1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All Rights Reserved 29 */ 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/vnode.h> 38 #include <sys/pathname.h> 39 #include <sys/sysmacros.h> 40 #include <sys/kmem.h> 41 #include <sys/mkdev.h> 42 #include <sys/mount.h> 43 #include <sys/statvfs.h> 44 #include <sys/errno.h> 45 #include <sys/debug.h> 46 #include <sys/cmn_err.h> 47 #include <sys/utsname.h> 48 #include <sys/bootconf.h> 49 #include <sys/modctl.h> 50 #include <sys/acl.h> 51 #include <sys/flock.h> 52 #include <sys/time.h> 53 #include <sys/disp.h> 54 #include <sys/policy.h> 55 #include <sys/socket.h> 56 #include <sys/netconfig.h> 57 #include <sys/dnlc.h> 58 #include <sys/list.h> 59 #include <sys/mntent.h> 60 #include <sys/tsol/label.h> 61 62 #include <rpc/types.h> 63 #include <rpc/auth.h> 64 #include <rpc/rpcsec_gss.h> 65 #include <rpc/clnt.h> 66 67 #include <nfs/nfs.h> 68 #include <nfs/nfs_clnt.h> 69 #include <nfs/mount.h> 70 #include <nfs/nfs_acl.h> 71 72 #include <fs/fs_subr.h> 73 74 #include <nfs/nfs4.h> 75 #include <nfs/rnode4.h> 76 #include <nfs/nfs4_clnt.h> 77 #include <sys/fs/autofs.h> 78 79 #include <sys/sdt.h> 80 81 82 /* 83 * Arguments passed to thread to free data structures from forced unmount. 84 */ 85 86 typedef struct { 87 vfs_t *fm_vfsp; 88 int fm_flag; 89 cred_t *fm_cr; 90 } freemountargs_t; 91 92 static void async_free_mount(vfs_t *, int, cred_t *); 93 static void nfs4_free_mount(vfs_t *, int, cred_t *); 94 static void nfs4_free_mount_thread(freemountargs_t *); 95 static int nfs4_chkdup_servinfo4(servinfo4_t *, servinfo4_t *); 96 97 /* 98 * From rpcsec module (common/rpcsec). 99 */ 100 extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t); 101 extern void sec_clnt_freeinfo(struct sec_data *); 102 103 /* 104 * The order and contents of this structure must be kept in sync with that of 105 * rfsreqcnt_v4_tmpl in nfs_stats.c 106 */ 107 static char *rfsnames_v4[] = { 108 "null", "compound", "reserved", "access", "close", "commit", "create", 109 "delegpurge", "delegreturn", "getattr", "getfh", "link", "lock", 110 "lockt", "locku", "lookup", "lookupp", "nverify", "open", "openattr", 111 "open_confirm", "open_downgrade", "putfh", "putpubfh", "putrootfh", 112 "read", "readdir", "readlink", "remove", "rename", "renew", 113 "restorefh", "savefh", "secinfo", "setattr", "setclientid", 114 "setclientid_confirm", "verify", "write" 115 }; 116 117 /* 118 * nfs4_max_mount_retry is the number of times the client will redrive 119 * a mount compound before giving up and returning failure. The intent 120 * is to redrive mount compounds which fail NFS4ERR_STALE so that 121 * if a component of the server path being mounted goes stale, it can 122 * "recover" by redriving the mount compund (LOOKUP ops). This recovery 123 * code is needed outside of the recovery framework because mount is a 124 * special case. The client doesn't create vnodes/rnodes for components 125 * of the server path being mounted. The recovery code recovers real 126 * client objects, not STALE FHs which map to components of the server 127 * path being mounted. 128 * 129 * We could just fail the mount on the first time, but that would 130 * instantly trigger failover (from nfs4_mount), and the client should 131 * try to re-lookup the STALE FH before doing failover. The easiest 132 * way to "re-lookup" is to simply redrive the mount compound. 133 */ 134 static int nfs4_max_mount_retry = 2; 135 136 /* 137 * nfs4 vfs operations. 138 */ 139 int nfs4_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *); 140 static int nfs4_unmount(vfs_t *, int, cred_t *); 141 static int nfs4_root(vfs_t *, vnode_t **); 142 static int nfs4_statvfs(vfs_t *, struct statvfs64 *); 143 static int nfs4_sync(vfs_t *, short, cred_t *); 144 static int nfs4_vget(vfs_t *, vnode_t **, fid_t *); 145 static int nfs4_mountroot(vfs_t *, whymountroot_t); 146 static void nfs4_freevfs(vfs_t *); 147 148 static int nfs4rootvp(vnode_t **, vfs_t *, struct servinfo4 *, 149 int, cred_t *, zone_t *); 150 151 vfsops_t *nfs4_vfsops; 152 153 int nfs4_vfsinit(void); 154 void nfs4_vfsfini(void); 155 static void nfs4setclientid_init(void); 156 static void nfs4setclientid_fini(void); 157 static void nfs4setclientid_otw(mntinfo4_t *, servinfo4_t *, cred_t *, 158 struct nfs4_server *, nfs4_error_t *, int *); 159 static void destroy_nfs4_server(nfs4_server_t *); 160 static void remove_mi(nfs4_server_t *, mntinfo4_t *); 161 162 extern void nfs4_ephemeral_init(void); 163 extern void nfs4_ephemeral_fini(void); 164 165 /* referral related routines */ 166 static servinfo4_t *copy_svp(servinfo4_t *); 167 static void free_knconf_contents(struct knetconfig *k); 168 static char *extract_referral_point(const char *, int); 169 static void setup_newsvpath(servinfo4_t *, int); 170 static void update_servinfo4(servinfo4_t *, fs_location4 *, 171 struct nfs_fsl_info *, char *, int); 172 173 /* 174 * Initialize the vfs structure 175 */ 176 177 static int nfs4fstyp; 178 179 180 /* 181 * Debug variable to check for rdma based 182 * transport startup and cleanup. Controlled 183 * through /etc/system. Off by default. 184 */ 185 extern int rdma_debug; 186 187 int 188 nfs4init(int fstyp, char *name) 189 { 190 static const fs_operation_def_t nfs4_vfsops_template[] = { 191 VFSNAME_MOUNT, { .vfs_mount = nfs4_mount }, 192 VFSNAME_UNMOUNT, { .vfs_unmount = nfs4_unmount }, 193 VFSNAME_ROOT, { .vfs_root = nfs4_root }, 194 VFSNAME_STATVFS, { .vfs_statvfs = nfs4_statvfs }, 195 VFSNAME_SYNC, { .vfs_sync = nfs4_sync }, 196 VFSNAME_VGET, { .vfs_vget = nfs4_vget }, 197 VFSNAME_MOUNTROOT, { .vfs_mountroot = nfs4_mountroot }, 198 VFSNAME_FREEVFS, { .vfs_freevfs = nfs4_freevfs }, 199 NULL, NULL 200 }; 201 int error; 202 203 nfs4_vfsops = NULL; 204 nfs4_vnodeops = NULL; 205 nfs4_trigger_vnodeops = NULL; 206 207 error = vfs_setfsops(fstyp, nfs4_vfsops_template, &nfs4_vfsops); 208 if (error != 0) { 209 zcmn_err(GLOBAL_ZONEID, CE_WARN, 210 "nfs4init: bad vfs ops template"); 211 goto out; 212 } 213 214 error = vn_make_ops(name, nfs4_vnodeops_template, &nfs4_vnodeops); 215 if (error != 0) { 216 zcmn_err(GLOBAL_ZONEID, CE_WARN, 217 "nfs4init: bad vnode ops template"); 218 goto out; 219 } 220 221 error = vn_make_ops("nfs4_trigger", nfs4_trigger_vnodeops_template, 222 &nfs4_trigger_vnodeops); 223 if (error != 0) { 224 zcmn_err(GLOBAL_ZONEID, CE_WARN, 225 "nfs4init: bad trigger vnode ops template"); 226 goto out; 227 } 228 229 nfs4fstyp = fstyp; 230 (void) nfs4_vfsinit(); 231 (void) nfs4_init_dot_entries(); 232 233 out: 234 if (error) { 235 if (nfs4_trigger_vnodeops != NULL) 236 vn_freevnodeops(nfs4_trigger_vnodeops); 237 238 if (nfs4_vnodeops != NULL) 239 vn_freevnodeops(nfs4_vnodeops); 240 241 (void) vfs_freevfsops_by_type(fstyp); 242 } 243 244 return (error); 245 } 246 247 void 248 nfs4fini(void) 249 { 250 (void) nfs4_destroy_dot_entries(); 251 nfs4_vfsfini(); 252 } 253 254 /* 255 * Create a new sec_data structure to store AUTH_DH related data: 256 * netname, syncaddr, knetconfig. There is no AUTH_F_RPCTIMESYNC 257 * flag set for NFS V4 since we are avoiding to contact the rpcbind 258 * daemon and is using the IP time service (IPPORT_TIMESERVER). 259 * 260 * sec_data can be freed by sec_clnt_freeinfo(). 261 */ 262 static struct sec_data * 263 create_authdh_data(char *netname, int nlen, struct netbuf *syncaddr, 264 struct knetconfig *knconf) { 265 struct sec_data *secdata; 266 dh_k4_clntdata_t *data; 267 char *pf, *p; 268 269 if (syncaddr == NULL || syncaddr->buf == NULL || nlen == 0) 270 return (NULL); 271 272 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); 273 secdata->flags = 0; 274 275 data = kmem_alloc(sizeof (*data), KM_SLEEP); 276 277 data->syncaddr.maxlen = syncaddr->maxlen; 278 data->syncaddr.len = syncaddr->len; 279 data->syncaddr.buf = (char *)kmem_alloc(syncaddr->len, KM_SLEEP); 280 bcopy(syncaddr->buf, data->syncaddr.buf, syncaddr->len); 281 282 /* 283 * duplicate the knconf information for the 284 * new opaque data. 285 */ 286 data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP); 287 *data->knconf = *knconf; 288 pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 289 p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 290 bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE); 291 bcopy(knconf->knc_proto, p, KNC_STRSIZE); 292 data->knconf->knc_protofmly = pf; 293 data->knconf->knc_proto = p; 294 295 /* move server netname to the sec_data structure */ 296 data->netname = kmem_alloc(nlen, KM_SLEEP); 297 bcopy(netname, data->netname, nlen); 298 data->netnamelen = (int)nlen; 299 300 secdata->secmod = AUTH_DH; 301 secdata->rpcflavor = AUTH_DH; 302 secdata->data = (caddr_t)data; 303 304 return (secdata); 305 } 306 307 /* 308 * Returns (deep) copy of sec_data_t. Allocates all memory required; caller 309 * is responsible for freeing. 310 */ 311 sec_data_t * 312 copy_sec_data(sec_data_t *fsecdata) { 313 sec_data_t *tsecdata; 314 315 if (fsecdata == NULL) 316 return (NULL); 317 318 if (fsecdata->rpcflavor == AUTH_DH) { 319 dh_k4_clntdata_t *fdata = (dh_k4_clntdata_t *)fsecdata->data; 320 321 if (fdata == NULL) 322 return (NULL); 323 324 tsecdata = (sec_data_t *)create_authdh_data(fdata->netname, 325 fdata->netnamelen, &fdata->syncaddr, fdata->knconf); 326 327 return (tsecdata); 328 } 329 330 tsecdata = kmem_zalloc(sizeof (sec_data_t), KM_SLEEP); 331 332 tsecdata->secmod = fsecdata->secmod; 333 tsecdata->rpcflavor = fsecdata->rpcflavor; 334 tsecdata->flags = fsecdata->flags; 335 tsecdata->uid = fsecdata->uid; 336 337 if (fsecdata->rpcflavor == RPCSEC_GSS) { 338 gss_clntdata_t *gcd = (gss_clntdata_t *)fsecdata->data; 339 340 tsecdata->data = (caddr_t)copy_sec_data_gss(gcd); 341 } else { 342 tsecdata->data = NULL; 343 } 344 345 return (tsecdata); 346 } 347 348 gss_clntdata_t * 349 copy_sec_data_gss(gss_clntdata_t *fdata) 350 { 351 gss_clntdata_t *tdata; 352 353 if (fdata == NULL) 354 return (NULL); 355 356 tdata = kmem_zalloc(sizeof (gss_clntdata_t), KM_SLEEP); 357 358 tdata->mechanism.length = fdata->mechanism.length; 359 tdata->mechanism.elements = kmem_zalloc(fdata->mechanism.length, 360 KM_SLEEP); 361 bcopy(fdata->mechanism.elements, tdata->mechanism.elements, 362 fdata->mechanism.length); 363 364 tdata->service = fdata->service; 365 366 (void) strcpy(tdata->uname, fdata->uname); 367 (void) strcpy(tdata->inst, fdata->inst); 368 (void) strcpy(tdata->realm, fdata->realm); 369 370 tdata->qop = fdata->qop; 371 372 return (tdata); 373 } 374 375 static int 376 nfs4_chkdup_servinfo4(servinfo4_t *svp_head, servinfo4_t *svp) 377 { 378 servinfo4_t *si; 379 380 /* 381 * Iterate over the servinfo4 list to make sure 382 * we do not have a duplicate. Skip any servinfo4 383 * that has been marked "NOT IN USE" 384 */ 385 for (si = svp_head; si; si = si->sv_next) { 386 (void) nfs_rw_enter_sig(&si->sv_lock, RW_READER, 0); 387 if (si->sv_flags & SV4_NOTINUSE) { 388 nfs_rw_exit(&si->sv_lock); 389 continue; 390 } 391 nfs_rw_exit(&si->sv_lock); 392 if (si == svp) 393 continue; 394 if (si->sv_addr.len == svp->sv_addr.len && 395 strcmp(si->sv_knconf->knc_protofmly, 396 svp->sv_knconf->knc_protofmly) == 0 && 397 bcmp(si->sv_addr.buf, svp->sv_addr.buf, 398 si->sv_addr.len) == 0) { 399 /* it's a duplicate */ 400 return (1); 401 } 402 } 403 /* it's not a duplicate */ 404 return (0); 405 } 406 407 void 408 nfs4_free_args(struct nfs_args *nargs) 409 { 410 if (nargs->knconf) { 411 if (nargs->knconf->knc_protofmly) 412 kmem_free(nargs->knconf->knc_protofmly, 413 KNC_STRSIZE); 414 if (nargs->knconf->knc_proto) 415 kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE); 416 kmem_free(nargs->knconf, sizeof (*nargs->knconf)); 417 nargs->knconf = NULL; 418 } 419 420 if (nargs->fh) { 421 kmem_free(nargs->fh, strlen(nargs->fh) + 1); 422 nargs->fh = NULL; 423 } 424 425 if (nargs->hostname) { 426 kmem_free(nargs->hostname, strlen(nargs->hostname) + 1); 427 nargs->hostname = NULL; 428 } 429 430 if (nargs->addr) { 431 if (nargs->addr->buf) { 432 ASSERT(nargs->addr->len); 433 kmem_free(nargs->addr->buf, nargs->addr->len); 434 } 435 kmem_free(nargs->addr, sizeof (struct netbuf)); 436 nargs->addr = NULL; 437 } 438 439 if (nargs->syncaddr) { 440 ASSERT(nargs->syncaddr->len); 441 if (nargs->syncaddr->buf) { 442 ASSERT(nargs->syncaddr->len); 443 kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len); 444 } 445 kmem_free(nargs->syncaddr, sizeof (struct netbuf)); 446 nargs->syncaddr = NULL; 447 } 448 449 if (nargs->netname) { 450 kmem_free(nargs->netname, strlen(nargs->netname) + 1); 451 nargs->netname = NULL; 452 } 453 454 if (nargs->nfs_ext_u.nfs_extA.secdata) { 455 sec_clnt_freeinfo( 456 nargs->nfs_ext_u.nfs_extA.secdata); 457 nargs->nfs_ext_u.nfs_extA.secdata = NULL; 458 } 459 } 460 461 462 int 463 nfs4_copyin(char *data, int datalen, struct nfs_args *nargs) 464 { 465 466 int error; 467 size_t hlen; /* length of hostname */ 468 size_t nlen; /* length of netname */ 469 char netname[MAXNETNAMELEN+1]; /* server's netname */ 470 struct netbuf addr; /* server's address */ 471 struct netbuf syncaddr; /* AUTH_DES time sync addr */ 472 struct knetconfig *knconf; /* transport structure */ 473 struct sec_data *secdata = NULL; /* security data */ 474 STRUCT_DECL(nfs_args, args); /* nfs mount arguments */ 475 STRUCT_DECL(knetconfig, knconf_tmp); 476 STRUCT_DECL(netbuf, addr_tmp); 477 int flags; 478 char *p, *pf; 479 struct pathname pn; 480 char *userbufptr; 481 482 483 bzero(nargs, sizeof (*nargs)); 484 485 STRUCT_INIT(args, get_udatamodel()); 486 bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE)); 487 if (copyin(data, STRUCT_BUF(args), MIN(datalen, 488 STRUCT_SIZE(args)))) 489 return (EFAULT); 490 491 nargs->wsize = STRUCT_FGET(args, wsize); 492 nargs->rsize = STRUCT_FGET(args, rsize); 493 nargs->timeo = STRUCT_FGET(args, timeo); 494 nargs->retrans = STRUCT_FGET(args, retrans); 495 nargs->acregmin = STRUCT_FGET(args, acregmin); 496 nargs->acregmax = STRUCT_FGET(args, acregmax); 497 nargs->acdirmin = STRUCT_FGET(args, acdirmin); 498 nargs->acdirmax = STRUCT_FGET(args, acdirmax); 499 500 flags = STRUCT_FGET(args, flags); 501 nargs->flags = flags; 502 503 addr.buf = NULL; 504 syncaddr.buf = NULL; 505 506 507 /* 508 * Allocate space for a knetconfig structure and 509 * its strings and copy in from user-land. 510 */ 511 knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP); 512 STRUCT_INIT(knconf_tmp, get_udatamodel()); 513 if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp), 514 STRUCT_SIZE(knconf_tmp))) { 515 kmem_free(knconf, sizeof (*knconf)); 516 return (EFAULT); 517 } 518 519 knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics); 520 knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly); 521 knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto); 522 if (get_udatamodel() != DATAMODEL_LP64) { 523 knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev)); 524 } else { 525 knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev); 526 } 527 528 pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 529 p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 530 error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL); 531 if (error) { 532 kmem_free(pf, KNC_STRSIZE); 533 kmem_free(p, KNC_STRSIZE); 534 kmem_free(knconf, sizeof (*knconf)); 535 return (error); 536 } 537 538 error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL); 539 if (error) { 540 kmem_free(pf, KNC_STRSIZE); 541 kmem_free(p, KNC_STRSIZE); 542 kmem_free(knconf, sizeof (*knconf)); 543 return (error); 544 } 545 546 547 knconf->knc_protofmly = pf; 548 knconf->knc_proto = p; 549 550 nargs->knconf = knconf; 551 552 /* 553 * Get server address 554 */ 555 STRUCT_INIT(addr_tmp, get_udatamodel()); 556 if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp), 557 STRUCT_SIZE(addr_tmp))) { 558 error = EFAULT; 559 goto errout; 560 } 561 562 nargs->addr = kmem_zalloc(sizeof (struct netbuf), KM_SLEEP); 563 userbufptr = STRUCT_FGETP(addr_tmp, buf); 564 addr.len = STRUCT_FGET(addr_tmp, len); 565 addr.buf = kmem_alloc(addr.len, KM_SLEEP); 566 addr.maxlen = addr.len; 567 if (copyin(userbufptr, addr.buf, addr.len)) { 568 kmem_free(addr.buf, addr.len); 569 error = EFAULT; 570 goto errout; 571 } 572 bcopy(&addr, nargs->addr, sizeof (struct netbuf)); 573 574 /* 575 * Get the root fhandle 576 */ 577 error = pn_get(STRUCT_FGETP(args, fh), UIO_USERSPACE, &pn); 578 if (error) 579 goto errout; 580 581 /* Volatile fh: keep server paths, so use actual-size strings */ 582 nargs->fh = kmem_alloc(pn.pn_pathlen + 1, KM_SLEEP); 583 bcopy(pn.pn_path, nargs->fh, pn.pn_pathlen); 584 nargs->fh[pn.pn_pathlen] = '\0'; 585 pn_free(&pn); 586 587 588 /* 589 * Get server's hostname 590 */ 591 if (flags & NFSMNT_HOSTNAME) { 592 error = copyinstr(STRUCT_FGETP(args, hostname), 593 netname, sizeof (netname), &hlen); 594 if (error) 595 goto errout; 596 nargs->hostname = kmem_zalloc(hlen, KM_SLEEP); 597 (void) strcpy(nargs->hostname, netname); 598 599 } else { 600 nargs->hostname = NULL; 601 } 602 603 604 /* 605 * If there are syncaddr and netname data, load them in. This is 606 * to support data needed for NFSV4 when AUTH_DH is the negotiated 607 * flavor via SECINFO. (instead of using MOUNT protocol in V3). 