xref: /titanic_51/usr/src/uts/common/fs/nfs/nfs3_vnops.c (revision b51e13bf985efd1ff98249cad2824f2952f13ecb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
28  *	All rights reserved.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/systm.h>
34 #include <sys/cred.h>
35 #include <sys/time.h>
36 #include <sys/vnode.h>
37 #include <sys/vfs.h>
38 #include <sys/vfs_opreg.h>
39 #include <sys/file.h>
40 #include <sys/filio.h>
41 #include <sys/uio.h>
42 #include <sys/buf.h>
43 #include <sys/mman.h>
44 #include <sys/pathname.h>
45 #include <sys/dirent.h>
46 #include <sys/debug.h>
47 #include <sys/vmsystm.h>
48 #include <sys/fcntl.h>
49 #include <sys/flock.h>
50 #include <sys/swap.h>
51 #include <sys/errno.h>
52 #include <sys/strsubr.h>
53 #include <sys/sysmacros.h>
54 #include <sys/kmem.h>
55 #include <sys/cmn_err.h>
56 #include <sys/pathconf.h>
57 #include <sys/utsname.h>
58 #include <sys/dnlc.h>
59 #include <sys/acl.h>
60 #include <sys/systeminfo.h>
61 #include <sys/atomic.h>
62 #include <sys/policy.h>
63 #include <sys/sdt.h>
64 #include <sys/zone.h>
65 
66 #include <rpc/types.h>
67 #include <rpc/auth.h>
68 #include <rpc/clnt.h>
69 #include <rpc/rpc_rdma.h>
70 
71 #include <nfs/nfs.h>
72 #include <nfs/nfs_clnt.h>
73 #include <nfs/rnode.h>
74 #include <nfs/nfs_acl.h>
75 #include <nfs/lm.h>
76 
77 #include <vm/hat.h>
78 #include <vm/as.h>
79 #include <vm/page.h>
80 #include <vm/pvn.h>
81 #include <vm/seg.h>
82 #include <vm/seg_map.h>
83 #include <vm/seg_kpm.h>
84 #include <vm/seg_vn.h>
85 
86 #include <fs/fs_subr.h>
87 
88 #include <sys/ddi.h>
89 
90 static int	nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
91 			cred_t *);
92 static int	nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
93 			stable_how *);
94 static int	nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *);
95 static int	nfs3setattr(vnode_t *, struct vattr *, int, cred_t *);
96 static int	nfs3_accessx(void *, int, cred_t *);
97 static int	nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
98 static int	nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
99 static int	nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl,
100 			int, vnode_t **, cred_t *, int);
101 static int	nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *);
102 static int	nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
103 			int, vnode_t **, cred_t *);
104 static int	nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
105 			caller_context_t *);
106 static int	do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
107 static void	nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
108 static void	nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *);
109 static int	nfs3_bio(struct buf *, stable_how *, cred_t *);
110 static int	nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
111 			page_t *[], size_t, struct seg *, caddr_t,
112 			enum seg_rw, cred_t *);
113 static void	nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
114 			cred_t *);
115 static int	nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
116 			int, cred_t *);
117 static int	nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
118 			int, cred_t *);
119 static int	nfs3_commit(vnode_t *, offset3, count3, cred_t *);
120 static void	nfs3_set_mod(vnode_t *);
121 static void	nfs3_get_commit(vnode_t *);
122 static void	nfs3_get_commit_range(vnode_t *, u_offset_t, size_t);
123 #if 0 /* unused */
124 #ifdef DEBUG
125 static int	nfs3_no_uncommitted_pages(vnode_t *);
126 #endif
127 #endif /* unused */
128 static int	nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
129 static int	nfs3_commit_vp(vnode_t *, u_offset_t, size_t,  cred_t *);
130 static int	nfs3_sync_commit(vnode_t *, page_t *, offset3, count3,
131 			cred_t *);
132 static void	nfs3_async_commit(vnode_t *, page_t *, offset3, count3,
133 			cred_t *);
134 static void	nfs3_delmap_callback(struct as *, void *, uint_t);
135 
136 /*
137  * Error flags used to pass information about certain special errors
138  * which need to be handled specially.
139  */
140 #define	NFS_EOF			-98
141 #define	NFS_VERF_MISMATCH	-97
142 
143 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
144 #define	ALIGN64(x, ptr, sz)						\
145 	x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1);		\
146 	if (x) {							\
147 		x = sizeof (uint64_t) - (x);				\
148 		sz -= (x);						\
149 		ptr += (x);						\
150 	}
151 
152 /*
153  * These are the vnode ops routines which implement the vnode interface to
154  * the networked file system.  These routines just take their parameters,
155  * make them look networkish by putting the right info into interface structs,
156  * and then calling the appropriate remote routine(s) to do the work.
157  *
158  * Note on directory name lookup cacheing:  If we detect a stale fhandle,
159  * we purge the directory cache relative to that vnode.  This way, the
160  * user won't get burned by the cache repeatedly.  See <nfs/rnode.h> for
161  * more details on rnode locking.
162  */
163 
164 static int	nfs3_open(vnode_t **, int, cred_t *, caller_context_t *);
165 static int	nfs3_close(vnode_t *, int, int, offset_t, cred_t *,
166 			caller_context_t *);
167 static int	nfs3_read(vnode_t *, struct uio *, int, cred_t *,
168 			caller_context_t *);
169 static int	nfs3_write(vnode_t *, struct uio *, int, cred_t *,
170 			caller_context_t *);
171 static int	nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
172 			caller_context_t *);
173 static int	nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *,
174 			caller_context_t *);
175 static int	nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *,
176 			caller_context_t *);
177 static int	nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *);
178 static int	nfs3_readlink(vnode_t *, struct uio *, cred_t *,
179 			caller_context_t *);
180 static int	nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *);
181 static void	nfs3_inactive(vnode_t *, cred_t *, caller_context_t *);
182 static int	nfs3_lookup(vnode_t *, char *, vnode_t **,
183 			struct pathname *, int, vnode_t *, cred_t *,
184 			caller_context_t *, int *, pathname_t *);
185 static int	nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl,
186 			int, vnode_t **, cred_t *, int, caller_context_t *,
187 			vsecattr_t *);
188 static int	nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *,
189 			int);
190 static int	nfs3_link(vnode_t *, vnode_t *, char *, cred_t *,
191 			caller_context_t *, int);
192 static int	nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
193 			caller_context_t *, int);
194 static int	nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
195 			cred_t *, caller_context_t *, int, vsecattr_t *);
196 static int	nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
197 			caller_context_t *, int);
198 static int	nfs3_symlink(vnode_t *, char *, struct vattr *, char *,
199 			cred_t *, caller_context_t *, int);
200 static int	nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *,
201 			caller_context_t *, int);
202 static int	nfs3_fid(vnode_t *, fid_t *, caller_context_t *);
203 static int	nfs3_rwlock(vnode_t *, int, caller_context_t *);
204 static void	nfs3_rwunlock(vnode_t *, int, caller_context_t *);
205 static int	nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
206 static int	nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *,
207 			page_t *[], size_t, struct seg *, caddr_t,
208 			enum seg_rw, cred_t *, caller_context_t *);
209 static int	nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
210 			caller_context_t *);
211 static int	nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
212 			uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
213 static int	nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
214 			uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
215 static int	nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
216 			struct flk_callback *, cred_t *, caller_context_t *);
217 static int	nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t,
218 			cred_t *, caller_context_t *);
219 static int	nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *);
220 static int	nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
221 			uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
222 static int	nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *,
223 			caller_context_t *);
224 static int	nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
225 			cred_t *, caller_context_t *);
226 static void	nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *,
227 			caller_context_t *);
228 static int	nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
229 			caller_context_t *);
230 static int	nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
231 			caller_context_t *);
232 static int	nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
233 			caller_context_t *);
234 
235 struct vnodeops *nfs3_vnodeops;
236 
237 const fs_operation_def_t nfs3_vnodeops_template[] = {
238 	VOPNAME_OPEN,		{ .vop_open = nfs3_open },
239 	VOPNAME_CLOSE,		{ .vop_close = nfs3_close },
240 	VOPNAME_READ,		{ .vop_read = nfs3_read },
241 	VOPNAME_WRITE,		{ .vop_write = nfs3_write },
242 	VOPNAME_IOCTL,		{ .vop_ioctl = nfs3_ioctl },
243 	VOPNAME_GETATTR,	{ .vop_getattr = nfs3_getattr },
244 	VOPNAME_SETATTR,	{ .vop_setattr = nfs3_setattr },
245 	VOPNAME_ACCESS,		{ .vop_access = nfs3_access },
246 	VOPNAME_LOOKUP,		{ .vop_lookup = nfs3_lookup },
247 	VOPNAME_CREATE,		{ .vop_create = nfs3_create },
248 	VOPNAME_REMOVE,		{ .vop_remove = nfs3_remove },
249 	VOPNAME_LINK,		{ .vop_link = nfs3_link },
250 	VOPNAME_RENAME,		{ .vop_rename = nfs3_rename },
251 	VOPNAME_MKDIR,		{ .vop_mkdir = nfs3_mkdir },
252 	VOPNAME_RMDIR,		{ .vop_rmdir = nfs3_rmdir },
253 	VOPNAME_READDIR,	{ .vop_readdir = nfs3_readdir },
254 	VOPNAME_SYMLINK,	{ .vop_symlink = nfs3_symlink },
255 	VOPNAME_READLINK,	{ .vop_readlink = nfs3_readlink },
256 	VOPNAME_FSYNC,		{ .vop_fsync = nfs3_fsync },
257 	VOPNAME_INACTIVE,	{ .vop_inactive = nfs3_inactive },
258 	VOPNAME_FID,		{ .vop_fid = nfs3_fid },
259 	VOPNAME_RWLOCK,		{ .vop_rwlock = nfs3_rwlock },
260 	VOPNAME_RWUNLOCK,	{ .vop_rwunlock = nfs3_rwunlock },
261 	VOPNAME_SEEK,		{ .vop_seek = nfs3_seek },
262 	VOPNAME_FRLOCK,		{ .vop_frlock = nfs3_frlock },
263 	VOPNAME_SPACE,		{ .vop_space = nfs3_space },
264 	VOPNAME_REALVP,		{ .vop_realvp = nfs3_realvp },
265 	VOPNAME_GETPAGE,	{ .vop_getpage = nfs3_getpage },
266 	VOPNAME_PUTPAGE,	{ .vop_putpage = nfs3_putpage },
267 	VOPNAME_MAP,		{ .vop_map = nfs3_map },
268 	VOPNAME_ADDMAP,		{ .vop_addmap = nfs3_addmap },
269 	VOPNAME_DELMAP,		{ .vop_delmap = nfs3_delmap },
270 	/* no separate nfs3_dump */
271 	VOPNAME_DUMP,		{ .vop_dump = nfs_dump },
272 	VOPNAME_PATHCONF,	{ .vop_pathconf = nfs3_pathconf },
273 	VOPNAME_PAGEIO,		{ .vop_pageio = nfs3_pageio },
274 	VOPNAME_DISPOSE,	{ .vop_dispose = nfs3_dispose },
275 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = nfs3_setsecattr },
276 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = nfs3_getsecattr },
277 	VOPNAME_SHRLOCK,	{ .vop_shrlock = nfs3_shrlock },
278 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
279 	NULL,			NULL
280 };
281 
282 /*
283  * XXX:  This is referenced in modstubs.s
284  */
285 struct vnodeops *
286 nfs3_getvnodeops(void)
287 {
288 	return (nfs3_vnodeops);
289 }
290 
291 /* ARGSUSED */
292 static int
293 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
294 {
295 	int error;
296 	struct vattr va;
297 	rnode_t *rp;
298 	vnode_t *vp;
299 
300 	vp = *vpp;
301 	if (nfs_zone() != VTOMI(vp)->mi_zone)
302 		return (EIO);
303 	rp = VTOR(vp);
304 	mutex_enter(&rp->r_statelock);
305 	if (rp->r_cred == NULL) {
306 		crhold(cr);
307 		rp->r_cred = cr;
308 	}
309 	mutex_exit(&rp->r_statelock);
310 
311 	/*
312 	 * If there is no cached data or if close-to-open
313 	 * consistency checking is turned off, we can avoid
314 	 * the over the wire getattr.  Otherwise, if the
315 	 * file system is mounted readonly, then just verify
316 	 * the caches are up to date using the normal mechanism.
317 	 * Else, if the file is not mmap'd, then just mark
318 	 * the attributes as timed out.  They will be refreshed
319 	 * and the caches validated prior to being used.
320 	 * Else, the file system is mounted writeable so
321 	 * force an over the wire GETATTR in order to ensure
322 	 * that all cached data is valid.
323 	 */
324 	if (vp->v_count > 1 ||
325 	    ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
326 	    !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
327 		if (vn_is_readonly(vp))
328 			error = nfs3_validate_caches(vp, cr);
329 		else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
330 			PURGE_ATTRCACHE(vp);
331 			error = 0;
332 		} else {
333 			va.va_mask = AT_ALL;
334 			error = nfs3_getattr_otw(vp, &va, cr);
335 		}
336 	} else
337 		error = 0;
338 
339 	return (error);
340 }
341 
342 /* ARGSUSED */
343 static int
344 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
345 		caller_context_t *ct)
346 {
347 	rnode_t *rp;
348 	int error;
349 	struct vattr va;
350 
351 	/*
352 	 * zone_enter(2) prevents processes from changing zones with NFS files
353 	 * open; if we happen to get here from the wrong zone we can't do
354 	 * anything over the wire.
355 	 */
356 	if (VTOMI(vp)->mi_zone != nfs_zone()) {
357 		/*
358 		 * We could attempt to clean up locks, except we're sure
359 		 * that the current process didn't acquire any locks on
360 		 * the file: any attempt to lock a file belong to another zone
361 		 * will fail, and one can't lock an NFS file and then change
362 		 * zones, as that fails too.
363 		 *
364 		 * Returning an error here is the sane thing to do.  A
365 		 * subsequent call to VN_RELE() which translates to a
366 		 * nfs3_inactive() will clean up state: if the zone of the
367 		 * vnode's origin is still alive and kicking, an async worker
368 		 * thread will handle the request (from the correct zone), and
369 		 * everything (minus the commit and final nfs3_getattr_otw()
370 		 * call) should be OK. If the zone is going away
371 		 * nfs_async_inactive() will throw away cached pages inline.
372 		 */
373 		return (EIO);
374 	}
375 
376 	/*
377 	 * If we are using local locking for this filesystem, then
378 	 * release all of the SYSV style record locks.  Otherwise,
379 	 * we are doing network locking and we need to release all
380 	 * of the network locks.  All of the locks held by this
381 	 * process on this file are released no matter what the
382 	 * incoming reference count is.
383 	 */
384 	if (VTOMI(vp)->mi_flags & MI_LLOCK) {
385 		cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
386 		cleanshares(vp, ttoproc(curthread)->p_pid);
387 	} else
388 		nfs_lockrelease(vp, flag, offset, cr);
389 
390 	if (count > 1)
391 		return (0);
392 
393 	/*
394 	 * If the file has been `unlinked', then purge the
395 	 * DNLC so that this vnode will get reycled quicker
396 	 * and the .nfs* file on the server will get removed.
397 	 */
398 	rp = VTOR(vp);
399 	if (rp->r_unldvp != NULL)
400 		dnlc_purge_vp(vp);
401 
402 	/*
403 	 * If the file was open for write and there are pages,
404 	 * then if the file system was mounted using the "no-close-
405 	 *	to-open" semantics, then start an asynchronous flush
406 	 *	of the all of the pages in the file.
407 	 * else the file system was not mounted using the "no-close-
408 	 *	to-open" semantics, then do a synchronous flush and
409 	 *	commit of all of the dirty and uncommitted pages.
410 	 *
411 	 * The asynchronous flush of the pages in the "nocto" path
412 	 * mostly just associates a cred pointer with the rnode so
413 	 * writes which happen later will have a better chance of
414 	 * working.  It also starts the data being written to the
415 	 * server, but without unnecessarily delaying the application.
416 	 */
417 	if ((flag & FWRITE) && vn_has_cached_data(vp)) {
418 		if (VTOMI(vp)->mi_flags & MI_NOCTO) {
419 			error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC,
420 			    cr, ct);
421 			if (error == EAGAIN)
422 				error = 0;
423 		} else
424 			error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
425 		if (!error) {
426 			mutex_enter(&rp->r_statelock);
427 			error = rp->r_error;
428 			rp->r_error = 0;
429 			mutex_exit(&rp->r_statelock);
430 		}
431 	} else {
432 		mutex_enter(&rp->r_statelock);
433 		error = rp->r_error;
434 		rp->r_error = 0;
435 		mutex_exit(&rp->r_statelock);
436 	}
437 
438 	/*
439 	 * If RWRITEATTR is set, then issue an over the wire GETATTR to
440 	 * refresh the attribute cache with a set of attributes which
441 	 * weren't returned from a WRITE.  This will enable the close-
442 	 * to-open processing to work.
443 	 */
444 	if (rp->r_flags & RWRITEATTR)
445 		(void) nfs3_getattr_otw(vp, &va, cr);
446 
447 	return (error);
448 }
449 
450 /* ARGSUSED */
451 static int
452 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr)
453 {
454 	mntinfo_t *mi;
455 	READ3args args;
456 	READ3uiores res;
457 	int tsize;
458 	offset_t offset;
459 	ssize_t count;
460 	int error;
461 	int douprintf;
462 	failinfo_t fi;
463 	char *sv_hostname;
464 
465 	mi = VTOMI(vp);
466 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
467 	sv_hostname = VTOR(vp)->r_server->sv_hostname;
468 
469 	douprintf = 1;
470 	args.file = *VTOFH3(vp);
471 	fi.vp = vp;
472 	fi.fhp = (caddr_t)&args.file;
473 	fi.copyproc = nfs3copyfh;
474 	fi.lookupproc = nfs3lookup;
475 	fi.xattrdirproc = acl_getxattrdir3;
476 
477 	res.uiop = uiop;
478 
479 	res.wlist = NULL;
480 
481 	offset = uiop->uio_loffset;
482 	count = uiop->uio_resid;
483 
484 	do {
485 		if (mi->mi_io_kstats) {
486 			mutex_enter(&mi->mi_lock);
487 			kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
488 			mutex_exit(&mi->mi_lock);
489 		}
490 
491 		do {
492 			tsize = MIN(mi->mi_tsize, count);
493 			args.offset = (offset3)offset;
494 			args.count = (count3)tsize;
495 			res.size = (uint_t)tsize;
496 			args.res_uiop = uiop;
497 			args.res_data_val_alt = NULL;
498 
499 			error = rfs3call(mi, NFSPROC3_READ,
500 			    xdr_READ3args, (caddr_t)&args,
501 			    xdr_READ3uiores, (caddr_t)&res, cr,
502 			    &douprintf, &res.status, 0, &fi);
503 		} while (error == ENFS_TRYAGAIN);
504 
505 		if (mi->mi_io_kstats) {
506 			mutex_enter(&mi->mi_lock);
507 			kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
508 			mutex_exit(&mi->mi_lock);
509 		}
510 
511 		if (error)
512 			return (error);
513 
514 		error = geterrno3(res.status);
515 		if (error)
516 			return (error);
517 
518 		if (res.count != res.size) {
519 			zcmn_err(getzoneid(), CE_WARN,
520 "nfs3_directio_read: server %s returned incorrect amount",
521 			    sv_hostname);
522 			return (EIO);
523 		}
524 		count -= res.count;
525 		offset += res.count;
526 		if (mi->mi_io_kstats) {
527 			mutex_enter(&mi->mi_lock);
528 			KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
529 			KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
530 			mutex_exit(&mi->mi_lock);
531 		}
532 		lwp_stat_update(LWP_STAT_INBLK, 1);
533 	} while (count && !res.eof);
534 
535 	return (0);
536 }
537 
538 /* ARGSUSED */
539 static int
540 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
541 	caller_context_t *ct)
542 {
543 	rnode_t *rp;
544 	u_offset_t off;
545 	offset_t diff;
546 	int on;
547 	size_t n;
548 	caddr_t base;
549 	uint_t flags;
550 	int error = 0;
551 	mntinfo_t *mi;
552 
553 	rp = VTOR(vp);
554 	mi = VTOMI(vp);
555 
556 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
557 
558 	if (nfs_zone() != mi->mi_zone)
559 		return (EIO);
560 
561 	if (vp->v_type != VREG)
562 		return (EISDIR);
563 
564 	if (uiop->uio_resid == 0)
565 		return (0);
566 
567 	if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
568 		return (EINVAL);
569 
570 	/*
571 	 * Bypass VM if caching has been disabled (e.g., locking) or if
572 	 * using client-side direct I/O and the file is not mmap'd and
573 	 * there are no cached pages.
574 	 */
575 	if ((vp->v_flag & VNOCACHE) ||
576 	    (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
577 	    rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
578 	    !vn_has_cached_data(vp))) {
579 		return (nfs3_directio_read(vp, uiop, cr));
580 	}
581 
582 	do {
583 		off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
584 		on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
585 		n = MIN(MAXBSIZE - on, uiop->uio_resid);
586 
587 		error = nfs3_validate_caches(vp, cr);
588 		if (error)
589 			break;
590 
591 		mutex_enter(&rp->r_statelock);
592 		while (rp->r_flags & RINCACHEPURGE) {
593 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
594 				mutex_exit(&rp->r_statelock);
595 				return (EINTR);
596 			}
597 		}
598 		diff = rp->r_size - uiop->uio_loffset;
599 		mutex_exit(&rp->r_statelock);
600 		if (diff <= 0)
601 			break;
602 		if (diff < n)
603 			n = (size_t)diff;
604 
605 		if (vpm_enable) {
606 			/*
607 			 * Copy data.
608 			 */
609 			error = vpm_data_copy(vp, off + on, n, uiop,
610 			    1, NULL, 0, S_READ);
611 		} else {
612 			base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
613 			    S_READ);
614 
615 			error = uiomove(base + on, n, UIO_READ, uiop);
616 		}
617 
618 		if (!error) {
619 			/*
620 			 * If read a whole block or read to eof,
621 			 * won't need this buffer again soon.
622 			 */
623 			mutex_enter(&rp->r_statelock);
624 			if (n + on == MAXBSIZE ||
625 			    uiop->uio_loffset == rp->r_size)
626 				flags = SM_DONTNEED;
627 			else
628 				flags = 0;
629 			mutex_exit(&rp->r_statelock);
630 			if (vpm_enable) {
631 				error = vpm_sync_pages(vp, off, n, flags);
632 			} else {
633 				error = segmap_release(segkmap, base, flags);
634 			}
635 		} else {
636 			if (vpm_enable) {
637 				(void) vpm_sync_pages(vp, off, n, 0);
638 			} else {
639 				(void) segmap_release(segkmap, base, 0);
640 			}
641 		}
642 	} while (!error && uiop->uio_resid > 0);
643 
644 	return (error);
645 }
646 
647 /* ARGSUSED */
648 static int
649 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
650 	caller_context_t *ct)
651 {
652 	rlim64_t limit = uiop->uio_llimit;
653 	rnode_t *rp;
654 	u_offset_t off;
655 	caddr_t base;
656 	uint_t flags;
657 	int remainder;
658 	size_t n;
659 	int on;
660 	int error;
661 	int resid;
662 	offset_t offset;
663 	mntinfo_t *mi;
664 	uint_t bsize;
665 
666 	rp = VTOR(vp);
667 
668 	if (vp->v_type != VREG)
669 		return (EISDIR);
670 
671 	mi = VTOMI(vp);
672 	if (nfs_zone() != mi->mi_zone)
673 		return (EIO);
674 	if (uiop->uio_resid == 0)
675 		return (0);
676 
677 	if (ioflag & FAPPEND) {
678 		struct vattr va;
679 
680 		/*
681 		 * Must serialize if appending.
682 		 */
683 		if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
684 			nfs_rw_exit(&rp->r_rwlock);
685 			if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
686 			    INTR(vp)))
687 				return (EINTR);
688 		}
689 
690 		va.va_mask = AT_SIZE;
691 		error = nfs3getattr(vp, &va, cr);
692 		if (error)
693 			return (error);
694 		uiop->uio_loffset = va.va_size;
695 	}
696 
697 	offset = uiop->uio_loffset + uiop->uio_resid;
698 
699 	if (uiop->uio_loffset < 0 || offset < 0)
700 		return (EINVAL);
701 
702 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
703 		limit = MAXOFFSET_T;
704 
705 	/*
706 	 * Check to make sure that the process will not exceed
707 	 * its limit on file size.  It is okay to write up to
708 	 * the limit, but not beyond.  Thus, the write which
709 	 * reaches the limit will be short and the next write
710 	 * will return an error.
711 	 */
712 	remainder = 0;
713 	if (offset > limit) {
714 		remainder = offset - limit;
715 		uiop->uio_resid = limit - uiop->uio_loffset;
716 		if (uiop->uio_resid <= 0) {
717 			proc_t *p = ttoproc(curthread);
718 
719 			uiop->uio_resid += remainder;
720 			mutex_enter(&p->p_lock);
721 			(void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
722 			    p->p_rctls, p, RCA_UNSAFE_SIGINFO);
723 			mutex_exit(&p->p_lock);
724 			return (EFBIG);
725 		}
726 	}
727 
728 	if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
729 		return (EINTR);
730 
731 	/*
732 	 * Bypass VM if caching has been disabled (e.g., locking) or if
733 	 * using client-side direct I/O and the file is not mmap'd and
734 	 * there are no cached pages.
735 	 */
736 	if ((vp->v_flag & VNOCACHE) ||
737 	    (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
738 	    rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
739 	    !vn_has_cached_data(vp))) {
740 		size_t bufsize;
741 		int count;
742 		u_offset_t org_offset;
743 		stable_how stab_comm;
744 
745 nfs3_fwrite:
746 		if (rp->r_flags & RSTALE) {
747 			resid = uiop->uio_resid;
748 			offset = uiop->uio_loffset;
749 			error = rp->r_error;
750 			/*
751 			 * A close may have cleared r_error, if so,
752 			 * propagate ESTALE error return properly
753 			 */
754 			if (error == 0)
755 				error = ESTALE;
756 			goto bottom;
757 		}
758 		bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
759 		base = kmem_alloc(bufsize, KM_SLEEP);
760 		do {
761 			if (ioflag & FDSYNC)
762 				stab_comm = DATA_SYNC;
763 			else
764 				stab_comm = FILE_SYNC;
765 			resid = uiop->uio_resid;
766 			offset = uiop->uio_loffset;
767 			count = MIN(uiop->uio_resid, bufsize);
768 			org_offset = uiop->uio_loffset;
769 			error = uiomove(base, count, UIO_WRITE, uiop);
770 			if (!error) {
771 				error = nfs3write(vp, base, org_offset,
772 				    count, cr, &stab_comm);
773 			}
774 		} while (!error && uiop->uio_resid > 0);
775 		kmem_free(base, bufsize);
776 		goto bottom;
777 	}
778 
779 
780 	bsize = vp->v_vfsp->vfs_bsize;
781 
782 	do {
783 		off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
784 		on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
785 		n = MIN(MAXBSIZE - on, uiop->uio_resid);
786 
787 		resid = uiop->uio_resid;
788 		offset = uiop->uio_loffset;
789 
790 		if (rp->r_flags & RSTALE) {
791 			error = rp->r_error;
792 			/*
793 			 * A close may have cleared r_error, if so,
794 			 * propagate ESTALE error return properly
795 			 */
796 			if (error == 0)
797 				error = ESTALE;
798 			break;
799 		}
800 
801 		/*
802 		 * Don't create dirty pages faster than they
803 		 * can be cleaned so that the system doesn't
804 		 * get imbalanced.  If the async queue is
805 		 * maxed out, then wait for it to drain before
806 		 * creating more dirty pages.  Also, wait for
807 		 * any threads doing pagewalks in the vop_getattr
808 		 * entry points so that they don't block for
809 		 * long periods.
810 		 */
811 		mutex_enter(&rp->r_statelock);
812 		while ((mi->mi_max_threads != 0 &&
813 		    rp->r_awcount > 2 * mi->mi_max_threads) ||
814 		    rp->r_gcount > 0) {
815 			if (INTR(vp)) {
816 				klwp_t *lwp = ttolwp(curthread);
817 
818 				if (lwp != NULL)
819 					lwp->lwp_nostop++;
820 				if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
821 					mutex_exit(&rp->r_statelock);
822 					if (lwp != NULL)
823 						lwp->lwp_nostop--;
824 					error = EINTR;
825 					goto bottom;
826 				}
827 				if (lwp != NULL)
828 					lwp->lwp_nostop--;
829 			} else
830 				cv_wait(&rp->r_cv, &rp->r_statelock);
831 		}
832 		mutex_exit(&rp->r_statelock);
833 
834 		/*
835 		 * Touch the page and fault it in if it is not in core
836 		 * before segmap_getmapflt or vpm_data_copy can lock it.
837 		 * This is to avoid the deadlock if the buffer is mapped
838 		 * to the same file through mmap which we want to write.
