].argop = OP_CPUTFH; 4860 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh; 4861 4862 /* remove */ 4863 argop[1].argop = OP_CREMOVE; 4864 argop[1].nfs_argop4_u.opcremove.ctarget = unlname; 4865 4866 doqueue = 1; 4867 resp = &res; 4868 4869 #if 0 /* notyet */ 4870 /* 4871 * Can't do this yet. We may be being called from 4872 * dnlc_purge_XXX while that routine is holding a 4873 * mutex lock to the nc_rele list. The calls to 4874 * nfs3_cache_wcc_data may result in calls to 4875 * dnlc_purge_XXX. This will result in a deadlock. 4876 */ 4877 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4878 if (e.error) { 4879 PURGE_ATTRCACHE4(unldvp); 4880 resp = NULL; 4881 } else if (res.status) { 4882 e.error = geterrno4(res.status); 4883 PURGE_ATTRCACHE4(unldvp); 4884 /* 4885 * This code is inactive right now 4886 * but if made active there should 4887 * be a nfs4_end_op() call before 4888 * nfs4_purge_stale_fh to avoid start_op() 4889 * deadlock. See BugId: 4948726 4890 */ 4891 nfs4_purge_stale_fh(error, unldvp, cr); 4892 } else { 4893 nfs_resop4 *resop; 4894 REMOVE4res *rm_res; 4895 4896 resop = &res.array[1]; 4897 rm_res = &resop->nfs_resop4_u.opremove; 4898 /* 4899 * Update directory cache attribute, 4900 * readdir and dnlc caches. 4901 */ 4902 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL); 4903 } 4904 #else 4905 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e); 4906 4907 PURGE_ATTRCACHE4(unldvp); 4908 #endif 4909 4910 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) { 4911 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL, 4912 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 4913 if (!e.error) 4914 (void) xdr_free(xdr_COMPOUND4res_clnt, 4915 (caddr_t)&res); 4916 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, 4917 &recov_state, TRUE); 4918 goto recov_retry_remove; 4919 } 4920 } 4921 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE); 4922 4923 /* 4924 * Release stuff held for the remove 4925 */ 4926 VN_RELE(unldvp); 4927 if (!e.error && resp) 4928 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 4929 4930 kmem_free(unlname, MAXNAMELEN); 4931 crfree(unlcred); 4932 goto redo; 4933 } 4934 4935 /* 4936 * Remote file system operations having to do with directory manipulation. 4937 */ 4938 /* ARGSUSED3 */ 4939 int 4940 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 4941 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 4942 int *direntflags, pathname_t *realpnp) 4943 { 4944 int error; 4945 vnode_t *vp, *avp = NULL; 4946 rnode4_t *drp; 4947 4948 *vpp = NULL; 4949 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 4950 return (EPERM); 4951 /* 4952 * if LOOKUP_XATTR, must replace dvp (object) with 4953 * object's attrdir before continuing with lookup 4954 */ 4955 if (flags & LOOKUP_XATTR) { 4956 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr); 4957 if (error) 4958 return (error); 4959 4960 dvp = avp; 4961 4962 /* 4963 * If lookup is for "", just return dvp now. The attrdir 4964 * has already been activated (from nfs4lookup_xattr), and 4965 * the caller will RELE the original dvp -- not 4966 * the attrdir. So, set vpp and return. 4967 * Currently, when the LOOKUP_XATTR flag is 4968 * passed to VOP_LOOKUP, the name is always empty, and 4969 * shortcircuiting here avoids 3 unneeded lock/unlock 4970 * pairs. 4971 * 4972 * If a non-empty name was provided, then it is the 4973 * attribute name, and it will be looked up below. 4974 */ 4975 if (*nm == '\0') { 4976 *vpp = dvp; 4977 return (0); 4978 } 4979 4980 /* 4981 * The vfs layer never sends a name when asking for the 4982 * attrdir, so we should never get here (unless of course 4983 * name is passed at some time in future -- at which time 4984 * we'll blow up here). 4985 */ 4986 ASSERT(0); 4987 } 4988 4989 drp = VTOR4(dvp); 4990 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 4991 return (EINTR); 4992 4993 error = nfs4lookup(dvp, nm, vpp, cr, 0); 4994 nfs_rw_exit(&drp->r_rwlock); 4995 4996 /* 4997 * If vnode is a device, create special vnode. 4998 */ 4999 if (!error && ISVDEV((*vpp)->v_type)) { 5000 vp = *vpp; 5001 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 5002 VN_RELE(vp); 5003 } 5004 5005 return (error); 5006 } 5007 5008 /* ARGSUSED */ 5009 static int 5010 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr) 5011 { 5012 int error; 5013 rnode4_t *drp; 5014 int cflag = ((flags & CREATE_XATTR_DIR) != 0); 5015 mntinfo4_t *mi; 5016 5017 mi = VTOMI4(dvp); 5018 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) && 5019 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS)) 5020 return (EINVAL); 5021 5022 drp = VTOR4(dvp); 5023 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) 5024 return (EINTR); 5025 5026 mutex_enter(&drp->r_statelock); 5027 /* 5028 * If the server doesn't support xattrs just return EINVAL 5029 */ 5030 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) { 5031 mutex_exit(&drp->r_statelock); 5032 nfs_rw_exit(&drp->r_rwlock); 5033 return (EINVAL); 5034 } 5035 5036 /* 5037 * If there is a cached xattr directory entry, 5038 * use it as long as the attributes are valid. If the 5039 * attributes are not valid, take the simple approach and 5040 * free the cached value and re-fetch a new value. 5041 * 5042 * We don't negative entry cache for now, if we did we 5043 * would need to check if the file has changed on every 5044 * lookup. But xattrs don't exist very often and failing 5045 * an openattr is not much more expensive than and NVERIFY or GETATTR 5046 * so do an openattr over the wire for now. 5047 */ 5048 if (drp->r_xattr_dir != NULL) { 5049 if (ATTRCACHE4_VALID(dvp)) { 5050 VN_HOLD(drp->r_xattr_dir); 5051 *vpp = drp->r_xattr_dir; 5052 mutex_exit(&drp->r_statelock); 5053 nfs_rw_exit(&drp->r_rwlock); 5054 return (0); 5055 } 5056 VN_RELE(drp->r_xattr_dir); 5057 drp->r_xattr_dir = NULL; 5058 } 5059 mutex_exit(&drp->r_statelock); 5060 5061 error = nfs4openattr(dvp, vpp, cflag, cr); 5062 5063 nfs_rw_exit(&drp->r_rwlock); 5064 5065 return (error); 5066 } 5067 5068 static int 5069 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc) 5070 { 5071 int error; 5072 rnode4_t *drp; 5073 5074 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5075 5076 /* 5077 * If lookup is for "", just return dvp. Don't need 5078 * to send it over the wire, look it up in the dnlc, 5079 * or perform any access checks. 5080 */ 5081 if (*nm == '\0') { 5082 VN_HOLD(dvp); 5083 *vpp = dvp; 5084 return (0); 5085 } 5086 5087 /* 5088 * Can't do lookups in non-directories. 5089 */ 5090 if (dvp->v_type != VDIR) 5091 return (ENOTDIR); 5092 5093 /* 5094 * If lookup is for ".", just return dvp. Don't need 5095 * to send it over the wire or look it up in the dnlc, 5096 * just need to check access. 5097 */ 5098 if (nm[0] == '.' && nm[1] == '\0') { 5099 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5100 if (error) 5101 return (error); 5102 VN_HOLD(dvp); 5103 *vpp = dvp; 5104 return (0); 5105 } 5106 5107 drp = VTOR4(dvp); 5108 if (!(drp->r_flags & R4LOOKUP)) { 5109 mutex_enter(&drp->r_statelock); 5110 drp->r_flags |= R4LOOKUP; 5111 mutex_exit(&drp->r_statelock); 5112 } 5113 5114 *vpp = NULL; 5115 /* 5116 * Lookup this name in the DNLC. If there is no entry 5117 * lookup over the wire. 5118 */ 5119 if (!skipdnlc) 5120 *vpp = dnlc_lookup(dvp, nm); 5121 if (*vpp == NULL) { 5122 /* 5123 * We need to go over the wire to lookup the name. 5124 */ 5125 return (nfs4lookupnew_otw(dvp, nm, vpp, cr)); 5126 } 5127 5128 /* 5129 * We hit on the dnlc 5130 */ 5131 if (*vpp != DNLC_NO_VNODE || 5132 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 5133 /* 5134 * But our attrs may not be valid. 5135 */ 5136 if (ATTRCACHE4_VALID(dvp)) { 5137 error = nfs4_waitfor_purge_complete(dvp); 5138 if (error) { 5139 VN_RELE(*vpp); 5140 *vpp = NULL; 5141 return (error); 5142 } 5143 5144 /* 5145 * If after the purge completes, check to make sure 5146 * our attrs are still valid. 5147 */ 5148 if (ATTRCACHE4_VALID(dvp)) { 5149 /* 5150 * If we waited for a purge we may have 5151 * lost our vnode so look it up again. 5152 */ 5153 VN_RELE(*vpp); 5154 *vpp = dnlc_lookup(dvp, nm); 5155 if (*vpp == NULL) 5156 return (nfs4lookupnew_otw(dvp, 5157 nm, vpp, cr)); 5158 5159 /* 5160 * The access cache should almost always hit 5161 */ 5162 error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5163 5164 if (error) { 5165 VN_RELE(*vpp); 5166 *vpp = NULL; 5167 return (error); 5168 } 5169 if (*vpp == DNLC_NO_VNODE) { 5170 VN_RELE(*vpp); 5171 *vpp = NULL; 5172 return (ENOENT); 5173 } 5174 return (0); 5175 } 5176 } 5177 } 5178 5179 ASSERT(*vpp != NULL); 5180 5181 /* 5182 * We may have gotten here we have one of the following cases: 5183 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we 5184 * need to validate them. 5185 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always 5186 * must validate. 5187 * 5188 * Go to the server and check if the directory has changed, if 5189 * it hasn't we are done and can use the dnlc entry. 5190 */ 5191 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr)); 5192 } 5193 5194 /* 5195 * Go to the server and check if the directory has changed, if 5196 * it hasn't we are done and can use the dnlc entry. If it 5197 * has changed we get a new copy of its attributes and check 5198 * the access for VEXEC, then relookup the filename and 5199 * get its filehandle and attributes. 5200 * 5201 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR 5202 * if the NVERIFY failed we must 5203 * purge the caches 5204 * cache new attributes (will set r_time_attr_inval) 5205 * cache new access 5206 * recheck VEXEC access 5207 * add name to dnlc, possibly negative 5208 * if LOOKUP succeeded 5209 * cache new attributes 5210 * else 5211 * set a new r_time_attr_inval for dvp 5212 * check to make sure we have access 5213 * 5214 * The vpp returned is the vnode passed in if the directory is valid, 5215 * a new vnode if successful lookup, or NULL on error. 5216 */ 5217 static int 5218 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5219 { 5220 COMPOUND4args_clnt args; 5221 COMPOUND4res_clnt res; 5222 fattr4 *ver_fattr; 5223 fattr4_change dchange; 5224 int32_t *ptr; 5225 int argoplist_size = 7 * sizeof (nfs_argop4); 5226 nfs_argop4 *argop; 5227 int doqueue; 5228 mntinfo4_t *mi; 5229 nfs4_recov_state_t recov_state; 5230 hrtime_t t; 5231 int isdotdot; 5232 vnode_t *nvp; 5233 nfs_fh4 *fhp; 5234 nfs4_sharedfh_t *sfhp; 5235 nfs4_access_type_t cacc; 5236 rnode4_t *nrp; 5237 rnode4_t *drp = VTOR4(dvp); 5238 nfs4_ga_res_t *garp = NULL; 5239 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5240 5241 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5242 ASSERT(nm != NULL); 5243 ASSERT(nm[0] != '\0'); 5244 ASSERT(dvp->v_type == VDIR); 5245 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5246 ASSERT(*vpp != NULL); 5247 5248 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5249 isdotdot = 1; 5250 args.ctag = TAG_LOOKUP_VPARENT; 5251 } else { 5252 /* 5253 * If dvp were a stub, it should have triggered and caused 5254 * a mount for us to get this far. 5255 */ 5256 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5257 5258 isdotdot = 0; 5259 args.ctag = TAG_LOOKUP_VALID; 5260 } 5261 5262 mi = VTOMI4(dvp); 5263 recov_state.rs_flags = 0; 5264 recov_state.rs_num_retry_despite_err = 0; 5265 5266 nvp = NULL; 5267 5268 /* Save the original mount point security information */ 5269 (void) save_mnt_secinfo(mi->mi_curr_serv); 5270 5271 recov_retry: 5272 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5273 &recov_state, NULL); 5274 if (e.error) { 5275 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5276 VN_RELE(*vpp); 5277 *vpp = NULL; 5278 return (e.error); 5279 } 5280 5281 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5282 5283 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */ 5284 args.array_len = 7; 5285 args.array = argop; 5286 5287 /* 0. putfh file */ 5288 argop[0].argop = OP_CPUTFH; 5289 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5290 5291 /* 1. nverify the change info */ 5292 argop[1].argop = OP_NVERIFY; 5293 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes; 5294 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5295 ver_fattr->attrlist4 = (char *)&dchange; 5296 ptr = (int32_t *)&dchange; 5297 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5298 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5299 5300 /* 2. getattr directory */ 5301 argop[2].argop = OP_GETATTR; 5302 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5303 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5304 5305 /* 3. access directory */ 5306 argop[3].argop = OP_ACCESS; 5307 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5308 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5309 5310 /* 4. lookup name */ 5311 if (isdotdot) { 5312 argop[4].argop = OP_LOOKUPP; 5313 } else { 5314 argop[4].argop = OP_CLOOKUP; 5315 argop[4].nfs_argop4_u.opclookup.cname = nm; 5316 } 5317 5318 /* 5. resulting file handle */ 5319 argop[5].argop = OP_GETFH; 5320 5321 /* 6. resulting file attributes */ 5322 argop[6].argop = OP_GETATTR; 5323 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5324 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5325 5326 doqueue = 1; 5327 t = gethrtime(); 5328 5329 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5330 5331 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5332 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5333 if (e.error != 0 && *vpp != NULL) 5334 VN_RELE(*vpp); 5335 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5336 &recov_state, FALSE); 5337 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5338 kmem_free(argop, argoplist_size); 5339 return (e.error); 5340 } 5341 5342 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5343 /* 5344 * For WRONGSEC of a non-dotdot case, send secinfo directly 5345 * from this thread, do not go thru the recovery thread since 5346 * we need the nm information. 5347 * 5348 * Not doing dotdot case because there is no specification 5349 * for (PUTFH, SECINFO "..") yet. 5350 */ 5351 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5352 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5353 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5354 &recov_state, FALSE); 5355 else 5356 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5357 &recov_state, TRUE); 5358 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5359 kmem_free(argop, argoplist_size); 5360 if (!e.error) 5361 goto recov_retry; 5362 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5363 VN_RELE(*vpp); 5364 *vpp = NULL; 5365 return (e.error); 5366 } 5367 5368 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5369 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5370 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5371 &recov_state, TRUE); 5372 5373 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5374 kmem_free(argop, argoplist_size); 5375 goto recov_retry; 5376 } 5377 } 5378 5379 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5380 5381 if (e.error || res.array_len == 0) { 5382 /* 5383 * If e.error isn't set, then reply has no ops (or we couldn't 5384 * be here). The only legal way to reply without an op array 5385 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5386 * be in the reply for all other status values. 5387 * 5388 * For valid replies without an ops array, return ENOTSUP 5389 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5390 * return EIO -- don't trust status. 5391 */ 5392 if (e.error == 0) 5393 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5394 ENOTSUP : EIO; 5395 VN_RELE(*vpp); 5396 *vpp = NULL; 5397 kmem_free(argop, argoplist_size); 5398 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5399 return (e.error); 5400 } 5401 5402 if (res.status != NFS4ERR_SAME) { 5403 e.error = geterrno4(res.status); 5404 5405 /* 5406 * The NVERIFY "failed" so the directory has changed 5407 * First make sure PUTFH succeeded and NVERIFY "failed" 5408 * cleanly. 5409 */ 5410 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5411 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) { 5412 nfs4_purge_stale_fh(e.error, dvp, cr); 5413 VN_RELE(*vpp); 5414 *vpp = NULL; 5415 goto exit; 5416 } 5417 5418 /* 5419 * We know the NVERIFY "failed" so we must: 5420 * purge the caches (access and indirectly dnlc if needed) 5421 */ 5422 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5423 5424 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5425 nfs4_purge_stale_fh(e.error, dvp, cr); 5426 VN_RELE(*vpp); 5427 *vpp = NULL; 5428 goto exit; 5429 } 5430 5431 /* 5432 * Install new cached attributes for the directory 5433 */ 5434 nfs4_attr_cache(dvp, 5435 &res.array[2].nfs_resop4_u.opgetattr.ga_res, 5436 t, cr, FALSE, NULL); 5437 5438 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) { 5439 nfs4_purge_stale_fh(e.error, dvp, cr); 5440 VN_RELE(*vpp); 5441 *vpp = NULL; 5442 e.error = geterrno4(res.status); 5443 goto exit; 5444 } 5445 5446 /* 5447 * Now we know the directory is valid, 5448 * cache new directory access 5449 */ 5450 nfs4_access_cache(drp, 5451 args.array[3].nfs_argop4_u.opaccess.access, 5452 res.array[3].nfs_resop4_u.opaccess.access, cr); 5453 5454 /* 5455 * recheck VEXEC access 5456 */ 5457 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5458 if (cacc != NFS4_ACCESS_ALLOWED) { 5459 /* 5460 * Directory permissions might have been revoked 5461 */ 5462 if (cacc == NFS4_ACCESS_DENIED) { 5463 e.error = EACCES; 5464 VN_RELE(*vpp); 5465 *vpp = NULL; 5466 goto exit; 5467 } 5468 5469 /* 5470 * Somehow we must not have asked for enough 5471 * so try a singleton ACCESS, should never happen. 5472 */ 5473 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5474 if (e.error) { 5475 VN_RELE(*vpp); 5476 *vpp = NULL; 5477 goto exit; 5478 } 5479 } 5480 5481 e.error = geterrno4(res.status); 5482 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) { 5483 /* 5484 * The lookup failed, probably no entry 5485 */ 5486 if (e.error == ENOENT && nfs4_lookup_neg_cache) { 5487 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5488 } else { 5489 /* 5490 * Might be some other error, so remove 5491 * the dnlc entry to make sure we start all 5492 * over again, next time. 5493 */ 5494 dnlc_remove(dvp, nm); 5495 } 5496 VN_RELE(*vpp); 5497 *vpp = NULL; 5498 goto exit; 5499 } 5500 5501 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5502 /* 5503 * The file exists but we can't get its fh for 5504 * some unknown reason. Remove it from the dnlc 5505 * and error out to be safe. 5506 */ 5507 dnlc_remove(dvp, nm); 5508 VN_RELE(*vpp); 5509 *vpp = NULL; 5510 goto exit; 5511 } 5512 fhp = &res.array[5].nfs_resop4_u.opgetfh.object; 5513 if (fhp->nfs_fh4_len == 0) { 5514 /* 5515 * The file exists but a bogus fh 5516 * some unknown reason. Remove it from the dnlc 5517 * and error out to be safe. 5518 */ 5519 e.error = ENOENT; 5520 dnlc_remove(dvp, nm); 5521 VN_RELE(*vpp); 5522 *vpp = NULL; 5523 goto exit; 5524 } 5525 sfhp = sfh4_get(fhp, mi); 5526 5527 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK) 5528 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 5529 5530 /* 5531 * Make the new rnode 5532 */ 5533 if (isdotdot) { 5534 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 5535 if (e.error) { 5536 sfh4_rele(&sfhp); 5537 VN_RELE(*vpp); 5538 *vpp = NULL; 5539 goto exit; 5540 } 5541 /* 5542 * XXX if nfs4_make_dotdot uses an existing rnode 5543 * XXX it doesn't update the attributes. 5544 * XXX for now just save them again to save an OTW 5545 */ 5546 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 5547 } else { 5548 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 5549 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 5550 /* 5551 * If v_type == VNON, then garp was NULL because 5552 * the last op in the compound failed and makenfs4node 5553 * could not find the vnode for sfhp. It created 5554 * a new vnode, so we have nothing to purge here. 5555 */ 5556 if (nvp->v_type == VNON) { 5557 vattr_t vattr; 5558 5559 vattr.va_mask = AT_TYPE; 5560 /* 5561 * N.B. We've already called nfs4_end_fop above. 5562 */ 5563 e.error = nfs4getattr(nvp, &vattr, cr); 5564 if (e.error) { 5565 sfh4_rele(&sfhp); 5566 VN_RELE(*vpp); 5567 *vpp = NULL; 5568 VN_RELE(nvp); 5569 goto exit; 5570 } 5571 nvp->v_type = vattr.va_type; 5572 } 5573 } 5574 sfh4_rele(&sfhp); 5575 5576 nrp = VTOR4(nvp); 5577 mutex_enter(&nrp->r_statev4_lock); 5578 if (!nrp->created_v4) { 5579 mutex_exit(&nrp->r_statev4_lock); 5580 dnlc_update(dvp, nm, nvp); 5581 } else 5582 mutex_exit(&nrp->r_statev4_lock); 5583 5584 VN_RELE(*vpp); 5585 *vpp = nvp; 5586 } else { 5587 hrtime_t now; 5588 hrtime_t delta = 0; 5589 5590 e.error = 0; 5591 5592 /* 5593 * Because the NVERIFY "succeeded" we know that the 5594 * directory attributes are still valid 5595 * so update r_time_attr_inval 5596 */ 5597 now = gethrtime(); 5598 mutex_enter(&drp->r_statelock); 5599 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5600 delta = now - drp->r_time_attr_saved; 5601 if (delta < mi->mi_acdirmin) 5602 delta = mi->mi_acdirmin; 5603 else if (delta > mi->mi_acdirmax) 5604 delta = mi->mi_acdirmax; 5605 } 5606 drp->r_time_attr_inval = now + delta; 5607 mutex_exit(&drp->r_statelock); 5608 dnlc_update(dvp, nm, *vpp); 5609 5610 /* 5611 * Even though we have a valid directory attr cache 5612 * and dnlc entry, we may not have access. 5613 * This should almost always hit the cache. 5614 */ 5615 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5616 if (e.error) { 5617 VN_RELE(*vpp); 5618 *vpp = NULL; 5619 } 5620 5621 if (*vpp == DNLC_NO_VNODE) { 5622 VN_RELE(*vpp); 5623 *vpp = NULL; 5624 e.error = ENOENT; 5625 } 5626 } 5627 5628 exit: 5629 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5630 kmem_free(argop, argoplist_size); 5631 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5632 return (e.error); 5633 } 5634 5635 /* 5636 * We need to go over the wire to lookup the name, but 5637 * while we are there verify the directory has not 5638 * changed but if it has, get new attributes and check access 5639 * 5640 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH 5641 * NVERIFY GETATTR ACCESS 5642 * 5643 * With the results: 5644 * if the NVERIFY failed we must purge the caches, add new attributes, 5645 * and cache new access. 5646 * set a new r_time_attr_inval 5647 * add name to dnlc, possibly negative 5648 * if LOOKUP succeeded 5649 * cache new attributes 5650 */ 5651 static int 5652 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 5653 { 5654 COMPOUND4args_clnt args; 5655 COMPOUND4res_clnt res; 5656 fattr4 *ver_fattr; 5657 fattr4_change dchange; 5658 int32_t *ptr; 5659 nfs4_ga_res_t *garp = NULL; 5660 int argoplist_size = 9 * sizeof (nfs_argop4); 5661 nfs_argop4 *argop; 5662 int doqueue; 5663 mntinfo4_t *mi; 5664 nfs4_recov_state_t recov_state; 5665 hrtime_t t; 5666 int isdotdot; 5667 vnode_t *nvp; 5668 nfs_fh4 *fhp; 5669 nfs4_sharedfh_t *sfhp; 5670 nfs4_access_type_t cacc; 5671 rnode4_t *nrp; 5672 rnode4_t *drp = VTOR4(dvp); 5673 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 5674 5675 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 5676 ASSERT(nm != NULL); 5677 ASSERT(nm[0] != '\0'); 5678 ASSERT(dvp->v_type == VDIR); 5679 ASSERT(nm[0] != '.' || nm[1] != '\0'); 5680 ASSERT(*vpp == NULL); 5681 5682 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') { 5683 isdotdot = 1; 5684 args.ctag = TAG_LOOKUP_PARENT; 5685 } else { 5686 /* 5687 * If dvp were a stub, it should have triggered and caused 5688 * a mount for us to get this far. 5689 */ 5690 ASSERT(!RP_ISSTUB(VTOR4(dvp))); 5691 5692 isdotdot = 0; 5693 args.ctag = TAG_LOOKUP; 5694 } 5695 5696 mi = VTOMI4(dvp); 5697 recov_state.rs_flags = 0; 5698 recov_state.rs_num_retry_despite_err = 0; 5699 5700 nvp = NULL; 5701 5702 /* Save the original mount point security information */ 5703 (void) save_mnt_secinfo(mi->mi_curr_serv); 5704 5705 recov_retry: 5706 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP, 5707 &recov_state, NULL); 5708 if (e.error) { 5709 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5710 return (e.error); 5711 } 5712 5713 argop = kmem_alloc(argoplist_size, KM_SLEEP); 5714 5715 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */ 5716 args.array_len = 9; 5717 args.array = argop; 5718 5719 /* 0. putfh file */ 5720 argop[0].argop = OP_CPUTFH; 5721 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh; 5722 5723 /* 1. savefh for the nverify */ 5724 argop[1].argop = OP_SAVEFH; 5725 5726 /* 2. lookup name */ 5727 if (isdotdot) { 5728 argop[2].argop = OP_LOOKUPP; 5729 } else { 5730 argop[2].argop = OP_CLOOKUP; 5731 argop[2].nfs_argop4_u.opclookup.cname = nm; 5732 } 5733 5734 /* 3. resulting file handle */ 5735 argop[3].argop = OP_GETFH; 5736 5737 /* 4. resulting file attributes */ 5738 argop[4].argop = OP_GETATTR; 5739 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5740 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5741 5742 /* 5. restorefh back the directory for the nverify */ 5743 argop[5].argop = OP_RESTOREFH; 5744 5745 /* 6. nverify the change info */ 5746 argop[6].argop = OP_NVERIFY; 5747 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes; 5748 ver_fattr->attrmask = FATTR4_CHANGE_MASK; 5749 ver_fattr->attrlist4 = (char *)&dchange; 5750 ptr = (int32_t *)&dchange; 5751 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change); 5752 ver_fattr->attrlist4_len = sizeof (fattr4_change); 5753 5754 /* 7. getattr directory */ 5755 argop[7].argop = OP_GETATTR; 5756 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 5757 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 5758 5759 /* 8. access directory */ 5760 argop[8].argop = OP_ACCESS; 5761 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE | 5762 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP; 5763 5764 doqueue = 1; 5765 t = gethrtime(); 5766 5767 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 5768 5769 if (!isdotdot && res.status == NFS4ERR_MOVED) { 5770 e.error = nfs4_setup_referral(dvp, nm, vpp, cr); 5771 if (e.error != 0 && *vpp != NULL) 5772 VN_RELE(*vpp); 5773 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5774 &recov_state, FALSE); 5775 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5776 kmem_free(argop, argoplist_size); 5777 return (e.error); 5778 } 5779 5780 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) { 5781 /* 5782 * For WRONGSEC of a non-dotdot case, send secinfo directly 5783 * from this thread, do not go thru the recovery thread since 5784 * we need the nm information. 5785 * 5786 * Not doing dotdot case because there is no specification 5787 * for (PUTFH, SECINFO "..") yet. 5788 */ 5789 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) { 5790 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr))) 5791 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5792 &recov_state, FALSE); 5793 else 5794 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5795 &recov_state, TRUE); 5796 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5797 kmem_free(argop, argoplist_size); 5798 if (!e.error) 5799 goto recov_retry; 5800 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5801 return (e.error); 5802 } 5803 5804 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 5805 OP_LOOKUP, NULL, NULL, NULL) == FALSE) { 5806 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, 5807 &recov_state, TRUE); 5808 5809 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 5810 kmem_free(argop, argoplist_size); 5811 goto recov_retry; 5812 } 5813 } 5814 5815 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE); 5816 5817 if (e.error || res.array_len == 0) { 5818 /* 5819 * If e.error isn't set, then reply has no ops (or we couldn't 5820 * be here). The only legal way to reply without an op array 5821 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should 5822 * be in the reply for all other status values. 5823 * 5824 * For valid replies without an ops array, return ENOTSUP 5825 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies, 5826 * return EIO -- don't trust status. 5827 */ 5828 if (e.error == 0) 5829 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ? 5830 ENOTSUP : EIO; 5831 5832 kmem_free(argop, argoplist_size); 5833 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 5834 return (e.error); 5835 } 5836 5837 e.error = geterrno4(res.status); 5838 5839 /* 5840 * The PUTFH and SAVEFH may have failed. 5841 */ 5842 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) || 5843 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) { 5844 nfs4_purge_stale_fh(e.error, dvp, cr); 5845 goto exit; 5846 } 5847 5848 /* 5849 * Check if the file exists, if it does delay entering 5850 * into the dnlc until after we update the directory 5851 * attributes so we don't cause it to get purged immediately. 5852 */ 5853 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) { 5854 /* 5855 * The lookup failed, probably no entry 5856 */ 5857 if (e.error == ENOENT && nfs4_lookup_neg_cache) 5858 dnlc_update(dvp, nm, DNLC_NO_VNODE); 5859 goto exit; 5860 } 5861 5862 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) { 5863 /* 5864 * The file exists but we can't get its fh for 5865 * some unknown reason. Error out to be safe. 5866 */ 5867 goto exit; 5868 } 5869 5870 fhp = &res.array[3].nfs_resop4_u.opgetfh.object; 5871 if (fhp->nfs_fh4_len == 0) { 5872 /* 5873 * The file exists but a bogus fh 5874 * some unknown reason. Error out to be safe. 5875 */ 5876 e.error = EIO; 5877 goto exit; 5878 } 5879 sfhp = sfh4_get(fhp, mi); 5880 5881 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5882 sfh4_rele(&sfhp); 5883 goto exit; 5884 } 5885 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 5886 5887 /* 5888 * The RESTOREFH may have failed 5889 */ 5890 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) { 5891 sfh4_rele(&sfhp); 5892 e.error = EIO; 5893 goto exit; 5894 } 5895 5896 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) { 5897 /* 5898 * First make sure the NVERIFY failed as we expected, 5899 * if it didn't then be conservative and error out 5900 * as we can't trust the directory. 5901 */ 5902 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) { 5903 sfh4_rele(&sfhp); 5904 e.error = EIO; 5905 goto exit; 5906 } 5907 5908 /* 5909 * We know the NVERIFY "failed" so the directory has changed, 5910 * so we must: 5911 * purge the caches (access and indirectly dnlc if needed) 5912 */ 5913 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE); 5914 5915 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) { 5916 sfh4_rele(&sfhp); 5917 goto exit; 5918 } 5919 nfs4_attr_cache(dvp, 5920 &res.array[7].nfs_resop4_u.opgetattr.ga_res, 5921 t, cr, FALSE, NULL); 5922 5923 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) { 5924 nfs4_purge_stale_fh(e.error, dvp, cr); 5925 sfh4_rele(&sfhp); 5926 e.error = geterrno4(res.status); 5927 goto exit; 5928 } 5929 5930 /* 5931 * Now we know the directory is valid, 5932 * cache new directory access 5933 */ 5934 nfs4_access_cache(drp, 5935 args.array[8].nfs_argop4_u.opaccess.access, 5936 res.array[8].nfs_resop4_u.opaccess.access, cr); 5937 5938 /* 5939 * recheck VEXEC access 5940 */ 5941 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr); 5942 if (cacc != NFS4_ACCESS_ALLOWED) { 5943 /* 5944 * Directory permissions might have been revoked 5945 */ 5946 if (cacc == NFS4_ACCESS_DENIED) { 5947 sfh4_rele(&sfhp); 5948 e.error = EACCES; 5949 goto exit; 5950 } 5951 5952 /* 5953 * Somehow we must not have asked for enough 5954 * so try a singleton ACCESS should never happen 5955 */ 5956 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5957 if (e.error) { 5958 sfh4_rele(&sfhp); 5959 goto exit; 5960 } 5961 } 5962 5963 e.error = geterrno4(res.status); 5964 } else { 5965 hrtime_t now; 5966 hrtime_t delta = 0; 5967 5968 e.error = 0; 5969 5970 /* 5971 * Because the NVERIFY "succeeded" we know that the 5972 * directory attributes are still valid 5973 * so update r_time_attr_inval 5974 */ 5975 now = gethrtime(); 5976 mutex_enter(&drp->r_statelock); 5977 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) { 5978 delta = now - drp->r_time_attr_saved; 5979 if (delta < mi->mi_acdirmin) 5980 delta = mi->mi_acdirmin; 5981 else if (delta > mi->mi_acdirmax) 5982 delta = mi->mi_acdirmax; 5983 } 5984 drp->r_time_attr_inval = now + delta; 5985 mutex_exit(&drp->r_statelock); 5986 5987 /* 5988 * Even though we have a valid directory attr cache, 5989 * we may not have access. 5990 * This should almost always hit the cache. 5991 */ 5992 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL); 5993 if (e.error) { 5994 sfh4_rele(&sfhp); 5995 goto exit; 5996 } 5997 } 5998 5999 /* 6000 * Now we have successfully completed the lookup, if the 6001 * directory has changed we now have the valid attributes. 6002 * We also know we have directory access. 6003 * Create the new rnode and insert it in the dnlc. 6004 */ 6005 if (isdotdot) { 6006 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1); 6007 if (e.error) { 6008 sfh4_rele(&sfhp); 6009 goto exit; 6010 } 6011 /* 6012 * XXX if nfs4_make_dotdot uses an existing rnode 6013 * XXX it doesn't update the attributes. 6014 * XXX for now just save them again to save an OTW 6015 */ 6016 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL); 6017 } else { 6018 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr, 6019 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 6020 } 6021 sfh4_rele(&sfhp); 6022 6023 nrp = VTOR4(nvp); 6024 mutex_enter(&nrp->r_statev4_lock); 6025 if (!nrp->created_v4) { 6026 mutex_exit(&nrp->r_statev4_lock); 6027 dnlc_update(dvp, nm, nvp); 6028 } else 6029 mutex_exit(&nrp->r_statev4_lock); 6030 6031 *vpp = nvp; 6032 6033 exit: 6034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6035 kmem_free(argop, argoplist_size); 6036 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp); 6037 return (e.error); 6038 } 6039 6040 #ifdef DEBUG 6041 void 6042 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt) 6043 { 6044 uint_t i, len; 6045 zoneid_t zoneid = getzoneid(); 6046 char *s; 6047 6048 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where); 6049 for (i = 0; i < argcnt; i++) { 6050 nfs_argop4 *op = &argbase[i]; 6051 switch (op->argop) { 6052 case OP_CPUTFH: 6053 case OP_PUTFH: 6054 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i); 6055 break; 6056 case OP_PUTROOTFH: 6057 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i); 6058 break; 6059 case OP_CLOOKUP: 6060 s = op->nfs_argop4_u.opclookup.cname; 6061 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6062 break; 6063 case OP_LOOKUP: 6064 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname, 6065 &len, NULL); 6066 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s); 6067 kmem_free(s, len); 6068 break; 6069 case OP_LOOKUPP: 6070 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i); 6071 break; 6072 case OP_GETFH: 6073 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i); 6074 break; 6075 case OP_GETATTR: 6076 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i); 6077 break; 6078 case OP_OPENATTR: 6079 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i); 6080 break; 6081 default: 6082 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i, 6083 op->argop); 6084 break; 6085 } 6086 } 6087 } 6088 #endif 6089 6090 /* 6091 * nfs4lookup_setup - constructs a multi-lookup compound request. 6092 * 6093 * Given the path "nm1/nm2/.../nmn", the following compound requests 6094 * may be created: 6095 * 6096 * Note: Getfh is not be needed because filehandle attr is mandatory, but it 6097 * is faster, for now. 6098 * 6099 * l4_getattrs indicates the type of compound requested. 6100 * 6101 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo): 6102 * 6103 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} } 6104 * 6105 * total number of ops is n + 1. 6106 * 6107 * LKP4_LAST_NAMED_ATTR - multi-component path for a named 6108 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR 6109 * before the last component, and only get attributes 6110 * for the last component. Note that the second-to-last 6111 * pathname component is XATTR_RPATH, which does NOT go 6112 * over-the-wire as a lookup. 6113 * 6114 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2}; 6115 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr } 6116 * 6117 * and total number of ops is n + 5. 6118 * 6119 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named 6120 * attribute directory: create lookups plus an OPENATTR 6121 * replacing the last lookup. Note that the last pathname 6122 * component is XATTR_RPATH, which does NOT go over-the-wire 6123 * as a lookup. 6124 * 6125 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr; 6126 * Openattr; Getfh; Getattr } 6127 * 6128 * and total number of ops is n + 5. 6129 * 6130 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate 6131 * nodes too. 6132 * 6133 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr; 6134 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr } 6135 * 6136 * and total number of ops is 3*n + 1. 6137 * 6138 * All cases: returns the index in the arg array of the final LOOKUP op, or 6139 * -1 if no LOOKUPs were used. 6140 */ 6141 int 6142 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh) 6143 { 6144 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs; 6145 nfs_argop4 *argbase, *argop; 6146 int arglen, argcnt; 6147 int n = 1; /* number of components */ 6148 int nga = 1; /* number of Getattr's in request */ 6149 char c = '\0', *s, *p; 6150 int lookup_idx = -1; 6151 int argoplist_size; 6152 6153 /* set lookuparg response result to 0 */ 6154 lookupargp->resp->status = NFS4_OK; 6155 6156 /* skip leading "/" or "." e.g. ".//./" if there is */ 6157 for (; ; nm++) { 6158 if (*nm != '/' && *nm != '.') 6159 break; 6160 6161 /* ".." is counted as 1 component */ 6162 if (*nm == '.' && *(nm + 1) != '/') 6163 break; 6164 } 6165 6166 /* 6167 * Find n = number of components - nm must be null terminated 6168 * Skip "." components. 6169 */ 6170 if (*nm != '\0') 6171 for (n = 1, s = nm; *s != '\0'; s++) { 6172 if ((*s == '/') && (*(s + 1) != '/') && 6173 (*(s + 1) != '\0') && 6174 !(*(s + 1) == '.' && (*(s + 2) == '/' || 6175 *(s + 2) == '\0'))) 6176 n++; 6177 } 6178 else 6179 n = 0; 6180 6181 /* 6182 * nga is number of components that need Getfh+Getattr 6183 */ 6184 switch (l4_getattrs) { 6185 case LKP4_NO_ATTRIBUTES: 6186 nga = 0; 6187 break; 6188 case LKP4_ALL_ATTRIBUTES: 6189 nga = n; 6190 /* 6191 * Always have at least 1 getfh, getattr pair 6192 */ 6193 if (nga == 0) 6194 nga++; 6195 break; 6196 case LKP4_LAST_ATTRDIR: 6197 case LKP4_LAST_NAMED_ATTR: 6198 nga = n+1; 6199 break; 6200 } 6201 6202 /* 6203 * If change to use the filehandle attr instead of getfh 6204 * the following line can be deleted. 6205 */ 6206 nga *= 2; 6207 6208 /* 6209 * calculate number of ops in request as 6210 * header + trailer + lookups + getattrs 6211 */ 6212 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga; 6213 6214 argoplist_size = arglen * sizeof (nfs_argop4); 6215 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP); 6216 lookupargp->argsp->array = argop; 6217 6218 argcnt = lookupargp->header_len; 6219 argop += argcnt; 6220 6221 /* 6222 * loop and create a lookup op and possibly getattr/getfh for 6223 * each component. Skip "." components. 