608 */ 609 netname[0] = '\0'; 610 if (flags & NFSMNT_SECURE) { 611 612 /* get syncaddr */ 613 STRUCT_INIT(addr_tmp, get_udatamodel()); 614 if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp), 615 STRUCT_SIZE(addr_tmp))) { 616 error = EINVAL; 617 goto errout; 618 } 619 userbufptr = STRUCT_FGETP(addr_tmp, buf); 620 syncaddr.len = STRUCT_FGET(addr_tmp, len); 621 syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP); 622 syncaddr.maxlen = syncaddr.len; 623 if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) { 624 kmem_free(syncaddr.buf, syncaddr.len); 625 error = EFAULT; 626 goto errout; 627 } 628 629 nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP); 630 bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf)); 631 632 /* get server's netname */ 633 if (copyinstr(STRUCT_FGETP(args, netname), netname, 634 sizeof (netname), &nlen)) { 635 error = EFAULT; 636 goto errout; 637 } 638 639 netname[nlen] = '\0'; 640 nargs->netname = kmem_zalloc(nlen, KM_SLEEP); 641 (void) strcpy(nargs->netname, netname); 642 } 643 644 /* 645 * Get the extention data which has the security data structure. 646 * This includes data for AUTH_SYS as well. 647 */ 648 if (flags & NFSMNT_NEWARGS) { 649 nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext); 650 if (nargs->nfs_args_ext == NFS_ARGS_EXTA || 651 nargs->nfs_args_ext == NFS_ARGS_EXTB) { 652 /* 653 * Indicating the application is using the new 654 * sec_data structure to pass in the security 655 * data. 656 */ 657 if (STRUCT_FGETP(args, 658 nfs_ext_u.nfs_extA.secdata) != NULL) { 659 error = sec_clnt_loadinfo( 660 (struct sec_data *)STRUCT_FGETP(args, 661 nfs_ext_u.nfs_extA.secdata), 662 &secdata, get_udatamodel()); 663 } 664 nargs->nfs_ext_u.nfs_extA.secdata = secdata; 665 } 666 } 667 668 if (error) 669 goto errout; 670 671 /* 672 * Failover support: 673 * 674 * We may have a linked list of nfs_args structures, 675 * which means the user is looking for failover. If 676 * the mount is either not "read-only" or "soft", 677 * we want to bail out with EINVAL. 678 */ 679 if (nargs->nfs_args_ext == NFS_ARGS_EXTB) 680 nargs->nfs_ext_u.nfs_extB.next = 681 STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next); 682 683 errout: 684 if (error) 685 nfs4_free_args(nargs); 686 687 return (error); 688 } 689 690 691 /* 692 * nfs mount vfsop 693 * Set up mount info record and attach it to vfs struct. 694 */ 695 int 696 nfs4_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 697 { 698 char *data = uap->dataptr; 699 int error; 700 vnode_t *rtvp; /* the server's root */ 701 mntinfo4_t *mi; /* mount info, pointed at by vfs */ 702 struct knetconfig *rdma_knconf; /* rdma transport structure */ 703 rnode4_t *rp; 704 struct servinfo4 *svp; /* nfs server info */ 705 struct servinfo4 *svp_tail = NULL; /* previous nfs server info */ 706 struct servinfo4 *svp_head; /* first nfs server info */ 707 struct servinfo4 *svp_2ndlast; /* 2nd last in server info list */ 708 struct sec_data *secdata; /* security data */ 709 struct nfs_args *args = NULL; 710 int flags, addr_type, removed; 711 zone_t *zone = nfs_zone(); 712 nfs4_error_t n4e; 713 zone_t *mntzone = NULL; 714 715 if (secpolicy_fs_mount(cr, mvp, vfsp) != 0) 716 return (EPERM); 717 if (mvp->v_type != VDIR) 718 return (ENOTDIR); 719 720 /* 721 * get arguments 722 * 723 * nfs_args is now versioned and is extensible, so 724 * uap->datalen might be different from sizeof (args) 725 * in a compatible situation. 726 */ 727 more: 728 if (!(uap->flags & MS_SYSSPACE)) { 729 if (args == NULL) 730 args = kmem_zalloc(sizeof (struct nfs_args), KM_SLEEP); 731 else 732 nfs4_free_args(args); 733 error = nfs4_copyin(data, uap->datalen, args); 734 if (error) { 735 if (args) { 736 kmem_free(args, sizeof (*args)); 737 } 738 return (error); 739 } 740 } else { 741 args = (struct nfs_args *)data; 742 } 743 744 flags = args->flags; 745 746 /* 747 * If the request changes the locking type, disallow the remount, 748 * because it's questionable whether we can transfer the 749 * locking state correctly. 750 */ 751 if (uap->flags & MS_REMOUNT) { 752 if (!(uap->flags & MS_SYSSPACE)) { 753 nfs4_free_args(args); 754 kmem_free(args, sizeof (*args)); 755 } 756 if ((mi = VFTOMI4(vfsp)) != NULL) { 757 uint_t new_mi_llock; 758 uint_t old_mi_llock; 759 new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0; 760 old_mi_llock = (mi->mi_flags & MI4_LLOCK) ? 1 : 0; 761 if (old_mi_llock != new_mi_llock) 762 return (EBUSY); 763 } 764 return (0); 765 } 766 767 /* 768 * For ephemeral mount trigger stub vnodes, we have two problems 769 * to solve: racing threads will likely fail the v_count check, and 770 * we want only one to proceed with the mount. 771 * 772 * For stubs, if the mount has already occurred (via a racing thread), 773 * just return success. If not, skip the v_count check and proceed. 774 * Note that we are already serialised at this point. 775 */ 776 mutex_enter(&mvp->v_lock); 777 if (vn_matchops(mvp, nfs4_trigger_vnodeops)) { 778 /* mntpt is a v4 stub vnode */ 779 ASSERT(RP_ISSTUB(VTOR4(mvp))); 780 ASSERT(!(uap->flags & MS_OVERLAY)); 781 ASSERT(!(mvp->v_flag & VROOT)); 782 if (vn_mountedvfs(mvp) != NULL) { 783 /* ephemeral mount has already occurred */ 784 ASSERT(uap->flags & MS_SYSSPACE); 785 mutex_exit(&mvp->v_lock); 786 return (0); 787 } 788 } else { 789 /* mntpt is a non-v4 or v4 non-stub vnode */ 790 if (!(uap->flags & MS_OVERLAY) && 791 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 792 mutex_exit(&mvp->v_lock); 793 if (!(uap->flags & MS_SYSSPACE)) { 794 nfs4_free_args(args); 795 kmem_free(args, sizeof (*args)); 796 } 797 return (EBUSY); 798 } 799 } 800 mutex_exit(&mvp->v_lock); 801 802 /* make sure things are zeroed for errout: */ 803 rtvp = NULL; 804 mi = NULL; 805 secdata = NULL; 806 807 /* 808 * A valid knetconfig structure is required. 809 */ 810 if (!(flags & NFSMNT_KNCONF) || 811 args->knconf == NULL || args->knconf->knc_protofmly == NULL || 812 args->knconf->knc_proto == NULL || 813 (strcmp(args->knconf->knc_proto, NC_UDP) == 0)) { 814 if (!(uap->flags & MS_SYSSPACE)) { 815 nfs4_free_args(args); 816 kmem_free(args, sizeof (*args)); 817 } 818 return (EINVAL); 819 } 820 821 if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) || 822 (strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) { 823 if (!(uap->flags & MS_SYSSPACE)) { 824 nfs4_free_args(args); 825 kmem_free(args, sizeof (*args)); 826 } 827 return (EINVAL); 828 } 829 830 /* 831 * Allocate a servinfo4 struct. 832 */ 833 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); 834 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); 835 if (svp_tail) { 836 svp_2ndlast = svp_tail; 837 svp_tail->sv_next = svp; 838 } else { 839 svp_head = svp; 840 svp_2ndlast = svp; 841 } 842 843 svp_tail = svp; 844 svp->sv_knconf = args->knconf; 845 args->knconf = NULL; 846 847 /* 848 * Get server address 849 */ 850 if (args->addr == NULL || args->addr->buf == NULL) { 851 error = EINVAL; 852 goto errout; 853 } 854 855 svp->sv_addr.maxlen = args->addr->maxlen; 856 svp->sv_addr.len = args->addr->len; 857 svp->sv_addr.buf = args->addr->buf; 858 args->addr->buf = NULL; 859 860 /* 861 * Get the root fhandle 862 */ 863 if (args->fh == NULL || (strlen(args->fh) >= MAXPATHLEN)) { 864 error = EINVAL; 865 goto errout; 866 } 867 868 svp->sv_path = args->fh; 869 svp->sv_pathlen = strlen(args->fh) + 1; 870 args->fh = NULL; 871 872 /* 873 * Get server's hostname 874 */ 875 if (flags & NFSMNT_HOSTNAME) { 876 if (args->hostname == NULL || (strlen(args->hostname) > 877 MAXNETNAMELEN)) { 878 error = EINVAL; 879 goto errout; 880 } 881 svp->sv_hostnamelen = strlen(args->hostname) + 1; 882 svp->sv_hostname = args->hostname; 883 args->hostname = NULL; 884 } else { 885 char *p = "unknown-host"; 886 svp->sv_hostnamelen = strlen(p) + 1; 887 svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP); 888 (void) strcpy(svp->sv_hostname, p); 889 } 890 891 /* 892 * RDMA MOUNT SUPPORT FOR NFS v4. 893 * Establish, is it possible to use RDMA, if so overload the 894 * knconf with rdma specific knconf and free the orignal knconf. 895 */ 896 if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) { 897 /* 898 * Determine the addr type for RDMA, IPv4 or v6. 899 */ 900 if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0) 901 addr_type = AF_INET; 902 else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0) 903 addr_type = AF_INET6; 904 905 if (rdma_reachable(addr_type, &svp->sv_addr, 906 &rdma_knconf) == 0) { 907 /* 908 * If successful, hijack the orignal knconf and 909 * replace with the new one, depending on the flags. 910 */ 911 svp->sv_origknconf = svp->sv_knconf; 912 svp->sv_knconf = rdma_knconf; 913 } else { 914 if (flags & NFSMNT_TRYRDMA) { 915 #ifdef DEBUG 916 if (rdma_debug) 917 zcmn_err(getzoneid(), CE_WARN, 918 "no RDMA onboard, revert\n"); 919 #endif 920 } 921 922 if (flags & NFSMNT_DORDMA) { 923 /* 924 * If proto=rdma is specified and no RDMA 925 * path to this server is avialable then 926 * ditch this server. 927 * This is not included in the mountable 928 * server list or the replica list. 929 * Check if more servers are specified; 930 * Failover case, otherwise bail out of mount. 931 */ 932 if (args->nfs_args_ext == NFS_ARGS_EXTB && 933 args->nfs_ext_u.nfs_extB.next != NULL) { 934 data = (char *) 935 args->nfs_ext_u.nfs_extB.next; 936 if (uap->flags & MS_RDONLY && 937 !(flags & NFSMNT_SOFT)) { 938 if (svp_head->sv_next == NULL) { 939 svp_tail = NULL; 940 svp_2ndlast = NULL; 941 sv4_free(svp_head); 942 goto more; 943 } else { 944 svp_tail = svp_2ndlast; 945 svp_2ndlast->sv_next = 946 NULL; 947 sv4_free(svp); 948 goto more; 949 } 950 } 951 } else { 952 /* 953 * This is the last server specified 954 * in the nfs_args list passed down 955 * and its not rdma capable. 956 */ 957 if (svp_head->sv_next == NULL) { 958 /* 959 * Is this the only one 960 */ 961 error = EINVAL; 962 #ifdef DEBUG 963 if (rdma_debug) 964 zcmn_err(getzoneid(), 965 CE_WARN, 966 "No RDMA srv"); 967 #endif 968 goto errout; 969 } else { 970 /* 971 * There is list, since some 972 * servers specified before 973 * this passed all requirements 974 */ 975 svp_tail = svp_2ndlast; 976 svp_2ndlast->sv_next = NULL; 977 sv4_free(svp); 978 goto proceed; 979 } 980 } 981 } 982 } 983 } 984 985 /* 986 * If there are syncaddr and netname data, load them in. This is 987 * to support data needed for NFSV4 when AUTH_DH is the negotiated 988 * flavor via SECINFO. (instead of using MOUNT protocol in V3). 989 */ 990 if (args->flags & NFSMNT_SECURE) { 991 svp->sv_dhsec = create_authdh_data(args->netname, 992 strlen(args->netname), 993 args->syncaddr, svp->sv_knconf); 994 } 995 996 /* 997 * Get the extention data which has the security data structure. 998 * This includes data for AUTH_SYS as well. 999 */ 1000 if (flags & NFSMNT_NEWARGS) { 1001 switch (args->nfs_args_ext) { 1002 case NFS_ARGS_EXTA: 1003 case NFS_ARGS_EXTB: 1004 /* 1005 * Indicating the application is using the new 1006 * sec_data structure to pass in the security 1007 * data. 1008 */ 1009 secdata = args->nfs_ext_u.nfs_extA.secdata; 1010 if (secdata == NULL) { 1011 error = EINVAL; 1012 } else if (uap->flags & MS_SYSSPACE) { 1013 /* 1014 * Need to validate the flavor here if 1015 * sysspace, userspace was already 1016 * validate from the nfs_copyin function. 1017 */ 1018 switch (secdata->rpcflavor) { 1019 case AUTH_NONE: 1020 case AUTH_UNIX: 1021 case AUTH_LOOPBACK: 1022 case AUTH_DES: 1023 case RPCSEC_GSS: 1024 break; 1025 default: 1026 error = EINVAL; 1027 goto errout; 1028 } 1029 } 1030 args->nfs_ext_u.nfs_extA.secdata = NULL; 1031 break; 1032 1033 default: 1034 error = EINVAL; 1035 break; 1036 } 1037 1038 } else if (flags & NFSMNT_SECURE) { 1039 /* 1040 * NFSMNT_SECURE is deprecated but we keep it 1041 * to support the rogue user-generated application 1042 * that may use this undocumented interface to do 1043 * AUTH_DH security, e.g. our own rexd. 1044 * 1045 * Also note that NFSMNT_SECURE is used for passing 1046 * AUTH_DH info to be used in negotiation. 1047 */ 1048 secdata = create_authdh_data(args->netname, 1049 strlen(args->netname), args->syncaddr, svp->sv_knconf); 1050 1051 } else { 1052 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); 1053 secdata->secmod = secdata->rpcflavor = AUTH_SYS; 1054 secdata->data = NULL; 1055 } 1056 1057 svp->sv_secdata = secdata; 1058 1059 /* 1060 * User does not explictly specify a flavor, and a user 1061 * defined default flavor is passed down. 1062 */ 1063 if (flags & NFSMNT_SECDEFAULT) { 1064 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 1065 svp->sv_flags |= SV4_TRYSECDEFAULT; 1066 nfs_rw_exit(&svp->sv_lock); 1067 } 1068 1069 /* 1070 * Failover support: 1071 * 1072 * We may have a linked list of nfs_args structures, 1073 * which means the user is looking for failover. If 1074 * the mount is either not "read-only" or "soft", 1075 * we want to bail out with EINVAL. 1076 */ 1077 if (args->nfs_args_ext == NFS_ARGS_EXTB && 1078 args->nfs_ext_u.nfs_extB.next != NULL) { 1079 if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) { 1080 data = (char *)args->nfs_ext_u.nfs_extB.next; 1081 goto more; 1082 } 1083 error = EINVAL; 1084 goto errout; 1085 } 1086 1087 /* 1088 * Determine the zone we're being mounted into. 1089 */ 1090 zone_hold(mntzone = zone); /* start with this assumption */ 1091 if (getzoneid() == GLOBAL_ZONEID) { 1092 zone_rele(mntzone); 1093 mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 1094 ASSERT(mntzone != NULL); 1095 if (mntzone != zone) { 1096 error = EBUSY; 1097 goto errout; 1098 } 1099 } 1100 1101 if (is_system_labeled()) { 1102 error = nfs_mount_label_policy(vfsp, &svp->sv_addr, 1103 svp->sv_knconf, cr); 1104 1105 if (error > 0) 1106 goto errout; 1107 1108 if (error == -1) { 1109 /* change mount to read-only to prevent write-down */ 1110 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1111 } 1112 } 1113 1114 /* 1115 * Stop the mount from going any further if the zone is going away. 1116 */ 1117 if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) { 1118 error = EBUSY; 1119 goto errout; 1120 } 1121 1122 /* 1123 * Get root vnode. 1124 */ 1125 proceed: 1126 error = nfs4rootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone); 1127 if (error) { 1128 /* if nfs4rootvp failed, it will free svp_head */ 1129 svp_head = NULL; 1130 goto errout; 1131 } 1132 1133 mi = VTOMI4(rtvp); 1134 1135 /* 1136 * Send client id to the server, if necessary 1137 */ 1138 nfs4_error_zinit(&n4e); 1139 nfs4setclientid(mi, cr, FALSE, &n4e); 1140 1141 error = n4e.error; 1142 1143 if (error) 1144 goto errout; 1145 1146 /* 1147 * Set option fields in the mount info record 1148 */ 1149 1150 if (svp_head->sv_next) { 1151 mutex_enter(&mi->mi_lock); 1152 mi->mi_flags |= MI4_LLOCK; 1153 mutex_exit(&mi->mi_lock); 1154 } 1155 error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, args); 1156 if (error) 1157 goto errout; 1158 1159 /* 1160 * Time to tie in the mirror mount info at last! 1161 */ 1162 if (flags & NFSMNT_EPHEMERAL) 1163 error = nfs4_record_ephemeral_mount(mi, mvp); 1164 1165 errout: 1166 if (error) { 1167 if (rtvp != NULL) { 1168 rp = VTOR4(rtvp); 1169 if (rp->r_flags & R4HASHED) 1170 rp4_rmhash(rp); 1171 } 1172 if (mi != NULL) { 1173 nfs4_async_stop(vfsp); 1174 nfs4_async_manager_stop(vfsp); 1175 nfs4_remove_mi_from_server(mi, NULL); 1176 if (rtvp != NULL) 1177 VN_RELE(rtvp); 1178 if (mntzone != NULL) 1179 zone_rele(mntzone); 1180 /* need to remove it from the zone */ 1181 removed = nfs4_mi_zonelist_remove(mi); 1182 if (removed) 1183 zone_rele(mi->mi_zone); 1184 MI4_RELE(mi); 1185 if (!