839 		 */
840 		uio_prefaultpages((long)n, uiop);
841 
842 		if (vpm_enable) {
843 			/*
844 			 * It will use kpm mappings, so no need to
845 			 * pass an address.
846 			 */
847 			error = writerp(rp, NULL, n, uiop, 0);
848 		} else  {
849 			if (segmap_kpm) {
850 				int pon = uiop->uio_loffset & PAGEOFFSET;
851 				size_t pn = MIN(PAGESIZE - pon,
852 				    uiop->uio_resid);
853 				int pagecreate;
854 
855 				mutex_enter(&rp->r_statelock);
856 				pagecreate = (pon == 0) && (pn == PAGESIZE ||
857 				    uiop->uio_loffset + pn >= rp->r_size);
858 				mutex_exit(&rp->r_statelock);
859 
860 				base = segmap_getmapflt(segkmap, vp, off + on,
861 				    pn, !pagecreate, S_WRITE);
862 
863 				error = writerp(rp, base + pon, n, uiop,
864 				    pagecreate);
865 
866 			} else {
867 				base = segmap_getmapflt(segkmap, vp, off + on,
868 				    n, 0, S_READ);
869 				error = writerp(rp, base + on, n, uiop, 0);
870 			}
871 		}
872 
873 		if (!error) {
874 			if (mi->mi_flags & MI_NOAC)
875 				flags = SM_WRITE;
876 			else if ((uiop->uio_loffset % bsize) == 0 ||
877 			    IS_SWAPVP(vp)) {
878 				/*
879 				 * Have written a whole block.
880 				 * Start an asynchronous write
881 				 * and mark the buffer to
882 				 * indicate that it won't be
883 				 * needed again soon.
884 				 */
885 				flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
886 			} else
887 				flags = 0;
888 			if ((ioflag & (FSYNC|FDSYNC)) ||
889 			    (rp->r_flags & ROUTOFSPACE)) {
890 				flags &= ~SM_ASYNC;
891 				flags |= SM_WRITE;
892 			}
893 			if (vpm_enable) {
894 				error = vpm_sync_pages(vp, off, n, flags);
895 			} else {
896 				error = segmap_release(segkmap, base, flags);
897 			}
898 		} else {
899 			if (vpm_enable) {
900 				(void) vpm_sync_pages(vp, off, n, 0);
901 			} else {
902 				(void) segmap_release(segkmap, base, 0);
903 			}
904 			/*
905 			 * In the event that we got an access error while
906 			 * faulting in a page for a write-only file just
907 			 * force a write.
908 			 */
909 			if (error == EACCES)
910 				goto nfs3_fwrite;
911 		}
912 	} while (!error && uiop->uio_resid > 0);
913 
914 bottom:
915 	if (error) {
916 		uiop->uio_resid = resid + remainder;
917 		uiop->uio_loffset = offset;
918 	} else
919 		uiop->uio_resid += remainder;
920 
921 	nfs_rw_exit(&rp->r_lkserlock);
922 
923 	return (error);
924 }
925 
926 /*
927  * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
928  */
929 static int
930 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
931 	int flags, cred_t *cr)
932 {
933 	struct buf *bp;
934 	int error;
935 	page_t *savepp;
936 	uchar_t fsdata;
937 	stable_how stab_comm;
938 
939 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
940 	bp = pageio_setup(pp, len, vp, flags);
941 	ASSERT(bp != NULL);
942 
943 	/*
944 	 * pageio_setup should have set b_addr to 0.  This
945 	 * is correct since we want to do I/O on a page
946 	 * boundary.  bp_mapin will use this addr to calculate
947 	 * an offset, and then set b_addr to the kernel virtual
948 	 * address it allocated for us.
949 	 */
950 	ASSERT(bp->b_un.b_addr == 0);
951 
952 	bp->b_edev = 0;
953 	bp->b_dev = 0;
954 	bp->b_lblkno = lbtodb(off);
955 	bp->b_file = vp;
956 	bp->b_offset = (offset_t)off;
957 	bp_mapin(bp);
958 
959 	/*
960 	 * Calculate the desired level of stability to write data
961 	 * on the server and then mark all of the pages to reflect
962 	 * this.
963 	 */
964 	if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
965 	    freemem > desfree) {
966 		stab_comm = UNSTABLE;
967 		fsdata = C_DELAYCOMMIT;
968 	} else {
969 		stab_comm = FILE_SYNC;
970 		fsdata = C_NOCOMMIT;
971 	}
972 
973 	savepp = pp;
974 	do {
975 		pp->p_fsdata = fsdata;
976 	} while ((pp = pp->p_next) != savepp);
977 
978 	error = nfs3_bio(bp, &stab_comm, cr);
979 
980 	bp_mapout(bp);
981 	pageio_done(bp);
982 
983 	/*
984 	 * If the server wrote pages in a more stable fashion than
985 	 * was requested, then clear all of the marks in the pages
986 	 * indicating that COMMIT operations were required.
987 	 */
988 	if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) {
989 		do {
990 			pp->p_fsdata = C_NOCOMMIT;
991 		} while ((pp = pp->p_next) != savepp);
992 	}
993 
994 	return (error);
995 }
996 
997 /*
998  * Write to file.  Writes to remote server in largest size
999  * chunks that the server can handle.  Write is synchronous.
1000  */
1001 static int
1002 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
1003 	stable_how *stab_comm)
1004 {
1005 	mntinfo_t *mi;
1006 	WRITE3args args;
1007 	WRITE3res res;
1008 	int error;
1009 	int tsize;
1010 	rnode_t *rp;
1011 	int douprintf;
1012 
1013 	rp = VTOR(vp);
1014 	mi = VTOMI(vp);
1015 
1016 	ASSERT(nfs_zone() == mi->mi_zone);
1017 
1018 	args.file = *VTOFH3(vp);
1019 	args.stable = *stab_comm;
1020 
1021 	*stab_comm = FILE_SYNC;
1022 
1023 	douprintf = 1;
1024 
1025 	do {
1026 		if ((vp->v_flag & VNOCACHE) ||
1027 		    (rp->r_flags & RDIRECTIO) ||
1028 		    (mi->mi_flags & MI_DIRECTIO))
1029 			tsize = MIN(mi->mi_stsize, count);
1030 		else
1031 			tsize = MIN(mi->mi_curwrite, count);
1032 		args.offset = (offset3)offset;
1033 		args.count = (count3)tsize;
1034 		args.data.data_len = (uint_t)tsize;
1035 		args.data.data_val = base;
1036 
1037 		if (mi->mi_io_kstats) {
1038 			mutex_enter(&mi->mi_lock);
1039 			kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1040 			mutex_exit(&mi->mi_lock);
1041 		}
1042 		args.mblk = NULL;
1043 		do {
1044 			error = rfs3call(mi, NFSPROC3_WRITE,
1045 			    xdr_WRITE3args, (caddr_t)&args,
1046 			    xdr_WRITE3res, (caddr_t)&res, cr,
1047 			    &douprintf, &res.status, 0, NULL);
1048 		} while (error == ENFS_TRYAGAIN);
1049 		if (mi->mi_io_kstats) {
1050 			mutex_enter(&mi->mi_lock);
1051 			kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1052 			mutex_exit(&mi->mi_lock);
1053 		}
1054 
1055 		if (error)
1056 			return (error);
1057 		error = geterrno3(res.status);
1058 		if (!error) {
1059 			if (res.resok.count > args.count) {
1060 				zcmn_err(getzoneid(), CE_WARN,
1061 				    "nfs3write: server %s wrote %u, "
1062 				    "requested was %u",
1063 				    rp->r_server->sv_hostname,
1064 				    res.resok.count, args.count);
1065 				return (EIO);
1066 			}
1067 			if (res.resok.committed == UNSTABLE) {
1068 				*stab_comm = UNSTABLE;
1069 				if (args.stable == DATA_SYNC ||
1070 				    args.stable == FILE_SYNC) {
1071 					zcmn_err(getzoneid(), CE_WARN,
1072 			"nfs3write: server %s did not commit to stable storage",
1073 					    rp->r_server->sv_hostname);
1074 					return (EIO);
1075 				}
1076 			}
1077 			tsize = (int)res.resok.count;
1078 			count -= tsize;
1079 			base += tsize;
1080 			offset += tsize;
1081 			if (mi->mi_io_kstats) {
1082 				mutex_enter(&mi->mi_lock);
1083 				KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
1084 				KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
1085 				    tsize;
1086 				mutex_exit(&mi->mi_lock);
1087 			}
1088 			lwp_stat_update(LWP_STAT_OUBLK, 1);
1089 			mutex_enter(&rp->r_statelock);
1090 			if (rp->r_flags & RHAVEVERF) {
1091 				if (rp->r_verf != res.resok.verf) {
1092 					nfs3_set_mod(vp);
1093 					rp->r_verf = res.resok.verf;
1094 					/*
1095 					 * If the data was written UNSTABLE,
1096 					 * then might as well stop because
1097 					 * the whole block will have to get
1098 					 * rewritten anyway.
1099 					 */
1100 					if (*stab_comm == UNSTABLE) {
1101 						mutex_exit(&rp->r_statelock);
1102 						break;
1103 					}
1104 				}
1105 			} else {
1106 				rp->r_verf = res.resok.verf;
1107 				rp->r_flags |= RHAVEVERF;
1108 			}
1109 			/*
1110 			 * Mark the attribute cache as timed out and
1111 			 * set RWRITEATTR to indicate that the file
1112 			 * was modified with a WRITE operation and
1113 			 * that the attributes can not be trusted.
1114 			 */
1115 			PURGE_ATTRCACHE_LOCKED(rp);
1116 			rp->r_flags |= RWRITEATTR;
1117 			mutex_exit(&rp->r_statelock);
1118 		}
1119 	} while (!error && count);
1120 
1121 	return (error);
1122 }
1123 
1124 /*
1125  * Read from a file.  Reads data in largest chunks our interface can handle.
1126  */
1127 static int
1128 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count,
1129 	size_t *residp, cred_t *cr)
1130 {
1131 	mntinfo_t *mi;
1132 	READ3args args;
1133 	READ3vres res;
1134 	int tsize;
1135 	int error;
1136 	int douprintf;
1137 	failinfo_t fi;
1138 	rnode_t *rp;
1139 	struct vattr va;
1140 	hrtime_t t;
1141 
1142 	rp = VTOR(vp);
1143 	mi = VTOMI(vp);
1144 	ASSERT(nfs_zone() == mi->mi_zone);
1145 	douprintf = 1;
1146 
1147 	args.file = *VTOFH3(vp);
1148 	fi.vp = vp;
1149 	fi.fhp = (caddr_t)&args.file;
1150 	fi.copyproc = nfs3copyfh;
1151 	fi.lookupproc = nfs3lookup;
1152 	fi.xattrdirproc = acl_getxattrdir3;
1153 
1154 	res.pov.fres.vp = vp;
1155 	res.pov.fres.vap = &va;
1156 
1157 	res.wlist = NULL;
1158 	*residp = count;
1159 	do {
1160 		if (mi->mi_io_kstats) {
1161 			mutex_enter(&mi->mi_lock);
1162 			kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1163 			mutex_exit(&mi->mi_lock);
1164 		}
1165 
1166 		do {
1167 			if ((vp->v_flag & VNOCACHE) ||
1168 			    (rp->r_flags & RDIRECTIO) ||
1169 			    (mi->mi_flags & MI_DIRECTIO))
1170 				tsize = MIN(mi->mi_tsize, count);
1171 			else
1172 				tsize = MIN(mi->mi_curread, count);
1173 			res.data.data_val = base;
1174 			res.data.data_len = tsize;
1175 			args.offset = (offset3)offset;
1176 			args.count = (count3)tsize;
1177 			args.res_uiop = NULL;
1178 			args.res_data_val_alt = base;
1179 
1180 			t = gethrtime();
1181 			error = rfs3call(mi, NFSPROC3_READ,
1182 			    xdr_READ3args, (caddr_t)&args,
1183 			    xdr_READ3vres, (caddr_t)&res, cr,
1184 			    &douprintf, &res.status, 0, &fi);
1185 		} while (error == ENFS_TRYAGAIN);
1186 
1187 		if (mi->mi_io_kstats) {
1188 			mutex_enter(&mi->mi_lock);
1189 			kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1190 			mutex_exit(&mi->mi_lock);
1191 		}
1192 
1193 		if (error)
1194 			return (error);
1195 
1196 		error = geterrno3(res.status);
1197 		if (error)
1198 			return (error);
1199 
1200 		if (res.count != res.data.data_len) {
1201 			zcmn_err(getzoneid(), CE_WARN,
1202 			    "nfs3read: server %s returned incorrect amount",
1203 			    rp->r_server->sv_hostname);
1204 			return (EIO);
1205 		}
1206 
1207 		count -= res.count;
1208 		*residp = count;
1209 		base += res.count;
1210 		offset += res.count;
1211 		if (mi->mi_io_kstats) {
1212 			mutex_enter(&mi->mi_lock);
1213 			KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1214 			KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
1215 			mutex_exit(&mi->mi_lock);
1216 		}
1217 		lwp_stat_update(LWP_STAT_INBLK, 1);
1218 	} while (count && !res.eof);
1219 
1220 	if (res.pov.attributes) {
1221 		mutex_enter(&rp->r_statelock);
1222 		if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) {
1223 			mutex_exit(&rp->r_statelock);
1224 			PURGE_ATTRCACHE(vp);
1225 		} else {
1226 			if (rp->r_mtime <= t)
1227 				nfs_attrcache_va(vp, &va);
1228 			mutex_exit(&rp->r_statelock);
1229 		}
1230 	}
1231 
1232 	return (0);
1233 }
1234 
1235 /* ARGSUSED */
1236 static int
1237 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1238 	caller_context_t *ct)
1239 {
1240 
1241 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1242 		return (EIO);
1243 	switch (cmd) {
1244 		case _FIODIRECTIO:
1245 			return (nfs_directio(vp, (int)arg, cr));
1246 		default:
1247 			return (ENOTTY);
1248 	}
1249 }
1250 
1251 /* ARGSUSED */
1252 static int
1253 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1254 	caller_context_t *ct)
1255 {
1256 	int error;
1257 	rnode_t *rp;
1258 
1259 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1260 		return (EIO);
1261 	/*
1262 	 * If it has been specified that the return value will
1263 	 * just be used as a hint, and we are only being asked
1264 	 * for size, fsid or rdevid, then return the client's
1265 	 * notion of these values without checking to make sure
1266 	 * that the attribute cache is up to date.
1267 	 * The whole point is to avoid an over the wire GETATTR
1268 	 * call.
1269 	 */
1270 	rp = VTOR(vp);
1271 	if (flags & ATTR_HINT) {
1272 		if (vap->va_mask ==
1273 		    (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1274 			mutex_enter(&rp->r_statelock);
1275 			if (vap->va_mask | AT_SIZE)
1276 				vap->va_size = rp->r_size;
1277 			if (vap->va_mask | AT_FSID)
1278 				vap->va_fsid = rp->r_attr.va_fsid;
1279 			if (vap->va_mask | AT_RDEV)
1280 				vap->va_rdev = rp->r_attr.va_rdev;
1281 			mutex_exit(&rp->r_statelock);
1282 			return (0);
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * Only need to flush pages if asking for the mtime
1288 	 * and if there any dirty pages or any outstanding
1289 	 * asynchronous (write) requests for this file.
1290 	 */
1291 	if (vap->va_mask & AT_MTIME) {
1292 		if (vn_has_cached_data(vp) &&
1293 		    ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1294 			mutex_enter(&rp->r_statelock);
1295 			rp->r_gcount++;
1296 			mutex_exit(&rp->r_statelock);
1297 			error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1298 			mutex_enter(&rp->r_statelock);
1299 			if (error && (error == ENOSPC || error == EDQUOT)) {
1300 				if (!rp->r_error)
1301 					rp->r_error = error;
1302 			}
1303 			if (--rp->r_gcount == 0)
1304 				cv_broadcast(&rp->r_cv);
1305 			mutex_exit(&rp->r_statelock);
1306 		}
1307 	}
1308 
1309 	return (nfs3getattr(vp, vap, cr));
1310 }
1311 
1312 /*ARGSUSED4*/
1313 static int
1314 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1315 		caller_context_t *ct)
1316 {
1317 	int error;
1318 	struct vattr va;
1319 
1320 	if (vap->va_mask & AT_NOSET)
1321 		return (EINVAL);
1322 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1323 		return (EIO);
1324 
1325 	va.va_mask = AT_UID | AT_MODE;
1326 	error = nfs3getattr(vp, &va, cr);
1327 	if (error)
1328 		return (error);
1329 
1330 	error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx,
1331 	    vp);
1332 	if (error)
1333 		return (error);
1334 
1335 	return (nfs3setattr(vp, vap, flags, cr));
1336 }
1337 
1338 static int
1339 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1340 {
1341 	int error;
1342 	uint_t mask;
1343 	SETATTR3args args;
1344 	SETATTR3res res;
1345 	int douprintf;
1346 	rnode_t *rp;
1347 	struct vattr va;
1348 	mode_t omode;
1349 	vsecattr_t *vsp;
1350 	hrtime_t t;
1351 
1352 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1353 	mask = vap->va_mask;
1354 
1355 	rp = VTOR(vp);
1356 
1357 	/*
1358 	 * Only need to flush pages if there are any pages and
1359 	 * if the file is marked as dirty in some fashion.  The
1360 	 * file must be flushed so that we can accurately
1361 	 * determine the size of the file and the cached data
1362 	 * after the SETATTR returns.  A file is considered to
1363 	 * be dirty if it is either marked with RDIRTY, has
1364 	 * outstanding i/o's active, or is mmap'd.  In this
1365 	 * last case, we can't tell whether there are dirty
1366 	 * pages, so we flush just to be sure.
1367 	 */
1368 	if (vn_has_cached_data(vp) &&
1369 	    ((rp->r_flags & RDIRTY) ||
1370 	    rp->r_count > 0 ||
1371 	    rp->r_mapcnt > 0)) {
1372 		ASSERT(vp->v_type != VCHR);
1373 		error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1374 		if (error && (error == ENOSPC || error == EDQUOT)) {
1375 			mutex_enter(&rp->r_statelock);
1376 			if (!rp->r_error)
1377 				rp->r_error = error;
1378 			mutex_exit(&rp->r_statelock);
1379 		}
1380 	}
1381 
1382 	args.object = *RTOFH3(rp);
1383 	/*
1384 	 * If the intent is for the server to set the times,
1385 	 * there is no point in have the mask indicating set mtime or
1386 	 * atime, because the vap values may be junk, and so result
1387 	 * in an overflow error. Remove these flags from the vap mask
1388 	 * before calling in this case, and restore them afterwards.
1389 	 */
1390 	if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) {
1391 		/* Use server times, so don't set the args time fields */
1392 		vap->va_mask &= ~(AT_ATIME | AT_MTIME);
1393 		error = vattr_to_sattr3(vap, &args.new_attributes);
1394 		vap->va_mask |= (mask & (AT_ATIME | AT_MTIME));
1395 		if (mask & AT_ATIME) {
1396 			args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
1397 		}
1398 		if (mask & AT_MTIME) {
1399 			args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
1400 		}
1401 	} else {
1402 		/* Either do not set times or use the client specified times */
1403 		error = vattr_to_sattr3(vap, &args.new_attributes);
1404 	}
1405 
1406 	if (error) {
1407 		/* req time field(s) overflow - return immediately */
1408 		return (error);
1409 	}
1410 
1411 	va.va_mask = AT_MODE | AT_CTIME;
1412 	error = nfs3getattr(vp, &va, cr);
1413 	if (error)
1414 		return (error);
1415 	omode = va.va_mode;
1416 
1417 tryagain:
1418 	if (mask & AT_SIZE) {
1419 		args.guard.check = TRUE;
1420 		args.guard.obj_ctime.seconds = va.va_ctime.tv_sec;
1421 		args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec;
1422 	} else
1423 		args.guard.check = FALSE;
1424 
1425 	douprintf = 1;
1426 
1427 	t = gethrtime();
1428 
1429 	error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
1430 	    xdr_SETATTR3args, (caddr_t)&args,
1431 	    xdr_SETATTR3res, (caddr_t)&res, cr,
1432 	    &douprintf, &res.status, 0, NULL);
1433 
1434 	/*
1435 	 * Purge the access cache and ACL cache if changing either the
1436 	 * owner of the file, the group owner, or the mode.  These may
1437 	 * change the access permissions of the file, so purge old
1438 	 * information and start over again.
1439 	 */
1440 	if (mask & (AT_UID | AT_GID | AT_MODE)) {
1441 		(void) nfs_access_purge_rp(rp);
1442 		if (rp->r_secattr != NULL) {
1443 			mutex_enter(&rp->r_statelock);
1444 			vsp = rp->r_secattr;
1445 			rp->r_secattr = NULL;
1446 			mutex_exit(&rp->r_statelock);
1447 			if (vsp != NULL)
1448 				nfs_acl_free(vsp);
1449 		}
1450 	}
1451 
1452 	if (error) {
1453 		PURGE_ATTRCACHE(vp);
1454 		return (error);
1455 	}
1456 
1457 	error = geterrno3(res.status);
1458 	if (!error) {
1459 		/*
1460 		 * If changing the size of the file, invalidate
1461 		 * any local cached data which is no longer part
1462 		 * of the file.  We also possibly invalidate the
1463 		 * last page in the file.  We could use
1464 		 * pvn_vpzero(), but this would mark the page as
1465 		 * modified and require it to be written back to
1466 		 * the server for no particularly good reason.
1467 		 * This way, if we access it, then we bring it
1468 		 * back in.  A read should be cheaper than a
1469 		 * write.
1470 		 */
1471 		if (mask & AT_SIZE) {
1472 			nfs_invalidate_pages(vp,
1473 			    (vap->va_size & PAGEMASK), cr);
1474 		}
1475 		nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
1476 		/*
1477 		 * Some servers will change the mode to clear the setuid
1478 		 * and setgid bits when changing the uid or gid.  The
1479 		 * client needs to compensate appropriately.
1480 		 */
1481 		if (mask & (AT_UID | AT_GID)) {
1482 			int terror;
1483 
1484 			va.va_mask = AT_MODE;
1485 			terror = nfs3getattr(vp, &va, cr);
1486 			if (!terror &&
1487 			    (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
1488 			    (!(mask & AT_MODE) && va.va_mode != omode))) {
1489 				va.va_mask = AT_MODE;
1490 				if (mask & AT_MODE)
1491 					va.va_mode = vap->va_mode;
1492 				else
1493 					va.va_mode = omode;
1494 				(void) nfs3setattr(vp, &va, 0, cr);
1495 			}
1496 		}
1497 	} else {
1498 		nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
1499 		/*
1500 		 * If we got back a "not synchronized" error, then
1501 		 * we need to retry with a new guard value.  The
1502 		 * guard value used is the change time.  If the
1503 		 * server returned post_op_attr, then we can just
1504 		 * retry because we have the latest attributes.
1505 		 * Otherwise, we issue a GETATTR to get the latest
1506 		 * attributes and then retry.  If we couldn't get
1507 		 * the attributes this way either, then we give
1508 		 * up because we can't complete the operation as
1509 		 * required.
1510 		 */
1511 		if (res.status == NFS3ERR_NOT_SYNC) {
1512 			va.va_mask = AT_CTIME;
1513 			if (nfs3getattr(vp, &va, cr) == 0)
1514 				goto tryagain;
1515 		}
1516 		PURGE_STALE_FH(error, vp, cr);
1517 	}
1518 
1519 	return (error);
1520 }
1521 
1522 static int
1523 nfs3_accessx(void *vp, int mode, cred_t *cr)
1524 {
1525 	ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1526 	return (nfs3_access(vp, mode, 0, cr, NULL));
1527 }
1528 
1529 /* ARGSUSED */
1530 static int
1531 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1532 {
1533 	int error;
1534 	ACCESS3args args;
1535 	ACCESS3res res;
1536 	int douprintf;
1537 	uint32 acc;
1538 	rnode_t *rp;
1539 	cred_t *cred, *ncr, *ncrfree = NULL;
1540 	failinfo_t fi;
1541 	nfs_access_type_t cacc;
1542 	hrtime_t t;
1543 
1544 	acc = 0;
1545 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1546 		return (EIO);
1547 	if (mode & VREAD)
1548 		acc |= ACCESS3_READ;
1549 	if (mode & VWRITE) {
1550 		if (vn_is_readonly(vp) && !IS_DEVVP(vp))
1551 			return (EROFS);
1552 		if (vp->v_type == VDIR)
1553 			acc |= ACCESS3_DELETE;
1554 		acc |= ACCESS3_MODIFY | ACCESS3_EXTEND;
1555 	}
1556 	if (mode & VEXEC) {
1557 		if (vp->v_type == VDIR)
1558 			acc |= ACCESS3_LOOKUP;
1559 		else
1560 			acc |= ACCESS3_EXECUTE;
1561 	}
1562 
1563 	rp = VTOR(vp);
1564 	args.object = *VTOFH3(vp);
1565 	if (vp->v_type == VDIR) {
1566 		args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY |
1567 		    ACCESS3_EXTEND | ACCESS3_LOOKUP;
1568 	} else {
1569 		args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND |
1570 		    ACCESS3_EXECUTE;
1571 	}
1572 	fi.vp = vp;
1573 	fi.fhp = (caddr_t)&args.object;
1574 	fi.copyproc = nfs3copyfh;
1575 	fi.lookupproc = nfs3lookup;
1576 	fi.xattrdirproc = acl_getxattrdir3;
1577 
1578 	cred = cr;
1579 	/*
1580 	 * ncr and ncrfree both initially
1581 	 * point to the memory area returned
1582 	 * by crnetadjust();
1583 	 * ncrfree not NULL when exiting means
1584 	 * that we need to release it
1585 	 */
1586 	ncr = crnetadjust(cred);
1587 	ncrfree = ncr;
1588 tryagain:
1589 	if (rp->r_acache != NULL) {
1590 		cacc = nfs_access_check(rp, acc, cred);
1591 		if (cacc == NFS_ACCESS_ALLOWED) {
1592 			if (ncrfree != NULL)
1593 				crfree(ncrfree);
1594 			return (0);
1595 		}
1596 		if (cacc == NFS_ACCESS_DENIED) {
1597 			/*
1598 			 * If the cred can be adjusted, try again
1599 			 * with the new cred.
1600 			 */
1601 			if (ncr != NULL) {
1602 				cred = ncr;
1603 				ncr = NULL;
1604 				goto tryagain;
1605 			}
1606 			if (ncrfree != NULL)
1607 				crfree(ncrfree);
1608 			return (EACCES);
1609 		}
1610 	}
1611 
1612 	douprintf = 1;
1613 
1614 	t = gethrtime();
1615 
1616 	error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS,
1617 	    xdr_ACCESS3args, (caddr_t)&args,
1618 	    xdr_ACCESS3res, (caddr_t)&res, cred,
1619 	    &douprintf, &res.status, 0, &fi);
1620 
1621 	if (error) {
1622 		if (ncrfree != NULL)
1623 			crfree(ncrfree);
1624 		return (error);
1625 	}
1626 
1627 	error = geterrno3(res.status);
1628 	if (!error) {
1629 		nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
1630 		nfs_access_cache(rp, args.access, res.resok.access, cred);
1631 		/*
1632 		 * we just cached results with cred; if cred is the
1633 		 * adjusted credentials from crnetadjust, we do not want
1634 		 * to release them before exiting: hence setting ncrfree
1635 		 * to NULL
1636 		 */
1637 		if (cred != cr)
1638 			ncrfree = NULL;
1639 		if ((acc & res.resok.access) != acc) {
1640 			/*
1641 			 * If the cred can be adjusted, try again
1642 			 * with the new cred.
1643 			 */
1644 			if (ncr != NULL) {
1645 				cred = ncr;
1646 				ncr = NULL;
1647 				goto tryagain;
1648 			}
1649 			error = EACCES;
1650 		}
1651 	} else {
1652 		nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
1653 		PURGE_STALE_FH(error, vp, cr);
1654 	}
1655 
1656 	if (ncrfree != NULL)
1657 		crfree(ncrfree);
1658 
1659 	return (error);
1660 }
1661 
1662 static int nfs3_do_symlink_cache = 1;
1663 
1664 /* ARGSUSED */
1665 static int
1666 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1667 {
1668 	int error;
1669 	READLINK3args args;
1670 	READLINK3res res;
1671 	nfspath3 resdata_backup;
1672 	rnode_t *rp;
1673 	int douprintf;
1674 	int len;
1675 	failinfo_t fi;
1676 	hrtime_t t;
1677 
1678 	/*
1679 	 * Can't readlink anything other than a symbolic link.
