1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Portions Copyright 2007 Shivakumar GN */ 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/cmn_err.h> 31 #include <sys/debug.h> 32 #include <sys/dirent.h> 33 #include <sys/kmem.h> 34 #include <sys/mman.h> 35 #include <sys/mutex.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/uio.h> 39 #include <sys/vmsystm.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 43 #include <vm/as.h> 44 #include <vm/seg_vn.h> 45 46 #include <sys/gfs.h> 47 48 /* 49 * Generic pseudo-filesystem routines. 50 * 51 * There are significant similarities between the implementation of certain file 52 * system entry points across different filesystems. While one could attempt to 53 * "choke up on the bat" and incorporate common functionality into a VOP 54 * preamble or postamble, such an approach is limited in the benefit it can 55 * provide. In this file we instead define a toolkit of routines which can be 56 * called from a filesystem (with in-kernel pseudo-filesystems being the focus 57 * of the exercise) in a more component-like fashion. 58 * 59 * There are three basic classes of routines: 60 * 61 * 1) Lowlevel support routines 62 * 63 * These routines are designed to play a support role for existing 64 * pseudo-filesystems (such as procfs). They simplify common tasks, 65 * without forcing the filesystem to hand over management to GFS. The 66 * routines covered are: 67 * 68 * gfs_readdir_init() 69 * gfs_readdir_emit() 70 * gfs_readdir_emitn() 71 * gfs_readdir_pred() 72 * gfs_readdir_fini() 73 * gfs_lookup_dot() 74 * 75 * 2) Complete GFS management 76 * 77 * These routines take a more active role in management of the 78 * pseudo-filesystem. They handle the relationship between vnode private 79 * data and VFS data, as well as the relationship between vnodes in the 80 * directory hierarchy. 81 * 82 * In order to use these interfaces, the first member of every private 83 * v_data must be a gfs_file_t or a gfs_dir_t. This hands over all control 84 * to GFS. 85 * 86 * gfs_file_create() 87 * gfs_dir_create() 88 * gfs_root_create() 89 * 90 * gfs_file_inactive() 91 * gfs_dir_inactive() 92 * gfs_dir_lookup() 93 * gfs_dir_readdir() 94 * 95 * gfs_vop_inactive() 96 * gfs_vop_lookup() 97 * gfs_vop_readdir() 98 * gfs_vop_map() 99 * 100 * 3) Single File pseudo-filesystems 101 * 102 * This routine creates a rooted file to be overlayed ontop of another 103 * file in the physical filespace. 104 * 105 * Note that the parent is NULL (actually the vfs), but there is nothing 106 * technically keeping such a file from utilizing the "Complete GFS 107 * management" set of routines. 108 * 109 * gfs_root_create_file() 110 */ 111 112 /* 113 * gfs_make_opsvec: take an array of vnode type definitions and create 114 * their vnodeops_t structures 115 * 116 * This routine takes an array of gfs_opsvec_t's. It could 117 * alternatively take an array of gfs_opsvec_t*'s, which would allow 118 * vnode types to be completely defined in files external to the caller 119 * of gfs_make_opsvec(). As it stands, much more sharing takes place -- 120 * both the caller and the vnode type provider need to access gfsv_ops 121 * and gfsv_template, and the caller also needs to know gfsv_name. 122 */ 123 int 124 gfs_make_opsvec(gfs_opsvec_t *vec) 125 { 126 int error, i; 127 128 for (i = 0; ; i++) { 129 if (vec[i].gfsv_name == NULL) 130 return (0); 131 error = vn_make_ops(vec[i].gfsv_name, vec[i].gfsv_template, 132 vec[i].gfsv_ops); 133 if (error) 134 break; 135 } 136 137 cmn_err(CE_WARN, "gfs_make_opsvec: bad vnode ops template for '%s'", 138 vec[i].gfsv_name); 139 for (i--; i >= 0; i--) { 140 vn_freevnodeops(*vec[i].gfsv_ops); 141 *vec[i].gfsv_ops = NULL; 142 } 143 return (error); 144 } 145 146 /* 147 * Low level directory routines 148 * 149 * These routines provide some simple abstractions for reading directories. 