(uap->flags & MS_SYSSPACE) && args) { 1186 nfs4_free_args(args); 1187 kmem_free(args, sizeof (*args)); 1188 } 1189 return (error); 1190 } 1191 if (svp_head) 1192 sv4_free(svp_head); 1193 } 1194 1195 if (!(uap->flags & MS_SYSSPACE) && args) { 1196 nfs4_free_args(args); 1197 kmem_free(args, sizeof (*args)); 1198 } 1199 if (rtvp != NULL) 1200 VN_RELE(rtvp); 1201 1202 if (mntzone != NULL) 1203 zone_rele(mntzone); 1204 1205 return (error); 1206 } 1207 1208 #ifdef DEBUG 1209 #define VERS_MSG "NFS4 server " 1210 #else 1211 #define VERS_MSG "NFS server " 1212 #endif 1213 1214 #define READ_MSG \ 1215 VERS_MSG "%s returned 0 for read transfer size" 1216 #define WRITE_MSG \ 1217 VERS_MSG "%s returned 0 for write transfer size" 1218 #define SIZE_MSG \ 1219 VERS_MSG "%s returned 0 for maximum file size" 1220 1221 /* 1222 * Get the symbolic link text from the server for a given filehandle 1223 * of that symlink. 1224 * 1225 * (get symlink text) PUTFH READLINK 1226 */ 1227 static int 1228 getlinktext_otw(mntinfo4_t *mi, nfs_fh4 *fh, char **linktextp, cred_t *cr, 1229 int flags) 1230 { 1231 COMPOUND4args_clnt args; 1232 COMPOUND4res_clnt res; 1233 int doqueue; 1234 nfs_argop4 argop[2]; 1235 nfs_resop4 *resop; 1236 READLINK4res *lr_res; 1237 uint_t len; 1238 bool_t needrecov = FALSE; 1239 nfs4_recov_state_t recov_state; 1240 nfs4_sharedfh_t *sfh; 1241 nfs4_error_t e; 1242 int num_retry = nfs4_max_mount_retry; 1243 int recovery = !(flags & NFS4_GETFH_NEEDSOP); 1244 1245 sfh = sfh4_get(fh, mi); 1246 recov_state.rs_flags = 0; 1247 recov_state.rs_num_retry_despite_err = 0; 1248 1249 recov_retry: 1250 nfs4_error_zinit(&e); 1251 1252 args.array_len = 2; 1253 args.array = argop; 1254 args.ctag = TAG_GET_SYMLINK; 1255 1256 if (! recovery) { 1257 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state); 1258 if (e.error) { 1259 sfh4_rele(&sfh); 1260 return (e.error); 1261 } 1262 } 1263 1264 /* 0. putfh symlink fh */ 1265 argop[0].argop = OP_CPUTFH; 1266 argop[0].nfs_argop4_u.opcputfh.sfh = sfh; 1267 1268 /* 1. readlink */ 1269 argop[1].argop = OP_READLINK; 1270 1271 doqueue = 1; 1272 1273 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); 1274 1275 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); 1276 1277 if (needrecov && !recovery && num_retry-- > 0) { 1278 1279 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1280 "getlinktext_otw: initiating recovery\n")); 1281 1282 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL, 1283 OP_READLINK, NULL, NULL, NULL) == FALSE) { 1284 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 1285 if (!e.error) 1286 (void) xdr_free(xdr_COMPOUND4res_clnt, 1287 (caddr_t)&res); 1288 goto recov_retry; 1289 } 1290 } 1291 1292 /* 1293 * If non-NFS4 pcol error and/or we weren't able to recover. 1294 */ 1295 if (e.error != 0) { 1296 if (! recovery) 1297 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 1298 sfh4_rele(&sfh); 1299 return (e.error); 1300 } 1301 1302 if (res.status) { 1303 e.error = geterrno4(res.status); 1304 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1305 if (! recovery) 1306 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 1307 sfh4_rele(&sfh); 1308 return (e.error); 1309 } 1310 1311 /* res.status == NFS4_OK */ 1312 ASSERT(res.status == NFS4_OK); 1313 1314 resop = &res.array[1]; /* readlink res */ 1315 lr_res = &resop->nfs_resop4_u.opreadlink; 1316 1317 /* treat symlink name as data */ 1318 *linktextp = utf8_to_str(&lr_res->link, &len, NULL); 1319 1320 if (! recovery) 1321 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); 1322 sfh4_rele(&sfh); 1323 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1324 return (0); 1325 } 1326 1327 /* 1328 * Skip over consecutive slashes and "/./" in a pathname. 1329 */ 1330 void 1331 pathname_skipslashdot(struct pathname *pnp) 1332 { 1333 char *c1, *c2; 1334 1335 while (pnp->pn_pathlen > 0 && *pnp->pn_path == '/') { 1336 1337 c1 = pnp->pn_path + 1; 1338 c2 = pnp->pn_path + 2; 1339 1340 if (*c1 == '.' && (*c2 == '/' || *c2 == '\0')) { 1341 pnp->pn_path = pnp->pn_path + 2; /* skip "/." */ 1342 pnp->pn_pathlen = pnp->pn_pathlen - 2; 1343 } else { 1344 pnp->pn_path++; 1345 pnp->pn_pathlen--; 1346 } 1347 } 1348 } 1349 1350 /* 1351 * Resolve a symbolic link path. The symlink is in the nth component of 1352 * svp->sv_path and has an nfs4 file handle "fh". 1353 * Upon return, the sv_path will point to the new path that has the nth 1354 * component resolved to its symlink text. 1355 */ 1356 int 1357 resolve_sympath(mntinfo4_t *mi, servinfo4_t *svp, int nth, nfs_fh4 *fh, 1358 cred_t *cr, int flags) 1359 { 1360 char *oldpath; 1361 char *symlink, *newpath; 1362 struct pathname oldpn, newpn; 1363 char component[MAXNAMELEN]; 1364 int i, addlen, error = 0; 1365 int oldpathlen; 1366 1367 /* Get the symbolic link text over the wire. */ 1368 error = getlinktext_otw(mi, fh, &symlink, cr, flags); 1369 1370 if (error || symlink == NULL || strlen(symlink) == 0) 1371 return (error); 1372 1373 /* 1374 * Compose the new pathname. 1375 * Note: 1376 * - only the nth component is resolved for the pathname. 1377 * - pathname.pn_pathlen does not count the ending null byte. 1378 */ 1379 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1380 oldpath = svp->sv_path; 1381 oldpathlen = svp->sv_pathlen; 1382 if (error = pn_get(oldpath, UIO_SYSSPACE, &oldpn)) { 1383 nfs_rw_exit(&svp->sv_lock); 1384 kmem_free(symlink, strlen(symlink) + 1); 1385 return (error); 1386 } 1387 nfs_rw_exit(&svp->sv_lock); 1388 pn_alloc(&newpn); 1389 1390 /* 1391 * Skip over previous components from the oldpath so that the 1392 * oldpn.pn_path will point to the symlink component. Skip 1393 * leading slashes and "/./" (no OP_LOOKUP on ".") so that 1394 * pn_getcompnent can get the component. 1395 */ 1396 for (i = 1; i < nth; i++) { 1397 pathname_skipslashdot(&oldpn); 1398 error = pn_getcomponent(&oldpn, component); 1399 if (error) 1400 goto out; 1401 } 1402 1403 /* 1404 * Copy the old path upto the component right before the symlink 1405 * if the symlink is not an absolute path. 1406 */ 1407 if (symlink[0] != '/') { 1408 addlen = oldpn.pn_path - oldpn.pn_buf; 1409 bcopy(oldpn.pn_buf, newpn.pn_path, addlen); 1410 newpn.pn_pathlen += addlen; 1411 newpn.pn_path += addlen; 1412 newpn.pn_buf[newpn.pn_pathlen] = '/'; 1413 newpn.pn_pathlen++; 1414 newpn.pn_path++; 1415 } 1416 1417 /* copy the resolved symbolic link text */ 1418 addlen = strlen(symlink); 1419 if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) { 1420 error = ENAMETOOLONG; 1421 goto out; 1422 } 1423 bcopy(symlink, newpn.pn_path, addlen); 1424 newpn.pn_pathlen += addlen; 1425 newpn.pn_path += addlen; 1426 1427 /* 1428 * Check if there is any remaining path after the symlink component. 1429 * First, skip the symlink component. 1430 */ 1431 pathname_skipslashdot(&oldpn); 1432 if (error = pn_getcomponent(&oldpn, component)) 1433 goto out; 1434 1435 addlen = pn_pathleft(&oldpn); /* includes counting the slash */ 1436 1437 /* 1438 * Copy the remaining path to the new pathname if there is any. 1439 */ 1440 if (addlen > 0) { 1441 if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) { 1442 error = ENAMETOOLONG; 1443 goto out; 1444 } 1445 bcopy(oldpn.pn_path, newpn.pn_path, addlen); 1446 newpn.pn_pathlen += addlen; 1447 } 1448 newpn.pn_buf[newpn.pn_pathlen] = '\0'; 1449 1450 /* get the newpath and store it in the servinfo4_t */ 1451 newpath = kmem_alloc(newpn.pn_pathlen + 1, KM_SLEEP); 1452 bcopy(newpn.pn_buf, newpath, newpn.pn_pathlen); 1453 newpath[newpn.pn_pathlen] = '\0'; 1454 1455 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 1456 svp->sv_path = newpath; 1457 svp->sv_pathlen = strlen(newpath) + 1; 1458 nfs_rw_exit(&svp->sv_lock); 1459 1460 kmem_free(oldpath, oldpathlen); 1461 out: 1462 kmem_free(symlink, strlen(symlink) + 1); 1463 pn_free(&newpn); 1464 pn_free(&oldpn); 1465 1466 return (error); 1467 } 1468 1469 /* 1470 * This routine updates servinfo4 structure with the new referred server 1471 * info. 1472 * nfsfsloc has the location related information 1473 * fsp has the hostname and pathname info. 1474 * new path = pathname from referral + part of orig pathname(based on nth). 1475 */ 1476 static void 1477 update_servinfo4(servinfo4_t *svp, fs_location4 *fsp, 1478 struct nfs_fsl_info *nfsfsloc, char *orig_path, int nth) 1479 { 1480 struct knetconfig *knconf, *svknconf; 1481 struct netbuf *saddr; 1482 sec_data_t *secdata; 1483 utf8string *host; 1484 int i = 0, num_slashes = 0; 1485 char *p, *spath, *op, *new_path; 1486 1487 /* Update knconf */ 1488 knconf = svp->sv_knconf; 1489 free_knconf_contents(knconf); 1490 bzero(knconf, sizeof (struct knetconfig)); 1491 svknconf = nfsfsloc->knconf; 1492 knconf->knc_semantics = svknconf->knc_semantics; 1493 knconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 1494 knconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 1495 knconf->knc_rdev = svknconf->knc_rdev; 1496 bcopy(svknconf->knc_protofmly, knconf->knc_protofmly, KNC_STRSIZE); 1497 bcopy(svknconf->knc_proto, knconf->knc_proto, KNC_STRSIZE); 1498 1499 /* Update server address */ 1500 saddr = &svp->sv_addr; 1501 if (saddr->buf != NULL) 1502 kmem_free(saddr->buf, saddr->maxlen); 1503 saddr->buf = kmem_alloc(nfsfsloc->addr->maxlen, KM_SLEEP); 1504 saddr->len = nfsfsloc->addr->len; 1505 saddr->maxlen = nfsfsloc->addr->maxlen; 1506 bcopy(nfsfsloc->addr->buf, saddr->buf, nfsfsloc->addr->len); 1507 1508 /* Update server name */ 1509 host = fsp->server_val; 1510 kmem_free(svp->sv_hostname, svp->sv_hostnamelen); 1511 svp->sv_hostname = kmem_zalloc(host->utf8string_len + 1, KM_SLEEP); 1512 bcopy(host->utf8string_val, svp->sv_hostname, host->utf8string_len); 1513 svp->sv_hostname[host->utf8string_len] = '\0'; 1514 svp->sv_hostnamelen = host->utf8string_len + 1; 1515 1516 /* 1517 * Update server path. 1518 * We need to setup proper path here. 1519 * For ex., If we got a path name serv1:/rp/aaa/bbb 1520 * where aaa is a referral and points to serv2:/rpool/aa 1521 * we need to set the path to serv2:/rpool/aa/bbb 1522 * The first part of this below code generates /rpool/aa 1523 * and the second part appends /bbb to the server path. 1524 */ 1525 spath = p = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1526 *p++ = '/'; 1527 for (i = 0; i < fsp->rootpath.pathname4_len; i++) { 1528 component4 *comp; 1529 1530 comp = &fsp->rootpath.pathname4_val[i]; 1531 /* If no space, null the string and bail */ 1532 if ((p - spath) + comp->utf8string_len + 1 > MAXPATHLEN) { 1533 p = spath + MAXPATHLEN - 1; 1534 spath[0] = '\0'; 1535 break; 1536 } 1537 bcopy(comp->utf8string_val, p, comp->utf8string_len); 1538 p += comp->utf8string_len; 1539 *p++ = '/'; 1540 } 1541 if (fsp->rootpath.pathname4_len != 0) 1542 *(p - 1) = '\0'; 1543 else 1544 *p = '\0'; 1545 p = spath; 1546 1547 new_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 1548 (void) strlcpy(new_path, p, MAXPATHLEN); 1549 kmem_free(p, MAXPATHLEN); 1550 i = strlen(new_path); 1551 1552 for (op = orig_path; *op; op++) { 1553 if (*op == '/') 1554 num_slashes++; 1555 if (num_slashes == nth + 2) { 1556 while (*op != '\0') { 1557 new_path[i] = *op; 1558 i++; 1559 op++; 1560 } 1561 break; 1562 } 1563 } 1564 new_path[i] = '\0'; 1565 1566 kmem_free(svp->sv_path, svp->sv_pathlen); 1567 svp->sv_pathlen = strlen(new_path) + 1; 1568 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); 1569 bcopy(new_path, svp->sv_path, svp->sv_pathlen); 1570 kmem_free(new_path, MAXPATHLEN); 1571 1572 /* 1573 * All the security data is specific to old server. 1574 * Clean it up except secdata which deals with mount options. 1575 * We need to inherit that data. Copy secdata into our new servinfo4. 1576 */ 1577 if (svp->sv_dhsec) { 1578 sec_clnt_freeinfo(svp->sv_dhsec); 1579 svp->sv_dhsec = NULL; 1580 } 1581 if (svp->sv_save_secinfo && 1582 svp->sv_save_secinfo != svp->sv_secinfo) { 1583 secinfo_free(svp->sv_save_secinfo); 1584 svp->sv_save_secinfo = NULL; 1585 } 1586 if (svp->sv_secinfo) { 1587 secinfo_free(svp->sv_secinfo); 1588 svp->sv_secinfo = NULL; 1589 } 1590 svp->sv_currsec = NULL; 1591 1592 secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); 1593 *secdata = *svp->sv_secdata; 1594 secdata->data = NULL; 1595 if (svp->sv_secdata) { 1596 sec_clnt_freeinfo(svp->sv_secdata); 1597 svp->sv_secdata = NULL; 1598 } 1599 svp->sv_secdata = secdata; 1600 } 1601 1602 /* 1603 * Resolve a referral. The referral is in the n+1th component of 1604 * svp->sv_path and has a parent nfs4 file handle "fh". 1605 * Upon return, the sv_path will point to the new path that has referral 1606 * component resolved to its referred path and part of original path. 1607 * Hostname and other address information is also updated. 1608 */ 1609 int 1610 resolve_referral(mntinfo4_t *mi, servinfo4_t *svp, cred_t *cr, int nth, 1611 nfs_fh4 *fh) 1612 { 1613 nfs4_sharedfh_t *sfh; 1614 struct nfs_fsl_info nfsfsloc; 1615 nfs4_ga_res_t garp; 1616 COMPOUND4res_clnt callres; 1617 fs_location4 *fsp; 1618 char *nm, *orig_path; 1619 int orig_pathlen = 0, ret = -1, index; 1620 1621 if (svp->sv_pathlen <= 0) 1622 return (ret); 1623 1624 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 1625 orig_pathlen = svp->sv_pathlen; 1626 orig_path = kmem_alloc(orig_pathlen, KM_SLEEP); 1627 bcopy(svp->sv_path, orig_path, orig_pathlen); 1628 nm = extract_referral_point(svp->sv_path, nth); 1629 setup_newsvpath(svp, nth); 1630 nfs_rw_exit(&svp->sv_lock); 1631 1632 sfh = sfh4_get(fh, mi); 1633 index = nfs4_process_referral(mi, sfh, nm, cr, 1634 &garp, &callres, &nfsfsloc); 1635 sfh4_rele(&sfh); 1636 kmem_free(nm, MAXPATHLEN); 1637 if (index < 0) { 1638 kmem_free(orig_path, orig_pathlen); 1639 return (index); 1640 } 1641 1642 fsp = &garp.n4g_ext_res->n4g_fslocations.locations_val[index]; 1643 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 1644 update_servinfo4(svp, fsp, &nfsfsloc, orig_path, nth); 1645 nfs_rw_exit(&svp->sv_lock); 1646 1647 mutex_enter(&mi->mi_lock); 1648 mi->mi_vfs_referral_loop_cnt++; 1649 mutex_exit(&mi->mi_lock); 1650 1651 ret = 0; 1652 bad: 1653 /* Free up XDR memory allocated in nfs4_process_referral() */ 1654 xdr_free(xdr_nfs_fsl_info, (char *)&nfsfsloc); 1655 xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&callres); 1656 kmem_free(orig_path, orig_pathlen); 1657 1658 return (ret); 1659 } 1660 1661 /* 1662 * Get the root filehandle for the given filesystem and server, and update 1663 * svp. 1664 * 1665 * If NFS4_GETFH_NEEDSOP is set, then use nfs4_start_fop and nfs4_end_fop 1666 * to coordinate with recovery. Otherwise, the caller is assumed to be 1667 * the recovery thread or have already done a start_fop. 1668 * 1669 * Errors are returned by the nfs4_error_t parameter. 1670 */ 1671 static void 1672 nfs4getfh_otw(struct mntinfo4 *mi, servinfo4_t *svp, vtype_t *vtp, 1673 int flags, cred_t *cr, nfs4_error_t *ep) 1674 { 1675 COMPOUND4args_clnt args; 1676 COMPOUND4res_clnt res; 1677 int doqueue = 1; 1678 nfs_argop4 *argop; 1679 nfs_resop4 *resop; 1680 nfs4_ga_res_t *garp; 1681 int num_argops; 1682 lookup4_param_t lookuparg; 1683 nfs_fh4 *tmpfhp; 1684 nfs_fh4 *resfhp; 1685 bool_t needrecov = FALSE; 1686 nfs4_recov_state_t recov_state; 1687 int llndx; 1688 int nthcomp; 1689 int recovery = !(flags & NFS4_GETFH_NEEDSOP); 1690 1691 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1692 ASSERT(svp->sv_path != NULL); 1693 if (svp->sv_path[0] == '\0') { 1694 nfs_rw_exit(&svp->sv_lock); 1695 nfs4_error_init(ep, EINVAL); 1696 return; 1697 } 1698 nfs_rw_exit(&svp->sv_lock); 1699 1700 recov_state.rs_flags = 0; 1701 recov_state.rs_num_retry_despite_err = 0; 1702 1703 recov_retry: 1704 if (mi->mi_vfs_referral_loop_cnt >= NFS4_REFERRAL_LOOP_MAX) { 1705 DTRACE_PROBE3(nfs4clnt__debug__referral__loop, mntinfo4 *, 1706 mi, servinfo4_t *, svp, char *, "nfs4getfh_otw"); 1707 nfs4_error_init(ep, EINVAL); 1708 return; 1709 } 1710 nfs4_error_zinit(ep); 1711 1712 if (!recovery) { 1713 ep->error = nfs4_start_fop(mi, NULL, NULL, OH_MOUNT, 1714 &recov_state, NULL); 1715 1716 /* 1717 * If recovery has been started and this request as 1718 * initiated by a mount, then we must wait for recovery 1719 * to finish before proceeding, otherwise, the error 1720 * cleanup would remove data structures needed by the 1721 * recovery thread. 