6224 */ 6225 for (s = nm; *s != '\0'; s = p) { 6226 /* 6227 * Set up a pathname struct for each component if needed 6228 */ 6229 while (*s == '/') 6230 s++; 6231 if (*s == '\0') 6232 break; 6233 6234 for (p = s; (*p != '/') && (*p != '\0'); p++) 6235 ; 6236 c = *p; 6237 *p = '\0'; 6238 6239 if (s[0] == '.' && s[1] == '\0') { 6240 *p = c; 6241 continue; 6242 } 6243 if (l4_getattrs == LKP4_LAST_ATTRDIR && 6244 strcmp(s, XATTR_RPATH) == 0) { 6245 /* getfh XXX may not be needed in future */ 6246 argop->argop = OP_GETFH; 6247 argop++; 6248 argcnt++; 6249 6250 /* getattr */ 6251 argop->argop = OP_GETATTR; 6252 argop->nfs_argop4_u.opgetattr.attr_request = 6253 lookupargp->ga_bits; 6254 argop->nfs_argop4_u.opgetattr.mi = 6255 lookupargp->mi; 6256 argop++; 6257 argcnt++; 6258 6259 /* openattr */ 6260 argop->argop = OP_OPENATTR; 6261 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR && 6262 strcmp(s, XATTR_RPATH) == 0) { 6263 /* openattr */ 6264 argop->argop = OP_OPENATTR; 6265 argop++; 6266 argcnt++; 6267 6268 /* getfh XXX may not be needed in future */ 6269 argop->argop = OP_GETFH; 6270 argop++; 6271 argcnt++; 6272 6273 /* getattr */ 6274 argop->argop = OP_GETATTR; 6275 argop->nfs_argop4_u.opgetattr.attr_request = 6276 lookupargp->ga_bits; 6277 argop->nfs_argop4_u.opgetattr.mi = 6278 lookupargp->mi; 6279 argop++; 6280 argcnt++; 6281 *p = c; 6282 continue; 6283 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') { 6284 /* lookupp */ 6285 argop->argop = OP_LOOKUPP; 6286 } else { 6287 /* lookup */ 6288 argop->argop = OP_LOOKUP; 6289 (void) str_to_utf8(s, 6290 &argop->nfs_argop4_u.oplookup.objname); 6291 } 6292 lookup_idx = argcnt; 6293 argop++; 6294 argcnt++; 6295 6296 *p = c; 6297 6298 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) { 6299 /* getfh XXX may not be needed in future */ 6300 argop->argop = OP_GETFH; 6301 argop++; 6302 argcnt++; 6303 6304 /* getattr */ 6305 argop->argop = OP_GETATTR; 6306 argop->nfs_argop4_u.opgetattr.attr_request = 6307 lookupargp->ga_bits; 6308 argop->nfs_argop4_u.opgetattr.mi = 6309 lookupargp->mi; 6310 argop++; 6311 argcnt++; 6312 } 6313 } 6314 6315 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) && 6316 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) { 6317 if (needgetfh) { 6318 /* stick in a post-lookup getfh */ 6319 argop->argop = OP_GETFH; 6320 argcnt++; 6321 argop++; 6322 } 6323 /* post-lookup getattr */ 6324 argop->argop = OP_GETATTR; 6325 argop->nfs_argop4_u.opgetattr.attr_request = 6326 lookupargp->ga_bits; 6327 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi; 6328 argcnt++; 6329 } 6330 argcnt += lookupargp->trailer_len; /* actual op count */ 6331 lookupargp->argsp->array_len = argcnt; 6332 lookupargp->arglen = arglen; 6333 6334 #ifdef DEBUG 6335 if (nfs4_client_lookup_debug) 6336 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt); 6337 #endif 6338 6339 return (lookup_idx); 6340 } 6341 6342 static int 6343 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr) 6344 { 6345 COMPOUND4args_clnt args; 6346 COMPOUND4res_clnt res; 6347 GETFH4res *gf_res = NULL; 6348 nfs_argop4 argop[4]; 6349 nfs_resop4 *resop = NULL; 6350 nfs4_sharedfh_t *sfhp; 6351 hrtime_t t; 6352 nfs4_error_t e; 6353 6354 rnode4_t *drp; 6355 int doqueue = 1; 6356 vnode_t *vp; 6357 int needrecov = 0; 6358 nfs4_recov_state_t recov_state; 6359 6360 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 6361 6362 *avp = NULL; 6363 recov_state.rs_flags = 0; 6364 recov_state.rs_num_retry_despite_err = 0; 6365 6366 recov_retry: 6367 /* COMPOUND: putfh, openattr, getfh, getattr */ 6368 args.array_len = 4; 6369 args.array = argop; 6370 args.ctag = TAG_OPENATTR; 6371 6372 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 6373 if (e.error) 6374 return (e.error); 6375 6376 drp = VTOR4(dvp); 6377 6378 /* putfh */ 6379 argop[0].argop = OP_CPUTFH; 6380 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6381 6382 /* openattr */ 6383 argop[1].argop = OP_OPENATTR; 6384 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE); 6385 6386 /* getfh */ 6387 argop[2].argop = OP_GETFH; 6388 6389 /* getattr */ 6390 argop[3].argop = OP_GETATTR; 6391 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6392 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp); 6393 6394 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 6395 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first", 6396 rnode4info(drp))); 6397 6398 t = gethrtime(); 6399 6400 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e); 6401 6402 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp); 6403 if (needrecov) { 6404 bool_t abort; 6405 6406 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 6407 "nfs4openattr: initiating recovery\n")); 6408 6409 abort = nfs4_start_recovery(&e, 6410 VTOMI4(dvp), dvp, NULL, NULL, NULL, 6411 OP_OPENATTR, NULL, NULL, NULL); 6412 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6413 if (!e.error) { 6414 e.error = geterrno4(res.status); 6415 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6416 } 6417 if (abort == FALSE) 6418 goto recov_retry; 6419 return (e.error); 6420 } 6421 6422 if (e.error) { 6423 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6424 return (e.error); 6425 } 6426 6427 if (res.status) { 6428 /* 6429 * If OTW errro is NOTSUPP, then it should be 6430 * translated to EINVAL. All Solaris file system 6431 * implementations return EINVAL to the syscall layer 6432 * when the attrdir cannot be created due to an 6433 * implementation restriction or noxattr mount option. 6434 */ 6435 if (res.status == NFS4ERR_NOTSUPP) { 6436 mutex_enter(&drp->r_statelock); 6437 if (drp->r_xattr_dir) 6438 VN_RELE(drp->r_xattr_dir); 6439 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP); 6440 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP; 6441 mutex_exit(&drp->r_statelock); 6442 6443 e.error = EINVAL; 6444 } else { 6445 e.error = geterrno4(res.status); 6446 } 6447 6448 if (e.error) { 6449 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6450 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 6451 needrecov); 6452 return (e.error); 6453 } 6454 } 6455 6456 resop = &res.array[0]; /* putfh res */ 6457 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK); 6458 6459 resop = &res.array[1]; /* openattr res */ 6460 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK); 6461 6462 resop = &res.array[2]; /* getfh res */ 6463 gf_res = &resop->nfs_resop4_u.opgetfh; 6464 if (gf_res->object.nfs_fh4_len == 0) { 6465 *avp = NULL; 6466 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6467 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6468 return (ENOENT); 6469 } 6470 6471 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp)); 6472 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res, 6473 dvp->v_vfsp, t, cr, dvp, 6474 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp)); 6475 sfh4_rele(&sfhp); 6476 6477 if (e.error) 6478 PURGE_ATTRCACHE4(vp); 6479 6480 mutex_enter(&vp->v_lock); 6481 vp->v_flag |= V_XATTRDIR; 6482 mutex_exit(&vp->v_lock); 6483 6484 *avp = vp; 6485 6486 mutex_enter(&drp->r_statelock); 6487 if (drp->r_xattr_dir) 6488 VN_RELE(drp->r_xattr_dir); 6489 VN_HOLD(vp); 6490 drp->r_xattr_dir = vp; 6491 6492 /* 6493 * Invalidate pathconf4 cache because r_xattr_dir is no longer 6494 * NULL. xattrs could be created at any time, and we have no 6495 * way to update pc4_xattr_exists in the base object if/when 6496 * it happens. 6497 */ 6498 drp->r_pathconf.pc4_xattr_valid = 0; 6499 6500 mutex_exit(&drp->r_statelock); 6501 6502 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 6503 6504 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 6505 6506 return (0); 6507 } 6508 6509 /* ARGSUSED */ 6510 static int 6511 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 6512 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, 6513 vsecattr_t *vsecp) 6514 { 6515 int error; 6516 vnode_t *vp = NULL; 6517 rnode4_t *rp; 6518 struct vattr vattr; 6519 rnode4_t *drp; 6520 vnode_t *tempvp; 6521 enum createmode4 createmode; 6522 bool_t must_trunc = FALSE; 6523 int truncating = 0; 6524 6525 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 6526 return (EPERM); 6527 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) { 6528 return (EINVAL); 6529 } 6530 6531 /* . and .. have special meaning in the protocol, reject them. */ 6532 6533 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0'))) 6534 return (EISDIR); 6535 6536 drp = VTOR4(dvp); 6537 6538 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 6539 return (EINTR); 6540 6541 top: 6542 /* 6543 * We make a copy of the attributes because the caller does not 6544 * expect us to change what va points to. 6545 */ 6546 vattr = *va; 6547 6548 /* 6549 * If the pathname is "", then dvp is the root vnode of 6550 * a remote file mounted over a local directory. 6551 * All that needs to be done is access 6552 * checking and truncation. Note that we avoid doing 6553 * open w/ create because the parent directory might 6554 * be in pseudo-fs and the open would fail. 6555 */ 6556 if (*nm == '\0') { 6557 error = 0; 6558 VN_HOLD(dvp); 6559 vp = dvp; 6560 must_trunc = TRUE; 6561 } else { 6562 /* 6563 * We need to go over the wire, just to be sure whether the 6564 * file exists or not. Using the DNLC can be dangerous in 6565 * this case when making a decision regarding existence. 6566 */ 6567 error = nfs4lookup(dvp, nm, &vp, cr, 1); 6568 } 6569 6570 if (exclusive) 6571 createmode = EXCLUSIVE4; 6572 else 6573 createmode = GUARDED4; 6574 6575 /* 6576 * error would be set if the file does not exist on the 6577 * server, so lets go create it. 6578 */ 6579 if (error) { 6580 goto create_otw; 6581 } 6582 6583 /* 6584 * File does exist on the server 6585 */ 6586 if (exclusive == EXCL) 6587 error = EEXIST; 6588 else if (vp->v_type == VDIR && (mode & VWRITE)) 6589 error = EISDIR; 6590 else { 6591 /* 6592 * If vnode is a device, create special vnode. 6593 */ 6594 if (ISVDEV(vp->v_type)) { 6595 tempvp = vp; 6596 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 6597 VN_RELE(tempvp); 6598 } 6599 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 6600 if ((vattr.va_mask & AT_SIZE) && 6601 vp->v_type == VREG) { 6602 rp = VTOR4(vp); 6603 /* 6604 * Check here for large file handled 6605 * by LF-unaware process (as 6606 * ufs_create() does) 6607 */ 6608 if (!(flags & FOFFMAX)) { 6609 mutex_enter(&rp->r_statelock); 6610 if (rp->r_size > MAXOFF32_T) 6611 error = EOVERFLOW; 6612 mutex_exit(&rp->r_statelock); 6613 } 6614 6615 /* if error is set then we need to return */ 6616 if (error) { 6617 nfs_rw_exit(&drp->r_rwlock); 6618 VN_RELE(vp); 6619 return (error); 6620 } 6621 6622 if (must_trunc) { 6623 vattr.va_mask = AT_SIZE; 6624 error = nfs4setattr(vp, &vattr, 0, cr, 6625 NULL); 6626 } else { 6627 /* 6628 * we know we have a regular file that already 6629 * exists and we may end up truncating the file 6630 * as a result of the open_otw, so flush out 6631 * any dirty pages for this file first. 6632 */ 6633 if (nfs4_has_pages(vp) && 6634 ((rp->r_flags & R4DIRTY) || 6635 rp->r_count > 0 || 6636 rp->r_mapcnt > 0)) { 6637 error = nfs4_putpage(vp, 6638 (offset_t)0, 0, 0, cr, ct); 6639 if (error && (error == ENOSPC || 6640 error == EDQUOT)) { 6641 mutex_enter( 6642 &rp->r_statelock); 6643 if (!rp->r_error) 6644 rp->r_error = 6645 error; 6646 mutex_exit( 6647 &rp->r_statelock); 6648 } 6649 } 6650 vattr.va_mask = (AT_SIZE | 6651 AT_TYPE | AT_MODE); 6652 vattr.va_type = VREG; 6653 createmode = UNCHECKED4; 6654 truncating = 1; 6655 goto create_otw; 6656 } 6657 } 6658 } 6659 } 6660 nfs_rw_exit(&drp->r_rwlock); 6661 if (error) { 6662 VN_RELE(vp); 6663 } else { 6664 vnode_t *tvp; 6665 rnode4_t *trp; 6666 tvp = vp; 6667 if (vp->v_type == VREG) { 6668 trp = VTOR4(vp); 6669 if (IS_SHADOW(vp, trp)) 6670 tvp = RTOV4(trp); 6671 } 6672 6673 if (must_trunc) { 6674 /* 6675 * existing file got truncated, notify. 6676 */ 6677 vnevent_create(tvp, ct); 6678 } 6679 6680 *vpp = vp; 6681 } 6682 return (error); 6683 6684 create_otw: 6685 dnlc_remove(dvp, nm); 6686 6687 ASSERT(vattr.va_mask & AT_TYPE); 6688 6689 /* 6690 * If not a regular file let nfs4mknod() handle it. 6691 */ 6692 if (vattr.va_type != VREG) { 6693 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr); 6694 nfs_rw_exit(&drp->r_rwlock); 6695 return (error); 6696 } 6697 6698 /* 6699 * It _is_ a regular file. 6700 */ 6701 ASSERT(vattr.va_mask & AT_MODE); 6702 if (MANDMODE(vattr.va_mode)) { 6703 nfs_rw_exit(&drp->r_rwlock); 6704 return (EACCES); 6705 } 6706 6707 /* 6708 * If this happens to be a mknod of a regular file, then flags will 6709 * have neither FREAD or FWRITE. However, we must set at least one 6710 * for the call to nfs4open_otw. If it's open(O_CREAT) driving 6711 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been 6712 * set (based on openmode specified by app). 6713 */ 6714 if ((flags & (FREAD|FWRITE)) == 0) 6715 flags |= (FREAD|FWRITE); 6716 6717 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0); 6718 6719 if (vp != NULL) { 6720 /* if create was successful, throw away the file's pages */ 6721 if (!error && (vattr.va_mask & AT_SIZE)) 6722 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK), 6723 cr); 6724 /* release the lookup hold */ 6725 VN_RELE(vp); 6726 vp = NULL; 6727 } 6728 6729 /* 6730 * validate that we opened a regular file. This handles a misbehaving 6731 * server that returns an incorrect FH. 6732 */ 6733 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) { 6734 error = EISDIR; 6735 VN_RELE(*vpp); 6736 } 6737 6738 /* 6739 * If this is not an exclusive create, then the CREATE 6740 * request will be made with the GUARDED mode set. This 6741 * means that the server will return EEXIST if the file 6742 * exists. The file could exist because of a retransmitted 6743 * request. In this case, we recover by starting over and 6744 * checking to see whether the file exists. This second 6745 * time through it should and a CREATE request will not be 6746 * sent. 6747 * 6748 * This handles the problem of a dangling CREATE request 6749 * which contains attributes which indicate that the file 6750 * should be truncated. This retransmitted request could 6751 * possibly truncate valid data in the file if not caught 6752 * by the duplicate request mechanism on the server or if 6753 * not caught by other means. The scenario is: 6754 * 6755 * Client transmits CREATE request with size = 0 6756 * Client times out, retransmits request. 6757 * Response to the first request arrives from the server 6758 * and the client proceeds on. 6759 * Client writes data to the file. 6760 * The server now processes retransmitted CREATE request 6761 * and truncates file. 6762 * 6763 * The use of the GUARDED CREATE request prevents this from 6764 * happening because the retransmitted CREATE would fail 6765 * with EEXIST and would not truncate the file. 6766 */ 6767 if (error == EEXIST && exclusive == NONEXCL) { 6768 #ifdef DEBUG 6769 nfs4_create_misses++; 6770 #endif 6771 goto top; 6772 } 6773 nfs_rw_exit(&drp->r_rwlock); 6774 if (truncating && !error && *vpp) { 6775 vnode_t *tvp; 6776 rnode4_t *trp; 6777 /* 6778 * existing file got truncated, notify. 6779 */ 6780 tvp = *vpp; 6781 trp = VTOR4(tvp); 6782 if (IS_SHADOW(tvp, trp)) 6783 tvp = RTOV4(trp); 6784 vnevent_create(tvp, ct); 6785 } 6786 return (error); 6787 } 6788 6789 /* 6790 * Create compound (for mkdir, mknod, symlink): 6791 * { Putfh <dfh>; Create; Getfh; Getattr } 6792 * It's okay if setattr failed to set gid - this is not considered 6793 * an error, but purge attrs in that case. 6794 */ 6795 static int 6796 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va, 6797 vnode_t **vpp, cred_t *cr, nfs_ftype4 type) 6798 { 6799 int need_end_op = FALSE; 6800 COMPOUND4args_clnt args; 6801 COMPOUND4res_clnt res, *resp = NULL; 6802 nfs_argop4 *argop; 6803 nfs_resop4 *resop; 6804 int doqueue; 6805 mntinfo4_t *mi; 6806 rnode4_t *drp = VTOR4(dvp); 6807 change_info4 *cinfo; 6808 GETFH4res *gf_res; 6809 struct vattr vattr; 6810 vnode_t *vp; 6811 fattr4 *crattr; 6812 bool_t needrecov = FALSE; 6813 nfs4_recov_state_t recov_state; 6814 nfs4_sharedfh_t *sfhp = NULL; 6815 hrtime_t t; 6816 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 6817 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr; 6818 dirattr_info_t dinfo, *dinfop; 6819 servinfo4_t *svp; 6820 bitmap4 supp_attrs; 6821 6822 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK || 6823 type == NF4CHR || type == NF4SOCK || type == NF4FIFO); 6824 6825 mi = VTOMI4(dvp); 6826 6827 /* 6828 * Make sure we properly deal with setting the right gid 6829 * on a new directory to reflect the parent's setgid bit 6830 */ 6831 setgid_flag = 0; 6832 if (type == NF4DIR) { 6833 struct vattr dva; 6834 6835 va->va_mode &= ~VSGID; 6836 dva.va_mask = AT_MODE | AT_GID; 6837 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) { 6838 6839 /* 6840 * If the parent's directory has the setgid bit set 6841 * _and_ the client was able to get a valid mapping 6842 * for the parent dir's owner_group, we want to 6843 * append NVERIFY(owner_group == dva.va_gid) and 6844 * SETTATTR to the CREATE compound. 6845 */ 6846 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) { 6847 setgid_flag = 1; 6848 va->va_mode |= VSGID; 6849 if (dva.va_gid != GID_NOBODY) { 6850 va->va_mask |= AT_GID; 6851 va->va_gid = dva.va_gid; 6852 } 6853 } 6854 } 6855 } 6856 6857 /* 6858 * Create ops: 6859 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new) 6860 * 5:restorefh(dir) 6:getattr(dir) 6861 * 6862 * if (setgid) 6863 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new) 6864 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new) 6865 * 8:nverify 9:setattr 6866 */ 6867 if (setgid_flag) { 6868 numops = 10; 6869 idx_create = 1; 6870 idx_fattr = 3; 6871 } else { 6872 numops = 7; 6873 idx_create = 2; 6874 idx_fattr = 4; 6875 } 6876 6877 ASSERT(nfs_zone() == mi->mi_zone); 6878 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) { 6879 return (EINTR); 6880 } 6881 recov_state.rs_flags = 0; 6882 recov_state.rs_num_retry_despite_err = 0; 6883 6884 argoplist_size = numops * sizeof (nfs_argop4); 6885 argop = kmem_alloc(argoplist_size, KM_SLEEP); 6886 6887 recov_retry: 6888 if (type == NF4LNK) 6889 args.ctag = TAG_SYMLINK; 6890 else if (type == NF4DIR) 6891 args.ctag = TAG_MKDIR; 6892 else 6893 args.ctag = TAG_MKNOD; 6894 6895 args.array_len = numops; 6896 args.array = argop; 6897 6898 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) { 6899 nfs_rw_exit(&drp->r_rwlock); 6900 kmem_free(argop, argoplist_size); 6901 return (e.error); 6902 } 6903 need_end_op = TRUE; 6904 6905 6906 /* 0: putfh directory */ 6907 argop[0].argop = OP_CPUTFH; 6908 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6909 6910 /* 1/2: Create object */ 6911 argop[idx_create].argop = OP_CCREATE; 6912 argop[idx_create].nfs_argop4_u.opccreate.cname = nm; 6913 argop[idx_create].nfs_argop4_u.opccreate.type = type; 6914 if (type == NF4LNK) { 6915 /* 6916 * symlink, treat name as data 6917 */ 6918 ASSERT(data != NULL); 6919 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata = 6920 (char *)data; 6921 } 6922 if (type == NF4BLK || type == NF4CHR) { 6923 ASSERT(data != NULL); 6924 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata = 6925 *((specdata4 *)data); 6926 } 6927 6928 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs; 6929 6930 svp = drp->r_server; 6931 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 6932 supp_attrs = svp->sv_supp_attrs; 6933 nfs_rw_exit(&svp->sv_lock); 6934 6935 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) { 6936 nfs_rw_exit(&drp->r_rwlock); 6937 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 6938 e.error = EINVAL; 6939 kmem_free(argop, argoplist_size); 6940 return (e.error); 6941 } 6942 6943 /* 2/3: getfh fh of created object */ 6944 ASSERT(idx_create + 1 == idx_fattr - 1); 6945 argop[idx_create + 1].argop = OP_GETFH; 6946 6947 /* 3/4: getattr of new object */ 6948 argop[idx_fattr].argop = OP_GETATTR; 6949 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6950 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi; 6951 6952 if (setgid_flag) { 6953 vattr_t _v; 6954 6955 argop[4].argop = OP_SAVEFH; 6956 6957 argop[5].argop = OP_CPUTFH; 6958 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 6959 6960 argop[6].argop = OP_GETATTR; 6961 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 6962 argop[6].nfs_argop4_u.opgetattr.mi = mi; 6963 6964 argop[7].argop = OP_RESTOREFH; 6965 6966 /* 6967 * nverify 6968 * 6969 * XXX - Revisit the last argument to nfs4_end_op() 6970 * once 5020486 is fixed. 6971 */ 6972 _v.va_mask = AT_GID; 6973 _v.va_gid = va->va_gid; 6974 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY, 6975 supp_attrs)) { 6976 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6977 nfs_rw_exit(&drp->r_rwlock); 6978 nfs4_fattr4_free(crattr); 6979 kmem_free(argop, argoplist_size); 6980 return (e.error); 6981 } 6982 6983 /* 6984 * setattr 6985 * 6986 * We _know_ we're not messing with AT_SIZE or AT_XTIME, 6987 * so no need for stateid or flags. Also we specify NULL 6988 * rp since we're only interested in setting owner_group 6989 * attributes. 6990 */ 6991 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs, 6992 &e.error, 0); 6993 6994 if (e.error) { 6995 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE); 6996 nfs_rw_exit(&drp->r_rwlock); 6997 nfs4_fattr4_free(crattr); 6998 nfs4args_verify_free(&argop[8]); 6999 kmem_free(argop, argoplist_size); 7000 return (e.error); 7001 } 7002 } else { 7003 argop[1].argop = OP_SAVEFH; 7004 7005 argop[5].argop = OP_RESTOREFH; 7006 7007 argop[6].argop = OP_GETATTR; 7008 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7009 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7010 } 7011 7012 dnlc_remove(dvp, nm); 7013 7014 doqueue = 1; 7015 t = gethrtime(); 7016 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7017 7018 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7019 if (e.error) { 7020 PURGE_ATTRCACHE4(dvp); 7021 if (!needrecov) 7022 goto out; 7023 } 7024 7025 if (needrecov) { 7026 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL, 7027 OP_CREATE, NULL, NULL, NULL) == FALSE) { 7028 nfs4_end_op(mi, dvp, NULL, &recov_state, 7029 needrecov); 7030 need_end_op = FALSE; 7031 nfs4_fattr4_free(crattr); 7032 if (setgid_flag) { 7033 nfs4args_verify_free(&argop[8]); 7034 nfs4args_setattr_free(&argop[9]); 7035 } 7036 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 7037 goto recov_retry; 7038 } 7039 } 7040 7041 resp = &res; 7042 7043 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) { 7044 7045 if (res.status == NFS4ERR_BADOWNER) 7046 nfs4_log_badowner(mi, OP_CREATE); 7047 7048 e.error = geterrno4(res.status); 7049 7050 /* 7051 * This check is left over from when create was implemented 7052 * using a setattr op (instead of createattrs). If the 7053 * putfh/create/getfh failed, the error was returned. If 7054 * setattr/getattr failed, we keep going. 7055 * 7056 * It might be better to get rid of the GETFH also, and just 7057 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory. 7058 * Then if any of the operations failed, we could return the 7059 * error now, and remove much of the error code below. 7060 */ 7061 if (res.array_len <= idx_fattr) { 7062 /* 7063 * Either Putfh, Create or Getfh failed. 7064 */ 7065 PURGE_ATTRCACHE4(dvp); 7066 /* 7067 * nfs4_purge_stale_fh() may generate otw calls through 7068 * nfs4_invalidate_pages. Hence the need to call 7069 * nfs4_end_op() here to avoid nfs4_start_op() deadlock. 7070 */ 7071 nfs4_end_op(mi, dvp, NULL, &recov_state, 7072 needrecov); 7073 need_end_op = FALSE; 7074 nfs4_purge_stale_fh(e.error, dvp, cr); 7075 goto out; 7076 } 7077 } 7078 7079 resop = &res.array[idx_create]; /* create res */ 7080 cinfo = &resop->nfs_resop4_u.opcreate.cinfo; 7081 7082 resop = &res.array[idx_create + 1]; /* getfh res */ 7083 gf_res = &resop->nfs_resop4_u.opgetfh; 7084 7085 sfhp = sfh4_get(&gf_res->object, mi); 7086 if (e.error) { 7087 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp, 7088 fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7089 if (vp->v_type == VNON) { 7090 vattr.va_mask = AT_TYPE; 7091 /* 7092 * Need to call nfs4_end_op before nfs4getattr to avoid 7093 * potential nfs4_start_op deadlock. See RFE 4777612. 7094 */ 7095 nfs4_end_op(mi, dvp, NULL, &recov_state, 7096 needrecov); 7097 need_end_op = FALSE; 7098 e.error = nfs4getattr(vp, &vattr, cr); 7099 if (e.error) { 7100 VN_RELE(vp); 7101 *vpp = NULL; 7102 goto out; 7103 } 7104 vp->v_type = vattr.va_type; 7105 } 7106 e.error = 0; 7107 } else { 7108 *vpp = vp = makenfs4node(sfhp, 7109 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res, 7110 dvp->v_vfsp, t, cr, 7111 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp)); 7112 } 7113 7114 /* 7115 * If compound succeeded, then update dir attrs 7116 */ 7117 if (res.status == NFS4_OK) { 7118 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res; 7119 dinfo.di_cred = cr; 7120 dinfo.di_time_call = t; 7121 dinfop = &dinfo; 7122 } else 7123 dinfop = NULL; 7124 7125 /* Update directory cache attribute, readdir and dnlc caches */ 7126 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop); 7127 7128 out: 7129 if (sfhp != NULL) 7130 sfh4_rele(&sfhp); 7131 nfs_rw_exit(&drp->r_rwlock); 7132 nfs4_fattr4_free(crattr); 7133 if (setgid_flag) { 7134 nfs4args_verify_free(&argop[8]); 7135 nfs4args_setattr_free(&argop[9]); 7136 } 7137 if (resp) 7138 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7139 if (need_end_op) 7140 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov); 7141 7142 kmem_free(argop, argoplist_size); 7143 return (e.error); 7144 } 7145 7146 /* ARGSUSED */ 7147 static int 7148 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 7149 int mode, vnode_t **vpp, cred_t *cr) 7150 { 7151 int error; 7152 vnode_t *vp; 7153 nfs_ftype4 type; 7154 specdata4 spec, *specp = NULL; 7155 7156 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 7157 7158 switch (va->va_type) { 7159 case VCHR: 7160 case VBLK: 7161 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK; 7162 spec.specdata1 = getmajor(va->va_rdev); 7163 spec.specdata2 = getminor(va->va_rdev); 7164 specp = &spec; 7165 break; 7166 7167 case VFIFO: 7168 type = NF4FIFO; 7169 break; 7170 case VSOCK: 7171 type = NF4SOCK; 7172 break; 7173 7174 default: 7175 return (EINVAL); 7176 } 7177 7178 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type); 7179 if (error) { 7180 return (error); 7181 } 7182 7183 /* 7184 * This might not be needed any more; special case to deal 7185 * with problematic v2/v3 servers. Since create was unable 7186 * to set group correctly, not sure what hope setattr has. 7187 */ 7188 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) { 7189 va->va_mask = AT_GID; 7190 (void) nfs4setattr(vp, va, 0, cr, NULL); 7191 } 7192 7193 /* 7194 * If vnode is a device create special vnode 7195 */ 7196 if (ISVDEV(vp->v_type)) { 7197 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 7198 VN_RELE(vp); 7199 } else { 7200 *vpp = vp; 7201 } 7202 return (error); 7203 } 7204 7205 /* 7206 * Remove requires that the current fh be the target directory. 7207 * After the operation, the current fh is unchanged. 7208 * The compound op structure is: 7209 * PUTFH(targetdir), REMOVE 7210 * 7211 * Weirdness: if the vnode to be removed is open 7212 * we rename it instead of removing it and nfs_inactive 7213 * will remove the new name. 7214 */ 7215 /* ARGSUSED */ 7216 static int 7217 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 7218 { 7219 COMPOUND4args_clnt args; 7220 COMPOUND4res_clnt res, *resp = NULL; 7221 REMOVE4res *rm_res; 7222 nfs_argop4 argop[3]; 7223 nfs_resop4 *resop; 7224 vnode_t *vp; 7225 char *tmpname; 7226 int doqueue; 7227 mntinfo4_t *mi; 7228 rnode4_t *rp; 7229 rnode4_t *drp; 7230 int needrecov = 0; 7231 nfs4_recov_state_t recov_state; 7232 int isopen; 7233 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7234 dirattr_info_t dinfo; 7235 7236 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 7237 return (EPERM); 7238 drp = VTOR4(dvp); 7239 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 7240 return (EINTR); 7241 7242 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 7243 if (e.error) { 7244 nfs_rw_exit(&drp->r_rwlock); 7245 return (e.error); 7246 } 7247 7248 if (vp->v_type == VDIR) { 7249 VN_RELE(vp); 7250 nfs_rw_exit(&drp->r_rwlock); 7251 return (EISDIR); 7252 } 7253 7254 /* 7255 * First just remove the entry from the name cache, as it 7256 * is most likely the only entry for this vp. 7257 */ 7258 dnlc_remove(dvp, nm); 7259 7260 rp = VTOR4(vp); 7261 7262 /* 7263 * For regular file types, check to see if the file is open by looking 7264 * at the open streams. 7265 * For all other types, check the reference count on the vnode. Since 7266 * they are not opened OTW they never have an open stream. 7267 * 7268 * If the file is open, rename it to .nfsXXXX. 7269 */ 7270 if (vp->v_type != VREG) { 7271 /* 7272 * If the file has a v_count > 1 then there may be more than one 7273 * entry in the name cache due multiple links or an open file, 7274 * but we don't have the real reference count so flush all 7275 * possible entries. 7276 */ 7277 if (vp->v_count > 1) 7278 dnlc_purge_vp(vp); 7279 7280 /* 7281 * Now we have the real reference count. 7282 */ 7283 isopen = vp->v_count > 1; 7284 } else { 7285 mutex_enter(&rp->r_os_lock); 7286 isopen = list_head(&rp->r_open_streams) != NULL; 7287 mutex_exit(&rp->r_os_lock); 7288 } 7289 7290 mutex_enter(&rp->r_statelock); 7291 if (isopen && 7292 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 7293 mutex_exit(&rp->r_statelock); 7294 tmpname = newname(); 7295 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct); 7296 if (e.error) 7297 kmem_free(tmpname, MAXNAMELEN); 7298 else { 7299 mutex_enter(&rp->r_statelock); 7300 if (rp->r_unldvp == NULL) { 7301 VN_HOLD(dvp); 7302 rp->r_unldvp = dvp; 7303 if (rp->r_unlcred != NULL) 7304 crfree(rp->r_unlcred); 7305 crhold(cr); 7306 rp->r_unlcred = cr; 7307 rp->r_unlname = tmpname; 7308 } else { 7309 kmem_free(rp->r_unlname, MAXNAMELEN); 7310 rp->r_unlname = tmpname; 7311 } 7312 mutex_exit(&rp->r_statelock); 7313 } 7314 VN_RELE(vp); 7315 nfs_rw_exit(&drp->r_rwlock); 7316 return (e.error); 7317 } 7318 /* 7319 * Actually remove the file/dir 7320 */ 7321 mutex_exit(&rp->r_statelock); 7322 7323 /* 7324 * We need to flush any dirty pages which happen to 7325 * be hanging around before removing the file. 7326 * This shouldn't happen very often since in NFSv4 7327 * we should be close to open consistent. 7328 */ 7329 if (nfs4_has_pages(vp) && 7330 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) { 7331 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct); 7332 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) { 7333 mutex_enter(&rp->r_statelock); 7334 if (!rp->r_error) 7335 rp->r_error = e.error; 7336 mutex_exit(&rp->r_statelock); 7337 } 7338 } 7339 7340 mi = VTOMI4(dvp); 7341 7342 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN); 7343 recov_state.rs_flags = 0; 7344 recov_state.rs_num_retry_despite_err = 0; 7345 7346 recov_retry: 7347 /* 7348 * Remove ops: putfh dir; remove 7349 */ 7350 args.ctag = TAG_REMOVE; 7351 args.array_len = 3; 7352 args.array = argop; 7353 7354 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 7355 if (e.error) { 7356 nfs_rw_exit(&drp->r_rwlock); 7357 VN_RELE(vp); 7358 return (e.error); 7359 } 7360 7361 /* putfh directory */ 7362 argop[0].argop = OP_CPUTFH; 7363 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 7364 7365 /* remove */ 7366 argop[1].argop = OP_CREMOVE; 7367 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 7368 7369 /* getattr dir */ 7370 argop[2].argop = OP_GETATTR; 7371 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7372 argop[2].nfs_argop4_u.opgetattr.mi = mi; 7373 7374 doqueue = 1; 7375 dinfo.di_time_call = gethrtime(); 7376 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 7377 7378 PURGE_ATTRCACHE4(vp); 7379 7380 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 7381 if (e.error) 7382 PURGE_ATTRCACHE4(dvp); 7383 7384 if (needrecov) { 7385 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, 7386 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 7387 if (!e.error) 7388 (void) xdr_free(xdr_COMPOUND4res_clnt, 7389 (caddr_t)&res); 7390 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 7391 needrecov); 7392 goto recov_retry; 7393 } 7394 } 7395 7396 /* 7397 * Matching nfs4_end_op() for start_op() above. 7398 * There is a path in the code below which calls 7399 * nfs4_purge_stale_fh(), which may generate otw calls through 7400 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op() 7401 * here to avoid nfs4_start_op() deadlock. 7402 */ 7403 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 7404 7405 if (!e.error) { 7406 resp = &res; 7407 7408 if (res.status) { 7409 e.error = geterrno4(res.status); 7410 PURGE_ATTRCACHE4(dvp); 7411 nfs4_purge_stale_fh(e.error, dvp, cr); 7412 } else { 7413 resop = &res.array[1]; /* remove res */ 7414 rm_res = &resop->nfs_resop4_u.opremove; 7415 7416 dinfo.di_garp = 7417 &res.array[2].nfs_resop4_u.opgetattr.ga_res; 7418 dinfo.di_cred = cr; 7419 7420 /* Update directory attr, readdir and dnlc caches */ 7421 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 7422 &dinfo); 7423 } 7424 } 7425 nfs_rw_exit(&drp->r_rwlock); 7426 if (resp) 7427 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7428 7429 if (e.error == 0) { 7430 vnode_t *tvp; 7431 rnode4_t *trp; 7432 trp = VTOR4(vp); 7433 tvp = vp; 7434 if (IS_SHADOW(vp, trp)) 7435 tvp = RTOV4(trp); 7436 vnevent_remove(tvp, dvp, nm, ct); 7437 } 7438 VN_RELE(vp); 7439 return (e.error); 7440 } 7441 7442 /* 7443 * Link requires that the current fh be the target directory and the 7444 * saved fh be the source fh. After the operation, the current fh is unchanged. 7445 * Thus the compound op structure is: 7446 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH, 7447 * GETATTR(file) 7448 */ 7449 /* ARGSUSED */ 7450 static int 7451 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 7452 caller_context_t *ct, int flags) 7453 { 7454 COMPOUND4args_clnt args; 7455 COMPOUND4res_clnt res, *resp = NULL; 7456 LINK4res *ln_res; 7457 int argoplist_size = 7 * sizeof (nfs_argop4); 7458 nfs_argop4 *argop; 7459 nfs_resop4 *resop; 7460 vnode_t *realvp, *nvp; 7461 int doqueue; 7462 mntinfo4_t *mi; 7463 rnode4_t *tdrp; 7464 bool_t needrecov = FALSE; 7465 nfs4_recov_state_t recov_state; 7466 hrtime_t t; 7467 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 7468 dirattr_info_t dinfo; 7469 7470 ASSERT(*tnm != '\0'); 7471 ASSERT(tdvp->v_type == VDIR); 7472 ASSERT(nfs4_consistent_type(tdvp)); 7473 ASSERT(nfs4_consistent_type(svp)); 7474 7475 if (nfs_zone() != VTOMI4(tdvp)->mi_zone) 7476 return (EPERM); 7477 if (VOP_REALVP(svp, &realvp, ct) == 0) { 7478 svp = realvp; 7479 ASSERT(nfs4_consistent_type(svp)); 7480 } 7481 7482 tdrp = VTOR4(tdvp); 7483 mi = VTOMI4(svp); 7484 7485 if (!(mi->mi_flags & MI4_LINK)) { 7486 return (EOPNOTSUPP); 7487 } 7488 recov_state.rs_flags = 0; 7489 recov_state.rs_num_retry_despite_err = 0; 7490 7491 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp))) 7492 return (EINTR); 7493 7494 recov_retry: 7495 argop = kmem_alloc(argoplist_size, KM_SLEEP); 7496 7497 args.ctag = TAG_LINK; 7498 7499 /* 7500 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir); 7501 * restorefh; getattr(fl) 7502 */ 7503 args.array_len = 7; 7504 args.array = argop; 7505 7506 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state); 7507 if (e.error) { 7508 kmem_free(argop, argoplist_size); 7509 nfs_rw_exit(&tdrp->r_rwlock); 7510 return (e.error); 7511 } 7512 7513 /* 0. putfh file */ 7514 argop[0].argop = OP_CPUTFH; 7515 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh; 7516 7517 /* 1. save current fh to free up the space for the dir */ 7518 argop[1].argop = OP_SAVEFH; 7519 7520 /* 2. putfh targetdir */ 7521 argop[2].argop = OP_CPUTFH; 7522 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh; 7523 7524 /* 3. link: current_fh is targetdir, saved_fh is source */ 7525 argop[3].argop = OP_CLINK; 7526 argop[3].nfs_argop4_u.opclink.cnewname = tnm; 7527 7528 /* 4. Get attributes of dir */ 7529 argop[4].argop = OP_GETATTR; 7530 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7531 argop[4].nfs_argop4_u.opgetattr.mi = mi; 7532 7533 /* 5. If link was successful, restore current vp to file */ 7534 argop[5].argop = OP_RESTOREFH; 7535 7536 /* 6. Get attributes of linked object */ 7537 argop[6].argop = OP_GETATTR; 7538 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 7539 argop[6].nfs_argop4_u.opgetattr.mi = mi; 7540 7541 dnlc_remove(tdvp, tnm); 7542 7543 doqueue = 1; 7544 t = gethrtime(); 7545 7546 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e); 7547 7548 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp); 7549 if (e.error != 0 && !needrecov) { 7550 PURGE_ATTRCACHE4(tdvp); 7551 PURGE_ATTRCACHE4(svp); 7552 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7553 goto out; 7554 } 7555 7556 if (needrecov) { 7557 bool_t abort; 7558 7559 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp, 7560 NULL, NULL, OP_LINK, NULL, NULL, NULL); 7561 if (abort == FALSE) { 7562 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, 7563 needrecov); 7564 kmem_free(argop, argoplist_size); 7565 if (!e.error) 7566 (void) xdr_free(xdr_COMPOUND4res_clnt, 7567 (caddr_t)&res); 7568 goto recov_retry; 7569 } else { 7570 if (e.error != 0) { 7571 PURGE_ATTRCACHE4(tdvp); 7572 PURGE_ATTRCACHE4(svp); 7573 nfs4_end_op(VTOMI4(svp), svp, tdvp, 7574 &recov_state, needrecov); 7575 goto out; 7576 } 7577 /* fall through for res.status case */ 7578 } 7579 } 7580 7581 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov); 7582 7583 resp = &res; 7584 if (res.status) { 7585 /* If link succeeded, then don't return error */ 7586 e.error = geterrno4(res.status); 7587 if (res.array_len <= 4) { 7588 /* 7589 * Either Putfh, Savefh, Putfh dir, or Link failed 7590 */ 7591 PURGE_ATTRCACHE4(svp); 7592 PURGE_ATTRCACHE4(tdvp); 7593 if (e.error == EOPNOTSUPP) { 7594 mutex_enter(&mi->mi_lock); 7595 mi->mi_flags &= ~MI4_LINK; 7596 mutex_exit(&mi->mi_lock); 7597 } 7598 /* Remap EISDIR to EPERM for non-root user for SVVS */ 7599 /* XXX-LP */ 7600 if (e.error == EISDIR && crgetuid(cr) != 0) 7601 e.error = EPERM; 7602 goto out; 7603 } 7604 } 7605 7606 /* either no error or one of the postop getattr failed */ 7607 7608 /* 7609 * XXX - if LINK succeeded, but no attrs were returned for link 7610 * file, purge its cache. 7611 * 7612 * XXX Perform a simplified version of wcc checking. Instead of 7613 * have another getattr to get pre-op, just purge cache if 7614 * any of the ops prior to and including the getattr failed. 7615 * If the getattr succeeded then update the attrcache accordingly. 7616 */ 7617 7618 /* 7619 * update cache with link file postattrs. 7620 * Note: at this point resop points to link res. 7621 */ 7622 resop = &res.array[3]; /* link res */ 7623 ln_res = &resop->nfs_resop4_u.oplink; 7624 if (res.status == NFS4_OK) 7625 e.error = nfs4_update_attrcache(res.status, 7626 &res.array[6].nfs_resop4_u.opgetattr.ga_res, 7627 t, svp, cr); 7628 7629 /* 7630 * Call makenfs4node to create the new shadow vp for tnm. 7631 * We pass NULL attrs because we just cached attrs for 7632 * the src object. All we're trying to accomplish is to 7633 * to create the new shadow vnode. 7634 */ 7635 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr, 7636 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh)); 7637 7638 /* Update target cache attribute, readdir and dnlc caches */ 7639 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res; 7640 dinfo.di_time_call = t; 7641 dinfo.di_cred = cr; 7642 7643 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo); 7644 ASSERT(nfs4_consistent_type(tdvp)); 7645 ASSERT(nfs4_consistent_type(svp)); 7646 ASSERT(nfs4_consistent_type(nvp)); 7647 VN_RELE(nvp); 7648 7649 if (!e.error) { 7650 vnode_t *tvp; 7651 rnode4_t *trp; 7652 /* 7653 * Notify the source file of this link operation. 7654 */ 7655 trp = VTOR4(svp); 7656 tvp = svp; 7657 if (IS_SHADOW(svp, trp)) 7658 tvp = RTOV4(trp); 7659 vnevent_link(tvp, ct); 7660 } 7661 out: 7662 kmem_free(argop, argoplist_size); 7663 if (resp) 7664 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 7665 7666 nfs_rw_exit(&tdrp->r_rwlock); 7667 7668 return (e.error); 7669 } 7670 7671 /* ARGSUSED */ 7672 static int 7673 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7674 caller_context_t *ct, int flags) 7675 { 7676 vnode_t *realvp; 7677 7678 if (nfs_zone() != VTOMI4(odvp)->mi_zone) 7679 return (EPERM); 7680 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 7681 ndvp = realvp; 7682 7683 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct)); 7684 } 7685 7686 /* 7687 * nfs4rename does the real work of renaming in NFS Version 4. 7688 * 7689 * A file handle is considered volatile for renaming purposes if either 7690 * of the volatile bits are turned on. However, the compound may differ 7691 * based on the likelihood of the filehandle to change during rename. 7692 */ 7693 static int 7694 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 7695 caller_context_t *ct) 7696 { 7697 int error; 7698 mntinfo4_t *mi; 7699 vnode_t *nvp = NULL; 7700 vnode_t *ovp = NULL; 7701 char *tmpname = NULL; 7702 rnode4_t *rp; 7703 rnode4_t *odrp; 7704 rnode4_t *ndrp; 7705 int did_link = 0; 7706 int do_link = 1; 7707 nfsstat4 stat = NFS4_OK; 7708 7709 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 7710 ASSERT(nfs4_consistent_type(odvp)); 7711 ASSERT(nfs4_consistent_type(ndvp)); 7712 7713 if (onm[0] == '.' && (onm[1] == '\0' || 7714 (onm[1] == '.' && onm[2] == '\0'))) 7715 return (EINVAL); 7716 7717 if (nnm[0] == '.' && (nnm[1] == '\0' || 7718 (nnm[1] == '.' && nnm[2] == '\0'))) 7719 return (EINVAL); 7720 7721 odrp = VTOR4(odvp); 7722 ndrp = VTOR4(ndvp); 7723 if ((intptr_t)odrp < (intptr_t)ndrp) { 7724 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) 7725 return (EINTR); 7726 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) { 7727 nfs_rw_exit(&odrp->r_rwlock); 7728 return (EINTR); 7729 } 7730 } else { 7731 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) 7732 return (EINTR); 7733 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) { 7734 nfs_rw_exit(&ndrp->r_rwlock); 7735 return (EINTR); 7736 } 7737 } 7738 7739 /* 7740 * Lookup the target file. If it exists, it needs to be 7741 * checked to see whether it is a mount point and whether 7742 * it is active (open). 7743 */ 7744 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0); 7745 if (!error) { 7746 int isactive; 7747 7748 ASSERT(nfs4_consistent_type(nvp)); 7749 /* 7750 * If this file has been mounted on, then just 7751 * return busy because renaming to it would remove 7752 * the mounted file system from the name space. 7753 */ 7754 if (vn_ismntpt(nvp)) { 7755 VN_RELE(nvp); 7756 nfs_rw_exit(&odrp->r_rwlock); 7757 nfs_rw_exit(&ndrp->r_rwlock); 7758 return (EBUSY); 7759 } 7760 7761 /* 7762 * First just remove the entry from the name cache, as it 7763 * is most likely the only entry for this vp. 7764 */ 7765 dnlc_remove(ndvp, nnm); 7766 7767 rp = VTOR4(nvp); 7768 7769 if (nvp->v_type != VREG) { 7770 /* 7771 * Purge the name cache of all references to this vnode 7772 * so that we can check the reference count to infer 7773 * whether it is active or not. 7774 */ 7775 if (nvp->v_count > 1) 7776 dnlc_purge_vp(nvp); 7777 7778 isactive = nvp->v_count > 1; 7779 } else { 7780 mutex_enter(&rp->r_os_lock); 7781 isactive = list_head(&rp->r_open_streams) != NULL; 7782 mutex_exit(&rp->r_os_lock); 7783 } 7784 7785 /* 7786 * If the vnode is active and is not a directory, 7787 * arrange to rename it to a 7788 * temporary file so that it will continue to be 7789 * accessible. This implements the "unlink-open-file" 7790 * semantics for the target of a rename operation. 7791 * Before doing this though, make sure that the 7792 * source and target files are not already the same. 7793 */ 7794 if (isactive && nvp->v_type != VDIR) { 7795 /* 7796 * Lookup the source name. 7797 */ 7798 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7799 7800 /* 7801 * The source name *should* already exist. 