150 * They are designed to be used by existing pseudo filesystems (namely procfs) 151 * that already have a complicated management infrastructure. 152 */ 153 154 /* 155 * gfs_readdir_init: initiate a generic readdir 156 * st - a pointer to an uninitialized gfs_readdir_state_t structure 157 * name_max - the directory's maximum file name length 158 * ureclen - the exported file-space record length (1 for non-legacy FSs) 159 * uiop - the uiop passed to readdir 160 * parent - the parent directory's inode 161 * self - this directory's inode 162 * 163 * Returns 0 or a non-zero errno. 164 * 165 * Typical VOP_READDIR usage of gfs_readdir_*: 166 * 167 * if ((error = gfs_readdir_init(...)) != 0) 168 * return (error); 169 * eof = 0; 170 * while ((error = gfs_readdir_pred(..., &voffset)) != 0) { 171 * if (!consumer_entry_at(voffset)) 172 * voffset = consumer_next_entry(voffset); 173 * if (consumer_eof(voffset)) { 174 * eof = 1 175 * break; 176 * } 177 * if ((error = gfs_readdir_emit(..., voffset, 178 * consumer_ino(voffset), consumer_name(voffset))) != 0) 179 * break; 180 * } 181 * return (gfs_readdir_fini(..., error, eofp, eof)); 182 * 183 * As you can see, a zero result from gfs_readdir_pred() or 184 * gfs_readdir_emit() indicates that processing should continue, 185 * whereas a non-zero result indicates that the loop should terminate. 186 * Most consumers need do nothing more than let gfs_readdir_fini() 187 * determine what the cause of failure was and return the appropriate 188 * value. 189 */ 190 int 191 gfs_readdir_init(gfs_readdir_state_t *st, int name_max, int ureclen, 192 uio_t *uiop, ino64_t parent, ino64_t self) 193 { 194 if (uiop->uio_loffset < 0 || uiop->uio_resid <= 0 || 195 (uiop->uio_loffset % ureclen) != 0) 196 return (EINVAL); 197 198 st->grd_ureclen = ureclen; 199 st->grd_oresid = uiop->uio_resid; 200 st->grd_namlen = name_max; 201 st->grd_dirent = kmem_zalloc(DIRENT64_RECLEN(st->grd_namlen), KM_SLEEP); 202 st->grd_parent = parent; 203 st->grd_self = self; 204 205 return (0); 206 } 207 208 /* 209 * gfs_readdir_emit_int: internal routine to emit directory entry 210 * 211 * st - the current readdir state, which must have d_ino and d_name 212 * set 213 * uiop - caller-supplied uio pointer 214 * next - the offset of the next entry 215 */ 216 static int 217 gfs_readdir_emit_int(gfs_readdir_state_t *st, uio_t *uiop, offset_t next) 218 { 219 int reclen; 220 221 reclen = DIRENT64_RECLEN(strlen(st->grd_dirent->d_name)); 222 223 if (reclen > uiop->uio_resid) { 224 /* 225 * Error if no entries were returned yet 226 */ 227 if (uiop->uio_resid == st->grd_oresid) 228 return (EINVAL); 229 return (-1); 230 } 231 232 st->grd_dirent->d_off = next; 233 st->grd_dirent->d_reclen = (ushort_t)reclen; 234 235 if (uiomove((caddr_t)st->grd_dirent, reclen, UIO_READ, uiop)) 236 return (EFAULT); 237 238 uiop->uio_loffset = next; 239 240 return (0); 241 } 242 243 /* 244 * gfs_readdir_emit: emit a directory entry 245 * voff - the virtual offset (obtained from gfs_readdir_pred) 246 * ino - the entry's inode 247 * name - the entry's name 248 * 249 * Returns a 0 on success, a non-zero errno on failure, or -1 if the 250 * readdir loop should terminate. A non-zero result (either errno or 251 * -1) from this function is typically passed directly to 252 * gfs_readdir_fini(). 