1722 */ 1723 if (ep->error) { 1724 mutex_enter(&mi->mi_lock); 1725 if (mi->mi_flags & MI4_MOUNTING) { 1726 mi->mi_flags |= MI4_RECOV_FAIL; 1727 mi->mi_error = EIO; 1728 1729 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, 1730 "nfs4getfh_otw: waiting 4 recovery\n")); 1731 1732 while (mi->mi_flags & MI4_RECOV_ACTIV) 1733 cv_wait(&mi->mi_failover_cv, 1734 &mi->mi_lock); 1735 } 1736 mutex_exit(&mi->mi_lock); 1737 return; 1738 } 1739 1740 /* 1741 * If the client does not specify a specific flavor to use 1742 * and has not gotten a secinfo list from the server yet, 1743 * retrieve the secinfo list from the server and use a 1744 * flavor from the list to mount. 1745 * 1746 * If fail to get the secinfo list from the server, then 1747 * try the default flavor. 1748 */ 1749 if ((svp->sv_flags & SV4_TRYSECDEFAULT) && 1750 svp->sv_secinfo == NULL) { 1751 (void) nfs4_secinfo_path(mi, cr, FALSE); 1752 } 1753 } 1754 1755 if (recovery) 1756 args.ctag = TAG_REMAP_MOUNT; 1757 else 1758 args.ctag = TAG_MOUNT; 1759 1760 lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES; 1761 lookuparg.argsp = &args; 1762 lookuparg.resp = &res; 1763 lookuparg.header_len = 2; /* Putrootfh, getfh */ 1764 lookuparg.trailer_len = 0; 1765 lookuparg.ga_bits = FATTR4_FSINFO_MASK; 1766 lookuparg.mi = mi; 1767 1768 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 1769 ASSERT(svp->sv_path != NULL); 1770 llndx = nfs4lookup_setup(svp->sv_path, &lookuparg, 0); 1771 nfs_rw_exit(&svp->sv_lock); 1772 1773 argop = args.array; 1774 num_argops = args.array_len; 1775 1776 /* choose public or root filehandle */ 1777 if (flags & NFS4_GETFH_PUBLIC) 1778 argop[0].argop = OP_PUTPUBFH; 1779 else 1780 argop[0].argop = OP_PUTROOTFH; 1781 1782 /* get fh */ 1783 argop[1].argop = OP_GETFH; 1784 1785 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, 1786 "nfs4getfh_otw: %s call, mi 0x%p", 1787 needrecov ? "recov" : "first", (void *)mi)); 1788 1789 rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep); 1790 1791 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); 1792 1793 if (needrecov) { 1794 bool_t abort; 1795 1796 if (recovery) { 1797 nfs4args_lookup_free(argop, num_argops); 1798 kmem_free(argop, 1799 lookuparg.arglen * sizeof (nfs_argop4)); 1800 if (!ep->error) 1801 (void) xdr_free(xdr_COMPOUND4res_clnt, 1802 (caddr_t)&res); 1803 return; 1804 } 1805 1806 NFS4_DEBUG(nfs4_client_recov_debug, 1807 (CE_NOTE, "nfs4getfh_otw: initiating recovery\n")); 1808 1809 abort = nfs4_start_recovery(ep, mi, NULL, 1810 NULL, NULL, NULL, OP_GETFH, NULL, NULL, NULL); 1811 if (!ep->error) { 1812 ep->error = geterrno4(res.status); 1813 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1814 } 1815 nfs4args_lookup_free(argop, num_argops); 1816 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1817 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); 1818 /* have another go? */ 1819 if (abort == FALSE) 1820 goto recov_retry; 1821 return; 1822 } 1823 1824 /* 1825 * No recovery, but check if error is set. 1826 */ 1827 if (ep->error) { 1828 nfs4args_lookup_free(argop, num_argops); 1829 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1830 if (!recovery) 1831 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, 1832 needrecov); 1833 return; 1834 } 1835 1836 is_link_err: 1837 1838 /* for non-recovery errors */ 1839 if (res.status && res.status != NFS4ERR_SYMLINK && 1840 res.status != NFS4ERR_MOVED) { 1841 if (!recovery) { 1842 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, 1843 needrecov); 1844 } 1845 nfs4args_lookup_free(argop, num_argops); 1846 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1847 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1848 return; 1849 } 1850 1851 /* 1852 * If any intermediate component in the path is a symbolic link, 1853 * resolve the symlink, then try mount again using the new path. 1854 */ 1855 if (res.status == NFS4ERR_SYMLINK || res.status == NFS4ERR_MOVED) { 1856 int where; 1857 1858 /* 1859 * Need to call nfs4_end_op before resolve_sympath to avoid 1860 * potential nfs4_start_op deadlock. 1861 */ 1862 if (!recovery) 1863 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, 1864 needrecov); 1865 1866 /* 1867 * This must be from OP_LOOKUP failure. The (cfh) for this 1868 * OP_LOOKUP is a symlink node. Found out where the 1869 * OP_GETFH is for the (cfh) that is a symlink node. 1870 * 1871 * Example: 1872 * (mount) PUTROOTFH, GETFH, LOOKUP comp1, GETFH, GETATTR, 1873 * LOOKUP comp2, GETFH, GETATTR, LOOKUP comp3, GETFH, GETATTR 1874 * 1875 * LOOKUP comp3 fails with SYMLINK because comp2 is a symlink. 1876 * In this case, where = 7, nthcomp = 2. 1877 */ 1878 where = res.array_len - 2; 1879 ASSERT(where > 0); 1880 1881 if (res.status == NFS4ERR_SYMLINK) { 1882 1883 resop = &res.array[where - 1]; 1884 ASSERT(resop->resop == OP_GETFH); 1885 tmpfhp = &resop->nfs_resop4_u.opgetfh.object; 1886 nthcomp = res.array_len/3 - 1; 1887 ep->error = resolve_sympath(mi, svp, nthcomp, 1888 tmpfhp, cr, flags); 1889 1890 } else if (res.status == NFS4ERR_MOVED) { 1891 1892 resop = &res.array[where - 2]; 1893 ASSERT(resop->resop == OP_GETFH); 1894 tmpfhp = &resop->nfs_resop4_u.opgetfh.object; 1895 nthcomp = res.array_len/3 - 1; 1896 ep->error = resolve_referral(mi, svp, cr, nthcomp, 1897 tmpfhp); 1898 } 1899 1900 nfs4args_lookup_free(argop, num_argops); 1901 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1902 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1903 1904 if (ep->error) 1905 return; 1906 1907 goto recov_retry; 1908 } 1909 1910 /* getfh */ 1911 resop = &res.array[res.array_len - 2]; 1912 ASSERT(resop->resop == OP_GETFH); 1913 resfhp = &resop->nfs_resop4_u.opgetfh.object; 1914 1915 /* getattr fsinfo res */ 1916 resop++; 1917 garp = &resop->nfs_resop4_u.opgetattr.ga_res; 1918 1919 *vtp = garp->n4g_va.va_type; 1920 1921 mi->mi_fh_expire_type = garp->n4g_ext_res->n4g_fet; 1922 1923 mutex_enter(&mi->mi_lock); 1924 if (garp->n4g_ext_res->n4g_pc4.pc4_link_support) 1925 mi->mi_flags |= MI4_LINK; 1926 if (garp->n4g_ext_res->n4g_pc4.pc4_symlink_support) 1927 mi->mi_flags |= MI4_SYMLINK; 1928 if (garp->n4g_ext_res->n4g_suppattrs & FATTR4_ACL_MASK) 1929 mi->mi_flags |= MI4_ACL; 1930 mutex_exit(&mi->mi_lock); 1931 1932 if (garp->n4g_ext_res->n4g_maxread == 0) 1933 mi->mi_tsize = 1934 MIN(MAXBSIZE, mi->mi_tsize); 1935 else 1936 mi->mi_tsize = 1937 MIN(garp->n4g_ext_res->n4g_maxread, 1938 mi->mi_tsize); 1939 1940 if (garp->n4g_ext_res->n4g_maxwrite == 0) 1941 mi->mi_stsize = 1942 MIN(MAXBSIZE, mi->mi_stsize); 1943 else 1944 mi->mi_stsize = 1945 MIN(garp->n4g_ext_res->n4g_maxwrite, 1946 mi->mi_stsize); 1947 1948 if (garp->n4g_ext_res->n4g_maxfilesize != 0) 1949 mi->mi_maxfilesize = 1950 MIN(garp->n4g_ext_res->n4g_maxfilesize, 1951 mi->mi_maxfilesize); 1952 1953 /* 1954 * If the final component is a a symbolic link, resolve the symlink, 1955 * then try mount again using the new path. 1956 * 1957 * Assume no symbolic link for root filesysm "/". 1958 */ 1959 if (*vtp == VLNK) { 1960 /* 1961 * nthcomp is the total result length minus 1962 * the 1st 2 OPs (PUTROOTFH, GETFH), 1963 * then divided by 3 (LOOKUP,GETFH,GETATTR) 1964 * 1965 * e.g. PUTROOTFH GETFH LOOKUP 1st-comp GETFH GETATTR 1966 * LOOKUP 2nd-comp GETFH GETATTR 1967 * 1968 * (8 - 2)/3 = 2 1969 */ 1970 nthcomp = (res.array_len - 2)/3; 1971 1972 /* 1973 * Need to call nfs4_end_op before resolve_sympath to avoid 1974 * potential nfs4_start_op deadlock. See RFE 4777612. 1975 */ 1976 if (!recovery) 1977 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, 1978 needrecov); 1979 1980 ep->error = resolve_sympath(mi, svp, nthcomp, resfhp, cr, 1981 flags); 1982 1983 nfs4args_lookup_free(argop, num_argops); 1984 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 1985 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 1986 1987 if (ep->error) 1988 return; 1989 1990 goto recov_retry; 1991 } 1992 1993 /* 1994 * We need to figure out where in the compound the getfh 1995 * for the parent directory is. If the object to be mounted is 1996 * the root, then there is no lookup at all: 1997 * PUTROOTFH, GETFH. 1998 * If the object to be mounted is in the root, then the compound is: 1999 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR. 2000 * In either of these cases, the index of the GETFH is 1. 2001 * If it is not at the root, then it's something like: 2002 * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR, 2003 * LOOKUP, GETFH, GETATTR 2004 * In this case, the index is llndx (last lookup index) - 2. 2005 */ 2006 if (llndx == -1 || llndx == 2) 2007 resop = &res.array[1]; 2008 else { 2009 ASSERT(llndx > 2); 2010 resop = &res.array[llndx-2]; 2011 } 2012 2013 ASSERT(resop->resop == OP_GETFH); 2014 tmpfhp = &resop->nfs_resop4_u.opgetfh.object; 2015 2016 /* save the filehandles for the replica */ 2017 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2018 ASSERT(tmpfhp->nfs_fh4_len <= NFS4_FHSIZE); 2019 svp->sv_pfhandle.fh_len = tmpfhp->nfs_fh4_len; 2020 bcopy(tmpfhp->nfs_fh4_val, svp->sv_pfhandle.fh_buf, 2021 tmpfhp->nfs_fh4_len); 2022 ASSERT(resfhp->nfs_fh4_len <= NFS4_FHSIZE); 2023 svp->sv_fhandle.fh_len = resfhp->nfs_fh4_len; 2024 bcopy(resfhp->nfs_fh4_val, svp->sv_fhandle.fh_buf, resfhp->nfs_fh4_len); 2025 2026 /* initialize fsid and supp_attrs for server fs */ 2027 svp->sv_fsid = garp->n4g_fsid; 2028 svp->sv_supp_attrs = 2029 garp->n4g_ext_res->n4g_suppattrs | FATTR4_MANDATTR_MASK; 2030 2031 nfs_rw_exit(&svp->sv_lock); 2032 nfs4args_lookup_free(argop, num_argops); 2033 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); 2034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 2035 if (!recovery) 2036 nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); 2037 } 2038 2039 /* 2040 * Save a copy of Servinfo4_t structure. 2041 * We might need when there is a failure in getting file handle 2042 * in case of a referral to replace servinfo4 struct and try again. 2043 */ 2044 static struct servinfo4 * 2045 copy_svp(servinfo4_t *nsvp) 2046 { 2047 servinfo4_t *svp = NULL; 2048 struct knetconfig *sknconf, *tknconf; 2049 struct netbuf *saddr, *taddr; 2050 2051 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); 2052 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); 2053 svp->sv_flags = nsvp->sv_flags; 2054 svp->sv_fsid = nsvp->sv_fsid; 2055 svp->sv_hostnamelen = nsvp->sv_hostnamelen; 2056 svp->sv_pathlen = nsvp->sv_pathlen; 2057 svp->sv_supp_attrs = nsvp->sv_supp_attrs; 2058 2059 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); 2060 svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); 2061 bcopy(nsvp->sv_hostname, svp->sv_hostname, svp->sv_hostnamelen); 2062 bcopy(nsvp->sv_path, svp->sv_path, svp->sv_pathlen); 2063 2064 saddr = &nsvp->sv_addr; 2065 taddr = &svp->sv_addr; 2066 taddr->maxlen = saddr->maxlen; 2067 taddr->len = saddr->len; 2068 if (saddr->len > 0) { 2069 taddr->buf = kmem_zalloc(saddr->maxlen, KM_SLEEP); 2070 bcopy(saddr->buf, taddr->buf, saddr->len); 2071 } 2072 2073 svp->sv_knconf = kmem_zalloc(sizeof (struct knetconfig), KM_SLEEP); 2074 sknconf = nsvp->sv_knconf; 2075 tknconf = svp->sv_knconf; 2076 tknconf->knc_semantics = sknconf->knc_semantics; 2077 tknconf->knc_rdev = sknconf->knc_rdev; 2078 if (sknconf->knc_proto != NULL) { 2079 tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 2080 bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto, 2081 KNC_STRSIZE); 2082 } 2083 if (sknconf->knc_protofmly != NULL) { 2084 tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 2085 bcopy(sknconf->knc_protofmly, (char *)tknconf->knc_protofmly, 2086 KNC_STRSIZE); 2087 } 2088 2089 if (nsvp->sv_origknconf != NULL) { 2090 svp->sv_origknconf = kmem_zalloc(sizeof (struct knetconfig), 2091 KM_SLEEP); 2092 sknconf = nsvp->sv_origknconf; 2093 tknconf = svp->sv_origknconf; 2094 tknconf->knc_semantics = sknconf->knc_semantics; 2095 tknconf->knc_rdev = sknconf->knc_rdev; 2096 if (sknconf->knc_proto != NULL) { 2097 tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); 2098 bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto, 2099 KNC_STRSIZE); 2100 } 2101 if (sknconf->knc_protofmly != NULL) { 2102 tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, 2103 KM_SLEEP); 2104 bcopy(sknconf->knc_protofmly, 2105 (char *)tknconf->knc_protofmly, KNC_STRSIZE); 2106 } 2107 } 2108 2109 svp->sv_secdata = copy_sec_data(nsvp->sv_secdata); 2110 svp->sv_dhsec = copy_sec_data(svp->sv_dhsec); 2111 /* 2112 * Rest of the security information is not copied as they are built 2113 * with the information available from secdata and dhsec. 2114 */ 2115 svp->sv_next = NULL; 2116 2117 return (svp); 2118 } 2119 2120 servinfo4_t * 2121 restore_svp(mntinfo4_t *mi, servinfo4_t *svp, servinfo4_t *origsvp) 2122 { 2123 servinfo4_t *srvnext, *tmpsrv; 2124 2125 if (strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) { 2126 /* 2127 * Since the hostname changed, we must be dealing 2128 * with a referral, and the lookup failed. We will 2129 * restore the whole servinfo4_t to what it was before. 2130 */ 2131 srvnext = svp->sv_next; 2132 svp->sv_next = NULL; 2133 tmpsrv = copy_svp(origsvp); 2134 sv4_free(svp); 2135 svp = tmpsrv; 2136 svp->sv_next = srvnext; 2137 mutex_enter(&mi->mi_lock); 2138 mi->mi_servers = svp; 2139 mi->mi_curr_serv = svp; 2140 mutex_exit(&mi->mi_lock); 2141 2142 } else if (origsvp->sv_pathlen != svp->sv_pathlen) { 2143 2144 /* 2145 * For symlink case: restore original path because 2146 * it might have contained symlinks that were 2147 * expanded by nfsgetfh_otw before the failure occurred. 2148 */ 2149 nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2150 kmem_free(svp->sv_path, svp->sv_pathlen); 2151 svp->sv_path = 2152 kmem_alloc(origsvp->sv_pathlen, KM_SLEEP); 2153 svp->sv_pathlen = origsvp->sv_pathlen; 2154 bcopy(origsvp->sv_path, svp->sv_path, 2155 origsvp->sv_pathlen); 2156 nfs_rw_exit(&svp->sv_lock); 2157 } 2158 return (svp); 2159 } 2160 2161 static ushort_t nfs4_max_threads = 8; /* max number of active async threads */ 2162 static uint_t nfs4_bsize = 32 * 1024; /* client `block' size */ 2163 static uint_t nfs4_async_clusters = 1; /* # of reqs from each async queue */ 2164 static uint_t nfs4_cots_timeo = NFS_COTS_TIMEO; 2165 2166 /* 2167 * Remap the root filehandle for the given filesystem. 2168 * 2169 * results returned via the nfs4_error_t parameter. 2170 */ 2171 void 2172 nfs4_remap_root(mntinfo4_t *mi, nfs4_error_t *ep, int flags) 2173 { 2174 struct servinfo4 *svp, *origsvp; 2175 vtype_t vtype; 2176 nfs_fh4 rootfh; 2177 int getfh_flags; 2178 int num_retry; 2179 2180 mutex_enter(&mi->mi_lock); 2181 2182 remap_retry: 2183 svp = mi->mi_curr_serv; 2184 getfh_flags = 2185 (flags & NFS4_REMAP_NEEDSOP) ? NFS4_GETFH_NEEDSOP : 0; 2186 getfh_flags |= 2187 (mi->mi_flags & MI4_PUBLIC) ? NFS4_GETFH_PUBLIC : 0; 2188 mutex_exit(&mi->mi_lock); 2189 2190 /* 2191 * Just in case server path being mounted contains 2192 * symlinks and fails w/STALE, save the initial sv_path 2193 * so we can redrive the initial mount compound with the 2194 * initial sv_path -- not a symlink-expanded version. 2195 * 2196 * This could only happen if a symlink was expanded 2197 * and the expanded mount compound failed stale. Because 2198 * it could be the case that the symlink was removed at 2199 * the server (and replaced with another symlink/dir, 2200 * we need to use the initial sv_path when attempting 2201 * to re-lookup everything and recover. 2202 */ 2203 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2204 origsvp = copy_svp(svp); 2205 nfs_rw_exit(&svp->sv_lock); 2206 2207 num_retry = nfs4_max_mount_retry; 2208 2209 do { 2210 /* 2211 * Get the root fh from the server. Retry nfs4_max_mount_retry 2212 * (2) times if it fails with STALE since the recovery 2213 * infrastructure doesn't do STALE recovery for components 2214 * of the server path to the object being mounted. 2215 */ 2216 nfs4getfh_otw(mi, svp, &vtype, getfh_flags, CRED(), ep); 2217 2218 if (ep->error == 0 && ep->stat == NFS4_OK) 2219 break; 2220 2221 /* 2222 * For some reason, the mount compound failed. Before 2223 * retrying, we need to restore original conditions. 