7802 */ 7803 if (error) { 7804 VN_RELE(nvp); 7805 nfs_rw_exit(&odrp->r_rwlock); 7806 nfs_rw_exit(&ndrp->r_rwlock); 7807 return (error); 7808 } 7809 7810 ASSERT(nfs4_consistent_type(ovp)); 7811 7812 /* 7813 * Compare the two vnodes. If they are the same, 7814 * just release all held vnodes and return success. 7815 */ 7816 if (VN_CMP(ovp, nvp)) { 7817 VN_RELE(ovp); 7818 VN_RELE(nvp); 7819 nfs_rw_exit(&odrp->r_rwlock); 7820 nfs_rw_exit(&ndrp->r_rwlock); 7821 return (0); 7822 } 7823 7824 /* 7825 * Can't mix and match directories and non- 7826 * directories in rename operations. We already 7827 * know that the target is not a directory. If 7828 * the source is a directory, return an error. 7829 */ 7830 if (ovp->v_type == VDIR) { 7831 VN_RELE(ovp); 7832 VN_RELE(nvp); 7833 nfs_rw_exit(&odrp->r_rwlock); 7834 nfs_rw_exit(&ndrp->r_rwlock); 7835 return (ENOTDIR); 7836 } 7837 link_call: 7838 /* 7839 * The target file exists, is not the same as 7840 * the source file, and is active. We first 7841 * try to Link it to a temporary filename to 7842 * avoid having the server removing the file 7843 * completely (which could cause data loss to 7844 * the user's POV in the event the Rename fails 7845 * -- see bug 1165874). 7846 */ 7847 /* 7848 * The do_link and did_link booleans are 7849 * introduced in the event we get NFS4ERR_FILE_OPEN 7850 * returned for the Rename. Some servers can 7851 * not Rename over an Open file, so they return 7852 * this error. The client needs to Remove the 7853 * newly created Link and do two Renames, just 7854 * as if the server didn't support LINK. 7855 */ 7856 tmpname = newname(); 7857 error = 0; 7858 7859 if (do_link) { 7860 error = nfs4_link(ndvp, nvp, tmpname, cr, 7861 NULL, 0); 7862 } 7863 if (error == EOPNOTSUPP || !do_link) { 7864 error = nfs4_rename(ndvp, nnm, ndvp, tmpname, 7865 cr, NULL, 0); 7866 did_link = 0; 7867 } else { 7868 did_link = 1; 7869 } 7870 if (error) { 7871 kmem_free(tmpname, MAXNAMELEN); 7872 VN_RELE(ovp); 7873 VN_RELE(nvp); 7874 nfs_rw_exit(&odrp->r_rwlock); 7875 nfs_rw_exit(&ndrp->r_rwlock); 7876 return (error); 7877 } 7878 7879 mutex_enter(&rp->r_statelock); 7880 if (rp->r_unldvp == NULL) { 7881 VN_HOLD(ndvp); 7882 rp->r_unldvp = ndvp; 7883 if (rp->r_unlcred != NULL) 7884 crfree(rp->r_unlcred); 7885 crhold(cr); 7886 rp->r_unlcred = cr; 7887 rp->r_unlname = tmpname; 7888 } else { 7889 if (rp->r_unlname) 7890 kmem_free(rp->r_unlname, MAXNAMELEN); 7891 rp->r_unlname = tmpname; 7892 } 7893 mutex_exit(&rp->r_statelock); 7894 } 7895 7896 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7897 7898 ASSERT(nfs4_consistent_type(nvp)); 7899 } 7900 7901 if (ovp == NULL) { 7902 /* 7903 * When renaming directories to be a subdirectory of a 7904 * different parent, the dnlc entry for ".." will no 7905 * longer be valid, so it must be removed. 7906 * 7907 * We do a lookup here to determine whether we are renaming 7908 * a directory and we need to check if we are renaming 7909 * an unlinked file. This might have already been done 7910 * in previous code, so we check ovp == NULL to avoid 7911 * doing it twice. 7912 */ 7913 error = nfs4lookup(odvp, onm, &ovp, cr, 0); 7914 /* 7915 * The source name *should* already exist. 7916 */ 7917 if (error) { 7918 nfs_rw_exit(&odrp->r_rwlock); 7919 nfs_rw_exit(&ndrp->r_rwlock); 7920 if (nvp) { 7921 VN_RELE(nvp); 7922 } 7923 return (error); 7924 } 7925 ASSERT(ovp != NULL); 7926 ASSERT(nfs4_consistent_type(ovp)); 7927 } 7928 7929 /* 7930 * Is the object being renamed a dir, and if so, is 7931 * it being renamed to a child of itself? The underlying 7932 * fs should ultimately return EINVAL for this case; 7933 * however, buggy beta non-Solaris NFSv4 servers at 7934 * interop testing events have allowed this behavior, 7935 * and it caused our client to panic due to a recursive 7936 * mutex_enter in fn_move. 7937 * 7938 * The tedious locking in fn_move could be changed to 7939 * deal with this case, and the client could avoid the 7940 * panic; however, the client would just confuse itself 7941 * later and misbehave. A better way to handle the broken 7942 * server is to detect this condition and return EINVAL 7943 * without ever sending the the bogus rename to the server. 7944 * We know the rename is invalid -- just fail it now. 7945 */ 7946 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) { 7947 VN_RELE(ovp); 7948 nfs_rw_exit(&odrp->r_rwlock); 7949 nfs_rw_exit(&ndrp->r_rwlock); 7950 if (nvp) { 7951 VN_RELE(nvp); 7952 } 7953 return (EINVAL); 7954 } 7955 7956 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN); 7957 7958 /* 7959 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is 7960 * possible for the filehandle to change due to the rename. 7961 * If neither of these bits is set, but FH4_VOL_MIGRATION is set, 7962 * the fh will not change because of the rename, but we still need 7963 * to update its rnode entry with the new name for 7964 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN 7965 * has no effect on these for now, but for future improvements, 7966 * we might want to use it too to simplify handling of files 7967 * that are open with that flag on. (XXX) 7968 */ 7969 mi = VTOMI4(odvp); 7970 if (NFS4_VOLATILE_FH(mi)) 7971 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr, 7972 &stat); 7973 else 7974 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr, 7975 &stat); 7976 7977 ASSERT(nfs4_consistent_type(odvp)); 7978 ASSERT(nfs4_consistent_type(ndvp)); 7979 ASSERT(nfs4_consistent_type(ovp)); 7980 7981 if (stat == NFS4ERR_FILE_OPEN && did_link) { 7982 do_link = 0; 7983 /* 7984 * Before the 'link_call' code, we did a nfs4_lookup 7985 * that puts a VN_HOLD on nvp. After the nfs4_link 7986 * call we call VN_RELE to match that hold. We need 7987 * to place an additional VN_HOLD here since we will 7988 * be hitting that VN_RELE again. 7989 */ 7990 VN_HOLD(nvp); 7991 7992 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0); 7993 7994 /* Undo the unlinked file naming stuff we just did */ 7995 mutex_enter(&rp->r_statelock); 7996 if (rp->r_unldvp) { 7997 VN_RELE(ndvp); 7998 rp->r_unldvp = NULL; 7999 if (rp->r_unlcred != NULL) 8000 crfree(rp->r_unlcred); 8001 rp->r_unlcred = NULL; 8002 /* rp->r_unlanme points to tmpname */ 8003 if (rp->r_unlname) 8004 kmem_free(rp->r_unlname, MAXNAMELEN); 8005 rp->r_unlname = NULL; 8006 } 8007 mutex_exit(&rp->r_statelock); 8008 8009 if (nvp) { 8010 VN_RELE(nvp); 8011 } 8012 goto link_call; 8013 } 8014 8015 if (error) { 8016 VN_RELE(ovp); 8017 nfs_rw_exit(&odrp->r_rwlock); 8018 nfs_rw_exit(&ndrp->r_rwlock); 8019 if (nvp) { 8020 VN_RELE(nvp); 8021 } 8022 return (error); 8023 } 8024 8025 /* 8026 * when renaming directories to be a subdirectory of a 8027 * different parent, the dnlc entry for ".." will no 8028 * longer be valid, so it must be removed 8029 */ 8030 rp = VTOR4(ovp); 8031 if (ndvp != odvp) { 8032 if (ovp->v_type == VDIR) { 8033 dnlc_remove(ovp, ".."); 8034 if (rp->r_dir != NULL) 8035 nfs4_purge_rddir_cache(ovp); 8036 } 8037 } 8038 8039 /* 8040 * If we are renaming the unlinked file, update the 8041 * r_unldvp and r_unlname as needed. 8042 */ 8043 mutex_enter(&rp->r_statelock); 8044 if (rp->r_unldvp != NULL) { 8045 if (strcmp(rp->r_unlname, onm) == 0) { 8046 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN); 8047 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 8048 if (ndvp != rp->r_unldvp) { 8049 VN_RELE(rp->r_unldvp); 8050 rp->r_unldvp = ndvp; 8051 VN_HOLD(ndvp); 8052 } 8053 } 8054 } 8055 mutex_exit(&rp->r_statelock); 8056 8057 /* 8058 * Notify the rename vnevents to source vnode, and to the target 8059 * vnode if it already existed. 8060 */ 8061 if (error == 0) { 8062 vnode_t *tvp; 8063 rnode4_t *trp; 8064 /* 8065 * Notify the vnode. Each links is represented by 8066 * a different vnode, in nfsv4. 8067 */ 8068 if (nvp) { 8069 trp = VTOR4(nvp); 8070 tvp = nvp; 8071 if (IS_SHADOW(nvp, trp)) 8072 tvp = RTOV4(trp); 8073 vnevent_rename_dest(tvp, ndvp, nnm, ct); 8074 } 8075 8076 /* 8077 * if the source and destination directory are not the 8078 * same notify the destination directory. 8079 */ 8080 if (VTOR4(odvp) != VTOR4(ndvp)) { 8081 trp = VTOR4(ndvp); 8082 tvp = ndvp; 8083 if (IS_SHADOW(ndvp, trp)) 8084 tvp = RTOV4(trp); 8085 vnevent_rename_dest_dir(tvp, ct); 8086 } 8087 8088 trp = VTOR4(ovp); 8089 tvp = ovp; 8090 if (IS_SHADOW(ovp, trp)) 8091 tvp = RTOV4(trp); 8092 vnevent_rename_src(tvp, odvp, onm, ct); 8093 } 8094 8095 if (nvp) { 8096 VN_RELE(nvp); 8097 } 8098 VN_RELE(ovp); 8099 8100 nfs_rw_exit(&odrp->r_rwlock); 8101 nfs_rw_exit(&ndrp->r_rwlock); 8102 8103 return (error); 8104 } 8105 8106 /* 8107 * When the parent directory has changed, sv_dfh must be updated 8108 */ 8109 static void 8110 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp) 8111 { 8112 svnode_t *sv = VTOSV(vp); 8113 nfs4_sharedfh_t *old_dfh = sv->sv_dfh; 8114 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh; 8115 8116 sfh4_hold(new_dfh); 8117 sv->sv_dfh = new_dfh; 8118 sfh4_rele(&old_dfh); 8119 } 8120 8121 /* 8122 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4, 8123 * when it is known that the filehandle is persistent through rename. 8124 * 8125 * Rename requires that the current fh be the target directory and the 8126 * saved fh be the source directory. After the operation, the current fh 8127 * is unchanged. 8128 * The compound op structure for persistent fh rename is: 8129 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME 8130 * Rather than bother with the directory postop args, we'll simply 8131 * update that a change occurred in the cache, so no post-op getattrs. 8132 */ 8133 static int 8134 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp, 8135 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8136 { 8137 COMPOUND4args_clnt args; 8138 COMPOUND4res_clnt res, *resp = NULL; 8139 nfs_argop4 *argop; 8140 nfs_resop4 *resop; 8141 int doqueue, argoplist_size; 8142 mntinfo4_t *mi; 8143 rnode4_t *odrp = VTOR4(odvp); 8144 rnode4_t *ndrp = VTOR4(ndvp); 8145 RENAME4res *rn_res; 8146 bool_t needrecov; 8147 nfs4_recov_state_t recov_state; 8148 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8149 dirattr_info_t dinfo, *dinfop; 8150 8151 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8152 8153 recov_state.rs_flags = 0; 8154 recov_state.rs_num_retry_despite_err = 0; 8155 8156 /* 8157 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir 8158 * 8159 * If source/target are different dirs, then append putfh(src); getattr 8160 */ 8161 args.array_len = (odvp == ndvp) ? 5 : 7; 8162 argoplist_size = args.array_len * sizeof (nfs_argop4); 8163 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP); 8164 8165 recov_retry: 8166 *statp = NFS4_OK; 8167 8168 /* No need to Lookup the file, persistent fh */ 8169 args.ctag = TAG_RENAME; 8170 8171 mi = VTOMI4(odvp); 8172 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state); 8173 if (e.error) { 8174 kmem_free(argop, argoplist_size); 8175 return (e.error); 8176 } 8177 8178 /* 0: putfh source directory */ 8179 argop[0].argop = OP_CPUTFH; 8180 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8181 8182 /* 1: Save source fh to free up current for target */ 8183 argop[1].argop = OP_SAVEFH; 8184 8185 /* 2: putfh targetdir */ 8186 argop[2].argop = OP_CPUTFH; 8187 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8188 8189 /* 3: current_fh is targetdir, saved_fh is sourcedir */ 8190 argop[3].argop = OP_CRENAME; 8191 argop[3].nfs_argop4_u.opcrename.coldname = onm; 8192 argop[3].nfs_argop4_u.opcrename.cnewname = nnm; 8193 8194 /* 4: getattr (targetdir) */ 8195 argop[4].argop = OP_GETATTR; 8196 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8197 argop[4].nfs_argop4_u.opgetattr.mi = mi; 8198 8199 if (ndvp != odvp) { 8200 8201 /* 5: putfh (sourcedir) */ 8202 argop[5].argop = OP_CPUTFH; 8203 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8204 8205 /* 6: getattr (sourcedir) */ 8206 argop[6].argop = OP_GETATTR; 8207 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8208 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8209 } 8210 8211 dnlc_remove(odvp, onm); 8212 dnlc_remove(ndvp, nnm); 8213 8214 doqueue = 1; 8215 dinfo.di_time_call = gethrtime(); 8216 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8217 8218 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8219 if (e.error) { 8220 PURGE_ATTRCACHE4(odvp); 8221 PURGE_ATTRCACHE4(ndvp); 8222 } else { 8223 *statp = res.status; 8224 } 8225 8226 if (needrecov) { 8227 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8228 OP_RENAME, NULL, NULL, NULL) == FALSE) { 8229 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8230 if (!e.error) 8231 (void) xdr_free(xdr_COMPOUND4res_clnt, 8232 (caddr_t)&res); 8233 goto recov_retry; 8234 } 8235 } 8236 8237 if (!e.error) { 8238 resp = &res; 8239 /* 8240 * as long as OP_RENAME 8241 */ 8242 if (res.status != NFS4_OK && res.array_len <= 4) { 8243 e.error = geterrno4(res.status); 8244 PURGE_ATTRCACHE4(odvp); 8245 PURGE_ATTRCACHE4(ndvp); 8246 /* 8247 * System V defines rename to return EEXIST, not 8248 * ENOTEMPTY if the target directory is not empty. 8249 * Over the wire, the error is NFSERR_ENOTEMPTY 8250 * which geterrno4 maps to ENOTEMPTY. 8251 */ 8252 if (e.error == ENOTEMPTY) 8253 e.error = EEXIST; 8254 } else { 8255 8256 resop = &res.array[3]; /* rename res */ 8257 rn_res = &resop->nfs_resop4_u.oprename; 8258 8259 if (res.status == NFS4_OK) { 8260 /* 8261 * Update target attribute, readdir and dnlc 8262 * caches. 8263 */ 8264 dinfo.di_garp = 8265 &res.array[4].nfs_resop4_u.opgetattr.ga_res; 8266 dinfo.di_cred = cr; 8267 dinfop = &dinfo; 8268 } else 8269 dinfop = NULL; 8270 8271 nfs4_update_dircaches(&rn_res->target_cinfo, 8272 ndvp, NULL, NULL, dinfop); 8273 8274 /* 8275 * Update source attribute, readdir and dnlc caches 8276 * 8277 */ 8278 if (ndvp != odvp) { 8279 update_parentdir_sfh(renvp, ndvp); 8280 8281 if (dinfop) 8282 dinfo.di_garp = 8283 &(res.array[6].nfs_resop4_u. 8284 opgetattr.ga_res); 8285 8286 nfs4_update_dircaches(&rn_res->source_cinfo, 8287 odvp, NULL, NULL, dinfop); 8288 } 8289 8290 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, 8291 nnm); 8292 } 8293 } 8294 8295 if (resp) 8296 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8297 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov); 8298 kmem_free(argop, argoplist_size); 8299 8300 return (e.error); 8301 } 8302 8303 /* 8304 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when 8305 * it is possible for the filehandle to change due to the rename. 8306 * 8307 * The compound req in this case includes a post-rename lookup and getattr 8308 * to ensure that we have the correct fh and attributes for the object. 8309 * 8310 * Rename requires that the current fh be the target directory and the 8311 * saved fh be the source directory. After the operation, the current fh 8312 * is unchanged. 8313 * 8314 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can 8315 * update the filehandle for the renamed object. We also get the old 8316 * filehandle for historical reasons; this should be taken out sometime. 8317 * This results in a rather cumbersome compound... 8318 * 8319 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8320 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR 8321 * 8322 */ 8323 static int 8324 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp, 8325 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp) 8326 { 8327 COMPOUND4args_clnt args; 8328 COMPOUND4res_clnt res, *resp = NULL; 8329 int argoplist_size; 8330 nfs_argop4 *argop; 8331 nfs_resop4 *resop; 8332 int doqueue; 8333 mntinfo4_t *mi; 8334 rnode4_t *odrp = VTOR4(odvp); /* old directory */ 8335 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */ 8336 rnode4_t *orp = VTOR4(ovp); /* object being renamed */ 8337 RENAME4res *rn_res; 8338 GETFH4res *ngf_res; 8339 bool_t needrecov; 8340 nfs4_recov_state_t recov_state; 8341 hrtime_t t; 8342 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8343 dirattr_info_t dinfo, *dinfop = &dinfo; 8344 8345 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone); 8346 8347 recov_state.rs_flags = 0; 8348 recov_state.rs_num_retry_despite_err = 0; 8349 8350 recov_retry: 8351 *statp = NFS4_OK; 8352 8353 /* 8354 * There is a window between the RPC and updating the path and 8355 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery 8356 * code, so that it doesn't try to use the old path during that 8357 * window. 8358 */ 8359 mutex_enter(&orp->r_statelock); 8360 while (orp->r_flags & R4RECEXPFH) { 8361 klwp_t *lwp = ttolwp(curthread); 8362 8363 if (lwp != NULL) 8364 lwp->lwp_nostop++; 8365 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) { 8366 mutex_exit(&orp->r_statelock); 8367 if (lwp != NULL) 8368 lwp->lwp_nostop--; 8369 return (EINTR); 8370 } 8371 if (lwp != NULL) 8372 lwp->lwp_nostop--; 8373 } 8374 orp->r_flags |= R4RECEXPFH; 8375 mutex_exit(&orp->r_statelock); 8376 8377 mi = VTOMI4(odvp); 8378 8379 args.ctag = TAG_RENAME_VFH; 8380 args.array_len = (odvp == ndvp) ? 10 : 12; 8381 argoplist_size = args.array_len * sizeof (nfs_argop4); 8382 argop = kmem_alloc(argoplist_size, KM_SLEEP); 8383 8384 /* 8385 * Rename ops: 8386 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old), 8387 * PUTFH(targetdir), RENAME, GETATTR(targetdir) 8388 * LOOKUP(trgt), GETFH(new), GETATTR, 8389 * 8390 * if (odvp != ndvp) 8391 * add putfh(sourcedir), getattr(sourcedir) } 8392 */ 8393 args.array = argop; 8394 8395 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8396 &recov_state, NULL); 8397 if (e.error) { 8398 kmem_free(argop, argoplist_size); 8399 mutex_enter(&orp->r_statelock); 8400 orp->r_flags &= ~R4RECEXPFH; 8401 cv_broadcast(&orp->r_cv); 8402 mutex_exit(&orp->r_statelock); 8403 return (e.error); 8404 } 8405 8406 /* 0: putfh source directory */ 8407 argop[0].argop = OP_CPUTFH; 8408 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh; 8409 8410 /* 1: Save source fh to free up current for target */ 8411 argop[1].argop = OP_SAVEFH; 8412 8413 /* 2: Lookup pre-rename fh of renamed object */ 8414 argop[2].argop = OP_CLOOKUP; 8415 argop[2].nfs_argop4_u.opclookup.cname = onm; 8416 8417 /* 3: getfh fh of renamed object (before rename) */ 8418 argop[3].argop = OP_GETFH; 8419 8420 /* 4: putfh targetdir */ 8421 argop[4].argop = OP_CPUTFH; 8422 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8423 8424 /* 5: current_fh is targetdir, saved_fh is sourcedir */ 8425 argop[5].argop = OP_CRENAME; 8426 argop[5].nfs_argop4_u.opcrename.coldname = onm; 8427 argop[5].nfs_argop4_u.opcrename.cnewname = nnm; 8428 8429 /* 6: getattr of target dir (post op attrs) */ 8430 argop[6].argop = OP_GETATTR; 8431 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8432 argop[6].nfs_argop4_u.opgetattr.mi = mi; 8433 8434 /* 7: Lookup post-rename fh of renamed object */ 8435 argop[7].argop = OP_CLOOKUP; 8436 argop[7].nfs_argop4_u.opclookup.cname = nnm; 8437 8438 /* 8: getfh fh of renamed object (after rename) */ 8439 argop[8].argop = OP_GETFH; 8440 8441 /* 9: getattr of renamed object */ 8442 argop[9].argop = OP_GETATTR; 8443 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8444 argop[9].nfs_argop4_u.opgetattr.mi = mi; 8445 8446 /* 8447 * If source/target dirs are different, then get new post-op 8448 * attrs for source dir also. 8449 */ 8450 if (ndvp != odvp) { 8451 /* 10: putfh (sourcedir) */ 8452 argop[10].argop = OP_CPUTFH; 8453 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh; 8454 8455 /* 11: getattr (sourcedir) */ 8456 argop[11].argop = OP_GETATTR; 8457 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8458 argop[11].nfs_argop4_u.opgetattr.mi = mi; 8459 } 8460 8461 dnlc_remove(odvp, onm); 8462 dnlc_remove(ndvp, nnm); 8463 8464 doqueue = 1; 8465 t = gethrtime(); 8466 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8467 8468 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8469 if (e.error) { 8470 PURGE_ATTRCACHE4(odvp); 8471 PURGE_ATTRCACHE4(ndvp); 8472 if (!needrecov) { 8473 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8474 &recov_state, needrecov); 8475 goto out; 8476 } 8477 } else { 8478 *statp = res.status; 8479 } 8480 8481 if (needrecov) { 8482 bool_t abort; 8483 8484 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL, 8485 OP_RENAME, NULL, NULL, NULL); 8486 if (abort == FALSE) { 8487 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8488 &recov_state, needrecov); 8489 kmem_free(argop, argoplist_size); 8490 if (!e.error) 8491 (void) xdr_free(xdr_COMPOUND4res_clnt, 8492 (caddr_t)&res); 8493 mutex_enter(&orp->r_statelock); 8494 orp->r_flags &= ~R4RECEXPFH; 8495 cv_broadcast(&orp->r_cv); 8496 mutex_exit(&orp->r_statelock); 8497 goto recov_retry; 8498 } else { 8499 if (e.error != 0) { 8500 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, 8501 &recov_state, needrecov); 8502 goto out; 8503 } 8504 /* fall through for res.status case */ 8505 } 8506 } 8507 8508 resp = &res; 8509 /* 8510 * If OP_RENAME (or any prev op) failed, then return an error. 8511 * OP_RENAME is index 5, so if array len <= 6 we return an error. 8512 */ 8513 if ((res.status != NFS4_OK) && (res.array_len <= 6)) { 8514 /* 8515 * Error in an op other than last Getattr 8516 */ 8517 e.error = geterrno4(res.status); 8518 PURGE_ATTRCACHE4(odvp); 8519 PURGE_ATTRCACHE4(ndvp); 8520 /* 8521 * System V defines rename to return EEXIST, not 8522 * ENOTEMPTY if the target directory is not empty. 8523 * Over the wire, the error is NFSERR_ENOTEMPTY 8524 * which geterrno4 maps to ENOTEMPTY. 8525 */ 8526 if (e.error == ENOTEMPTY) 8527 e.error = EEXIST; 8528 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, 8529 needrecov); 8530 goto out; 8531 } 8532 8533 /* rename results */ 8534 rn_res = &res.array[5].nfs_resop4_u.oprename; 8535 8536 if (res.status == NFS4_OK) { 8537 /* Update target attribute, readdir and dnlc caches */ 8538 dinfo.di_garp = 8539 &res.array[6].nfs_resop4_u.opgetattr.ga_res; 8540 dinfo.di_cred = cr; 8541 dinfo.di_time_call = t; 8542 } else 8543 dinfop = NULL; 8544 8545 /* Update source cache attribute, readdir and dnlc caches */ 8546 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop); 8547 8548 /* Update source cache attribute, readdir and dnlc caches */ 8549 if (ndvp != odvp) { 8550 update_parentdir_sfh(ovp, ndvp); 8551 8552 /* 8553 * If dinfop is non-NULL, then compound succeded, so 8554 * set di_garp to attrs for source dir. dinfop is only 8555 * set to NULL when compound fails. 8556 */ 8557 if (dinfop) 8558 dinfo.di_garp = 8559 &res.array[11].nfs_resop4_u.opgetattr.ga_res; 8560 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL, 8561 dinfop); 8562 } 8563 8564 /* 8565 * Update the rnode with the new component name and args, 8566 * and if the file handle changed, also update it with the new fh. 8567 * This is only necessary if the target object has an rnode 8568 * entry and there is no need to create one for it. 8569 */ 8570 resop = &res.array[8]; /* getfh new res */ 8571 ngf_res = &resop->nfs_resop4_u.opgetfh; 8572 8573 /* 8574 * Update the path and filehandle for the renamed object. 8575 */ 8576 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm); 8577 8578 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov); 8579 8580 if (res.status == NFS4_OK) { 8581 resop++; /* getattr res */ 8582 e.error = nfs4_update_attrcache(res.status, 8583 &resop->nfs_resop4_u.opgetattr.ga_res, 8584 t, ovp, cr); 8585 } 8586 8587 out: 8588 kmem_free(argop, argoplist_size); 8589 if (resp) 8590 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8591 mutex_enter(&orp->r_statelock); 8592 orp->r_flags &= ~R4RECEXPFH; 8593 cv_broadcast(&orp->r_cv); 8594 mutex_exit(&orp->r_statelock); 8595 8596 return (e.error); 8597 } 8598 8599 /* ARGSUSED */ 8600 static int 8601 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 8602 caller_context_t *ct, int flags, vsecattr_t *vsecp) 8603 { 8604 int error; 8605 vnode_t *vp; 8606 8607 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8608 return (EPERM); 8609 /* 8610 * As ".." has special meaning and rather than send a mkdir 8611 * over the wire to just let the server freak out, we just 8612 * short circuit it here and return EEXIST 8613 */ 8614 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8615 return (EEXIST); 8616 8617 /* 8618 * Decision to get the right gid and setgid bit of the 8619 * new directory is now made in call_nfs4_create_req. 8620 */ 8621 va->va_mask |= AT_MODE; 8622 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR); 8623 if (error) 8624 return (error); 8625 8626 *vpp = vp; 8627 return (0); 8628 } 8629 8630 8631 /* 8632 * rmdir is using the same remove v4 op as does remove. 8633 * Remove requires that the current fh be the target directory. 8634 * After the operation, the current fh is unchanged. 8635 * The compound op structure is: 8636 * PUTFH(targetdir), REMOVE 8637 */ 8638 /*ARGSUSED4*/ 8639 static int 8640 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 8641 caller_context_t *ct, int flags) 8642 { 8643 int need_end_op = FALSE; 8644 COMPOUND4args_clnt args; 8645 COMPOUND4res_clnt res, *resp = NULL; 8646 REMOVE4res *rm_res; 8647 nfs_argop4 argop[3]; 8648 nfs_resop4 *resop; 8649 vnode_t *vp; 8650 int doqueue; 8651 mntinfo4_t *mi; 8652 rnode4_t *drp; 8653 bool_t needrecov = FALSE; 8654 nfs4_recov_state_t recov_state; 8655 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 8656 dirattr_info_t dinfo, *dinfop; 8657 8658 if (nfs_zone() != VTOMI4(dvp)->mi_zone) 8659 return (EPERM); 8660 /* 8661 * As ".." has special meaning and rather than send a rmdir 8662 * over the wire to just let the server freak out, we just 8663 * short circuit it here and return EEXIST 8664 */ 8665 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') 8666 return (EEXIST); 8667 8668 drp = VTOR4(dvp); 8669 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) 8670 return (EINTR); 8671 8672 /* 8673 * Attempt to prevent a rmdir(".") from succeeding. 8674 */ 8675 e.error = nfs4lookup(dvp, nm, &vp, cr, 0); 8676 if (e.error) { 8677 nfs_rw_exit(&drp->r_rwlock); 8678 return (e.error); 8679 } 8680 if (vp == cdir) { 8681 VN_RELE(vp); 8682 nfs_rw_exit(&drp->r_rwlock); 8683 return (EINVAL); 8684 } 8685 8686 /* 8687 * Since nfsv4 remove op works on both files and directories, 8688 * check that the removed object is indeed a directory. 8689 */ 8690 if (vp->v_type != VDIR) { 8691 VN_RELE(vp); 8692 nfs_rw_exit(&drp->r_rwlock); 8693 return (ENOTDIR); 8694 } 8695 8696 /* 8697 * First just remove the entry from the name cache, as it 8698 * is most likely an entry for this vp. 8699 */ 8700 dnlc_remove(dvp, nm); 8701 8702 /* 8703 * If there vnode reference count is greater than one, then 8704 * there may be additional references in the DNLC which will 8705 * need to be purged. First, trying removing the entry for 8706 * the parent directory and see if that removes the additional 8707 * reference(s). If that doesn't do it, then use dnlc_purge_vp 8708 * to completely remove any references to the directory which 8709 * might still exist in the DNLC. 8710 */ 8711 if (vp->v_count > 1) { 8712 dnlc_remove(vp, ".."); 8713 if (vp->v_count > 1) 8714 dnlc_purge_vp(vp); 8715 } 8716 8717 mi = VTOMI4(dvp); 8718 recov_state.rs_flags = 0; 8719 recov_state.rs_num_retry_despite_err = 0; 8720 8721 recov_retry: 8722 args.ctag = TAG_RMDIR; 8723 8724 /* 8725 * Rmdir ops: putfh dir; remove 8726 */ 8727 args.array_len = 3; 8728 args.array = argop; 8729 8730 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state); 8731 if (e.error) { 8732 nfs_rw_exit(&drp->r_rwlock); 8733 return (e.error); 8734 } 8735 need_end_op = TRUE; 8736 8737 /* putfh directory */ 8738 argop[0].argop = OP_CPUTFH; 8739 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh; 8740 8741 /* remove */ 8742 argop[1].argop = OP_CREMOVE; 8743 argop[1].nfs_argop4_u.opcremove.ctarget = nm; 8744 8745 /* getattr (postop attrs for dir that contained removed dir) */ 8746 argop[2].argop = OP_GETATTR; 8747 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 8748 argop[2].nfs_argop4_u.opgetattr.mi = mi; 8749 8750 dinfo.di_time_call = gethrtime(); 8751 doqueue = 1; 8752 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 8753 8754 PURGE_ATTRCACHE4(vp); 8755 8756 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 8757 if (e.error) { 8758 PURGE_ATTRCACHE4(dvp); 8759 } 8760 8761 if (needrecov) { 8762 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL, 8763 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) { 8764 if (!e.error) 8765 (void) xdr_free(xdr_COMPOUND4res_clnt, 8766 (caddr_t)&res); 8767 8768 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, 8769 needrecov); 8770 need_end_op = FALSE; 8771 goto recov_retry; 8772 } 8773 } 8774 8775 if (!e.error) { 8776 resp = &res; 8777 8778 /* 8779 * Only return error if first 2 ops (OP_REMOVE or earlier) 8780 * failed. 8781 */ 8782 if (res.status != NFS4_OK && res.array_len <= 2) { 8783 e.error = geterrno4(res.status); 8784 PURGE_ATTRCACHE4(dvp); 8785 nfs4_end_op(VTOMI4(dvp), dvp, NULL, 8786 &recov_state, needrecov); 8787 need_end_op = FALSE; 8788 nfs4_purge_stale_fh(e.error, dvp, cr); 8789 /* 8790 * System V defines rmdir to return EEXIST, not 8791 * ENOTEMPTY if the directory is not empty. Over 8792 * the wire, the error is NFSERR_ENOTEMPTY which 8793 * geterrno4 maps to ENOTEMPTY. 8794 */ 8795 if (e.error == ENOTEMPTY) 8796 e.error = EEXIST; 8797 } else { 8798 resop = &res.array[1]; /* remove res */ 8799 rm_res = &resop->nfs_resop4_u.opremove; 8800 8801 if (res.status == NFS4_OK) { 8802 resop = &res.array[2]; /* dir attrs */ 8803 dinfo.di_garp = 8804 &resop->nfs_resop4_u.opgetattr.ga_res; 8805 dinfo.di_cred = cr; 8806 dinfop = &dinfo; 8807 } else 8808 dinfop = NULL; 8809 8810 /* Update dir attribute, readdir and dnlc caches */ 8811 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL, 8812 dinfop); 8813 8814 /* destroy rddir cache for dir that was removed */ 8815 if (VTOR4(vp)->r_dir != NULL) 8816 nfs4_purge_rddir_cache(vp); 8817 } 8818 } 8819 8820 if (need_end_op) 8821 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov); 8822 8823 nfs_rw_exit(&drp->r_rwlock); 8824 8825 if (resp) 8826 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 8827 8828 if (e.error == 0) { 8829 vnode_t *tvp; 8830 rnode4_t *trp; 8831 trp = VTOR4(vp); 8832 tvp = vp; 8833 if (IS_SHADOW(vp, trp)) 8834 tvp = RTOV4(trp); 8835 vnevent_rmdir(tvp, dvp, nm, ct); 8836 } 8837 8838 VN_RELE(vp); 8839 8840 return (e.error); 8841 } 8842 8843 /* ARGSUSED */ 8844 static int 8845 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 8846 caller_context_t *ct, int flags) 8847 { 8848 int error; 8849 vnode_t *vp; 8850 rnode4_t *rp; 8851 char *contents; 8852 mntinfo4_t *mi = VTOMI4(dvp); 8853 8854 if (nfs_zone() != mi->mi_zone) 8855 return (EPERM); 8856 if (!(mi->mi_flags & MI4_SYMLINK)) 8857 return (EOPNOTSUPP); 8858 8859 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK); 8860 if (error) 8861 return (error); 8862 8863 ASSERT(nfs4_consistent_type(vp)); 8864 rp = VTOR4(vp); 8865 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) { 8866 8867 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8868 8869 if (contents != NULL) { 8870 mutex_enter(&rp->r_statelock); 8871 if (rp->r_symlink.contents == NULL) { 8872 rp->r_symlink.len = strlen(tnm); 8873 bcopy(tnm, contents, rp->r_symlink.len); 8874 rp->r_symlink.contents = contents; 8875 rp->r_symlink.size = MAXPATHLEN; 8876 mutex_exit(&rp->r_statelock); 8877 } else { 8878 mutex_exit(&rp->r_statelock); 8879 kmem_free((void *)contents, MAXPATHLEN); 8880 } 8881 } 8882 } 8883 VN_RELE(vp); 8884 8885 return (error); 8886 } 8887 8888 8889 /* 8890 * Read directory entries. 8891 * There are some weird things to look out for here. The uio_loffset 8892 * field is either 0 or it is the offset returned from a previous 8893 * readdir. It is an opaque value used by the server to find the 8894 * correct directory block to read. The count field is the number 8895 * of blocks to read on the server. This is advisory only, the server 8896 * may return only one block's worth of entries. Entries may be compressed 8897 * on the server. 8898 */ 8899 /* ARGSUSED */ 8900 static int 8901 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 8902 caller_context_t *ct, int flags) 8903 { 8904 int error; 8905 uint_t count; 8906 rnode4_t *rp; 8907 rddir4_cache *rdc; 8908 rddir4_cache *rrdc; 8909 8910 if (nfs_zone() != VTOMI4(vp)->mi_zone) 8911 return (EIO); 8912 rp = VTOR4(vp); 8913 8914 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 8915 8916 /* 8917 * Make sure that the directory cache is valid. 8918 */ 8919 if (rp->r_dir != NULL) { 8920 if (nfs_disable_rddir_cache != 0) { 8921 /* 8922 * Setting nfs_disable_rddir_cache in /etc/system 8923 * allows interoperability with servers that do not 8924 * properly update the attributes of directories. 8925 * Any cached information gets purged before an 8926 * access is made to it. 8927 */ 8928 nfs4_purge_rddir_cache(vp); 8929 } 8930 8931 error = nfs4_validate_caches(vp, cr); 8932 if (error) 8933 return (error); 8934 } 8935 8936 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE); 8937 8938 /* 8939 * Short circuit last readdir which always returns 0 bytes. 8940 * This can be done after the directory has been read through 8941 * completely at least once. This will set r_direof which 8942 * can be used to find the value of the last cookie. 8943 */ 8944 mutex_enter(&rp->r_statelock); 8945 if (rp->r_direof != NULL && 8946 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) { 8947 mutex_exit(&rp->r_statelock); 8948 #ifdef DEBUG 8949 nfs4_readdir_cache_shorts++; 8950 #endif 8951 if (eofp) 8952 *eofp = 1; 8953 return (0); 8954 } 8955 8956 /* 8957 * Look for a cache entry. Cache entries are identified 8958 * by the NFS cookie value and the byte count requested. 8959 */ 8960 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count); 8961 8962 /* 8963 * If rdc is NULL then the lookup resulted in an unrecoverable error. 8964 */ 8965 if (rdc == NULL) { 8966 mutex_exit(&rp->r_statelock); 8967 return (EINTR); 8968 } 8969 8970 /* 8971 * Check to see if we need to fill this entry in. 8972 */ 8973 if (rdc->flags & RDDIRREQ) { 8974 rdc->flags &= ~RDDIRREQ; 8975 rdc->flags |= RDDIR; 8976 mutex_exit(&rp->r_statelock); 8977 8978 /* 8979 * Do the readdir. 8980 */ 8981 nfs4readdir(vp, rdc, cr); 8982 8983 /* 8984 * Reacquire the lock, so that we can continue 8985 */ 8986 mutex_enter(&rp->r_statelock); 8987 /* 8988 * The entry is now complete 8989 */ 8990 rdc->flags &= ~RDDIR; 8991 } 8992 8993 ASSERT(!(rdc->flags & RDDIR)); 8994 8995 /* 8996 * If an error occurred while attempting 8997 * to fill the cache entry, mark the entry invalid and 8998 * just return the error. 8999 */ 9000 if (rdc->error) { 9001 error = rdc->error; 9002 rdc->flags |= RDDIRREQ; 9003 rddir4_cache_rele(rp, rdc); 9004 mutex_exit(&rp->r_statelock); 9005 return (error); 9006 } 9007 9008 /* 9009 * The cache entry is complete and good, 9010 * copyout the dirent structs to the calling 9011 * thread. 9012 */ 9013 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop); 9014 9015 /* 9016 * If no error occurred during the copyout, 9017 * update the offset in the uio struct to 9018 * contain the value of the next NFS 4 cookie 9019 * and set the eof value appropriately. 9020 */ 9021 if (!error) { 9022 uiop->uio_loffset = rdc->nfs4_ncookie; 9023 if (eofp) 9024 *eofp = rdc->eof; 9025 } 9026 9027 /* 9028 * Decide whether to do readahead. Don't if we 9029 * have already read to the end of directory. 9030 */ 9031 if (rdc->eof) { 9032 /* 9033 * Make the entry the direof only if it is cached 9034 */ 9035 if (rdc->flags & RDDIRCACHED) 9036 rp->r_direof = rdc; 9037 rddir4_cache_rele(rp, rdc); 9038 mutex_exit(&rp->r_statelock); 9039 return (error); 9040 } 9041 9042 /* Determine if a readdir readahead should be done */ 9043 if (!(rp->r_flags & R4LOOKUP)) { 9044 rddir4_cache_rele(rp, rdc); 9045 mutex_exit(&rp->r_statelock); 9046 return (error); 9047 } 9048 9049 /* 9050 * Now look for a readahead entry. 9051 * 9052 * Check to see whether we found an entry for the readahead. 9053 * If so, we don't need to do anything further, so free the new 9054 * entry if one was allocated. Otherwise, allocate a new entry, add 9055 * it to the cache, and then initiate an asynchronous readdir 9056 * operation to fill it. 9057 */ 9058 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count); 9059 9060 /* 9061 * A readdir cache entry could not be obtained for the readahead. In 9062 * this case we skip the readahead and return. 9063 */ 9064 if (rrdc == NULL) { 9065 rddir4_cache_rele(rp, rdc); 9066 mutex_exit(&rp->r_statelock); 9067 return (error); 9068 } 9069 9070 /* 9071 * Check to see if we need to fill this entry in. 9072 */ 9073 if (rrdc->flags & RDDIRREQ) { 9074 rrdc->flags &= ~RDDIRREQ; 9075 rrdc->flags |= RDDIR; 9076 rddir4_cache_rele(rp, rdc); 9077 mutex_exit(&rp->r_statelock); 9078 #ifdef DEBUG 9079 nfs4_readdir_readahead++; 9080 #endif 9081 /* 9082 * Do the readdir. 9083 */ 9084 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir); 9085 return (error); 9086 } 9087 9088 rddir4_cache_rele(rp, rrdc); 9089 rddir4_cache_rele(rp, rdc); 9090 mutex_exit(&rp->r_statelock); 9091 return (error); 9092 } 9093 9094 static int 9095 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9096 { 9097 int error; 9098 rnode4_t *rp; 9099 9100 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 9101 9102 rp = VTOR4(vp); 9103 9104 /* 9105 * Obtain the readdir results for the caller. 9106 */ 9107 nfs4readdir(vp, rdc, cr); 9108 9109 mutex_enter(&rp->r_statelock); 9110 /* 9111 * The entry is now complete 9112 */ 9113 rdc->flags &= ~RDDIR; 9114 9115 error = rdc->error; 9116 if (error) 9117 rdc->flags |= RDDIRREQ; 9118 rddir4_cache_rele(rp, rdc); 9119 mutex_exit(&rp->r_statelock); 9120 9121 return (error); 9122 } 9123 9124 /* 9125 * Read directory entries. 9126 * There are some weird things to look out for here. The uio_loffset 9127 * field is either 0 or it is the offset returned from a previous 9128 * readdir. It is an opaque value used by the server to find the 9129 * correct directory block to read. The count field is the number 9130 * of blocks to read on the server. This is advisory only, the server 9131 * may return only one block's worth of entries. Entries may be compressed 9132 * on the server. 9133 * 9134 * Generates the following compound request: 9135 * 1. If readdir offset is zero and no dnlc entry for parent exists, 9136 * must include a Lookupp as well. In this case, send: 9137 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr } 9138 * 2. Otherwise just do: { Putfh <fh>; Readdir } 9139 * 9140 * Get complete attributes and filehandles for entries if this is the 9141 * first read of the directory. Otherwise, just get fileid's. 9142 */ 9143 static void 9144 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr) 9145 { 9146 COMPOUND4args_clnt args; 9147 COMPOUND4res_clnt res; 9148 READDIR4args *rargs; 9149 READDIR4res_clnt *rd_res; 9150 bitmap4 rd_bitsval; 9151 nfs_argop4 argop[5]; 9152 nfs_resop4 *resop; 9153 rnode4_t *rp = VTOR4(vp); 9154 mntinfo4_t *mi = VTOMI4(vp); 9155 int doqueue; 9156 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */ 9157 vnode_t *dvp; 9158 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie; 9159 int num_ops, res_opcnt; 9160 bool_t needrecov = FALSE; 9161 nfs4_recov_state_t recov_state; 9162 hrtime_t t; 9163 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 9164 9165 ASSERT(nfs_zone() == mi->mi_zone); 9166 ASSERT(rdc->flags & RDDIR); 9167 ASSERT(rdc->entries == NULL); 9168 9169 /* 9170 * If rp were a stub, it should have triggered and caused 9171 * a mount for us to get this far. 9172 */ 9173 ASSERT(!RP_ISSTUB(rp)); 9174 9175 num_ops = 2; 9176 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) { 9177 /* 9178 * Since nfsv4 readdir may not return entries for "." and "..", 9179 * the client must recreate them: 9180 * To find the correct nodeid, do the following: 9181 * For current node, get nodeid from dnlc. 9182 * - if current node is rootvp, set pnodeid to nodeid. 9183 * - else if parent is in the dnlc, get its nodeid from there. 9184 * - else add LOOKUPP+GETATTR to compound. 9185 */ 9186 nodeid = rp->r_attr.va_nodeid; 9187 if (vp->v_flag & VROOT) { 9188 pnodeid = nodeid; /* root of mount point */ 9189 } else { 9190 dvp = dnlc_lookup(vp, ".."); 9191 if (dvp != NULL && dvp != DNLC_NO_VNODE) { 9192 /* parent in dnlc cache - no need for otw */ 9193 pnodeid = VTOR4(dvp)->r_attr.va_nodeid; 9194 } else { 9195 /* 9196 * parent not in dnlc cache, 9197 * do lookupp to get its id 9198 */ 9199 num_ops = 5; 9200 pnodeid = 0; /* set later by getattr parent */ 9201 } 9202 if (dvp) 9203 VN_RELE(dvp); 9204 } 9205 } 9206 recov_state.rs_flags = 0; 9207 recov_state.rs_num_retry_despite_err = 0; 9208 9209 /* Save the original mount point security flavor */ 9210 (void) save_mnt_secinfo(mi->mi_curr_serv); 9211 9212 recov_retry: 9213 args.ctag = TAG_READDIR; 9214 9215 args.array = argop; 9216 args.array_len = num_ops; 9217 9218 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9219 &recov_state, NULL)) { 9220 /* 9221 * If readdir a node that is a stub for a crossed mount point, 9222 * keep the original secinfo flavor for the current file 9223 * system, not the crossed one. 9224 */ 9225 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9226 rdc->error = e.error; 9227 return; 9228 } 9229 9230 /* 9231 * Determine which attrs to request for dirents. This code 9232 * must be protected by nfs4_start/end_fop because of r_server 9233 * (which will change during failover recovery). 