253 */ 254 int 255 gfs_readdir_emit(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff, 256 ino64_t ino, const char *name) 257 { 258 offset_t off = (voff + 2) * st->grd_ureclen; 259 260 st->grd_dirent->d_ino = ino; 261 (void) strncpy(st->grd_dirent->d_name, name, st->grd_namlen); 262 263 /* 264 * Inter-entry offsets are invalid, so we assume a record size of 265 * grd_ureclen and explicitly set the offset appropriately. 266 */ 267 return (gfs_readdir_emit_int(st, uiop, off + st->grd_ureclen)); 268 } 269 270 /* 271 * gfs_readdir_emitn: like gfs_readdir_emit(), but takes an integer 272 * instead of a string for the entry's name. 273 */ 274 int 275 gfs_readdir_emitn(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff, 276 ino64_t ino, unsigned long num) 277 { 278 char buf[40]; 279 280 numtos(num, buf); 281 return (gfs_readdir_emit(st, uiop, voff, ino, buf)); 282 } 283 284 /* 285 * gfs_readdir_pred: readdir loop predicate 286 * voffp - a pointer in which the next virtual offset should be stored 287 * 288 * Returns a 0 on success, a non-zero errno on failure, or -1 if the 289 * readdir loop should terminate. A non-zero result (either errno or 290 * -1) from this function is typically passed directly to 291 * gfs_readdir_fini(). 292 */ 293 int 294 gfs_readdir_pred(gfs_readdir_state_t *st, uio_t *uiop, offset_t *voffp) 295 { 296 offset_t off, voff; 297 int error; 298 299 top: 300 if (uiop->uio_resid <= 0) 301 return (-1); 302 303 off = uiop->uio_loffset / st->grd_ureclen; 304 voff = off - 2; 305 if (off == 0) { 306 if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_self, 307 ".")) == 0) 308 goto top; 309 } else if (off == 1) { 310 if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_parent, 311 "..")) == 0) 312 goto top; 313 } else { 314 *voffp = voff; 315 return (0); 316 } 317 318 return (error); 319 } 320 321 /* 322 * gfs_readdir_fini: generic readdir cleanup 323 * error - if positive, an error to return 324 * eofp - the eofp passed to readdir 325 * eof - the eof value 326 * 327 * Returns a 0 on success, a non-zero errno on failure. This result 328 * should be returned from readdir. 329 */ 330 int 331 gfs_readdir_fini(gfs_readdir_state_t *st, int error, int *eofp, int eof) 332 { 333 kmem_free(st->grd_dirent, DIRENT64_RECLEN(st->grd_namlen)); 334 if (error > 0) 335 return (error); 336 if (eofp) 337 *eofp = eof; 338 return (0); 339 } 340 341 /* 342 * gfs_lookup_dot 343 * 344 * Performs a basic check for "." and ".." directory entries. 345 */ 346 int 347 gfs_lookup_dot(vnode_t **vpp, vnode_t *dvp, vnode_t *pvp, const char *nm) 348 { 349 if (*nm == '\0' || strcmp(nm, ".") == 0) { 350 VN_HOLD(dvp); 351 *vpp = dvp; 352 return (0); 353 } else if (strcmp(nm, "..") == 0) { 354 if (pvp == NULL) { 355 ASSERT(dvp->v_flag & VROOT); 356 VN_HOLD(dvp); 357 *vpp = dvp; 358 } else { 359 VN_HOLD(pvp); 360 *vpp = pvp; 361 } 362 return (0); 363 } 364 365 return (-1); 366 } 367 368 /* 369 * gfs_file_create(): create a new GFS file 370 * 371 * size - size of private data structure (v_data) 372 * pvp - parent vnode (GFS directory) 373 * ops - vnode operations vector 374 * 375 * In order to use this interface, the parent vnode must have been created by 376 * gfs_dir_create(), and the private data stored in v_data must have a 377 * 'gfs_file_t' as its first field. 