1680 	 */
1681 	if (vp->v_type != VLNK)
1682 		return (EINVAL);
1683 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1684 		return (EIO);
1685 
1686 	rp = VTOR(vp);
1687 	if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) {
1688 		error = nfs3_validate_caches(vp, cr);
1689 		if (error)
1690 			return (error);
1691 		mutex_enter(&rp->r_statelock);
1692 		if (rp->r_symlink.contents != NULL) {
1693 			error = uiomove(rp->r_symlink.contents,
1694 			    rp->r_symlink.len, UIO_READ, uiop);
1695 			mutex_exit(&rp->r_statelock);
1696 			return (error);
1697 		}
1698 		mutex_exit(&rp->r_statelock);
1699 	}
1700 
1701 	args.symlink = *VTOFH3(vp);
1702 	fi.vp = vp;
1703 	fi.fhp = (caddr_t)&args.symlink;
1704 	fi.copyproc = nfs3copyfh;
1705 	fi.lookupproc = nfs3lookup;
1706 	fi.xattrdirproc = acl_getxattrdir3;
1707 
1708 	res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1709 
1710 	resdata_backup = res.resok.data;
1711 
1712 	douprintf = 1;
1713 
1714 	t = gethrtime();
1715 
1716 	error = rfs3call(VTOMI(vp), NFSPROC3_READLINK,
1717 	    xdr_READLINK3args, (caddr_t)&args,
1718 	    xdr_READLINK3res, (caddr_t)&res, cr,
1719 	    &douprintf, &res.status, 0, &fi);
1720 
1721 	if (res.resok.data == nfs3nametoolong)
1722 		error = EINVAL;
1723 
1724 	if (error) {
1725 		kmem_free(resdata_backup, MAXPATHLEN);
1726 		return (error);
1727 	}
1728 
1729 	error = geterrno3(res.status);
1730 	if (!error) {
1731 		nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t,
1732 		    cr);
1733 		len = strlen(res.resok.data);
1734 		error = uiomove(res.resok.data, len, UIO_READ, uiop);
1735 		if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) {
1736 			mutex_enter(&rp->r_statelock);
1737 				if (rp->r_symlink.contents == NULL) {
1738 				rp->r_symlink.contents = res.resok.data;
1739 				rp->r_symlink.len = len;
1740 				rp->r_symlink.size = MAXPATHLEN;
1741 				mutex_exit(&rp->r_statelock);
1742 			} else {
1743 				mutex_exit(&rp->r_statelock);
1744 
1745 				kmem_free((void *)res.resok.data, MAXPATHLEN);
1746 			}
1747 		} else {
1748 			kmem_free((void *)res.resok.data, MAXPATHLEN);
1749 		}
1750 	} else {
1751 		nfs3_cache_post_op_attr(vp,
1752 		    &res.resfail.symlink_attributes, t, cr);
1753 		PURGE_STALE_FH(error, vp, cr);
1754 
1755 		kmem_free((void *)res.resok.data, MAXPATHLEN);
1756 
1757 	}
1758 
1759 	/*
1760 	 * The over the wire error for attempting to readlink something
1761 	 * other than a symbolic link is ENXIO.  However, we need to
1762 	 * return EINVAL instead of ENXIO, so we map it here.
1763 	 */
1764 	return (error == ENXIO ? EINVAL : error);
1765 }
1766 
1767 /*
1768  * Flush local dirty pages to stable storage on the server.
1769  *
1770  * If FNODSYNC is specified, then there is nothing to do because
1771  * metadata changes are not cached on the client before being
1772  * sent to the server.
1773  */
1774 /* ARGSUSED */
1775 static int
1776 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1777 {
1778 	int error;
1779 
1780 	if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1781 		return (0);
1782 	if (nfs_zone() != VTOMI(vp)->mi_zone)
1783 		return (EIO);
1784 
1785 	error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
1786 	if (!error)
1787 		error = VTOR(vp)->r_error;
1788 	return (error);
1789 }
1790 
1791 /*
1792  * Weirdness: if the file was removed or the target of a rename
1793  * operation while it was open, it got renamed instead.  Here we
1794  * remove the renamed file.
1795  */
1796 /* ARGSUSED */
1797 static void
1798 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1799 {
1800 	rnode_t *rp;
1801 
1802 	ASSERT(vp != DNLC_NO_VNODE);
1803 
1804 	/*
1805 	 * If this is coming from the wrong zone, we let someone in the right
1806 	 * zone take care of it asynchronously.  We can get here due to
1807 	 * VN_RELE() being called from pageout() or fsflush().  This call may
1808 	 * potentially turn into an expensive no-op if, for instance, v_count
1809 	 * gets incremented in the meantime, but it's still correct.
1810 	 */
1811 	if (nfs_zone() != VTOMI(vp)->mi_zone) {
1812 		nfs_async_inactive(vp, cr, nfs3_inactive);
1813 		return;
1814 	}
1815 
1816 	rp = VTOR(vp);
1817 redo:
1818 	if (rp->r_unldvp != NULL) {
1819 		/*
1820 		 * Save the vnode pointer for the directory where the
1821 		 * unlinked-open file got renamed, then set it to NULL
1822 		 * to prevent another thread from getting here before
1823 		 * we're done with the remove.  While we have the
1824 		 * statelock, make local copies of the pertinent rnode
1825 		 * fields.  If we weren't to do this in an atomic way, the
1826 		 * the unl* fields could become inconsistent with respect
1827 		 * to each other due to a race condition between this
1828 		 * code and nfs_remove().  See bug report 1034328.
1829 		 */
1830 		mutex_enter(&rp->r_statelock);
1831 		if (rp->r_unldvp != NULL) {
1832 			vnode_t *unldvp;
1833 			char *unlname;
1834 			cred_t *unlcred;
1835 			REMOVE3args args;
1836 			REMOVE3res res;
1837 			int douprintf;
1838 			int error;
1839 			hrtime_t t;
1840 
1841 			unldvp = rp->r_unldvp;
1842 			rp->r_unldvp = NULL;
1843 			unlname = rp->r_unlname;
1844 			rp->r_unlname = NULL;
1845 			unlcred = rp->r_unlcred;
1846 			rp->r_unlcred = NULL;
1847 			mutex_exit(&rp->r_statelock);
1848 
1849 			/*
1850 			 * If there are any dirty pages left, then flush
1851 			 * them.  This is unfortunate because they just
1852 			 * may get thrown away during the remove operation,
1853 			 * but we have to do this for correctness.
1854 			 */
1855 			if (vn_has_cached_data(vp) &&
1856 			    ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1857 				ASSERT(vp->v_type != VCHR);
1858 				error = nfs3_putpage(vp, (offset_t)0, 0, 0,
1859 				    cr, ct);
1860 				if (error) {
1861 					mutex_enter(&rp->r_statelock);
1862 					if (!rp->r_error)
1863 						rp->r_error = error;
1864 					mutex_exit(&rp->r_statelock);
1865 				}
1866 			}
1867 
1868 			/*
1869 			 * Do the remove operation on the renamed file
1870 			 */
1871 			setdiropargs3(&args.object, unlname, unldvp);
1872 
1873 			douprintf = 1;
1874 
1875 			t = gethrtime();
1876 
1877 			error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE,
1878 			    xdr_diropargs3, (caddr_t)&args,
1879 			    xdr_REMOVE3res, (caddr_t)&res, unlcred,
1880 			    &douprintf, &res.status, 0, NULL);
1881 
1882 			if (error) {
1883 				PURGE_ATTRCACHE(unldvp);
1884 			} else {
1885 				error = geterrno3(res.status);
1886 				if (!error) {
1887 					nfs3_cache_wcc_data(unldvp,
1888 					    &res.resok.dir_wcc, t, cr);
1889 					if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1890 						nfs_purge_rddir_cache(unldvp);
1891 				} else {
1892 					nfs3_cache_wcc_data(unldvp,
1893 					    &res.resfail.dir_wcc, t, cr);
1894 					PURGE_STALE_FH(error, unldvp, cr);
1895 				}
1896 			}
1897 
1898 			/*
1899 			 * Release stuff held for the remove
1900 			 */
1901 			VN_RELE(unldvp);
1902 			kmem_free(unlname, MAXNAMELEN);
1903 			crfree(unlcred);
1904 			goto redo;
1905 		}
1906 		mutex_exit(&rp->r_statelock);
1907 	}
1908 
1909 	rp_addfree(rp, cr);
1910 }
1911 
1912 /*
1913  * Remote file system operations having to do with directory manipulation.
1914  */
1915 
1916 /* ARGSUSED */
1917 static int
1918 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1919 	int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1920 	int *direntflags, pathname_t *realpnp)
1921 {
1922 	int error;
1923 	vnode_t *vp;
1924 	vnode_t *avp = NULL;
1925 	rnode_t *drp;
1926 
1927 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
1928 		return (EPERM);
1929 
1930 	drp = VTOR(dvp);
1931 
1932 	/*
1933 	 * Are we looking up extended attributes?  If so, "dvp" is
1934 	 * the file or directory for which we want attributes, and
1935 	 * we need a lookup of the hidden attribute directory
1936 	 * before we lookup the rest of the path.
1937 	 */
1938 	if (flags & LOOKUP_XATTR) {
1939 		bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1940 		mntinfo_t *mi;
1941 
1942 		mi = VTOMI(dvp);
1943 		if (!(mi->mi_flags & MI_EXTATTR))
1944 			return (EINVAL);
1945 
1946 		if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1947 			return (EINTR);
1948 
1949 		(void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1950 		if (avp == NULL)
1951 			error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0);
1952 		else
1953 			error = 0;
1954 
1955 		nfs_rw_exit(&drp->r_rwlock);
1956 
1957 		if (error) {
1958 			if (mi->mi_flags & MI_EXTATTR)
1959 				return (error);
1960 			return (EINVAL);
1961 		}
1962 		dvp = avp;
1963 		drp = VTOR(dvp);
1964 	}
1965 
1966 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1967 		error = EINTR;
1968 		goto out;
1969 	}
1970 
1971 	error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1972 
1973 	nfs_rw_exit(&drp->r_rwlock);
1974 
1975 	/*
1976 	 * If vnode is a device, create special vnode.
1977 	 */
1978 	if (!error && IS_DEVVP(*vpp)) {
1979 		vp = *vpp;
1980 		*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1981 		VN_RELE(vp);
1982 	}
1983 
1984 out:
1985 	if (avp != NULL)
1986 		VN_RELE(avp);
1987 
1988 	return (error);
1989 }
1990 
1991 static int nfs3_lookup_neg_cache = 1;
1992 
1993 #ifdef DEBUG
1994 static int nfs3_lookup_dnlc_hits = 0;
1995 static int nfs3_lookup_dnlc_misses = 0;
1996 static int nfs3_lookup_dnlc_neg_hits = 0;
1997 static int nfs3_lookup_dnlc_disappears = 0;
1998 static int nfs3_lookup_dnlc_lookups = 0;
1999 #endif
2000 
2001 /* ARGSUSED */
2002 int
2003 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
2004 	int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
2005 {
2006 	int error;
2007 	rnode_t *drp;
2008 
2009 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2010 	/*
2011 	 * If lookup is for "", just return dvp.  Don't need
2012 	 * to send it over the wire, look it up in the dnlc,
2013 	 * or perform any access checks.
2014 	 */
2015 	if (*nm == '\0') {
2016 		VN_HOLD(dvp);
2017 		*vpp = dvp;
2018 		return (0);
2019 	}
2020 
2021 	/*
2022 	 * Can't do lookups in non-directories.
2023 	 */
2024 	if (dvp->v_type != VDIR)
2025 		return (ENOTDIR);
2026 
2027 	/*
2028 	 * If we're called with RFSCALL_SOFT, it's important that
2029 	 * the only rfscall is one we make directly; if we permit
2030 	 * an access call because we're looking up "." or validating
2031 	 * a dnlc hit, we'll deadlock because that rfscall will not
2032 	 * have the RFSCALL_SOFT set.
2033 	 */
2034 	if (rfscall_flags & RFSCALL_SOFT)
2035 		goto callit;
2036 
2037 	/*
2038 	 * If lookup is for ".", just return dvp.  Don't need
2039 	 * to send it over the wire or look it up in the dnlc,
2040 	 * just need to check access.
2041 	 */
2042 	if (strcmp(nm, ".") == 0) {
2043 		error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2044 		if (error)
2045 			return (error);
2046 		VN_HOLD(dvp);
2047 		*vpp = dvp;
2048 		return (0);
2049 	}
2050 
2051 	drp = VTOR(dvp);
2052 	if (!(drp->r_flags & RLOOKUP)) {
2053 		mutex_enter(&drp->r_statelock);
2054 		drp->r_flags |= RLOOKUP;
2055 		mutex_exit(&drp->r_statelock);
2056 	}
2057 
2058 	/*
2059 	 * Lookup this name in the DNLC.  If there was a valid entry,
2060 	 * then return the results of the lookup.
2061 	 */
2062 	error = nfs3lookup_dnlc(dvp, nm, vpp, cr);
2063 	if (error || *vpp != NULL)
2064 		return (error);
2065 
2066 callit:
2067 	error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags);
2068 
2069 	return (error);
2070 }
2071 
2072 static int
2073 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
2074 {
2075 	int error;
2076 	vnode_t *vp;
2077 
2078 	ASSERT(*nm != '\0');
2079 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2080 	/*
2081 	 * Lookup this name in the DNLC.  If successful, then validate
2082 	 * the caches and then recheck the DNLC.  The DNLC is rechecked
2083 	 * just in case this entry got invalidated during the call
2084 	 * to nfs3_validate_caches.
2085 	 *
2086 	 * An assumption is being made that it is safe to say that a
2087 	 * file exists which may not on the server.  Any operations to
2088 	 * the server will fail with ESTALE.
2089 	 */
2090 #ifdef DEBUG
2091 	nfs3_lookup_dnlc_lookups++;
2092 #endif
2093 	vp = dnlc_lookup(dvp, nm);
2094 	if (vp != NULL) {
2095 		VN_RELE(vp);
2096 		if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
2097 			PURGE_ATTRCACHE(dvp);
2098 		}
2099 		error = nfs3_validate_caches(dvp, cr);
2100 		if (error)
2101 			return (error);
2102 		vp = dnlc_lookup(dvp, nm);
2103 		if (vp != NULL) {
2104 			error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2105 			if (error) {
2106 				VN_RELE(vp);
2107 				return (error);
2108 			}
2109 			if (vp == DNLC_NO_VNODE) {
2110 				VN_RELE(vp);
2111 #ifdef DEBUG
2112 				nfs3_lookup_dnlc_neg_hits++;
2113 #endif
2114 				return (ENOENT);
2115 			}
2116 			*vpp = vp;
2117 #ifdef DEBUG
2118 			nfs3_lookup_dnlc_hits++;
2119 #endif
2120 			return (0);
2121 		}
2122 #ifdef DEBUG
2123 		nfs3_lookup_dnlc_disappears++;
2124 #endif
2125 	}
2126 #ifdef DEBUG
2127 	else
2128 		nfs3_lookup_dnlc_misses++;
2129 #endif
2130 
2131 	*vpp = NULL;
2132 
2133 	return (0);
2134 }
2135 
2136 static int
2137 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
2138 	int rfscall_flags)
2139 {
2140 	int error;
2141 	LOOKUP3args args;
2142 	LOOKUP3vres res;
2143 	int douprintf;
2144 	struct vattr vattr;
2145 	struct vattr dvattr;
2146 	vnode_t *vp;
2147 	failinfo_t fi;
2148 	hrtime_t t;
2149 
2150 	ASSERT(*nm != '\0');
2151 	ASSERT(dvp->v_type == VDIR);
2152 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2153 
2154 	setdiropargs3(&args.what, nm, dvp);
2155 
2156 	fi.vp = dvp;
2157 	fi.fhp = (caddr_t)&args.what.dir;
2158 	fi.copyproc = nfs3copyfh;
2159 	fi.lookupproc = nfs3lookup;
2160 	fi.xattrdirproc = acl_getxattrdir3;
2161 	res.obj_attributes.fres.vp = dvp;
2162 	res.obj_attributes.fres.vap = &vattr;
2163 	res.dir_attributes.fres.vp = dvp;
2164 	res.dir_attributes.fres.vap = &dvattr;
2165 
2166 	douprintf = 1;
2167 
2168 	t = gethrtime();
2169 
2170 	error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP,
2171 	    xdr_diropargs3, (caddr_t)&args,
2172 	    xdr_LOOKUP3vres, (caddr_t)&res, cr,
2173 	    &douprintf, &res.status, rfscall_flags, &fi);
2174 
2175 	if (error)
2176 		return (error);
2177 
2178 	nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr);
2179 
2180 	error = geterrno3(res.status);
2181 	if (error) {
2182 		PURGE_STALE_FH(error, dvp, cr);
2183 		if (error == ENOENT && nfs3_lookup_neg_cache)
2184 			dnlc_enter(dvp, nm, DNLC_NO_VNODE);
2185 		return (error);
2186 	}
2187 
2188 	if (res.obj_attributes.attributes) {
2189 		vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap,
2190 		    dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2191 	} else {
2192 		vp = makenfs3node_va(&res.object, NULL,
2193 		    dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2194 		if (vp->v_type == VNON) {
2195 			vattr.va_mask = AT_TYPE;
2196 			error = nfs3getattr(vp, &vattr, cr);
2197 			if (error) {
2198 				VN_RELE(vp);
2199 				return (error);
2200 			}
2201 			vp->v_type = vattr.va_type;
2202 		}
2203 	}
2204 
2205 	if (!(rfscall_flags & RFSCALL_SOFT))
2206 		dnlc_update(dvp, nm, vp);
2207 
2208 	*vpp = vp;
2209 
2210 	return (error);
2211 }
2212 
2213 #ifdef DEBUG
2214 static int nfs3_create_misses = 0;
2215 #endif
2216 
2217 /* ARGSUSED */
2218 static int
2219 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2220 	int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
2221 	vsecattr_t *vsecp)
2222 {
2223 	int error;
2224 	vnode_t *vp;
2225 	rnode_t *rp;
2226 	struct vattr vattr;
2227 	rnode_t *drp;
2228 	vnode_t *tempvp;
2229 
2230 	drp = VTOR(dvp);
2231 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
2232 		return (EPERM);
2233 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2234 		return (EINTR);
2235 
2236 top:
2237 	/*
2238 	 * We make a copy of the attributes because the caller does not
2239 	 * expect us to change what va points to.
2240 	 */
2241 	vattr = *va;
2242 
2243 	/*
2244 	 * If the pathname is "", just use dvp.  Don't need
2245 	 * to send it over the wire, look it up in the dnlc,
2246 	 * or perform any access checks.
2247 	 */
2248 	if (*nm == '\0') {
2249 		error = 0;
2250 		VN_HOLD(dvp);
2251 		vp = dvp;
2252 	/*
2253 	 * If the pathname is ".", just use dvp.  Don't need
2254 	 * to send it over the wire or look it up in the dnlc,
2255 	 * just need to check access.
2256 	 */
2257 	} else if (strcmp(nm, ".") == 0) {
2258 		error = nfs3_access(dvp, VEXEC, 0, cr, ct);
2259 		if (error) {
2260 			nfs_rw_exit(&drp->r_rwlock);
2261 			return (error);
2262 		}
2263 		VN_HOLD(dvp);
2264 		vp = dvp;
2265 	/*
2266 	 * We need to go over the wire, just to be sure whether the
2267 	 * file exists or not.  Using the DNLC can be dangerous in
2268 	 * this case when making a decision regarding existence.
2269 	 */
2270 	} else {
2271 		error = nfs3lookup_otw(dvp, nm, &vp, cr, 0);
2272 	}
2273 	if (!error) {
2274 		if (exclusive == EXCL)
2275 			error = EEXIST;
2276 		else if (vp->v_type == VDIR && (mode & VWRITE))
2277 			error = EISDIR;
2278 		else {
2279 			/*
2280 			 * If vnode is a device, create special vnode.
2281 			 */
2282 			if (IS_DEVVP(vp)) {
2283 				tempvp = vp;
2284 				vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2285 				VN_RELE(tempvp);
2286 			}
2287 			if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
2288 				if ((vattr.va_mask & AT_SIZE) &&
2289 				    vp->v_type == VREG) {
2290 					rp = VTOR(vp);
2291 					/*
2292 					 * Check here for large file handled
2293 					 * by LF-unaware process (as
2294 					 * ufs_create() does)
2295 					 */
2296 					if (!(lfaware & FOFFMAX)) {
2297 						mutex_enter(&rp->r_statelock);
2298 						if (rp->r_size > MAXOFF32_T)
2299 							error = EOVERFLOW;
2300 						mutex_exit(&rp->r_statelock);
2301 					}
2302 					if (!error) {
2303 						vattr.va_mask = AT_SIZE;
2304 						error = nfs3setattr(vp,
2305 						    &vattr, 0, cr);
2306 					}
2307 				}
2308 			}
2309 		}
2310 		nfs_rw_exit(&drp->r_rwlock);
2311 		if (error) {
2312 			VN_RELE(vp);
2313 		} else {
2314 			/*
2315 			 * existing file got truncated, notify.
2316 			 */
2317 			vnevent_create(vp, ct);
2318 			*vpp = vp;
2319 		}
2320 		return (error);
2321 	}
2322 
2323 	dnlc_remove(dvp, nm);
2324 
2325 	/*
2326 	 * Decide what the group-id of the created file should be.
2327 	 * Set it in attribute list as advisory...
2328 	 */
2329 	error = setdirgid(dvp, &vattr.va_gid, cr);
2330 	if (error) {
2331 		nfs_rw_exit(&drp->r_rwlock);
2332 		return (error);
2333 	}
2334 	vattr.va_mask |= AT_GID;
2335 
2336 	ASSERT(vattr.va_mask & AT_TYPE);
2337 	if (vattr.va_type == VREG) {
2338 		ASSERT(vattr.va_mask & AT_MODE);
2339 		if (MANDMODE(vattr.va_mode)) {
2340 			nfs_rw_exit(&drp->r_rwlock);
2341 			return (EACCES);
2342 		}
2343 		error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr,
2344 		    lfaware);
2345 		/*
2346 		 * If this is not an exclusive create, then the CREATE
2347 		 * request will be made with the GUARDED mode set.  This
2348 		 * means that the server will return EEXIST if the file
2349 		 * exists.  The file could exist because of a retransmitted
2350 		 * request.  In this case, we recover by starting over and
2351 		 * checking to see whether the file exists.  This second
2352 		 * time through it should and a CREATE request will not be
2353 		 * sent.
2354 		 *
2355 		 * This handles the problem of a dangling CREATE request
2356 		 * which contains attributes which indicate that the file
2357 		 * should be truncated.  This retransmitted request could
2358 		 * possibly truncate valid data in the file if not caught
2359 		 * by the duplicate request mechanism on the server or if
2360 		 * not caught by other means.  The scenario is:
2361 		 *
2362 		 * Client transmits CREATE request with size = 0
2363 		 * Client times out, retransmits request.
2364 		 * Response to the first request arrives from the server
2365 		 *  and the client proceeds on.
2366 		 * Client writes data to the file.
2367 		 * The server now processes retransmitted CREATE request
2368 		 *  and truncates file.
2369 		 *
2370 		 * The use of the GUARDED CREATE request prevents this from
2371 		 * happening because the retransmitted CREATE would fail
2372 		 * with EEXIST and would not truncate the file.
2373 		 */
2374 		if (error == EEXIST && exclusive == NONEXCL) {
2375 #ifdef DEBUG
2376 			nfs3_create_misses++;
2377 #endif
2378 			goto top;
2379 		}
2380 		nfs_rw_exit(&drp->r_rwlock);
2381 		return (error);
2382 	}
2383 	error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
2384 	nfs_rw_exit(&drp->r_rwlock);
2385 	return (error);
2386 }
2387 
2388 /* ARGSUSED */
2389 static int
2390 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2391 	int mode, vnode_t **vpp, cred_t *cr, int lfaware)
2392 {
2393 	int error;
2394 	CREATE3args args;
2395 	CREATE3res res;
2396 	int douprintf;
2397 	vnode_t *vp;
2398 	struct vattr vattr;
2399 	nfstime3 *verfp;
2400 	rnode_t *rp;
2401 	timestruc_t now;
2402 	hrtime_t t;
2403 
2404 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2405 	setdiropargs3(&args.where, nm, dvp);
2406 	if (exclusive == EXCL) {
2407 		args.how.mode = EXCLUSIVE;
2408 		/*
2409 		 * Construct the create verifier.  This verifier needs
2410 		 * to be unique between different clients.  It also needs
2411 		 * to vary for each exclusive create request generated
2412 		 * from the client to the server.
2413 		 *
2414 		 * The first attempt is made to use the hostid and a
2415 		 * unique number on the client.  If the hostid has not
2416 		 * been set, the high resolution time that the exclusive
2417 		 * create request is being made is used.  This will work
2418 		 * unless two different clients, both with the hostid
2419 		 * not set, attempt an exclusive create request on the
2420 		 * same file, at exactly the same clock time.  The
2421 		 * chances of this happening seem small enough to be
2422 		 * reasonable.
2423 		 */
2424 		verfp = (nfstime3 *)&args.how.createhow3_u.verf;
2425 		verfp->seconds = zone_get_hostid(NULL);
2426 		if (verfp->seconds != 0)
2427 			verfp->nseconds = newnum();
2428 		else {
2429 			gethrestime(&now);
2430 			verfp->seconds = now.tv_sec;
2431 			verfp->nseconds = now.tv_nsec;
2432 		}
2433 		/*
2434 		 * Since the server will use this value for the mtime,
2435 		 * make sure that it can't overflow. Zero out the MSB.
2436 		 * The actual value does not matter here, only its uniqeness.
2437 		 */
2438 		verfp->seconds %= INT32_MAX;
2439 	} else {
2440 		/*
2441 		 * Issue the non-exclusive create in guarded mode.  This
2442 		 * may result in some false EEXIST responses for
2443 		 * retransmitted requests, but these will be handled at
2444 		 * a higher level.  By using GUARDED, duplicate requests
2445 		 * to do file truncation and possible access problems
2446 		 * can be avoided.
2447 		 */
2448 		args.how.mode = GUARDED;
2449 		error = vattr_to_sattr3(va,
2450 		    &args.how.createhow3_u.obj_attributes);
2451 		if (error) {
2452 			/* req time field(s) overflow - return immediately */
2453 			return (error);
2454 		}
2455 	}
2456 
2457 	douprintf = 1;
2458 
2459 	t = gethrtime();
2460 
2461 	error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE,
2462 	    xdr_CREATE3args, (caddr_t)&args,
2463 	    xdr_CREATE3res, (caddr_t)&res, cr,
2464 	    &douprintf, &res.status, 0, NULL);
2465 
2466 	if (error) {
2467 		PURGE_ATTRCACHE(dvp);
2468 		return (error);
2469 	}
2470 
2471 	error = geterrno3(res.status);
2472 	if (!error) {
2473 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2474 		if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2475 			nfs_purge_rddir_cache(dvp);
2476 
2477 		/*
2478 		 * On exclusive create the times need to be explicitly
2479 		 * set to clear any potential verifier that may be stored
2480 		 * in one of these fields (see comment below).  This
2481 		 * is done here to cover the case where no post op attrs
2482 		 * were returned or a 'invalid' time was returned in
2483 		 * the attributes.
2484 		 */
2485 		if (exclusive == EXCL)
2486 			va->va_mask |= (AT_MTIME | AT_ATIME);
2487 
2488 		if (!res.resok.obj.handle_follows) {
2489 			error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2490 			if (error)
2491 				return (error);
2492 		} else {
2493 			if (res.resok.obj_attributes.attributes) {
2494 				vp = makenfs3node(&res.resok.obj.handle,
2495 				    &res.resok.obj_attributes.attr,
2496 				    dvp->v_vfsp, t, cr, NULL, NULL);
2497 			} else {
2498 				vp = makenfs3node(&res.resok.obj.handle, NULL,
2499 				    dvp->v_vfsp, t, cr, NULL, NULL);
2500 
2501 				/*
2502 				 * On an exclusive create, it is possible
2503 				 * that attributes were returned but those
2504 				 * postop attributes failed to decode
2505 				 * properly.  If this is the case,
2506 				 * then most likely the atime or mtime
2507 				 * were invalid for our client; this
2508 				 * is caused by the server storing the
2509 				 * create verifier in one of the time
2510 				 * fields(most likely mtime).
2511 				 * So... we are going to setattr just the
2512 				 * atime/mtime to clear things up.
2513 				 */
2514 				if (exclusive == EXCL) {
2515 					if (error =
2516 					    nfs3excl_create_settimes(vp,
2517 					    va, cr)) {
2518 						/*
2519 						 * Setting the times failed.
2520 						 * Remove the file and return
2521 						 * the error.
2522 						 */
2523 						VN_RELE(vp);
2524 						(void) nfs3_remove(dvp,
2525 						    nm, cr, NULL, 0);
2526 						return (error);
2527 					}
2528 				}
2529 
2530 				/*
2531 				 * This handles the non-exclusive case
2532 				 * and the exclusive case where no post op
2533 				 * attrs were returned.