9234 * 9235 */ 9236 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) { 9237 /* 9238 * Get all vattr attrs plus filehandle and rdattr_error 9239 */ 9240 rd_bitsval = NFS4_VATTR_MASK | 9241 FATTR4_RDATTR_ERROR_MASK | 9242 FATTR4_FILEHANDLE_MASK; 9243 9244 if (rp->r_flags & R4READDIRWATTR) { 9245 mutex_enter(&rp->r_statelock); 9246 rp->r_flags &= ~R4READDIRWATTR; 9247 mutex_exit(&rp->r_statelock); 9248 } 9249 } else { 9250 servinfo4_t *svp = rp->r_server; 9251 9252 /* 9253 * Already read directory. Use readdir with 9254 * no attrs (except for mounted_on_fileid) for updates. 9255 */ 9256 rd_bitsval = FATTR4_RDATTR_ERROR_MASK; 9257 9258 /* 9259 * request mounted on fileid if supported, else request 9260 * fileid. maybe we should verify that fileid is supported 9261 * and request something else if not. 9262 */ 9263 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 9264 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK) 9265 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK; 9266 nfs_rw_exit(&svp->sv_lock); 9267 } 9268 9269 /* putfh directory fh */ 9270 argop[0].argop = OP_CPUTFH; 9271 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 9272 9273 argop[1].argop = OP_READDIR; 9274 rargs = &argop[1].nfs_argop4_u.opreaddir; 9275 /* 9276 * 1 and 2 are reserved for client "." and ".." entry offset. 9277 * cookie 0 should be used over-the-wire to start reading at 9278 * the beginning of the directory excluding "." and "..". 9279 */ 9280 if (rdc->nfs4_cookie == 0 || 9281 rdc->nfs4_cookie == 1 || 9282 rdc->nfs4_cookie == 2) { 9283 rargs->cookie = (nfs_cookie4)0; 9284 rargs->cookieverf = 0; 9285 } else { 9286 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie; 9287 mutex_enter(&rp->r_statelock); 9288 rargs->cookieverf = rp->r_cookieverf4; 9289 mutex_exit(&rp->r_statelock); 9290 } 9291 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize); 9292 rargs->maxcount = mi->mi_tsize; 9293 rargs->attr_request = rd_bitsval; 9294 rargs->rdc = rdc; 9295 rargs->dvp = vp; 9296 rargs->mi = mi; 9297 rargs->cr = cr; 9298 9299 9300 /* 9301 * If count < than the minimum required, we return no entries 9302 * and fail with EINVAL 9303 */ 9304 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) { 9305 rdc->error = EINVAL; 9306 goto out; 9307 } 9308 9309 if (args.array_len == 5) { 9310 /* 9311 * Add lookupp and getattr for parent nodeid. 9312 */ 9313 argop[2].argop = OP_LOOKUPP; 9314 9315 argop[3].argop = OP_GETFH; 9316 9317 /* getattr parent */ 9318 argop[4].argop = OP_GETATTR; 9319 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK; 9320 argop[4].nfs_argop4_u.opgetattr.mi = mi; 9321 } 9322 9323 doqueue = 1; 9324 9325 if (mi->mi_io_kstats) { 9326 mutex_enter(&mi->mi_lock); 9327 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 9328 mutex_exit(&mi->mi_lock); 9329 } 9330 9331 /* capture the time of this call */ 9332 rargs->t = t = gethrtime(); 9333 9334 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 9335 9336 if (mi->mi_io_kstats) { 9337 mutex_enter(&mi->mi_lock); 9338 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 9339 mutex_exit(&mi->mi_lock); 9340 } 9341 9342 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 9343 9344 /* 9345 * If RPC error occurred and it isn't an error that 9346 * triggers recovery, then go ahead and fail now. 9347 */ 9348 if (e.error != 0 && !needrecov) { 9349 rdc->error = e.error; 9350 goto out; 9351 } 9352 9353 if (needrecov) { 9354 bool_t abort; 9355 9356 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 9357 "nfs4readdir: initiating recovery.\n")); 9358 9359 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 9360 NULL, OP_READDIR, NULL, NULL, NULL); 9361 if (abort == FALSE) { 9362 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9363 &recov_state, needrecov); 9364 if (!e.error) 9365 (void) xdr_free(xdr_COMPOUND4res_clnt, 9366 (caddr_t)&res); 9367 if (rdc->entries != NULL) { 9368 kmem_free(rdc->entries, rdc->entlen); 9369 rdc->entries = NULL; 9370 } 9371 goto recov_retry; 9372 } 9373 9374 if (e.error != 0) { 9375 rdc->error = e.error; 9376 goto out; 9377 } 9378 9379 /* fall through for res.status case */ 9380 } 9381 9382 res_opcnt = res.array_len; 9383 9384 /* 9385 * If compound failed first 2 ops (PUTFH+READDIR), then return 9386 * failure here. Subsequent ops are for filling out dot-dot 9387 * dirent, and if they fail, we still want to give the caller 9388 * the dirents returned by (the successful) READDIR op, so we need 9389 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR). 9390 * 9391 * One example where PUTFH+READDIR ops would succeed but 9392 * LOOKUPP+GETATTR would fail would be a dir that has r perm 9393 * but lacks x. In this case, a POSIX server's VOP_READDIR 9394 * would succeed; however, VOP_LOOKUP(..) would fail since no 9395 * x perm. We need to come up with a non-vendor-specific way 9396 * for a POSIX server to return d_ino from dotdot's dirent if 9397 * client only requests mounted_on_fileid, and just say the 9398 * LOOKUPP succeeded and fill out the GETATTR. However, if 9399 * client requested any mandatory attrs, server would be required 9400 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR 9401 * for dotdot. 9402 */ 9403 9404 if (res.status) { 9405 if (res_opcnt <= 2) { 9406 e.error = geterrno4(res.status); 9407 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR, 9408 &recov_state, needrecov); 9409 nfs4_purge_stale_fh(e.error, vp, cr); 9410 rdc->error = e.error; 9411 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9412 if (rdc->entries != NULL) { 9413 kmem_free(rdc->entries, rdc->entlen); 9414 rdc->entries = NULL; 9415 } 9416 /* 9417 * If readdir a node that is a stub for a 9418 * crossed mount point, keep the original 9419 * secinfo flavor for the current file system, 9420 * not the crossed one. 9421 */ 9422 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9423 return; 9424 } 9425 } 9426 9427 resop = &res.array[1]; /* readdir res */ 9428 rd_res = &resop->nfs_resop4_u.opreaddirclnt; 9429 9430 mutex_enter(&rp->r_statelock); 9431 rp->r_cookieverf4 = rd_res->cookieverf; 9432 mutex_exit(&rp->r_statelock); 9433 9434 /* 9435 * For "." and ".." entries 9436 * e.g. 9437 * seek(cookie=0) -> "." entry with d_off = 1 9438 * seek(cookie=1) -> ".." entry with d_off = 2 9439 */ 9440 if (cookie == (nfs_cookie4) 0) { 9441 if (rd_res->dotp) 9442 rd_res->dotp->d_ino = nodeid; 9443 if (rd_res->dotdotp) 9444 rd_res->dotdotp->d_ino = pnodeid; 9445 } 9446 if (cookie == (nfs_cookie4) 1) { 9447 if (rd_res->dotdotp) 9448 rd_res->dotdotp->d_ino = pnodeid; 9449 } 9450 9451 9452 /* LOOKUPP+GETATTR attemped */ 9453 if (args.array_len == 5 && rd_res->dotdotp) { 9454 if (res.status == NFS4_OK && res_opcnt == 5) { 9455 nfs_fh4 *fhp; 9456 nfs4_sharedfh_t *sfhp; 9457 vnode_t *pvp; 9458 nfs4_ga_res_t *garp; 9459 9460 resop++; /* lookupp */ 9461 resop++; /* getfh */ 9462 fhp = &resop->nfs_resop4_u.opgetfh.object; 9463 9464 resop++; /* getattr of parent */ 9465 9466 /* 9467 * First, take care of finishing the 9468 * readdir results. 9469 */ 9470 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 9471 /* 9472 * The d_ino of .. must be the inode number 9473 * of the mounted filesystem. 9474 */ 9475 if (garp->n4g_va.va_mask & AT_NODEID) 9476 rd_res->dotdotp->d_ino = 9477 garp->n4g_va.va_nodeid; 9478 9479 9480 /* 9481 * Next, create the ".." dnlc entry 9482 */ 9483 sfhp = sfh4_get(fhp, mi); 9484 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) { 9485 dnlc_update(vp, "..", pvp); 9486 VN_RELE(pvp); 9487 } 9488 sfh4_rele(&sfhp); 9489 } 9490 } 9491 9492 if (mi->mi_io_kstats) { 9493 mutex_enter(&mi->mi_lock); 9494 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 9495 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen; 9496 mutex_exit(&mi->mi_lock); 9497 } 9498 9499 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 9500 9501 out: 9502 /* 9503 * If readdir a node that is a stub for a crossed mount point, 9504 * keep the original secinfo flavor for the current file system, 9505 * not the crossed one. 9506 */ 9507 (void) check_mnt_secinfo(mi->mi_curr_serv, vp); 9508 9509 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov); 9510 } 9511 9512 9513 static int 9514 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead) 9515 { 9516 rnode4_t *rp = VTOR4(bp->b_vp); 9517 int count; 9518 int error; 9519 cred_t *cred_otw = NULL; 9520 offset_t offset; 9521 nfs4_open_stream_t *osp = NULL; 9522 bool_t first_time = TRUE; /* first time getting otw cred */ 9523 bool_t last_time = FALSE; /* last time getting otw cred */ 9524 9525 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone); 9526 9527 DTRACE_IO1(start, struct buf *, bp); 9528 offset = ldbtob(bp->b_lblkno); 9529 9530 if (bp->b_flags & B_READ) { 9531 read_again: 9532 /* 9533 * Releases the osp, if it is provided. 9534 * Puts a hold on the cred_otw and the new osp (if found). 9535 */ 9536 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9537 &first_time, &last_time); 9538 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr, 9539 offset, bp->b_bcount, &bp->b_resid, cred_otw, 9540 readahead, NULL); 9541 crfree(cred_otw); 9542 if (!error) { 9543 if (bp->b_resid) { 9544 /* 9545 * Didn't get it all because we hit EOF, 9546 * zero all the memory beyond the EOF. 9547 */ 9548 /* bzero(rdaddr + */ 9549 bzero(bp->b_un.b_addr + 9550 bp->b_bcount - bp->b_resid, bp->b_resid); 9551 } 9552 mutex_enter(&rp->r_statelock); 9553 if (bp->b_resid == bp->b_bcount && 9554 offset >= rp->r_size) { 9555 /* 9556 * We didn't read anything at all as we are 9557 * past EOF. Return an error indicator back 9558 * but don't destroy the pages (yet). 9559 */ 9560 error = NFS_EOF; 9561 } 9562 mutex_exit(&rp->r_statelock); 9563 } else if (error == EACCES && last_time == FALSE) { 9564 goto read_again; 9565 } 9566 } else { 9567 if (!(rp->r_flags & R4STALE)) { 9568 write_again: 9569 /* 9570 * Releases the osp, if it is provided. 9571 * Puts a hold on the cred_otw and the new 9572 * osp (if found). 9573 */ 9574 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 9575 &first_time, &last_time); 9576 mutex_enter(&rp->r_statelock); 9577 count = MIN(bp->b_bcount, rp->r_size - offset); 9578 mutex_exit(&rp->r_statelock); 9579 if (count < 0) 9580 cmn_err(CE_PANIC, "nfs4_bio: write count < 0"); 9581 #ifdef DEBUG 9582 if (count == 0) { 9583 zoneid_t zoneid = getzoneid(); 9584 9585 zcmn_err(zoneid, CE_WARN, 9586 "nfs4_bio: zero length write at %lld", 9587 offset); 9588 zcmn_err(zoneid, CE_CONT, "flags=0x%x, " 9589 "b_bcount=%ld, file size=%lld", 9590 rp->r_flags, (long)bp->b_bcount, 9591 rp->r_size); 9592 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh); 9593 if (nfs4_bio_do_stop) 9594 debug_enter("nfs4_bio"); 9595 } 9596 #endif 9597 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset, 9598 count, cred_otw, stab_comm); 9599 if (error == EACCES && last_time == FALSE) { 9600 crfree(cred_otw); 9601 goto write_again; 9602 } 9603 bp->b_error = error; 9604 if (error && error != EINTR && 9605 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) { 9606 /* 9607 * Don't print EDQUOT errors on the console. 9608 * Don't print asynchronous EACCES errors. 9609 * Don't print EFBIG errors. 9610 * Print all other write errors. 9611 */ 9612 if (error != EDQUOT && error != EFBIG && 9613 (error != EACCES || 9614 !(bp->b_flags & B_ASYNC))) 9615 nfs4_write_error(bp->b_vp, 9616 error, cred_otw); 9617 /* 9618 * Update r_error and r_flags as appropriate. 9619 * If the error was ESTALE, then mark the 9620 * rnode as not being writeable and save 9621 * the error status. Otherwise, save any 9622 * errors which occur from asynchronous 9623 * page invalidations. Any errors occurring 9624 * from other operations should be saved 9625 * by the caller. 9626 */ 9627 mutex_enter(&rp->r_statelock); 9628 if (error == ESTALE) { 9629 rp->r_flags |= R4STALE; 9630 if (!rp->r_error) 9631 rp->r_error = error; 9632 } else if (!rp->r_error && 9633 (bp->b_flags & 9634 (B_INVAL|B_FORCE|B_ASYNC)) == 9635 (B_INVAL|B_FORCE|B_ASYNC)) { 9636 rp->r_error = error; 9637 } 9638 mutex_exit(&rp->r_statelock); 9639 } 9640 crfree(cred_otw); 9641 } else { 9642 error = rp->r_error; 9643 /* 9644 * A close may have cleared r_error, if so, 9645 * propagate ESTALE error return properly 9646 */ 9647 if (error == 0) 9648 error = ESTALE; 9649 } 9650 } 9651 9652 if (error != 0 && error != NFS_EOF) 9653 bp->b_flags |= B_ERROR; 9654 9655 if (osp) 9656 open_stream_rele(osp, rp); 9657 9658 DTRACE_IO1(done, struct buf *, bp); 9659 9660 return (error); 9661 } 9662 9663 /* ARGSUSED */ 9664 int 9665 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 9666 { 9667 return (EREMOTE); 9668 } 9669 9670 /* ARGSUSED2 */ 9671 int 9672 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9673 { 9674 rnode4_t *rp = VTOR4(vp); 9675 9676 if (!write_lock) { 9677 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9678 return (V_WRITELOCK_FALSE); 9679 } 9680 9681 if ((rp->r_flags & R4DIRECTIO) || 9682 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) { 9683 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 9684 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp)) 9685 return (V_WRITELOCK_FALSE); 9686 nfs_rw_exit(&rp->r_rwlock); 9687 } 9688 9689 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 9690 return (V_WRITELOCK_TRUE); 9691 } 9692 9693 /* ARGSUSED */ 9694 void 9695 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 9696 { 9697 rnode4_t *rp = VTOR4(vp); 9698 9699 nfs_rw_exit(&rp->r_rwlock); 9700 } 9701 9702 /* ARGSUSED */ 9703 static int 9704 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 9705 { 9706 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9707 return (EIO); 9708 9709 /* 9710 * Because we stuff the readdir cookie into the offset field 9711 * someone may attempt to do an lseek with the cookie which 9712 * we want to succeed. 9713 */ 9714 if (vp->v_type == VDIR) 9715 return (0); 9716 if (*noffp < 0) 9717 return (EINVAL); 9718 return (0); 9719 } 9720 9721 9722 /* 9723 * Return all the pages from [off..off+len) in file 9724 */ 9725 /* ARGSUSED */ 9726 static int 9727 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 9728 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9729 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 9730 { 9731 rnode4_t *rp; 9732 int error; 9733 mntinfo4_t *mi; 9734 9735 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9736 return (EIO); 9737 rp = VTOR4(vp); 9738 if (IS_SHADOW(vp, rp)) 9739 vp = RTOV4(rp); 9740 9741 if (vp->v_flag & VNOMAP) 9742 return (ENOSYS); 9743 9744 if (protp != NULL) 9745 *protp = PROT_ALL; 9746 9747 /* 9748 * Now validate that the caches are up to date. 9749 */ 9750 if (error = nfs4_validate_caches(vp, cr)) 9751 return (error); 9752 9753 mi = VTOMI4(vp); 9754 retry: 9755 mutex_enter(&rp->r_statelock); 9756 9757 /* 9758 * Don't create dirty pages faster than they 9759 * can be cleaned so that the system doesn't 9760 * get imbalanced. If the async queue is 9761 * maxed out, then wait for it to drain before 9762 * creating more dirty pages. Also, wait for 9763 * any threads doing pagewalks in the vop_getattr 9764 * entry points so that they don't block for 9765 * long periods. 9766 */ 9767 if (rw == S_CREATE) { 9768 while ((mi->mi_max_threads != 0 && 9769 rp->r_awcount > 2 * mi->mi_max_threads) || 9770 rp->r_gcount > 0) 9771 cv_wait(&rp->r_cv, &rp->r_statelock); 9772 } 9773 9774 /* 9775 * If we are getting called as a side effect of an nfs_write() 9776 * operation the local file size might not be extended yet. 9777 * In this case we want to be able to return pages of zeroes. 9778 */ 9779 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 9780 NFS4_DEBUG(nfs4_pageio_debug, 9781 (CE_NOTE, "getpage beyond EOF: off=%lld, " 9782 "len=%llu, size=%llu, attrsize =%llu", off, 9783 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size)); 9784 mutex_exit(&rp->r_statelock); 9785 return (EFAULT); /* beyond EOF */ 9786 } 9787 9788 mutex_exit(&rp->r_statelock); 9789 9790 error = pvn_getpages(nfs4_getapage, vp, off, len, protp, 9791 pl, plsz, seg, addr, rw, cr); 9792 NFS4_DEBUG(nfs4_pageio_debug && error, 9793 (CE_NOTE, "getpages error %d; off=%lld, len=%lld", 9794 error, off, (u_longlong_t)len)); 9795 9796 switch (error) { 9797 case NFS_EOF: 9798 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE); 9799 goto retry; 9800 case ESTALE: 9801 nfs4_purge_stale_fh(error, vp, cr); 9802 } 9803 9804 return (error); 9805 } 9806 9807 /* 9808 * Called from pvn_getpages to get a particular page. 9809 */ 9810 /* ARGSUSED */ 9811 static int 9812 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 9813 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 9814 enum seg_rw rw, cred_t *cr) 9815 { 9816 rnode4_t *rp; 9817 uint_t bsize; 9818 struct buf *bp; 9819 page_t *pp; 9820 u_offset_t lbn; 9821 u_offset_t io_off; 9822 u_offset_t blkoff; 9823 u_offset_t rablkoff; 9824 size_t io_len; 9825 uint_t blksize; 9826 int error; 9827 int readahead; 9828 int readahead_issued = 0; 9829 int ra_window; /* readahead window */ 9830 page_t *pagefound; 9831 page_t *savepp; 9832 9833 if (nfs_zone() != VTOMI4(vp)->mi_zone) 9834 return (EIO); 9835 9836 rp = VTOR4(vp); 9837 ASSERT(!IS_SHADOW(vp, rp)); 9838 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 9839 9840 reread: 9841 bp = NULL; 9842 pp = NULL; 9843 pagefound = NULL; 9844 9845 if (pl != NULL) 9846 pl[0] = NULL; 9847 9848 error = 0; 9849 lbn = off / bsize; 9850 blkoff = lbn * bsize; 9851 9852 /* 9853 * Queueing up the readahead before doing the synchronous read 9854 * results in a significant increase in read throughput because 9855 * of the increased parallelism between the async threads and 9856 * the process context. 9857 */ 9858 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 9859 rw != S_CREATE && 9860 !(vp->v_flag & VNOCACHE)) { 9861 mutex_enter(&rp->r_statelock); 9862 9863 /* 9864 * Calculate the number of readaheads to do. 9865 * a) No readaheads at offset = 0. 9866 * b) Do maximum(nfs4_nra) readaheads when the readahead 9867 * window is closed. 9868 * c) Do readaheads between 1 to (nfs4_nra - 1) depending 9869 * upon how far the readahead window is open or close. 9870 * d) No readaheads if rp->r_nextr is not within the scope 9871 * of the readahead window (random i/o). 9872 */ 9873 9874 if (off == 0) 9875 readahead = 0; 9876 else if (blkoff == rp->r_nextr) 9877 readahead = nfs4_nra; 9878 else if (rp->r_nextr > blkoff && 9879 ((ra_window = (rp->r_nextr - blkoff) / bsize) 9880 <= (nfs4_nra - 1))) 9881 readahead = nfs4_nra - ra_window; 9882 else 9883 readahead = 0; 9884 9885 rablkoff = rp->r_nextr; 9886 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 9887 mutex_exit(&rp->r_statelock); 9888 if (nfs4_async_readahead(vp, rablkoff + bsize, 9889 addr + (rablkoff + bsize - off), 9890 seg, cr, nfs4_readahead) < 0) { 9891 mutex_enter(&rp->r_statelock); 9892 break; 9893 } 9894 readahead--; 9895 rablkoff += bsize; 9896 /* 9897 * Indicate that we did a readahead so 9898 * readahead offset is not updated 9899 * by the synchronous read below. 9900 */ 9901 readahead_issued = 1; 9902 mutex_enter(&rp->r_statelock); 9903 /* 9904 * set readahead offset to 9905 * offset of last async readahead 9906 * request. 9907 */ 9908 rp->r_nextr = rablkoff; 9909 } 9910 mutex_exit(&rp->r_statelock); 9911 } 9912 9913 again: 9914 if ((pagefound = page_exists(vp, off)) == NULL) { 9915 if (pl == NULL) { 9916 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr, 9917 nfs4_readahead); 9918 } else if (rw == S_CREATE) { 9919 /* 9920 * Block for this page is not allocated, or the offset 9921 * is beyond the current allocation size, or we're 9922 * allocating a swap slot and the page was not found, 9923 * so allocate it and return a zero page. 9924 */ 9925 if ((pp = page_create_va(vp, off, 9926 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 9927 cmn_err(CE_PANIC, "nfs4_getapage: page_create"); 9928 io_len = PAGESIZE; 9929 mutex_enter(&rp->r_statelock); 9930 rp->r_nextr = off + PAGESIZE; 9931 mutex_exit(&rp->r_statelock); 9932 } else { 9933 /* 9934 * Need to go to server to get a block 9935 */ 9936 mutex_enter(&rp->r_statelock); 9937 if (blkoff < rp->r_size && 9938 blkoff + bsize > rp->r_size) { 9939 /* 9940 * If less than a block left in 9941 * file read less than a block. 9942 */ 9943 if (rp->r_size <= off) { 9944 /* 9945 * Trying to access beyond EOF, 9946 * set up to get at least one page. 9947 */ 9948 blksize = off + PAGESIZE - blkoff; 9949 } else 9950 blksize = rp->r_size - blkoff; 9951 } else if ((off == 0) || 9952 (off != rp->r_nextr && !readahead_issued)) { 9953 blksize = PAGESIZE; 9954 blkoff = off; /* block = page here */ 9955 } else 9956 blksize = bsize; 9957 mutex_exit(&rp->r_statelock); 9958 9959 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 9960 &io_len, blkoff, blksize, 0); 9961 9962 /* 9963 * Some other thread has entered the page, 9964 * so just use it. 9965 */ 9966 if (pp == NULL) 9967 goto again; 9968 9969 /* 9970 * Now round the request size up to page boundaries. 9971 * This ensures that the entire page will be 9972 * initialized to zeroes if EOF is encountered. 9973 */ 9974 io_len = ptob(btopr(io_len)); 9975 9976 bp = pageio_setup(pp, io_len, vp, B_READ); 9977 ASSERT(bp != NULL); 9978 9979 /* 9980 * pageio_setup should have set b_addr to 0. This 9981 * is correct since we want to do I/O on a page 9982 * boundary. bp_mapin will use this addr to calculate 9983 * an offset, and then set b_addr to the kernel virtual 9984 * address it allocated for us. 9985 */ 9986 ASSERT(bp->b_un.b_addr == 0); 9987 9988 bp->b_edev = 0; 9989 bp->b_dev = 0; 9990 bp->b_lblkno = lbtodb(io_off); 9991 bp->b_file = vp; 9992 bp->b_offset = (offset_t)off; 9993 bp_mapin(bp); 9994 9995 /* 9996 * If doing a write beyond what we believe is EOF, 9997 * don't bother trying to read the pages from the 9998 * server, we'll just zero the pages here. We 9999 * don't check that the rw flag is S_WRITE here 10000 * because some implementations may attempt a 10001 * read access to the buffer before copying data. 10002 */ 10003 mutex_enter(&rp->r_statelock); 10004 if (io_off >= rp->r_size && seg == segkmap) { 10005 mutex_exit(&rp->r_statelock); 10006 bzero(bp->b_un.b_addr, io_len); 10007 } else { 10008 mutex_exit(&rp->r_statelock); 10009 error = nfs4_bio(bp, NULL, cr, FALSE); 10010 } 10011 10012 /* 10013 * Unmap the buffer before freeing it. 10014 */ 10015 bp_mapout(bp); 10016 pageio_done(bp); 10017 10018 savepp = pp; 10019 do { 10020 pp->p_fsdata = C_NOCOMMIT; 10021 } while ((pp = pp->p_next) != savepp); 10022 10023 if (error == NFS_EOF) { 10024 /* 10025 * If doing a write system call just return 10026 * zeroed pages, else user tried to get pages 10027 * beyond EOF, return error. We don't check 10028 * that the rw flag is S_WRITE here because 10029 * some implementations may attempt a read 10030 * access to the buffer before copying data. 10031 */ 10032 if (seg == segkmap) 10033 error = 0; 10034 else 10035 error = EFAULT; 10036 } 10037 10038 if (!readahead_issued && !error) { 10039 mutex_enter(&rp->r_statelock); 10040 rp->r_nextr = io_off + io_len; 10041 mutex_exit(&rp->r_statelock); 10042 } 10043 } 10044 } 10045 10046 out: 10047 if (pl == NULL) 10048 return (error); 10049 10050 if (error) { 10051 if (pp != NULL) 10052 pvn_read_done(pp, B_ERROR); 10053 return (error); 10054 } 10055 10056 if (pagefound) { 10057 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 10058 10059 /* 10060 * Page exists in the cache, acquire the appropriate lock. 10061 * If this fails, start all over again. 10062 */ 10063 if ((pp = page_lookup(vp, off, se)) == NULL) { 10064 #ifdef DEBUG 10065 nfs4_lostpage++; 10066 #endif 10067 goto reread; 10068 } 10069 pl[0] = pp; 10070 pl[1] = NULL; 10071 return (0); 10072 } 10073 10074 if (pp != NULL) 10075 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 10076 10077 return (error); 10078 } 10079 10080 static void 10081 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 10082 cred_t *cr) 10083 { 10084 int error; 10085 page_t *pp; 10086 u_offset_t io_off; 10087 size_t io_len; 10088 struct buf *bp; 10089 uint_t bsize, blksize; 10090 rnode4_t *rp = VTOR4(vp); 10091 page_t *savepp; 10092 10093 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10094 10095 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10096 10097 mutex_enter(&rp->r_statelock); 10098 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 10099 /* 10100 * If less than a block left in file read less 10101 * than a block. 10102 */ 10103 blksize = rp->r_size - blkoff; 10104 } else 10105 blksize = bsize; 10106 mutex_exit(&rp->r_statelock); 10107 10108 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 10109 &io_off, &io_len, blkoff, blksize, 1); 10110 /* 10111 * The isra flag passed to the kluster function is 1, we may have 10112 * gotten a return value of NULL for a variety of reasons (# of free 10113 * pages < minfree, someone entered the page on the vnode etc). In all 10114 * cases, we want to punt on the readahead. 10115 */ 10116 if (pp == NULL) 10117 return; 10118 10119 /* 10120 * Now round the request size up to page boundaries. 10121 * This ensures that the entire page will be 10122 * initialized to zeroes if EOF is encountered. 10123 */ 10124 io_len = ptob(btopr(io_len)); 10125 10126 bp = pageio_setup(pp, io_len, vp, B_READ); 10127 ASSERT(bp != NULL); 10128 10129 /* 10130 * pageio_setup should have set b_addr to 0. This is correct since 10131 * we want to do I/O on a page boundary. bp_mapin() will use this addr 10132 * to calculate an offset, and then set b_addr to the kernel virtual 10133 * address it allocated for us. 10134 */ 10135 ASSERT(bp->b_un.b_addr == 0); 10136 10137 bp->b_edev = 0; 10138 bp->b_dev = 0; 10139 bp->b_lblkno = lbtodb(io_off); 10140 bp->b_file = vp; 10141 bp->b_offset = (offset_t)blkoff; 10142 bp_mapin(bp); 10143 10144 /* 10145 * If doing a write beyond what we believe is EOF, don't bother trying 10146 * to read the pages from the server, we'll just zero the pages here. 10147 * We don't check that the rw flag is S_WRITE here because some 10148 * implementations may attempt a read access to the buffer before 10149 * copying data. 10150 */ 10151 mutex_enter(&rp->r_statelock); 10152 if (io_off >= rp->r_size && seg == segkmap) { 10153 mutex_exit(&rp->r_statelock); 10154 bzero(bp->b_un.b_addr, io_len); 10155 error = 0; 10156 } else { 10157 mutex_exit(&rp->r_statelock); 10158 error = nfs4_bio(bp, NULL, cr, TRUE); 10159 if (error == NFS_EOF) 10160 error = 0; 10161 } 10162 10163 /* 10164 * Unmap the buffer before freeing it. 10165 */ 10166 bp_mapout(bp); 10167 pageio_done(bp); 10168 10169 savepp = pp; 10170 do { 10171 pp->p_fsdata = C_NOCOMMIT; 10172 } while ((pp = pp->p_next) != savepp); 10173 10174 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 10175 10176 /* 10177 * In case of error set readahead offset 10178 * to the lowest offset. 10179 * pvn_read_done() calls VN_DISPOSE to destroy the pages 10180 */ 10181 if (error && rp->r_nextr > io_off) { 10182 mutex_enter(&rp->r_statelock); 10183 if (rp->r_nextr > io_off) 10184 rp->r_nextr = io_off; 10185 mutex_exit(&rp->r_statelock); 10186 } 10187 } 10188 10189 /* 10190 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 10191 * If len == 0, do from off to EOF. 10192 * 10193 * The normal cases should be len == 0 && off == 0 (entire vp list) or 10194 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 10195 * (from pageout). 10196 */ 10197 /* ARGSUSED */ 10198 static int 10199 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 10200 caller_context_t *ct) 10201 { 10202 int error; 10203 rnode4_t *rp; 10204 10205 ASSERT(cr != NULL); 10206 10207 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 10208 return (EIO); 10209 10210 rp = VTOR4(vp); 10211 if (IS_SHADOW(vp, rp)) 10212 vp = RTOV4(rp); 10213 10214 /* 10215 * XXX - Why should this check be made here? 10216 */ 10217 if (vp->v_flag & VNOMAP) 10218 return (ENOSYS); 10219 10220 if (len == 0 && !(flags & B_INVAL) && 10221 (vp->v_vfsp->vfs_flag & VFS_RDONLY)) 10222 return (0); 10223 10224 mutex_enter(&rp->r_statelock); 10225 rp->r_count++; 10226 mutex_exit(&rp->r_statelock); 10227 error = nfs4_putpages(vp, off, len, flags, cr); 10228 mutex_enter(&rp->r_statelock); 10229 rp->r_count--; 10230 cv_broadcast(&rp->r_cv); 10231 mutex_exit(&rp->r_statelock); 10232 10233 return (error); 10234 } 10235 10236 /* 10237 * Write out a single page, possibly klustering adjacent dirty pages. 10238 */ 10239 int 10240 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 10241 int flags, cred_t *cr) 10242 { 10243 u_offset_t io_off; 10244 u_offset_t lbn_off; 10245 u_offset_t lbn; 10246 size_t io_len; 10247 uint_t bsize; 10248 int error; 10249 rnode4_t *rp; 10250 10251 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY)); 10252 ASSERT(pp != NULL); 10253 ASSERT(cr != NULL); 10254 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone); 10255 10256 rp = VTOR4(vp); 10257 ASSERT(rp->r_count > 0); 10258 ASSERT(!IS_SHADOW(vp, rp)); 10259 10260 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 10261 lbn = pp->p_offset / bsize; 10262 lbn_off = lbn * bsize; 10263 10264 /* 10265 * Find a kluster that fits in one block, or in 10266 * one page if pages are bigger than blocks. If 10267 * there is less file space allocated than a whole 10268 * page, we'll shorten the i/o request below. 10269 */ 10270 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 10271 roundup(bsize, PAGESIZE), flags); 10272 10273 /* 10274 * pvn_write_kluster shouldn't have returned a page with offset 10275 * behind the original page we were given. Verify that. 10276 */ 10277 ASSERT((pp->p_offset / bsize) >= lbn); 10278 10279 /* 10280 * Now pp will have the list of kept dirty pages marked for 10281 * write back. It will also handle invalidation and freeing 10282 * of pages that are not dirty. Check for page length rounding 10283 * problems. 10284 */ 10285 if (io_off + io_len > lbn_off + bsize) { 10286 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 10287 io_len = lbn_off + bsize - io_off; 10288 } 10289 /* 10290 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10291 * consistent value of r_size. R4MODINPROGRESS is set in writerp4(). 10292 * When R4MODINPROGRESS is set it indicates that a uiomove() is in 10293 * progress and the r_size has not been made consistent with the 10294 * new size of the file. When the uiomove() completes the r_size is 10295 * updated and the R4MODINPROGRESS flag is cleared. 10296 * 10297 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a 10298 * consistent value of r_size. Without this handshaking, it is 10299 * possible that nfs4_bio() picks up the old value of r_size 10300 * before the uiomove() in writerp4() completes. This will result 10301 * in the write through nfs4_bio() being dropped. 10302 * 10303 * More precisely, there is a window between the time the uiomove() 10304 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 10305 * operation intervenes in this window, the page will be picked up, 10306 * because it is dirty (it will be unlocked, unless it was 10307 * pagecreate'd). When the page is picked up as dirty, the dirty 10308 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is 10309 * checked. This will still be the old size. Therefore the page will 10310 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 10311 * the page will be found to be clean and the write will be dropped. 10312 */ 10313 if (rp->r_flags & R4MODINPROGRESS) { 10314 mutex_enter(&rp->r_statelock); 10315 if ((rp->r_flags & R4MODINPROGRESS) && 10316 rp->r_modaddr + MAXBSIZE > io_off && 10317 rp->r_modaddr < io_off + io_len) { 10318 page_t *plist; 10319 /* 10320 * A write is in progress for this region of the file. 10321 * If we did not detect R4MODINPROGRESS here then this 10322 * path through nfs_putapage() would eventually go to 10323 * nfs4_bio() and may not write out all of the data 10324 * in the pages. We end up losing data. So we decide 10325 * to set the modified bit on each page in the page 10326 * list and mark the rnode with R4DIRTY. This write 10327 * will be restarted at some later time. 10328 */ 10329 plist = pp; 10330 while (plist != NULL) { 10331 pp = plist; 10332 page_sub(&plist, pp); 10333 hat_setmod(pp); 10334 page_io_unlock(pp); 10335 page_unlock(pp); 10336 } 10337 rp->r_flags |= R4DIRTY; 10338 mutex_exit(&rp->r_statelock); 10339 if (offp) 10340 *offp = io_off; 10341 if (lenp) 10342 *lenp = io_len; 10343 return (0); 10344 } 10345 mutex_exit(&rp->r_statelock); 10346 } 10347 10348 if (flags & B_ASYNC) { 10349 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr, 10350 nfs4_sync_putapage); 10351 } else 10352 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr); 10353 10354 if (offp) 10355 *offp = io_off; 10356 if (lenp) 10357 *lenp = io_len; 10358 return (error); 10359 } 10360 10361 static int 10362 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 10363 int flags, cred_t *cr) 10364 { 10365 int error; 10366 rnode4_t *rp; 10367 10368 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 10369 10370 flags |= B_WRITE; 10371 10372 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 10373 10374 rp = VTOR4(vp); 10375 10376 if ((error == ENOSPC || error == EDQUOT || error == EFBIG || 10377 error == EACCES) && 10378 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 10379 if (!(rp->r_flags & R4OUTOFSPACE)) { 10380 mutex_enter(&rp->r_statelock); 10381 rp->r_flags |= R4OUTOFSPACE; 10382 mutex_exit(&rp->r_statelock); 10383 } 10384 flags |= B_ERROR; 10385 pvn_write_done(pp, flags); 10386 /* 10387 * If this was not an async thread, then try again to 10388 * write out the pages, but this time, also destroy 10389 * them whether or not the write is successful. This 10390 * will prevent memory from filling up with these 10391 * pages and destroying them is the only alternative 10392 * if they can't be written out. 10393 * 10394 * Don't do this if this is an async thread because 10395 * when the pages are unlocked in pvn_write_done, 10396 * some other thread could have come along, locked 10397 * them, and queued for an async thread. It would be 10398 * possible for all of the async threads to be tied 10399 * up waiting to lock the pages again and they would 10400 * all already be locked and waiting for an async 10401 * thread to handle them. Deadlock. 10402 */ 10403 if (!(flags & B_ASYNC)) { 10404 error = nfs4_putpage(vp, io_off, io_len, 10405 B_INVAL | B_FORCE, cr, NULL); 10406 } 10407 } else { 10408 if (error) 10409 flags |= B_ERROR; 10410 else if (rp->r_flags & R4OUTOFSPACE) { 10411 mutex_enter(&rp->r_statelock); 10412 rp->r_flags &= ~R4OUTOFSPACE; 10413 mutex_exit(&rp->r_statelock); 10414 } 10415 pvn_write_done(pp, flags); 10416 if (freemem < desfree) 10417 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr, 10418 NFS4_WRITE_NOWAIT); 10419 } 10420 10421 return (error); 10422 } 10423 10424 #ifdef DEBUG 10425 int nfs4_force_open_before_mmap = 0; 10426 #endif 10427 10428 /* ARGSUSED */ 10429 static int 10430 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 10431 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10432 caller_context_t *ct) 10433 { 10434 struct segvn_crargs vn_a; 10435 int error = 0; 10436 rnode4_t *rp = VTOR4(vp); 10437 mntinfo4_t *mi = VTOMI4(vp); 10438 10439 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10440 return (EIO); 10441 10442 if (vp->v_flag & VNOMAP) 10443 return (ENOSYS); 10444 10445 if (off < 0 || (off + len) < 0) 10446 return (ENXIO); 10447 10448 if (vp->v_type != VREG) 10449 return (ENODEV); 10450 10451 /* 10452 * If the file is delegated to the client don't do anything. 10453 * If the file is not delegated, then validate the data cache. 10454 */ 10455 mutex_enter(&rp->r_statev4_lock); 10456 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) { 10457 mutex_exit(&rp->r_statev4_lock); 10458 error = nfs4_validate_caches(vp, cr); 10459 if (error) 10460 return (error); 10461 } else { 10462 mutex_exit(&rp->r_statev4_lock); 10463 } 10464 10465 /* 10466 * Check to see if the vnode is currently marked as not cachable. 10467 * This means portions of the file are locked (through VOP_FRLOCK). 10468 * In this case the map request must be refused. We use 10469 * rp->r_lkserlock to avoid a race with concurrent lock requests. 10470 * 10471 * Atomically increment r_inmap after acquiring r_rwlock. The 10472 * idea here is to acquire r_rwlock to block read/write and 10473 * not to protect r_inmap. r_inmap will inform nfs4_read/write() 10474 * that we are in nfs4_map(). Now, r_rwlock is acquired in order 10475 * and we can prevent the deadlock that would have occurred 10476 * when nfs4_addmap() would have acquired it out of order. 10477 * 10478 * Since we are not protecting r_inmap by any lock, we do not 10479 * hold any lock when we decrement it. We atomically decrement 10480 * r_inmap after we release r_lkserlock. 10481 */ 10482 10483 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp))) 10484 return (EINTR); 10485 atomic_inc_uint(&rp->r_inmap); 10486 nfs_rw_exit(&rp->r_rwlock); 10487 10488 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) { 10489 atomic_dec_uint(&rp->r_inmap); 10490 return (EINTR); 10491 } 10492 10493 10494 if (vp->v_flag & VNOCACHE) { 10495 error = EAGAIN; 10496 goto done; 10497 } 10498 10499 /* 10500 * Don't allow concurrent locks and mapping if mandatory locking is 10501 * enabled. 10502 */ 10503 if (flk_has_remote_locks(vp)) { 10504 struct vattr va; 10505 va.va_mask = AT_MODE; 10506 error = nfs4getattr(vp, &va, cr); 10507 if (error != 0) 10508 goto done; 10509 if (MANDLOCK(vp, va.va_mode)) { 10510 error = EAGAIN; 10511 goto done; 10512 } 10513 } 10514 10515 /* 10516 * It is possible that the rnode has a lost lock request that we 10517 * are still trying to recover, and that the request conflicts with 10518 * this map request. 10519 * 10520 * An alternative approach would be for nfs4_safemap() to consider 10521 * queued lock requests when deciding whether to set or clear 10522 * VNOCACHE. This would require the frlock code path to call 10523 * nfs4_safemap() after enqueing a lost request. 10524 */ 10525 if (nfs4_map_lost_lock_conflict(vp)) { 10526 error = EAGAIN; 10527 goto done; 10528 } 10529 10530 as_rangelock(as); 10531 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 10532 if (error != 0) { 10533 as_rangeunlock(as); 10534 goto done; 10535 } 10536 10537 if (vp->v_type == VREG) { 10538 /* 10539 * We need to retrieve the open stream 10540 */ 10541 nfs4_open_stream_t *osp = NULL; 10542 nfs4_open_owner_t *oop = NULL; 10543 10544 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10545 if (oop != NULL) { 10546 /* returns with 'os_sync_lock' held */ 10547 osp = find_open_stream(oop, rp); 10548 open_owner_rele(oop); 10549 } 10550 if (osp == NULL) { 10551 #ifdef DEBUG 10552 if (nfs4_force_open_before_mmap) { 10553 error = EIO; 10554 goto done; 10555 } 10556 #endif 10557 /* returns with 'os_sync_lock' held */ 10558 error = open_and_get_osp(vp, cr, &osp); 10559 if (osp == NULL) { 10560 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10561 "nfs4_map: we tried to OPEN the file " 10562 "but again no osp, so fail with EIO")); 10563 goto done; 10564 } 10565 } 10566 10567 if (osp->os_failed_reopen) { 10568 mutex_exit(&osp->os_sync_lock); 10569 open_stream_rele(osp, rp); 10570 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, 10571 "nfs4_map: os_failed_reopen set on " 10572 "osp %p, cr %p, rp %s", (void *)osp, 10573 (void *)cr, rnode4info(rp))); 10574 error = EIO; 10575 goto done; 10576 } 10577 mutex_exit(&osp->os_sync_lock); 10578 open_stream_rele(osp, rp); 10579 } 10580 10581 vn_a.vp = vp; 10582 vn_a.offset = off; 10583 vn_a.type = (flags & MAP_TYPE); 10584 vn_a.prot = (uchar_t)prot; 10585 vn_a.maxprot = (uchar_t)maxprot; 10586 vn_a.flags = (flags & ~MAP_TYPE); 10587 vn_a.cred = cr; 10588 vn_a.amp = NULL; 10589 vn_a.szc = 0; 10590 vn_a.lgrp_mem_policy_flags = 0; 10591 10592 error = as_map(as, *addrp, len, segvn_create, &vn_a); 10593 as_rangeunlock(as); 10594 10595 done: 10596 nfs_rw_exit(&rp->r_lkserlock); 10597 atomic_dec_uint(&rp->r_inmap); 10598 return (error); 10599 } 10600 10601 /* 10602 * We're most likely dealing with a kernel module that likes to READ 10603 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets 10604 * officially OPEN the file to create the necessary client state 10605 * for bookkeeping of os_mmap_read/write counts. 10606 * 10607 * Since VOP_MAP only passes in a pointer to the vnode rather than 10608 * a double pointer, we can't handle the case where nfs4open_otw() 10609 * returns a different vnode than the one passed into VOP_MAP (since 10610 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case, 10611 * we return NULL and let nfs4_map() fail. Note: the only case where 10612 * this should happen is if the file got removed and replaced with the 10613 * same name on the server (in addition to the fact that we're trying 10614 * to VOP_MAP withouth VOP_OPENing the file in the first place). 10615 */ 10616 static int 10617 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp) 10618 { 10619 rnode4_t *rp, *drp; 10620 vnode_t *dvp, *open_vp; 10621 char file_name[MAXNAMELEN]; 10622 int just_created; 10623 nfs4_open_stream_t *osp; 10624 nfs4_open_owner_t *oop; 10625 int error; 10626 10627 *ospp = NULL; 10628 open_vp = map_vp; 10629 10630 rp = VTOR4(open_vp); 10631 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0) 10632 return (error); 10633 drp = VTOR4(dvp); 10634 10635 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) { 10636 VN_RELE(dvp); 10637 return (EINTR); 10638 } 10639 10640 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) { 10641 nfs_rw_exit(&drp->r_rwlock); 10642 VN_RELE(dvp); 10643 return (error); 10644 } 10645 10646 mutex_enter(&rp->r_statev4_lock); 10647 if (rp->created_v4) { 10648 rp->created_v4 = 0; 10649 mutex_exit(&rp->r_statev4_lock); 10650 10651 dnlc_update(dvp, file_name, open_vp); 10652 /* This is needed so we don't bump the open ref count */ 10653 just_created = 1; 10654 } else { 10655 mutex_exit(&rp->r_statev4_lock); 10656 just_created = 0; 10657 } 10658 10659 VN_HOLD(map_vp); 10660 10661 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0, 10662 just_created); 10663 if (error) { 10664 nfs_rw_exit(&drp->r_rwlock); 10665 VN_RELE(dvp); 10666 VN_RELE(map_vp); 10667 return (error); 10668 } 10669 10670 nfs_rw_exit(&drp->r_rwlock); 10671 VN_RELE(dvp); 10672 10673 /* 10674 * If nfs4open_otw() returned a different vnode then "undo" 10675 * the open and return failure to the caller. 