2224 */ 2225 svp = restore_svp(mi, svp, origsvp); 2226 2227 } while (num_retry-- > 0); 2228 2229 sv4_free(origsvp); 2230 2231 if (ep->error != 0 || ep->stat != 0) { 2232 return; 2233 } 2234 2235 if (vtype != VNON && vtype != mi->mi_type) { 2236 /* shouldn't happen */ 2237 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 2238 "nfs4_remap_root: server root vnode type (%d) doesn't " 2239 "match mount info (%d)", vtype, mi->mi_type); 2240 } 2241 2242 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2243 rootfh.nfs_fh4_val = svp->sv_fhandle.fh_buf; 2244 rootfh.nfs_fh4_len = svp->sv_fhandle.fh_len; 2245 nfs_rw_exit(&svp->sv_lock); 2246 sfh4_update(mi->mi_rootfh, &rootfh); 2247 2248 /* 2249 * It's possible that recovery took place on the filesystem 2250 * and the server has been updated between the time we did 2251 * the nfs4getfh_otw and now. Re-drive the otw operation 2252 * to make sure we have a good fh. 2253 */ 2254 mutex_enter(&mi->mi_lock); 2255 if (mi->mi_curr_serv != svp) 2256 goto remap_retry; 2257 2258 mutex_exit(&mi->mi_lock); 2259 } 2260 2261 static int 2262 nfs4rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo4 *svp_head, 2263 int flags, cred_t *cr, zone_t *zone) 2264 { 2265 vnode_t *rtvp = NULL; 2266 mntinfo4_t *mi; 2267 dev_t nfs_dev; 2268 int error = 0; 2269 rnode4_t *rp; 2270 int i, len; 2271 struct vattr va; 2272 vtype_t vtype = VNON; 2273 vtype_t tmp_vtype = VNON; 2274 struct servinfo4 *firstsvp = NULL, *svp = svp_head; 2275 nfs4_oo_hash_bucket_t *bucketp; 2276 nfs_fh4 fh; 2277 char *droptext = ""; 2278 struct nfs_stats *nfsstatsp; 2279 nfs4_fname_t *mfname; 2280 nfs4_error_t e; 2281 int num_retry, removed; 2282 cred_t *lcr = NULL, *tcr = cr; 2283 struct servinfo4 *origsvp; 2284 char *resource; 2285 2286 nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone()); 2287 ASSERT(nfsstatsp != NULL); 2288 2289 ASSERT(nfs_zone() == zone); 2290 ASSERT(crgetref(cr)); 2291 2292 /* 2293 * Create a mount record and link it to the vfs struct. 2294 */ 2295 mi = kmem_zalloc(sizeof (*mi), KM_SLEEP); 2296 mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL); 2297 nfs_rw_init(&mi->mi_recovlock, NULL, RW_DEFAULT, NULL); 2298 nfs_rw_init(&mi->mi_rename_lock, NULL, RW_DEFAULT, NULL); 2299 nfs_rw_init(&mi->mi_fh_lock, NULL, RW_DEFAULT, NULL); 2300 2301 if (!(flags & NFSMNT_SOFT)) 2302 mi->mi_flags |= MI4_HARD; 2303 if ((flags & NFSMNT_NOPRINT)) 2304 mi->mi_flags |= MI4_NOPRINT; 2305 if (flags & NFSMNT_INT) 2306 mi->mi_flags |= MI4_INT; 2307 if (flags & NFSMNT_PUBLIC) 2308 mi->mi_flags |= MI4_PUBLIC; 2309 if (flags & NFSMNT_MIRRORMOUNT) 2310 mi->mi_flags |= MI4_MIRRORMOUNT; 2311 if (flags & NFSMNT_REFERRAL) 2312 mi->mi_flags |= MI4_REFERRAL; 2313 mi->mi_retrans = NFS_RETRIES; 2314 if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD || 2315 svp->sv_knconf->knc_semantics == NC_TPI_COTS) 2316 mi->mi_timeo = nfs4_cots_timeo; 2317 else 2318 mi->mi_timeo = NFS_TIMEO; 2319 mi->mi_prog = NFS_PROGRAM; 2320 mi->mi_vers = NFS_V4; 2321 mi->mi_rfsnames = rfsnames_v4; 2322 mi->mi_reqs = nfsstatsp->nfs_stats_v4.rfsreqcnt_ptr; 2323 cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL); 2324 mi->mi_servers = svp; 2325 mi->mi_curr_serv = svp; 2326 mi->mi_acregmin = SEC2HR(ACREGMIN); 2327 mi->mi_acregmax = SEC2HR(ACREGMAX); 2328 mi->mi_acdirmin = SEC2HR(ACDIRMIN); 2329 mi->mi_acdirmax = SEC2HR(ACDIRMAX); 2330 mi->mi_fh_expire_type = FH4_PERSISTENT; 2331 mi->mi_clientid_next = NULL; 2332 mi->mi_clientid_prev = NULL; 2333 mi->mi_srv = NULL; 2334 mi->mi_grace_wait = 0; 2335 mi->mi_error = 0; 2336 mi->mi_srvsettime = 0; 2337 mi->mi_srvset_cnt = 0; 2338 2339 mi->mi_count = 1; 2340 2341 mi->mi_tsize = nfs4_tsize(svp->sv_knconf); 2342 mi->mi_stsize = mi->mi_tsize; 2343 2344 if (flags & NFSMNT_DIRECTIO) 2345 mi->mi_flags |= MI4_DIRECTIO; 2346 2347 mi->mi_flags |= MI4_MOUNTING; 2348 2349 /* 2350 * Make a vfs struct for nfs. We do this here instead of below 2351 * because rtvp needs a vfs before we can do a getattr on it. 2352 * 2353 * Assign a unique device id to the mount 2354 */ 2355 mutex_enter(&nfs_minor_lock); 2356 do { 2357 nfs_minor = (nfs_minor + 1) & MAXMIN32; 2358 nfs_dev = makedevice(nfs_major, nfs_minor); 2359 } while (vfs_devismounted(nfs_dev)); 2360 mutex_exit(&nfs_minor_lock); 2361 2362 vfsp->vfs_dev = nfs_dev; 2363 vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs4fstyp); 2364 vfsp->vfs_data = (caddr_t)mi; 2365 vfsp->vfs_fstype = nfsfstyp; 2366 vfsp->vfs_bsize = nfs4_bsize; 2367 2368 /* 2369 * Initialize fields used to support async putpage operations. 2370 */ 2371 for (i = 0; i < NFS4_ASYNC_TYPES; i++) 2372 mi->mi_async_clusters[i] = nfs4_async_clusters; 2373 mi->mi_async_init_clusters = nfs4_async_clusters; 2374 mi->mi_async_curr = &mi->mi_async_reqs[0]; 2375 mi->mi_max_threads = nfs4_max_threads; 2376 mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL); 2377 cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL); 2378 cv_init(&mi->mi_async_work_cv, NULL, CV_DEFAULT, NULL); 2379 cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL); 2380 cv_init(&mi->mi_inact_req_cv, NULL, CV_DEFAULT, NULL); 2381 2382 mi->mi_vfsp = vfsp; 2383 zone_hold(mi->mi_zone = zone); 2384 nfs4_mi_zonelist_add(mi); 2385 2386 /* 2387 * Initialize the <open owner/cred> hash table. 2388 */ 2389 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) { 2390 bucketp = &(mi->mi_oo_list[i]); 2391 mutex_init(&bucketp->b_lock, NULL, MUTEX_DEFAULT, NULL); 2392 list_create(&bucketp->b_oo_hash_list, 2393 sizeof (nfs4_open_owner_t), 2394 offsetof(nfs4_open_owner_t, oo_hash_node)); 2395 } 2396 2397 /* 2398 * Initialize the freed open owner list. 2399 */ 2400 mi->mi_foo_num = 0; 2401 mi->mi_foo_max = NFS4_NUM_FREED_OPEN_OWNERS; 2402 list_create(&mi->mi_foo_list, sizeof (nfs4_open_owner_t), 2403 offsetof(nfs4_open_owner_t, oo_foo_node)); 2404 2405 list_create(&mi->mi_lost_state, sizeof (nfs4_lost_rqst_t), 2406 offsetof(nfs4_lost_rqst_t, lr_node)); 2407 2408 list_create(&mi->mi_bseqid_list, sizeof (nfs4_bseqid_entry_t), 2409 offsetof(nfs4_bseqid_entry_t, bs_node)); 2410 2411 /* 2412 * Initialize the msg buffer. 2413 */ 2414 list_create(&mi->mi_msg_list, sizeof (nfs4_debug_msg_t), 2415 offsetof(nfs4_debug_msg_t, msg_node)); 2416 mi->mi_msg_count = 0; 2417 mutex_init(&mi->mi_msg_list_lock, NULL, MUTEX_DEFAULT, NULL); 2418 2419 /* 2420 * Initialize kstats 2421 */ 2422 nfs4_mnt_kstat_init(vfsp); 2423 2424 /* 2425 * Initialize the shared filehandle pool. 2426 */ 2427 sfh4_createtab(&mi->mi_filehandles); 2428 2429 /* 2430 * Save server path we're attempting to mount. 2431 */ 2432 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2433 origsvp = copy_svp(svp); 2434 nfs_rw_exit(&svp->sv_lock); 2435 2436 /* 2437 * Make the GETFH call to get root fh for each replica. 2438 */ 2439 if (svp_head->sv_next) 2440 droptext = ", dropping replica"; 2441 2442 /* 2443 * If the uid is set then set the creds for secure mounts 2444 * by proxy processes such as automountd. 2445 */ 2446 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2447 if (svp->sv_secdata->uid != 0 && 2448 svp->sv_secdata->rpcflavor == RPCSEC_GSS) { 2449 lcr = crdup(cr); 2450 (void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr)); 2451 tcr = lcr; 2452 } 2453 nfs_rw_exit(&svp->sv_lock); 2454 for (svp = svp_head; svp; svp = svp->sv_next) { 2455 if (nfs4_chkdup_servinfo4(svp_head, svp)) { 2456 nfs_cmn_err(error, CE_WARN, 2457 VERS_MSG "Host %s is a duplicate%s", 2458 svp->sv_hostname, droptext); 2459 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2460 svp->sv_flags |= SV4_NOTINUSE; 2461 nfs_rw_exit(&svp->sv_lock); 2462 continue; 2463 } 2464 mi->mi_curr_serv = svp; 2465 2466 /* 2467 * Just in case server path being mounted contains 2468 * symlinks and fails w/STALE, save the initial sv_path 2469 * so we can redrive the initial mount compound with the 2470 * initial sv_path -- not a symlink-expanded version. 2471 * 2472 * This could only happen if a symlink was expanded 2473 * and the expanded mount compound failed stale. Because 2474 * it could be the case that the symlink was removed at 2475 * the server (and replaced with another symlink/dir, 2476 * we need to use the initial sv_path when attempting 2477 * to re-lookup everything and recover. 2478 * 2479 * Other mount errors should evenutally be handled here also 2480 * (NFS4ERR_DELAY, NFS4ERR_RESOURCE). For now, all mount 2481 * failures will result in mount being redriven a few times. 2482 */ 2483 num_retry = nfs4_max_mount_retry; 2484 do { 2485 nfs4getfh_otw(mi, svp, &tmp_vtype, 2486 ((flags & NFSMNT_PUBLIC) ? NFS4_GETFH_PUBLIC : 0) | 2487 NFS4_GETFH_NEEDSOP, tcr, &e); 2488 2489 if (e.error == 0 && e.stat == NFS4_OK) 2490 break; 2491 2492 /* 2493 * For some reason, the mount compound failed. Before 2494 * retrying, we need to restore original conditions. 2495 */ 2496 svp = restore_svp(mi, svp, origsvp); 2497 svp_head = svp; 2498 2499 } while (num_retry-- > 0); 2500 error = e.error ? e.error : geterrno4(e.stat); 2501 if (error) { 2502 nfs_cmn_err(error, CE_WARN, 2503 VERS_MSG "initial call to %s failed%s: %m", 2504 svp->sv_hostname, droptext); 2505 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2506 svp->sv_flags |= SV4_NOTINUSE; 2507 nfs_rw_exit(&svp->sv_lock); 2508 mi->mi_flags &= ~MI4_RECOV_FAIL; 2509 mi->mi_error = 0; 2510 continue; 2511 } 2512 2513 if (tmp_vtype == VBAD) { 2514 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 2515 VERS_MSG "%s returned a bad file type for " 2516 "root%s", svp->sv_hostname, droptext); 2517 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2518 svp->sv_flags |= SV4_NOTINUSE; 2519 nfs_rw_exit(&svp->sv_lock); 2520 continue; 2521 } 2522 2523 if (vtype == VNON) { 2524 vtype = tmp_vtype; 2525 } else if (vtype != tmp_vtype) { 2526 zcmn_err(mi->mi_zone->zone_id, CE_WARN, 2527 VERS_MSG "%s returned a different file type " 2528 "for root%s", svp->sv_hostname, droptext); 2529 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2530 svp->sv_flags |= SV4_NOTINUSE; 2531 nfs_rw_exit(&svp->sv_lock); 2532 continue; 2533 } 2534 if (firstsvp == NULL) 2535 firstsvp = svp; 2536 } 2537 2538 if (firstsvp == NULL) { 2539 if (error == 0) 2540 error = ENOENT; 2541 goto bad; 2542 } 2543 2544 mi->mi_curr_serv = svp = firstsvp; 2545 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2546 ASSERT((mi->mi_curr_serv->sv_flags & SV4_NOTINUSE) == 0); 2547 fh.nfs_fh4_len = svp->sv_fhandle.fh_len; 2548 fh.nfs_fh4_val = svp->sv_fhandle.fh_buf; 2549 mi->mi_rootfh = sfh4_get(&fh, mi); 2550 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; 2551 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; 2552 mi->mi_srvparentfh = sfh4_get(&fh, mi); 2553 nfs_rw_exit(&svp->sv_lock); 2554 2555 /* 2556 * Get the fname for filesystem root. 2557 */ 2558 mi->mi_fname = fn_get(NULL, ".", mi->mi_rootfh); 2559 mfname = mi->mi_fname; 2560 fn_hold(mfname); 2561 2562 /* 2563 * Make the root vnode without attributes. 2564 */ 2565 rtvp = makenfs4node_by_fh(mi->mi_rootfh, NULL, 2566 &mfname, NULL, mi, cr, gethrtime()); 2567 rtvp->v_type = vtype; 2568 2569 mi->mi_curread = mi->mi_tsize; 2570 mi->mi_curwrite = mi->mi_stsize; 2571 2572 /* 2573 * Start the manager thread responsible for handling async worker 2574 * threads. 2575 */ 2576 MI4_HOLD(mi); 2577 VFS_HOLD(vfsp); /* add reference for thread */ 2578 mi->mi_manager_thread = zthread_create(NULL, 0, nfs4_async_manager, 2579 vfsp, 0, minclsyspri); 2580 ASSERT(mi->mi_manager_thread != NULL); 2581 2582 /* 2583 * Create the thread that handles over-the-wire calls for 2584 * VOP_INACTIVE. 2585 * This needs to happen after the manager thread is created. 2586 */ 2587 MI4_HOLD(mi); 2588 mi->mi_inactive_thread = zthread_create(NULL, 0, nfs4_inactive_thread, 2589 mi, 0, minclsyspri); 2590 ASSERT(mi->mi_inactive_thread != NULL); 2591 2592 /* If we didn't get a type, get one now */ 2593 if (rtvp->v_type == VNON) { 2594 va.va_mask = AT_TYPE; 2595 error = nfs4getattr(rtvp, &va, tcr); 2596 if (error) 2597 goto bad; 2598 rtvp->v_type = va.va_type; 2599 } 2600 2601 mi->mi_type = rtvp->v_type; 2602 2603 mutex_enter(&mi->mi_lock); 2604 mi->mi_flags &= ~MI4_MOUNTING; 2605 mutex_exit(&mi->mi_lock); 2606 2607 /* Update VFS with new server and path info */ 2608 if ((strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) || 2609 (strcmp(svp->sv_path, origsvp->sv_path) != 0)) { 2610 len = svp->sv_hostnamelen + svp->sv_pathlen; 2611 resource = kmem_zalloc(len, KM_SLEEP); 2612 (void) strcat(resource, svp->sv_hostname); 2613 (void) strcat(resource, ":"); 2614 (void) strcat(resource, svp->sv_path); 2615 vfs_setresource(vfsp, resource); 2616 kmem_free(resource, len); 2617 } 2618 2619 sv4_free(origsvp); 2620 *rtvpp = rtvp; 2621 if (lcr != NULL) 2622 crfree(lcr); 2623 2624 return (0); 2625 bad: 2626 /* 2627 * An error occurred somewhere, need to clean up... 2628 */ 2629 if (lcr != NULL) 2630 crfree(lcr); 2631 2632 if (rtvp != NULL) { 2633 /* 2634 * We need to release our reference to the root vnode and 2635 * destroy the mntinfo4 struct that we just created. 2636 */ 2637 rp = VTOR4(rtvp); 2638 if (rp->r_flags & R4HASHED) 2639 rp4_rmhash(rp); 2640 VN_RELE(rtvp); 2641 } 2642 nfs4_async_stop(vfsp); 2643 nfs4_async_manager_stop(vfsp); 2644 removed = nfs4_mi_zonelist_remove(mi); 2645 if (removed) 2646 zone_rele(mi->mi_zone); 2647 2648 /* 2649 * This releases the initial "hold" of the mi since it will never 2650 * be referenced by the vfsp. Also, when mount returns to vfs.c 2651 * with an error, the vfsp will be destroyed, not rele'd. 2652 */ 2653 MI4_RELE(mi); 2654 2655 if (origsvp != NULL) 2656 sv4_free(origsvp); 2657 2658 *rtvpp = NULL; 2659 return (error); 2660 } 2661 2662 /* 2663 * vfs operations 2664 */ 2665 static int 2666 nfs4_unmount(vfs_t *vfsp, int flag, cred_t *cr) 2667 { 2668 mntinfo4_t *mi; 2669 ushort_t omax; 2670 int removed; 2671 2672 bool_t must_unlock; 2673 2674 nfs4_ephemeral_tree_t *eph_tree; 2675 2676 if (secpolicy_fs_unmount(cr, vfsp) != 0) 2677 return (EPERM); 2678 2679 mi = VFTOMI4(vfsp); 2680 2681 if (flag & MS_FORCE) { 2682 vfsp->vfs_flag |= VFS_UNMOUNTED; 2683 if (nfs_zone() != mi->mi_zone) { 2684 /* 2685 * If the request is coming from the wrong zone, 2686 * we don't want to create any new threads, and 2687 * performance is not a concern. Do everything 2688 * inline. 2689 */ 2690 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, 2691 "nfs4_unmount x-zone forced unmount of vfs %p\n", 2692 (void *)vfsp)); 2693 nfs4_free_mount(vfsp, flag, cr); 2694 } else { 2695 /* 2696 * Free data structures asynchronously, to avoid 2697 * blocking the current thread (for performance 2698 * reasons only). 2699 */ 2700 async_free_mount(vfsp, flag, cr); 2701 } 2702 2703 return (0); 2704 } 2705 2706 /* 2707 * Wait until all asynchronous putpage operations on 2708 * this file system are complete before flushing rnodes 2709 * from the cache. 2710 */ 2711 omax = mi->mi_max_threads; 2712 if (nfs4_async_stop_sig(vfsp)) 2713 return (EINTR); 2714 2715 r4flush(vfsp, cr); 2716 2717 /* 2718 * About the only reason that this would fail would be 2719 * that the harvester is already busy tearing down this 2720 * node. So we fail back to the caller and let them try 2721 * again when needed. 2722 */ 2723 if (nfs4_ephemeral_umount(mi, flag, cr, 2724 &must_unlock, &eph_tree)) { 2725 ASSERT(must_unlock == FALSE); 2726 mutex_enter(&mi->mi_async_lock); 2727 mi->mi_max_threads = omax; 2728 mutex_exit(&mi->mi_async_lock); 2729 2730 return (EBUSY); 2731 } 2732 2733 /* 2734 * If there are any active vnodes on this file system, 2735 * then the file system is busy and can't be unmounted. 2736 */ 2737 if (check_rtable4(vfsp)) { 2738 nfs4_ephemeral_umount_unlock(&must_unlock, &eph_tree); 2739 2740 mutex_enter(&mi->mi_async_lock); 2741 mi->mi_max_threads = omax; 2742 mutex_exit(&mi->mi_async_lock); 2743 2744 return (EBUSY); 2745 } 2746 2747 /* 2748 * The unmount can't fail from now on, so record any 2749 * ephemeral changes. 2750 */ 2751 nfs4_ephemeral_umount_activate(mi, &must_unlock, &eph_tree); 2752 2753 /* 2754 * There are no active files that could require over-the-wire 2755 * calls to the server, so stop the async manager and the 2756 * inactive thread. 