2534 				 */
2535 				if (vp->v_type == VNON) {
2536 					vattr.va_mask = AT_TYPE;
2537 					error = nfs3getattr(vp, &vattr, cr);
2538 					if (error) {
2539 						VN_RELE(vp);
2540 						return (error);
2541 					}
2542 					vp->v_type = vattr.va_type;
2543 				}
2544 			}
2545 			dnlc_update(dvp, nm, vp);
2546 		}
2547 
2548 		rp = VTOR(vp);
2549 
2550 		/*
2551 		 * Check here for large file handled by
2552 		 * LF-unaware process (as ufs_create() does)
2553 		 */
2554 		if ((va->va_mask & AT_SIZE) && vp->v_type == VREG &&
2555 		    !(lfaware & FOFFMAX)) {
2556 			mutex_enter(&rp->r_statelock);
2557 			if (rp->r_size > MAXOFF32_T) {
2558 				mutex_exit(&rp->r_statelock);
2559 				VN_RELE(vp);
2560 				return (EOVERFLOW);
2561 			}
2562 			mutex_exit(&rp->r_statelock);
2563 		}
2564 
2565 		if (exclusive == EXCL &&
2566 		    (va->va_mask & ~(AT_GID | AT_SIZE))) {
2567 			/*
2568 			 * If doing an exclusive create, then generate
2569 			 * a SETATTR to set the initial attributes.
2570 			 * Try to set the mtime and the atime to the
2571 			 * server's current time.  It is somewhat
2572 			 * expected that these fields will be used to
2573 			 * store the exclusive create cookie.  If not,
2574 			 * server implementors will need to know that
2575 			 * a SETATTR will follow an exclusive create
2576 			 * and the cookie should be destroyed if
2577 			 * appropriate. This work may have been done
2578 			 * earlier in this function if post op attrs
2579 			 * were not available.
2580 			 *
2581 			 * The AT_GID and AT_SIZE bits are turned off
2582 			 * so that the SETATTR request will not attempt
2583 			 * to process these.  The gid will be set
2584 			 * separately if appropriate.  The size is turned
2585 			 * off because it is assumed that a new file will
2586 			 * be created empty and if the file wasn't empty,
2587 			 * then the exclusive create will have failed
2588 			 * because the file must have existed already.
2589 			 * Therefore, no truncate operation is needed.
2590 			 */
2591 			va->va_mask &= ~(AT_GID | AT_SIZE);
2592 			error = nfs3setattr(vp, va, 0, cr);
2593 			if (error) {
2594 				/*
2595 				 * Couldn't correct the attributes of
2596 				 * the newly created file and the
2597 				 * attributes are wrong.  Remove the
2598 				 * file and return an error to the
2599 				 * application.
2600 				 */
2601 				VN_RELE(vp);
2602 				(void) nfs3_remove(dvp, nm, cr, NULL, 0);
2603 				return (error);
2604 			}
2605 		}
2606 
2607 		if (va->va_gid != rp->r_attr.va_gid) {
2608 			/*
2609 			 * If the gid on the file isn't right, then
2610 			 * generate a SETATTR to attempt to change
2611 			 * it.  This may or may not work, depending
2612 			 * upon the server's semantics for allowing
2613 			 * file ownership changes.
2614 			 */
2615 			va->va_mask = AT_GID;
2616 			(void) nfs3setattr(vp, va, 0, cr);
2617 		}
2618 
2619 		/*
2620 		 * If vnode is a device create special vnode
2621 		 */
2622 		if (IS_DEVVP(vp)) {
2623 			*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2624 			VN_RELE(vp);
2625 		} else
2626 			*vpp = vp;
2627 	} else {
2628 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2629 		PURGE_STALE_FH(error, dvp, cr);
2630 	}
2631 
2632 	return (error);
2633 }
2634 
2635 /*
2636  * Special setattr function to take care of rest of atime/mtime
2637  * after successful exclusive create.  This function exists to avoid
2638  * handling attributes from the server; exclusive the atime/mtime fields
2639  * may be 'invalid' in client's view and therefore can not be trusted.
2640  */
2641 static int
2642 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr)
2643 {
2644 	int error;
2645 	uint_t mask;
2646 	SETATTR3args args;
2647 	SETATTR3res res;
2648 	int douprintf;
2649 	rnode_t *rp;
2650 	hrtime_t t;
2651 
2652 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
2653 	/* save the caller's mask so that it can be reset later */
2654 	mask = vap->va_mask;
2655 
2656 	rp = VTOR(vp);
2657 
2658 	args.object = *RTOFH3(rp);
2659 	args.guard.check = FALSE;
2660 
2661 	/* Use the mask to initialize the arguments */
2662 	vap->va_mask = 0;
2663 	error = vattr_to_sattr3(vap, &args.new_attributes);
2664 
2665 	/* We want to set just atime/mtime on this request */
2666 	args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
2667 	args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
2668 
2669 	douprintf = 1;
2670 
2671 	t = gethrtime();
2672 
2673 	error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
2674 	    xdr_SETATTR3args, (caddr_t)&args,
2675 	    xdr_SETATTR3res, (caddr_t)&res, cr,
2676 	    &douprintf, &res.status, 0, NULL);
2677 
2678 	if (error) {
2679 		vap->va_mask = mask;
2680 		return (error);
2681 	}
2682 
2683 	error = geterrno3(res.status);
2684 	if (!error) {
2685 		/*
2686 		 * It is important to pick up the attributes.
2687 		 * Since this is the exclusive create path, the
2688 		 * attributes on the initial create were ignored
2689 		 * and we need these to have the correct info.
2690 		 */
2691 		nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
2692 		/*
2693 		 * No need to do the atime/mtime work again so clear
2694 		 * the bits.
2695 		 */
2696 		mask &= ~(AT_ATIME | AT_MTIME);
2697 	} else {
2698 		nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
2699 	}
2700 
2701 	vap->va_mask = mask;
2702 
2703 	return (error);
2704 }
2705 
2706 /* ARGSUSED */
2707 static int
2708 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2709 	int mode, vnode_t **vpp, cred_t *cr)
2710 {
2711 	int error;
2712 	MKNOD3args args;
2713 	MKNOD3res res;
2714 	int douprintf;
2715 	vnode_t *vp;
2716 	struct vattr vattr;
2717 	hrtime_t t;
2718 
2719 	ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2720 	switch (va->va_type) {
2721 	case VCHR:
2722 	case VBLK:
2723 		setdiropargs3(&args.where, nm, dvp);
2724 		args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK;
2725 		error = vattr_to_sattr3(va,
2726 		    &args.what.mknoddata3_u.device.dev_attributes);
2727 		if (error) {
2728 			/* req time field(s) overflow - return immediately */
2729 			return (error);
2730 		}
2731 		args.what.mknoddata3_u.device.spec.specdata1 =
2732 		    getmajor(va->va_rdev);
2733 		args.what.mknoddata3_u.device.spec.specdata2 =
2734 		    getminor(va->va_rdev);
2735 		break;
2736 
2737 	case VFIFO:
2738 	case VSOCK:
2739 		setdiropargs3(&args.where, nm, dvp);
2740 		args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK;
2741 		error = vattr_to_sattr3(va,
2742 		    &args.what.mknoddata3_u.pipe_attributes);
2743 		if (error) {
2744 			/* req time field(s) overflow - return immediately */
2745 			return (error);
2746 		}
2747 		break;
2748 
2749 	default:
2750 		return (EINVAL);
2751 	}
2752 
2753 	douprintf = 1;
2754 
2755 	t = gethrtime();
2756 
2757 	error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD,
2758 	    xdr_MKNOD3args, (caddr_t)&args,
2759 	    xdr_MKNOD3res, (caddr_t)&res, cr,
2760 	    &douprintf, &res.status, 0, NULL);
2761 
2762 	if (error) {
2763 		PURGE_ATTRCACHE(dvp);
2764 		return (error);
2765 	}
2766 
2767 	error = geterrno3(res.status);
2768 	if (!error) {
2769 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2770 		if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2771 			nfs_purge_rddir_cache(dvp);
2772 
2773 		if (!res.resok.obj.handle_follows) {
2774 			error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2775 			if (error)
2776 				return (error);
2777 		} else {
2778 			if (res.resok.obj_attributes.attributes) {
2779 				vp = makenfs3node(&res.resok.obj.handle,
2780 				    &res.resok.obj_attributes.attr,
2781 				    dvp->v_vfsp, t, cr, NULL, NULL);
2782 			} else {
2783 				vp = makenfs3node(&res.resok.obj.handle, NULL,
2784 				    dvp->v_vfsp, t, cr, NULL, NULL);
2785 				if (vp->v_type == VNON) {
2786 					vattr.va_mask = AT_TYPE;
2787 					error = nfs3getattr(vp, &vattr, cr);
2788 					if (error) {
2789 						VN_RELE(vp);
2790 						return (error);
2791 					}
2792 					vp->v_type = vattr.va_type;
2793 				}
2794 
2795 			}
2796 			dnlc_update(dvp, nm, vp);
2797 		}
2798 
2799 		if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
2800 			va->va_mask = AT_GID;
2801 			(void) nfs3setattr(vp, va, 0, cr);
2802 		}
2803 
2804 		/*
2805 		 * If vnode is a device create special vnode
2806 		 */
2807 		if (IS_DEVVP(vp)) {
2808 			*vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2809 			VN_RELE(vp);
2810 		} else
2811 			*vpp = vp;
2812 	} else {
2813 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2814 		PURGE_STALE_FH(error, dvp, cr);
2815 	}
2816 	return (error);
2817 }
2818 
2819 /*
2820  * Weirdness: if the vnode to be removed is open
2821  * we rename it instead of removing it and nfs_inactive
2822  * will remove the new name.
2823  */
2824 /* ARGSUSED */
2825 static int
2826 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2827 {
2828 	int error;
2829 	REMOVE3args args;
2830 	REMOVE3res res;
2831 	vnode_t *vp;
2832 	char *tmpname;
2833 	int douprintf;
2834 	rnode_t *rp;
2835 	rnode_t *drp;
2836 	hrtime_t t;
2837 
2838 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
2839 		return (EPERM);
2840 	drp = VTOR(dvp);
2841 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2842 		return (EINTR);
2843 
2844 	error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2845 	if (error) {
2846 		nfs_rw_exit(&drp->r_rwlock);
2847 		return (error);
2848 	}
2849 
2850 	if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2851 		VN_RELE(vp);
2852 		nfs_rw_exit(&drp->r_rwlock);
2853 		return (EPERM);
2854 	}
2855 
2856 	/*
2857 	 * First just remove the entry from the name cache, as it
2858 	 * is most likely the only entry for this vp.
2859 	 */
2860 	dnlc_remove(dvp, nm);
2861 
2862 	/*
2863 	 * If the file has a v_count > 1 then there may be more than one
2864 	 * entry in the name cache due multiple links or an open file,
2865 	 * but we don't have the real reference count so flush all
2866 	 * possible entries.
2867 	 */
2868 	if (vp->v_count > 1)
2869 		dnlc_purge_vp(vp);
2870 
2871 	/*
2872 	 * Now we have the real reference count on the vnode
2873 	 */
2874 	rp = VTOR(vp);
2875 	mutex_enter(&rp->r_statelock);
2876 	if (vp->v_count > 1 &&
2877 	    (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2878 		mutex_exit(&rp->r_statelock);
2879 		tmpname = newname();
2880 		error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct);
2881 		if (error)
2882 			kmem_free(tmpname, MAXNAMELEN);
2883 		else {
2884 			mutex_enter(&rp->r_statelock);
2885 			if (rp->r_unldvp == NULL) {
2886 				VN_HOLD(dvp);
2887 				rp->r_unldvp = dvp;
2888 				if (rp->r_unlcred != NULL)
2889 					crfree(rp->r_unlcred);
2890 				crhold(cr);
2891 				rp->r_unlcred = cr;
2892 				rp->r_unlname = tmpname;
2893 			} else {
2894 				kmem_free(rp->r_unlname, MAXNAMELEN);
2895 				rp->r_unlname = tmpname;
2896 			}
2897 			mutex_exit(&rp->r_statelock);
2898 		}
2899 	} else {
2900 		mutex_exit(&rp->r_statelock);
2901 		/*
2902 		 * We need to flush any dirty pages which happen to
2903 		 * be hanging around before removing the file.  This
2904 		 * shouldn't happen very often and mostly on file
2905 		 * systems mounted "nocto".
2906 		 */
2907 		if (vn_has_cached_data(vp) &&
2908 		    ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2909 			error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2910 			if (error && (error == ENOSPC || error == EDQUOT)) {
2911 				mutex_enter(&rp->r_statelock);
2912 				if (!rp->r_error)
2913 					rp->r_error = error;
2914 				mutex_exit(&rp->r_statelock);
2915 			}
2916 		}
2917 
2918 		setdiropargs3(&args.object, nm, dvp);
2919 
2920 		douprintf = 1;
2921 
2922 		t = gethrtime();
2923 
2924 		error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE,
2925 		    xdr_diropargs3, (caddr_t)&args,
2926 		    xdr_REMOVE3res, (caddr_t)&res, cr,
2927 		    &douprintf, &res.status, 0, NULL);
2928 
2929 		/*
2930 		 * The xattr dir may be gone after last attr is removed,
2931 		 * so flush it from dnlc.
2932 		 */
2933 		if (dvp->v_flag & V_XATTRDIR)
2934 			dnlc_purge_vp(dvp);
2935 
2936 		PURGE_ATTRCACHE(vp);
2937 
2938 		if (error) {
2939 			PURGE_ATTRCACHE(dvp);
2940 		} else {
2941 			error = geterrno3(res.status);
2942 			if (!error) {
2943 				nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t,
2944 				    cr);
2945 				if (HAVE_RDDIR_CACHE(drp))
2946 					nfs_purge_rddir_cache(dvp);
2947 			} else {
2948 				nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc,
2949 				    t, cr);
2950 				PURGE_STALE_FH(error, dvp, cr);
2951 			}
2952 		}
2953 	}
2954 
2955 	if (error == 0) {
2956 		vnevent_remove(vp, dvp, nm, ct);
2957 	}
2958 	VN_RELE(vp);
2959 
2960 	nfs_rw_exit(&drp->r_rwlock);
2961 
2962 	return (error);
2963 }
2964 
2965 /* ARGSUSED */
2966 static int
2967 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2968 	caller_context_t *ct, int flags)
2969 {
2970 	int error;
2971 	LINK3args args;
2972 	LINK3res res;
2973 	vnode_t *realvp;
2974 	int douprintf;
2975 	mntinfo_t *mi;
2976 	rnode_t *tdrp;
2977 	hrtime_t t;
2978 
2979 	if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2980 		return (EPERM);
2981 	if (VOP_REALVP(svp, &realvp, ct) == 0)
2982 		svp = realvp;
2983 
2984 	mi = VTOMI(svp);
2985 
2986 	if (!(mi->mi_flags & MI_LINK))
2987 		return (EOPNOTSUPP);
2988 
2989 	args.file = *VTOFH3(svp);
2990 	setdiropargs3(&args.link, tnm, tdvp);
2991 
2992 	tdrp = VTOR(tdvp);
2993 	if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
2994 		return (EINTR);
2995 
2996 	dnlc_remove(tdvp, tnm);
2997 
2998 	douprintf = 1;
2999 
3000 	t = gethrtime();
3001 
3002 	error = rfs3call(mi, NFSPROC3_LINK,
3003 	    xdr_LINK3args, (caddr_t)&args,
3004 	    xdr_LINK3res, (caddr_t)&res, cr,
3005 	    &douprintf, &res.status, 0, NULL);
3006 
3007 	if (error) {
3008 		PURGE_ATTRCACHE(tdvp);
3009 		PURGE_ATTRCACHE(svp);
3010 		nfs_rw_exit(&tdrp->r_rwlock);
3011 		return (error);
3012 	}
3013 
3014 	error = geterrno3(res.status);
3015 
3016 	if (!error) {
3017 		nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr);
3018 		nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr);
3019 		if (HAVE_RDDIR_CACHE(tdrp))
3020 			nfs_purge_rddir_cache(tdvp);
3021 		dnlc_update(tdvp, tnm, svp);
3022 	} else {
3023 		nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t,
3024 		    cr);
3025 		nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr);
3026 		if (error == EOPNOTSUPP) {
3027 			mutex_enter(&mi->mi_lock);
3028 			mi->mi_flags &= ~MI_LINK;
3029 			mutex_exit(&mi->mi_lock);
3030 		}
3031 	}
3032 
3033 	nfs_rw_exit(&tdrp->r_rwlock);
3034 
3035 	if (!error) {
3036 		/*
3037 		 * Notify the source file of this link operation.
3038 		 */
3039 		vnevent_link(svp, ct);
3040 	}
3041 	return (error);
3042 }
3043 
3044 /* ARGSUSED */
3045 static int
3046 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3047 	caller_context_t *ct, int flags)
3048 {
3049 	vnode_t *realvp;
3050 
3051 	if (nfs_zone() != VTOMI(odvp)->mi_zone)
3052 		return (EPERM);
3053 	if (VOP_REALVP(ndvp, &realvp, ct) == 0)
3054 		ndvp = realvp;
3055 
3056 	return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct));
3057 }
3058 
3059 /*
3060  * nfs3rename does the real work of renaming in NFS Version 3.
3061  */
3062 static int
3063 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3064     caller_context_t *ct)
3065 {
3066 	int error;
3067 	RENAME3args args;
3068 	RENAME3res res;
3069 	int douprintf;
3070 	vnode_t *nvp = NULL;
3071 	vnode_t *ovp = NULL;
3072 	char *tmpname;
3073 	rnode_t *rp;
3074 	rnode_t *odrp;
3075 	rnode_t *ndrp;
3076 	hrtime_t t;
3077 
3078 	ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
3079 
3080 	if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
3081 	    strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
3082 		return (EINVAL);
3083 
3084 	odrp = VTOR(odvp);
3085 	ndrp = VTOR(ndvp);
3086 	if ((intptr_t)odrp < (intptr_t)ndrp) {
3087 		if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
3088 			return (EINTR);
3089 		if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
3090 			nfs_rw_exit(&odrp->r_rwlock);
3091 			return (EINTR);
3092 		}
3093 	} else {
3094 		if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
3095 			return (EINTR);
3096 		if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
3097 			nfs_rw_exit(&ndrp->r_rwlock);
3098 			return (EINTR);
3099 		}
3100 	}
3101 
3102 	/*
3103 	 * Lookup the target file.  If it exists, it needs to be
3104 	 * checked to see whether it is a mount point and whether
3105 	 * it is active (open).
3106 	 */
3107 	error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
3108 	if (!error) {
3109 		/*
3110 		 * If this file has been mounted on, then just
3111 		 * return busy because renaming to it would remove
3112 		 * the mounted file system from the name space.
3113 		 */
3114 		if (vn_mountedvfs(nvp) != NULL) {
3115 			VN_RELE(nvp);
3116 			nfs_rw_exit(&odrp->r_rwlock);
3117 			nfs_rw_exit(&ndrp->r_rwlock);
3118 			return (EBUSY);
3119 		}
3120 
3121 		/*
3122 		 * Purge the name cache of all references to this vnode
3123 		 * so that we can check the reference count to infer
3124 		 * whether it is active or not.
3125 		 */
3126 		/*
3127 		 * First just remove the entry from the name cache, as it
3128 		 * is most likely the only entry for this vp.
3129 		 */
3130 		dnlc_remove(ndvp, nnm);
3131 		/*
3132 		 * If the file has a v_count > 1 then there may be more
3133 		 * than one entry in the name cache due multiple links
3134 		 * or an open file, but we don't have the real reference
3135 		 * count so flush all possible entries.
3136 		 */
3137 		if (nvp->v_count > 1)
3138 			dnlc_purge_vp(nvp);
3139 
3140 		/*
3141 		 * If the vnode is active and is not a directory,
3142 		 * arrange to rename it to a
3143 		 * temporary file so that it will continue to be
3144 		 * accessible.  This implements the "unlink-open-file"
3145 		 * semantics for the target of a rename operation.
3146 		 * Before doing this though, make sure that the
3147 		 * source and target files are not already the same.
3148 		 */
3149 		if (nvp->v_count > 1 && nvp->v_type != VDIR) {
3150 			/*
3151 			 * Lookup the source name.
3152 			 */
3153 			error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL,
3154 			    cr, 0);
3155 
3156 			/*
3157 			 * The source name *should* already exist.
3158 			 */
3159 			if (error) {
3160 				VN_RELE(nvp);
3161 				nfs_rw_exit(&odrp->r_rwlock);
3162 				nfs_rw_exit(&ndrp->r_rwlock);
3163 				return (error);
3164 			}
3165 
3166 			/*
3167 			 * Compare the two vnodes.  If they are the same,
3168 			 * just release all held vnodes and return success.
3169 			 */
3170 			if (ovp == nvp) {
3171 				VN_RELE(ovp);
3172 				VN_RELE(nvp);
3173 				nfs_rw_exit(&odrp->r_rwlock);
3174 				nfs_rw_exit(&ndrp->r_rwlock);
3175 				return (0);
3176 			}
3177 
3178 			/*
3179 			 * Can't mix and match directories and non-
3180 			 * directories in rename operations.  We already
3181 			 * know that the target is not a directory.  If
3182 			 * the source is a directory, return an error.
3183 			 */
3184 			if (ovp->v_type == VDIR) {
3185 				VN_RELE(ovp);
3186 				VN_RELE(nvp);
3187 				nfs_rw_exit(&odrp->r_rwlock);
3188 				nfs_rw_exit(&ndrp->r_rwlock);
3189 				return (ENOTDIR);
3190 			}
3191 
3192 			/*
3193 			 * The target file exists, is not the same as
3194 			 * the source file, and is active.  Link it
3195 			 * to a temporary filename to avoid having
3196 			 * the server removing the file completely.
3197 			 */
3198 			tmpname = newname();
3199 			error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0);
3200 			if (error == EOPNOTSUPP) {
3201 				error = nfs3_rename(ndvp, nnm, ndvp, tmpname,
3202 				    cr, NULL, 0);
3203 			}
3204 			if (error) {
3205 				kmem_free(tmpname, MAXNAMELEN);
3206 				VN_RELE(ovp);
3207 				VN_RELE(nvp);
3208 				nfs_rw_exit(&odrp->r_rwlock);
3209 				nfs_rw_exit(&ndrp->r_rwlock);
3210 				return (error);
3211 			}
3212 			rp = VTOR(nvp);
3213 			mutex_enter(&rp->r_statelock);
3214 			if (rp->r_unldvp == NULL) {
3215 				VN_HOLD(ndvp);
3216 				rp->r_unldvp = ndvp;
3217 				if (rp->r_unlcred != NULL)
3218 					crfree(rp->r_unlcred);
3219 				crhold(cr);
3220 				rp->r_unlcred = cr;
3221 				rp->r_unlname = tmpname;
3222 			} else {
3223 				kmem_free(rp->r_unlname, MAXNAMELEN);
3224 				rp->r_unlname = tmpname;
3225 			}
3226 			mutex_exit(&rp->r_statelock);
3227 		}
3228 	}
3229 
3230 	if (ovp == NULL) {
3231 		/*
3232 		 * When renaming directories to be a subdirectory of a
3233 		 * different parent, the dnlc entry for ".." will no
3234 		 * longer be valid, so it must be removed.
3235 		 *
3236 		 * We do a lookup here to determine whether we are renaming
3237 		 * a directory and we need to check if we are renaming
3238 		 * an unlinked file.  This might have already been done
3239 		 * in previous code, so we check ovp == NULL to avoid
3240 		 * doing it twice.
3241 		 */
3242 
3243 		error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
3244 		/*
3245 		 * The source name *should* already exist.
3246 		 */
3247 		if (error) {
3248 			nfs_rw_exit(&odrp->r_rwlock);
3249 			nfs_rw_exit(&ndrp->r_rwlock);
3250 			if (nvp) {
3251 				VN_RELE(nvp);
3252 			}
3253 			return (error);
3254 		}
3255 		ASSERT(ovp != NULL);
3256 	}
3257 
3258 	dnlc_remove(odvp, onm);
3259 	dnlc_remove(ndvp, nnm);
3260 
3261 	setdiropargs3(&args.from, onm, odvp);
3262 	setdiropargs3(&args.to, nnm, ndvp);
3263 
3264 	douprintf = 1;
3265 
3266 	t = gethrtime();
3267 
3268 	error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME,
3269 	    xdr_RENAME3args, (caddr_t)&args,
3270 	    xdr_RENAME3res, (caddr_t)&res, cr,
3271 	    &douprintf, &res.status, 0, NULL);
3272 
3273 	if (error) {
3274 		PURGE_ATTRCACHE(odvp);
3275 		PURGE_ATTRCACHE(ndvp);
3276 		VN_RELE(ovp);
3277 		nfs_rw_exit(&odrp->r_rwlock);
3278 		nfs_rw_exit(&ndrp->r_rwlock);
3279 		if (nvp) {
3280 			VN_RELE(nvp);
3281 		}
3282 		return (error);
3283 	}
3284 
3285 	error = geterrno3(res.status);
3286 
3287 	if (!error) {
3288 		nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr);
3289 		if (HAVE_RDDIR_CACHE(odrp))
3290 			nfs_purge_rddir_cache(odvp);
3291 		if (ndvp != odvp) {
3292 			nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr);
3293 			if (HAVE_RDDIR_CACHE(ndrp))
3294 				nfs_purge_rddir_cache(ndvp);
3295 		}
3296 		/*
3297 		 * when renaming directories to be a subdirectory of a
3298 		 * different parent, the dnlc entry for ".." will no
3299 		 * longer be valid, so it must be removed
3300 		 */
3301 		rp = VTOR(ovp);
3302 		if (ndvp != odvp) {
3303 			if (ovp->v_type == VDIR) {
3304 				dnlc_remove(ovp, "..");
3305 				if (HAVE_RDDIR_CACHE(rp))
3306 					nfs_purge_rddir_cache(ovp);
3307 			}
3308 		}
3309 
3310 		/*
3311 		 * If we are renaming the unlinked file, update the
3312 		 * r_unldvp and r_unlname as needed.
3313 		 */
3314 		mutex_enter(&rp->r_statelock);
3315 		if (rp->r_unldvp != NULL) {
3316 			if (strcmp(rp->r_unlname, onm) == 0) {
3317 				(void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
3318 				rp->r_unlname[MAXNAMELEN - 1] = '\0';
3319 
3320 				if (ndvp != rp->r_unldvp) {
3321 					VN_RELE(rp->r_unldvp);
3322 					rp->r_unldvp = ndvp;
3323 					VN_HOLD(ndvp);
3324 				}
3325 			}
3326 		}
3327 		mutex_exit(&rp->r_statelock);
3328 	} else {
3329 		nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr);
3330 		if (ndvp != odvp) {
3331 			nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t,
3332 			    cr);
3333 		}
3334 		/*
3335 		 * System V defines rename to return EEXIST, not
3336 		 * ENOTEMPTY if the target directory is not empty.
3337 		 * Over the wire, the error is NFSERR_ENOTEMPTY
3338 		 * which geterrno maps to ENOTEMPTY.
3339 		 */
3340 		if (error == ENOTEMPTY)
3341 			error = EEXIST;
3342 	}
3343 
3344 	if (error == 0) {
3345 		if (nvp)
3346 			vnevent_rename_dest(nvp, ndvp, nnm, ct);
3347 
3348 		if (odvp != ndvp)
3349 			vnevent_rename_dest_dir(ndvp, ct);
3350 		ASSERT(ovp != NULL);
3351 		vnevent_rename_src(ovp, odvp, onm, ct);
3352 	}
3353 
3354 	if (nvp) {
3355 		VN_RELE(nvp);
3356 	}
3357 	VN_RELE(ovp);
3358 
3359 	nfs_rw_exit(&odrp->r_rwlock);
3360 	nfs_rw_exit(&ndrp->r_rwlock);
3361 
3362 	return (error);
3363 }
3364 
3365 /* ARGSUSED */
3366 static int
3367 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
3368 	caller_context_t *ct, int flags, vsecattr_t *vsecp)
3369 {
3370 	int error;
3371 	MKDIR3args args;
3372 	MKDIR3res res;
3373 	int douprintf;
3374 	struct vattr vattr;
3375 	vnode_t *vp;
3376 	rnode_t *drp;
3377 	hrtime_t t;
3378 
3379 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
3380 		return (EPERM);
3381 	setdiropargs3(&args.where, nm, dvp);
3382 
3383 	/*
3384 	 * Decide what the group-id and set-gid bit of the created directory
3385 	 * should be.  May have to do a setattr to get the gid right.