10676 */ 10677 if (!VN_CMP(open_vp, map_vp)) { 10678 nfs4_error_t e; 10679 10680 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10681 "open returned a different vnode")); 10682 /* 10683 * If there's an error, ignore it, 10684 * and let VOP_INACTIVE handle it. 10685 */ 10686 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10687 CLOSE_NORM, 0, 0, 0); 10688 VN_RELE(map_vp); 10689 return (EIO); 10690 } 10691 10692 VN_RELE(map_vp); 10693 10694 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp)); 10695 if (!oop) { 10696 nfs4_error_t e; 10697 10698 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: " 10699 "no open owner")); 10700 /* 10701 * If there's an error, ignore it, 10702 * and let VOP_INACTIVE handle it. 10703 */ 10704 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e, 10705 CLOSE_NORM, 0, 0, 0); 10706 return (EIO); 10707 } 10708 osp = find_open_stream(oop, rp); 10709 open_owner_rele(oop); 10710 *ospp = osp; 10711 return (0); 10712 } 10713 10714 /* 10715 * Please be aware that when this function is called, the address space write 10716 * a_lock is held. Do not put over the wire calls in this function. 10717 */ 10718 /* ARGSUSED */ 10719 static int 10720 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 10721 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 10722 caller_context_t *ct) 10723 { 10724 rnode4_t *rp; 10725 int error = 0; 10726 mntinfo4_t *mi; 10727 10728 mi = VTOMI4(vp); 10729 rp = VTOR4(vp); 10730 10731 if (nfs_zone() != mi->mi_zone) 10732 return (EIO); 10733 if (vp->v_flag & VNOMAP) 10734 return (ENOSYS); 10735 10736 /* 10737 * Don't need to update the open stream first, since this 10738 * mmap can't add any additional share access that isn't 10739 * already contained in the open stream (for the case where we 10740 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't 10741 * take into account os_mmap_read[write] counts). 10742 */ 10743 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 10744 10745 if (vp->v_type == VREG) { 10746 /* 10747 * We need to retrieve the open stream and update the counts. 10748 * If there is no open stream here, something is wrong. 10749 */ 10750 nfs4_open_stream_t *osp = NULL; 10751 nfs4_open_owner_t *oop = NULL; 10752 10753 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 10754 if (oop != NULL) { 10755 /* returns with 'os_sync_lock' held */ 10756 osp = find_open_stream(oop, rp); 10757 open_owner_rele(oop); 10758 } 10759 if (osp == NULL) { 10760 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, 10761 "nfs4_addmap: we should have an osp" 10762 "but we don't, so fail with EIO")); 10763 error = EIO; 10764 goto out; 10765 } 10766 10767 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p," 10768 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot)); 10769 10770 /* 10771 * Update the map count in the open stream. 10772 * This is necessary in the case where we 10773 * open/mmap/close/, then the server reboots, and we 10774 * attempt to reopen. If the mmap doesn't add share 10775 * access then we send an invalid reopen with 10776 * access = NONE. 10777 * 10778 * We need to specifically check each PROT_* so a mmap 10779 * call of (PROT_WRITE | PROT_EXEC) will ensure us both 10780 * read and write access. A simple comparison of prot 10781 * to ~PROT_WRITE to determine read access is insufficient 10782 * since prot can be |= with PROT_USER, etc. 10783 */ 10784 10785 /* 10786 * Unless we're MAP_SHARED, no sense in adding os_mmap_write 10787 */ 10788 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 10789 osp->os_mmap_write += btopr(len); 10790 if (maxprot & PROT_READ) 10791 osp->os_mmap_read += btopr(len); 10792 if (maxprot & PROT_EXEC) 10793 osp->os_mmap_read += btopr(len); 10794 /* 10795 * Ensure that os_mmap_read gets incremented, even if 10796 * maxprot were to look like PROT_NONE. 10797 */ 10798 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 10799 !(maxprot & PROT_EXEC)) 10800 osp->os_mmap_read += btopr(len); 10801 osp->os_mapcnt += btopr(len); 10802 mutex_exit(&osp->os_sync_lock); 10803 open_stream_rele(osp, rp); 10804 } 10805 10806 out: 10807 /* 10808 * If we got an error, then undo our 10809 * incrementing of 'r_mapcnt'. 10810 */ 10811 10812 if (error) { 10813 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len)); 10814 ASSERT(rp->r_mapcnt >= 0); 10815 } 10816 return (error); 10817 } 10818 10819 /* ARGSUSED */ 10820 static int 10821 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) 10822 { 10823 10824 return (VTOR4(vp1) == VTOR4(vp2)); 10825 } 10826 10827 /* ARGSUSED */ 10828 static int 10829 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10830 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, 10831 caller_context_t *ct) 10832 { 10833 int rc; 10834 u_offset_t start, end; 10835 rnode4_t *rp; 10836 int error = 0, intr = INTR4(vp); 10837 nfs4_error_t e; 10838 10839 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10840 return (EIO); 10841 10842 /* check for valid cmd parameter */ 10843 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 10844 return (EINVAL); 10845 10846 /* Verify l_type. */ 10847 switch (bfp->l_type) { 10848 case F_RDLCK: 10849 if (cmd != F_GETLK && !(flag & FREAD)) 10850 return (EBADF); 10851 break; 10852 case F_WRLCK: 10853 if (cmd != F_GETLK && !(flag & FWRITE)) 10854 return (EBADF); 10855 break; 10856 case F_UNLCK: 10857 intr = 0; 10858 break; 10859 10860 default: 10861 return (EINVAL); 10862 } 10863 10864 /* check the validity of the lock range */ 10865 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 10866 return (rc); 10867 if (rc = flk_check_lock_data(start, end, MAXEND)) 10868 return (rc); 10869 10870 /* 10871 * If the filesystem is mounted using local locking, pass the 10872 * request off to the local locking code. 10873 */ 10874 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) { 10875 if (cmd == F_SETLK || cmd == F_SETLKW) { 10876 /* 10877 * For complete safety, we should be holding 10878 * r_lkserlock. However, we can't call 10879 * nfs4_safelock and then fs_frlock while 10880 * holding r_lkserlock, so just invoke 10881 * nfs4_safelock and expect that this will 10882 * catch enough of the cases. 10883 */ 10884 if (!nfs4_safelock(vp, bfp, cr)) 10885 return (EAGAIN); 10886 } 10887 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 10888 } 10889 10890 rp = VTOR4(vp); 10891 10892 /* 10893 * Check whether the given lock request can proceed, given the 10894 * current file mappings. 10895 */ 10896 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 10897 return (EINTR); 10898 if (cmd == F_SETLK || cmd == F_SETLKW) { 10899 if (!nfs4_safelock(vp, bfp, cr)) { 10900 rc = EAGAIN; 10901 goto done; 10902 } 10903 } 10904 10905 /* 10906 * Flush the cache after waiting for async I/O to finish. For new 10907 * locks, this is so that the process gets the latest bits from the 10908 * server. For unlocks, this is so that other clients see the 10909 * latest bits once the file has been unlocked. If currently dirty 10910 * pages can't be flushed, then don't allow a lock to be set. But 10911 * allow unlocks to succeed, to avoid having orphan locks on the 10912 * server. 10913 */ 10914 if (cmd != F_GETLK) { 10915 mutex_enter(&rp->r_statelock); 10916 while (rp->r_count > 0) { 10917 if (intr) { 10918 klwp_t *lwp = ttolwp(curthread); 10919 10920 if (lwp != NULL) 10921 lwp->lwp_nostop++; 10922 if (cv_wait_sig(&rp->r_cv, 10923 &rp->r_statelock) == 0) { 10924 if (lwp != NULL) 10925 lwp->lwp_nostop--; 10926 rc = EINTR; 10927 break; 10928 } 10929 if (lwp != NULL) 10930 lwp->lwp_nostop--; 10931 } else 10932 cv_wait(&rp->r_cv, &rp->r_statelock); 10933 } 10934 mutex_exit(&rp->r_statelock); 10935 if (rc != 0) 10936 goto done; 10937 error = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 10938 if (error) { 10939 if (error == ENOSPC || error == EDQUOT) { 10940 mutex_enter(&rp->r_statelock); 10941 if (!rp->r_error) 10942 rp->r_error = error; 10943 mutex_exit(&rp->r_statelock); 10944 } 10945 if (bfp->l_type != F_UNLCK) { 10946 rc = ENOLCK; 10947 goto done; 10948 } 10949 } 10950 } 10951 10952 /* 10953 * Call the lock manager to do the real work of contacting 10954 * the server and obtaining the lock. 10955 */ 10956 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, flag, offset, 10957 cr, &e, NULL, NULL); 10958 rc = e.error; 10959 10960 if (rc == 0) 10961 nfs4_lockcompletion(vp, cmd); 10962 10963 done: 10964 nfs_rw_exit(&rp->r_lkserlock); 10965 10966 return (rc); 10967 } 10968 10969 /* 10970 * Free storage space associated with the specified vnode. The portion 10971 * to be freed is specified by bfp->l_start and bfp->l_len (already 10972 * normalized to a "whence" of 0). 10973 * 10974 * This is an experimental facility whose continued existence is not 10975 * guaranteed. Currently, we only support the special case 10976 * of l_len == 0, meaning free to end of file. 10977 */ 10978 /* ARGSUSED */ 10979 static int 10980 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 10981 offset_t offset, cred_t *cr, caller_context_t *ct) 10982 { 10983 int error; 10984 10985 if (nfs_zone() != VTOMI4(vp)->mi_zone) 10986 return (EIO); 10987 ASSERT(vp->v_type == VREG); 10988 if (cmd != F_FREESP) 10989 return (EINVAL); 10990 10991 error = convoff(vp, bfp, 0, offset); 10992 if (!error) { 10993 ASSERT(bfp->l_start >= 0); 10994 if (bfp->l_len == 0) { 10995 struct vattr va; 10996 10997 va.va_mask = AT_SIZE; 10998 va.va_size = bfp->l_start; 10999 error = nfs4setattr(vp, &va, 0, cr, NULL); 11000 11001 if (error == 0 && bfp->l_start == 0) 11002 vnevent_truncate(vp, ct); 11003 } else 11004 error = EINVAL; 11005 } 11006 11007 return (error); 11008 } 11009 11010 /* ARGSUSED */ 11011 int 11012 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 11013 { 11014 rnode4_t *rp; 11015 rp = VTOR4(vp); 11016 11017 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) { 11018 vp = RTOV4(rp); 11019 } 11020 *vpp = vp; 11021 return (0); 11022 } 11023 11024 /* 11025 * Setup and add an address space callback to do the work of the delmap call. 11026 * The callback will (and must be) deleted in the actual callback function. 11027 * 11028 * This is done in order to take care of the problem that we have with holding 11029 * the address space's a_lock for a long period of time (e.g. if the NFS server 11030 * is down). Callbacks will be executed in the address space code while the 11031 * a_lock is not held. Holding the address space's a_lock causes things such 11032 * as ps and fork to hang because they are trying to acquire this lock as well. 11033 */ 11034 /* ARGSUSED */ 11035 static int 11036 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 11037 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 11038 caller_context_t *ct) 11039 { 11040 int caller_found; 11041 int error; 11042 rnode4_t *rp; 11043 nfs4_delmap_args_t *dmapp; 11044 nfs4_delmapcall_t *delmap_call; 11045 11046 if (vp->v_flag & VNOMAP) 11047 return (ENOSYS); 11048 11049 /* 11050 * A process may not change zones if it has NFS pages mmap'ed 11051 * in, so we can't legitimately get here from the wrong zone. 11052 */ 11053 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11054 11055 rp = VTOR4(vp); 11056 11057 /* 11058 * The way that the address space of this process deletes its mapping 11059 * of this file is via the following call chains: 11060 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11061 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap() 11062 * 11063 * With the use of address space callbacks we are allowed to drop the 11064 * address space lock, a_lock, while executing the NFS operations that 11065 * need to go over the wire. Returning EAGAIN to the caller of this 11066 * function is what drives the execution of the callback that we add 11067 * below. The callback will be executed by the address space code 11068 * after dropping the a_lock. When the callback is finished, since 11069 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 11070 * is called again on the same segment to finish the rest of the work 11071 * that needs to happen during unmapping. 11072 * 11073 * This action of calling back into the segment driver causes 11074 * nfs4_delmap() to get called again, but since the callback was 11075 * already executed at this point, it already did the work and there 11076 * is nothing left for us to do. 11077 * 11078 * To Summarize: 11079 * - The first time nfs4_delmap is called by the current thread is when 11080 * we add the caller associated with this delmap to the delmap caller 11081 * list, add the callback, and return EAGAIN. 11082 * - The second time in this call chain when nfs4_delmap is called we 11083 * will find this caller in the delmap caller list and realize there 11084 * is no more work to do thus removing this caller from the list and 11085 * returning the error that was set in the callback execution. 11086 */ 11087 caller_found = nfs4_find_and_delete_delmapcall(rp, &error); 11088 if (caller_found) { 11089 /* 11090 * 'error' is from the actual delmap operations. To avoid 11091 * hangs, we need to handle the return of EAGAIN differently 11092 * since this is what drives the callback execution. 11093 * In this case, we don't want to return EAGAIN and do the 11094 * callback execution because there are none to execute. 11095 */ 11096 if (error == EAGAIN) 11097 return (0); 11098 else 11099 return (error); 11100 } 11101 11102 /* current caller was not in the list */ 11103 delmap_call = nfs4_init_delmapcall(); 11104 11105 mutex_enter(&rp->r_statelock); 11106 list_insert_tail(&rp->r_indelmap, delmap_call); 11107 mutex_exit(&rp->r_statelock); 11108 11109 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP); 11110 11111 dmapp->vp = vp; 11112 dmapp->off = off; 11113 dmapp->addr = addr; 11114 dmapp->len = len; 11115 dmapp->prot = prot; 11116 dmapp->maxprot = maxprot; 11117 dmapp->flags = flags; 11118 dmapp->cr = cr; 11119 dmapp->caller = delmap_call; 11120 11121 error = as_add_callback(as, nfs4_delmap_callback, dmapp, 11122 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 11123 11124 return (error ? error : EAGAIN); 11125 } 11126 11127 static nfs4_delmapcall_t * 11128 nfs4_init_delmapcall() 11129 { 11130 nfs4_delmapcall_t *delmap_call; 11131 11132 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP); 11133 delmap_call->call_id = curthread; 11134 delmap_call->error = 0; 11135 11136 return (delmap_call); 11137 } 11138 11139 static void 11140 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call) 11141 { 11142 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t)); 11143 } 11144 11145 /* 11146 * Searches for the current delmap caller (based on curthread) in the list of 11147 * callers. If it is found, we remove it and free the delmap caller. 11148 * Returns: 11149 * 0 if the caller wasn't found 11150 * 1 if the caller was found, removed and freed. *errp will be set 11151 * to what the result of the delmap was. 11152 */ 11153 static int 11154 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp) 11155 { 11156 nfs4_delmapcall_t *delmap_call; 11157 11158 /* 11159 * If the list doesn't exist yet, we create it and return 11160 * that the caller wasn't found. No list = no callers. 11161 */ 11162 mutex_enter(&rp->r_statelock); 11163 if (!(rp->r_flags & R4DELMAPLIST)) { 11164 /* The list does not exist */ 11165 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t), 11166 offsetof(nfs4_delmapcall_t, call_node)); 11167 rp->r_flags |= R4DELMAPLIST; 11168 mutex_exit(&rp->r_statelock); 11169 return (0); 11170 } else { 11171 /* The list exists so search it */ 11172 for (delmap_call = list_head(&rp->r_indelmap); 11173 delmap_call != NULL; 11174 delmap_call = list_next(&rp->r_indelmap, delmap_call)) { 11175 if (delmap_call->call_id == curthread) { 11176 /* current caller is in the list */ 11177 *errp = delmap_call->error; 11178 list_remove(&rp->r_indelmap, delmap_call); 11179 mutex_exit(&rp->r_statelock); 11180 nfs4_free_delmapcall(delmap_call); 11181 return (1); 11182 } 11183 } 11184 } 11185 mutex_exit(&rp->r_statelock); 11186 return (0); 11187 } 11188 11189 /* 11190 * Remove some pages from an mmap'd vnode. Just update the 11191 * count of pages. If doing close-to-open, then flush and 11192 * commit all of the pages associated with this file. 11193 * Otherwise, start an asynchronous page flush to write out 11194 * any dirty pages. This will also associate a credential 11195 * with the rnode which can be used to write the pages. 11196 */ 11197 /* ARGSUSED */ 11198 static void 11199 nfs4_delmap_callback(struct as *as, void *arg, uint_t event) 11200 { 11201 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11202 rnode4_t *rp; 11203 mntinfo4_t *mi; 11204 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg; 11205 11206 rp = VTOR4(dmapp->vp); 11207 mi = VTOMI4(dmapp->vp); 11208 11209 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 11210 ASSERT(rp->r_mapcnt >= 0); 11211 11212 /* 11213 * Initiate a page flush and potential commit if there are 11214 * pages, the file system was not mounted readonly, the segment 11215 * was mapped shared, and the pages themselves were writeable. 11216 */ 11217 if (nfs4_has_pages(dmapp->vp) && 11218 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) && 11219 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 11220 mutex_enter(&rp->r_statelock); 11221 rp->r_flags |= R4DIRTY; 11222 mutex_exit(&rp->r_statelock); 11223 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off, 11224 dmapp->len, dmapp->cr); 11225 if (!e.error) { 11226 mutex_enter(&rp->r_statelock); 11227 e.error = rp->r_error; 11228 rp->r_error = 0; 11229 mutex_exit(&rp->r_statelock); 11230 } 11231 } else 11232 e.error = 0; 11233 11234 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) 11235 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len, 11236 B_INVAL, dmapp->cr, NULL); 11237 11238 if (e.error) { 11239 e.stat = puterrno4(e.error); 11240 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11241 OP_COMMIT, FALSE, NULL, 0, dmapp->vp); 11242 dmapp->caller->error = e.error; 11243 } 11244 11245 /* Check to see if we need to close the file */ 11246 11247 if (dmapp->vp->v_type == VREG) { 11248 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e, 11249 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags); 11250 11251 if (e.error != 0 || e.stat != NFS4_OK) { 11252 /* 11253 * Since it is possible that e.error == 0 and 11254 * e.stat != NFS4_OK (and vice versa), 11255 * we do the proper checking in order to get both 11256 * e.error and e.stat reporting the correct info. 11257 */ 11258 if (e.stat == NFS4_OK) 11259 e.stat = puterrno4(e.error); 11260 if (e.error == 0) 11261 e.error = geterrno4(e.stat); 11262 11263 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0, 11264 OP_CLOSE, FALSE, NULL, 0, dmapp->vp); 11265 dmapp->caller->error = e.error; 11266 } 11267 } 11268 11269 (void) as_delete_callback(as, arg); 11270 kmem_free(dmapp, sizeof (nfs4_delmap_args_t)); 11271 } 11272 11273 11274 static uint_t 11275 fattr4_maxfilesize_to_bits(uint64_t ll) 11276 { 11277 uint_t l = 1; 11278 11279 if (ll == 0) { 11280 return (0); 11281 } 11282 11283 if (ll & 0xffffffff00000000) { 11284 l += 32; ll >>= 32; 11285 } 11286 if (ll & 0xffff0000) { 11287 l += 16; ll >>= 16; 11288 } 11289 if (ll & 0xff00) { 11290 l += 8; ll >>= 8; 11291 } 11292 if (ll & 0xf0) { 11293 l += 4; ll >>= 4; 11294 } 11295 if (ll & 0xc) { 11296 l += 2; ll >>= 2; 11297 } 11298 if (ll & 0x2) { 11299 l += 1; 11300 } 11301 return (l); 11302 } 11303 11304 static int 11305 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr) 11306 { 11307 vnode_t *avp = NULL; 11308 int error; 11309 11310 if ((error = nfs4lookup_xattr(vp, "", &avp, 11311 LOOKUP_XATTR, cr)) == 0) 11312 error = do_xattr_exists_check(avp, valp, cr); 11313 if (avp) 11314 VN_RELE(avp); 11315 11316 return (error); 11317 } 11318 11319 /* ARGSUSED */ 11320 int 11321 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 11322 caller_context_t *ct) 11323 { 11324 int error; 11325 hrtime_t t; 11326 rnode4_t *rp; 11327 nfs4_ga_res_t gar; 11328 nfs4_ga_ext_res_t ger; 11329 11330 gar.n4g_ext_res = &ger; 11331 11332 if (nfs_zone() != VTOMI4(vp)->mi_zone) 11333 return (EIO); 11334 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) { 11335 *valp = MAXPATHLEN; 11336 return (0); 11337 } 11338 if (cmd == _PC_ACL_ENABLED) { 11339 *valp = _ACL_ACE_ENABLED; 11340 return (0); 11341 } 11342 11343 rp = VTOR4(vp); 11344 if (cmd == _PC_XATTR_EXISTS) { 11345 /* 11346 * The existence of the xattr directory is not sufficient 11347 * for determining whether generic user attributes exists. 11348 * The attribute directory could only be a transient directory 11349 * used for Solaris sysattr support. Do a small readdir 11350 * to verify if the only entries are sysattrs or not. 11351 * 11352 * pc4_xattr_valid can be only be trusted when r_xattr_dir 11353 * is NULL. Once the xadir vp exists, we can create xattrs, 11354 * and we don't have any way to update the "base" object's 11355 * pc4_xattr_exists from the xattr or xadir. Maybe FEM 11356 * could help out. 11357 */ 11358 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid && 11359 rp->r_xattr_dir == NULL) { 11360 return (nfs4_have_xattrs(vp, valp, cr)); 11361 } 11362 } else { /* OLD CODE */ 11363 if (ATTRCACHE4_VALID(vp)) { 11364 mutex_enter(&rp->r_statelock); 11365 if (rp->r_pathconf.pc4_cache_valid) { 11366 error = 0; 11367 switch (cmd) { 11368 case _PC_FILESIZEBITS: 11369 *valp = 11370 rp->r_pathconf.pc4_filesizebits; 11371 break; 11372 case _PC_LINK_MAX: 11373 *valp = 11374 rp->r_pathconf.pc4_link_max; 11375 break; 11376 case _PC_NAME_MAX: 11377 *valp = 11378 rp->r_pathconf.pc4_name_max; 11379 break; 11380 case _PC_CHOWN_RESTRICTED: 11381 *valp = 11382 rp->r_pathconf.pc4_chown_restricted; 11383 break; 11384 case _PC_NO_TRUNC: 11385 *valp = 11386 rp->r_pathconf.pc4_no_trunc; 11387 break; 11388 default: 11389 error = EINVAL; 11390 break; 11391 } 11392 mutex_exit(&rp->r_statelock); 11393 #ifdef DEBUG 11394 nfs4_pathconf_cache_hits++; 11395 #endif 11396 return (error); 11397 } 11398 mutex_exit(&rp->r_statelock); 11399 } 11400 } 11401 #ifdef DEBUG 11402 nfs4_pathconf_cache_misses++; 11403 #endif 11404 11405 t = gethrtime(); 11406 11407 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr); 11408 11409 if (error) { 11410 mutex_enter(&rp->r_statelock); 11411 rp->r_pathconf.pc4_cache_valid = FALSE; 11412 rp->r_pathconf.pc4_xattr_valid = FALSE; 11413 mutex_exit(&rp->r_statelock); 11414 return (error); 11415 } 11416 11417 /* interpret the max filesize */ 11418 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits = 11419 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize); 11420 11421 /* Store the attributes we just received */ 11422 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL); 11423 11424 switch (cmd) { 11425 case _PC_FILESIZEBITS: 11426 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits; 11427 break; 11428 case _PC_LINK_MAX: 11429 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max; 11430 break; 11431 case _PC_NAME_MAX: 11432 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max; 11433 break; 11434 case _PC_CHOWN_RESTRICTED: 11435 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted; 11436 break; 11437 case _PC_NO_TRUNC: 11438 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc; 11439 break; 11440 case _PC_XATTR_EXISTS: 11441 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) { 11442 if (error = nfs4_have_xattrs(vp, valp, cr)) 11443 return (error); 11444 } 11445 break; 11446 default: 11447 return (EINVAL); 11448 } 11449 11450 return (0); 11451 } 11452 11453 /* 11454 * Called by async thread to do synchronous pageio. Do the i/o, wait 11455 * for it to complete, and cleanup the page list when done. 11456 */ 11457 static int 11458 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11459 int flags, cred_t *cr) 11460 { 11461 int error; 11462 11463 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11464 11465 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11466 if (flags & B_READ) 11467 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 11468 else 11469 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 11470 return (error); 11471 } 11472 11473 /* ARGSUSED */ 11474 static int 11475 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 11476 int flags, cred_t *cr, caller_context_t *ct) 11477 { 11478 int error; 11479 rnode4_t *rp; 11480 11481 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone) 11482 return (EIO); 11483 11484 if (pp == NULL) 11485 return (EINVAL); 11486 11487 rp = VTOR4(vp); 11488 mutex_enter(&rp->r_statelock); 11489 rp->r_count++; 11490 mutex_exit(&rp->r_statelock); 11491 11492 if (flags & B_ASYNC) { 11493 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr, 11494 nfs4_sync_pageio); 11495 } else 11496 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 11497 mutex_enter(&rp->r_statelock); 11498 rp->r_count--; 11499 cv_broadcast(&rp->r_cv); 11500 mutex_exit(&rp->r_statelock); 11501 return (error); 11502 } 11503 11504 /* ARGSUSED */ 11505 static void 11506 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr, 11507 caller_context_t *ct) 11508 { 11509 int error; 11510 rnode4_t *rp; 11511 page_t *plist; 11512 page_t *pptr; 11513 offset3 offset; 11514 count3 len; 11515 k_sigset_t smask; 11516 11517 /* 11518 * We should get called with fl equal to either B_FREE or 11519 * B_INVAL. Any other value is illegal. 11520 * 11521 * The page that we are either supposed to free or destroy 11522 * should be exclusive locked and its io lock should not 11523 * be held. 11524 */ 11525 ASSERT(fl == B_FREE || fl == B_INVAL); 11526 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 11527 11528 rp = VTOR4(vp); 11529 11530 /* 11531 * If the page doesn't need to be committed or we shouldn't 11532 * even bother attempting to commit it, then just make sure 11533 * that the p_fsdata byte is clear and then either free or 11534 * destroy the page as appropriate. 11535 */ 11536 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) { 11537 pp->p_fsdata = C_NOCOMMIT; 11538 if (fl == B_FREE) 11539 page_free(pp, dn); 11540 else 11541 page_destroy(pp, dn); 11542 return; 11543 } 11544 11545 /* 11546 * If there is a page invalidation operation going on, then 11547 * if this is one of the pages being destroyed, then just 11548 * clear the p_fsdata byte and then either free or destroy 11549 * the page as appropriate. 11550 */ 11551 mutex_enter(&rp->r_statelock); 11552 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) { 11553 mutex_exit(&rp->r_statelock); 11554 pp->p_fsdata = C_NOCOMMIT; 11555 if (fl == B_FREE) 11556 page_free(pp, dn); 11557 else 11558 page_destroy(pp, dn); 11559 return; 11560 } 11561 11562 /* 11563 * If we are freeing this page and someone else is already 11564 * waiting to do a commit, then just unlock the page and 11565 * return. That other thread will take care of commiting 11566 * this page. The page can be freed sometime after the 11567 * commit has finished. Otherwise, if the page is marked 11568 * as delay commit, then we may be getting called from 11569 * pvn_write_done, one page at a time. This could result 11570 * in one commit per page, so we end up doing lots of small 11571 * commits instead of fewer larger commits. This is bad, 11572 * we want do as few commits as possible. 11573 */ 11574 if (fl == B_FREE) { 11575 if (rp->r_flags & R4COMMITWAIT) { 11576 page_unlock(pp); 11577 mutex_exit(&rp->r_statelock); 11578 return; 11579 } 11580 if (pp->p_fsdata == C_DELAYCOMMIT) { 11581 pp->p_fsdata = C_COMMIT; 11582 page_unlock(pp); 11583 mutex_exit(&rp->r_statelock); 11584 return; 11585 } 11586 } 11587 11588 /* 11589 * Check to see if there is a signal which would prevent an 11590 * attempt to commit the pages from being successful. If so, 11591 * then don't bother with all of the work to gather pages and 11592 * generate the unsuccessful RPC. Just return from here and 11593 * let the page be committed at some later time. 11594 */ 11595 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT); 11596 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) { 11597 sigunintr(&smask); 11598 page_unlock(pp); 11599 mutex_exit(&rp->r_statelock); 11600 return; 11601 } 11602 sigunintr(&smask); 11603 11604 /* 11605 * We are starting to need to commit pages, so let's try 11606 * to commit as many as possible at once to reduce the 11607 * overhead. 11608 * 11609 * Set the `commit inprogress' state bit. We must 11610 * first wait until any current one finishes. Then 11611 * we initialize the c_pages list with this page. 11612 */ 11613 while (rp->r_flags & R4COMMIT) { 11614 rp->r_flags |= R4COMMITWAIT; 11615 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 11616 rp->r_flags &= ~R4COMMITWAIT; 11617 } 11618 rp->r_flags |= R4COMMIT; 11619 mutex_exit(&rp->r_statelock); 11620 ASSERT(rp->r_commit.c_pages == NULL); 11621 rp->r_commit.c_pages = pp; 11622 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11623 rp->r_commit.c_commlen = PAGESIZE; 11624 11625 /* 11626 * Gather together all other pages which can be committed. 11627 * They will all be chained off r_commit.c_pages. 11628 */ 11629 nfs4_get_commit(vp); 11630 11631 /* 11632 * Clear the `commit inprogress' status and disconnect 11633 * the list of pages to be committed from the rnode. 11634 * At this same time, we also save the starting offset 11635 * and length of data to be committed on the server. 11636 */ 11637 plist = rp->r_commit.c_pages; 11638 rp->r_commit.c_pages = NULL; 11639 offset = rp->r_commit.c_commbase; 11640 len = rp->r_commit.c_commlen; 11641 mutex_enter(&rp->r_statelock); 11642 rp->r_flags &= ~R4COMMIT; 11643 cv_broadcast(&rp->r_commit.c_cv); 11644 mutex_exit(&rp->r_statelock); 11645 11646 if (curproc == proc_pageout || curproc == proc_fsflush || 11647 nfs_zone() != VTOMI4(vp)->mi_zone) { 11648 nfs4_async_commit(vp, plist, offset, len, 11649 cr, do_nfs4_async_commit); 11650 return; 11651 } 11652 11653 /* 11654 * Actually generate the COMMIT op over the wire operation. 11655 */ 11656 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr); 11657 11658 /* 11659 * If we got an error during the commit, just unlock all 11660 * of the pages. The pages will get retransmitted to the 11661 * server during a putpage operation. 11662 */ 11663 if (error) { 11664 while (plist != NULL) { 11665 pptr = plist; 11666 page_sub(&plist, pptr); 11667 page_unlock(pptr); 11668 } 11669 return; 11670 } 11671 11672 /* 11673 * We've tried as hard as we can to commit the data to stable 11674 * storage on the server. We just unlock the rest of the pages 11675 * and clear the commit required state. They will be put 11676 * onto the tail of the cachelist if they are nolonger 11677 * mapped. 11678 */ 11679 while (plist != pp) { 11680 pptr = plist; 11681 page_sub(&plist, pptr); 11682 pptr->p_fsdata = C_NOCOMMIT; 11683 page_unlock(pptr); 11684 } 11685 11686 /* 11687 * It is possible that nfs4_commit didn't return error but 11688 * some other thread has modified the page we are going 11689 * to free/destroy. 11690 * In this case we need to rewrite the page. Do an explicit check 11691 * before attempting to free/destroy the page. If modified, needs to 11692 * be rewritten so unlock the page and return. 11693 */ 11694 if (hat_ismod(pp)) { 11695 pp->p_fsdata = C_NOCOMMIT; 11696 page_unlock(pp); 11697 return; 11698 } 11699 11700 /* 11701 * Now, as appropriate, either free or destroy the page 11702 * that we were called with. 11703 */ 11704 pp->p_fsdata = C_NOCOMMIT; 11705 if (fl == B_FREE) 11706 page_free(pp, dn); 11707 else 11708 page_destroy(pp, dn); 11709 } 11710 11711 /* 11712 * Commit requires that the current fh be the file written to. 11713 * The compound op structure is: 11714 * PUTFH(file), COMMIT 11715 */ 11716 static int 11717 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr) 11718 { 11719 COMPOUND4args_clnt args; 11720 COMPOUND4res_clnt res; 11721 COMMIT4res *cm_res; 11722 nfs_argop4 argop[2]; 11723 nfs_resop4 *resop; 11724 int doqueue; 11725 mntinfo4_t *mi; 11726 rnode4_t *rp; 11727 cred_t *cred_otw = NULL; 11728 bool_t needrecov = FALSE; 11729 nfs4_recov_state_t recov_state; 11730 nfs4_open_stream_t *osp = NULL; 11731 bool_t first_time = TRUE; /* first time getting OTW cred */ 11732 bool_t last_time = FALSE; /* last time getting OTW cred */ 11733 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 11734 11735 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11736 11737 rp = VTOR4(vp); 11738 11739 mi = VTOMI4(vp); 11740 recov_state.rs_flags = 0; 11741 recov_state.rs_num_retry_despite_err = 0; 11742 get_commit_cred: 11743 /* 11744 * Releases the osp, if a valid open stream is provided. 11745 * Puts a hold on the cred_otw and the new osp (if found). 11746 */ 11747 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp, 11748 &first_time, &last_time); 11749 args.ctag = TAG_COMMIT; 11750 recov_retry: 11751 /* 11752 * Commit ops: putfh file; commit 11753 */ 11754 args.array_len = 2; 11755 args.array = argop; 11756 11757 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11758 &recov_state, NULL); 11759 if (e.error) { 11760 crfree(cred_otw); 11761 if (osp != NULL) 11762 open_stream_rele(osp, rp); 11763 return (e.error); 11764 } 11765 11766 /* putfh directory */ 11767 argop[0].argop = OP_CPUTFH; 11768 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 11769 11770 /* commit */ 11771 argop[1].argop = OP_COMMIT; 11772 argop[1].nfs_argop4_u.opcommit.offset = offset; 11773 argop[1].nfs_argop4_u.opcommit.count = count; 11774 11775 doqueue = 1; 11776 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e); 11777 11778 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 11779 if (!needrecov && e.error) { 11780 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, 11781 needrecov); 11782 crfree(cred_otw); 11783 if (e.error == EACCES && last_time == FALSE) 11784 goto get_commit_cred; 11785 if (osp != NULL) 11786 open_stream_rele(osp, rp); 11787 return (e.error); 11788 } 11789 11790 if (needrecov) { 11791 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 11792 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) { 11793 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11794 &recov_state, needrecov); 11795 if (!e.error) 11796 (void) xdr_free(xdr_COMPOUND4res_clnt, 11797 (caddr_t)&res); 11798 goto recov_retry; 11799 } 11800 if (e.error) { 11801 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11802 &recov_state, needrecov); 11803 crfree(cred_otw); 11804 if (osp != NULL) 11805 open_stream_rele(osp, rp); 11806 return (e.error); 11807 } 11808 /* fall through for res.status case */ 11809 } 11810 11811 if (res.status) { 11812 e.error = geterrno4(res.status); 11813 if (e.error == EACCES && last_time == FALSE) { 11814 crfree(cred_otw); 11815 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11816 &recov_state, needrecov); 11817 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11818 goto get_commit_cred; 11819 } 11820 /* 11821 * Can't do a nfs4_purge_stale_fh here because this 11822 * can cause a deadlock. nfs4_commit can 11823 * be called from nfs4_dispose which can be called 11824 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh 11825 * can call back to pvn_vplist_dirty. 11826 */ 11827 if (e.error == ESTALE) { 11828 mutex_enter(&rp->r_statelock); 11829 rp->r_flags |= R4STALE; 11830 if (!rp->r_error) 11831 rp->r_error = e.error; 11832 mutex_exit(&rp->r_statelock); 11833 PURGE_ATTRCACHE4(vp); 11834 } else { 11835 mutex_enter(&rp->r_statelock); 11836 if (!rp->r_error) 11837 rp->r_error = e.error; 11838 mutex_exit(&rp->r_statelock); 11839 } 11840 } else { 11841 ASSERT(rp->r_flags & R4HAVEVERF); 11842 resop = &res.array[1]; /* commit res */ 11843 cm_res = &resop->nfs_resop4_u.opcommit; 11844 mutex_enter(&rp->r_statelock); 11845 if (cm_res->writeverf == rp->r_writeverf) { 11846 mutex_exit(&rp->r_statelock); 11847 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11848 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, 11849 &recov_state, needrecov); 11850 crfree(cred_otw); 11851 if (osp != NULL) 11852 open_stream_rele(osp, rp); 11853 return (0); 11854 } 11855 nfs4_set_mod(vp); 11856 rp->r_writeverf = cm_res->writeverf; 11857 mutex_exit(&rp->r_statelock); 11858 e.error = NFS_VERF_MISMATCH; 11859 } 11860 11861 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 11862 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov); 11863 crfree(cred_otw); 11864 if (osp != NULL) 11865 open_stream_rele(osp, rp); 11866 11867 return (e.error); 11868 } 11869 11870 static void 11871 nfs4_set_mod(vnode_t *vp) 11872 { 11873 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 11874 11875 /* make sure we're looking at the master vnode, not a shadow */ 11876 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check); 11877 } 11878 11879 /* 11880 * This function is used to gather a page list of the pages which 11881 * can be committed on the server. 11882 * 11883 * The calling thread must have set R4COMMIT. This bit is used to 11884 * serialize access to the commit structure in the rnode. As long 11885 * as the thread has set R4COMMIT, then it can manipulate the commit 11886 * structure without requiring any other locks. 11887 * 11888 * When this function is called from nfs4_dispose() the page passed 11889 * into nfs4_dispose() will be SE_EXCL locked, and so this function 11890 * will skip it. This is not a problem since we initially add the 11891 * page to the r_commit page list. 11892 * 11893 */ 11894 static void 11895 nfs4_get_commit(vnode_t *vp) 11896 { 11897 rnode4_t *rp; 11898 page_t *pp; 11899 kmutex_t *vphm; 11900 11901 rp = VTOR4(vp); 11902 11903 ASSERT(rp->r_flags & R4COMMIT); 11904 11905 /* make sure we're looking at the master vnode, not a shadow */ 11906 11907 if (IS_SHADOW(vp, rp)) 11908 vp = RTOV4(rp); 11909 11910 vphm = page_vnode_mutex(vp); 11911 mutex_enter(vphm); 11912 11913 /* 11914 * If there are no pages associated with this vnode, then 11915 * just return. 11916 */ 11917 if ((pp = vp->v_pages) == NULL) { 11918 mutex_exit(vphm); 11919 return; 11920 } 11921 11922 /* 11923 * Step through all of the pages associated with this vnode 11924 * looking for pages which need to be committed. 11925 */ 11926 do { 11927 /* Skip marker pages. */ 11928 if (pp->p_hash == PVN_VPLIST_HASH_TAG) 11929 continue; 11930 11931 /* 11932 * First short-cut everything (without the page_lock) 11933 * and see if this page does not need to be committed 11934 * or is modified if so then we'll just skip it. 11935 */ 11936 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) 11937 continue; 11938 11939 /* 11940 * Attempt to lock the page. If we can't, then 11941 * someone else is messing with it or we have been 11942 * called from nfs4_dispose and this is the page that 11943 * nfs4_dispose was called with.. anyway just skip it. 11944 */ 11945 if (!page_trylock(pp, SE_EXCL)) 11946 continue; 11947 11948 /* 11949 * Lets check again now that we have the page lock. 11950 */ 11951 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 11952 page_unlock(pp); 11953 continue; 11954 } 11955 11956 /* this had better not be a free page */ 11957 ASSERT(PP_ISFREE(pp) == 0); 11958 11959 /* 11960 * The page needs to be committed and we locked it. 11961 * Update the base and length parameters and add it 11962 * to r_pages. 11963 */ 11964 if (rp->r_commit.c_pages == NULL) { 11965 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11966 rp->r_commit.c_commlen = PAGESIZE; 11967 } else if (pp->p_offset < rp->r_commit.c_commbase) { 11968 rp->r_commit.c_commlen = rp->r_commit.c_commbase - 11969 (offset3)pp->p_offset + rp->r_commit.c_commlen; 11970 rp->r_commit.c_commbase = (offset3)pp->p_offset; 11971 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen) 11972 <= pp->p_offset) { 11973 rp->r_commit.c_commlen = (offset3)pp->p_offset - 11974 rp->r_commit.c_commbase + PAGESIZE; 11975 } 11976 page_add(&rp->r_commit.c_pages, pp); 11977 } while ((pp = pp->p_vpnext) != vp->v_pages); 11978 11979 mutex_exit(vphm); 11980 } 11981 11982 /* 11983 * This routine is used to gather together a page list of the pages 11984 * which are to be committed on the server. This routine must not 11985 * be called if the calling thread holds any locked pages. 11986 * 11987 * The calling thread must have set R4COMMIT. This bit is used to 11988 * serialize access to the commit structure in the rnode. As long 11989 * as the thread has set R4COMMIT, then it can manipulate the commit 11990 * structure without requiring any other locks. 11991 */ 11992 static void 11993 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len) 11994 { 11995 11996 rnode4_t *rp; 11997 page_t *pp; 11998 u_offset_t end; 11999 u_offset_t off; 12000 ASSERT(len != 0); 12001 rp = VTOR4(vp); 12002 ASSERT(rp->r_flags & R4COMMIT); 12003 12004 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12005 12006 /* make sure we're looking at the master vnode, not a shadow */ 12007 12008 if (IS_SHADOW(vp, rp)) 12009 vp = RTOV4(rp); 12010 12011 /* 12012 * If there are no pages associated with this vnode, then 12013 * just return. 