2757 */ 2758 nfs4_async_manager_stop(vfsp); 2759 2760 /* 2761 * Destroy all rnodes belonging to this file system from the 2762 * rnode hash queues and purge any resources allocated to 2763 * them. 2764 */ 2765 destroy_rtable4(vfsp, cr); 2766 vfsp->vfs_flag |= VFS_UNMOUNTED; 2767 2768 nfs4_remove_mi_from_server(mi, NULL); 2769 removed = nfs4_mi_zonelist_remove(mi); 2770 if (removed) 2771 zone_rele(mi->mi_zone); 2772 2773 return (0); 2774 } 2775 2776 /* 2777 * find root of nfs 2778 */ 2779 static int 2780 nfs4_root(vfs_t *vfsp, vnode_t **vpp) 2781 { 2782 mntinfo4_t *mi; 2783 vnode_t *vp; 2784 nfs4_fname_t *mfname; 2785 servinfo4_t *svp; 2786 2787 mi = VFTOMI4(vfsp); 2788 2789 if (nfs_zone() != mi->mi_zone) 2790 return (EPERM); 2791 2792 svp = mi->mi_curr_serv; 2793 if (svp) { 2794 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 2795 if (svp->sv_flags & SV4_ROOT_STALE) { 2796 nfs_rw_exit(&svp->sv_lock); 2797 2798 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); 2799 if (svp->sv_flags & SV4_ROOT_STALE) { 2800 svp->sv_flags &= ~SV4_ROOT_STALE; 2801 nfs_rw_exit(&svp->sv_lock); 2802 return (ENOENT); 2803 } 2804 nfs_rw_exit(&svp->sv_lock); 2805 } else 2806 nfs_rw_exit(&svp->sv_lock); 2807 } 2808 2809 mfname = mi->mi_fname; 2810 fn_hold(mfname); 2811 vp = makenfs4node_by_fh(mi->mi_rootfh, NULL, &mfname, NULL, 2812 VFTOMI4(vfsp), CRED(), gethrtime()); 2813 2814 if (VTOR4(vp)->r_flags & R4STALE) { 2815 VN_RELE(vp); 2816 return (ENOENT); 2817 } 2818 2819 ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type); 2820 2821 vp->v_type = mi->mi_type; 2822 2823 *vpp = vp; 2824 2825 return (0); 2826 } 2827 2828 static int 2829 nfs4_statfs_otw(vnode_t *vp, struct statvfs64 *sbp, cred_t *cr) 2830 { 2831 int error; 2832 nfs4_ga_res_t gar; 2833 nfs4_ga_ext_res_t ger; 2834 2835 gar.n4g_ext_res = &ger; 2836 2837 if (error = nfs4_attr_otw(vp, TAG_FSINFO, &gar, 2838 NFS4_STATFS_ATTR_MASK, cr)) 2839 return (error); 2840 2841 *sbp = gar.n4g_ext_res->n4g_sb; 2842 2843 return (0); 2844 } 2845 2846 /* 2847 * Get file system statistics. 2848 */ 2849 static int 2850 nfs4_statvfs(vfs_t *vfsp, struct statvfs64 *sbp) 2851 { 2852 int error; 2853 vnode_t *vp; 2854 cred_t *cr; 2855 2856 error = nfs4_root(vfsp, &vp); 2857 if (error) 2858 return (error); 2859 2860 cr = CRED(); 2861 2862 error = nfs4_statfs_otw(vp, sbp, cr); 2863 if (!error) { 2864 (void) strncpy(sbp->f_basetype, 2865 vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ); 2866 sbp->f_flag = vf_to_stf(vfsp->vfs_flag); 2867 } else { 2868 nfs4_purge_stale_fh(error, vp, cr); 2869 } 2870 2871 VN_RELE(vp); 2872 2873 return (error); 2874 } 2875 2876 static kmutex_t nfs4_syncbusy; 2877 2878 /* 2879 * Flush dirty nfs files for file system vfsp. 2880 * If vfsp == NULL, all nfs files are flushed. 2881 * 2882 * SYNC_CLOSE in flag is passed to us to 2883 * indicate that we are shutting down and or 2884 * rebooting. 2885 */ 2886 static int 2887 nfs4_sync(vfs_t *vfsp, short flag, cred_t *cr) 2888 { 2889 /* 2890 * Cross-zone calls are OK here, since this translates to a 2891 * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone. 2892 */ 2893 if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs4_syncbusy) != 0) { 2894 r4flush(vfsp, cr); 2895 mutex_exit(&nfs4_syncbusy); 2896 } 2897 2898 /* 2899 * if SYNC_CLOSE is set then we know that 2900 * the system is rebooting, mark the mntinfo 2901 * for later examination. 2902 */ 2903 if (vfsp && (flag & SYNC_CLOSE)) { 2904 mntinfo4_t *mi; 2905 2906 mi = VFTOMI4(vfsp); 2907 if (!(mi->mi_flags & MI4_SHUTDOWN)) { 2908 mutex_enter(&mi->mi_lock); 2909 mi->mi_flags |= MI4_SHUTDOWN; 2910 mutex_exit(&mi->mi_lock); 2911 } 2912 } 2913 return (0); 2914 } 2915 2916 /* 2917 * vget is difficult, if not impossible, to support in v4 because we don't 2918 * know the parent directory or name, which makes it impossible to create a 2919 * useful shadow vnode. And we need the shadow vnode for things like 2920 * OPEN. 2921 */ 2922 2923 /* ARGSUSED */ 2924 /* 2925 * XXX Check nfs4_vget_pseudo() for dependency. 2926 */ 2927 static int 2928 nfs4_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 2929 { 2930 return (EREMOTE); 2931 } 2932 2933 /* 2934 * nfs4_mountroot get called in the case where we are diskless booting. All 2935 * we need from here is the ability to get the server info and from there we 2936 * can simply call nfs4_rootvp. 2937 */ 2938 /* ARGSUSED */ 2939 static int 2940 nfs4_mountroot(vfs_t *vfsp, whymountroot_t why) 2941 { 2942 vnode_t *rtvp; 2943 char root_hostname[SYS_NMLN+1]; 2944 struct servinfo4 *svp; 2945 int error; 2946 int vfsflags; 2947 size_t size; 2948 char *root_path; 2949 struct pathname pn; 2950 char *name; 2951 cred_t *cr; 2952 mntinfo4_t *mi; 2953 struct nfs_args args; /* nfs mount arguments */ 2954 static char token[10]; 2955 nfs4_error_t n4e; 2956 2957 bzero(&args, sizeof (args)); 2958 2959 /* do this BEFORE getfile which causes xid stamps to be initialized */ 2960 clkset(-1L); /* hack for now - until we get time svc? */ 2961 2962 if (why == ROOT_REMOUNT) { 2963 /* 2964 * Shouldn't happen. 2965 */ 2966 panic("nfs4_mountroot: why == ROOT_REMOUNT"); 2967 } 2968 2969 if (why == ROOT_UNMOUNT) { 2970 /* 2971 * Nothing to do for NFS. 2972 */ 2973 return (0); 2974 } 2975 2976 /* 2977 * why == ROOT_INIT 2978 */ 2979 2980 name = token; 2981 *name = 0; 2982 (void) getfsname("root", name, sizeof (token)); 2983 2984 pn_alloc(&pn); 2985 root_path = pn.pn_path; 2986 2987 svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); 2988 nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); 2989 svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP); 2990 svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 2991 svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP); 2992 2993 /* 2994 * Get server address 2995 * Get the root path 2996 * Get server's transport 2997 * Get server's hostname 2998 * Get options 2999 */ 3000 args.addr = &svp->sv_addr; 3001 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3002 args.fh = (char *)&svp->sv_fhandle; 3003 args.knconf = svp->sv_knconf; 3004 args.hostname = root_hostname; 3005 vfsflags = 0; 3006 if (error = mount_root(*name ? name : "root", root_path, NFS_V4, 3007 &args, &vfsflags)) { 3008 if (error == EPROTONOSUPPORT) 3009 nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: " 3010 "mount_root failed: server doesn't support NFS V4"); 3011 else 3012 nfs_cmn_err(error, CE_WARN, 3013 "nfs4_mountroot: mount_root failed: %m"); 3014 nfs_rw_exit(&svp->sv_lock); 3015 sv4_free(svp); 3016 pn_free(&pn); 3017 return (error); 3018 } 3019 nfs_rw_exit(&svp->sv_lock); 3020 svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1); 3021 svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); 3022 (void) strcpy(svp->sv_hostname, root_hostname); 3023 3024 svp->sv_pathlen = (int)(strlen(root_path) + 1); 3025 svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); 3026 (void) strcpy(svp->sv_path, root_path); 3027 3028 /* 3029 * Force root partition to always be mounted with AUTH_UNIX for now 3030 */ 3031 svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP); 3032 svp->sv_secdata->secmod = AUTH_UNIX; 3033 svp->sv_secdata->rpcflavor = AUTH_UNIX; 3034 svp->sv_secdata->data = NULL; 3035 3036 cr = crgetcred(); 3037 rtvp = NULL; 3038 3039 error = nfs4rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone); 3040 3041 if (error) { 3042 crfree(cr); 3043 pn_free(&pn); 3044 sv4_free(svp); 3045 return (error); 3046 } 3047 3048 mi = VTOMI4(rtvp); 3049 3050 /* 3051 * Send client id to the server, if necessary 3052 */ 3053 nfs4_error_zinit(&n4e); 3054 nfs4setclientid(mi, cr, FALSE, &n4e); 3055 error = n4e.error; 3056 3057 crfree(cr); 3058 3059 if (error) { 3060 pn_free(&pn); 3061 goto errout; 3062 } 3063 3064 error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, &args); 3065 if (error) { 3066 nfs_cmn_err(error, CE_WARN, 3067 "nfs4_mountroot: invalid root mount options"); 3068 pn_free(&pn); 3069 goto errout; 3070 } 3071 3072 (void) vfs_lock_wait(vfsp); 3073 vfs_add(NULL, vfsp, vfsflags); 3074 vfs_unlock(vfsp); 3075 3076 size = strlen(svp->sv_hostname); 3077 (void) strcpy(rootfs.bo_name, svp->sv_hostname); 3078 rootfs.bo_name[size] = ':'; 3079 (void) strcpy(&rootfs.bo_name[size + 1], root_path); 3080 3081 pn_free(&pn); 3082 3083 errout: 3084 if (error) { 3085 sv4_free(svp); 3086 nfs4_async_stop(vfsp); 3087 nfs4_async_manager_stop(vfsp); 3088 } 3089 3090 if (rtvp != NULL) 3091 VN_RELE(rtvp); 3092 3093 return (error); 3094 } 3095 3096 /* 3097 * Initialization routine for VFS routines. Should only be called once 3098 */ 3099 int 3100 nfs4_vfsinit(void) 3101 { 3102 mutex_init(&nfs4_syncbusy, NULL, MUTEX_DEFAULT, NULL); 3103 nfs4setclientid_init(); 3104 nfs4_ephemeral_init(); 3105 return (0); 3106 } 3107 3108 void 3109 nfs4_vfsfini(void) 3110 { 3111 nfs4_ephemeral_fini(); 3112 nfs4setclientid_fini(); 3113 mutex_destroy(&nfs4_syncbusy); 3114 } 3115 3116 void 3117 nfs4_freevfs(vfs_t *vfsp) 3118 { 3119 mntinfo4_t *mi; 3120 3121 /* need to release the initial hold */ 3122 mi = VFTOMI4(vfsp); 3123 MI4_RELE(mi); 3124 } 3125 3126 /* 3127 * Client side SETCLIENTID and SETCLIENTID_CONFIRM 3128 */ 3129 struct nfs4_server nfs4_server_lst = 3130 { &nfs4_server_lst, &nfs4_server_lst }; 3131 3132 kmutex_t nfs4_server_lst_lock; 3133 3134 static void 3135 nfs4setclientid_init(void) 3136 { 3137 mutex_init(&nfs4_server_lst_lock, NULL, MUTEX_DEFAULT, NULL); 3138 } 3139 3140 static void 3141 nfs4setclientid_fini(void) 3142 { 3143 mutex_destroy(&nfs4_server_lst_lock); 3144 } 3145 3146 int nfs4_retry_sclid_delay = NFS4_RETRY_SCLID_DELAY; 3147 int nfs4_num_sclid_retries = NFS4_NUM_SCLID_RETRIES; 3148 3149 /* 3150 * Set the clientid for the server for "mi". No-op if the clientid is 3151 * already set. 3152 * 3153 * The recovery boolean should be set to TRUE if this function was called 3154 * by the recovery code, and FALSE otherwise. This is used to determine 3155 * if we need to call nfs4_start/end_op as well as grab the mi_recovlock 3156 * for adding a mntinfo4_t to a nfs4_server_t. 3157 * 3158 * Error is returned via 'n4ep'. If there was a 'n4ep->stat' error, then 3159 * 'n4ep->error' is set to geterrno4(n4ep->stat). 3160 */ 3161 void 3162 nfs4setclientid(mntinfo4_t *mi, cred_t *cr, bool_t recovery, nfs4_error_t *n4ep) 3163 { 3164 struct nfs4_server *np; 3165 struct servinfo4 *svp = mi->mi_curr_serv; 3166 nfs4_recov_state_t recov_state; 3167 int num_retries = 0; 3168 bool_t retry; 3169 cred_t *lcr = NULL; 3170 int retry_inuse = 1; /* only retry once on NFS4ERR_CLID_INUSE */ 3171 time_t lease_time = 0; 3172 3173 recov_state.rs_flags = 0; 3174 recov_state.rs_num_retry_despite_err = 0; 3175 ASSERT(n4ep != NULL); 3176 3177 recov_retry: 3178 retry = FALSE; 3179 nfs4_error_zinit(n4ep); 3180 if (!recovery) 3181 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); 3182 3183 mutex_enter(&nfs4_server_lst_lock); 3184 np = servinfo4_to_nfs4_server(svp); /* This locks np if it is found */ 3185 mutex_exit(&nfs4_server_lst_lock); 3186 if (!np) { 3187 struct nfs4_server *tnp; 3188 np = new_nfs4_server(svp, cr); 3189 mutex_enter(&np->s_lock); 3190 3191 mutex_enter(&nfs4_server_lst_lock); 3192 tnp = servinfo4_to_nfs4_server(svp); 3193 if (tnp) { 3194 /* 3195 * another thread snuck in and put server on list. 3196 * since we aren't adding it to the nfs4_server_list 3197 * we need to set the ref count to 0 and destroy it. 3198 */ 3199 np->s_refcnt = 0; 3200 destroy_nfs4_server(np); 3201 np = tnp; 3202 } else { 3203 /* 3204 * do not give list a reference until everything 3205 * succeeds 3206 */ 3207 insque(np, &nfs4_server_lst); 3208 } 3209 mutex_exit(&nfs4_server_lst_lock); 3210 } 3211 ASSERT(MUTEX_HELD(&np->s_lock)); 3212 /* 3213 * If we find the server already has N4S_CLIENTID_SET, then 3214 * just return, we've already done SETCLIENTID to that server 3215 */ 3216 if (np->s_flags & N4S_CLIENTID_SET) { 3217 /* add mi to np's mntinfo4_list */ 3218 nfs4_add_mi_to_server(np, mi); 3219 if (!recovery) 3220 nfs_rw_exit(&mi->mi_recovlock); 3221 mutex_exit(&np->s_lock); 3222 nfs4_server_rele(np); 3223 return; 3224 } 3225 mutex_exit(&np->s_lock); 3226 3227 3228 /* 3229 * Drop the mi_recovlock since nfs4_start_op will 3230 * acquire it again for us. 3231 */ 3232 if (!recovery) { 3233 nfs_rw_exit(&mi->mi_recovlock); 3234 3235 n4ep->error = nfs4_start_op(mi, NULL, NULL, &recov_state); 3236 if (n4ep->error) { 3237 nfs4_server_rele(np); 3238 return; 3239 } 3240 } 3241 3242 mutex_enter(&np->s_lock); 3243 while (np->s_flags & N4S_CLIENTID_PEND) { 3244 if (!cv_wait_sig(&np->s_clientid_pend, &np->s_lock)) { 3245 mutex_exit(&np->s_lock); 3246 nfs4_server_rele(np); 3247 if (!recovery) 3248 nfs4_end_op(mi, NULL, NULL, &recov_state, 3249 recovery); 3250 n4ep->error = EINTR; 3251 return; 3252 } 3253 } 3254 3255 if (np->s_flags & N4S_CLIENTID_SET) { 3256 /* XXX copied/pasted from above */ 3257 /* add mi to np's mntinfo4_list */ 3258 nfs4_add_mi_to_server(np, mi); 3259 mutex_exit(&np->s_lock); 3260 nfs4_server_rele(np); 3261 if (!recovery) 3262 nfs4_end_op(mi, NULL, NULL, &recov_state, recovery); 3263 return; 3264 } 3265 3266 /* 3267 * Reset the N4S_CB_PINGED flag. This is used to 3268 * indicate if we have received a CB_NULL from the 3269 * server. Also we reset the waiter flag. 3270 */ 3271 np->s_flags &= ~(N4S_CB_PINGED | N4S_CB_WAITER); 3272 /* any failure must now clear this flag */ 3273 np->s_flags |= N4S_CLIENTID_PEND; 3274 mutex_exit(&np->s_lock); 3275 nfs4setclientid_otw(mi, svp, cr, np, n4ep, &retry_inuse); 3276 3277 if (n4ep->error == EACCES) { 3278 /* 3279 * If the uid is set then set the creds for secure mounts 3280 * by proxy processes such as automountd. 3281 */ 3282 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); 3283 if (svp->sv_secdata->uid != 0) { 3284 lcr = crdup(cr); 3285 (void) crsetugid(lcr, svp->sv_secdata->uid, 3286 crgetgid(cr)); 3287 } 3288 nfs_rw_exit(&svp->sv_lock); 3289 3290 if (lcr != NULL) { 3291 mutex_enter(&np->s_lock); 3292 crfree(np->s_cred); 3293 np->s_cred = lcr; 3294 mutex_exit(&np->s_lock); 3295 nfs4setclientid_otw(mi, svp, lcr, np, n4ep, 3296 &retry_inuse); 3297 } 3298 } 3299 mutex_enter(&np->s_lock); 3300 lease_time = np->s_lease_time; 3301 np->s_flags &= ~N4S_CLIENTID_PEND; 3302 mutex_exit(&np->s_lock); 3303 3304 if (n4ep->error != 0 || n4ep->stat != NFS4_OK) { 3305 /* 3306 * Start recovery if failover is a possibility. If 3307 * invoked by the recovery thread itself, then just 3308 * return and let it handle the failover first. NB: 3309 * recovery is not allowed if the mount is in progress 3310 * since the infrastructure is not sufficiently setup 3311 * to allow it. Just return the error (after suitable 3312 * retries). 3313 */ 3314 if (FAILOVER_MOUNT4(mi) && nfs4_try_failover(n4ep)) { 3315 (void) nfs4_start_recovery(n4ep, mi, NULL, 3316 NULL, NULL, NULL, OP_SETCLIENTID, NULL, NULL, NULL); 3317 /* 3318 * Don't retry here, just return and let 3319 * recovery take over. 3320 */ 3321 if (recovery) 3322 retry = FALSE; 3323 } else if (nfs4_rpc_retry_error(n4ep->error) || 3324 n4ep->stat == NFS4ERR_RESOURCE || 3325 n4ep->stat == NFS4ERR_STALE_CLIENTID) { 3326 3327 retry = TRUE; 3328 /* 3329 * Always retry if in recovery or once had 3330 * contact with the server (but now it's 3331 * overloaded). 3332 */ 3333 if (recovery == TRUE || 3334 n4ep->error == ETIMEDOUT || 3335 n4ep->error == ECONNRESET) 3336 num_retries = 0; 3337 } else if (retry_inuse && n4ep->error == 0 && 3338 n4ep->stat == NFS4ERR_CLID_INUSE) { 3339 retry = TRUE; 3340 num_retries = 0; 3341 } 3342 } else { 3343 /* 3344 * Since everything succeeded give the list a reference count if 3345 * it hasn't been given one by add_new_nfs4_server() or if this 3346 * is not a recovery situation in which case it is already on 3347 * the list. 3348 */ 3349 mutex_enter(&np->s_lock); 3350 if ((np->s_flags & N4S_INSERTED) == 0) { 3351 np->s_refcnt++; 3352 np->s_flags |= N4S_INSERTED; 3353 } 3354 mutex_exit(&np->s_lock); 3355 } 3356 3357 if (!recovery) 3358 nfs4_end_op(mi, NULL, NULL, &recov_state, recovery); 3359 3360 3361 if (retry && num_retries++ < nfs4_num_sclid_retries) { 3362 if (retry_inuse) { 3363 delay(SEC_TO_TICK(lease_time + nfs4_retry_sclid_delay)); 3364 retry_inuse = 0; 3365 } else 3366 delay(SEC_TO_TICK(nfs4_retry_sclid_delay)); 3367 3368 nfs4_server_rele(np); 3369 goto recov_retry; 3370 } 3371 3372 3373 if (n4ep->error == 0) 3374 n4ep->error = geterrno4(n4ep->stat); 3375 3376 /* broadcast before release in case no other threads are waiting */ 3377 cv_broadcast(&np->s_clientid_pend); 3378 nfs4_server_rele(np); 3379 } 3380 3381 int nfs4setclientid_otw_debug = 0; 3382 3383 /* 3384 * This function handles the recovery of STALE_CLIENTID for SETCLIENTID_CONFRIM, 3385 * but nothing else; the calling function must be designed to handle those 3386 * other errors. 