3386 	 */
3387 	error = setdirgid(dvp, &va->va_gid, cr);
3388 	if (error)
3389 		return (error);
3390 	error = setdirmode(dvp, &va->va_mode, cr);
3391 	if (error)
3392 		return (error);
3393 	va->va_mask |= AT_MODE|AT_GID;
3394 
3395 	error = vattr_to_sattr3(va, &args.attributes);
3396 	if (error) {
3397 		/* req time field(s) overflow - return immediately */
3398 		return (error);
3399 	}
3400 
3401 	drp = VTOR(dvp);
3402 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3403 		return (EINTR);
3404 
3405 	dnlc_remove(dvp, nm);
3406 
3407 	douprintf = 1;
3408 
3409 	t = gethrtime();
3410 
3411 	error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR,
3412 	    xdr_MKDIR3args, (caddr_t)&args,
3413 	    xdr_MKDIR3res, (caddr_t)&res, cr,
3414 	    &douprintf, &res.status, 0, NULL);
3415 
3416 	if (error) {
3417 		PURGE_ATTRCACHE(dvp);
3418 		nfs_rw_exit(&drp->r_rwlock);
3419 		return (error);
3420 	}
3421 
3422 	error = geterrno3(res.status);
3423 	if (!error) {
3424 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3425 		if (HAVE_RDDIR_CACHE(drp))
3426 			nfs_purge_rddir_cache(dvp);
3427 
3428 		if (!res.resok.obj.handle_follows) {
3429 			error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3430 			if (error) {
3431 				nfs_rw_exit(&drp->r_rwlock);
3432 				return (error);
3433 			}
3434 		} else {
3435 			if (res.resok.obj_attributes.attributes) {
3436 				vp = makenfs3node(&res.resok.obj.handle,
3437 				    &res.resok.obj_attributes.attr,
3438 				    dvp->v_vfsp, t, cr, NULL, NULL);
3439 			} else {
3440 				vp = makenfs3node(&res.resok.obj.handle, NULL,
3441 				    dvp->v_vfsp, t, cr, NULL, NULL);
3442 				if (vp->v_type == VNON) {
3443 					vattr.va_mask = AT_TYPE;
3444 					error = nfs3getattr(vp, &vattr, cr);
3445 					if (error) {
3446 						VN_RELE(vp);
3447 						nfs_rw_exit(&drp->r_rwlock);
3448 						return (error);
3449 					}
3450 					vp->v_type = vattr.va_type;
3451 				}
3452 			}
3453 			dnlc_update(dvp, nm, vp);
3454 		}
3455 		if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
3456 			va->va_mask = AT_GID;
3457 			(void) nfs3setattr(vp, va, 0, cr);
3458 		}
3459 		*vpp = vp;
3460 	} else {
3461 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3462 		PURGE_STALE_FH(error, dvp, cr);
3463 	}
3464 
3465 	nfs_rw_exit(&drp->r_rwlock);
3466 
3467 	return (error);
3468 }
3469 
3470 /* ARGSUSED */
3471 static int
3472 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
3473 	caller_context_t *ct, int flags)
3474 {
3475 	int error;
3476 	RMDIR3args args;
3477 	RMDIR3res res;
3478 	vnode_t *vp;
3479 	int douprintf;
3480 	rnode_t *drp;
3481 	hrtime_t t;
3482 
3483 	if (nfs_zone() != VTOMI(dvp)->mi_zone)
3484 		return (EPERM);
3485 	drp = VTOR(dvp);
3486 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3487 		return (EINTR);
3488 
3489 	/*
3490 	 * Attempt to prevent a rmdir(".") from succeeding.
3491 	 */
3492 	error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3493 	if (error) {
3494 		nfs_rw_exit(&drp->r_rwlock);
3495 		return (error);
3496 	}
3497 
3498 	if (vp == cdir) {
3499 		VN_RELE(vp);
3500 		nfs_rw_exit(&drp->r_rwlock);
3501 		return (EINVAL);
3502 	}
3503 
3504 	setdiropargs3(&args.object, nm, dvp);
3505 
3506 	/*
3507 	 * First just remove the entry from the name cache, as it
3508 	 * is most likely an entry for this vp.
3509 	 */
3510 	dnlc_remove(dvp, nm);
3511 
3512 	/*
3513 	 * If there vnode reference count is greater than one, then
3514 	 * there may be additional references in the DNLC which will
3515 	 * need to be purged.  First, trying removing the entry for
3516 	 * the parent directory and see if that removes the additional
3517 	 * reference(s).  If that doesn't do it, then use dnlc_purge_vp
3518 	 * to completely remove any references to the directory which
3519 	 * might still exist in the DNLC.
3520 	 */
3521 	if (vp->v_count > 1) {
3522 		dnlc_remove(vp, "..");
3523 		if (vp->v_count > 1)
3524 			dnlc_purge_vp(vp);
3525 	}
3526 
3527 	douprintf = 1;
3528 
3529 	t = gethrtime();
3530 
3531 	error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR,
3532 	    xdr_diropargs3, (caddr_t)&args,
3533 	    xdr_RMDIR3res, (caddr_t)&res, cr,
3534 	    &douprintf, &res.status, 0, NULL);
3535 
3536 	PURGE_ATTRCACHE(vp);
3537 
3538 	if (error) {
3539 		PURGE_ATTRCACHE(dvp);
3540 		VN_RELE(vp);
3541 		nfs_rw_exit(&drp->r_rwlock);
3542 		return (error);
3543 	}
3544 
3545 	error = geterrno3(res.status);
3546 	if (!error) {
3547 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3548 		if (HAVE_RDDIR_CACHE(drp))
3549 			nfs_purge_rddir_cache(dvp);
3550 		if (HAVE_RDDIR_CACHE(VTOR(vp)))
3551 			nfs_purge_rddir_cache(vp);
3552 	} else {
3553 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3554 		PURGE_STALE_FH(error, dvp, cr);
3555 		/*
3556 		 * System V defines rmdir to return EEXIST, not
3557 		 * ENOTEMPTY if the directory is not empty.  Over
3558 		 * the wire, the error is NFSERR_ENOTEMPTY which
3559 		 * geterrno maps to ENOTEMPTY.
3560 		 */
3561 		if (error == ENOTEMPTY)
3562 			error = EEXIST;
3563 	}
3564 
3565 	if (error == 0) {
3566 		vnevent_rmdir(vp, dvp, nm, ct);
3567 	}
3568 	VN_RELE(vp);
3569 
3570 	nfs_rw_exit(&drp->r_rwlock);
3571 
3572 	return (error);
3573 }
3574 
3575 /* ARGSUSED */
3576 static int
3577 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
3578 	caller_context_t *ct, int flags)
3579 {
3580 	int error;
3581 	SYMLINK3args args;
3582 	SYMLINK3res res;
3583 	int douprintf;
3584 	mntinfo_t *mi;
3585 	vnode_t *vp;
3586 	rnode_t *rp;
3587 	char *contents;
3588 	rnode_t *drp;
3589 	hrtime_t t;
3590 
3591 	mi = VTOMI(dvp);
3592 
3593 	if (nfs_zone() != mi->mi_zone)
3594 		return (EPERM);
3595 	if (!(mi->mi_flags & MI_SYMLINK))
3596 		return (EOPNOTSUPP);
3597 
3598 	setdiropargs3(&args.where, lnm, dvp);
3599 	error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes);
3600 	if (error) {
3601 		/* req time field(s) overflow - return immediately */
3602 		return (error);
3603 	}
3604 	args.symlink.symlink_data = tnm;
3605 
3606 	drp = VTOR(dvp);
3607 	if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3608 		return (EINTR);
3609 
3610 	dnlc_remove(dvp, lnm);
3611 
3612 	douprintf = 1;
3613 
3614 	t = gethrtime();
3615 
3616 	error = rfs3call(mi, NFSPROC3_SYMLINK,
3617 	    xdr_SYMLINK3args, (caddr_t)&args,
3618 	    xdr_SYMLINK3res, (caddr_t)&res, cr,
3619 	    &douprintf, &res.status, 0, NULL);
3620 
3621 	if (error) {
3622 		PURGE_ATTRCACHE(dvp);
3623 		nfs_rw_exit(&drp->r_rwlock);
3624 		return (error);
3625 	}
3626 
3627 	error = geterrno3(res.status);
3628 	if (!error) {
3629 		nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3630 		if (HAVE_RDDIR_CACHE(drp))
3631 			nfs_purge_rddir_cache(dvp);
3632 
3633 		if (res.resok.obj.handle_follows) {
3634 			if (res.resok.obj_attributes.attributes) {
3635 				vp = makenfs3node(&res.resok.obj.handle,
3636 				    &res.resok.obj_attributes.attr,
3637 				    dvp->v_vfsp, t, cr, NULL, NULL);
3638 			} else {
3639 				vp = makenfs3node(&res.resok.obj.handle, NULL,
3640 				    dvp->v_vfsp, t, cr, NULL, NULL);
3641 				vp->v_type = VLNK;
3642 				vp->v_rdev = 0;
3643 			}
3644 			dnlc_update(dvp, lnm, vp);
3645 			rp = VTOR(vp);
3646 			if (nfs3_do_symlink_cache &&
3647 			    rp->r_symlink.contents == NULL) {
3648 
3649 				contents = kmem_alloc(MAXPATHLEN,
3650 				    KM_NOSLEEP);
3651 
3652 				if (contents != NULL) {
3653 					mutex_enter(&rp->r_statelock);
3654 					if (rp->r_symlink.contents == NULL) {
3655 						rp->r_symlink.len = strlen(tnm);
3656 						bcopy(tnm, contents,
3657 						    rp->r_symlink.len);
3658 						rp->r_symlink.contents =
3659 						    contents;
3660 						rp->r_symlink.size = MAXPATHLEN;
3661 						mutex_exit(&rp->r_statelock);
3662 					} else {
3663 						mutex_exit(&rp->r_statelock);
3664 						kmem_free((void *)contents,
3665 						    MAXPATHLEN);
3666 					}
3667 				}
3668 			}
3669 			VN_RELE(vp);
3670 		}
3671 	} else {
3672 		nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3673 		PURGE_STALE_FH(error, dvp, cr);
3674 		if (error == EOPNOTSUPP) {
3675 			mutex_enter(&mi->mi_lock);
3676 			mi->mi_flags &= ~MI_SYMLINK;
3677 			mutex_exit(&mi->mi_lock);
3678 		}
3679 	}
3680 
3681 	nfs_rw_exit(&drp->r_rwlock);
3682 
3683 	return (error);
3684 }
3685 
3686 #ifdef DEBUG
3687 static int nfs3_readdir_cache_hits = 0;
3688 static int nfs3_readdir_cache_shorts = 0;
3689 static int nfs3_readdir_cache_waits = 0;
3690 static int nfs3_readdir_cache_misses = 0;
3691 static int nfs3_readdir_readahead = 0;
3692 #endif
3693 
3694 static int nfs3_shrinkreaddir = 0;
3695 
3696 /*
3697  * Read directory entries.
3698  * There are some weird things to look out for here.  The uio_loffset
3699  * field is either 0 or it is the offset returned from a previous
3700  * readdir.  It is an opaque value used by the server to find the
3701  * correct directory block to read. The count field is the number
3702  * of blocks to read on the server.  This is advisory only, the server
3703  * may return only one block's worth of entries.  Entries may be compressed
3704  * on the server.
3705  */
3706 /* ARGSUSED */
3707 static int
3708 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
3709 	caller_context_t *ct, int flags)
3710 {
3711 	int error;
3712 	size_t count;
3713 	rnode_t *rp;
3714 	rddir_cache *rdc;
3715 	rddir_cache *nrdc;
3716 	rddir_cache *rrdc;
3717 #ifdef DEBUG
3718 	int missed;
3719 #endif
3720 	int doreadahead;
3721 	rddir_cache srdc;
3722 	avl_index_t where;
3723 
3724 	if (nfs_zone() != VTOMI(vp)->mi_zone)
3725 		return (EIO);
3726 	rp = VTOR(vp);
3727 
3728 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
3729 
3730 	/*
3731 	 * Make sure that the directory cache is valid.
3732 	 */
3733 	if (HAVE_RDDIR_CACHE(rp)) {
3734 		if (nfs_disable_rddir_cache) {
3735 			/*
3736 			 * Setting nfs_disable_rddir_cache in /etc/system
3737 			 * allows interoperability with servers that do not
3738 			 * properly update the attributes of directories.
3739 			 * Any cached information gets purged before an
3740 			 * access is made to it.
3741 			 */
3742 			nfs_purge_rddir_cache(vp);
3743 		} else {
3744 			error = nfs3_validate_caches(vp, cr);
3745 			if (error)
3746 				return (error);
3747 		}
3748 	}
3749 
3750 	/*
3751 	 * It is possible that some servers may not be able to correctly
3752 	 * handle a large READDIR or READDIRPLUS request due to bugs in
3753 	 * their implementation.  In order to continue to interoperate
3754 	 * with them, this workaround is provided to limit the maximum
3755 	 * size of a READDIRPLUS request to 1024.  In any case, the request
3756 	 * size is limited to MAXBSIZE.
3757 	 */
3758 	count = MIN(uiop->uio_iov->iov_len,
3759 	    nfs3_shrinkreaddir ? 1024 : MAXBSIZE);
3760 
3761 	nrdc = NULL;
3762 #ifdef DEBUG
3763 	missed = 0;
3764 #endif
3765 top:
3766 	/*
3767 	 * Short circuit last readdir which always returns 0 bytes.
3768 	 * This can be done after the directory has been read through
3769 	 * completely at least once.  This will set r_direof which
3770 	 * can be used to find the value of the last cookie.
3771 	 */
3772 	mutex_enter(&rp->r_statelock);
3773 	if (rp->r_direof != NULL &&
3774 	    uiop->uio_loffset == rp->r_direof->nfs3_ncookie) {
3775 		mutex_exit(&rp->r_statelock);
3776 #ifdef DEBUG
3777 		nfs3_readdir_cache_shorts++;
3778 #endif
3779 		if (eofp)
3780 			*eofp = 1;
3781 		if (nrdc != NULL)
3782 			rddir_cache_rele(nrdc);
3783 		return (0);
3784 	}
3785 	/*
3786 	 * Look for a cache entry.  Cache entries are identified
3787 	 * by the NFS cookie value and the byte count requested.
3788 	 */
3789 	srdc.nfs3_cookie = uiop->uio_loffset;
3790 	srdc.buflen = count;
3791 	rdc = avl_find(&rp->r_dir, &srdc, &where);
3792 	if (rdc != NULL) {
3793 		rddir_cache_hold(rdc);
3794 		/*
3795 		 * If the cache entry is in the process of being
3796 		 * filled in, wait until this completes.  The
3797 		 * RDDIRWAIT bit is set to indicate that someone
3798 		 * is waiting and then the thread currently
3799 		 * filling the entry is done, it should do a
3800 		 * cv_broadcast to wakeup all of the threads
3801 		 * waiting for it to finish.
3802 		 */
3803 		if (rdc->flags & RDDIR) {
3804 			nfs_rw_exit(&rp->r_rwlock);
3805 			rdc->flags |= RDDIRWAIT;
3806 #ifdef DEBUG
3807 			nfs3_readdir_cache_waits++;
3808 #endif
3809 			if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3810 				/*
3811 				 * We got interrupted, probably
3812 				 * the user typed ^C or an alarm
3813 				 * fired.  We free the new entry
3814 				 * if we allocated one.
3815 				 */
3816 				mutex_exit(&rp->r_statelock);
3817 				(void) nfs_rw_enter_sig(&rp->r_rwlock,
3818 				    RW_READER, FALSE);
3819 				rddir_cache_rele(rdc);
3820 				if (nrdc != NULL)
3821 					rddir_cache_rele(nrdc);
3822 				return (EINTR);
3823 			}
3824 			mutex_exit(&rp->r_statelock);
3825 			(void) nfs_rw_enter_sig(&rp->r_rwlock,
3826 			    RW_READER, FALSE);
3827 			rddir_cache_rele(rdc);
3828 			goto top;
3829 		}
3830 		/*
3831 		 * Check to see if a readdir is required to
3832 		 * fill the entry.  If so, mark this entry
3833 		 * as being filled, remove our reference,
3834 		 * and branch to the code to fill the entry.
3835 		 */
3836 		if (rdc->flags & RDDIRREQ) {
3837 			rdc->flags &= ~RDDIRREQ;
3838 			rdc->flags |= RDDIR;
3839 			if (nrdc != NULL)
3840 				rddir_cache_rele(nrdc);
3841 			nrdc = rdc;
3842 			mutex_exit(&rp->r_statelock);
3843 			goto bottom;
3844 		}
3845 #ifdef DEBUG
3846 		if (!missed)
3847 			nfs3_readdir_cache_hits++;
3848 #endif
3849 		/*
3850 		 * If an error occurred while attempting
3851 		 * to fill the cache entry, just return it.
3852 		 */
3853 		if (rdc->error) {
3854 			error = rdc->error;
3855 			mutex_exit(&rp->r_statelock);
3856 			rddir_cache_rele(rdc);
3857 			if (nrdc != NULL)
3858 				rddir_cache_rele(nrdc);
3859 			return (error);
3860 		}
3861 
3862 		/*
3863 		 * The cache entry is complete and good,
3864 		 * copyout the dirent structs to the calling
3865 		 * thread.
3866 		 */
3867 		error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3868 
3869 		/*
3870 		 * If no error occurred during the copyout,
3871 		 * update the offset in the uio struct to
3872 		 * contain the value of the next cookie
3873 		 * and set the eof value appropriately.
3874 		 */
3875 		if (!error) {
3876 			uiop->uio_loffset = rdc->nfs3_ncookie;
3877 			if (eofp)
3878 				*eofp = rdc->eof;
3879 		}
3880 
3881 		/*
3882 		 * Decide whether to do readahead.
3883 		 *
3884 		 * Don't if have already read to the end of
3885 		 * directory.  There is nothing more to read.
3886 		 *
3887 		 * Don't if the application is not doing
3888 		 * lookups in the directory.  The readahead
3889 		 * is only effective if the application can
3890 		 * be doing work while an async thread is
3891 		 * handling the over the wire request.
3892 		 */
3893 		if (rdc->eof) {
3894 			rp->r_direof = rdc;
3895 			doreadahead = FALSE;
3896 		} else if (!(rp->r_flags & RLOOKUP))
3897 			doreadahead = FALSE;
3898 		else
3899 			doreadahead = TRUE;
3900 
3901 		if (!doreadahead) {
3902 			mutex_exit(&rp->r_statelock);
3903 			rddir_cache_rele(rdc);
3904 			if (nrdc != NULL)
3905 				rddir_cache_rele(nrdc);
3906 			return (error);
3907 		}
3908 
3909 		/*
3910 		 * Check to see whether we found an entry
3911 		 * for the readahead.  If so, we don't need
3912 		 * to do anything further, so free the new
3913 		 * entry if one was allocated.  Otherwise,
3914 		 * allocate a new entry, add it to the cache,
3915 		 * and then initiate an asynchronous readdir
3916 		 * operation to fill it.
3917 		 */
3918 		srdc.nfs3_cookie = rdc->nfs3_ncookie;
3919 		srdc.buflen = count;
3920 		rrdc = avl_find(&rp->r_dir, &srdc, &where);
3921 		if (rrdc != NULL) {
3922 			if (nrdc != NULL)
3923 				rddir_cache_rele(nrdc);
3924 		} else {
3925 			if (nrdc != NULL)
3926 				rrdc = nrdc;
3927 			else {
3928 				rrdc = rddir_cache_alloc(KM_NOSLEEP);
3929 			}
3930 			if (rrdc != NULL) {
3931 				rrdc->nfs3_cookie = rdc->nfs3_ncookie;
3932 				rrdc->buflen = count;
3933 				avl_insert(&rp->r_dir, rrdc, where);
3934 				rddir_cache_hold(rrdc);
3935 				mutex_exit(&rp->r_statelock);
3936 				rddir_cache_rele(rdc);
3937 #ifdef DEBUG
3938 				nfs3_readdir_readahead++;
3939 #endif
3940 				nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir);
3941 				return (error);
3942 			}
3943 		}
3944 
3945 		mutex_exit(&rp->r_statelock);
3946 		rddir_cache_rele(rdc);
3947 		return (error);
3948 	}
3949 
3950 	/*
3951 	 * Didn't find an entry in the cache.  Construct a new empty
3952 	 * entry and link it into the cache.  Other processes attempting
3953 	 * to access this entry will need to wait until it is filled in.
3954 	 *
3955 	 * Since kmem_alloc may block, another pass through the cache
3956 	 * will need to be taken to make sure that another process
3957 	 * hasn't already added an entry to the cache for this request.
3958 	 */
3959 	if (nrdc == NULL) {
3960 		mutex_exit(&rp->r_statelock);
3961 		nrdc = rddir_cache_alloc(KM_SLEEP);
3962 		nrdc->nfs3_cookie = uiop->uio_loffset;
3963 		nrdc->buflen = count;
3964 		goto top;
3965 	}
3966 
3967 	/*
3968 	 * Add this entry to the cache.
3969 	 */
3970 	avl_insert(&rp->r_dir, nrdc, where);
3971 	rddir_cache_hold(nrdc);
3972 	mutex_exit(&rp->r_statelock);
3973 
3974 bottom:
3975 #ifdef DEBUG
3976 	missed = 1;
3977 	nfs3_readdir_cache_misses++;
3978 #endif
3979 	/*
3980 	 * Do the readdir.  This routine decides whether to use
3981 	 * READDIR or READDIRPLUS.
3982 	 */
3983 	error = do_nfs3readdir(vp, nrdc, cr);
3984 
3985 	/*
3986 	 * If this operation failed, just return the error which occurred.
3987 	 */
3988 	if (error != 0)
3989 		return (error);
3990 
3991 	/*
3992 	 * Since the RPC operation will have taken sometime and blocked
3993 	 * this process, another pass through the cache will need to be
3994 	 * taken to find the correct cache entry.  It is possible that
3995 	 * the correct cache entry will not be there (although one was
3996 	 * added) because the directory changed during the RPC operation
3997 	 * and the readdir cache was flushed.  In this case, just start
3998 	 * over.  It is hoped that this will not happen too often... :-)
3999 	 */
4000 	nrdc = NULL;
4001 	goto top;
4002 	/* NOTREACHED */
4003 }
4004 
4005 static int
4006 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4007 {
4008 	int error;
4009 	rnode_t *rp;
4010 	mntinfo_t *mi;
4011 
4012 	rp = VTOR(vp);
4013 	mi = VTOMI(vp);
4014 	ASSERT(nfs_zone() == mi->mi_zone);
4015 	/*
4016 	 * Issue the proper request.
4017 	 *
4018 	 * If the server does not support READDIRPLUS, then use READDIR.
4019 	 *
4020 	 * Otherwise --
4021 	 * Issue a READDIRPLUS if reading to fill an empty cache or if
4022 	 * an application has performed a lookup in the directory which
4023 	 * required an over the wire lookup.  The use of READDIRPLUS
4024 	 * will help to (re)populate the DNLC.
4025 	 */
4026 	if (!(mi->mi_flags & MI_READDIRONLY) &&
4027 	    (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) {
4028 		if (rp->r_flags & RREADDIRPLUS) {
4029 			mutex_enter(&rp->r_statelock);
4030 			rp->r_flags &= ~RREADDIRPLUS;
4031 			mutex_exit(&rp->r_statelock);
4032 		}
4033 		nfs3readdirplus(vp, rdc, cr);
4034 		if (rdc->error == EOPNOTSUPP)
4035 			nfs3readdir(vp, rdc, cr);
4036 	} else
4037 		nfs3readdir(vp, rdc, cr);
4038 
4039 	mutex_enter(&rp->r_statelock);
4040 	rdc->flags &= ~RDDIR;
4041 	if (rdc->flags & RDDIRWAIT) {
4042 		rdc->flags &= ~RDDIRWAIT;
4043 		cv_broadcast(&rdc->cv);
4044 	}
4045 	error = rdc->error;
4046 	if (error)
4047 		rdc->flags |= RDDIRREQ;
4048 	mutex_exit(&rp->r_statelock);
4049 
4050 	rddir_cache_rele(rdc);
4051 
4052 	return (error);
4053 }
4054 
4055 static void
4056 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4057 {
4058 	int error;
4059 	READDIR3args args;
4060 	READDIR3vres res;
4061 	vattr_t dva;
4062 	rnode_t *rp;
4063 	int douprintf;
4064 	failinfo_t fi, *fip = NULL;
4065 	mntinfo_t *mi;
4066 	hrtime_t t;
4067 
4068 	rp = VTOR(vp);
4069 	mi = VTOMI(vp);
4070 	ASSERT(nfs_zone() == mi->mi_zone);
4071 
4072 	args.dir = *RTOFH3(rp);
4073 	args.cookie = (cookie3)rdc->nfs3_cookie;
4074 	args.cookieverf = rp->r_cookieverf;
4075 	args.count = rdc->buflen;
4076 
4077 	/*
4078 	 * NFS client failover support
4079 	 * suppress failover unless we have a zero cookie
4080 	 */
4081 	if (args.cookie == (cookie3) 0) {
4082 		fi.vp = vp;
4083 		fi.fhp = (caddr_t)&args.dir;
4084 		fi.copyproc = nfs3copyfh;
4085 		fi.lookupproc = nfs3lookup;
4086 		fi.xattrdirproc = acl_getxattrdir3;
4087 		fip = &fi;
4088 	}
4089 
4090 #ifdef DEBUG
4091 	rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4092 #else
4093 	rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4094 #endif
4095 
4096 	res.entries = (dirent64_t *)rdc->entries;
4097 	res.entries_size = rdc->buflen;
4098 	res.dir_attributes.fres.vap = &dva;
4099 	res.dir_attributes.fres.vp = vp;
4100 	res.loff = rdc->nfs3_cookie;
4101 
4102 	douprintf = 1;
4103 
4104 	if (mi->mi_io_kstats) {
4105 		mutex_enter(&mi->mi_lock);
4106 		kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4107 		mutex_exit(&mi->mi_lock);
4108 	}
4109 
4110 	t = gethrtime();
4111 
4112 	error = rfs3call(VTOMI(vp), NFSPROC3_READDIR,
4113 	    xdr_READDIR3args, (caddr_t)&args,
4114 	    xdr_READDIR3vres, (caddr_t)&res, cr,
4115 	    &douprintf, &res.status, 0, fip);
4116 
4117 	if (mi->mi_io_kstats) {
4118 		mutex_enter(&mi->mi_lock);
4119 		kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4120 		mutex_exit(&mi->mi_lock);
4121 	}
4122 
4123 	if (error)
4124 		goto err;
4125 
4126 	nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr);
4127 
4128 	error = geterrno3(res.status);
4129 	if (error) {
4130 		PURGE_STALE_FH(error, vp, cr);
4131 		goto err;
4132 	}
4133 
4134 	if (mi->mi_io_kstats) {
4135 		mutex_enter(&mi->mi_lock);
4136 		KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4137 		KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4138 		mutex_exit(&mi->mi_lock);
4139 	}
4140 
4141 	rdc->nfs3_ncookie = res.loff;
4142 	rp->r_cookieverf = res.cookieverf;
4143 	rdc->eof = res.eof ? 1 : 0;
4144 	rdc->entlen = res.size;
4145 	ASSERT(rdc->entlen <= rdc->buflen);
4146 	rdc->error = 0;
4147 	return;
4148 
4149 err:
4150 	kmem_free(rdc->entries, rdc->buflen);
4151 	rdc->entries = NULL;
4152 	rdc->error = error;
4153 }
4154 
4155 /*
4156  * Read directory entries.
4157  * There are some weird things to look out for here.  The uio_loffset
4158  * field is either 0 or it is the offset returned from a previous
4159  * readdir.  It is an opaque value used by the server to find the
4160  * correct directory block to read. The count field is the number
4161  * of blocks to read on the server.  This is advisory only, the server
4162  * may return only one block's worth of entries.  Entries may be compressed
4163  * on the server.