12014 */ 12015 if ((pp = vp->v_pages) == NULL) 12016 return; 12017 /* 12018 * Calculate the ending offset. 12019 */ 12020 end = soff + len; 12021 for (off = soff; off < end; off += PAGESIZE) { 12022 /* 12023 * Lookup each page by vp, offset. 12024 */ 12025 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL) 12026 continue; 12027 /* 12028 * If this page does not need to be committed or is 12029 * modified, then just skip it. 12030 */ 12031 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) { 12032 page_unlock(pp); 12033 continue; 12034 } 12035 12036 ASSERT(PP_ISFREE(pp) == 0); 12037 /* 12038 * The page needs to be committed and we locked it. 12039 * Update the base and length parameters and add it 12040 * to r_pages. 12041 */ 12042 if (rp->r_commit.c_pages == NULL) { 12043 rp->r_commit.c_commbase = (offset3)pp->p_offset; 12044 rp->r_commit.c_commlen = PAGESIZE; 12045 } else { 12046 rp->r_commit.c_commlen = (offset3)pp->p_offset - 12047 rp->r_commit.c_commbase + PAGESIZE; 12048 } 12049 page_add(&rp->r_commit.c_pages, pp); 12050 } 12051 } 12052 12053 /* 12054 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap(). 12055 * Flushes and commits data to the server. 12056 */ 12057 static int 12058 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr) 12059 { 12060 int error; 12061 verifier4 write_verf; 12062 rnode4_t *rp = VTOR4(vp); 12063 12064 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12065 12066 /* 12067 * Flush the data portion of the file and then commit any 12068 * portions which need to be committed. This may need to 12069 * be done twice if the server has changed state since 12070 * data was last written. The data will need to be 12071 * rewritten to the server and then a new commit done. 12072 * 12073 * In fact, this may need to be done several times if the 12074 * server is having problems and crashing while we are 12075 * attempting to do this. 12076 */ 12077 12078 top: 12079 /* 12080 * Do a flush based on the poff and plen arguments. This 12081 * will synchronously write out any modified pages in the 12082 * range specified by (poff, plen). This starts all of the 12083 * i/o operations which will be waited for in the next 12084 * call to nfs4_putpage 12085 */ 12086 12087 mutex_enter(&rp->r_statelock); 12088 write_verf = rp->r_writeverf; 12089 mutex_exit(&rp->r_statelock); 12090 12091 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL); 12092 if (error == EAGAIN) 12093 error = 0; 12094 12095 /* 12096 * Do a flush based on the poff and plen arguments. This 12097 * will synchronously write out any modified pages in the 12098 * range specified by (poff, plen) and wait until all of 12099 * the asynchronous i/o's in that range are done as well. 12100 */ 12101 if (!error) 12102 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL); 12103 12104 if (error) 12105 return (error); 12106 12107 mutex_enter(&rp->r_statelock); 12108 if (rp->r_writeverf != write_verf) { 12109 mutex_exit(&rp->r_statelock); 12110 goto top; 12111 } 12112 mutex_exit(&rp->r_statelock); 12113 12114 /* 12115 * Now commit any pages which might need to be committed. 12116 * If the error, NFS_VERF_MISMATCH, is returned, then 12117 * start over with the flush operation. 12118 */ 12119 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT); 12120 12121 if (error == NFS_VERF_MISMATCH) 12122 goto top; 12123 12124 return (error); 12125 } 12126 12127 /* 12128 * nfs4_commit_vp() will wait for other pending commits and 12129 * will either commit the whole file or a range, plen dictates 12130 * if we commit whole file. a value of zero indicates the whole 12131 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage() 12132 */ 12133 static int 12134 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, 12135 cred_t *cr, int wait_on_writes) 12136 { 12137 rnode4_t *rp; 12138 page_t *plist; 12139 offset3 offset; 12140 count3 len; 12141 12142 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12143 12144 rp = VTOR4(vp); 12145 12146 /* 12147 * before we gather commitable pages make 12148 * sure there are no outstanding async writes 12149 */ 12150 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) { 12151 mutex_enter(&rp->r_statelock); 12152 while (rp->r_count > 0) { 12153 cv_wait(&rp->r_cv, &rp->r_statelock); 12154 } 12155 mutex_exit(&rp->r_statelock); 12156 } 12157 12158 /* 12159 * Set the `commit inprogress' state bit. We must 12160 * first wait until any current one finishes. 12161 */ 12162 mutex_enter(&rp->r_statelock); 12163 while (rp->r_flags & R4COMMIT) { 12164 rp->r_flags |= R4COMMITWAIT; 12165 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock); 12166 rp->r_flags &= ~R4COMMITWAIT; 12167 } 12168 rp->r_flags |= R4COMMIT; 12169 mutex_exit(&rp->r_statelock); 12170 12171 /* 12172 * Gather all of the pages which need to be 12173 * committed. 12174 */ 12175 if (plen == 0) 12176 nfs4_get_commit(vp); 12177 else 12178 nfs4_get_commit_range(vp, poff, plen); 12179 12180 /* 12181 * Clear the `commit inprogress' bit and disconnect the 12182 * page list which was gathered by nfs4_get_commit. 12183 */ 12184 plist = rp->r_commit.c_pages; 12185 rp->r_commit.c_pages = NULL; 12186 offset = rp->r_commit.c_commbase; 12187 len = rp->r_commit.c_commlen; 12188 mutex_enter(&rp->r_statelock); 12189 rp->r_flags &= ~R4COMMIT; 12190 cv_broadcast(&rp->r_commit.c_cv); 12191 mutex_exit(&rp->r_statelock); 12192 12193 /* 12194 * If any pages need to be committed, commit them and 12195 * then unlock them so that they can be freed some 12196 * time later. 12197 */ 12198 if (plist == NULL) 12199 return (0); 12200 12201 /* 12202 * No error occurred during the flush portion 12203 * of this operation, so now attempt to commit 12204 * the data to stable storage on the server. 12205 * 12206 * This will unlock all of the pages on the list. 12207 */ 12208 return (nfs4_sync_commit(vp, plist, offset, len, cr)); 12209 } 12210 12211 static int 12212 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12213 cred_t *cr) 12214 { 12215 int error; 12216 page_t *pp; 12217 12218 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12219 12220 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr); 12221 12222 /* 12223 * If we got an error, then just unlock all of the pages 12224 * on the list. 12225 */ 12226 if (error) { 12227 while (plist != NULL) { 12228 pp = plist; 12229 page_sub(&plist, pp); 12230 page_unlock(pp); 12231 } 12232 return (error); 12233 } 12234 /* 12235 * We've tried as hard as we can to commit the data to stable 12236 * storage on the server. We just unlock the pages and clear 12237 * the commit required state. They will get freed later. 12238 */ 12239 while (plist != NULL) { 12240 pp = plist; 12241 page_sub(&plist, pp); 12242 pp->p_fsdata = C_NOCOMMIT; 12243 page_unlock(pp); 12244 } 12245 12246 return (error); 12247 } 12248 12249 static void 12250 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count, 12251 cred_t *cr) 12252 { 12253 12254 (void) nfs4_sync_commit(vp, plist, offset, count, cr); 12255 } 12256 12257 /*ARGSUSED*/ 12258 static int 12259 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12260 caller_context_t *ct) 12261 { 12262 int error = 0; 12263 mntinfo4_t *mi; 12264 vattr_t va; 12265 vsecattr_t nfsace4_vsap; 12266 12267 mi = VTOMI4(vp); 12268 if (nfs_zone() != mi->mi_zone) 12269 return (EIO); 12270 if (mi->mi_flags & MI4_ACL) { 12271 /* if we have a delegation, return it */ 12272 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE) 12273 (void) nfs4delegreturn(VTOR4(vp), 12274 NFS4_DR_REOPEN|NFS4_DR_PUSH); 12275 12276 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, 12277 NFS4_ACL_SET); 12278 if (error) /* EINVAL */ 12279 return (error); 12280 12281 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) { 12282 /* 12283 * These are aclent_t type entries. 12284 */ 12285 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap, 12286 vp->v_type == VDIR, FALSE); 12287 if (error) 12288 return (error); 12289 } else { 12290 /* 12291 * These are ace_t type entries. 12292 */ 12293 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap, 12294 FALSE); 12295 if (error) 12296 return (error); 12297 } 12298 bzero(&va, sizeof (va)); 12299 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap); 12300 vs_ace4_destroy(&nfsace4_vsap); 12301 return (error); 12302 } 12303 return (ENOSYS); 12304 } 12305 12306 /* ARGSUSED */ 12307 int 12308 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 12309 caller_context_t *ct) 12310 { 12311 int error; 12312 mntinfo4_t *mi; 12313 nfs4_ga_res_t gar; 12314 rnode4_t *rp = VTOR4(vp); 12315 12316 mi = VTOMI4(vp); 12317 if (nfs_zone() != mi->mi_zone) 12318 return (EIO); 12319 12320 bzero(&gar, sizeof (gar)); 12321 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask; 12322 12323 /* 12324 * vsecattr->vsa_mask holds the original acl request mask. 12325 * This is needed when determining what to return. 12326 * (See: nfs4_create_getsecattr_return()) 12327 */ 12328 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET); 12329 if (error) /* EINVAL */ 12330 return (error); 12331 12332 /* 12333 * If this is a referral stub, don't try to go OTW for an ACL 12334 */ 12335 if (RP_ISSTUB_REFERRAL(VTOR4(vp))) 12336 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 12337 12338 if (mi->mi_flags & MI4_ACL) { 12339 /* 12340 * Check if the data is cached and the cache is valid. If it 12341 * is we don't go over the wire. 12342 */ 12343 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) { 12344 mutex_enter(&rp->r_statelock); 12345 if (rp->r_secattr != NULL) { 12346 error = nfs4_create_getsecattr_return( 12347 rp->r_secattr, vsecattr, rp->r_attr.va_uid, 12348 rp->r_attr.va_gid, 12349 vp->v_type == VDIR); 12350 if (!error) { /* error == 0 - Success! */ 12351 mutex_exit(&rp->r_statelock); 12352 return (error); 12353 } 12354 } 12355 mutex_exit(&rp->r_statelock); 12356 } 12357 12358 /* 12359 * The getattr otw call will always get both the acl, in 12360 * the form of a list of nfsace4's, and the number of acl 12361 * entries; independent of the value of gar.n4g_vsa.vsa_mask. 12362 */ 12363 gar.n4g_va.va_mask = AT_ALL; 12364 error = nfs4_getattr_otw(vp, &gar, cr, 1); 12365 if (error) { 12366 vs_ace4_destroy(&gar.n4g_vsa); 12367 if (error == ENOTSUP || error == EOPNOTSUPP) 12368 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12369 return (error); 12370 } 12371 12372 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) { 12373 /* 12374 * No error was returned, but according to the response 12375 * bitmap, neither was an acl. 12376 */ 12377 vs_ace4_destroy(&gar.n4g_vsa); 12378 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12379 return (error); 12380 } 12381 12382 /* 12383 * Update the cache with the ACL. 12384 */ 12385 nfs4_acl_fill_cache(rp, &gar.n4g_vsa); 12386 12387 error = nfs4_create_getsecattr_return(&gar.n4g_vsa, 12388 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid, 12389 vp->v_type == VDIR); 12390 vs_ace4_destroy(&gar.n4g_vsa); 12391 if ((error) && (vsecattr->vsa_mask & 12392 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) && 12393 (error != EACCES)) { 12394 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12395 } 12396 return (error); 12397 } 12398 error = fs_fab_acl(vp, vsecattr, flag, cr, ct); 12399 return (error); 12400 } 12401 12402 /* 12403 * The function returns: 12404 * - 0 (zero) if the passed in "acl_mask" is a valid request. 12405 * - EINVAL if the passed in "acl_mask" is an invalid request. 12406 * 12407 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if: 12408 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12409 * 12410 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if: 12411 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE) 12412 * - We have a count field set without the corresponding acl field set. (e.g. - 12413 * VSA_ACECNT is set, but VSA_ACE is not) 12414 */ 12415 static int 12416 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op) 12417 { 12418 /* Shortcut the masks that are always valid. */ 12419 if (acl_mask == (VSA_ACE | VSA_ACECNT)) 12420 return (0); 12421 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) 12422 return (0); 12423 12424 if (acl_mask & (VSA_ACE | VSA_ACECNT)) { 12425 /* 12426 * We can't have any VSA_ACL type stuff in the mask now. 12427 */ 12428 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12429 VSA_DFACLCNT)) 12430 return (EINVAL); 12431 12432 if (op == NFS4_ACL_SET) { 12433 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE)) 12434 return (EINVAL); 12435 } 12436 } 12437 12438 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) { 12439 /* 12440 * We can't have any VSA_ACE type stuff in the mask now. 12441 */ 12442 if (acl_mask & (VSA_ACE | VSA_ACECNT)) 12443 return (EINVAL); 12444 12445 if (op == NFS4_ACL_SET) { 12446 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL)) 12447 return (EINVAL); 12448 12449 if ((acl_mask & VSA_DFACLCNT) && 12450 !(acl_mask & VSA_DFACL)) 12451 return (EINVAL); 12452 } 12453 } 12454 return (0); 12455 } 12456 12457 /* 12458 * The theory behind creating the correct getsecattr return is simply this: 12459 * "Don't return anything that the caller is not expecting to have to free." 12460 */ 12461 static int 12462 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap, 12463 uid_t uid, gid_t gid, int isdir) 12464 { 12465 int error = 0; 12466 /* Save the mask since the translators modify it. */ 12467 uint_t orig_mask = vsap->vsa_mask; 12468 12469 if (orig_mask & (VSA_ACE | VSA_ACECNT)) { 12470 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE); 12471 12472 if (error) 12473 return (error); 12474 12475 /* 12476 * If the caller only asked for the ace count (VSA_ACECNT) 12477 * don't give them the full acl (VSA_ACE), free it. 12478 */ 12479 if (!orig_mask & VSA_ACE) { 12480 if (vsap->vsa_aclentp != NULL) { 12481 kmem_free(vsap->vsa_aclentp, 12482 vsap->vsa_aclcnt * sizeof (ace_t)); 12483 vsap->vsa_aclentp = NULL; 12484 } 12485 } 12486 vsap->vsa_mask = orig_mask; 12487 12488 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | 12489 VSA_DFACLCNT)) { 12490 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid, 12491 isdir, FALSE); 12492 12493 if (error) 12494 return (error); 12495 12496 /* 12497 * If the caller only asked for the acl count (VSA_ACLCNT) 12498 * and/or the default acl count (VSA_DFACLCNT) don't give them 12499 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it. 12500 */ 12501 if (!orig_mask & VSA_ACL) { 12502 if (vsap->vsa_aclentp != NULL) { 12503 kmem_free(vsap->vsa_aclentp, 12504 vsap->vsa_aclcnt * sizeof (aclent_t)); 12505 vsap->vsa_aclentp = NULL; 12506 } 12507 } 12508 12509 if (!orig_mask & VSA_DFACL) { 12510 if (vsap->vsa_dfaclentp != NULL) { 12511 kmem_free(vsap->vsa_dfaclentp, 12512 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 12513 vsap->vsa_dfaclentp = NULL; 12514 } 12515 } 12516 vsap->vsa_mask = orig_mask; 12517 } 12518 return (0); 12519 } 12520 12521 /* ARGSUSED */ 12522 int 12523 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 12524 caller_context_t *ct) 12525 { 12526 int error; 12527 12528 if (nfs_zone() != VTOMI4(vp)->mi_zone) 12529 return (EIO); 12530 /* 12531 * check for valid cmd parameter 12532 */ 12533 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 12534 return (EINVAL); 12535 12536 /* 12537 * Check access permissions 12538 */ 12539 if ((cmd & F_SHARE) && 12540 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) || 12541 (shr->s_access == F_WRACC && (flag & FWRITE) == 0))) 12542 return (EBADF); 12543 12544 /* 12545 * If the filesystem is mounted using local locking, pass the 12546 * request off to the local share code. 12547 */ 12548 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) 12549 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 12550 12551 switch (cmd) { 12552 case F_SHARE: 12553 case F_UNSHARE: 12554 /* 12555 * This will be properly implemented later, 12556 * see RFE: 4823948 . 12557 */ 12558 error = EAGAIN; 12559 break; 12560 12561 case F_HASREMOTELOCKS: 12562 /* 12563 * NFS client can't store remote locks itself 12564 */ 12565 shr->s_access = 0; 12566 error = 0; 12567 break; 12568 12569 default: 12570 error = EINVAL; 12571 break; 12572 } 12573 12574 return (error); 12575 } 12576 12577 /* 12578 * Common code called by directory ops to update the attrcache 12579 */ 12580 static int 12581 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp, 12582 hrtime_t t, vnode_t *vp, cred_t *cr) 12583 { 12584 int error = 0; 12585 12586 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12587 12588 if (status != NFS4_OK) { 12589 /* getattr not done or failed */ 12590 PURGE_ATTRCACHE4(vp); 12591 return (error); 12592 } 12593 12594 if (garp) { 12595 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL); 12596 } else { 12597 PURGE_ATTRCACHE4(vp); 12598 } 12599 return (error); 12600 } 12601 12602 /* 12603 * Update directory caches for directory modification ops (link, rename, etc.) 12604 * When dinfo is NULL, manage dircaches in the old way. 12605 */ 12606 static void 12607 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm, 12608 dirattr_info_t *dinfo) 12609 { 12610 rnode4_t *drp = VTOR4(dvp); 12611 12612 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone); 12613 12614 /* Purge rddir cache for dir since it changed */ 12615 if (drp->r_dir != NULL) 12616 nfs4_purge_rddir_cache(dvp); 12617 12618 /* 12619 * If caller provided dinfo, then use it to manage dir caches. 12620 */ 12621 if (dinfo != NULL) { 12622 if (vp != NULL) { 12623 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12624 if (!VTOR4(vp)->created_v4) { 12625 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12626 dnlc_update(dvp, nm, vp); 12627 } else { 12628 /* 12629 * XXX don't update if the created_v4 flag is 12630 * set 12631 */ 12632 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12633 NFS4_DEBUG(nfs4_client_state_debug, 12634 (CE_NOTE, "nfs4_update_dircaches: " 12635 "don't update dnlc: created_v4 flag")); 12636 } 12637 } 12638 12639 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call, 12640 dinfo->di_cred, FALSE, cinfo); 12641 12642 return; 12643 } 12644 12645 /* 12646 * Caller didn't provide dinfo, then check change_info4 to update DNLC. 12647 * Since caller modified dir but didn't receive post-dirmod-op dir 12648 * attrs, the dir's attrs must be purged. 12649 * 12650 * XXX this check and dnlc update/purge should really be atomic, 12651 * XXX but can't use rnode statelock because it'll deadlock in 12652 * XXX dnlc_purge_vp, however, the risk is minimal even if a race 12653 * XXX does occur. 12654 * 12655 * XXX We also may want to check that atomic is true in the 12656 * XXX change_info struct. If it is not, the change_info may 12657 * XXX reflect changes by more than one clients which means that 12658 * XXX our cache may not be valid. 12659 */ 12660 PURGE_ATTRCACHE4(dvp); 12661 if (drp->r_change == cinfo->before) { 12662 /* no changes took place in the directory prior to our link */ 12663 if (vp != NULL) { 12664 mutex_enter(&VTOR4(vp)->r_statev4_lock); 12665 if (!VTOR4(vp)->created_v4) { 12666 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12667 dnlc_update(dvp, nm, vp); 12668 } else { 12669 /* 12670 * XXX dont' update if the created_v4 flag 12671 * is set 12672 */ 12673 mutex_exit(&VTOR4(vp)->r_statev4_lock); 12674 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, 12675 "nfs4_update_dircaches: don't" 12676 " update dnlc: created_v4 flag")); 12677 } 12678 } 12679 } else { 12680 /* Another client modified directory - purge its dnlc cache */ 12681 dnlc_purge_vp(dvp); 12682 } 12683 } 12684 12685 /* 12686 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a 12687 * file. 12688 * 12689 * The 'reopening_file' boolean should be set to TRUE if we are reopening this 12690 * file (ie: client recovery) and otherwise set to FALSE. 12691 * 12692 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery 12693 * initiated) calling functions. 12694 * 12695 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result 12696 * of resending a 'lost' open request. 12697 * 12698 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken 12699 * server that hands out BAD_SEQID on open confirm. 12700 * 12701 * Errors are returned via the nfs4_error_t parameter. 12702 */ 12703 void 12704 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr, 12705 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop, 12706 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp) 12707 { 12708 COMPOUND4args_clnt args; 12709 COMPOUND4res_clnt res; 12710 nfs_argop4 argop[2]; 12711 nfs_resop4 *resop; 12712 int doqueue = 1; 12713 mntinfo4_t *mi; 12714 OPEN_CONFIRM4args *open_confirm_args; 12715 int needrecov; 12716 12717 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12718 #if DEBUG 12719 mutex_enter(&oop->oo_lock); 12720 ASSERT(oop->oo_seqid_inuse); 12721 mutex_exit(&oop->oo_lock); 12722 #endif 12723 12724 recov_retry_confirm: 12725 nfs4_error_zinit(ep); 12726 *retry_open = FALSE; 12727 12728 if (resend) 12729 args.ctag = TAG_OPEN_CONFIRM_LOST; 12730 else 12731 args.ctag = TAG_OPEN_CONFIRM; 12732 12733 args.array_len = 2; 12734 args.array = argop; 12735 12736 /* putfh target fh */ 12737 argop[0].argop = OP_CPUTFH; 12738 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh; 12739 12740 argop[1].argop = OP_OPEN_CONFIRM; 12741 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm; 12742 12743 (*seqid) += 1; 12744 open_confirm_args->seqid = *seqid; 12745 open_confirm_args->open_stateid = *stateid; 12746 12747 mi = VTOMI4(vp); 12748 12749 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 12750 12751 if (!ep->error && nfs4_need_to_bump_seqid(&res)) { 12752 nfs4_set_open_seqid((*seqid), oop, args.ctag); 12753 } 12754 12755 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 12756 if (!needrecov && ep->error) 12757 return; 12758 12759 if (needrecov) { 12760 bool_t abort = FALSE; 12761 12762 if (reopening_file == FALSE) { 12763 nfs4_bseqid_entry_t *bsep = NULL; 12764 12765 if (!ep->error && res.status == NFS4ERR_BAD_SEQID) 12766 bsep = nfs4_create_bseqid_entry(oop, NULL, 12767 vp, 0, args.ctag, 12768 open_confirm_args->seqid); 12769 12770 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, 12771 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL); 12772 if (bsep) { 12773 kmem_free(bsep, sizeof (*bsep)); 12774 if (num_bseqid_retryp && 12775 --(*num_bseqid_retryp) == 0) 12776 abort = TRUE; 12777 } 12778 } 12779 if ((ep->error == ETIMEDOUT || 12780 res.status == NFS4ERR_RESOURCE) && 12781 abort == FALSE && resend == FALSE) { 12782 if (!ep->error) 12783 (void) xdr_free(xdr_COMPOUND4res_clnt, 12784 (caddr_t)&res); 12785 12786 delay(SEC_TO_TICK(confirm_retry_sec)); 12787 goto recov_retry_confirm; 12788 } 12789 /* State may have changed so retry the entire OPEN op */ 12790 if (abort == FALSE) 12791 *retry_open = TRUE; 12792 else 12793 *retry_open = FALSE; 12794 if (!ep->error) 12795 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12796 return; 12797 } 12798 12799 if (res.status) { 12800 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12801 return; 12802 } 12803 12804 resop = &res.array[1]; /* open confirm res */ 12805 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid, 12806 stateid, sizeof (*stateid)); 12807 12808 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 12809 } 12810 12811 /* 12812 * Return the credentials associated with a client state object. The 12813 * caller is responsible for freeing the credentials. 12814 */ 12815 12816 static cred_t * 12817 state_to_cred(nfs4_open_stream_t *osp) 12818 { 12819 cred_t *cr; 12820 12821 /* 12822 * It's ok to not lock the open stream and open owner to get 12823 * the oo_cred since this is only written once (upon creation) 12824 * and will not change. 12825 */ 12826 cr = osp->os_open_owner->oo_cred; 12827 crhold(cr); 12828 12829 return (cr); 12830 } 12831 12832 /* 12833 * nfs4_find_sysid 12834 * 12835 * Find the sysid for the knetconfig associated with the given mi. 12836 */ 12837 static struct lm_sysid * 12838 nfs4_find_sysid(mntinfo4_t *mi) 12839 { 12840 ASSERT(nfs_zone() == mi->mi_zone); 12841 12842 /* 12843 * Switch from RDMA knconf to original mount knconf 12844 */ 12845 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr, 12846 mi->mi_curr_serv->sv_hostname, NULL)); 12847 } 12848 12849 #ifdef DEBUG 12850 /* 12851 * Return a string version of the call type for easy reading. 12852 */ 12853 static char * 12854 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype) 12855 { 12856 switch (ctype) { 12857 case NFS4_LCK_CTYPE_NORM: 12858 return ("NORMAL"); 12859 case NFS4_LCK_CTYPE_RECLAIM: 12860 return ("RECLAIM"); 12861 case NFS4_LCK_CTYPE_RESEND: 12862 return ("RESEND"); 12863 case NFS4_LCK_CTYPE_REINSTATE: 12864 return ("REINSTATE"); 12865 default: 12866 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal " 12867 "type %d", ctype); 12868 return (""); 12869 } 12870 } 12871 #endif 12872 12873 /* 12874 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type 12875 * Unlock requests don't have an over-the-wire locktype, so we just return 12876 * something non-threatening. 12877 */ 12878 12879 static nfs_lock_type4 12880 flk_to_locktype(int cmd, int l_type) 12881 { 12882 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK); 12883 12884 switch (l_type) { 12885 case F_UNLCK: 12886 return (READ_LT); 12887 case F_RDLCK: 12888 if (cmd == F_SETLK) 12889 return (READ_LT); 12890 else 12891 return (READW_LT); 12892 case F_WRLCK: 12893 if (cmd == F_SETLK) 12894 return (WRITE_LT); 12895 else 12896 return (WRITEW_LT); 12897 } 12898 panic("flk_to_locktype"); 12899 /*NOTREACHED*/ 12900 } 12901 12902 /* 12903 * Do some preliminary checks for nfs4frlock. 12904 */ 12905 static int 12906 nfs4frlock_validate_args(int cmd, flock64_t *flk, int flag, vnode_t *vp, 12907 u_offset_t offset) 12908 { 12909 int error = 0; 12910 12911 /* 12912 * If we are setting a lock, check that the file is opened 12913 * with the correct mode. 12914 */ 12915 if (cmd == F_SETLK || cmd == F_SETLKW) { 12916 if ((flk->l_type == F_RDLCK && (flag & FREAD) == 0) || 12917 (flk->l_type == F_WRLCK && (flag & FWRITE) == 0)) { 12918 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12919 "nfs4frlock_validate_args: file was opened with " 12920 "incorrect mode")); 12921 return (EBADF); 12922 } 12923 } 12924 12925 /* Convert the offset. It may need to be restored before returning. */ 12926 if (error = convoff(vp, flk, 0, offset)) { 12927 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12928 "nfs4frlock_validate_args: convoff => error= %d\n", 12929 error)); 12930 return (error); 12931 } 12932 12933 return (error); 12934 } 12935 12936 /* 12937 * Set the flock64's lm_sysid for nfs4frlock. 12938 */ 12939 static int 12940 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk) 12941 { 12942 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 12943 12944 /* Find the lm_sysid */ 12945 *lspp = nfs4_find_sysid(VTOMI4(vp)); 12946 12947 if (*lspp == NULL) { 12948 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 12949 "nfs4frlock_get_sysid: no sysid, return ENOLCK")); 12950 return (ENOLCK); 12951 } 12952 12953 flk->l_sysid = lm_sysidt(*lspp); 12954 12955 return (0); 12956 } 12957 12958 /* 12959 * Do the remaining preliminary setup for nfs4frlock. 12960 */ 12961 static void 12962 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep, 12963 flock64_t *flk, short *whencep, vnode_t *vp, cred_t *search_cr, 12964 cred_t **cred_otw) 12965 { 12966 /* 12967 * set tick_delay to the base delay time. 12968 * (NFS4_BASE_WAIT_TIME is in secs) 12969 */ 12970 12971 *tick_delayp = drv_usectohz(NFS4_BASE_WAIT_TIME * 1000 * 1000); 12972 12973 /* 12974 * If lock is relative to EOF, we need the newest length of the 12975 * file. Therefore invalidate the ATTR_CACHE. 12976 */ 12977 12978 *whencep = flk->l_whence; 12979 12980 if (*whencep == 2) /* SEEK_END */ 12981 PURGE_ATTRCACHE4(vp); 12982 12983 recov_statep->rs_flags = 0; 12984 recov_statep->rs_num_retry_despite_err = 0; 12985 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL); 12986 } 12987 12988 /* 12989 * Initialize and allocate the data structures necessary for 12990 * the nfs4frlock call. 12991 * Allocates argsp's op array, frees up the saved_rqstpp if there is one. 12992 */ 12993 static void 12994 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp, 12995 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd, 12996 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp, 12997 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp) 12998 { 12999 int argoplist_size; 13000 int num_ops = 2; 13001 13002 *retry = FALSE; 13003 *did_start_fop = FALSE; 13004 *skip_get_err = FALSE; 13005 lost_rqstp->lr_op = 0; 13006 argoplist_size = num_ops * sizeof (nfs_argop4); 13007 /* fill array with zero */ 13008 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP); 13009 13010 *argspp = argsp; 13011 *respp = NULL; 13012 13013 argsp->array_len = num_ops; 13014 argsp->array = *argopp; 13015 13016 /* initialize in case of error; will get real value down below */ 13017 argsp->ctag = TAG_NONE; 13018 13019 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) 13020 *op_hintp = OH_LOCKU; 13021 else 13022 *op_hintp = OH_OTHER; 13023 } 13024 13025 /* 13026 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign 13027 * the proper nfs4_server_t for this instance of nfs4frlock. 13028 * Returns 0 (success) or an errno value. 13029 */ 13030 static int 13031 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp, 13032 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep, 13033 bool_t *did_start_fop, bool_t *startrecovp) 13034 { 13035 int error = 0; 13036 rnode4_t *rp; 13037 13038 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13039 13040 if (ctype == NFS4_LCK_CTYPE_NORM) { 13041 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint, 13042 recov_statep, startrecovp); 13043 if (error) 13044 return (error); 13045 *did_start_fop = TRUE; 13046 } else { 13047 *did_start_fop = FALSE; 13048 *startrecovp = FALSE; 13049 } 13050 13051 if (!error) { 13052 rp = VTOR4(vp); 13053 13054 /* If the file failed recovery, just quit. */ 13055 mutex_enter(&rp->r_statelock); 13056 if (rp->r_flags & R4RECOVERR) { 13057 error = EIO; 13058 } 13059 mutex_exit(&rp->r_statelock); 13060 } 13061 13062 return (error); 13063 } 13064 13065 /* 13066 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A 13067 * resend nfs4frlock call is initiated by the recovery framework. 13068 * Acquires the lop and oop seqid synchronization. 13069 */ 13070 static void 13071 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp, 13072 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp, 13073 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13074 LOCK4args **lock_argsp, LOCKU4args **locku_argsp) 13075 { 13076 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp); 13077 int error; 13078 13079 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug), 13080 (CE_NOTE, 13081 "nfs4frlock_setup_resend_lock_args: have lost lock to resend")); 13082 ASSERT(resend_rqstp != NULL); 13083 ASSERT(resend_rqstp->lr_op == OP_LOCK || 13084 resend_rqstp->lr_op == OP_LOCKU); 13085 13086 *oopp = resend_rqstp->lr_oop; 13087 if (resend_rqstp->lr_oop) { 13088 open_owner_hold(resend_rqstp->lr_oop); 13089 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi); 13090 ASSERT(error == 0); /* recov thread always succeeds */ 13091 } 13092 13093 /* Must resend this lost lock/locku request. */ 13094 ASSERT(resend_rqstp->lr_lop != NULL); 13095 *lopp = resend_rqstp->lr_lop; 13096 lock_owner_hold(resend_rqstp->lr_lop); 13097 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi); 13098 ASSERT(error == 0); /* recov thread always succeeds */ 13099 13100 *ospp = resend_rqstp->lr_osp; 13101 if (*ospp) 13102 open_stream_hold(resend_rqstp->lr_osp); 13103 13104 if (resend_rqstp->lr_op == OP_LOCK) { 13105 LOCK4args *lock_args; 13106 13107 argop->argop = OP_LOCK; 13108 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock; 13109 lock_args->locktype = resend_rqstp->lr_locktype; 13110 lock_args->reclaim = 13111 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM); 13112 lock_args->offset = resend_rqstp->lr_flk->l_start; 13113 lock_args->length = resend_rqstp->lr_flk->l_len; 13114 if (lock_args->length == 0) 13115 lock_args->length = ~lock_args->length; 13116 nfs4_setup_lock_args(*lopp, *oopp, *ospp, 13117 mi2clientid(mi), &lock_args->locker); 13118 13119 switch (resend_rqstp->lr_ctype) { 13120 case NFS4_LCK_CTYPE_RESEND: 13121 argsp->ctag = TAG_LOCK_RESEND; 13122 break; 13123 case NFS4_LCK_CTYPE_REINSTATE: 13124 argsp->ctag = TAG_LOCK_REINSTATE; 13125 break; 13126 case NFS4_LCK_CTYPE_RECLAIM: 13127 argsp->ctag = TAG_LOCK_RECLAIM; 13128 break; 13129 default: 13130 argsp->ctag = TAG_LOCK_UNKNOWN; 13131 break; 13132 } 13133 } else { 13134 LOCKU4args *locku_args; 13135 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop; 13136 13137 argop->argop = OP_LOCKU; 13138 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku; 13139 locku_args->locktype = READ_LT; 13140 locku_args->seqid = lop->lock_seqid + 1; 13141 mutex_enter(&lop->lo_lock); 13142 locku_args->lock_stateid = lop->lock_stateid; 13143 mutex_exit(&lop->lo_lock); 13144 locku_args->offset = resend_rqstp->lr_flk->l_start; 13145 locku_args->length = resend_rqstp->lr_flk->l_len; 13146 if (locku_args->length == 0) 13147 locku_args->length = ~locku_args->length; 13148 13149 switch (resend_rqstp->lr_ctype) { 13150 case NFS4_LCK_CTYPE_RESEND: 13151 argsp->ctag = TAG_LOCKU_RESEND; 13152 break; 13153 case NFS4_LCK_CTYPE_REINSTATE: 13154 argsp->ctag = TAG_LOCKU_REINSTATE; 13155 break; 13156 default: 13157 argsp->ctag = TAG_LOCK_UNKNOWN; 13158 break; 13159 } 13160 } 13161 } 13162 13163 /* 13164 * Setup the LOCKT4 arguments. 13165 */ 13166 static void 13167 nfs4frlock_setup_lockt_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13168 LOCKT4args **lockt_argsp, COMPOUND4args_clnt *argsp, flock64_t *flk, 13169 rnode4_t *rp) 13170 { 13171 LOCKT4args *lockt_args; 13172 13173 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone); 13174 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13175 argop->argop = OP_LOCKT; 13176 argsp->ctag = TAG_LOCKT; 13177 lockt_args = &argop->nfs_argop4_u.oplockt; 13178 13179 /* 13180 * The locktype will be READ_LT unless it's 13181 * a write lock. We do this because the Solaris 13182 * system call allows the combination of 13183 * F_UNLCK and F_GETLK* and so in that case the 13184 * unlock is mapped to a read. 13185 */ 13186 if (flk->l_type == F_WRLCK) 13187 lockt_args->locktype = WRITE_LT; 13188 else 13189 lockt_args->locktype = READ_LT; 13190 13191 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp))); 13192 /* set the lock owner4 args */ 13193 nfs4_setlockowner_args(&lockt_args->owner, rp, 13194 ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13195 flk->l_pid); 13196 lockt_args->offset = flk->l_start; 13197 lockt_args->length = flk->l_len; 13198 if (flk->l_len == 0) 13199 lockt_args->length = ~lockt_args->length; 13200 13201 *lockt_argsp = lockt_args; 13202 } 13203 13204 /* 13205 * If the client is holding a delegation, and the open stream to be used 13206 * with this lock request is a delegation open stream, then re-open the stream. 13207 * Sets the nfs4_error_t to all zeros unless the open stream has already 13208 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY 13209 * means the caller should retry (like a recovery retry). 13210 */ 13211 static void 13212 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt) 13213 { 13214 open_delegation_type4 dt; 13215 bool_t reopen_needed, force; 13216 nfs4_open_stream_t *osp; 13217 open_claim_type4 oclaim; 13218 rnode4_t *rp = VTOR4(vp); 13219 mntinfo4_t *mi = VTOMI4(vp); 13220 13221 ASSERT(nfs_zone() == mi->mi_zone); 13222 13223 nfs4_error_zinit(ep); 13224 13225 mutex_enter(&rp->r_statev4_lock); 13226 dt = rp->r_deleg_type; 13227 mutex_exit(&rp->r_statev4_lock); 13228 13229 if (dt != OPEN_DELEGATE_NONE) { 13230 nfs4_open_owner_t *oop; 13231 13232 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 13233 if (!oop) { 13234 ep->stat = NFS4ERR_IO; 13235 return; 13236 } 13237 /* returns with 'os_sync_lock' held */ 13238 osp = find_open_stream(oop, rp); 13239 if (!osp) { 13240 open_owner_rele(oop); 13241 ep->stat = NFS4ERR_IO; 13242 return; 13243 } 13244 13245 if (osp->os_failed_reopen) { 13246 NFS4_DEBUG((nfs4_open_stream_debug || 13247 nfs4_client_lock_debug), (CE_NOTE, 13248 "nfs4frlock_check_deleg: os_failed_reopen set " 13249 "for osp %p, cr %p, rp %s", (void *)osp, 13250 (void *)cr, rnode4info(rp))); 13251 mutex_exit(&osp->os_sync_lock); 13252 open_stream_rele(osp, rp); 13253 open_owner_rele(oop); 13254 ep->stat = NFS4ERR_IO; 13255 return; 13256 } 13257 13258 /* 13259 * Determine whether a reopen is needed. If this 13260 * is a delegation open stream, then send the open 13261 * to the server to give visibility to the open owner. 13262 * Even if it isn't a delegation open stream, we need 13263 * to check if the previous open CLAIM_DELEGATE_CUR 13264 * was sufficient. 13265 */ 13266 13267 reopen_needed = osp->os_delegation || 13268 ((lt == F_RDLCK && 13269 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) || 13270 (lt == F_WRLCK && 13271 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE))); 13272 13273 mutex_exit(&osp->os_sync_lock); 13274 open_owner_rele(oop); 13275 13276 if (reopen_needed) { 13277 /* 13278 * Always use CLAIM_PREVIOUS after server reboot. 13279 * The server will reject CLAIM_DELEGATE_CUR if 13280 * it is used during the grace period. 13281 */ 13282 mutex_enter(&mi->mi_lock); 13283 if (mi->mi_recovflags & MI4R_SRV_REBOOT) { 13284 oclaim = CLAIM_PREVIOUS; 13285 force = TRUE; 13286 } else { 13287 oclaim = CLAIM_DELEGATE_CUR; 13288 force = FALSE; 13289 } 13290 mutex_exit(&mi->mi_lock); 13291 13292 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE); 13293 if (ep->error == EAGAIN) { 13294 nfs4_error_zinit(ep); 13295 ep->stat = NFS4ERR_DELAY; 13296 } 13297 } 13298 open_stream_rele(osp, rp); 13299 osp = NULL; 13300 } 13301 } 13302 13303 /* 13304 * Setup the LOCKU4 arguments. 13305 * Returns errors via the nfs4_error_t. 13306 * NFS4_OK no problems. *go_otwp is TRUE if call should go 13307 * over-the-wire. The caller must release the 13308 * reference on *lopp. 13309 * NFS4ERR_DELAY caller should retry (like recovery retry) 13310 * (other) unrecoverable error. 13311 */ 13312 static void 13313 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop, 13314 LOCKU4args **locku_argsp, flock64_t *flk, 13315 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp, 13316 vnode_t *vp, int flag, u_offset_t offset, cred_t *cr, 13317 bool_t *skip_get_err, bool_t *go_otwp) 13318 { 13319 nfs4_lock_owner_t *lop = NULL; 13320 LOCKU4args *locku_args; 13321 pid_t pid; 13322 bool_t is_spec = FALSE; 13323 rnode4_t *rp = VTOR4(vp); 13324 13325 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13326 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13327 13328 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK); 13329 if (ep->error || ep->stat) 13330 return; 13331 13332 argop->argop = OP_LOCKU; 13333 if (ctype == NFS4_LCK_CTYPE_REINSTATE) 13334 argsp->ctag = TAG_LOCKU_REINSTATE; 13335 else 13336 argsp->ctag = TAG_LOCKU; 13337 locku_args = &argop->nfs_argop4_u.oplocku; 13338 *locku_argsp = locku_args; 13339 13340 /* 13341 * XXX what should locku_args->locktype be? 13342 * setting to ALWAYS be READ_LT so at least 13343 * it is a valid locktype. 13344 */ 13345 13346 locku_args->locktype = READ_LT; 13347 13348 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pidp->pid_id : 13349 flk->l_pid; 13350 13351 /* 13352 * Get the lock owner stateid. If no lock owner 13353 * exists, return success. 13354 */ 13355 lop = find_lock_owner(rp, pid, LOWN_ANY); 13356 *lopp = lop; 13357 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid)) 13358 is_spec = TRUE; 13359 if (!lop || is_spec) { 13360 /* 13361 * No lock owner so no locks to unlock. 13362 * Return success. If there was a failed 13363 * reclaim earlier, the lock might still be 13364 * registered with the local locking code, 13365 * so notify it of the unlock. 13366 * 13367 * If the lockowner is using a special stateid, 13368 * then the original lock request (that created 13369 * this lockowner) was never successful, so we 13370 * have no lock to undo OTW. 13371 */ 13372 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13373 "nfs4frlock_setup_locku_args: LOCKU: no lock owner " 13374 "(%ld) so return success", (long)pid)); 13375 13376 if (ctype == NFS4_LCK_CTYPE_NORM) 13377 flk->l_pid = curproc->p_pid; 13378 nfs4_register_lock_locally(vp, flk, flag, offset); 13379 /* 13380 * Release our hold and NULL out so final_cleanup 13381 * doesn't try to end a lock seqid sync we 13382 * never started. 13383 */ 13384 if (is_spec) { 13385 lock_owner_rele(lop); 13386 *lopp = NULL; 13387 } 13388 *skip_get_err = TRUE; 13389 *go_otwp = FALSE; 13390 return; 13391 } 13392 13393 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp)); 13394 if (ep->error == EAGAIN) { 13395 lock_owner_rele(lop); 13396 *lopp = NULL; 13397 return; 13398 } 13399 13400 mutex_enter(&lop->lo_lock); 13401 locku_args->lock_stateid = lop->lock_stateid; 13402 mutex_exit(&lop->lo_lock); 13403 locku_args->seqid = lop->lock_seqid + 1; 13404 13405 /* leave the ref count on lop, rele after RPC call */ 13406 13407 locku_args->offset = flk->l_start; 13408 locku_args->length = flk->l_len; 13409 if (flk->l_len == 0) 13410 locku_args->length = ~locku_args->length; 13411 13412 *go_otwp = TRUE; 13413 } 13414 13415 /* 13416 * Setup the LOCK4 arguments. 