3387 */ 3388 static void 3389 nfs4setclientid_otw(mntinfo4_t *mi, struct servinfo4 *svp, cred_t *cr, 3390 struct nfs4_server *np, nfs4_error_t *ep, int *retry_inusep) 3391 { 3392 COMPOUND4args_clnt args; 3393 COMPOUND4res_clnt res; 3394 nfs_argop4 argop[3]; 3395 SETCLIENTID4args *s_args; 3396 SETCLIENTID4resok *s_resok; 3397 int doqueue = 1; 3398 nfs4_ga_res_t *garp = NULL; 3399 timespec_t prop_time, after_time; 3400 verifier4 verf; 3401 clientid4 tmp_clientid; 3402 3403 ASSERT(!MUTEX_HELD(&np->s_lock)); 3404 3405 args.ctag = TAG_SETCLIENTID; 3406 3407 args.array = argop; 3408 args.array_len = 3; 3409 3410 /* PUTROOTFH */ 3411 argop[0].argop = OP_PUTROOTFH; 3412 3413 /* GETATTR */ 3414 argop[1].argop = OP_GETATTR; 3415 argop[1].nfs_argop4_u.opgetattr.attr_request = FATTR4_LEASE_TIME_MASK; 3416 argop[1].nfs_argop4_u.opgetattr.mi = mi; 3417 3418 /* SETCLIENTID */ 3419 argop[2].argop = OP_SETCLIENTID; 3420 3421 s_args = &argop[2].nfs_argop4_u.opsetclientid; 3422 3423 mutex_enter(&np->s_lock); 3424 3425 s_args->client.verifier = np->clidtosend.verifier; 3426 s_args->client.id_len = np->clidtosend.id_len; 3427 ASSERT(s_args->client.id_len <= NFS4_OPAQUE_LIMIT); 3428 s_args->client.id_val = np->clidtosend.id_val; 3429 3430 /* 3431 * Callback needs to happen on non-RDMA transport 3432 * Check if we have saved the original knetconfig 3433 * if so, use that instead. 3434 */ 3435 if (svp->sv_origknconf != NULL) 3436 nfs4_cb_args(np, svp->sv_origknconf, s_args); 3437 else 3438 nfs4_cb_args(np, svp->sv_knconf, s_args); 3439 3440 mutex_exit(&np->s_lock); 3441 3442 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 3443 3444 if (ep->error) 3445 return; 3446 3447 /* getattr lease_time res */ 3448 if ((res.array_len >= 2) && 3449 (res.array[1].nfs_resop4_u.opgetattr.status == NFS4_OK)) { 3450 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; 3451 3452 #ifndef _LP64 3453 /* 3454 * The 32 bit client cannot handle a lease time greater than 3455 * (INT32_MAX/1000000). This is due to the use of the 3456 * lease_time in calls to drv_usectohz() in 3457 * nfs4_renew_lease_thread(). The problem is that 3458 * drv_usectohz() takes a time_t (which is just a long = 4 3459 * bytes) as its parameter. The lease_time is multiplied by 3460 * 1000000 to convert seconds to usecs for the parameter. If 3461 * a number bigger than (INT32_MAX/1000000) is used then we 3462 * overflow on the 32bit client. 3463 */ 3464 if (garp->n4g_ext_res->n4g_leasetime > (INT32_MAX/1000000)) { 3465 garp->n4g_ext_res->n4g_leasetime = INT32_MAX/1000000; 3466 } 3467 #endif 3468 3469 mutex_enter(&np->s_lock); 3470 np->s_lease_time = garp->n4g_ext_res->n4g_leasetime; 3471 3472 /* 3473 * Keep track of the lease period for the mi's 3474 * mi_msg_list. We need an appropiate time 3475 * bound to associate past facts with a current 3476 * event. The lease period is perfect for this. 3477 */ 3478 mutex_enter(&mi->mi_msg_list_lock); 3479 mi->mi_lease_period = np->s_lease_time; 3480 mutex_exit(&mi->mi_msg_list_lock); 3481 mutex_exit(&np->s_lock); 3482 } 3483 3484 3485 if (res.status == NFS4ERR_CLID_INUSE) { 3486 clientaddr4 *clid_inuse; 3487 3488 if (!(*retry_inusep)) { 3489 clid_inuse = &res.array->nfs_resop4_u. 3490 opsetclientid.SETCLIENTID4res_u.client_using; 3491 3492 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, 3493 "NFS4 mount (SETCLIENTID failed)." 3494 " nfs4_client_id.id is in" 3495 "use already by: r_netid<%s> r_addr<%s>", 3496 clid_inuse->r_netid, clid_inuse->r_addr); 3497 } 3498 3499 /* 3500 * XXX - The client should be more robust in its 3501 * handling of clientid in use errors (regen another 3502 * clientid and try again?) 3503 */ 3504 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3505 return; 3506 } 3507 3508 if (res.status) { 3509 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3510 return; 3511 } 3512 3513 s_resok = &res.array[2].nfs_resop4_u. 3514 opsetclientid.SETCLIENTID4res_u.resok4; 3515 3516 tmp_clientid = s_resok->clientid; 3517 3518 verf = s_resok->setclientid_confirm; 3519 3520 #ifdef DEBUG 3521 if (nfs4setclientid_otw_debug) { 3522 union { 3523 clientid4 clientid; 3524 int foo[2]; 3525 } cid; 3526 3527 cid.clientid = s_resok->clientid; 3528 3529 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, 3530 "nfs4setclientid_otw: OK, clientid = %x,%x, " 3531 "verifier = %" PRIx64 "\n", cid.foo[0], cid.foo[1], verf); 3532 } 3533 #endif 3534 3535 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3536 3537 /* Confirm the client id and get the lease_time attribute */ 3538 3539 args.ctag = TAG_SETCLIENTID_CF; 3540 3541 args.array = argop; 3542 args.array_len = 1; 3543 3544 argop[0].argop = OP_SETCLIENTID_CONFIRM; 3545 3546 argop[0].nfs_argop4_u.opsetclientid_confirm.clientid = tmp_clientid; 3547 argop[0].nfs_argop4_u.opsetclientid_confirm.setclientid_confirm = verf; 3548 3549 /* used to figure out RTT for np */ 3550 gethrestime(&prop_time); 3551 3552 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlientid_otw: " 3553 "start time: %ld sec %ld nsec", prop_time.tv_sec, 3554 prop_time.tv_nsec)); 3555 3556 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); 3557 3558 gethrestime(&after_time); 3559 mutex_enter(&np->s_lock); 3560 np->propagation_delay.tv_sec = 3561 MAX(1, after_time.tv_sec - prop_time.tv_sec); 3562 mutex_exit(&np->s_lock); 3563 3564 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlcientid_otw: " 3565 "finish time: %ld sec ", after_time.tv_sec)); 3566 3567 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setclientid_otw: " 3568 "propagation delay set to %ld sec", 3569 np->propagation_delay.tv_sec)); 3570 3571 if (ep->error) 3572 return; 3573 3574 if (res.status == NFS4ERR_CLID_INUSE) { 3575 clientaddr4 *clid_inuse; 3576 3577 if (!(*retry_inusep)) { 3578 clid_inuse = &res.array->nfs_resop4_u. 3579 opsetclientid.SETCLIENTID4res_u.client_using; 3580 3581 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, 3582 "SETCLIENTID_CONFIRM failed. " 3583 "nfs4_client_id.id is in use already by: " 3584 "r_netid<%s> r_addr<%s>", 3585 clid_inuse->r_netid, clid_inuse->r_addr); 3586 } 3587 3588 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3589 return; 3590 } 3591 3592 if (res.status) { 3593 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3594 return; 3595 } 3596 3597 mutex_enter(&np->s_lock); 3598 np->clientid = tmp_clientid; 3599 np->s_flags |= N4S_CLIENTID_SET; 3600 3601 /* Add mi to np's mntinfo4 list */ 3602 nfs4_add_mi_to_server(np, mi); 3603 3604 if (np->lease_valid == NFS4_LEASE_NOT_STARTED) { 3605 /* 3606 * Start lease management thread. 3607 * Keep trying until we succeed. 3608 */ 3609 3610 np->s_refcnt++; /* pass reference to thread */ 3611 (void) zthread_create(NULL, 0, nfs4_renew_lease_thread, np, 0, 3612 minclsyspri); 3613 } 3614 mutex_exit(&np->s_lock); 3615 3616 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); 3617 } 3618 3619 /* 3620 * Add mi to sp's mntinfo4_list if it isn't already in the list. Makes 3621 * mi's clientid the same as sp's. 3622 * Assumes sp is locked down. 3623 */ 3624 void 3625 nfs4_add_mi_to_server(nfs4_server_t *sp, mntinfo4_t *mi) 3626 { 3627 mntinfo4_t *tmi; 3628 int in_list = 0; 3629 3630 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || 3631 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); 3632 ASSERT(sp != &nfs4_server_lst); 3633 ASSERT(MUTEX_HELD(&sp->s_lock)); 3634 3635 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3636 "nfs4_add_mi_to_server: add mi %p to sp %p", 3637 (void*)mi, (void*)sp)); 3638 3639 for (tmi = sp->mntinfo4_list; 3640 tmi != NULL; 3641 tmi = tmi->mi_clientid_next) { 3642 if (tmi == mi) { 3643 NFS4_DEBUG(nfs4_client_lease_debug, 3644 (CE_NOTE, 3645 "nfs4_add_mi_to_server: mi in list")); 3646 in_list = 1; 3647 } 3648 } 3649 3650 /* 3651 * First put a hold on the mntinfo4's vfsp so that references via 3652 * mntinfo4_list will be valid. 3653 */ 3654 if (!in_list) 3655 VFS_HOLD(mi->mi_vfsp); 3656 3657 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: " 3658 "hold vfs %p for mi: %p", (void*)mi->mi_vfsp, (void*)mi)); 3659 3660 if (!in_list) { 3661 if (sp->mntinfo4_list) 3662 sp->mntinfo4_list->mi_clientid_prev = mi; 3663 mi->mi_clientid_next = sp->mntinfo4_list; 3664 mi->mi_srv = sp; 3665 sp->mntinfo4_list = mi; 3666 mi->mi_srvsettime = gethrestime_sec(); 3667 mi->mi_srvset_cnt++; 3668 } 3669 3670 /* set mi's clientid to that of sp's for later matching */ 3671 mi->mi_clientid = sp->clientid; 3672 3673 /* 3674 * Update the clientid for any other mi's belonging to sp. This 3675 * must be done here while we hold sp->s_lock, so that 3676 * find_nfs4_server() continues to work. 3677 */ 3678 3679 for (tmi = sp->mntinfo4_list; 3680 tmi != NULL; 3681 tmi = tmi->mi_clientid_next) { 3682 if (tmi != mi) { 3683 tmi->mi_clientid = sp->clientid; 3684 } 3685 } 3686 } 3687 3688 /* 3689 * Remove the mi from sp's mntinfo4_list and release its reference. 3690 * Exception: if mi still has open files, flag it for later removal (when 3691 * all the files are closed). 3692 * 3693 * If this is the last mntinfo4 in sp's list then tell the lease renewal 3694 * thread to exit. 3695 */ 3696 static void 3697 nfs4_remove_mi_from_server_nolock(mntinfo4_t *mi, nfs4_server_t *sp) 3698 { 3699 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3700 "nfs4_remove_mi_from_server_nolock: remove mi %p from sp %p", 3701 (void*)mi, (void*)sp)); 3702 3703 ASSERT(sp != NULL); 3704 ASSERT(MUTEX_HELD(&sp->s_lock)); 3705 ASSERT(mi->mi_open_files >= 0); 3706 3707 /* 3708 * First make sure this mntinfo4 can be taken off of the list, 3709 * ie: it doesn't have any open files remaining. 3710 */ 3711 if (mi->mi_open_files > 0) { 3712 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3713 "nfs4_remove_mi_from_server_nolock: don't " 3714 "remove mi since it still has files open")); 3715 3716 mutex_enter(&mi->mi_lock); 3717 mi->mi_flags |= MI4_REMOVE_ON_LAST_CLOSE; 3718 mutex_exit(&mi->mi_lock); 3719 return; 3720 } 3721 3722 VFS_HOLD(mi->mi_vfsp); 3723 remove_mi(sp, mi); 3724 VFS_RELE(mi->mi_vfsp); 3725 3726 if (sp->mntinfo4_list == NULL) { 3727 /* last fs unmounted, kill the thread */ 3728 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, 3729 "remove_mi_from_nfs4_server_nolock: kill the thread")); 3730 nfs4_mark_srv_dead(sp); 3731 } 3732 } 3733 3734 /* 3735 * Remove mi from sp's mntinfo4_list and release the vfs reference. 3736 */ 3737 static void 3738 remove_mi(nfs4_server_t *sp, mntinfo4_t *mi) 3739 { 3740 ASSERT(MUTEX_HELD(&sp->s_lock)); 3741 3742 /* 3743 * We release a reference, and the caller must still have a 3744 * reference. 3745 */ 3746 ASSERT(mi->mi_vfsp->vfs_count >= 2); 3747 3748 if (mi->mi_clientid_prev) { 3749 mi->mi_clientid_prev->mi_clientid_next = mi->mi_clientid_next; 3750 } else { 3751 /* This is the first mi in sp's mntinfo4_list */ 3752 /* 3753 * Make sure the first mntinfo4 in the list is the actual 3754 * mntinfo4 passed in. 3755 */ 3756 ASSERT(sp->mntinfo4_list == mi); 3757 3758 sp->mntinfo4_list = mi->mi_clientid_next; 3759 } 3760 if (mi->mi_clientid_next) 3761 mi->mi_clientid_next->mi_clientid_prev = mi->mi_clientid_prev; 3762 3763 /* Now mark the mntinfo4's links as being removed */ 3764 mi->mi_clientid_prev = mi->mi_clientid_next = NULL; 3765 mi->mi_srv = NULL; 3766 mi->mi_srvset_cnt++; 3767 3768 VFS_RELE(mi->mi_vfsp); 3769 } 3770 3771 /* 3772 * Free all the entries in sp's mntinfo4_list. 3773 */ 3774 static void 3775 remove_all_mi(nfs4_server_t *sp) 3776 { 3777 mntinfo4_t *mi; 3778 3779 ASSERT(MUTEX_HELD(&sp->s_lock)); 3780 3781 while (sp->mntinfo4_list != NULL) { 3782 mi = sp->mntinfo4_list; 3783 /* 3784 * Grab a reference in case there is only one left (which 3785 * remove_mi() frees). 3786 */ 3787 VFS_HOLD(mi->mi_vfsp); 3788 remove_mi(sp, mi); 3789 VFS_RELE(mi->mi_vfsp); 3790 } 3791 } 3792 3793 /* 3794 * Remove the mi from sp's mntinfo4_list as above, and rele the vfs. 3795 * 3796 * This version can be called with a null nfs4_server_t arg, 3797 * and will either find the right one and handle locking, or 3798 * do nothing because the mi wasn't added to an sp's mntinfo4_list. 3799 */ 3800 void 3801 nfs4_remove_mi_from_server(mntinfo4_t *mi, nfs4_server_t *esp) 3802 { 3803 nfs4_server_t *sp; 3804 3805 if (esp) { 3806 nfs4_remove_mi_from_server_nolock(mi, esp); 3807 return; 3808 } 3809 3810 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); 3811 if (sp = find_nfs4_server_all(mi, 1)) { 3812 nfs4_remove_mi_from_server_nolock(mi, sp); 3813 mutex_exit(&sp->s_lock); 3814 nfs4_server_rele(sp); 3815 } 3816 nfs_rw_exit(&mi->mi_recovlock); 3817 } 3818 3819 /* 3820 * Return TRUE if the given server has any non-unmounted filesystems. 3821 */ 3822 3823 bool_t 3824 nfs4_fs_active(nfs4_server_t *sp) 3825 { 3826 mntinfo4_t *mi; 3827 3828 ASSERT(MUTEX_HELD(&sp->s_lock)); 3829 3830 for (mi = sp->mntinfo4_list; mi != NULL; mi = mi->mi_clientid_next) { 3831 if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)) 3832 return (TRUE); 3833 } 3834 3835 return (FALSE); 3836 } 3837 3838 /* 3839 * Mark sp as finished and notify any waiters. 3840 */ 3841 3842 void 3843 nfs4_mark_srv_dead(nfs4_server_t *sp) 3844 { 3845 ASSERT(MUTEX_HELD(&sp->s_lock)); 3846 3847 sp->s_thread_exit = NFS4_THREAD_EXIT; 3848 cv_broadcast(&sp->cv_thread_exit); 3849 } 3850 3851 /* 3852 * Create a new nfs4_server_t structure. 3853 * Returns new node unlocked and not in list, but with a reference count of 3854 * 1. 3855 */ 3856 struct nfs4_server * 3857 new_nfs4_server(struct servinfo4 *svp, cred_t *cr) 3858 { 3859 struct nfs4_server *np; 3860 timespec_t tt; 3861 union { 3862 struct { 3863 uint32_t sec; 3864 uint32_t subsec; 3865 } un_curtime; 3866 verifier4 un_verifier; 3867 } nfs4clientid_verifier; 3868 /* 3869 * We change this ID string carefully and with the Solaris 3870 * NFS server behaviour in mind. "+referrals" indicates 3871 * a client that can handle an NFSv4 referral. 3872 */ 3873 char id_val[] = "Solaris: %s, NFSv4 kernel client +referrals"; 3874 int len; 3875 3876 np = kmem_zalloc(sizeof (struct nfs4_server), KM_SLEEP); 3877 np->saddr.len = svp->sv_addr.len; 3878 np->saddr.maxlen = svp->sv_addr.maxlen; 3879 np->saddr.buf = kmem_alloc(svp->sv_addr.maxlen, KM_SLEEP); 3880 bcopy(svp->sv_addr.buf, np->saddr.buf, svp->sv_addr.len); 3881 np->s_refcnt = 1; 3882 3883 /* 3884 * Build the nfs_client_id4 for this server mount. Ensure 3885 * the verifier is useful and that the identification is 3886 * somehow based on the server's address for the case of 3887 * multi-homed servers. 3888 */ 3889 nfs4clientid_verifier.un_verifier = 0; 3890 gethrestime(&tt); 3891 nfs4clientid_verifier.un_curtime.sec = (uint32_t)tt.tv_sec; 3892 nfs4clientid_verifier.un_curtime.subsec = (uint32_t)tt.tv_nsec; 3893 np->clidtosend.verifier = nfs4clientid_verifier.un_verifier; 3894 3895 /* 3896 * calculate the length of the opaque identifier. Subtract 2 3897 * for the "%s" and add the traditional +1 for null 3898 * termination. 3899 */ 3900 len = strlen(id_val) - 2 + strlen(uts_nodename()) + 1; 3901 np->clidtosend.id_len = len + np->saddr.maxlen; 3902 3903 np->clidtosend.id_val = kmem_alloc(np->clidtosend.id_len, KM_SLEEP); 3904 (void) sprintf(np->clidtosend.id_val, id_val, uts_nodename()); 3905 bcopy(np->saddr.buf, &np->clidtosend.id_val[len], np->saddr.len); 3906 3907 np->s_flags = 0; 3908 np->mntinfo4_list = NULL; 3909 /* save cred for issuing rfs4calls inside the renew thread */ 3910 crhold(cr); 3911 np->s_cred = cr; 3912 cv_init(&np->cv_thread_exit, NULL, CV_DEFAULT, NULL); 3913 mutex_init(&np->s_lock, NULL, MUTEX_DEFAULT, NULL); 3914 nfs_rw_init(&np->s_recovlock, NULL, RW_DEFAULT, NULL); 3915 list_create(&np->s_deleg_list, sizeof (rnode4_t), 3916 offsetof(rnode4_t, r_deleg_link)); 3917 np->s_thread_exit = 0; 3918 np->state_ref_count = 0; 3919 np->lease_valid = NFS4_LEASE_NOT_STARTED; 3920 cv_init(&np->s_cv_otw_count, NULL, CV_DEFAULT, NULL); 3921 cv_init(&np->s_clientid_pend, NULL, CV_DEFAULT, NULL); 3922 np->s_otw_call_count = 0; 3923 cv_init(&np->wait_cb_null, NULL, CV_DEFAULT, NULL); 3924 np->zoneid = getzoneid(); 3925 np->zone_globals = nfs4_get_callback_globals(); 3926 ASSERT(np->zone_globals != NULL); 3927 return (np); 3928 } 3929 3930 /* 3931 * Create a new nfs4_server_t structure and add it to the list. 3932 * Returns new node locked; reference must eventually be freed. 