4164  */
4165 static void
4166 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4167 {
4168 	int error;
4169 	READDIRPLUS3args args;
4170 	READDIRPLUS3vres res;
4171 	vattr_t dva;
4172 	rnode_t *rp;
4173 	mntinfo_t *mi;
4174 	int douprintf;
4175 	failinfo_t fi, *fip = NULL;
4176 
4177 	rp = VTOR(vp);
4178 	mi = VTOMI(vp);
4179 	ASSERT(nfs_zone() == mi->mi_zone);
4180 
4181 	args.dir = *RTOFH3(rp);
4182 	args.cookie = (cookie3)rdc->nfs3_cookie;
4183 	args.cookieverf = rp->r_cookieverf;
4184 	args.dircount = rdc->buflen;
4185 	args.maxcount = mi->mi_tsize;
4186 
4187 	/*
4188 	 * NFS client failover support
4189 	 * suppress failover unless we have a zero cookie
4190 	 */
4191 	if (args.cookie == (cookie3)0) {
4192 		fi.vp = vp;
4193 		fi.fhp = (caddr_t)&args.dir;
4194 		fi.copyproc = nfs3copyfh;
4195 		fi.lookupproc = nfs3lookup;
4196 		fi.xattrdirproc = acl_getxattrdir3;
4197 		fip = &fi;
4198 	}
4199 
4200 #ifdef DEBUG
4201 	rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4202 #else
4203 	rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4204 #endif
4205 
4206 	res.entries = (dirent64_t *)rdc->entries;
4207 	res.entries_size = rdc->buflen;
4208 	res.dir_attributes.fres.vap = &dva;
4209 	res.dir_attributes.fres.vp = vp;
4210 	res.loff = rdc->nfs3_cookie;
4211 	res.credentials = cr;
4212 
4213 	douprintf = 1;
4214 
4215 	if (mi->mi_io_kstats) {
4216 		mutex_enter(&mi->mi_lock);
4217 		kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4218 		mutex_exit(&mi->mi_lock);
4219 	}
4220 
4221 	res.time = gethrtime();
4222 
4223 	error = rfs3call(mi, NFSPROC3_READDIRPLUS,
4224 	    xdr_READDIRPLUS3args, (caddr_t)&args,
4225 	    xdr_READDIRPLUS3vres, (caddr_t)&res, cr,
4226 	    &douprintf, &res.status, 0, fip);
4227 
4228 	if (mi->mi_io_kstats) {
4229 		mutex_enter(&mi->mi_lock);
4230 		kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4231 		mutex_exit(&mi->mi_lock);
4232 	}
4233 
4234 	if (error) {
4235 		goto err;
4236 	}
4237 
4238 	nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr);
4239 
4240 	error = geterrno3(res.status);
4241 	if (error) {
4242 		PURGE_STALE_FH(error, vp, cr);
4243 		if (error == EOPNOTSUPP) {
4244 			mutex_enter(&mi->mi_lock);
4245 			mi->mi_flags |= MI_READDIRONLY;
4246 			mutex_exit(&mi->mi_lock);
4247 		}
4248 		goto err;
4249 	}
4250 
4251 	if (mi->mi_io_kstats) {
4252 		mutex_enter(&mi->mi_lock);
4253 		KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4254 		KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4255 		mutex_exit(&mi->mi_lock);
4256 	}
4257 
4258 	rdc->nfs3_ncookie = res.loff;
4259 	rp->r_cookieverf = res.cookieverf;
4260 	rdc->eof = res.eof ? 1 : 0;
4261 	rdc->entlen = res.size;
4262 	ASSERT(rdc->entlen <= rdc->buflen);
4263 	rdc->error = 0;
4264 
4265 	return;
4266 
4267 err:
4268 	kmem_free(rdc->entries, rdc->buflen);
4269 	rdc->entries = NULL;
4270 	rdc->error = error;
4271 }
4272 
4273 #ifdef DEBUG
4274 static int nfs3_bio_do_stop = 0;
4275 #endif
4276 
4277 static int
4278 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr)
4279 {
4280 	rnode_t *rp = VTOR(bp->b_vp);
4281 	int count;
4282 	int error;
4283 	cred_t *cred;
4284 	offset_t offset;
4285 
4286 	ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
4287 	offset = ldbtob(bp->b_lblkno);
4288 
4289 	DTRACE_IO1(start, struct buf *, bp);
4290 
4291 	if (bp->b_flags & B_READ) {
4292 		mutex_enter(&rp->r_statelock);
4293 		if (rp->r_cred != NULL) {
4294 			cred = rp->r_cred;
4295 			crhold(cred);
4296 		} else {
4297 			rp->r_cred = cr;
4298 			crhold(cr);
4299 			cred = cr;
4300 			crhold(cred);
4301 		}
4302 		mutex_exit(&rp->r_statelock);
4303 	read_again:
4304 		error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr,
4305 		    offset, bp->b_bcount, &bp->b_resid, cred);
4306 		crfree(cred);
4307 		if (!error) {
4308 			if (bp->b_resid) {
4309 				/*
4310 				 * Didn't get it all because we hit EOF,
4311 				 * zero all the memory beyond the EOF.
4312 				 */
4313 				/* bzero(rdaddr + */
4314 				bzero(bp->b_un.b_addr +
4315 				    bp->b_bcount - bp->b_resid, bp->b_resid);
4316 			}
4317 			mutex_enter(&rp->r_statelock);
4318 			if (bp->b_resid == bp->b_bcount &&
4319 			    offset >= rp->r_size) {
4320 				/*
4321 				 * We didn't read anything at all as we are
4322 				 * past EOF.  Return an error indicator back
4323 				 * but don't destroy the pages (yet).
4324 				 */
4325 				error = NFS_EOF;
4326 			}
4327 			mutex_exit(&rp->r_statelock);
4328 		} else if (error == EACCES) {
4329 			mutex_enter(&rp->r_statelock);
4330 			if (cred != cr) {
4331 				if (rp->r_cred != NULL)
4332 					crfree(rp->r_cred);
4333 				rp->r_cred = cr;
4334 				crhold(cr);
4335 				cred = cr;
4336 				crhold(cred);
4337 				mutex_exit(&rp->r_statelock);
4338 				goto read_again;
4339 			}
4340 			mutex_exit(&rp->r_statelock);
4341 		}
4342 	} else {
4343 		if (!(rp->r_flags & RSTALE)) {
4344 			mutex_enter(&rp->r_statelock);
4345 			if (rp->r_cred != NULL) {
4346 				cred = rp->r_cred;
4347 				crhold(cred);
4348 			} else {
4349 				rp->r_cred = cr;
4350 				crhold(cr);
4351 				cred = cr;
4352 				crhold(cred);
4353 			}
4354 			mutex_exit(&rp->r_statelock);
4355 		write_again:
4356 			mutex_enter(&rp->r_statelock);
4357 			count = MIN(bp->b_bcount, rp->r_size - offset);
4358 			mutex_exit(&rp->r_statelock);
4359 			if (count < 0)
4360 				cmn_err(CE_PANIC, "nfs3_bio: write count < 0");
4361 #ifdef DEBUG
4362 			if (count == 0) {
4363 				zcmn_err(getzoneid(), CE_WARN,
4364 				    "nfs3_bio: zero length write at %lld",
4365 				    offset);
4366 				nfs_printfhandle(&rp->r_fh);
4367 				if (nfs3_bio_do_stop)
4368 					debug_enter("nfs3_bio");
4369 			}
4370 #endif
4371 			error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset,
4372 			    count, cred, stab_comm);
4373 			if (error == EACCES) {
4374 				mutex_enter(&rp->r_statelock);
4375 				if (cred != cr) {
4376 					if (rp->r_cred != NULL)
4377 						crfree(rp->r_cred);
4378 					rp->r_cred = cr;
4379 					crhold(cr);
4380 					crfree(cred);
4381 					cred = cr;
4382 					crhold(cred);
4383 					mutex_exit(&rp->r_statelock);
4384 					goto write_again;
4385 				}
4386 				mutex_exit(&rp->r_statelock);
4387 			}
4388 			bp->b_error = error;
4389 			if (error && error != EINTR) {
4390 				/*
4391 				 * Don't print EDQUOT errors on the console.
4392 				 * Don't print asynchronous EACCES errors.
4393 				 * Don't print EFBIG errors.
4394 				 * Print all other write errors.
4395 				 */
4396 				if (error != EDQUOT && error != EFBIG &&
4397 				    (error != EACCES ||
4398 				    !(bp->b_flags & B_ASYNC)))
4399 					nfs_write_error(bp->b_vp, error, cred);
4400 				/*
4401 				 * Update r_error and r_flags as appropriate.
4402 				 * If the error was ESTALE, then mark the
4403 				 * rnode as not being writeable and save
4404 				 * the error status.  Otherwise, save any
4405 				 * errors which occur from asynchronous
4406 				 * page invalidations.  Any errors occurring
4407 				 * from other operations should be saved
4408 				 * by the caller.
4409 				 */
4410 				mutex_enter(&rp->r_statelock);
4411 				if (error == ESTALE) {
4412 					rp->r_flags |= RSTALE;
4413 					if (!rp->r_error)
4414 						rp->r_error = error;
4415 				} else if (!rp->r_error &&
4416 				    (bp->b_flags &
4417 				    (B_INVAL|B_FORCE|B_ASYNC)) ==
4418 				    (B_INVAL|B_FORCE|B_ASYNC)) {
4419 					rp->r_error = error;
4420 				}
4421 				mutex_exit(&rp->r_statelock);
4422 			}
4423 			crfree(cred);
4424 		} else {
4425 			error = rp->r_error;
4426 			/*
4427 			 * A close may have cleared r_error, if so,
4428 			 * propagate ESTALE error return properly
4429 			 */
4430 			if (error == 0)
4431 				error = ESTALE;
4432 		}
4433 	}
4434 
4435 	if (error != 0 && error != NFS_EOF)
4436 		bp->b_flags |= B_ERROR;
4437 
4438 	DTRACE_IO1(done, struct buf *, bp);
4439 
4440 	return (error);
4441 }
4442 
4443 /* ARGSUSED */
4444 static int
4445 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4446 {
4447 	rnode_t *rp;
4448 
4449 	if (nfs_zone() != VTOMI(vp)->mi_zone)
4450 		return (EIO);
4451 	rp = VTOR(vp);
4452 
4453 	if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) {
4454 		fidp->fid_len = rp->r_fh.fh_len;
4455 		return (ENOSPC);
4456 	}
4457 	fidp->fid_len = rp->r_fh.fh_len;
4458 	bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len);
4459 	return (0);
4460 }
4461 
4462 /* ARGSUSED2 */
4463 static int
4464 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4465 {
4466 	rnode_t *rp = VTOR(vp);
4467 
4468 	if (!write_lock) {
4469 		(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4470 		return (V_WRITELOCK_FALSE);
4471 	}
4472 
4473 	if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
4474 		(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4475 		if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
4476 			return (V_WRITELOCK_FALSE);
4477 		nfs_rw_exit(&rp->r_rwlock);
4478 	}
4479 
4480 	(void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
4481 	return (V_WRITELOCK_TRUE);
4482 }
4483 
4484 /* ARGSUSED */
4485 static void
4486 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4487 {
4488 	rnode_t *rp = VTOR(vp);
4489 
4490 	nfs_rw_exit(&rp->r_rwlock);
4491 }
4492 
4493 /* ARGSUSED */
4494 static int
4495 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
4496 {
4497 
4498 	/*
4499 	 * Because we stuff the readdir cookie into the offset field
4500 	 * someone may attempt to do an lseek with the cookie which
4501 	 * we want to succeed.
4502 	 */
4503 	if (vp->v_type == VDIR)
4504 		return (0);
4505 	if (*noffp < 0)
4506 		return (EINVAL);
4507 	return (0);
4508 }
4509 
4510 /*
4511  * number of nfs3_bsize blocks to read ahead.
4512  */
4513 static int nfs3_nra = 4;
4514 
4515 #ifdef DEBUG
4516 static int nfs3_lostpage = 0;	/* number of times we lost original page */
4517 #endif
4518 
4519 /*
4520  * Return all the pages from [off..off+len) in file
4521  */
4522 /* ARGSUSED */
4523 static int
4524 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4525 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4526 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4527 {
4528 	rnode_t *rp;
4529 	int error;
4530 	mntinfo_t *mi;
4531 
4532 	if (vp->v_flag & VNOMAP)
4533 		return (ENOSYS);
4534 
4535 	if (nfs_zone() != VTOMI(vp)->mi_zone)
4536 		return (EIO);
4537 	if (protp != NULL)
4538 		*protp = PROT_ALL;
4539 
4540 	/*
4541 	 * Now valididate that the caches are up to date.
4542 	 */
4543 	error = nfs3_validate_caches(vp, cr);
4544 	if (error)
4545 		return (error);
4546 
4547 	rp = VTOR(vp);
4548 	mi = VTOMI(vp);
4549 retry:
4550 	mutex_enter(&rp->r_statelock);
4551 
4552 	/*
4553 	 * Don't create dirty pages faster than they
4554 	 * can be cleaned so that the system doesn't
4555 	 * get imbalanced.  If the async queue is
4556 	 * maxed out, then wait for it to drain before
4557 	 * creating more dirty pages.  Also, wait for
4558 	 * any threads doing pagewalks in the vop_getattr
4559 	 * entry points so that they don't block for
4560 	 * long periods.
4561 	 */
4562 	if (rw == S_CREATE) {
4563 		while ((mi->mi_max_threads != 0 &&
4564 		    rp->r_awcount > 2 * mi->mi_max_threads) ||
4565 		    rp->r_gcount > 0)
4566 			cv_wait(&rp->r_cv, &rp->r_statelock);
4567 	}
4568 
4569 	/*
4570 	 * If we are getting called as a side effect of an nfs_write()
4571 	 * operation the local file size might not be extended yet.
4572 	 * In this case we want to be able to return pages of zeroes.
4573 	 */
4574 	if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
4575 		mutex_exit(&rp->r_statelock);
4576 		return (EFAULT);		/* beyond EOF */
4577 	}
4578 
4579 	mutex_exit(&rp->r_statelock);
4580 
4581 	if (len <= PAGESIZE) {
4582 		error = nfs3_getapage(vp, off, len, protp, pl, plsz,
4583 		    seg, addr, rw, cr);
4584 	} else {
4585 		error = pvn_getpages(nfs3_getapage, vp, off, len, protp,
4586 		    pl, plsz, seg, addr, rw, cr);
4587 	}
4588 
4589 	switch (error) {
4590 	case NFS_EOF:
4591 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
4592 		goto retry;
4593 	case ESTALE:
4594 		PURGE_STALE_FH(error, vp, cr);
4595 	}
4596 
4597 	return (error);
4598 }
4599 
4600 /*
4601  * Called from pvn_getpages or nfs3_getpage to get a particular page.
4602  */
4603 /* ARGSUSED */
4604 static int
4605 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
4606 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4607 	enum seg_rw rw, cred_t *cr)
4608 {
4609 	rnode_t *rp;
4610 	uint_t bsize;
4611 	struct buf *bp;
4612 	page_t *pp;
4613 	u_offset_t lbn;
4614 	u_offset_t io_off;
4615 	u_offset_t blkoff;
4616 	u_offset_t rablkoff;
4617 	size_t io_len;
4618 	uint_t blksize;
4619 	int error;
4620 	int readahead;
4621 	int readahead_issued = 0;
4622 	int ra_window; /* readahead window */
4623 	page_t *pagefound;
4624 	page_t *savepp;
4625 
4626 	if (nfs_zone() != VTOMI(vp)->mi_zone)
4627 		return (EIO);
4628 	rp = VTOR(vp);
4629 	bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4630 
4631 reread:
4632 	bp = NULL;
4633 	pp = NULL;
4634 	pagefound = NULL;
4635 
4636 	if (pl != NULL)
4637 		pl[0] = NULL;
4638 
4639 	error = 0;
4640 	lbn = off / bsize;
4641 	blkoff = lbn * bsize;
4642 
4643 	/*
4644 	 * Queueing up the readahead before doing the synchronous read
4645 	 * results in a significant increase in read throughput because
4646 	 * of the increased parallelism between the async threads and
4647 	 * the process context.
4648 	 */
4649 	if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
4650 	    rw != S_CREATE &&
4651 	    !(vp->v_flag & VNOCACHE)) {
4652 		mutex_enter(&rp->r_statelock);
4653 
4654 		/*
4655 		 * Calculate the number of readaheads to do.
4656 		 * a) No readaheads at offset = 0.
4657 		 * b) Do maximum(nfs3_nra) readaheads when the readahead
4658 		 *    window is closed.
4659 		 * c) Do readaheads between 1 to (nfs3_nra - 1) depending
4660 		 *    upon how far the readahead window is open or close.
4661 		 * d) No readaheads if rp->r_nextr is not within the scope
4662 		 *    of the readahead window (random i/o).
4663 		 */
4664 
4665 		if (off == 0)
4666 			readahead = 0;
4667 		else if (blkoff == rp->r_nextr)
4668 			readahead = nfs3_nra;
4669 		else if (rp->r_nextr > blkoff &&
4670 		    ((ra_window = (rp->r_nextr - blkoff) / bsize)
4671 		    <= (nfs3_nra - 1)))
4672 			readahead = nfs3_nra - ra_window;
4673 		else
4674 			readahead = 0;
4675 
4676 		rablkoff = rp->r_nextr;
4677 		while (readahead > 0 && rablkoff + bsize < rp->r_size) {
4678 			mutex_exit(&rp->r_statelock);
4679 			if (nfs_async_readahead(vp, rablkoff + bsize,
4680 			    addr + (rablkoff + bsize - off), seg, cr,
4681 			    nfs3_readahead) < 0) {
4682 				mutex_enter(&rp->r_statelock);
4683 				break;
4684 			}
4685 			readahead--;
4686 			rablkoff += bsize;
4687 			/*
4688 			 * Indicate that we did a readahead so
4689 			 * readahead offset is not updated
4690 			 * by the synchronous read below.
4691 			 */
4692 			readahead_issued = 1;
4693 			mutex_enter(&rp->r_statelock);
4694 			/*
4695 			 * set readahead offset to
4696 			 * offset of last async readahead
4697 			 * request.
4698 			 */
4699 			rp->r_nextr = rablkoff;
4700 		}
4701 		mutex_exit(&rp->r_statelock);
4702 	}
4703 
4704 again:
4705 	if ((pagefound = page_exists(vp, off)) == NULL) {
4706 		if (pl == NULL) {
4707 			(void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
4708 			    nfs3_readahead);
4709 		} else if (rw == S_CREATE) {
4710 			/*
4711 			 * Block for this page is not allocated, or the offset
4712 			 * is beyond the current allocation size, or we're
4713 			 * allocating a swap slot and the page was not found,
4714 			 * so allocate it and return a zero page.
4715 			 */
4716 			if ((pp = page_create_va(vp, off,
4717 			    PAGESIZE, PG_WAIT, seg, addr)) == NULL)
4718 				cmn_err(CE_PANIC, "nfs3_getapage: page_create");
4719 			io_len = PAGESIZE;
4720 			mutex_enter(&rp->r_statelock);
4721 			rp->r_nextr = off + PAGESIZE;
4722 			mutex_exit(&rp->r_statelock);
4723 		} else {
4724 			/*
4725 			 * Need to go to server to get a BLOCK, exception to
4726 			 * that being while reading at offset = 0 or doing
4727 			 * random i/o, in that case read only a PAGE.
4728 			 */
4729 			mutex_enter(&rp->r_statelock);
4730 			if (blkoff < rp->r_size &&
4731 			    blkoff + bsize >= rp->r_size) {
4732 				/*
4733 				 * If only a block or less is left in
4734 				 * the file, read all that is remaining.
4735 				 */
4736 				if (rp->r_size <= off) {
4737 					/*
4738 					 * Trying to access beyond EOF,
4739 					 * set up to get at least one page.
4740 					 */
4741 					blksize = off + PAGESIZE - blkoff;
4742 				} else
4743 					blksize = rp->r_size - blkoff;
4744 			} else if ((off == 0) ||
4745 			    (off != rp->r_nextr && !readahead_issued)) {
4746 				blksize = PAGESIZE;
4747 				blkoff = off; /* block = page here */
4748 			} else
4749 				blksize = bsize;
4750 			mutex_exit(&rp->r_statelock);
4751 
4752 			pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4753 			    &io_len, blkoff, blksize, 0);
4754 
4755 			/*
4756 			 * Some other thread has entered the page,
4757 			 * so just use it.
4758 			 */
4759 			if (pp == NULL)
4760 				goto again;
4761 
4762 			/*
4763 			 * Now round the request size up to page boundaries.
4764 			 * This ensures that the entire page will be
4765 			 * initialized to zeroes if EOF is encountered.
4766 			 */
4767 			io_len = ptob(btopr(io_len));
4768 
4769 			bp = pageio_setup(pp, io_len, vp, B_READ);
4770 			ASSERT(bp != NULL);
4771 
4772 			/*
4773 			 * pageio_setup should have set b_addr to 0.  This
4774 			 * is correct since we want to do I/O on a page
4775 			 * boundary.  bp_mapin will use this addr to calculate
4776 			 * an offset, and then set b_addr to the kernel virtual
4777 			 * address it allocated for us.
4778 			 */
4779 			ASSERT(bp->b_un.b_addr == 0);
4780 
4781 			bp->b_edev = 0;
4782 			bp->b_dev = 0;
4783 			bp->b_lblkno = lbtodb(io_off);
4784 			bp->b_file = vp;
4785 			bp->b_offset = (offset_t)off;
4786 			bp_mapin(bp);
4787 
4788 			/*
4789 			 * If doing a write beyond what we believe is EOF,
4790 			 * don't bother trying to read the pages from the
4791 			 * server, we'll just zero the pages here.  We
4792 			 * don't check that the rw flag is S_WRITE here
4793 			 * because some implementations may attempt a
4794 			 * read access to the buffer before copying data.
4795 			 */
4796 			mutex_enter(&rp->r_statelock);
4797 			if (io_off >= rp->r_size && seg == segkmap) {
4798 				mutex_exit(&rp->r_statelock);
4799 				bzero(bp->b_un.b_addr, io_len);
4800 			} else {
4801 				mutex_exit(&rp->r_statelock);
4802 				error = nfs3_bio(bp, NULL, cr);
4803 			}
4804 
4805 			/*
4806 			 * Unmap the buffer before freeing it.
4807 			 */
4808 			bp_mapout(bp);
4809 			pageio_done(bp);
4810 
4811 			savepp = pp;
4812 			do {
4813 				pp->p_fsdata = C_NOCOMMIT;
4814 			} while ((pp = pp->p_next) != savepp);
4815 
4816 			if (error == NFS_EOF) {
4817 				/*
4818 				 * If doing a write system call just return
4819 				 * zeroed pages, else user tried to get pages
4820 				 * beyond EOF, return error.  We don't check
4821 				 * that the rw flag is S_WRITE here because
4822 				 * some implementations may attempt a read
4823 				 * access to the buffer before copying data.
4824 				 */
4825 				if (seg == segkmap)
4826 					error = 0;
4827 				else
4828 					error = EFAULT;
4829 			}
4830 
4831 			if (!readahead_issued && !error) {
4832 				mutex_enter(&rp->r_statelock);
4833 				rp->r_nextr = io_off + io_len;
4834 				mutex_exit(&rp->r_statelock);
4835 			}
4836 		}
4837 	}
4838 
4839 out:
4840 	if (pl == NULL)
4841 		return (error);
4842 
4843 	if (error) {
4844 		if (pp != NULL)
4845 			pvn_read_done(pp, B_ERROR);
4846 		return (error);
4847 	}
4848 
4849 	if (pagefound) {
4850 		se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
4851 
4852 		/*
4853 		 * Page exists in the cache, acquire the appropriate lock.
4854 		 * If this fails, start all over again.
4855 		 */
4856 		if ((pp = page_lookup(vp, off, se)) == NULL) {
4857 #ifdef DEBUG
4858 			nfs3_lostpage++;
4859 #endif
4860 			goto reread;
4861 		}
4862 		pl[0] = pp;
4863 		pl[1] = NULL;
4864 		return (0);
4865 	}
4866 
4867 	if (pp != NULL)
4868 		pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4869 
4870 	return (error);
4871 }
4872 
4873 static void
4874 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
4875 	cred_t *cr)
4876 {
4877 	int error;
4878 	page_t *pp;
4879 	u_offset_t io_off;
4880 	size_t io_len;
4881 	struct buf *bp;
4882 	uint_t bsize, blksize;
4883 	rnode_t *rp = VTOR(vp);
4884 	page_t *savepp;
4885 
4886 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4887 	bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4888 
4889 	mutex_enter(&rp->r_statelock);
4890 	if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
4891 		/*
4892 		 * If less than a block left in file read less
4893 		 * than a block.
4894 		 */
4895 		blksize = rp->r_size - blkoff;
4896 	} else
4897 		blksize = bsize;
4898 	mutex_exit(&rp->r_statelock);
4899 
4900 	pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
4901 	    &io_off, &io_len, blkoff, blksize, 1);
4902 	/*
4903 	 * The isra flag passed to the kluster function is 1, we may have
4904 	 * gotten a return value of NULL for a variety of reasons (# of free
4905 	 * pages < minfree, someone entered the page on the vnode etc). In all
4906 	 * cases, we want to punt on the readahead.
4907 	 */
4908 	if (pp == NULL)
4909 		return;
4910 
4911 	/*
4912 	 * Now round the request size up to page boundaries.
4913 	 * This ensures that the entire page will be
4914 	 * initialized to zeroes if EOF is encountered.
4915 	 */
4916 	io_len = ptob(btopr(io_len));
4917 
4918 	bp = pageio_setup(pp, io_len, vp, B_READ);
4919 	ASSERT(bp != NULL);
4920 
4921 	/*
4922 	 * pageio_setup should have set b_addr to 0.  This is correct since
4923 	 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4924 	 * to calculate an offset, and then set b_addr to the kernel virtual
4925 	 * address it allocated for us.
4926 	 */
4927 	ASSERT(bp->b_un.b_addr == 0);
4928 
4929 	bp->b_edev = 0;
4930 	bp->b_dev = 0;
4931 	bp->b_lblkno = lbtodb(io_off);
4932 	bp->b_file = vp;
4933 	bp->b_offset = (offset_t)blkoff;
4934 	bp_mapin(bp);
4935 
4936 	/*
4937 	 * If doing a write beyond what we believe is EOF, don't bother trying
4938 	 * to read the pages from the server, we'll just zero the pages here.
4939 	 * We don't check that the rw flag is S_WRITE here because some
4940 	 * implementations may attempt a read access to the buffer before
4941 	 * copying data.
4942 	 */
4943 	mutex_enter(&rp->r_statelock);
4944 	if (io_off >= rp->r_size && seg == segkmap) {
4945 		mutex_exit(&rp->r_statelock);
4946 		bzero(bp->b_un.b_addr, io_len);
4947 		error = 0;
4948 	} else {
4949 		mutex_exit(&rp->r_statelock);
4950 		error = nfs3_bio(bp, NULL, cr);
4951 		if (error == NFS_EOF)
4952 			error = 0;
4953 	}
4954 
4955 	/*
4956 	 * Unmap the buffer before freeing it.
4957 	 */
4958 	bp_mapout(bp);
4959 	pageio_done(bp);
4960 
4961 	savepp = pp;
4962 	do {
4963 		pp->p_fsdata = C_NOCOMMIT;
4964 	} while ((pp = pp->p_next) != savepp);
4965 
4966 	pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4967 
4968 	/*
4969 	 * In case of error set readahead offset
4970 	 * to the lowest offset.
4971 	 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4972 	 */
4973 	if (error && rp->r_nextr > io_off) {
4974 		mutex_enter(&rp->r_statelock);
4975 		if (rp->r_nextr > io_off)
4976 			rp->r_nextr = io_off;
4977 		mutex_exit(&rp->r_statelock);
4978 	}
4979 }
4980 
4981 /*
4982  * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4983  * If len == 0, do from off to EOF.
4984  *
4985  * The normal cases should be len == 0 && off == 0 (entire vp list),
4986  * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4987  * (from pageout).
4988  */
4989 /* ARGSUSED */
4990 static int
4991 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4992 	caller_context_t *ct)
4993 {
4994 	int error;
4995 	rnode_t *rp;
4996 
4997 	ASSERT(cr != NULL);
4998 
4999 	/*
5000 	 * XXX - Why should this check be made here?
5001 	 */
5002 	if (vp->v_flag & VNOMAP)
5003 		return (ENOSYS);
5004 	if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
5005 		return (0);
5006 	if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5007 		return (EIO);
5008 
5009 	rp = VTOR(vp);
5010 	mutex_enter(&rp->r_statelock);
5011 	rp->r_count++;
5012 	mutex_exit(&rp->r_statelock);
5013 	error = nfs_putpages(vp, off, len, flags, cr);
5014 	mutex_enter(&rp->r_statelock);
5015 	rp->r_count--;
5016 	cv_broadcast(&rp->r_cv);
5017 	mutex_exit(&rp->r_statelock);
5018 
5019 	return (error);
5020 }
5021 
5022 /*
5023  * Write out a single page, possibly klustering adjacent dirty pages.
5024  */
5025 int
5026 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
5027 	int flags, cred_t *cr)
5028 {
5029 	u_offset_t io_off;
5030 	u_offset_t lbn_off;
5031 	u_offset_t lbn;
5032 	size_t io_len;
5033 	uint_t bsize;
5034 	int error;
5035 	rnode_t *rp;
5036 
5037 	ASSERT(!vn_is_readonly(vp));
5038 	ASSERT(pp != NULL);
5039 	ASSERT(cr != NULL);
5040 	ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
5041 
5042 	rp = VTOR(vp);
5043 	ASSERT(rp->r_count > 0);
5044 
5045 	bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
5046 	lbn = pp->p_offset / bsize;
5047 	lbn_off = lbn * bsize;
5048 
5049 	/*
5050 	 * Find a kluster that fits in one block, or in
5051 	 * one page if pages are bigger than blocks.  If
5052 	 * there is less file space allocated than a whole
5053 	 * page, we'll shorten the i/o request below.
5054 	 */
5055 	pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
5056 	    roundup(bsize, PAGESIZE), flags);
5057 
5058 	/*
5059 	 * pvn_write_kluster shouldn't have returned a page with offset
5060 	 * behind the original page we were given.  Verify that.
5061 	 */
5062 	ASSERT((pp->p_offset / bsize) >= lbn);
5063 
5064 	/*
5065 	 * Now pp will have the list of kept dirty pages marked for
5066 	 * write back.  It will also handle invalidation and freeing
5067 	 * of pages that are not dirty.  Check for page length rounding
5068 	 * problems.