13417 * 13418 * Returns errors via the nfs4_error_t. 13419 * NFS4_OK no problems 13420 * NFS4ERR_DELAY caller should retry (like recovery retry) 13421 * (other) unrecoverable error 13422 */ 13423 static void 13424 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp, 13425 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13426 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp, 13427 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep) 13428 { 13429 LOCK4args *lock_args; 13430 nfs4_open_owner_t *oop = NULL; 13431 nfs4_open_stream_t *osp = NULL; 13432 nfs4_lock_owner_t *lop = NULL; 13433 pid_t pid; 13434 rnode4_t *rp = VTOR4(vp); 13435 13436 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13437 13438 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type); 13439 if (ep->error || ep->stat != NFS4_OK) 13440 return; 13441 13442 argop->argop = OP_LOCK; 13443 if (ctype == NFS4_LCK_CTYPE_NORM) 13444 argsp->ctag = TAG_LOCK; 13445 else if (ctype == NFS4_LCK_CTYPE_RECLAIM) 13446 argsp->ctag = TAG_RELOCK; 13447 else 13448 argsp->ctag = TAG_LOCK_REINSTATE; 13449 lock_args = &argop->nfs_argop4_u.oplock; 13450 lock_args->locktype = flk_to_locktype(cmd, flk->l_type); 13451 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0; 13452 /* 13453 * Get the lock owner. If no lock owner exists, 13454 * create a 'temporary' one and grab the open seqid 13455 * synchronization (which puts a hold on the open 13456 * owner and open stream). 13457 * This also grabs the lock seqid synchronization. 13458 */ 13459 pid = ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : flk->l_pid; 13460 ep->stat = 13461 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop); 13462 13463 if (ep->stat != NFS4_OK) 13464 goto out; 13465 13466 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)), 13467 &lock_args->locker); 13468 13469 lock_args->offset = flk->l_start; 13470 lock_args->length = flk->l_len; 13471 if (flk->l_len == 0) 13472 lock_args->length = ~lock_args->length; 13473 *lock_argsp = lock_args; 13474 out: 13475 *oopp = oop; 13476 *ospp = osp; 13477 *lopp = lop; 13478 } 13479 13480 /* 13481 * After we get the reply from the server, record the proper information 13482 * for possible resend lock requests. 13483 * 13484 * Allocates memory for the saved_rqstp if we have a lost lock to save. 13485 */ 13486 static void 13487 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error, 13488 nfs_lock_type4 locktype, nfs4_open_owner_t *oop, 13489 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 13490 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp) 13491 { 13492 bool_t unlock = (flk->l_type == F_UNLCK); 13493 13494 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13495 ASSERT(ctype == NFS4_LCK_CTYPE_NORM || 13496 ctype == NFS4_LCK_CTYPE_REINSTATE); 13497 13498 if (error != 0 && !unlock) { 13499 NFS4_DEBUG((nfs4_lost_rqst_debug || 13500 nfs4_client_lock_debug), (CE_NOTE, 13501 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 " 13502 " for lop %p", (void *)lop)); 13503 ASSERT(lop != NULL); 13504 mutex_enter(&lop->lo_lock); 13505 lop->lo_pending_rqsts = 1; 13506 mutex_exit(&lop->lo_lock); 13507 } 13508 13509 lost_rqstp->lr_putfirst = FALSE; 13510 lost_rqstp->lr_op = 0; 13511 13512 /* 13513 * For lock/locku requests, we treat EINTR as ETIMEDOUT for 13514 * recovery purposes so that the lock request that was sent 13515 * can be saved and re-issued later. Ditto for EIO from a forced 13516 * unmount. This is done to have the client's local locking state 13517 * match the v4 server's state; that is, the request was 13518 * potentially received and accepted by the server but the client 13519 * thinks it was not. 13520 */ 13521 if (error == ETIMEDOUT || error == EINTR || 13522 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) { 13523 NFS4_DEBUG((nfs4_lost_rqst_debug || 13524 nfs4_client_lock_debug), (CE_NOTE, 13525 "nfs4frlock_save_lost_rqst: got a lost %s lock for " 13526 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK", 13527 (void *)lop, (void *)oop, (void *)osp)); 13528 if (unlock) 13529 lost_rqstp->lr_op = OP_LOCKU; 13530 else { 13531 lost_rqstp->lr_op = OP_LOCK; 13532 lost_rqstp->lr_locktype = locktype; 13533 } 13534 /* 13535 * Objects are held and rele'd via the recovery code. 13536 * See nfs4_save_lost_rqst. 13537 */ 13538 lost_rqstp->lr_vp = vp; 13539 lost_rqstp->lr_dvp = NULL; 13540 lost_rqstp->lr_oop = oop; 13541 lost_rqstp->lr_osp = osp; 13542 lost_rqstp->lr_lop = lop; 13543 lost_rqstp->lr_cr = cr; 13544 switch (ctype) { 13545 case NFS4_LCK_CTYPE_NORM: 13546 flk->l_pid = ttoproc(curthread)->p_pid; 13547 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND; 13548 break; 13549 case NFS4_LCK_CTYPE_REINSTATE: 13550 lost_rqstp->lr_putfirst = TRUE; 13551 lost_rqstp->lr_ctype = ctype; 13552 break; 13553 default: 13554 break; 13555 } 13556 lost_rqstp->lr_flk = flk; 13557 } 13558 } 13559 13560 /* 13561 * Update lop's seqid. Also update the seqid stored in a resend request, 13562 * if any. (Some recovery errors increment the seqid, and we may have to 13563 * send the resend request again.) 13564 */ 13565 13566 static void 13567 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args, 13568 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type) 13569 { 13570 if (lock_args) { 13571 if (lock_args->locker.new_lock_owner == TRUE) 13572 nfs4_get_and_set_next_open_seqid(oop, tag_type); 13573 else { 13574 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13575 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop); 13576 } 13577 } else if (locku_args) { 13578 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE); 13579 nfs4_set_lock_seqid(lop->lock_seqid +1, lop); 13580 } 13581 } 13582 13583 /* 13584 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13585 * COMPOUND4 args/res for calls that need to retry. 13586 * Switches the *cred_otwp to base_cr. 13587 */ 13588 static void 13589 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint, 13590 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop, 13591 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error, 13592 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp, 13593 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp) 13594 { 13595 nfs4_open_owner_t *oop = *oopp; 13596 nfs4_open_stream_t *osp = *ospp; 13597 nfs4_lock_owner_t *lop = *lopp; 13598 nfs_argop4 *argop = (*argspp)->array; 13599 13600 if (*did_start_fop) { 13601 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13602 needrecov); 13603 *did_start_fop = FALSE; 13604 } 13605 ASSERT((*argspp)->array_len == 2); 13606 if (argop[1].argop == OP_LOCK) 13607 nfs4args_lock_free(&argop[1]); 13608 else if (argop[1].argop == OP_LOCKT) 13609 nfs4args_lockt_free(&argop[1]); 13610 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13611 if (!error) 13612 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13613 *argspp = NULL; 13614 *respp = NULL; 13615 13616 if (lop) { 13617 nfs4_end_lock_seqid_sync(lop); 13618 lock_owner_rele(lop); 13619 *lopp = NULL; 13620 } 13621 13622 /* need to free up the reference on osp for lock args */ 13623 if (osp != NULL) { 13624 open_stream_rele(osp, VTOR4(vp)); 13625 *ospp = NULL; 13626 } 13627 13628 /* need to free up the reference on oop for lock args */ 13629 if (oop != NULL) { 13630 nfs4_end_open_seqid_sync(oop); 13631 open_owner_rele(oop); 13632 *oopp = NULL; 13633 } 13634 13635 crfree(*cred_otwp); 13636 *cred_otwp = base_cr; 13637 crhold(*cred_otwp); 13638 } 13639 13640 /* 13641 * Function to process the client's recovery for nfs4frlock. 13642 * Returns TRUE if we should retry the lock request; FALSE otherwise. 13643 * 13644 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13645 * COMPOUND4 args/res for calls that need to retry. 13646 * 13647 * Note: the rp's r_lkserlock is *not* dropped during this path. 13648 */ 13649 static bool_t 13650 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep, 13651 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13652 LOCK4args *lock_args, LOCKU4args *locku_args, 13653 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp, 13654 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp, 13655 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint, 13656 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk) 13657 { 13658 nfs4_open_owner_t *oop = *oopp; 13659 nfs4_open_stream_t *osp = *ospp; 13660 nfs4_lock_owner_t *lop = *lopp; 13661 13662 bool_t abort, retry; 13663 13664 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13665 ASSERT((*argspp) != NULL); 13666 ASSERT((*respp) != NULL); 13667 if (lock_args || locku_args) 13668 ASSERT(lop != NULL); 13669 13670 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug), 13671 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n")); 13672 13673 retry = TRUE; 13674 abort = FALSE; 13675 if (needrecov) { 13676 nfs4_bseqid_entry_t *bsep = NULL; 13677 nfs_opnum4 op; 13678 13679 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT; 13680 13681 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) { 13682 seqid4 seqid; 13683 13684 if (lock_args) { 13685 if (lock_args->locker.new_lock_owner == TRUE) 13686 seqid = lock_args->locker.locker4_u. 13687 open_owner.open_seqid; 13688 else 13689 seqid = lock_args->locker.locker4_u. 13690 lock_owner.lock_seqid; 13691 } else if (locku_args) { 13692 seqid = locku_args->seqid; 13693 } else { 13694 seqid = 0; 13695 } 13696 13697 bsep = nfs4_create_bseqid_entry(oop, lop, vp, 13698 flk->l_pid, (*argspp)->ctag, seqid); 13699 } 13700 13701 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL, 13702 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK || 13703 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp : 13704 NULL, op, bsep, NULL, NULL); 13705 13706 if (bsep) 13707 kmem_free(bsep, sizeof (*bsep)); 13708 } 13709 13710 /* 13711 * Return that we do not want to retry the request for 3 cases: 13712 * 1. If we received EINTR or are bailing out because of a forced 13713 * unmount, we came into this code path just for the sake of 13714 * initiating recovery, we now need to return the error. 13715 * 2. If we have aborted recovery. 13716 * 3. We received NFS4ERR_BAD_SEQID. 13717 */ 13718 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) || 13719 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID)) 13720 retry = FALSE; 13721 13722 if (*did_start_fop == TRUE) { 13723 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep, 13724 needrecov); 13725 *did_start_fop = FALSE; 13726 } 13727 13728 if (retry == TRUE) { 13729 nfs_argop4 *argop; 13730 13731 argop = (*argspp)->array; 13732 ASSERT((*argspp)->array_len == 2); 13733 13734 if (argop[1].argop == OP_LOCK) 13735 nfs4args_lock_free(&argop[1]); 13736 else if (argop[1].argop == OP_LOCKT) 13737 nfs4args_lockt_free(&argop[1]); 13738 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13739 if (!ep->error) 13740 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp); 13741 *respp = NULL; 13742 *argspp = NULL; 13743 } 13744 13745 if (lop != NULL) { 13746 nfs4_end_lock_seqid_sync(lop); 13747 lock_owner_rele(lop); 13748 } 13749 13750 *lopp = NULL; 13751 13752 /* need to free up the reference on osp for lock args */ 13753 if (osp != NULL) { 13754 open_stream_rele(osp, rp); 13755 *ospp = NULL; 13756 } 13757 13758 /* need to free up the reference on oop for lock args */ 13759 if (oop != NULL) { 13760 nfs4_end_open_seqid_sync(oop); 13761 open_owner_rele(oop); 13762 *oopp = NULL; 13763 } 13764 13765 return (retry); 13766 } 13767 13768 /* 13769 * Handles the successful reply from the server for nfs4frlock. 13770 */ 13771 static void 13772 nfs4frlock_results_ok(nfs4_lock_call_type_t ctype, int cmd, flock64_t *flk, 13773 vnode_t *vp, int flag, u_offset_t offset, 13774 nfs4_lost_rqst_t *resend_rqstp) 13775 { 13776 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13777 if ((cmd == F_SETLK || cmd == F_SETLKW) && 13778 (flk->l_type == F_RDLCK || flk->l_type == F_WRLCK)) { 13779 if (ctype == NFS4_LCK_CTYPE_NORM) { 13780 flk->l_pid = ttoproc(curthread)->p_pid; 13781 /* 13782 * We do not register lost locks locally in 13783 * the 'resend' case since the user/application 13784 * doesn't think we have the lock. 13785 */ 13786 ASSERT(!resend_rqstp); 13787 nfs4_register_lock_locally(vp, flk, flag, offset); 13788 } 13789 } 13790 } 13791 13792 /* 13793 * Handle the DENIED reply from the server for nfs4frlock. 13794 * Returns TRUE if we should retry the request; FALSE otherwise. 13795 * 13796 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 13797 * COMPOUND4 args/res for calls that need to retry. Can also 13798 * drop and regrab the r_lkserlock. 13799 */ 13800 static bool_t 13801 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args, 13802 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp, 13803 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd, 13804 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint, 13805 nfs4_recov_state_t *recov_statep, int needrecov, 13806 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, 13807 clock_t *tick_delayp, short *whencep, int *errorp, 13808 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop, 13809 bool_t *skip_get_err) 13810 { 13811 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13812 13813 if (lock_args) { 13814 nfs4_open_owner_t *oop = *oopp; 13815 nfs4_open_stream_t *osp = *ospp; 13816 nfs4_lock_owner_t *lop = *lopp; 13817 int intr; 13818 13819 /* 13820 * Blocking lock needs to sleep and retry from the request. 13821 * 13822 * Do not block and wait for 'resend' or 'reinstate' 13823 * lock requests, just return the error. 13824 * 13825 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW. 13826 */ 13827 if (cmd == F_SETLKW) { 13828 rnode4_t *rp = VTOR4(vp); 13829 nfs_argop4 *argop = (*argspp)->array; 13830 13831 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 13832 13833 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 13834 recov_statep, needrecov); 13835 *did_start_fop = FALSE; 13836 ASSERT((*argspp)->array_len == 2); 13837 if (argop[1].argop == OP_LOCK) 13838 nfs4args_lock_free(&argop[1]); 13839 else if (argop[1].argop == OP_LOCKT) 13840 nfs4args_lockt_free(&argop[1]); 13841 kmem_free(argop, 2 * sizeof (nfs_argop4)); 13842 if (*respp) 13843 (void) xdr_free(xdr_COMPOUND4res_clnt, 13844 (caddr_t)*respp); 13845 *argspp = NULL; 13846 *respp = NULL; 13847 nfs4_end_lock_seqid_sync(lop); 13848 lock_owner_rele(lop); 13849 *lopp = NULL; 13850 if (osp != NULL) { 13851 open_stream_rele(osp, rp); 13852 *ospp = NULL; 13853 } 13854 if (oop != NULL) { 13855 nfs4_end_open_seqid_sync(oop); 13856 open_owner_rele(oop); 13857 *oopp = NULL; 13858 } 13859 13860 nfs_rw_exit(&rp->r_lkserlock); 13861 13862 intr = nfs4_block_and_wait(tick_delayp, rp); 13863 13864 if (intr) { 13865 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13866 RW_WRITER, FALSE); 13867 *errorp = EINTR; 13868 return (FALSE); 13869 } 13870 13871 (void) nfs_rw_enter_sig(&rp->r_lkserlock, 13872 RW_WRITER, FALSE); 13873 13874 /* 13875 * Make sure we are still safe to lock with 13876 * regards to mmapping. 13877 */ 13878 if (!nfs4_safelock(vp, flk, cr)) { 13879 *errorp = EAGAIN; 13880 return (FALSE); 13881 } 13882 13883 return (TRUE); 13884 } 13885 if (ctype == NFS4_LCK_CTYPE_NORM) 13886 *errorp = EAGAIN; 13887 *skip_get_err = TRUE; 13888 flk->l_whence = 0; 13889 *whencep = 0; 13890 return (FALSE); 13891 } else if (lockt_args) { 13892 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13893 "nfs4frlock_results_denied: OP_LOCKT DENIED")); 13894 13895 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied, 13896 flk, lockt_args); 13897 13898 /* according to NLM code */ 13899 *errorp = 0; 13900 *whencep = 0; 13901 *skip_get_err = TRUE; 13902 return (FALSE); 13903 } 13904 return (FALSE); 13905 } 13906 13907 /* 13908 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock. 13909 */ 13910 static void 13911 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp) 13912 { 13913 switch (resp->status) { 13914 case NFS4ERR_ACCESS: 13915 case NFS4ERR_ADMIN_REVOKED: 13916 case NFS4ERR_BADHANDLE: 13917 case NFS4ERR_BAD_RANGE: 13918 case NFS4ERR_BAD_SEQID: 13919 case NFS4ERR_BAD_STATEID: 13920 case NFS4ERR_BADXDR: 13921 case NFS4ERR_DEADLOCK: 13922 case NFS4ERR_DELAY: 13923 case NFS4ERR_EXPIRED: 13924 case NFS4ERR_FHEXPIRED: 13925 case NFS4ERR_GRACE: 13926 case NFS4ERR_INVAL: 13927 case NFS4ERR_ISDIR: 13928 case NFS4ERR_LEASE_MOVED: 13929 case NFS4ERR_LOCK_NOTSUPP: 13930 case NFS4ERR_LOCK_RANGE: 13931 case NFS4ERR_MOVED: 13932 case NFS4ERR_NOFILEHANDLE: 13933 case NFS4ERR_NO_GRACE: 13934 case NFS4ERR_OLD_STATEID: 13935 case NFS4ERR_OPENMODE: 13936 case NFS4ERR_RECLAIM_BAD: 13937 case NFS4ERR_RECLAIM_CONFLICT: 13938 case NFS4ERR_RESOURCE: 13939 case NFS4ERR_SERVERFAULT: 13940 case NFS4ERR_STALE: 13941 case NFS4ERR_STALE_CLIENTID: 13942 case NFS4ERR_STALE_STATEID: 13943 return; 13944 default: 13945 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 13946 "nfs4frlock_results_default: got unrecognizable " 13947 "res.status %d", resp->status)); 13948 *errorp = NFS4ERR_INVAL; 13949 } 13950 } 13951 13952 /* 13953 * The lock request was successful, so update the client's state. 13954 */ 13955 static void 13956 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args, 13957 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop, 13958 vnode_t *vp, flock64_t *flk, cred_t *cr, 13959 nfs4_lost_rqst_t *resend_rqstp) 13960 { 13961 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 13962 13963 if (lock_args) { 13964 LOCK4res *lock_res; 13965 13966 lock_res = &resop->nfs_resop4_u.oplock; 13967 /* update the stateid with server's response */ 13968 13969 if (lock_args->locker.new_lock_owner == TRUE) { 13970 mutex_enter(&lop->lo_lock); 13971 lop->lo_just_created = NFS4_PERM_CREATED; 13972 mutex_exit(&lop->lo_lock); 13973 } 13974 13975 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid); 13976 13977 /* 13978 * If the lock was the result of a resending a lost 13979 * request, we've synched up the stateid and seqid 13980 * with the server, but now the server might be out of sync 13981 * with what the application thinks it has for locks. 13982 * Clean that up here. It's unclear whether we should do 13983 * this even if the filesystem has been forcibly unmounted. 13984 * For most servers, it's probably wasted effort, but 13985 * RFC3530 lets servers require that unlocks exactly match 13986 * the locks that are held. 13987 */ 13988 if (resend_rqstp != NULL && 13989 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) { 13990 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop); 13991 } else { 13992 flk->l_whence = 0; 13993 } 13994 } else if (locku_args) { 13995 LOCKU4res *locku_res; 13996 13997 locku_res = &resop->nfs_resop4_u.oplocku; 13998 13999 /* Update the stateid with the server's response */ 14000 nfs4_set_lock_stateid(lop, locku_res->lock_stateid); 14001 } else if (lockt_args) { 14002 /* Switch the lock type to express success, see fcntl */ 14003 flk->l_type = F_UNLCK; 14004 flk->l_whence = 0; 14005 } 14006 } 14007 14008 /* 14009 * Do final cleanup before exiting nfs4frlock. 14010 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the 14011 * COMPOUND4 args/res for calls that haven't already. 14012 */ 14013 static void 14014 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp, 14015 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint, 14016 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop, 14017 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk, 14018 short whence, u_offset_t offset, struct lm_sysid *ls, 14019 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args, 14020 bool_t did_start_fop, bool_t skip_get_err, 14021 cred_t *cred_otw, cred_t *cred) 14022 { 14023 mntinfo4_t *mi = VTOMI4(vp); 14024 rnode4_t *rp = VTOR4(vp); 14025 int error = *errorp; 14026 nfs_argop4 *argop; 14027 int do_flush_pages = 0; 14028 14029 ASSERT(nfs_zone() == mi->mi_zone); 14030 /* 14031 * The client recovery code wants the raw status information, 14032 * so don't map the NFS status code to an errno value for 14033 * non-normal call types. 14034 */ 14035 if (ctype == NFS4_LCK_CTYPE_NORM) { 14036 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE) 14037 *errorp = geterrno4(resp->status); 14038 if (did_start_fop == TRUE) 14039 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep, 14040 needrecov); 14041 14042 /* 14043 * We've established a new lock on the server, so invalidate 14044 * the pages associated with the vnode to get the most up to 14045 * date pages from the server after acquiring the lock. We 14046 * want to be sure that the read operation gets the newest data. 14047 * N.B. 14048 * We used to do this in nfs4frlock_results_ok but that doesn't 14049 * work since VOP_PUTPAGE can call nfs4_commit which calls 14050 * nfs4_start_fop. We flush the pages below after calling 14051 * nfs4_end_fop above 14052 * The flush of the page cache must be done after 14053 * nfs4_end_open_seqid_sync() to avoid a 4-way hang. 14054 */ 14055 if (!error && resp && resp->status == NFS4_OK) 14056 do_flush_pages = 1; 14057 } 14058 if (argsp) { 14059 ASSERT(argsp->array_len == 2); 14060 argop = argsp->array; 14061 if (argop[1].argop == OP_LOCK) 14062 nfs4args_lock_free(&argop[1]); 14063 else if (argop[1].argop == OP_LOCKT) 14064 nfs4args_lockt_free(&argop[1]); 14065 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14066 if (resp) 14067 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp); 14068 } 14069 14070 /* free the reference on the lock owner */ 14071 if (lop != NULL) { 14072 nfs4_end_lock_seqid_sync(lop); 14073 lock_owner_rele(lop); 14074 } 14075 14076 /* need to free up the reference on osp for lock args */ 14077 if (osp != NULL) 14078 open_stream_rele(osp, rp); 14079 14080 /* need to free up the reference on oop for lock args */ 14081 if (oop != NULL) { 14082 nfs4_end_open_seqid_sync(oop); 14083 open_owner_rele(oop); 14084 } 14085 14086 if (do_flush_pages) 14087 nfs4_flush_pages(vp, cred); 14088 14089 (void) convoff(vp, flk, whence, offset); 14090 14091 lm_rel_sysid(ls); 14092 14093 /* 14094 * Record debug information in the event we get EINVAL. 14095 */ 14096 mutex_enter(&mi->mi_lock); 14097 if (*errorp == EINVAL && (lock_args || locku_args) && 14098 (!(mi->mi_flags & MI4_POSIX_LOCK))) { 14099 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) { 14100 zcmn_err(getzoneid(), CE_NOTE, 14101 "%s operation failed with " 14102 "EINVAL probably since the server, %s," 14103 " doesn't support POSIX style locking", 14104 lock_args ? "LOCK" : "LOCKU", 14105 mi->mi_curr_serv->sv_hostname); 14106 mi->mi_flags |= MI4_LOCK_DEBUG; 14107 } 14108 } 14109 mutex_exit(&mi->mi_lock); 14110 14111 if (cred_otw) 14112 crfree(cred_otw); 14113 } 14114 14115 /* 14116 * This calls the server and the local locking code. 14117 * 14118 * Client locks are registerred locally by oring the sysid with 14119 * LM_SYSID_CLIENT. The server registers locks locally using just the sysid. 14120 * We need to distinguish between the two to avoid collision in case one 14121 * machine is used as both client and server. 14122 * 14123 * Blocking lock requests will continually retry to acquire the lock 14124 * forever. 14125 * 14126 * The ctype is defined as follows: 14127 * NFS4_LCK_CTYPE_NORM: normal lock request. 14128 * 14129 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client 14130 * recovery, get the pid from flk instead of curproc, and don't reregister 14131 * the lock locally. 14132 * 14133 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition 14134 * that we will use the information passed in via resend_rqstp to setup the 14135 * lock/locku request. This resend is the exact same request as the 'lost 14136 * lock', and is initiated by the recovery framework. A successful resend 14137 * request can initiate one or more reinstate requests. 14138 * 14139 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it 14140 * does not trigger additional reinstate requests. This lock call type is 14141 * set for setting the v4 server's locking state back to match what the 14142 * client's local locking state is in the event of a received 'lost lock'. 14143 * 14144 * Errors are returned via the nfs4_error_t parameter. 14145 */ 14146 void 14147 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk, 14148 int flag, u_offset_t offset, cred_t *cr, nfs4_error_t *ep, 14149 nfs4_lost_rqst_t *resend_rqstp, int *did_reclaimp) 14150 { 14151 COMPOUND4args_clnt args, *argsp = NULL; 14152 COMPOUND4res_clnt res, *resp = NULL; 14153 nfs_argop4 *argop; 14154 nfs_resop4 *resop; 14155 rnode4_t *rp; 14156 int doqueue = 1; 14157 clock_t tick_delay; /* delay in clock ticks */ 14158 struct lm_sysid *ls; 14159 LOCK4args *lock_args = NULL; 14160 LOCKU4args *locku_args = NULL; 14161 LOCKT4args *lockt_args = NULL; 14162 nfs4_open_owner_t *oop = NULL; 14163 nfs4_open_stream_t *osp = NULL; 14164 nfs4_lock_owner_t *lop = NULL; 14165 bool_t needrecov = FALSE; 14166 nfs4_recov_state_t recov_state; 14167 short whence; 14168 nfs4_op_hint_t op_hint; 14169 nfs4_lost_rqst_t lost_rqst; 14170 bool_t retry = FALSE; 14171 bool_t did_start_fop = FALSE; 14172 bool_t skip_get_err = FALSE; 14173 cred_t *cred_otw = NULL; 14174 bool_t recovonly; /* just queue request */ 14175 int frc_no_reclaim = 0; 14176 #ifdef DEBUG 14177 char *name; 14178 #endif 14179 14180 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14181 14182 #ifdef DEBUG 14183 name = fn_name(VTOSV(vp)->sv_name); 14184 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: " 14185 "%s: cmd %d, type %d, offset %llu, start %"PRIx64", " 14186 "length %"PRIu64", pid %d, sysid %d, call type %s, " 14187 "resend request %s", name, cmd, flk->l_type, offset, flk->l_start, 14188 flk->l_len, ctype == NFS4_LCK_CTYPE_NORM ? curproc->p_pid : 14189 flk->l_pid, flk->l_sysid, nfs4frlock_get_call_type(ctype), 14190 resend_rqstp ? "TRUE" : "FALSE")); 14191 kmem_free(name, MAXNAMELEN); 14192 #endif 14193 14194 nfs4_error_zinit(ep); 14195 ep->error = nfs4frlock_validate_args(cmd, flk, flag, vp, offset); 14196 if (ep->error) 14197 return; 14198 ep->error = nfs4frlock_get_sysid(&ls, vp, flk); 14199 if (ep->error) 14200 return; 14201 nfs4frlock_pre_setup(&tick_delay, &recov_state, flk, &whence, 14202 vp, cr, &cred_otw); 14203 14204 recov_retry: 14205 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd, 14206 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst); 14207 rp = VTOR4(vp); 14208 14209 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state, 14210 &did_start_fop, &recovonly); 14211 14212 if (ep->error) 14213 goto out; 14214 14215 if (recovonly) { 14216 /* 14217 * Leave the request for the recovery system to deal with. 14218 */ 14219 ASSERT(ctype == NFS4_LCK_CTYPE_NORM); 14220 ASSERT(cmd != F_GETLK); 14221 ASSERT(flk->l_type == F_UNLCK); 14222 14223 nfs4_error_init(ep, EINTR); 14224 needrecov = TRUE; 14225 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14226 if (lop != NULL) { 14227 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT, 14228 NULL, NULL, lop, flk, &lost_rqst, cr, vp); 14229 (void) nfs4_start_recovery(ep, 14230 VTOMI4(vp), vp, NULL, NULL, 14231 (lost_rqst.lr_op == OP_LOCK || 14232 lost_rqst.lr_op == OP_LOCKU) ? 14233 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL); 14234 lock_owner_rele(lop); 14235 lop = NULL; 14236 } 14237 flk->l_pid = curproc->p_pid; 14238 nfs4_register_lock_locally(vp, flk, flag, offset); 14239 goto out; 14240 } 14241 14242 /* putfh directory fh */ 14243 argop[0].argop = OP_CPUTFH; 14244 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh; 14245 14246 /* 14247 * Set up the over-the-wire arguments and get references to the 14248 * open owner, etc. 14249 */ 14250 14251 if (ctype == NFS4_LCK_CTYPE_RESEND || 14252 ctype == NFS4_LCK_CTYPE_REINSTATE) { 14253 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp, 14254 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args); 14255 } else { 14256 bool_t go_otw = TRUE; 14257 14258 ASSERT(resend_rqstp == NULL); 14259 14260 switch (cmd) { 14261 case F_GETLK: 14262 case F_O_GETLK: 14263 nfs4frlock_setup_lockt_args(ctype, &argop[1], 14264 &lockt_args, argsp, flk, rp); 14265 break; 14266 case F_SETLKW: 14267 case F_SETLK: 14268 if (flk->l_type == F_UNLCK) 14269 nfs4frlock_setup_locku_args(ctype, 14270 &argop[1], &locku_args, flk, 14271 &lop, ep, argsp, 14272 vp, flag, offset, cr, 14273 &skip_get_err, &go_otw); 14274 else 14275 nfs4frlock_setup_lock_args(ctype, 14276 &lock_args, &oop, &osp, &lop, &argop[1], 14277 argsp, flk, cmd, vp, cr, ep); 14278 14279 if (ep->error) 14280 goto out; 14281 14282 switch (ep->stat) { 14283 case NFS4_OK: 14284 break; 14285 case NFS4ERR_DELAY: 14286 /* recov thread never gets this error */ 14287 ASSERT(resend_rqstp == NULL); 14288 ASSERT(did_start_fop); 14289 14290 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, 14291 &recov_state, TRUE); 14292 did_start_fop = FALSE; 14293 if (argop[1].argop == OP_LOCK) 14294 nfs4args_lock_free(&argop[1]); 14295 else if (argop[1].argop == OP_LOCKT) 14296 nfs4args_lockt_free(&argop[1]); 14297 kmem_free(argop, 2 * sizeof (nfs_argop4)); 14298 argsp = NULL; 14299 goto recov_retry; 14300 default: 14301 ep->error = EIO; 14302 goto out; 14303 } 14304 break; 14305 default: 14306 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14307 "nfs4_frlock: invalid cmd %d", cmd)); 14308 ep->error = EINVAL; 14309 goto out; 14310 } 14311 14312 if (!go_otw) 14313 goto out; 14314 } 14315 14316 /* XXX should we use the local reclock as a cache ? */ 14317 /* 14318 * Unregister the lock with the local locking code before 14319 * contacting the server. This avoids a potential race where 14320 * another process gets notified that it has been granted a lock 14321 * before we can unregister ourselves locally. 14322 */ 14323 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK) { 14324 if (ctype == NFS4_LCK_CTYPE_NORM) 14325 flk->l_pid = ttoproc(curthread)->p_pid; 14326 nfs4_register_lock_locally(vp, flk, flag, offset); 14327 } 14328 14329 /* 14330 * Send the server the lock request. Continually loop with a delay 14331 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE. 14332 */ 14333 resp = &res; 14334 14335 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug), 14336 (CE_NOTE, 14337 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first", 14338 rnode4info(rp))); 14339 14340 if (lock_args && frc_no_reclaim) { 14341 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14342 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14343 "nfs4frlock: frc_no_reclaim: clearing reclaim")); 14344 lock_args->reclaim = FALSE; 14345 if (did_reclaimp) 14346 *did_reclaimp = 0; 14347 } 14348 14349 /* 14350 * Do the OTW call. 14351 */ 14352 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep); 14353 14354 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14355 "nfs4frlock: error %d, status %d", ep->error, resp->status)); 14356 14357 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp); 14358 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14359 "nfs4frlock: needrecov %d", needrecov)); 14360 14361 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp)) 14362 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop, 14363 args.ctag); 14364 14365 /* 14366 * Check if one of these mutually exclusive error cases has 14367 * happened: 14368 * need to swap credentials due to access error 14369 * recovery is needed 14370 * different error (only known case is missing Kerberos ticket) 14371 */ 14372 14373 if ((ep->error == EACCES || 14374 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) && 14375 cred_otw != cr) { 14376 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov, 14377 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp, 14378 cr, &cred_otw); 14379 goto recov_retry; 14380 } 14381 14382 if (needrecov) { 14383 /* 14384 * LOCKT requests don't need to recover from lost 14385 * requests since they don't create/modify state. 14386 */ 14387 if ((ep->error == EINTR || 14388 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) && 14389 lockt_args) 14390 goto out; 14391 /* 14392 * Do not attempt recovery for requests initiated by 14393 * the recovery framework. Let the framework redrive them. 14394 */ 14395 if (ctype != NFS4_LCK_CTYPE_NORM) 14396 goto out; 14397 else { 14398 ASSERT(resend_rqstp == NULL); 14399 } 14400 14401 nfs4frlock_save_lost_rqst(ctype, ep->error, 14402 flk_to_locktype(cmd, flk->l_type), 14403 oop, osp, lop, flk, &lost_rqst, cred_otw, vp); 14404 14405 retry = nfs4frlock_recovery(needrecov, ep, &argsp, 14406 &resp, lock_args, locku_args, &oop, &osp, &lop, 14407 rp, vp, &recov_state, op_hint, &did_start_fop, 14408 cmd != F_GETLK ? &lost_rqst : NULL, flk); 14409 14410 if (retry) { 14411 ASSERT(oop == NULL); 14412 ASSERT(osp == NULL); 14413 ASSERT(lop == NULL); 14414 goto recov_retry; 14415 } 14416 goto out; 14417 } 14418 14419 /* 14420 * Bail out if have reached this point with ep->error set. Can 14421 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr). 14422 * This happens if Kerberos ticket has expired or has been 14423 * destroyed. 14424 */ 14425 if (ep->error != 0) 14426 goto out; 14427 14428 /* 14429 * Process the reply. 14430 */ 14431 switch (resp->status) { 14432 case NFS4_OK: 14433 resop = &resp->array[1]; 14434 nfs4frlock_results_ok(ctype, cmd, flk, vp, flag, offset, 14435 resend_rqstp); 14436 /* 14437 * Have a successful lock operation, now update state. 14438 */ 14439 nfs4frlock_update_state(lock_args, locku_args, lockt_args, 14440 resop, lop, vp, flk, cr, resend_rqstp); 14441 break; 14442 14443 case NFS4ERR_DENIED: 14444 resop = &resp->array[1]; 14445 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args, 14446 &oop, &osp, &lop, cmd, vp, flk, op_hint, 14447 &recov_state, needrecov, &argsp, &resp, 14448 &tick_delay, &whence, &ep->error, resop, cr, 14449 &did_start_fop, &skip_get_err); 14450 14451 if (retry) { 14452 ASSERT(oop == NULL); 14453 ASSERT(osp == NULL); 14454 ASSERT(lop == NULL); 14455 goto recov_retry; 14456 } 14457 break; 14458 /* 14459 * If the server won't let us reclaim, fall-back to trying to lock 14460 * the file from scratch. Code elsewhere will check the changeinfo 14461 * to ensure the file hasn't been changed. 14462 */ 14463 case NFS4ERR_NO_GRACE: 14464 if (lock_args && lock_args->reclaim == TRUE) { 14465 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM); 14466 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14467 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE")); 14468 frc_no_reclaim = 1; 14469 /* clean up before retrying */ 14470 needrecov = 0; 14471 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp, 14472 lock_args, locku_args, &oop, &osp, &lop, rp, vp, 14473 &recov_state, op_hint, &did_start_fop, NULL, flk); 14474 goto recov_retry; 14475 } 14476 /* FALLTHROUGH */ 14477 14478 default: 14479 nfs4frlock_results_default(resp, &ep->error); 14480 break; 14481 } 14482 out: 14483 /* 14484 * Process and cleanup from error. Make interrupted unlock 14485 * requests look successful, since they will be handled by the 14486 * client recovery code. 14487 */ 14488 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state, 14489 needrecov, oop, osp, lop, flk, whence, offset, ls, &ep->error, 14490 lock_args, locku_args, did_start_fop, 14491 skip_get_err, cred_otw, cr); 14492 14493 if (ep->error == EINTR && flk->l_type == F_UNLCK && 14494 (cmd == F_SETLK || cmd == F_SETLKW)) 14495 ep->error = 0; 14496 } 14497 14498 /* 14499 * nfs4_safelock: 14500 * 14501 * Return non-zero if the given lock request can be handled without 14502 * violating the constraints on concurrent mapping and locking. 14503 */ 14504 14505 static int 14506 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr) 14507 { 14508 rnode4_t *rp = VTOR4(vp); 14509 struct vattr va; 14510 int error; 14511 14512 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14513 ASSERT(rp->r_mapcnt >= 0); 14514 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: " 14515 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ? 14516 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock", 14517 bfp->l_start, bfp->l_len, rp->r_mapcnt)); 14518 14519 if (rp->r_mapcnt == 0) 14520 return (1); /* always safe if not mapped */ 14521 14522 /* 14523 * If the file is already mapped and there are locks, then they 14524 * should be all safe locks. So adding or removing a lock is safe 14525 * as long as the new request is safe (i.e., whole-file, meaning 14526 * length and starting offset are both zero). 14527 */ 14528 14529 if (bfp->l_start != 0 || bfp->l_len != 0) { 14530 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14531 "cannot lock a memory mapped file unless locking the " 14532 "entire file: start %"PRIx64", len %"PRIx64, 14533 bfp->l_start, bfp->l_len)); 14534 return (0); 14535 } 14536 14537 /* mandatory locking and mapping don't mix */ 14538 va.va_mask = AT_MODE; 14539 error = VOP_GETATTR(vp, &va, 0, cr, NULL); 14540 if (error != 0) { 14541 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14542 "getattr error %d", error)); 14543 return (0); /* treat errors conservatively */ 14544 } 14545 if (MANDLOCK(vp, va.va_mode)) { 14546 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: " 14547 "cannot mandatory lock and mmap a file")); 14548 return (0); 14549 } 14550 14551 return (1); 14552 } 14553 14554 14555 /* 14556 * Register the lock locally within Solaris. 14557 * As the client, we "or" the sysid with LM_SYSID_CLIENT when 14558 * recording locks locally. 14559 * 14560 * This should handle conflicts/cooperation with NFS v2/v3 since all locks 14561 * are registered locally. 14562 */ 14563 void 14564 nfs4_register_lock_locally(vnode_t *vp, struct flock64 *flk, int flag, 14565 u_offset_t offset) 14566 { 14567 int oldsysid; 14568 int error; 14569 #ifdef DEBUG 14570 char *name; 14571 #endif 14572 14573 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14574 14575 #ifdef DEBUG 14576 name = fn_name(VTOSV(vp)->sv_name); 14577 NFS4_DEBUG(nfs4_client_lock_debug, 14578 (CE_NOTE, "nfs4_register_lock_locally: %s: type %d, " 14579 "start %"PRIx64", length %"PRIx64", pid %ld, sysid %d", 14580 name, flk->l_type, flk->l_start, flk->l_len, (long)flk->l_pid, 14581 flk->l_sysid)); 14582 kmem_free(name, MAXNAMELEN); 14583 #endif 14584 14585 /* register the lock with local locking */ 14586 oldsysid = flk->l_sysid; 14587 flk->l_sysid |= LM_SYSID_CLIENT; 14588 error = reclock(vp, flk, SETFLCK, flag, offset, NULL); 14589 #ifdef DEBUG 14590 if (error != 0) { 14591 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14592 "nfs4_register_lock_locally: could not register with" 14593 " local locking")); 14594 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14595 "error %d, vp 0x%p, pid %d, sysid 0x%x", 14596 error, (void *)vp, flk->l_pid, flk->l_sysid)); 14597 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14598 "type %d off 0x%" PRIx64 " len 0x%" PRIx64, 14599 flk->l_type, flk->l_start, flk->l_len)); 14600 (void) reclock(vp, flk, 0, flag, offset, NULL); 14601 NFS4_DEBUG(nfs4_client_lock_debug, (CE_CONT, 14602 "blocked by pid %d sysid 0x%x type %d " 14603 "off 0x%" PRIx64 " len 0x%" PRIx64, 14604 flk->l_pid, flk->l_sysid, flk->l_type, flk->l_start, 14605 flk->l_len)); 14606 } 14607 #endif 14608 flk->l_sysid = oldsysid; 14609 } 14610 14611 /* 14612 * nfs4_lockrelease: 14613 * 14614 * Release any locks on the given vnode that are held by the current 14615 * process. Also removes the lock owner (if one exists) from the rnode's 14616 * list. 14617 */ 14618 static int 14619 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr) 14620 { 14621 flock64_t ld; 14622 int ret, error; 14623 rnode4_t *rp; 14624 nfs4_lock_owner_t *lop; 14625 nfs4_recov_state_t recov_state; 14626 mntinfo4_t *mi; 14627 bool_t possible_orphan = FALSE; 14628 bool_t recovonly; 14629 14630 ASSERT((uintptr_t)vp > KERNELBASE); 14631 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14632 14633 rp = VTOR4(vp); 14634 mi = VTOMI4(vp); 14635 14636 /* 14637 * If we have not locked anything then we can 14638 * just return since we have no work to do. 14639 */ 14640 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) { 14641 return (0); 14642 } 14643 14644 /* 14645 * We need to comprehend that another thread may 14646 * kick off recovery and the lock_owner we have stashed 14647 * in lop might be invalid so we should NOT cache it 14648 * locally! 14649 */ 14650 recov_state.rs_flags = 0; 14651 recov_state.rs_num_retry_despite_err = 0; 14652 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14653 &recovonly); 14654 if (error) { 14655 mutex_enter(&rp->r_statelock); 14656 rp->r_flags |= R4LODANGLERS; 14657 mutex_exit(&rp->r_statelock); 14658 return (error); 14659 } 14660 14661 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14662 14663 /* 14664 * Check if the lock owner might have a lock (request was sent but 14665 * no response was received). Also check if there are any remote 14666 * locks on the file. (In theory we shouldn't have to make this 14667 * second check if there's no lock owner, but for now we'll be 14668 * conservative and do it anyway.) If either condition is true, 14669 * send an unlock for the entire file to the server. 14670 * 14671 * Note that no explicit synchronization is needed here. At worst, 14672 * flk_has_remote_locks() will return a false positive, in which case 14673 * the unlock call wastes time but doesn't harm correctness. 