3933 */ 3934 static struct nfs4_server * 3935 add_new_nfs4_server(struct servinfo4 *svp, cred_t *cr) 3936 { 3937 nfs4_server_t *sp; 3938 3939 ASSERT(MUTEX_HELD(&nfs4_server_lst_lock)); 3940 sp = new_nfs4_server(svp, cr); 3941 mutex_enter(&sp->s_lock); 3942 insque(sp, &nfs4_server_lst); 3943 sp->s_refcnt++; /* list gets a reference */ 3944 sp->s_flags |= N4S_INSERTED; 3945 sp->clientid = 0; 3946 return (sp); 3947 } 3948 3949 int nfs4_server_t_debug = 0; 3950 3951 #ifdef lint 3952 extern void 3953 dumpnfs4slist(char *, mntinfo4_t *, clientid4, servinfo4_t *); 3954 #endif 3955 3956 #ifndef lint 3957 #ifdef DEBUG 3958 void 3959 dumpnfs4slist(char *txt, mntinfo4_t *mi, clientid4 clientid, servinfo4_t *srv_p) 3960 { 3961 int hash16(void *p, int len); 3962 nfs4_server_t *np; 3963 3964 NFS4_DEBUG(nfs4_server_t_debug, (CE_NOTE, 3965 "dumping nfs4_server_t list in %s", txt)); 3966 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 3967 "mi 0x%p, want clientid %llx, addr %d/%04X", 3968 mi, (longlong_t)clientid, srv_p->sv_addr.len, 3969 hash16((void *)srv_p->sv_addr.buf, srv_p->sv_addr.len))); 3970 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; 3971 np = np->forw) { 3972 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 3973 "node 0x%p, clientid %llx, addr %d/%04X, cnt %d", 3974 np, (longlong_t)np->clientid, np->saddr.len, 3975 hash16((void *)np->saddr.buf, np->saddr.len), 3976 np->state_ref_count)); 3977 if (np->saddr.len == srv_p->sv_addr.len && 3978 bcmp(np->saddr.buf, srv_p->sv_addr.buf, 3979 np->saddr.len) == 0) 3980 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 3981 " - address matches")); 3982 if (np->clientid == clientid || np->clientid == 0) 3983 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 3984 " - clientid matches")); 3985 if (np->s_thread_exit != NFS4_THREAD_EXIT) 3986 NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, 3987 " - thread not exiting")); 3988 } 3989 delay(hz); 3990 } 3991 #endif 3992 #endif 3993 3994 3995 /* 3996 * Move a mntinfo4_t from one server list to another. 3997 * Locking of the two nfs4_server_t nodes will be done in list order. 3998 * 3999 * Returns NULL if the current nfs4_server_t for the filesystem could not 4000 * be found (e.g., due to forced unmount). Otherwise returns a reference 4001 * to the new nfs4_server_t, which must eventually be freed. 4002 */ 4003 nfs4_server_t * 4004 nfs4_move_mi(mntinfo4_t *mi, servinfo4_t *old, servinfo4_t *new) 4005 { 4006 nfs4_server_t *p, *op = NULL, *np = NULL; 4007 int num_open; 4008 zoneid_t zoneid = nfs_zoneid(); 4009 4010 ASSERT(nfs_zone() == mi->mi_zone); 4011 4012 mutex_enter(&nfs4_server_lst_lock); 4013 #ifdef DEBUG 4014 if (nfs4_server_t_debug) 4015 dumpnfs4slist("nfs4_move_mi", mi, (clientid4)0, new); 4016 #endif 4017 for (p = nfs4_server_lst.forw; p != &nfs4_server_lst; p = p->forw) { 4018 if (p->zoneid != zoneid) 4019 continue; 4020 if (p->saddr.len == old->sv_addr.len && 4021 bcmp(p->saddr.buf, old->sv_addr.buf, p->saddr.len) == 0 && 4022 p->s_thread_exit != NFS4_THREAD_EXIT) { 4023 op = p; 4024 mutex_enter(&op->s_lock); 4025 op->s_refcnt++; 4026 } 4027 if (p->saddr.len == new->sv_addr.len && 4028 bcmp(p->saddr.buf, new->sv_addr.buf, p->saddr.len) == 0 && 4029 p->s_thread_exit != NFS4_THREAD_EXIT) { 4030 np = p; 4031 mutex_enter(&np->s_lock); 4032 } 4033 if (op != NULL && np != NULL) 4034 break; 4035 } 4036 if (op == NULL) { 4037 /* 4038 * Filesystem has been forcibly unmounted. Bail out. 4039 */ 4040 if (np != NULL) 4041 mutex_exit(&np->s_lock); 4042 mutex_exit(&nfs4_server_lst_lock); 4043 return (NULL); 4044 } 4045 if (np != NULL) { 4046 np->s_refcnt++; 4047 } else { 4048 #ifdef DEBUG 4049 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 4050 "nfs4_move_mi: no target nfs4_server, will create.")); 4051 #endif 4052 np = add_new_nfs4_server(new, kcred); 4053 } 4054 mutex_exit(&nfs4_server_lst_lock); 4055 4056 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 4057 "nfs4_move_mi: for mi 0x%p, " 4058 "old servinfo4 0x%p, new servinfo4 0x%p, " 4059 "old nfs4_server 0x%p, new nfs4_server 0x%p, ", 4060 (void*)mi, (void*)old, (void*)new, 4061 (void*)op, (void*)np)); 4062 ASSERT(op != NULL && np != NULL); 4063 4064 /* discard any delegations */ 4065 nfs4_deleg_discard(mi, op); 4066 4067 num_open = mi->mi_open_files; 4068 mi->mi_open_files = 0; 4069 op->state_ref_count -= num_open; 4070 ASSERT(op->state_ref_count >= 0); 4071 np->state_ref_count += num_open; 4072 nfs4_remove_mi_from_server_nolock(mi, op); 4073 mi->mi_open_files = num_open; 4074 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, 4075 "nfs4_move_mi: mi_open_files %d, op->cnt %d, np->cnt %d", 4076 mi->mi_open_files, op->state_ref_count, np->state_ref_count)); 4077 4078 nfs4_add_mi_to_server(np, mi); 4079 4080 mutex_exit(&op->s_lock); 4081 mutex_exit(&np->s_lock); 4082 nfs4_server_rele(op); 4083 4084 return (np); 4085 } 4086 4087 /* 4088 * Need to have the nfs4_server_lst_lock. 4089 * Search the nfs4_server list to find a match on this servinfo4 4090 * based on its address. 4091 * 4092 * Returns NULL if no match is found. Otherwise returns a reference (which 4093 * must eventually be freed) to a locked nfs4_server. 4094 */ 4095 nfs4_server_t * 4096 servinfo4_to_nfs4_server(servinfo4_t *srv_p) 4097 { 4098 nfs4_server_t *np; 4099 zoneid_t zoneid = nfs_zoneid(); 4100 4101 ASSERT(MUTEX_HELD(&nfs4_server_lst_lock)); 4102 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { 4103 if (np->zoneid == zoneid && 4104 np->saddr.len == srv_p->sv_addr.len && 4105 bcmp(np->saddr.buf, srv_p->sv_addr.buf, 4106 np->saddr.len) == 0 && 4107 np->s_thread_exit != NFS4_THREAD_EXIT) { 4108 mutex_enter(&np->s_lock); 4109 np->s_refcnt++; 4110 return (np); 4111 } 4112 } 4113 return (NULL); 4114 } 4115 4116 /* 4117 * Locks the nfs4_server down if it is found and returns a reference that 4118 * must eventually be freed. 4119 */ 4120 static nfs4_server_t * 4121 lookup_nfs4_server(nfs4_server_t *sp, int any_state) 4122 { 4123 nfs4_server_t *np; 4124 4125 mutex_enter(&nfs4_server_lst_lock); 4126 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { 4127 mutex_enter(&np->s_lock); 4128 if (np == sp && np->s_refcnt > 0 && 4129 (np->s_thread_exit != NFS4_THREAD_EXIT || any_state)) { 4130 mutex_exit(&nfs4_server_lst_lock); 4131 np->s_refcnt++; 4132 return (np); 4133 } 4134 mutex_exit(&np->s_lock); 4135 } 4136 mutex_exit(&nfs4_server_lst_lock); 4137 4138 return (NULL); 4139 } 4140 4141 /* 4142 * The caller should be holding mi->mi_recovlock, and it should continue to 4143 * hold the lock until done with the returned nfs4_server_t. Once 4144 * mi->mi_recovlock is released, there is no guarantee that the returned 4145 * mi->nfs4_server_t will continue to correspond to mi. 4146 */ 4147 nfs4_server_t * 4148 find_nfs4_server(mntinfo4_t *mi) 4149 { 4150 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || 4151 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); 4152 4153 return (lookup_nfs4_server(mi->mi_srv, 0)); 4154 } 4155 4156 /* 4157 * Same as above, but takes an "any_state" parameter which can be 4158 * set to 1 if the caller wishes to find nfs4_server_t's which 4159 * have been marked for termination by the exit of the renew 4160 * thread. This should only be used by operations which are 4161 * cleaning up and will not cause an OTW op. 4162 */ 4163 nfs4_server_t * 4164 find_nfs4_server_all(mntinfo4_t *mi, int any_state) 4165 { 4166 ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || 4167 nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); 4168 4169 return (lookup_nfs4_server(mi->mi_srv, any_state)); 4170 } 4171 4172 /* 4173 * Lock sp, but only if it's still active (in the list and hasn't been 4174 * flagged as exiting) or 'any_state' is non-zero. 4175 * Returns TRUE if sp got locked and adds a reference to sp. 4176 */ 4177 bool_t 4178 nfs4_server_vlock(nfs4_server_t *sp, int any_state) 4179 { 4180 return (lookup_nfs4_server(sp, any_state) != NULL); 4181 } 4182 4183 /* 4184 * Release the reference to sp and destroy it if that's the last one. 4185 */ 4186 4187 void 4188 nfs4_server_rele(nfs4_server_t *sp) 4189 { 4190 mutex_enter(&sp->s_lock); 4191 ASSERT(sp->s_refcnt > 0); 4192 sp->s_refcnt--; 4193 if (sp->s_refcnt > 0) { 4194 mutex_exit(&sp->s_lock); 4195 return; 4196 } 4197 mutex_exit(&sp->s_lock); 4198 4199 mutex_enter(&nfs4_server_lst_lock); 4200 mutex_enter(&sp->s_lock); 4201 if (sp->s_refcnt > 0) { 4202 mutex_exit(&sp->s_lock); 4203 mutex_exit(&nfs4_server_lst_lock); 4204 return; 4205 } 4206 remque(sp); 4207 sp->forw = sp->back = NULL; 4208 mutex_exit(&nfs4_server_lst_lock); 4209 destroy_nfs4_server(sp); 4210 } 4211 4212 static void 4213 destroy_nfs4_server(nfs4_server_t *sp) 4214 { 4215 ASSERT(MUTEX_HELD(&sp->s_lock)); 4216 ASSERT(sp->s_refcnt == 0); 4217 ASSERT(sp->s_otw_call_count == 0); 4218 4219 remove_all_mi(sp); 4220 4221 crfree(sp->s_cred); 4222 kmem_free(sp->saddr.buf, sp->saddr.maxlen); 4223 kmem_free(sp->clidtosend.id_val, sp->clidtosend.id_len); 4224 mutex_exit(&sp->s_lock); 4225 4226 /* destroy the nfs4_server */ 4227 nfs4callback_destroy(sp); 4228 list_destroy(&sp->s_deleg_list); 4229 mutex_destroy(&sp->s_lock); 4230 cv_destroy(&sp->cv_thread_exit); 4231 cv_destroy(&sp->s_cv_otw_count); 4232 cv_destroy(&sp->s_clientid_pend); 4233 cv_destroy(&sp->wait_cb_null); 4234 nfs_rw_destroy(&sp->s_recovlock); 4235 kmem_free(sp, sizeof (*sp)); 4236 } 4237 4238 /* 4239 * Fork off a thread to free the data structures for a mount. 4240 */ 4241 4242 static void 4243 async_free_mount(vfs_t *vfsp, int flag, cred_t *cr) 4244 { 4245 freemountargs_t *args; 4246 args = kmem_alloc(sizeof (freemountargs_t), KM_SLEEP); 4247 args->fm_vfsp = vfsp; 4248 VFS_HOLD(vfsp); 4249 MI4_HOLD(VFTOMI4(vfsp)); 4250 args->fm_flag = flag; 4251 args->fm_cr = cr; 4252 crhold(cr); 4253 (void) zthread_create(NULL, 0, nfs4_free_mount_thread, args, 0, 4254 minclsyspri); 4255 } 4256 4257 static void 4258 nfs4_free_mount_thread(freemountargs_t *args) 4259 { 4260 mntinfo4_t *mi; 4261 nfs4_free_mount(args->fm_vfsp, args->fm_flag, args->fm_cr); 4262 mi = VFTOMI4(args->fm_vfsp); 4263 crfree(args->fm_cr); 4264 VFS_RELE(args->fm_vfsp); 4265 MI4_RELE(mi); 4266 kmem_free(args, sizeof (freemountargs_t)); 4267 zthread_exit(); 4268 /* NOTREACHED */ 4269 } 4270 4271 /* 4272 * Thread to free the data structures for a given filesystem. 4273 */ 4274 static void 4275 nfs4_free_mount(vfs_t *vfsp, int flag, cred_t *cr) 4276 { 4277 mntinfo4_t *mi = VFTOMI4(vfsp); 4278 nfs4_server_t *sp; 4279 callb_cpr_t cpr_info; 4280 kmutex_t cpr_lock; 4281 boolean_t async_thread; 4282 int removed; 4283 4284 bool_t must_unlock; 4285 nfs4_ephemeral_tree_t *eph_tree; 4286 4287 /* 4288 * We need to participate in the CPR framework if this is a kernel 4289 * thread. 4290 */ 4291 async_thread = (curproc == nfs_zone()->zone_zsched); 4292 if (async_thread) { 4293 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL); 4294 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, 4295 "nfsv4AsyncUnmount"); 4296 } 4297 4298 /* 4299 * We need to wait for all outstanding OTW calls 4300 * and recovery to finish before we remove the mi 4301 * from the nfs4_server_t, as current pending 4302 * calls might still need this linkage (in order 4303 * to find a nfs4_server_t from a mntinfo4_t). 4304 */ 4305 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, FALSE); 4306 sp = find_nfs4_server(mi); 4307 nfs_rw_exit(&mi->mi_recovlock); 4308 4309 if (sp) { 4310 while (sp->s_otw_call_count != 0) { 4311 if (async_thread) { 4312 mutex_enter(&cpr_lock); 4313 CALLB_CPR_SAFE_BEGIN(&cpr_info); 4314 mutex_exit(&cpr_lock); 4315 } 4316 cv_wait(&sp->s_cv_otw_count, &sp->s_lock); 4317 if (async_thread) { 4318 mutex_enter(&cpr_lock); 4319 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 4320 mutex_exit(&cpr_lock); 4321 } 4322 } 4323 mutex_exit(&sp->s_lock); 4324 nfs4_server_rele(sp); 4325 sp = NULL; 4326 } 4327 4328 mutex_enter(&mi->mi_lock); 4329 while (mi->mi_in_recovery != 0) { 4330 if (async_thread) { 4331 mutex_enter(&cpr_lock); 4332 CALLB_CPR_SAFE_BEGIN(&cpr_info); 4333 mutex_exit(&cpr_lock); 4334 } 4335 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock); 4336 if (async_thread) { 4337 mutex_enter(&cpr_lock); 4338 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); 4339 mutex_exit(&cpr_lock); 4340 } 4341 } 4342 mutex_exit(&mi->mi_lock); 4343 4344 /* 4345 * If we got an error, then do not nuke the 4346 * tree. Either the harvester is busy reclaiming 4347 * this node or we ran into some busy condition. 4348 * 4349 * The harvester will eventually come along and cleanup. 4350 * The only problem would be the root mount point. 4351 * 4352 * Since the busy node can occur for a variety 4353 * of reasons and can result in an entry staying 4354 * in df output but no longer accessible from the 4355 * directory tree, we are okay. 4356 */ 4357 if (!nfs4_ephemeral_umount(mi, flag, cr, 4358 &must_unlock, &eph_tree)) 4359 nfs4_ephemeral_umount_activate(mi, &must_unlock, 4360 &eph_tree); 4361 4362 /* 4363 * The original purge of the dnlc via 'dounmount' 4364 * doesn't guarantee that another dnlc entry was not 4365 * added while we waitied for all outstanding OTW 4366 * and recovery calls to finish. So re-purge the 4367 * dnlc now. 4368 */ 4369 (void) dnlc_purge_vfsp(vfsp, 0); 4370 4371 /* 4372 * We need to explicitly stop the manager thread; the asyc worker 4373 * threads can timeout and exit on their own. 4374 */ 4375 mutex_enter(&mi->mi_async_lock); 4376 mi->mi_max_threads = 0; 4377 cv_broadcast(&mi->mi_async_work_cv); 4378 mutex_exit(&mi->mi_async_lock); 4379 if (mi->mi_manager_thread) 4380 nfs4_async_manager_stop(vfsp); 4381 4382 destroy_rtable4(vfsp, cr); 4383 4384 nfs4_remove_mi_from_server(mi, NULL); 4385 4386 if (async_thread) { 4387 mutex_enter(&cpr_lock); 4388 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */ 4389 mutex_destroy(&cpr_lock); 4390 } 4391 4392 removed = nfs4_mi_zonelist_remove(mi); 4393 if (removed) 4394 zone_rele(mi->mi_zone); 4395 } 4396 4397 /* Referral related sub-routines */ 4398 4399 /* Freeup knetconfig */ 4400 static void 4401 free_knconf_contents(struct knetconfig *k) 4402 { 4403 if (k == NULL) 4404 return; 4405 if (k->knc_protofmly) 4406 kmem_free(k->knc_protofmly, KNC_STRSIZE); 4407 if (k->knc_proto) 4408 kmem_free(k->knc_proto, KNC_STRSIZE); 4409 } 4410 4411 /* 4412 * This updates newpath variable with exact name component from the 4413 * path which gave us a NFS4ERR_MOVED error. 4414 * If the path is /rp/aaa/bbb and nth value is 1, aaa is returned. 4415 */ 4416 static char * 4417 extract_referral_point(const char *svp, int nth) 4418 { 4419 int num_slashes = 0; 4420 const char *p; 4421 char *newpath = NULL; 4422 int i = 0; 4423 4424 newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4425 for (p = svp; *p; p++) { 4426 if (*p == '/') 4427 num_slashes++; 4428 if (num_slashes == nth + 1) { 4429 p++; 4430 while (*p != '/') { 4431 if (*p == '\0') 4432 break; 4433 newpath[i] = *p; 4434 i++; 4435 p++; 4436 } 4437 newpath[i++] = '\0'; 4438 break; 4439 } 4440 } 4441 return (newpath); 4442 } 4443 4444 /* 4445 * This sets up a new path in sv_path to do a lookup of the referral point. 4446 * If the path is /rp/aaa/bbb and the referral point is aaa, 4447 * this updates /rp/aaa. This path will be used to get referral 4448 * location. 4449 */ 4450 static void 4451 setup_newsvpath(servinfo4_t *svp, int nth) 4452 { 4453 int num_slashes = 0, pathlen, i = 0; 4454 char *newpath, *p; 4455 4456 newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4457 for (p = svp->sv_path; *p; p++) { 4458 newpath[i] = *p; 4459 if (*p == '/') 4460 num_slashes++; 4461 if (num_slashes == nth + 1) { 4462 newpath[i] = '\0'; 4463 pathlen = strlen(newpath) + 1; 4464 kmem_free(svp->sv_path, svp->sv_pathlen); 4465 svp->sv_path = kmem_alloc(pathlen, KM_SLEEP); 4466 svp->sv_pathlen = pathlen; 4467 bcopy(newpath, svp->sv_path, pathlen); 4468 break; 4469 } 4470 i++; 4471 } 4472 kmem_free(newpath, MAXPATHLEN); 4473 } 4474