5069 	 */
5070 	if (io_off + io_len > lbn_off + bsize) {
5071 		ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
5072 		io_len = lbn_off + bsize - io_off;
5073 	}
5074 	/*
5075 	 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5076 	 * consistent value of r_size. RMODINPROGRESS is set in writerp().
5077 	 * When RMODINPROGRESS is set it indicates that a uiomove() is in
5078 	 * progress and the r_size has not been made consistent with the
5079 	 * new size of the file. When the uiomove() completes the r_size is
5080 	 * updated and the RMODINPROGRESS flag is cleared.
5081 	 *
5082 	 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5083 	 * consistent value of r_size. Without this handshaking, it is
5084 	 * possible that nfs(3)_bio() picks  up the old value of r_size
5085 	 * before the uiomove() in writerp() completes. This will result
5086 	 * in the write through nfs(3)_bio() being dropped.
5087 	 *
5088 	 * More precisely, there is a window between the time the uiomove()
5089 	 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
5090 	 * operation intervenes in this window, the page will be picked up,
5091 	 * because it is dirty (it will be unlocked, unless it was
5092 	 * pagecreate'd). When the page is picked up as dirty, the dirty
5093 	 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
5094 	 * checked. This will still be the old size. Therefore the page will
5095 	 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
5096 	 * the page will be found to be clean and the write will be dropped.
5097 	 */
5098 	if (rp->r_flags & RMODINPROGRESS) {
5099 		mutex_enter(&rp->r_statelock);
5100 		if ((rp->r_flags & RMODINPROGRESS) &&
5101 		    rp->r_modaddr + MAXBSIZE > io_off &&
5102 		    rp->r_modaddr < io_off + io_len) {
5103 			page_t *plist;
5104 			/*
5105 			 * A write is in progress for this region of the file.
5106 			 * If we did not detect RMODINPROGRESS here then this
5107 			 * path through nfs_putapage() would eventually go to
5108 			 * nfs(3)_bio() and may not write out all of the data
5109 			 * in the pages. We end up losing data. So we decide
5110 			 * to set the modified bit on each page in the page
5111 			 * list and mark the rnode with RDIRTY. This write
5112 			 * will be restarted at some later time.
5113 			 */
5114 			plist = pp;
5115 			while (plist != NULL) {
5116 				pp = plist;
5117 				page_sub(&plist, pp);
5118 				hat_setmod(pp);
5119 				page_io_unlock(pp);
5120 				page_unlock(pp);
5121 			}
5122 			rp->r_flags |= RDIRTY;
5123 			mutex_exit(&rp->r_statelock);
5124 			if (offp)
5125 				*offp = io_off;
5126 			if (lenp)
5127 				*lenp = io_len;
5128 			return (0);
5129 		}
5130 		mutex_exit(&rp->r_statelock);
5131 	}
5132 
5133 	if (flags & B_ASYNC) {
5134 		error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
5135 		    nfs3_sync_putapage);
5136 	} else
5137 		error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr);
5138 
5139 	if (offp)
5140 		*offp = io_off;
5141 	if (lenp)
5142 		*lenp = io_len;
5143 	return (error);
5144 }
5145 
5146 static int
5147 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5148 	int flags, cred_t *cr)
5149 {
5150 	int error;
5151 	rnode_t *rp;
5152 
5153 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5154 
5155 	flags |= B_WRITE;
5156 
5157 	error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5158 
5159 	rp = VTOR(vp);
5160 
5161 	if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
5162 	    error == EACCES) &&
5163 	    (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
5164 		if (!(rp->r_flags & ROUTOFSPACE)) {
5165 			mutex_enter(&rp->r_statelock);
5166 			rp->r_flags |= ROUTOFSPACE;
5167 			mutex_exit(&rp->r_statelock);
5168 		}
5169 		flags |= B_ERROR;
5170 		pvn_write_done(pp, flags);
5171 		/*
5172 		 * If this was not an async thread, then try again to
5173 		 * write out the pages, but this time, also destroy
5174 		 * them whether or not the write is successful.  This
5175 		 * will prevent memory from filling up with these
5176 		 * pages and destroying them is the only alternative
5177 		 * if they can't be written out.
5178 		 *
5179 		 * Don't do this if this is an async thread because
5180 		 * when the pages are unlocked in pvn_write_done,
5181 		 * some other thread could have come along, locked
5182 		 * them, and queued for an async thread.  It would be
5183 		 * possible for all of the async threads to be tied
5184 		 * up waiting to lock the pages again and they would
5185 		 * all already be locked and waiting for an async
5186 		 * thread to handle them.  Deadlock.
5187 		 */
5188 		if (!(flags & B_ASYNC)) {
5189 			error = nfs3_putpage(vp, io_off, io_len,
5190 			    B_INVAL | B_FORCE, cr, NULL);
5191 		}
5192 	} else {
5193 		if (error)
5194 			flags |= B_ERROR;
5195 		else if (rp->r_flags & ROUTOFSPACE) {
5196 			mutex_enter(&rp->r_statelock);
5197 			rp->r_flags &= ~ROUTOFSPACE;
5198 			mutex_exit(&rp->r_statelock);
5199 		}
5200 		pvn_write_done(pp, flags);
5201 		if (freemem < desfree)
5202 			(void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr);
5203 	}
5204 
5205 	return (error);
5206 }
5207 
5208 /* ARGSUSED */
5209 static int
5210 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5211 	size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5212 	cred_t *cr, caller_context_t *ct)
5213 {
5214 	struct segvn_crargs vn_a;
5215 	int error;
5216 	rnode_t *rp;
5217 	struct vattr va;
5218 
5219 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5220 		return (EIO);
5221 
5222 	if (vp->v_flag & VNOMAP)
5223 		return (ENOSYS);
5224 
5225 	if (off < 0 || off + len < 0)
5226 		return (ENXIO);
5227 
5228 	if (vp->v_type != VREG)
5229 		return (ENODEV);
5230 
5231 	/*
5232 	 * If there is cached data and if close-to-open consistency
5233 	 * checking is not turned off and if the file system is not
5234 	 * mounted readonly, then force an over the wire getattr.
5235 	 * Otherwise, just invoke nfs3getattr to get a copy of the
5236 	 * attributes.  The attribute cache will be used unless it
5237 	 * is timed out and if it is, then an over the wire getattr
5238 	 * will be issued.
5239 	 */
5240 	va.va_mask = AT_ALL;
5241 	if (vn_has_cached_data(vp) &&
5242 	    !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
5243 		error = nfs3_getattr_otw(vp, &va, cr);
5244 	else
5245 		error = nfs3getattr(vp, &va, cr);
5246 	if (error)
5247 		return (error);
5248 
5249 	/*
5250 	 * Check to see if the vnode is currently marked as not cachable.
5251 	 * This means portions of the file are locked (through VOP_FRLOCK).
5252 	 * In this case the map request must be refused.  We use
5253 	 * rp->r_lkserlock to avoid a race with concurrent lock requests.
5254 	 */
5255 	rp = VTOR(vp);
5256 
5257 	/*
5258 	 * Atomically increment r_inmap after acquiring r_rwlock. The
5259 	 * idea here is to acquire r_rwlock to block read/write and
5260 	 * not to protect r_inmap. r_inmap will inform nfs3_read/write()
5261 	 * that we are in nfs3_map(). Now, r_rwlock is acquired in order
5262 	 * and we can prevent the deadlock that would have occurred
5263 	 * when nfs3_addmap() would have acquired it out of order.
5264 	 *
5265 	 * Since we are not protecting r_inmap by any lock, we do not
5266 	 * hold any lock when we decrement it. We atomically decrement
5267 	 * r_inmap after we release r_lkserlock.
5268 	 */
5269 
5270 	if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
5271 		return (EINTR);
5272 	atomic_add_int(&rp->r_inmap, 1);
5273 	nfs_rw_exit(&rp->r_rwlock);
5274 
5275 	if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
5276 		atomic_add_int(&rp->r_inmap, -1);
5277 		return (EINTR);
5278 	}
5279 
5280 	if (vp->v_flag & VNOCACHE) {
5281 		error = EAGAIN;
5282 		goto done;
5283 	}
5284 
5285 	/*
5286 	 * Don't allow concurrent locks and mapping if mandatory locking is
5287 	 * enabled.
5288 	 */
5289 	if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
5290 	    MANDLOCK(vp, va.va_mode)) {
5291 		error = EAGAIN;
5292 		goto done;
5293 	}
5294 
5295 	as_rangelock(as);
5296 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5297 	if (error != 0) {
5298 		as_rangeunlock(as);
5299 		goto done;
5300 	}
5301 
5302 	vn_a.vp = vp;
5303 	vn_a.offset = off;
5304 	vn_a.type = (flags & MAP_TYPE);
5305 	vn_a.prot = (uchar_t)prot;
5306 	vn_a.maxprot = (uchar_t)maxprot;
5307 	vn_a.flags = (flags & ~MAP_TYPE);
5308 	vn_a.cred = cr;
5309 	vn_a.amp = NULL;
5310 	vn_a.szc = 0;
5311 	vn_a.lgrp_mem_policy_flags = 0;
5312 
5313 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5314 	as_rangeunlock(as);
5315 
5316 done:
5317 	nfs_rw_exit(&rp->r_lkserlock);
5318 	atomic_add_int(&rp->r_inmap, -1);
5319 	return (error);
5320 }
5321 
5322 /* ARGSUSED */
5323 static int
5324 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5325 	size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5326 	cred_t *cr, caller_context_t *ct)
5327 {
5328 	rnode_t *rp;
5329 
5330 	if (vp->v_flag & VNOMAP)
5331 		return (ENOSYS);
5332 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5333 		return (EIO);
5334 
5335 	rp = VTOR(vp);
5336 	atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
5337 
5338 	return (0);
5339 }
5340 
5341 /* ARGSUSED */
5342 static int
5343 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5344 	offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
5345 	caller_context_t *ct)
5346 {
5347 	netobj lm_fh3;
5348 	int rc;
5349 	u_offset_t start, end;
5350 	rnode_t *rp;
5351 	int error = 0, intr = INTR(vp);
5352 
5353 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5354 		return (EIO);
5355 	/* check for valid cmd parameter */
5356 	if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
5357 		return (EINVAL);
5358 
5359 	/* Verify l_type. */
5360 	switch (bfp->l_type) {
5361 	case F_RDLCK:
5362 		if (cmd != F_GETLK && !(flag & FREAD))
5363 			return (EBADF);
5364 		break;
5365 	case F_WRLCK:
5366 		if (cmd != F_GETLK && !(flag & FWRITE))
5367 			return (EBADF);
5368 		break;
5369 	case F_UNLCK:
5370 		intr = 0;
5371 		break;
5372 
5373 	default:
5374 		return (EINVAL);
5375 	}
5376 
5377 	/* check the validity of the lock range */
5378 	if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
5379 		return (rc);
5380 	if (rc = flk_check_lock_data(start, end, MAXEND))
5381 		return (rc);
5382 
5383 	/*
5384 	 * If the filesystem is mounted using local locking, pass the
5385 	 * request off to the local locking code.
5386 	 */
5387 	if (VTOMI(vp)->mi_flags & MI_LLOCK) {
5388 		if (cmd == F_SETLK || cmd == F_SETLKW) {
5389 			/*
5390 			 * For complete safety, we should be holding
5391 			 * r_lkserlock.  However, we can't call
5392 			 * lm_safelock and then fs_frlock while
5393 			 * holding r_lkserlock, so just invoke
5394 			 * lm_safelock and expect that this will
5395 			 * catch enough of the cases.
5396 			 */
5397 			if (!lm_safelock(vp, bfp, cr))
5398 				return (EAGAIN);
5399 		}
5400 		return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
5401 	}
5402 
5403 	rp = VTOR(vp);
5404 
5405 	/*
5406 	 * Check whether the given lock request can proceed, given the
5407 	 * current file mappings.
5408 	 */
5409 	if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
5410 		return (EINTR);
5411 	if (cmd == F_SETLK || cmd == F_SETLKW) {
5412 		if (!lm_safelock(vp, bfp, cr)) {
5413 			rc = EAGAIN;
5414 			goto done;
5415 		}
5416 	}
5417 
5418 	/*
5419 	 * Flush the cache after waiting for async I/O to finish.  For new
5420 	 * locks, this is so that the process gets the latest bits from the
5421 	 * server.  For unlocks, this is so that other clients see the
5422 	 * latest bits once the file has been unlocked.  If currently dirty
5423 	 * pages can't be flushed, then don't allow a lock to be set.  But
5424 	 * allow unlocks to succeed, to avoid having orphan locks on the
5425 	 * server.
5426 	 */
5427 	if (cmd != F_GETLK) {
5428 		mutex_enter(&rp->r_statelock);
5429 		while (rp->r_count > 0) {
5430 			if (intr) {
5431 				klwp_t *lwp = ttolwp(curthread);
5432 
5433 				if (lwp != NULL)
5434 					lwp->lwp_nostop++;
5435 				if (cv_wait_sig(&rp->r_cv,
5436 				    &rp->r_statelock) == 0) {
5437 					if (lwp != NULL)
5438 						lwp->lwp_nostop--;
5439 					rc = EINTR;
5440 					break;
5441 				}
5442 				if (lwp != NULL)
5443 					lwp->lwp_nostop--;
5444 			} else
5445 				cv_wait(&rp->r_cv, &rp->r_statelock);
5446 		}
5447 		mutex_exit(&rp->r_statelock);
5448 		if (rc != 0)
5449 			goto done;
5450 		error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
5451 		if (error) {
5452 			if (error == ENOSPC || error == EDQUOT) {
5453 				mutex_enter(&rp->r_statelock);
5454 				if (!rp->r_error)
5455 					rp->r_error = error;
5456 				mutex_exit(&rp->r_statelock);
5457 			}
5458 			if (bfp->l_type != F_UNLCK) {
5459 				rc = ENOLCK;
5460 				goto done;
5461 			}
5462 		}
5463 	}
5464 
5465 	lm_fh3.n_len = VTOFH3(vp)->fh3_length;
5466 	lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
5467 
5468 	/*
5469 	 * Call the lock manager to do the real work of contacting
5470 	 * the server and obtaining the lock.
5471 	 */
5472 	rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp);
5473 
5474 	if (rc == 0)
5475 		nfs_lockcompletion(vp, cmd);
5476 
5477 done:
5478 	nfs_rw_exit(&rp->r_lkserlock);
5479 	return (rc);
5480 }
5481 
5482 /*
5483  * Free storage space associated with the specified vnode.  The portion
5484  * to be freed is specified by bfp->l_start and bfp->l_len (already
5485  * normalized to a "whence" of 0).
5486  *
5487  * This is an experimental facility whose continued existence is not
5488  * guaranteed.  Currently, we only support the special case
5489  * of l_len == 0, meaning free to end of file.
5490  */
5491 /* ARGSUSED */
5492 static int
5493 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5494 	offset_t offset, cred_t *cr, caller_context_t *ct)
5495 {
5496 	int error;
5497 
5498 	ASSERT(vp->v_type == VREG);
5499 	if (cmd != F_FREESP)
5500 		return (EINVAL);
5501 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5502 		return (EIO);
5503 
5504 	error = convoff(vp, bfp, 0, offset);
5505 	if (!error) {
5506 		ASSERT(bfp->l_start >= 0);
5507 		if (bfp->l_len == 0) {
5508 			struct vattr va;
5509 
5510 			/*
5511 			 * ftruncate should not change the ctime and
5512 			 * mtime if we truncate the file to its
5513 			 * previous size.
5514 			 */
5515 			va.va_mask = AT_SIZE;
5516 			error = nfs3getattr(vp, &va, cr);
5517 			if (error || va.va_size == bfp->l_start)
5518 				return (error);
5519 			va.va_mask = AT_SIZE;
5520 			va.va_size = bfp->l_start;
5521 			error = nfs3setattr(vp, &va, 0, cr);
5522 		} else
5523 			error = EINVAL;
5524 	}
5525 
5526 	return (error);
5527 }
5528 
5529 /* ARGSUSED */
5530 static int
5531 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
5532 {
5533 
5534 	return (EINVAL);
5535 }
5536 
5537 /*
5538  * Setup and add an address space callback to do the work of the delmap call.
5539  * The callback will (and must be) deleted in the actual callback function.
5540  *
5541  * This is done in order to take care of the problem that we have with holding
5542  * the address space's a_lock for a long period of time (e.g. if the NFS server
5543  * is down).  Callbacks will be executed in the address space code while the
5544  * a_lock is not held.	Holding the address space's a_lock causes things such
5545  * as ps and fork to hang because they are trying to acquire this lock as well.
5546  */
5547 /* ARGSUSED */
5548 static int
5549 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5550 	size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5551 	cred_t *cr, caller_context_t *ct)
5552 {
5553 	int			caller_found;
5554 	int			error;
5555 	rnode_t			*rp;
5556 	nfs_delmap_args_t	*dmapp;
5557 	nfs_delmapcall_t	*delmap_call;
5558 
5559 	if (vp->v_flag & VNOMAP)
5560 		return (ENOSYS);
5561 	/*
5562 	 * A process may not change zones if it has NFS pages mmap'ed
5563 	 * in, so we can't legitimately get here from the wrong zone.
5564 	 */
5565 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5566 
5567 	rp = VTOR(vp);
5568 
5569 	/*
5570 	 * The way that the address space of this process deletes its mapping
5571 	 * of this file is via the following call chains:
5572 	 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5573 	 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5574 	 *
5575 	 * With the use of address space callbacks we are allowed to drop the
5576 	 * address space lock, a_lock, while executing the NFS operations that
5577 	 * need to go over the wire.  Returning EAGAIN to the caller of this
5578 	 * function is what drives the execution of the callback that we add
5579 	 * below.  The callback will be executed by the address space code
5580 	 * after dropping the a_lock.  When the callback is finished, since
5581 	 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
5582 	 * is called again on the same segment to finish the rest of the work
5583 	 * that needs to happen during unmapping.
5584 	 *
5585 	 * This action of calling back into the segment driver causes
5586 	 * nfs3_delmap() to get called again, but since the callback was
5587 	 * already executed at this point, it already did the work and there
5588 	 * is nothing left for us to do.
5589 	 *
5590 	 * To Summarize:
5591 	 * - The first time nfs3_delmap is called by the current thread is when
5592 	 * we add the caller associated with this delmap to the delmap caller
5593 	 * list, add the callback, and return EAGAIN.
5594 	 * - The second time in this call chain when nfs3_delmap is called we
5595 	 * will find this caller in the delmap caller list and realize there
5596 	 * is no more work to do thus removing this caller from the list and
5597 	 * returning the error that was set in the callback execution.
5598 	 */
5599 	caller_found = nfs_find_and_delete_delmapcall(rp, &error);
5600 	if (caller_found) {
5601 		/*
5602 		 * 'error' is from the actual delmap operations.  To avoid
5603 		 * hangs, we need to handle the return of EAGAIN differently
5604 		 * since this is what drives the callback execution.
5605 		 * In this case, we don't want to return EAGAIN and do the
5606 		 * callback execution because there are none to execute.
5607 		 */
5608 		if (error == EAGAIN)
5609 			return (0);
5610 		else
5611 			return (error);
5612 	}
5613 
5614 	/* current caller was not in the list */
5615 	delmap_call = nfs_init_delmapcall();
5616 
5617 	mutex_enter(&rp->r_statelock);
5618 	list_insert_tail(&rp->r_indelmap, delmap_call);
5619 	mutex_exit(&rp->r_statelock);
5620 
5621 	dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
5622 
5623 	dmapp->vp = vp;
5624 	dmapp->off = off;
5625 	dmapp->addr = addr;
5626 	dmapp->len = len;
5627 	dmapp->prot = prot;
5628 	dmapp->maxprot = maxprot;
5629 	dmapp->flags = flags;
5630 	dmapp->cr = cr;
5631 	dmapp->caller = delmap_call;
5632 
5633 	error = as_add_callback(as, nfs3_delmap_callback, dmapp,
5634 	    AS_UNMAP_EVENT, addr, len, KM_SLEEP);
5635 
5636 	return (error ? error : EAGAIN);
5637 }
5638 
5639 /*
5640  * Remove some pages from an mmap'd vnode.  Just update the
5641  * count of pages.  If doing close-to-open, then flush and
5642  * commit all of the pages associated with this file.
5643  * Otherwise, start an asynchronous page flush to write out
5644  * any dirty pages.  This will also associate a credential
5645  * with the rnode which can be used to write the pages.
5646  */
5647 /* ARGSUSED */
5648 static void
5649 nfs3_delmap_callback(struct as *as, void *arg, uint_t event)
5650 {
5651 	int			error;
5652 	rnode_t			*rp;
5653 	mntinfo_t		*mi;
5654 	nfs_delmap_args_t	*dmapp = (nfs_delmap_args_t *)arg;
5655 
5656 	rp = VTOR(dmapp->vp);
5657 	mi = VTOMI(dmapp->vp);
5658 
5659 	atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
5660 	ASSERT(rp->r_mapcnt >= 0);
5661 
5662 	/*
5663 	 * Initiate a page flush and potential commit if there are
5664 	 * pages, the file system was not mounted readonly, the segment
5665 	 * was mapped shared, and the pages themselves were writeable.
5666 	 */
5667 	if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
5668 	    dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
5669 		mutex_enter(&rp->r_statelock);
5670 		rp->r_flags |= RDIRTY;
5671 		mutex_exit(&rp->r_statelock);
5672 		/*
5673 		 * If this is a cross-zone access a sync putpage won't work, so
5674 		 * the best we can do is try an async putpage.  That seems
5675 		 * better than something more draconian such as discarding the
5676 		 * dirty pages.
5677 		 */
5678 		if ((mi->mi_flags & MI_NOCTO) ||
5679 		    nfs_zone() != mi->mi_zone)
5680 			error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5681 			    B_ASYNC, dmapp->cr, NULL);
5682 		else
5683 			error = nfs3_putpage_commit(dmapp->vp, dmapp->off,
5684 			    dmapp->len, dmapp->cr);
5685 		if (!error) {
5686 			mutex_enter(&rp->r_statelock);
5687 			error = rp->r_error;
5688 			rp->r_error = 0;
5689 			mutex_exit(&rp->r_statelock);
5690 		}
5691 	} else
5692 		error = 0;
5693 
5694 	if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
5695 		(void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5696 		    B_INVAL, dmapp->cr, NULL);
5697 
5698 	dmapp->caller->error = error;
5699 	(void) as_delete_callback(as, arg);
5700 	kmem_free(dmapp, sizeof (nfs_delmap_args_t));
5701 }
5702 
5703 static int nfs3_pathconf_disable_cache = 0;
5704 
5705 #ifdef DEBUG
5706 static int nfs3_pathconf_cache_hits = 0;
5707 static int nfs3_pathconf_cache_misses = 0;
5708 #endif
5709 
5710 /* ARGSUSED */
5711 static int
5712 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5713 	caller_context_t *ct)
5714 {
5715 	int error;
5716 	PATHCONF3args args;
5717 	PATHCONF3res res;
5718 	int douprintf;
5719 	failinfo_t fi;
5720 	rnode_t *rp;
5721 	hrtime_t t;
5722 
5723 	if (nfs_zone() != VTOMI(vp)->mi_zone)
5724 		return (EIO);
5725 	/*
5726 	 * Large file spec - need to base answer on info stored
5727 	 * on original FSINFO response.
5728 	 */
5729 	if (cmd == _PC_FILESIZEBITS) {
5730 		unsigned long long ll;
5731 		long l = 1;
5732 
5733 		ll = VTOMI(vp)->mi_maxfilesize;
5734 
5735 		if (ll == 0) {
5736 			*valp = 0;
5737 			return (0);
5738 		}
5739 
5740 		if (ll & 0xffffffff00000000) {
5741 			l += 32; ll >>= 32;
5742 		}
5743 		if (ll & 0xffff0000) {
5744 			l += 16; ll >>= 16;
5745 		}
5746 		if (ll & 0xff00) {
5747 			l += 8; ll >>= 8;
5748 		}
5749 		if (ll & 0xf0) {
5750 			l += 4; ll >>= 4;
5751 		}
5752 		if (ll & 0xc) {
5753 			l += 2; ll >>= 2;
5754 		}
5755 		if (ll & 0x2)
5756 			l += 2;
5757 		else if (ll & 0x1)
5758 			l += 1;
5759 		*valp = l;
5760 		return (0);
5761 	}
5762 
5763 	if (cmd == _PC_ACL_ENABLED) {
5764 		*valp = _ACL_ACLENT_ENABLED;
5765 		return (0);
5766 	}
5767 
5768 	if (cmd == _PC_XATTR_EXISTS) {
5769 		error = 0;
5770 		*valp = 0;
5771 		if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5772 			vnode_t *avp;
5773 			rnode_t *rp;
5774 			int error = 0;
5775 			mntinfo_t *mi = VTOMI(vp);
5776 
5777 			if (!(mi->mi_flags & MI_EXTATTR))
5778 				return (0);
5779 
5780 			rp = VTOR(vp);
5781 			if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
5782 			    INTR(vp)))
5783 				return (EINTR);
5784 
5785 			error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
5786 			if (error || avp == NULL)
5787 				error = acl_getxattrdir3(vp, &avp, 0, cr, 0);
5788 
5789 			nfs_rw_exit(&rp->r_rwlock);
5790 
5791 			if (error == 0 && avp != NULL) {
5792 				error = do_xattr_exists_check(avp, valp, cr);
5793 				VN_RELE(avp);
5794 			} else if (error == ENOENT) {
5795 				error = 0;
5796 				*valp = 0;
5797 			}
5798 		}
5799 		return (error);
5800 	}
5801 
5802 	rp = VTOR(vp);
5803 	if (rp->r_pathconf != NULL) {
5804 		mutex_enter(&rp->r_statelock);
5805 		if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) {
5806 			kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf));
5807 			rp->r_pathconf = NULL;
5808 		}
5809 		if (rp->r_pathconf != NULL) {
5810 			error = 0;
5811 			switch (cmd) {
5812 			case _PC_LINK_MAX:
5813 				*valp = rp->r_pathconf->link_max;
5814 				break;
5815 			case _PC_NAME_MAX:
5816 				*valp = rp->r_pathconf->name_max;
5817 				break;
5818 			case _PC_PATH_MAX:
5819 			case _PC_SYMLINK_MAX:
5820 				*valp = MAXPATHLEN;
5821 				break;
5822 			case _PC_CHOWN_RESTRICTED:
5823 				*valp = rp->r_pathconf->chown_restricted;
5824 				break;
5825 			case _PC_NO_TRUNC:
5826 				*valp = rp->r_pathconf->no_trunc;
5827 				break;
5828 			default:
5829 				error = EINVAL;
5830 				break;
5831 			}
5832 			mutex_exit(&rp->r_statelock);
5833 #ifdef DEBUG
5834 			nfs3_pathconf_cache_hits++;
5835 #endif
5836 			return (error);
5837 		}
5838 		mutex_exit(&rp->r_statelock);
5839 	}
5840 #ifdef DEBUG
5841 	nfs3_pathconf_cache_misses++;
5842 #endif
5843 
5844 	args.object = *VTOFH3(vp);
5845 	fi.vp = vp;
5846 	fi.fhp = (caddr_t)&args.object;
5847 	fi.copyproc = nfs3copyfh;
5848 	fi.lookupproc = nfs3lookup;
5849 	fi.xattrdirproc = acl_getxattrdir3;
5850 
5851 	douprintf = 1;
5852 
5853 	t = gethrtime();
5854 
5855 	error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF,
5856 	    xdr_nfs_fh3, (caddr_t)&args,
5857 	    xdr_PATHCONF3res, (caddr_t)&res, cr,
5858 	    &douprintf, &res.status, 0, &fi);
5859 
5860 	if (error)
5861 		return (error);
5862 
5863 	error = geterrno3(res.status);
5864 
5865 	if (!error) {
5866 		nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
5867 		if (!nfs3_pathconf_disable_cache) {
5868 			mutex_enter(&rp->r_statelock);
5869 			if (rp->r_pathconf == NULL) {
5870 				rp->r_pathconf = kmem_alloc(
5871 				    sizeof (*rp->r_pathconf), KM_NOSLEEP);
5872 				if (rp->r_pathconf != NULL)
5873 					*rp->r_pathconf = res.resok.info;
5874 			}
5875 			mutex_exit(&rp->r_statelock);
5876 		}
5877 		switch (cmd) {
5878 		case _PC_LINK_MAX:
5879 			*valp = res.resok.info.link_max;
5880 			break;
5881 		case _PC_NAME_MAX:
5882 			*valp = res.resok.info.name_max;
5883 			break;
5884 		case _PC_PATH_MAX:
5885 		case _PC_SYMLINK_MAX:
5886 			*valp = MAXPATHLEN;
5887 			break;
5888 		case _PC_CHOWN_RESTRICTED:
5889 			*valp = res.resok.info.chown_restricted;
5890 			break;
5891 		case _PC_NO_TRUNC:
5892 			*valp = res.resok.info.no_trunc;
5893 			break;
5894 		default:
5895 			return (EINVAL);
5896 		}
5897 	} else {
5898 		nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
5899 		PURGE_STALE_FH(error, vp, cr);
5900 	}
5901 
5902 	return (error);
5903 }
5904 
5905 /*
5906  * Called by async thread to do synchronous pageio. Do the i/o, wait
5907  * for it to complete, and cleanup the page list when done.