14674 */ 14675 14676 if (lop) { 14677 mutex_enter(&lop->lo_lock); 14678 possible_orphan = lop->lo_pending_rqsts; 14679 mutex_exit(&lop->lo_lock); 14680 lock_owner_rele(lop); 14681 } 14682 14683 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14684 14685 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14686 "nfs4_lockrelease: possible orphan %d, remote locks %d, for " 14687 "lop %p.", possible_orphan, flk_has_remote_locks(vp), 14688 (void *)lop)); 14689 14690 if (possible_orphan || flk_has_remote_locks(vp)) { 14691 ld.l_type = F_UNLCK; /* set to unlock entire file */ 14692 ld.l_whence = 0; /* unlock from start of file */ 14693 ld.l_start = 0; 14694 ld.l_len = 0; /* do entire file */ 14695 14696 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, 14697 cr, NULL); 14698 14699 if (ret != 0) { 14700 /* 14701 * If VOP_FRLOCK fails, make sure we unregister 14702 * local locks before we continue. 14703 */ 14704 ld.l_pid = ttoproc(curthread)->p_pid; 14705 nfs4_register_lock_locally(vp, &ld, flag, offset); 14706 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 14707 "nfs4_lockrelease: lock release error on vp" 14708 " %p: error %d.\n", (void *)vp, ret)); 14709 } 14710 } 14711 14712 recov_state.rs_flags = 0; 14713 recov_state.rs_num_retry_despite_err = 0; 14714 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 14715 &recovonly); 14716 if (error) { 14717 mutex_enter(&rp->r_statelock); 14718 rp->r_flags |= R4LODANGLERS; 14719 mutex_exit(&rp->r_statelock); 14720 return (error); 14721 } 14722 14723 /* 14724 * So, here we're going to need to retrieve the lock-owner 14725 * again (in case recovery has done a switch-a-roo) and 14726 * remove it because we can. 14727 */ 14728 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY); 14729 14730 if (lop) { 14731 nfs4_rnode_remove_lock_owner(rp, lop); 14732 lock_owner_rele(lop); 14733 } 14734 14735 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0); 14736 return (0); 14737 } 14738 14739 /* 14740 * Wait for 'tick_delay' clock ticks. 14741 * Implement exponential backoff until hit the lease_time of this nfs4_server. 14742 * NOTE: lock_lease_time is in seconds. 14743 * 14744 * XXX For future improvements, should implement a waiting queue scheme. 14745 */ 14746 static int 14747 nfs4_block_and_wait(clock_t *tick_delay, rnode4_t *rp) 14748 { 14749 long milliseconds_delay; 14750 time_t lock_lease_time; 14751 14752 /* wait tick_delay clock ticks or siginteruptus */ 14753 if (delay_sig(*tick_delay)) { 14754 return (EINTR); 14755 } 14756 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: " 14757 "reissue the lock request: blocked for %ld clock ticks: %ld " 14758 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000)); 14759 14760 /* get the lease time */ 14761 lock_lease_time = r2lease_time(rp); 14762 14763 /* drv_hztousec converts ticks to microseconds */ 14764 milliseconds_delay = drv_hztousec(*tick_delay) / 1000; 14765 if (milliseconds_delay < lock_lease_time * 1000) { 14766 *tick_delay = 2 * *tick_delay; 14767 if (drv_hztousec(*tick_delay) > lock_lease_time * 1000 * 1000) 14768 *tick_delay = drv_usectohz(lock_lease_time*1000*1000); 14769 } 14770 return (0); 14771 } 14772 14773 14774 void 14775 nfs4_vnops_init(void) 14776 { 14777 } 14778 14779 void 14780 nfs4_vnops_fini(void) 14781 { 14782 } 14783 14784 /* 14785 * Return a reference to the directory (parent) vnode for a given vnode, 14786 * using the saved pathname information and the directory file handle. The 14787 * caller is responsible for disposing of the reference. 14788 * Returns zero or an errno value. 14789 * 14790 * Caller should set need_start_op to FALSE if it is the recovery 14791 * thread, or if a start_fop has already been done. Otherwise, TRUE. 14792 */ 14793 int 14794 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op) 14795 { 14796 svnode_t *svnp; 14797 vnode_t *dvp = NULL; 14798 servinfo4_t *svp; 14799 nfs4_fname_t *mfname; 14800 int error; 14801 14802 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14803 14804 if (vp->v_flag & VROOT) { 14805 nfs4_sharedfh_t *sfh; 14806 nfs_fh4 fh; 14807 mntinfo4_t *mi; 14808 14809 ASSERT(vp->v_type == VREG); 14810 14811 mi = VTOMI4(vp); 14812 svp = mi->mi_curr_serv; 14813 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14814 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 14815 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 14816 sfh = sfh4_get(&fh, VTOMI4(vp)); 14817 nfs_rw_exit(&svp->sv_lock); 14818 mfname = mi->mi_fname; 14819 fn_hold(mfname); 14820 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0); 14821 sfh4_rele(&sfh); 14822 14823 if (dvp->v_type == VNON) 14824 dvp->v_type = VDIR; 14825 *dvpp = dvp; 14826 return (0); 14827 } 14828 14829 svnp = VTOSV(vp); 14830 14831 if (svnp == NULL) { 14832 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14833 "shadow node is NULL")); 14834 return (EINVAL); 14835 } 14836 14837 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) { 14838 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14839 "shadow node name or dfh val == NULL")); 14840 return (EINVAL); 14841 } 14842 14843 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp, 14844 (int)need_start_op); 14845 if (error != 0) { 14846 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14847 "nfs4_make_dotdot returned %d", error)); 14848 return (error); 14849 } 14850 if (!dvp) { 14851 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: " 14852 "nfs4_make_dotdot returned a NULL dvp")); 14853 return (EIO); 14854 } 14855 if (dvp->v_type == VNON) 14856 dvp->v_type = VDIR; 14857 ASSERT(dvp->v_type == VDIR); 14858 if (VTOR4(vp)->r_flags & R4ISXATTR) { 14859 mutex_enter(&dvp->v_lock); 14860 dvp->v_flag |= V_XATTRDIR; 14861 mutex_exit(&dvp->v_lock); 14862 } 14863 *dvpp = dvp; 14864 return (0); 14865 } 14866 14867 /* 14868 * Copy the (final) component name of vp to fnamep. maxlen is the maximum 14869 * length that fnamep can accept, including the trailing null. 14870 * Returns 0 if okay, returns an errno value if there was a problem. 14871 */ 14872 14873 int 14874 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen) 14875 { 14876 char *fn; 14877 int err = 0; 14878 servinfo4_t *svp; 14879 svnode_t *shvp; 14880 14881 /* 14882 * If the file being opened has VROOT set, then this is 14883 * a "file" mount. sv_name will not be interesting, so 14884 * go back to the servinfo4 to get the original mount 14885 * path and strip off all but the final edge. Otherwise 14886 * just return the name from the shadow vnode. 14887 */ 14888 14889 if (vp->v_flag & VROOT) { 14890 14891 svp = VTOMI4(vp)->mi_curr_serv; 14892 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 14893 14894 fn = strrchr(svp->sv_path, '/'); 14895 if (fn == NULL) 14896 err = EINVAL; 14897 else 14898 fn++; 14899 } else { 14900 shvp = VTOSV(vp); 14901 fn = fn_name(shvp->sv_name); 14902 } 14903 14904 if (err == 0) 14905 if (strlen(fn) < maxlen) 14906 (void) strcpy(fnamep, fn); 14907 else 14908 err = ENAMETOOLONG; 14909 14910 if (vp->v_flag & VROOT) 14911 nfs_rw_exit(&svp->sv_lock); 14912 else 14913 kmem_free(fn, MAXNAMELEN); 14914 14915 return (err); 14916 } 14917 14918 /* 14919 * Bookkeeping for a close that doesn't need to go over the wire. 14920 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise 14921 * it is left at 1. 14922 */ 14923 void 14924 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp) 14925 { 14926 rnode4_t *rp; 14927 mntinfo4_t *mi; 14928 14929 mi = VTOMI4(vp); 14930 rp = VTOR4(vp); 14931 14932 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: " 14933 "rp=%p osp=%p", (void *)rp, (void *)osp)); 14934 ASSERT(nfs_zone() == mi->mi_zone); 14935 ASSERT(mutex_owned(&osp->os_sync_lock)); 14936 ASSERT(*have_lockp); 14937 14938 if (!osp->os_valid || 14939 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 14940 return; 14941 } 14942 14943 /* 14944 * This removes the reference obtained at OPEN; ie, 14945 * when the open stream structure was created. 14946 * 14947 * We don't have to worry about calling 'open_stream_rele' 14948 * since we our currently holding a reference to this 14949 * open stream which means the count can not go to 0 with 14950 * this decrement. 14951 */ 14952 ASSERT(osp->os_ref_count >= 2); 14953 osp->os_ref_count--; 14954 osp->os_valid = 0; 14955 mutex_exit(&osp->os_sync_lock); 14956 *have_lockp = 0; 14957 14958 nfs4_dec_state_ref_count(mi); 14959 } 14960 14961 /* 14962 * Close all remaining open streams on the rnode. These open streams 14963 * could be here because: 14964 * - The close attempted at either close or delmap failed 14965 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE 14966 * - Someone did mknod on a regular file but never opened it 14967 */ 14968 int 14969 nfs4close_all(vnode_t *vp, cred_t *cr) 14970 { 14971 nfs4_open_stream_t *osp; 14972 int error; 14973 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS }; 14974 rnode4_t *rp; 14975 14976 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 14977 14978 error = 0; 14979 rp = VTOR4(vp); 14980 14981 /* 14982 * At this point, all we know is that the last time 14983 * someone called vn_rele, the count was 1. Since then, 14984 * the vnode could have been re-activated. We want to 14985 * loop through the open streams and close each one, but 14986 * we have to be careful since once we release the rnode 14987 * hash bucket lock, someone else is free to come in and 14988 * re-activate the rnode and add new open streams. The 14989 * strategy is take the rnode hash bucket lock, verify that 14990 * the count is still 1, grab the open stream off the 14991 * head of the list and mark it invalid, then release the 14992 * rnode hash bucket lock and proceed with that open stream. 14993 * This is ok because nfs4close_one() will acquire the proper 14994 * open/create to close/destroy synchronization for open 14995 * streams, and will ensure that if someone has reopened 14996 * the open stream after we've dropped the hash bucket lock 14997 * then we'll just simply return without destroying the 14998 * open stream. 14999 * Repeat until the list is empty. 15000 */ 15001 15002 for (;;) { 15003 15004 /* make sure vnode hasn't been reactivated */ 15005 rw_enter(&rp->r_hashq->r_lock, RW_READER); 15006 mutex_enter(&vp->v_lock); 15007 if (vp->v_count > 1) { 15008 mutex_exit(&vp->v_lock); 15009 rw_exit(&rp->r_hashq->r_lock); 15010 break; 15011 } 15012 /* 15013 * Grabbing r_os_lock before releasing v_lock prevents 15014 * a window where the rnode/open stream could get 15015 * reactivated (and os_force_close set to 0) before we 15016 * had a chance to set os_force_close to 1. 15017 */ 15018 mutex_enter(&rp->r_os_lock); 15019 mutex_exit(&vp->v_lock); 15020 15021 osp = list_head(&rp->r_open_streams); 15022 if (!osp) { 15023 /* nothing left to CLOSE OTW, so return */ 15024 mutex_exit(&rp->r_os_lock); 15025 rw_exit(&rp->r_hashq->r_lock); 15026 break; 15027 } 15028 15029 mutex_enter(&rp->r_statev4_lock); 15030 /* the file can't still be mem mapped */ 15031 ASSERT(rp->r_mapcnt == 0); 15032 if (rp->created_v4) 15033 rp->created_v4 = 0; 15034 mutex_exit(&rp->r_statev4_lock); 15035 15036 /* 15037 * Grab a ref on this open stream; nfs4close_one 15038 * will mark it as invalid 15039 */ 15040 mutex_enter(&osp->os_sync_lock); 15041 osp->os_ref_count++; 15042 osp->os_force_close = 1; 15043 mutex_exit(&osp->os_sync_lock); 15044 mutex_exit(&rp->r_os_lock); 15045 rw_exit(&rp->r_hashq->r_lock); 15046 15047 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0); 15048 15049 /* Update error if it isn't already non-zero */ 15050 if (error == 0) { 15051 if (e.error) 15052 error = e.error; 15053 else if (e.stat) 15054 error = geterrno4(e.stat); 15055 } 15056 15057 #ifdef DEBUG 15058 nfs4close_all_cnt++; 15059 #endif 15060 /* Release the ref on osp acquired above. */ 15061 open_stream_rele(osp, rp); 15062 15063 /* Proceed to the next open stream, if any */ 15064 } 15065 return (error); 15066 } 15067 15068 /* 15069 * nfs4close_one - close one open stream for a file if needed. 15070 * 15071 * "close_type" indicates which close path this is: 15072 * CLOSE_NORM: close initiated via VOP_CLOSE. 15073 * CLOSE_DELMAP: close initiated via VOP_DELMAP. 15074 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces 15075 * the close and release of client state for this open stream 15076 * (unless someone else has the open stream open). 15077 * CLOSE_RESEND: indicates the request is a replay of an earlier request 15078 * (e.g., due to abort because of a signal). 15079 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN. 15080 * 15081 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client 15082 * recovery. Instead, the caller is expected to deal with retries. 15083 * 15084 * The caller can either pass in the osp ('provided_osp') or not. 15085 * 15086 * 'access_bits' represents the access we are closing/downgrading. 15087 * 15088 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the 15089 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and 15090 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED). 15091 * 15092 * Errors are returned via the nfs4_error_t. 15093 */ 15094 void 15095 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr, 15096 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep, 15097 nfs4_close_type_t close_type, size_t len, uint_t maxprot, 15098 uint_t mmap_flags) 15099 { 15100 nfs4_open_owner_t *oop; 15101 nfs4_open_stream_t *osp = NULL; 15102 int retry = 0; 15103 int num_retries = NFS4_NUM_RECOV_RETRIES; 15104 rnode4_t *rp; 15105 mntinfo4_t *mi; 15106 nfs4_recov_state_t recov_state; 15107 cred_t *cred_otw = NULL; 15108 bool_t recovonly = FALSE; 15109 int isrecov; 15110 int force_close; 15111 int close_failed = 0; 15112 int did_dec_count = 0; 15113 int did_start_op = 0; 15114 int did_force_recovlock = 0; 15115 int did_start_seqid_sync = 0; 15116 int have_sync_lock = 0; 15117 15118 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15119 15120 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, " 15121 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x", 15122 (void *)vp, (void *)provided_osp, (void *)lrp, close_type, 15123 len, maxprot, mmap_flags, access_bits)); 15124 15125 nfs4_error_zinit(ep); 15126 rp = VTOR4(vp); 15127 mi = VTOMI4(vp); 15128 isrecov = (close_type == CLOSE_RESEND || 15129 close_type == CLOSE_AFTER_RESEND); 15130 15131 /* 15132 * First get the open owner. 15133 */ 15134 if (!provided_osp) { 15135 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi); 15136 } else { 15137 oop = provided_osp->os_open_owner; 15138 ASSERT(oop != NULL); 15139 open_owner_hold(oop); 15140 } 15141 15142 if (!oop) { 15143 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15144 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, " 15145 "close type %d", (void *)rp, (void *)mi, (void *)cr, 15146 (void *)provided_osp, close_type)); 15147 ep->error = EIO; 15148 goto out; 15149 } 15150 15151 cred_otw = nfs4_get_otw_cred(cr, mi, oop); 15152 recov_retry: 15153 osp = NULL; 15154 close_failed = 0; 15155 force_close = (close_type == CLOSE_FORCE); 15156 retry = 0; 15157 did_start_op = 0; 15158 did_force_recovlock = 0; 15159 did_start_seqid_sync = 0; 15160 have_sync_lock = 0; 15161 recovonly = FALSE; 15162 recov_state.rs_flags = 0; 15163 recov_state.rs_num_retry_despite_err = 0; 15164 15165 /* 15166 * Second synchronize with recovery. 15167 */ 15168 if (!isrecov) { 15169 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE, 15170 &recov_state, &recovonly); 15171 if (!ep->error) { 15172 did_start_op = 1; 15173 } else { 15174 close_failed = 1; 15175 /* 15176 * If we couldn't get start_fop, but have to 15177 * cleanup state, then at least acquire the 15178 * mi_recovlock so we can synchronize with 15179 * recovery. 15180 */ 15181 if (close_type == CLOSE_FORCE) { 15182 (void) nfs_rw_enter_sig(&mi->mi_recovlock, 15183 RW_READER, FALSE); 15184 did_force_recovlock = 1; 15185 } else 15186 goto out; 15187 } 15188 } 15189 15190 /* 15191 * We cannot attempt to get the open seqid sync if nfs4_start_fop 15192 * set 'recovonly' to TRUE since most likely this is due to 15193 * reovery being active (MI4_RECOV_ACTIV). If recovery is active, 15194 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us 15195 * to retry, causing us to loop until recovery finishes. Plus we 15196 * don't need protection over the open seqid since we're not going 15197 * OTW, hence don't need to use the seqid. 15198 */ 15199 if (recovonly == FALSE) { 15200 /* need to grab the open owner sync before 'os_sync_lock' */ 15201 ep->error = nfs4_start_open_seqid_sync(oop, mi); 15202 if (ep->error == EAGAIN) { 15203 ASSERT(!isrecov); 15204 if (did_start_op) 15205 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15206 &recov_state, TRUE); 15207 if (did_force_recovlock) 15208 nfs_rw_exit(&mi->mi_recovlock); 15209 goto recov_retry; 15210 } 15211 did_start_seqid_sync = 1; 15212 } 15213 15214 /* 15215 * Third get an open stream and acquire 'os_sync_lock' to 15216 * sychronize the opening/creating of an open stream with the 15217 * closing/destroying of an open stream. 15218 */ 15219 if (!provided_osp) { 15220 /* returns with 'os_sync_lock' held */ 15221 osp = find_open_stream(oop, rp); 15222 if (!osp) { 15223 ep->error = EIO; 15224 goto out; 15225 } 15226 } else { 15227 osp = provided_osp; 15228 open_stream_hold(osp); 15229 mutex_enter(&osp->os_sync_lock); 15230 } 15231 have_sync_lock = 1; 15232 15233 ASSERT(oop == osp->os_open_owner); 15234 15235 /* 15236 * Fourth, do any special pre-OTW CLOSE processing 15237 * based on the specific close type. 15238 */ 15239 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) && 15240 !did_dec_count) { 15241 ASSERT(osp->os_open_ref_count > 0); 15242 osp->os_open_ref_count--; 15243 did_dec_count = 1; 15244 if (osp->os_open_ref_count == 0) 15245 osp->os_final_close = 1; 15246 } 15247 15248 if (close_type == CLOSE_FORCE) { 15249 /* see if somebody reopened the open stream. */ 15250 if (!osp->os_force_close) { 15251 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15252 "nfs4close_one: skip CLOSE_FORCE as osp %p " 15253 "was reopened, vp %p", (void *)osp, (void *)vp)); 15254 ep->error = 0; 15255 ep->stat = NFS4_OK; 15256 goto out; 15257 } 15258 15259 if (!osp->os_final_close && !did_dec_count) { 15260 osp->os_open_ref_count--; 15261 did_dec_count = 1; 15262 } 15263 15264 /* 15265 * We can't depend on os_open_ref_count being 0 due to the 15266 * way executables are opened (VN_RELE to match a VOP_OPEN). 15267 */ 15268 #ifdef NOTYET 15269 ASSERT(osp->os_open_ref_count == 0); 15270 #endif 15271 if (osp->os_open_ref_count != 0) { 15272 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, 15273 "nfs4close_one: should panic here on an " 15274 "ASSERT(osp->os_open_ref_count == 0). Ignoring " 15275 "since this is probably the exec problem.")); 15276 15277 osp->os_open_ref_count = 0; 15278 } 15279 15280 /* 15281 * There is the possibility that nfs4close_one() 15282 * for close_type == CLOSE_DELMAP couldn't find the 15283 * open stream, thus couldn't decrement its os_mapcnt; 15284 * therefore we can't use this ASSERT yet. 15285 */ 15286 #ifdef NOTYET 15287 ASSERT(osp->os_mapcnt == 0); 15288 #endif 15289 osp->os_mapcnt = 0; 15290 } 15291 15292 if (close_type == CLOSE_DELMAP && !did_dec_count) { 15293 ASSERT(osp->os_mapcnt >= btopr(len)); 15294 15295 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE)) 15296 osp->os_mmap_write -= btopr(len); 15297 if (maxprot & PROT_READ) 15298 osp->os_mmap_read -= btopr(len); 15299 if (maxprot & PROT_EXEC) 15300 osp->os_mmap_read -= btopr(len); 15301 /* mirror the PROT_NONE check in nfs4_addmap() */ 15302 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) && 15303 !(maxprot & PROT_EXEC)) 15304 osp->os_mmap_read -= btopr(len); 15305 osp->os_mapcnt -= btopr(len); 15306 did_dec_count = 1; 15307 } 15308 15309 if (recovonly) { 15310 nfs4_lost_rqst_t lost_rqst; 15311 15312 /* request should not already be in recovery queue */ 15313 ASSERT(lrp == NULL); 15314 nfs4_error_init(ep, EINTR); 15315 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop, 15316 osp, cred_otw, vp); 15317 mutex_exit(&osp->os_sync_lock); 15318 have_sync_lock = 0; 15319 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15320 lost_rqst.lr_op == OP_CLOSE ? 15321 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL); 15322 close_failed = 1; 15323 force_close = 0; 15324 goto close_cleanup; 15325 } 15326 15327 /* 15328 * If a previous OTW call got NFS4ERR_BAD_SEQID, then 15329 * we stopped operating on the open owner's <old oo_name, old seqid> 15330 * space, which means we stopped operating on the open stream 15331 * too. So don't go OTW (as the seqid is likely bad, and the 15332 * stateid could be stale, potentially triggering a false 15333 * setclientid), and just clean up the client's internal state. 15334 */ 15335 if (osp->os_orig_oo_name != oop->oo_name) { 15336 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug, 15337 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p " 15338 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current " 15339 "oo_name %" PRIx64")", 15340 (void *)osp, (void *)oop, osp->os_orig_oo_name, 15341 oop->oo_name)); 15342 close_failed = 1; 15343 } 15344 15345 /* If the file failed recovery, just quit. */ 15346 mutex_enter(&rp->r_statelock); 15347 if (rp->r_flags & R4RECOVERR) { 15348 close_failed = 1; 15349 } 15350 mutex_exit(&rp->r_statelock); 15351 15352 /* 15353 * If the force close path failed to obtain start_fop 15354 * then skip the OTW close and just remove the state. 15355 */ 15356 if (close_failed) 15357 goto close_cleanup; 15358 15359 /* 15360 * Fifth, check to see if there are still mapped pages or other 15361 * opens using this open stream. If there are then we can't 15362 * close yet but we can see if an OPEN_DOWNGRADE is necessary. 15363 */ 15364 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) { 15365 nfs4_lost_rqst_t new_lost_rqst; 15366 bool_t needrecov = FALSE; 15367 cred_t *odg_cred_otw = NULL; 15368 seqid4 open_dg_seqid = 0; 15369 15370 if (osp->os_delegation) { 15371 /* 15372 * If this open stream was never OPENed OTW then we 15373 * surely can't DOWNGRADE it (especially since the 15374 * osp->open_stateid is really a delegation stateid 15375 * when os_delegation is 1). 15376 */ 15377 if (access_bits & FREAD) 15378 osp->os_share_acc_read--; 15379 if (access_bits & FWRITE) 15380 osp->os_share_acc_write--; 15381 osp->os_share_deny_none--; 15382 nfs4_error_zinit(ep); 15383 goto out; 15384 } 15385 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr, 15386 lrp, ep, &odg_cred_otw, &open_dg_seqid); 15387 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp); 15388 if (needrecov && !isrecov) { 15389 bool_t abort; 15390 nfs4_bseqid_entry_t *bsep = NULL; 15391 15392 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) 15393 bsep = nfs4_create_bseqid_entry(oop, NULL, 15394 vp, 0, 15395 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG, 15396 open_dg_seqid); 15397 15398 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst, 15399 oop, osp, odg_cred_otw, vp, access_bits, 0); 15400 mutex_exit(&osp->os_sync_lock); 15401 have_sync_lock = 0; 15402 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL, 15403 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ? 15404 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE, 15405 bsep, NULL, NULL); 15406 if (odg_cred_otw) 15407 crfree(odg_cred_otw); 15408 if (bsep) 15409 kmem_free(bsep, sizeof (*bsep)); 15410 15411 if (abort == TRUE) 15412 goto out; 15413 15414 if (did_start_seqid_sync) { 15415 nfs4_end_open_seqid_sync(oop); 15416 did_start_seqid_sync = 0; 15417 } 15418 open_stream_rele(osp, rp); 15419 15420 if (did_start_op) 15421 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15422 &recov_state, FALSE); 15423 if (did_force_recovlock) 15424 nfs_rw_exit(&mi->mi_recovlock); 15425 15426 goto recov_retry; 15427 } else { 15428 if (odg_cred_otw) 15429 crfree(odg_cred_otw); 15430 } 15431 goto out; 15432 } 15433 15434 /* 15435 * If this open stream was created as the results of an open 15436 * while holding a delegation, then just release it; no need 15437 * to do an OTW close. Otherwise do a "normal" OTW close. 15438 */ 15439 if (osp->os_delegation) { 15440 nfs4close_notw(vp, osp, &have_sync_lock); 15441 nfs4_error_zinit(ep); 15442 goto out; 15443 } 15444 15445 /* 15446 * If this stream is not valid, we're done. 15447 */ 15448 if (!osp->os_valid) { 15449 nfs4_error_zinit(ep); 15450 goto out; 15451 } 15452 15453 /* 15454 * Last open or mmap ref has vanished, need to do an OTW close. 15455 * First check to see if a close is still necessary. 15456 */ 15457 if (osp->os_failed_reopen) { 15458 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15459 "don't close OTW osp %p since reopen failed.", 15460 (void *)osp)); 15461 /* 15462 * Reopen of the open stream failed, hence the 15463 * stateid of the open stream is invalid/stale, and 15464 * sending this OTW would incorrectly cause another 15465 * round of recovery. In this case, we need to set 15466 * the 'os_valid' bit to 0 so another thread doesn't 15467 * come in and re-open this open stream before 15468 * this "closing" thread cleans up state (decrementing 15469 * the nfs4_server_t's state_ref_count and decrementing 15470 * the os_ref_count). 15471 */ 15472 osp->os_valid = 0; 15473 /* 15474 * This removes the reference obtained at OPEN; ie, 15475 * when the open stream structure was created. 15476 * 15477 * We don't have to worry about calling 'open_stream_rele' 15478 * since we our currently holding a reference to this 15479 * open stream which means the count can not go to 0 with 15480 * this decrement. 15481 */ 15482 ASSERT(osp->os_ref_count >= 2); 15483 osp->os_ref_count--; 15484 nfs4_error_zinit(ep); 15485 close_failed = 0; 15486 goto close_cleanup; 15487 } 15488 15489 ASSERT(osp->os_ref_count > 1); 15490 15491 /* 15492 * Sixth, try the CLOSE OTW. 15493 */ 15494 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync, 15495 close_type, ep, &have_sync_lock); 15496 15497 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) { 15498 /* 15499 * Let the recovery thread be responsible for 15500 * removing the state for CLOSE. 15501 */ 15502 close_failed = 1; 15503 force_close = 0; 15504 retry = 0; 15505 } 15506 15507 /* See if we need to retry with a different cred */ 15508 if ((ep->error == EACCES || 15509 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) && 15510 cred_otw != cr) { 15511 crfree(cred_otw); 15512 cred_otw = cr; 15513 crhold(cred_otw); 15514 retry = 1; 15515 } 15516 15517 if (ep->error || ep->stat) 15518 close_failed = 1; 15519 15520 if (retry && !isrecov && num_retries-- > 0) { 15521 if (have_sync_lock) { 15522 mutex_exit(&osp->os_sync_lock); 15523 have_sync_lock = 0; 15524 } 15525 if (did_start_seqid_sync) { 15526 nfs4_end_open_seqid_sync(oop); 15527 did_start_seqid_sync = 0; 15528 } 15529 open_stream_rele(osp, rp); 15530 15531 if (did_start_op) 15532 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, 15533 &recov_state, FALSE); 15534 if (did_force_recovlock) 15535 nfs_rw_exit(&mi->mi_recovlock); 15536 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 15537 "nfs4close_one: need to retry the close " 15538 "operation")); 15539 goto recov_retry; 15540 } 15541 close_cleanup: 15542 /* 15543 * Seventh and lastly, process our results. 15544 */ 15545 if (close_failed && force_close) { 15546 /* 15547 * It's ok to drop and regrab the 'os_sync_lock' since 15548 * nfs4close_notw() will recheck to make sure the 15549 * "close"/removal of state should happen. 15550 */ 15551 if (!have_sync_lock) { 15552 mutex_enter(&osp->os_sync_lock); 15553 have_sync_lock = 1; 15554 } 15555 /* 15556 * This is last call, remove the ref on the open 15557 * stream created by open and clean everything up. 15558 */ 15559 osp->os_pending_close = 0; 15560 nfs4close_notw(vp, osp, &have_sync_lock); 15561 nfs4_error_zinit(ep); 15562 } 15563 15564 if (!close_failed) { 15565 if (have_sync_lock) { 15566 osp->os_pending_close = 0; 15567 mutex_exit(&osp->os_sync_lock); 15568 have_sync_lock = 0; 15569 } else { 15570 mutex_enter(&osp->os_sync_lock); 15571 osp->os_pending_close = 0; 15572 mutex_exit(&osp->os_sync_lock); 15573 } 15574 if (did_start_op && recov_state.rs_sp != NULL) { 15575 mutex_enter(&recov_state.rs_sp->s_lock); 15576 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi); 15577 mutex_exit(&recov_state.rs_sp->s_lock); 15578 } else { 15579 nfs4_dec_state_ref_count(mi); 15580 } 15581 nfs4_error_zinit(ep); 15582 } 15583 15584 out: 15585 if (have_sync_lock) 15586 mutex_exit(&osp->os_sync_lock); 15587 if (did_start_op) 15588 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state, 15589 recovonly ? TRUE : FALSE); 15590 if (did_force_recovlock) 15591 nfs_rw_exit(&mi->mi_recovlock); 15592 if (cred_otw) 15593 crfree(cred_otw); 15594 if (osp) 15595 open_stream_rele(osp, rp); 15596 if (oop) { 15597 if (did_start_seqid_sync) 15598 nfs4_end_open_seqid_sync(oop); 15599 open_owner_rele(oop); 15600 } 15601 } 15602 15603 /* 15604 * Convert information returned by the server in the LOCK4denied 15605 * structure to the form required by fcntl. 15606 */ 15607 static void 15608 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args) 15609 { 15610 nfs4_lo_name_t *lo; 15611 15612 #ifdef DEBUG 15613 if (denied_to_flk_debug) { 15614 lockt_denied_debug = lockt_denied; 15615 debug_enter("lockt_denied"); 15616 } 15617 #endif 15618 15619 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK; 15620 flk->l_whence = 0; /* aka SEEK_SET */ 15621 flk->l_start = lockt_denied->offset; 15622 flk->l_len = lockt_denied->length; 15623 15624 /* 15625 * If the blocking clientid matches our client id, then we can 15626 * interpret the lockowner (since we built it). If not, then 15627 * fabricate a sysid and pid. Note that the l_sysid field 15628 * in *flk already has the local sysid. 15629 */ 15630 15631 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) { 15632 15633 if (lockt_denied->owner.owner_len == sizeof (*lo)) { 15634 lo = (nfs4_lo_name_t *) 15635 lockt_denied->owner.owner_val; 15636 15637 flk->l_pid = lo->ln_pid; 15638 } else { 15639 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15640 "denied_to_flk: bad lock owner length\n")); 15641 15642 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15643 } 15644 } else { 15645 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, 15646 "denied_to_flk: foreign clientid\n")); 15647 15648 /* 15649 * Construct a new sysid which should be different from 15650 * sysids of other systems. 15651 */ 15652 15653 flk->l_sysid++; 15654 flk->l_pid = lo_to_pid(&lockt_denied->owner); 15655 } 15656 } 15657 15658 static pid_t 15659 lo_to_pid(lock_owner4 *lop) 15660 { 15661 pid_t pid = 0; 15662 uchar_t *cp; 15663 int i; 15664 15665 cp = (uchar_t *)&lop->clientid; 15666 15667 for (i = 0; i < sizeof (lop->clientid); i++) 15668 pid += (pid_t)*cp++; 15669 15670 cp = (uchar_t *)lop->owner_val; 15671 15672 for (i = 0; i < lop->owner_len; i++) 15673 pid += (pid_t)*cp++; 15674 15675 return (pid); 15676 } 15677 15678 /* 15679 * Given a lock pointer, returns the length of that lock. 15680 * "end" is the last locked offset the "l_len" covers from 15681 * the start of the lock. 15682 */ 15683 static off64_t 15684 lock_to_end(flock64_t *lock) 15685 { 15686 off64_t lock_end; 15687 15688 if (lock->l_len == 0) 15689 lock_end = (off64_t)MAXEND; 15690 else 15691 lock_end = lock->l_start + lock->l_len - 1; 15692 15693 return (lock_end); 15694 } 15695 15696 /* 15697 * Given the end of a lock, it will return you the length "l_len" for that lock. 15698 */ 15699 static off64_t 15700 end_to_len(off64_t start, off64_t end) 15701 { 15702 off64_t lock_len; 15703 15704 ASSERT(end >= start); 15705 if (end == MAXEND) 15706 lock_len = 0; 15707 else 15708 lock_len = end - start + 1; 15709 15710 return (lock_len); 15711 } 15712 15713 /* 15714 * On given end for a lock it determines if it is the last locked offset 15715 * or not, if so keeps it as is, else adds one to return the length for 15716 * valid start. 15717 */ 15718 static off64_t 15719 start_check(off64_t x) 15720 { 15721 if (x == MAXEND) 15722 return (x); 15723 else 15724 return (x + 1); 15725 } 15726 15727 /* 15728 * See if these two locks overlap, and if so return 1; 15729 * otherwise, return 0. 15730 */ 15731 static int 15732 locks_intersect(flock64_t *llfp, flock64_t *curfp) 15733 { 15734 off64_t llfp_end, curfp_end; 15735 15736 llfp_end = lock_to_end(llfp); 15737 curfp_end = lock_to_end(curfp); 15738 15739 if (((llfp_end >= curfp->l_start) && 15740 (llfp->l_start <= curfp->l_start)) || 15741 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start))) 15742 return (1); 15743 return (0); 15744 } 15745 15746 /* 15747 * Determine what the intersecting lock region is, and add that to the 15748 * 'nl_llpp' locklist in increasing order (by l_start). 15749 */ 15750 static void 15751 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp, 15752 locklist_t **nl_llpp, vnode_t *vp) 15753 { 15754 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp; 15755 off64_t lost_flp_end, local_flp_end, len, start; 15756 15757 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:")); 15758 15759 if (!locks_intersect(lost_flp, local_flp)) 15760 return; 15761 15762 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15763 "locks intersect")); 15764 15765 lost_flp_end = lock_to_end(lost_flp); 15766 local_flp_end = lock_to_end(local_flp); 15767 15768 /* Find the starting point of the intersecting region */ 15769 if (local_flp->l_start > lost_flp->l_start) 15770 start = local_flp->l_start; 15771 else 15772 start = lost_flp->l_start; 15773 15774 /* Find the lenght of the intersecting region */ 15775 if (lost_flp_end < local_flp_end) 15776 len = end_to_len(start, lost_flp_end); 15777 else 15778 len = end_to_len(start, local_flp_end); 15779 15780 /* 15781 * Prepare the flock structure for the intersection found and insert 15782 * it into the new list in increasing l_start order. This list contains 15783 * intersections of locks registered by the client with the local host 15784 * and the lost lock. 15785 * The lock type of this lock is the same as that of the local_flp. 15786 */ 15787 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP); 15788 intersect_llp->ll_flock.l_start = start; 15789 intersect_llp->ll_flock.l_len = len; 15790 intersect_llp->ll_flock.l_type = local_flp->l_type; 15791 intersect_llp->ll_flock.l_pid = local_flp->l_pid; 15792 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid; 15793 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */ 15794 intersect_llp->ll_vp = vp; 15795 15796 tmp_fllp = *nl_llpp; 15797 cur_fllp = NULL; 15798 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start < 15799 intersect_llp->ll_flock.l_start) { 15800 cur_fllp = tmp_fllp; 15801 tmp_fllp = tmp_fllp->ll_next; 15802 } 15803 if (cur_fllp == NULL) { 15804 /* first on the list */ 15805 intersect_llp->ll_next = *nl_llpp; 15806 *nl_llpp = intersect_llp; 15807 } else { 15808 intersect_llp->ll_next = cur_fllp->ll_next; 15809 cur_fllp->ll_next = intersect_llp; 15810 } 15811 15812 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: " 15813 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n", 15814 intersect_llp->ll_flock.l_start, 15815 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len, 15816 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE")); 15817 } 15818 15819 /* 15820 * Our local locking current state is potentially different than 15821 * what the NFSv4 server thinks we have due to a lost lock that was 15822 * resent and then received. We need to reset our "NFSv4" locking 15823 * state to match the current local locking state for this pid since 15824 * that is what the user/application sees as what the world is. 15825 * 15826 * We cannot afford to drop the open/lock seqid sync since then we can 15827 * get confused about what the current local locking state "is" versus 15828 * "was". 15829 * 15830 * If we are unable to fix up the locks, we send SIGLOST to the affected 15831 * process. This is not done if the filesystem has been forcibly 15832 * unmounted, in case the process has already exited and a new process 15833 * exists with the same pid. 15834 */ 15835 static void 15836 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr, 15837 nfs4_lock_owner_t *lop) 15838 { 15839 locklist_t *locks, *llp, *ri_llp, *tmp_llp; 15840 mntinfo4_t *mi = VTOMI4(vp); 15841 const int cmd = F_SETLK; 15842 off64_t cur_start, llp_ll_flock_end, lost_flp_end; 15843 flock64_t ul_fl; 15844 15845 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15846 "nfs4_reinstitute_local_lock_state")); 15847 15848 /* 15849 * Find active locks for this vp from the local locking code. 15850 * Scan through this list and find out the locks that intersect with 15851 * the lost lock. Once we find the lock that intersects, add the 15852 * intersection area as a new lock to a new list "ri_llp". The lock 15853 * type of the intersection region lock added to ri_llp is the same 15854 * as that found in the active lock list, "list". The intersecting 15855 * region locks are added to ri_llp in increasing l_start order. 15856 */ 15857 ASSERT(nfs_zone() == mi->mi_zone); 15858 15859 locks = flk_active_locks_for_vp(vp); 15860 ri_llp = NULL; 15861 15862 for (llp = locks; llp != NULL; llp = llp->ll_next) { 15863 ASSERT(llp->ll_vp == vp); 15864 /* 15865 * Pick locks that belong to this pid/lockowner 15866 */ 15867 if (llp->ll_flock.l_pid != lost_flp->l_pid) 15868 continue; 15869 15870 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp); 15871 } 15872 15873 /* 15874 * Now we have the list of intersections with the lost lock. These are 15875 * the locks that were/are active before the server replied to the 15876 * last/lost lock. Issue these locks to the server here. Playing these 15877 * locks to the server will re-establish aur current local locking state 15878 * with the v4 server. 15879 * If we get an error, send SIGLOST to the application for that lock. 15880 */ 15881 15882 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15883 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15884 "nfs4_reinstitute_local_lock_state: need to issue " 15885 "flock: [%"PRIx64" - %"PRIx64"] : %s", 15886 llp->ll_flock.l_start, 15887 llp->ll_flock.l_start + llp->ll_flock.l_len, 15888 llp->ll_flock.l_type == F_RDLCK ? "READ" : 15889 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID")); 15890 /* 15891 * No need to relock what we already have 15892 */ 15893 if (llp->ll_flock.l_type == lost_flp->l_type) 15894 continue; 15895 15896 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop); 15897 } 15898 15899 /* 15900 * Now keeping the start of the lost lock as our reference parse the 15901 * newly created ri_llp locklist to find the ranges that we have locked 15902 * with the v4 server but not in the current local locking. We need 15903 * to unlock these ranges. 15904 * These ranges can also be reffered to as those ranges, where the lost 15905 * lock does not overlap with the locks in the ri_llp but are locked 15906 * since the server replied to the lost lock. 15907 */ 15908 cur_start = lost_flp->l_start; 15909 lost_flp_end = lock_to_end(lost_flp); 15910 15911 ul_fl.l_type = F_UNLCK; 15912 ul_fl.l_whence = 0; /* aka SEEK_SET */ 15913 ul_fl.l_sysid = lost_flp->l_sysid; 15914 ul_fl.l_pid = lost_flp->l_pid; 15915 15916 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) { 15917 llp_ll_flock_end = lock_to_end(&llp->ll_flock); 15918 15919 if (llp->ll_flock.l_start <= cur_start) { 15920 cur_start = start_check(llp_ll_flock_end); 15921 continue; 15922 } 15923 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15924 "nfs4_reinstitute_local_lock_state: " 15925 "UNLOCK [%"PRIx64" - %"PRIx64"]", 15926 cur_start, llp->ll_flock.l_start)); 15927 15928 ul_fl.l_start = cur_start; 15929 ul_fl.l_len = end_to_len(cur_start, 15930 (llp->ll_flock.l_start - 1)); 15931 15932 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15933 cur_start = start_check(llp_ll_flock_end); 15934 } 15935 15936 /* 15937 * In the case where the lost lock ends after all intersecting locks, 15938 * unlock the last part of the lost lock range. 15939 */ 15940 if (cur_start != start_check(lost_flp_end)) { 15941 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, 15942 "nfs4_reinstitute_local_lock_state: UNLOCK end of the " 15943 "lost lock region [%"PRIx64" - %"PRIx64"]", 15944 cur_start, lost_flp->l_start + lost_flp->l_len)); 15945 15946 ul_fl.l_start = cur_start; 15947 /* 15948 * Is it an to-EOF lock? if so unlock till the end 15949 */ 15950 if (lost_flp->l_len == 0) 15951 ul_fl.l_len = 0; 15952 else 15953 ul_fl.l_len = start_check(lost_flp_end) - cur_start; 15954 15955 push_reinstate(vp, cmd, &ul_fl, cr, lop); 15956 } 15957 15958 if (locks != NULL) 15959 flk_free_locklist(locks); 15960 15961 /* Free up our newly created locklist */ 15962 for (llp = ri_llp; llp != NULL; ) { 15963 tmp_llp = llp->ll_next; 15964 kmem_free(llp, sizeof (locklist_t)); 15965 llp = tmp_llp; 15966 } 15967 15968 /* 15969 * Now return back to the original calling nfs4frlock() 15970 * and let us naturally drop our seqid syncs. 15971 */ 15972 } 15973 15974 /* 15975 * Create a lost state record for the given lock reinstantiation request 15976 * and push it onto the lost state queue. 15977 */ 15978 static void 15979 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr, 15980 nfs4_lock_owner_t *lop) 15981 { 15982 nfs4_lost_rqst_t req; 15983 nfs_lock_type4 locktype; 15984 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS }; 15985 15986 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone); 15987 15988 locktype = flk_to_locktype(cmd, flk->l_type); 15989 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype, 15990 NULL, NULL, lop, flk, &req, cr, vp); 15991 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL, 15992 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ? 15993 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK, 15994 NULL, NULL, NULL); 15995 } 15996