5908  */
5909 static int
5910 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5911 	int flags, cred_t *cr)
5912 {
5913 	int error;
5914 
5915 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5916 	error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5917 	if (flags & B_READ)
5918 		pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
5919 	else
5920 		pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
5921 	return (error);
5922 }
5923 
5924 /* ARGSUSED */
5925 static int
5926 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5927 	int flags, cred_t *cr, caller_context_t *ct)
5928 {
5929 	int error;
5930 	rnode_t *rp;
5931 
5932 	if (pp == NULL)
5933 		return (EINVAL);
5934 	if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5935 		return (EIO);
5936 
5937 	rp = VTOR(vp);
5938 	mutex_enter(&rp->r_statelock);
5939 	rp->r_count++;
5940 	mutex_exit(&rp->r_statelock);
5941 
5942 	if (flags & B_ASYNC) {
5943 		error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
5944 		    nfs3_sync_pageio);
5945 	} else
5946 		error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5947 	mutex_enter(&rp->r_statelock);
5948 	rp->r_count--;
5949 	cv_broadcast(&rp->r_cv);
5950 	mutex_exit(&rp->r_statelock);
5951 	return (error);
5952 }
5953 
5954 /* ARGSUSED */
5955 static void
5956 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
5957 	caller_context_t *ct)
5958 {
5959 	int error;
5960 	rnode_t *rp;
5961 	page_t *plist;
5962 	page_t *pptr;
5963 	offset3 offset;
5964 	count3 len;
5965 	k_sigset_t smask;
5966 
5967 	/*
5968 	 * We should get called with fl equal to either B_FREE or
5969 	 * B_INVAL.  Any other value is illegal.
5970 	 *
5971 	 * The page that we are either supposed to free or destroy
5972 	 * should be exclusive locked and its io lock should not
5973 	 * be held.
5974 	 */
5975 	ASSERT(fl == B_FREE || fl == B_INVAL);
5976 	ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
5977 	rp = VTOR(vp);
5978 
5979 	/*
5980 	 * If the page doesn't need to be committed or we shouldn't
5981 	 * even bother attempting to commit it, then just make sure
5982 	 * that the p_fsdata byte is clear and then either free or
5983 	 * destroy the page as appropriate.
5984 	 */
5985 	if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) {
5986 		pp->p_fsdata = C_NOCOMMIT;
5987 		if (fl == B_FREE)
5988 			page_free(pp, dn);
5989 		else
5990 			page_destroy(pp, dn);
5991 		return;
5992 	}
5993 
5994 	/*
5995 	 * If there is a page invalidation operation going on, then
5996 	 * if this is one of the pages being destroyed, then just
5997 	 * clear the p_fsdata byte and then either free or destroy
5998 	 * the page as appropriate.
5999 	 */
6000 	mutex_enter(&rp->r_statelock);
6001 	if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
6002 		mutex_exit(&rp->r_statelock);
6003 		pp->p_fsdata = C_NOCOMMIT;
6004 		if (fl == B_FREE)
6005 			page_free(pp, dn);
6006 		else
6007 			page_destroy(pp, dn);
6008 		return;
6009 	}
6010 
6011 	/*
6012 	 * If we are freeing this page and someone else is already
6013 	 * waiting to do a commit, then just unlock the page and
6014 	 * return.  That other thread will take care of commiting
6015 	 * this page.  The page can be freed sometime after the
6016 	 * commit has finished.  Otherwise, if the page is marked
6017 	 * as delay commit, then we may be getting called from
6018 	 * pvn_write_done, one page at a time.   This could result
6019 	 * in one commit per page, so we end up doing lots of small
6020 	 * commits instead of fewer larger commits.  This is bad,
6021 	 * we want do as few commits as possible.
6022 	 */
6023 	if (fl == B_FREE) {
6024 		if (rp->r_flags & RCOMMITWAIT) {
6025 			page_unlock(pp);
6026 			mutex_exit(&rp->r_statelock);
6027 			return;
6028 		}
6029 		if (pp->p_fsdata == C_DELAYCOMMIT) {
6030 			pp->p_fsdata = C_COMMIT;
6031 			page_unlock(pp);
6032 			mutex_exit(&rp->r_statelock);
6033 			return;
6034 		}
6035 	}
6036 
6037 	/*
6038 	 * Check to see if there is a signal which would prevent an
6039 	 * attempt to commit the pages from being successful.  If so,
6040 	 * then don't bother with all of the work to gather pages and
6041 	 * generate the unsuccessful RPC.  Just return from here and
6042 	 * let the page be committed at some later time.
6043 	 */
6044 	sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
6045 	if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
6046 		sigunintr(&smask);
6047 		page_unlock(pp);
6048 		mutex_exit(&rp->r_statelock);
6049 		return;
6050 	}
6051 	sigunintr(&smask);
6052 
6053 	/*
6054 	 * We are starting to need to commit pages, so let's try
6055 	 * to commit as many as possible at once to reduce the
6056 	 * overhead.
6057 	 *
6058 	 * Set the `commit inprogress' state bit.  We must
6059 	 * first wait until any current one finishes.  Then
6060 	 * we initialize the c_pages list with this page.
6061 	 */
6062 	while (rp->r_flags & RCOMMIT) {
6063 		rp->r_flags |= RCOMMITWAIT;
6064 		cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6065 		rp->r_flags &= ~RCOMMITWAIT;
6066 	}
6067 	rp->r_flags |= RCOMMIT;
6068 	mutex_exit(&rp->r_statelock);
6069 	ASSERT(rp->r_commit.c_pages == NULL);
6070 	rp->r_commit.c_pages = pp;
6071 	rp->r_commit.c_commbase = (offset3)pp->p_offset;
6072 	rp->r_commit.c_commlen = PAGESIZE;
6073 
6074 	/*
6075 	 * Gather together all other pages which can be committed.
6076 	 * They will all be chained off r_commit.c_pages.
6077 	 */
6078 	nfs3_get_commit(vp);
6079 
6080 	/*
6081 	 * Clear the `commit inprogress' status and disconnect
6082 	 * the list of pages to be committed from the rnode.
6083 	 * At this same time, we also save the starting offset
6084 	 * and length of data to be committed on the server.
6085 	 */
6086 	plist = rp->r_commit.c_pages;
6087 	rp->r_commit.c_pages = NULL;
6088 	offset = rp->r_commit.c_commbase;
6089 	len = rp->r_commit.c_commlen;
6090 	mutex_enter(&rp->r_statelock);
6091 	rp->r_flags &= ~RCOMMIT;
6092 	cv_broadcast(&rp->r_commit.c_cv);
6093 	mutex_exit(&rp->r_statelock);
6094 
6095 	if (curproc == proc_pageout || curproc == proc_fsflush ||
6096 	    nfs_zone() != VTOMI(vp)->mi_zone) {
6097 		nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit);
6098 		return;
6099 	}
6100 
6101 	/*
6102 	 * Actually generate the COMMIT3 over the wire operation.
6103 	 */
6104 	error = nfs3_commit(vp, offset, len, cr);
6105 
6106 	/*
6107 	 * If we got an error during the commit, just unlock all
6108 	 * of the pages.  The pages will get retransmitted to the
6109 	 * server during a putpage operation.
6110 	 */
6111 	if (error) {
6112 		while (plist != NULL) {
6113 			pptr = plist;
6114 			page_sub(&plist, pptr);
6115 			page_unlock(pptr);
6116 		}
6117 		return;
6118 	}
6119 
6120 	/*
6121 	 * We've tried as hard as we can to commit the data to stable
6122 	 * storage on the server.  We release the rest of the pages
6123 	 * and clear the commit required state.  They will be put
6124 	 * onto the tail of the cachelist if they are nolonger
6125 	 * mapped.
6126 	 */
6127 	while (plist != pp) {
6128 		pptr = plist;
6129 		page_sub(&plist, pptr);
6130 		pptr->p_fsdata = C_NOCOMMIT;
6131 		(void) page_release(pptr, 1);
6132 	}
6133 
6134 	/*
6135 	 * It is possible that nfs3_commit didn't return error but
6136 	 * some other thread has modified the page we are going
6137 	 * to free/destroy.
6138 	 *    In this case we need to rewrite the page. Do an explicit check
6139 	 * before attempting to free/destroy the page. If modified, needs to
6140 	 * be rewritten so unlock the page and return.
6141 	 */
6142 	if (hat_ismod(pp)) {
6143 		pp->p_fsdata = C_NOCOMMIT;
6144 		page_unlock(pp);
6145 		return;
6146 	}
6147 
6148 	/*
6149 	 * Now, as appropriate, either free or destroy the page
6150 	 * that we were called with.
6151 	 */
6152 	pp->p_fsdata = C_NOCOMMIT;
6153 	if (fl == B_FREE)
6154 		page_free(pp, dn);
6155 	else
6156 		page_destroy(pp, dn);
6157 }
6158 
6159 static int
6160 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr)
6161 {
6162 	int error;
6163 	rnode_t *rp;
6164 	COMMIT3args args;
6165 	COMMIT3res res;
6166 	int douprintf;
6167 	cred_t *cred;
6168 
6169 	rp = VTOR(vp);
6170 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6171 
6172 	mutex_enter(&rp->r_statelock);
6173 	if (rp->r_cred != NULL) {
6174 		cred = rp->r_cred;
6175 		crhold(cred);
6176 	} else {
6177 		rp->r_cred = cr;
6178 		crhold(cr);
6179 		cred = cr;
6180 		crhold(cred);
6181 	}
6182 	mutex_exit(&rp->r_statelock);
6183 
6184 	args.file = *VTOFH3(vp);
6185 	args.offset = offset;
6186 	args.count = count;
6187 
6188 doitagain:
6189 	douprintf = 1;
6190 	error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT,
6191 	    xdr_COMMIT3args, (caddr_t)&args,
6192 	    xdr_COMMIT3res, (caddr_t)&res, cred,
6193 	    &douprintf, &res.status, 0, NULL);
6194 
6195 	crfree(cred);
6196 
6197 	if (error)
6198 		return (error);
6199 
6200 	error = geterrno3(res.status);
6201 	if (!error) {
6202 		ASSERT(rp->r_flags & RHAVEVERF);
6203 		mutex_enter(&rp->r_statelock);
6204 		if (rp->r_verf == res.resok.verf) {
6205 			mutex_exit(&rp->r_statelock);
6206 			return (0);
6207 		}
6208 		nfs3_set_mod(vp);
6209 		rp->r_verf = res.resok.verf;
6210 		mutex_exit(&rp->r_statelock);
6211 		error = NFS_VERF_MISMATCH;
6212 	} else {
6213 		if (error == EACCES) {
6214 			mutex_enter(&rp->r_statelock);
6215 			if (cred != cr) {
6216 				if (rp->r_cred != NULL)
6217 					crfree(rp->r_cred);
6218 				rp->r_cred = cr;
6219 				crhold(cr);
6220 				cred = cr;
6221 				crhold(cred);
6222 				mutex_exit(&rp->r_statelock);
6223 				goto doitagain;
6224 			}
6225 			mutex_exit(&rp->r_statelock);
6226 		}
6227 		/*
6228 		 * Can't do a PURGE_STALE_FH here because this
6229 		 * can cause a deadlock.  nfs3_commit can
6230 		 * be called from nfs3_dispose which can be called
6231 		 * indirectly via pvn_vplist_dirty.  PURGE_STALE_FH
6232 		 * can call back to pvn_vplist_dirty.
6233 		 */
6234 		if (error == ESTALE) {
6235 			mutex_enter(&rp->r_statelock);
6236 			rp->r_flags |= RSTALE;
6237 			if (!rp->r_error)
6238 				rp->r_error = error;
6239 			mutex_exit(&rp->r_statelock);
6240 			PURGE_ATTRCACHE(vp);
6241 		} else {
6242 			mutex_enter(&rp->r_statelock);
6243 			if (!rp->r_error)
6244 				rp->r_error = error;
6245 			mutex_exit(&rp->r_statelock);
6246 		}
6247 	}
6248 
6249 	return (error);
6250 }
6251 
6252 static void
6253 nfs3_set_mod(vnode_t *vp)
6254 {
6255 	page_t *pp;
6256 	kmutex_t *vphm;
6257 
6258 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6259 	vphm = page_vnode_mutex(vp);
6260 	mutex_enter(vphm);
6261 	if ((pp = vp->v_pages) != NULL) {
6262 		do {
6263 			if (pp->p_fsdata != C_NOCOMMIT) {
6264 				hat_setmod(pp);
6265 				pp->p_fsdata = C_NOCOMMIT;
6266 			}
6267 		} while ((pp = pp->p_vpnext) != vp->v_pages);
6268 	}
6269 	mutex_exit(vphm);
6270 }
6271 
6272 
6273 /*
6274  * This routine is used to gather together a page list of the pages
6275  * which are to be committed on the server.  This routine must not
6276  * be called if the calling thread holds any locked pages.
6277  *
6278  * The calling thread must have set RCOMMIT.  This bit is used to
6279  * serialize access to the commit structure in the rnode.  As long
6280  * as the thread has set RCOMMIT, then it can manipulate the commit
6281  * structure without requiring any other locks.
6282  */
6283 static void
6284 nfs3_get_commit(vnode_t *vp)
6285 {
6286 	rnode_t *rp;
6287 	page_t *pp;
6288 	kmutex_t *vphm;
6289 
6290 	rp = VTOR(vp);
6291 
6292 	ASSERT(rp->r_flags & RCOMMIT);
6293 
6294 	vphm = page_vnode_mutex(vp);
6295 	mutex_enter(vphm);
6296 
6297 	/*
6298 	 * If there are no pages associated with this vnode, then
6299 	 * just return.
6300 	 */
6301 	if ((pp = vp->v_pages) == NULL) {
6302 		mutex_exit(vphm);
6303 		return;
6304 	}
6305 
6306 	/*
6307 	 * Step through all of the pages associated with this vnode
6308 	 * looking for pages which need to be committed.
6309 	 */
6310 	do {
6311 		/*
6312 		 * If this page does not need to be committed or is
6313 		 * modified, then just skip it.
6314 		 */
6315 		if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
6316 			continue;
6317 
6318 		/*
6319 		 * Attempt to lock the page.  If we can't, then
6320 		 * someone else is messing with it and we will
6321 		 * just skip it.
6322 		 */
6323 		if (!page_trylock(pp, SE_EXCL))
6324 			continue;
6325 
6326 		/*
6327 		 * If this page does not need to be committed or is
6328 		 * modified, then just skip it.  Recheck now that
6329 		 * the page is locked.
6330 		 */
6331 		if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6332 			page_unlock(pp);
6333 			continue;
6334 		}
6335 
6336 		if (PP_ISFREE(pp)) {
6337 			cmn_err(CE_PANIC, "nfs3_get_commit: %p is free",
6338 			    (void *)pp);
6339 		}
6340 
6341 		/*
6342 		 * The page needs to be committed and we locked it.
6343 		 * Update the base and length parameters and add it
6344 		 * to r_pages.
6345 		 */
6346 		if (rp->r_commit.c_pages == NULL) {
6347 			rp->r_commit.c_commbase = (offset3)pp->p_offset;
6348 			rp->r_commit.c_commlen = PAGESIZE;
6349 		} else if (pp->p_offset < rp->r_commit.c_commbase) {
6350 			rp->r_commit.c_commlen = rp->r_commit.c_commbase -
6351 			    (offset3)pp->p_offset + rp->r_commit.c_commlen;
6352 			rp->r_commit.c_commbase = (offset3)pp->p_offset;
6353 		} else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
6354 		    <= pp->p_offset) {
6355 			rp->r_commit.c_commlen = (offset3)pp->p_offset -
6356 			    rp->r_commit.c_commbase + PAGESIZE;
6357 		}
6358 		page_add(&rp->r_commit.c_pages, pp);
6359 	} while ((pp = pp->p_vpnext) != vp->v_pages);
6360 
6361 	mutex_exit(vphm);
6362 }
6363 
6364 /*
6365  * This routine is used to gather together a page list of the pages
6366  * which are to be committed on the server.  This routine must not
6367  * be called if the calling thread holds any locked pages.
6368  *
6369  * The calling thread must have set RCOMMIT.  This bit is used to
6370  * serialize access to the commit structure in the rnode.  As long
6371  * as the thread has set RCOMMIT, then it can manipulate the commit
6372  * structure without requiring any other locks.
6373  */
6374 static void
6375 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
6376 {
6377 
6378 	rnode_t *rp;
6379 	page_t *pp;
6380 	u_offset_t end;
6381 	u_offset_t off;
6382 
6383 	ASSERT(len != 0);
6384 
6385 	rp = VTOR(vp);
6386 
6387 	ASSERT(rp->r_flags & RCOMMIT);
6388 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6389 
6390 	/*
6391 	 * If there are no pages associated with this vnode, then
6392 	 * just return.
6393 	 */
6394 	if ((pp = vp->v_pages) == NULL)
6395 		return;
6396 
6397 	/*
6398 	 * Calculate the ending offset.
6399 	 */
6400 	end = soff + len;
6401 
6402 	for (off = soff; off < end; off += PAGESIZE) {
6403 		/*
6404 		 * Lookup each page by vp, offset.
6405 		 */
6406 		if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
6407 			continue;
6408 
6409 		/*
6410 		 * If this page does not need to be committed or is
6411 		 * modified, then just skip it.
6412 		 */
6413 		if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6414 			page_unlock(pp);
6415 			continue;
6416 		}
6417 
6418 		ASSERT(PP_ISFREE(pp) == 0);
6419 
6420 		/*
6421 		 * The page needs to be committed and we locked it.
6422 		 * Update the base and length parameters and add it
6423 		 * to r_pages.
6424 		 */
6425 		if (rp->r_commit.c_pages == NULL) {
6426 			rp->r_commit.c_commbase = (offset3)pp->p_offset;
6427 			rp->r_commit.c_commlen = PAGESIZE;
6428 		} else {
6429 			rp->r_commit.c_commlen = (offset3)pp->p_offset -
6430 			    rp->r_commit.c_commbase + PAGESIZE;
6431 		}
6432 		page_add(&rp->r_commit.c_pages, pp);
6433 	}
6434 }
6435 
6436 #if 0	/* unused */
6437 #ifdef DEBUG
6438 static int
6439 nfs3_no_uncommitted_pages(vnode_t *vp)
6440 {
6441 	page_t *pp;
6442 	kmutex_t *vphm;
6443 
6444 	vphm = page_vnode_mutex(vp);
6445 	mutex_enter(vphm);
6446 	if ((pp = vp->v_pages) != NULL) {
6447 		do {
6448 			if (pp->p_fsdata != C_NOCOMMIT) {
6449 				mutex_exit(vphm);
6450 				return (0);
6451 			}
6452 		} while ((pp = pp->p_vpnext) != vp->v_pages);
6453 	}
6454 	mutex_exit(vphm);
6455 
6456 	return (1);
6457 }
6458 #endif
6459 #endif
6460 
6461 static int
6462 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
6463 {
6464 	int error;
6465 	writeverf3 write_verf;
6466 	rnode_t *rp = VTOR(vp);
6467 
6468 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6469 	/*
6470 	 * Flush the data portion of the file and then commit any
6471 	 * portions which need to be committed.  This may need to
6472 	 * be done twice if the server has changed state since
6473 	 * data was last written.  The data will need to be
6474 	 * rewritten to the server and then a new commit done.
6475 	 *
6476 	 * In fact, this may need to be done several times if the
6477 	 * server is having problems and crashing while we are
6478 	 * attempting to do this.
6479 	 */
6480 
6481 top:
6482 	/*
6483 	 * Do a flush based on the poff and plen arguments.  This
6484 	 * will asynchronously write out any modified pages in the
6485 	 * range specified by (poff, plen).  This starts all of the
6486 	 * i/o operations which will be waited for in the next
6487 	 * call to nfs3_putpage
6488 	 */
6489 
6490 	mutex_enter(&rp->r_statelock);
6491 	write_verf = rp->r_verf;
6492 	mutex_exit(&rp->r_statelock);
6493 
6494 	error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
6495 	if (error == EAGAIN)
6496 		error = 0;
6497 
6498 	/*
6499 	 * Do a flush based on the poff and plen arguments.  This
6500 	 * will synchronously write out any modified pages in the
6501 	 * range specified by (poff, plen) and wait until all of
6502 	 * the asynchronous i/o's in that range are done as well.
6503 	 */
6504 	if (!error)
6505 		error = nfs3_putpage(vp, poff, plen, 0, cr, NULL);
6506 
6507 	if (error)
6508 		return (error);
6509 
6510 	mutex_enter(&rp->r_statelock);
6511 	if (rp->r_verf != write_verf) {
6512 		mutex_exit(&rp->r_statelock);
6513 		goto top;
6514 	}
6515 	mutex_exit(&rp->r_statelock);
6516 
6517 	/*
6518 	 * Now commit any pages which might need to be committed.
6519 	 * If the error, NFS_VERF_MISMATCH, is returned, then
6520 	 * start over with the flush operation.
6521 	 */
6522 
6523 	error = nfs3_commit_vp(vp, poff, plen, cr);
6524 
6525 	if (error == NFS_VERF_MISMATCH)
6526 		goto top;
6527 
6528 	return (error);
6529 }
6530 
6531 static int
6532 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr)
6533 {
6534 	rnode_t *rp;
6535 	page_t *plist;
6536 	offset3 offset;
6537 	count3 len;
6538 
6539 
6540 	rp = VTOR(vp);
6541 
6542 	if (nfs_zone() != VTOMI(vp)->mi_zone)
6543 		return (EIO);
6544 	/*
6545 	 * Set the `commit inprogress' state bit.  We must
6546 	 * first wait until any current one finishes.
6547 	 */
6548 	mutex_enter(&rp->r_statelock);
6549 	while (rp->r_flags & RCOMMIT) {
6550 		rp->r_flags |= RCOMMITWAIT;
6551 		cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6552 		rp->r_flags &= ~RCOMMITWAIT;
6553 	}
6554 	rp->r_flags |= RCOMMIT;
6555 	mutex_exit(&rp->r_statelock);
6556 
6557 	/*
6558 	 * Gather together all of the pages which need to be
6559 	 * committed.
6560 	 */
6561 	if (plen == 0)
6562 		nfs3_get_commit(vp);
6563 	else
6564 		nfs3_get_commit_range(vp, poff, plen);
6565 
6566 	/*
6567 	 * Clear the `commit inprogress' bit and disconnect the
6568 	 * page list which was gathered together in nfs3_get_commit.
6569 	 */
6570 	plist = rp->r_commit.c_pages;
6571 	rp->r_commit.c_pages = NULL;
6572 	offset = rp->r_commit.c_commbase;
6573 	len = rp->r_commit.c_commlen;
6574 	mutex_enter(&rp->r_statelock);
6575 	rp->r_flags &= ~RCOMMIT;
6576 	cv_broadcast(&rp->r_commit.c_cv);
6577 	mutex_exit(&rp->r_statelock);
6578 
6579 	/*
6580 	 * If any pages need to be committed, commit them and
6581 	 * then unlock them so that they can be freed some
6582 	 * time later.
6583 	 */
6584 	if (plist != NULL) {
6585 		/*
6586 		 * No error occurred during the flush portion
6587 		 * of this operation, so now attempt to commit
6588 		 * the data to stable storage on the server.
6589 		 *
6590 		 * This will unlock all of the pages on the list.
6591 		 */
6592 		return (nfs3_sync_commit(vp, plist, offset, len, cr));
6593 	}
6594 	return (0);
6595 }
6596 
6597 static int
6598 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6599 	cred_t *cr)
6600 {
6601 	int error;
6602 	page_t *pp;
6603 
6604 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6605 	error = nfs3_commit(vp, offset, count, cr);
6606 
6607 	/*
6608 	 * If we got an error, then just unlock all of the pages
6609 	 * on the list.
6610 	 */
6611 	if (error) {
6612 		while (plist != NULL) {
6613 			pp = plist;
6614 			page_sub(&plist, pp);
6615 			page_unlock(pp);
6616 		}
6617 		return (error);
6618 	}
6619 	/*
6620 	 * We've tried as hard as we can to commit the data to stable
6621 	 * storage on the server.  We just unlock the pages and clear
6622 	 * the commit required state.  They will get freed later.
6623 	 */
6624 	while (plist != NULL) {
6625 		pp = plist;
6626 		page_sub(&plist, pp);
6627 		pp->p_fsdata = C_NOCOMMIT;
6628 		page_unlock(pp);
6629 	}
6630 
6631 	return (error);
6632 }
6633 
6634 static void
6635 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6636 	cred_t *cr)
6637 {
6638 	ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6639 	(void) nfs3_sync_commit(vp, plist, offset, count, cr);
6640 }
6641 
6642 /* ARGSUSED */
6643 static int
6644 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6645 	caller_context_t *ct)
6646 {
6647 	int error;
6648 	mntinfo_t *mi;
6649 
6650 	mi = VTOMI(vp);
6651 
6652 	if (nfs_zone() != mi->mi_zone)
6653 		return (EIO);
6654 
6655 	if (mi->mi_flags & MI_ACL) {
6656 		error = acl_setacl3(vp, vsecattr, flag, cr);
6657 		if (mi->mi_flags & MI_ACL)
6658 			return (error);
6659 	}
6660 
6661 	return (ENOSYS);
6662 }
6663 
6664 /* ARGSUSED */
6665 static int
6666 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6667 	caller_context_t *ct)
6668 {
6669 	int error;
6670 	mntinfo_t *mi;
6671 
6672 	mi = VTOMI(vp);
6673 
6674 	if (nfs_zone() != mi->mi_zone)
6675 		return (EIO);
6676 
6677 	if (mi->mi_flags & MI_ACL) {
6678 		error = acl_getacl3(vp, vsecattr, flag, cr);
6679 		if (mi->mi_flags & MI_ACL)
6680 			return (error);
6681 	}
6682 
6683 	return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
6684 }
6685 
6686 /* ARGSUSED */
6687 static int
6688 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
6689 	caller_context_t *ct)
6690 {
6691 	int error;
6692 	struct shrlock nshr;
6693 	struct nfs_owner nfs_owner;
6694 	netobj lm_fh3;
6695 
6696 	if (nfs_zone() != VTOMI(vp)->mi_zone)
6697 		return (EIO);
6698 
6699 	/*
6700 	 * check for valid cmd parameter
6701 	 */
6702 	if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
6703 		return (EINVAL);
6704 
6705 	/*
6706 	 * Check access permissions
6707 	 */
6708 	if (cmd == F_SHARE &&
6709 	    (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
6710 	    ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
6711 		return (EBADF);
6712 
6713 	/*
6714 	 * If the filesystem is mounted using local locking, pass the
6715 	 * request off to the local share code.
6716 	 */
6717 	if (VTOMI(vp)->mi_flags & MI_LLOCK)
6718 		return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
6719 
6720 	switch (cmd) {
6721 	case F_SHARE:
6722 	case F_UNSHARE:
6723 		lm_fh3.n_len = VTOFH3(vp)->fh3_length;
6724 		lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
6725 
6726 		/*
6727 		 * If passed an owner that is too large to fit in an
6728 		 * nfs_owner it is likely a recursive call from the
6729 		 * lock manager client and pass it straight through.  If
6730 		 * it is not a nfs_owner then simply return an error.
6731 		 */
6732 		if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
6733 			if (((struct nfs_owner *)shr->s_owner)->magic !=
6734 			    NFS_OWNER_MAGIC)
6735 				return (EINVAL);
6736 
6737 			if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) {
6738 				error = set_errno(error);
6739 			}
6740 			return (error);
6741 		}
6742 		/*
6743 		 * Remote share reservations owner is a combination of
6744 		 * a magic number, hostname, and the local owner
6745 		 */
6746 		bzero(&nfs_owner, sizeof (nfs_owner));
6747 		nfs_owner.magic = NFS_OWNER_MAGIC;
6748 		(void) strncpy(nfs_owner.hname, uts_nodename(),
6749 		    sizeof (nfs_owner.hname));
6750 		bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
6751 		nshr.s_access = shr->s_access;
6752 		nshr.s_deny = shr->s_deny;
6753 		nshr.s_sysid = 0;
6754 		nshr.s_pid = ttoproc(curthread)->p_pid;
6755 		nshr.s_own_len = sizeof (nfs_owner);
6756 		nshr.s_owner = (caddr_t)&nfs_owner;
6757 
6758 		if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) {
6759 			error = set_errno(error);
6760 		}
6761 
6762 		break;
6763 
6764 	case F_HASREMOTELOCKS:
6765 		/*
6766 		 * NFS client can't store remote locks itself
6767 		 */
6768 		shr->s_access = 0;
6769 		error = 0;
6770 		break;
6771 
6772 	default:
6773 		error = EINVAL;
6774 		break;
6775 	}
6776 
6777 	return (error);
6778 }
6779