378 * 379 * Given these constraints, this routine will automatically: 380 * 381 * - Allocate v_data for the vnode 382 * - Initialize necessary fields in the vnode 383 * - Hold the parent 384 */ 385 vnode_t * 386 gfs_file_create(size_t size, vnode_t *pvp, vnodeops_t *ops) 387 { 388 gfs_file_t *fp; 389 vnode_t *vp; 390 391 /* 392 * Allocate vnode and internal data structure 393 */ 394 fp = kmem_zalloc(size, KM_SLEEP); 395 vp = vn_alloc(KM_SLEEP); 396 397 /* 398 * Set up various pointers 399 */ 400 fp->gfs_vnode = vp; 401 fp->gfs_parent = pvp; 402 vp->v_data = fp; 403 fp->gfs_size = size; 404 fp->gfs_type = GFS_FILE; 405 406 /* 407 * Initialize vnode and hold parent. 408 */ 409 vn_setops(vp, ops); 410 if (pvp) { 411 VN_SET_VFS_TYPE_DEV(vp, pvp->v_vfsp, VREG, 0); 412 VN_HOLD(pvp); 413 } 414 415 return (vp); 416 } 417 418 /* 419 * gfs_dir_create: creates a new directory in the parent 420 * 421 * size - size of private data structure (v_data) 422 * pvp - parent vnode (GFS directory) 423 * ops - vnode operations vector 424 * entries - NULL-terminated list of static entries (if any) 425 * maxlen - maximum length of a directory entry 426 * readdir_cb - readdir callback (see gfs_dir_readdir) 427 * inode_cb - inode callback (see gfs_dir_readdir) 428 * lookup_cb - lookup callback (see gfs_dir_lookup) 429 * 430 * In order to use this function, the first member of the private vnode 431 * structure (v_data) must be a gfs_dir_t. For each directory, there are 432 * static entries, defined when the structure is initialized, and dynamic 433 * entries, retrieved through callbacks. 434 * 435 * If a directory has static entries, then it must supply a inode callback, 436 * which will compute the inode number based on the parent and the index. 437 * For a directory with dynamic entries, the caller must supply a readdir 438 * callback and a lookup callback. If a static lookup fails, we fall back to 439 * the supplied lookup callback, if any. 440 * 441 * This function also performs the same initialization as gfs_file_create(). 442 */ 443 vnode_t * 444 gfs_dir_create(size_t struct_size, vnode_t *pvp, vnodeops_t *ops, 445 gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen, 446 gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb) 447 { 448 vnode_t *vp; 449 gfs_dir_t *dp; 450 gfs_dirent_t *de; 451 452 vp = gfs_file_create(struct_size, pvp, ops); 453 vp->v_type = VDIR; 454 455 dp = vp->v_data; 456 dp->gfsd_file.gfs_type = GFS_DIR; 457 dp->gfsd_maxlen = maxlen; 458 459 if (entries != NULL) { 460 for (de = entries; de->gfse_name != NULL; de++) 461 dp->gfsd_nstatic++; 462 463 dp->gfsd_static = kmem_alloc( 464 dp->gfsd_nstatic * sizeof (gfs_dirent_t), KM_SLEEP); 465 bcopy(entries, dp->gfsd_static, 466 dp->gfsd_nstatic * sizeof (gfs_dirent_t)); 467 } 468 469 dp->gfsd_readdir = readdir_cb; 470 dp->gfsd_lookup = lookup_cb; 471 dp->gfsd_inode = inode_cb; 472 473 mutex_init(&dp->gfsd_lock, NULL, MUTEX_DEFAULT, NULL); 474 475 return (vp); 476 } 477 478 /* 479 * gfs_root_create(): create a root vnode for a GFS filesystem 480 * 481 * Similar to gfs_dir_create(), this creates a root vnode for a filesystem. The 482 * only difference is that it takes a vfs_t instead of a vnode_t as its parent. 483 */ 484 vnode_t * 485 gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino, 486 gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen, 487 gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb) 488 { 489 vnode_t *vp = gfs_dir_create(size, NULL, ops, entries, inode_cb, 490 maxlen, readdir_cb, lookup_cb); 491 492 /* Manually set the inode */ 493 ((gfs_file_t *)vp->v_data)->gfs_ino = ino; 494 495 VFS_HOLD(vfsp); 496 VN_SET_VFS_TYPE_DEV(vp, vfsp, VDIR, 0); 497 vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT; 498 499 return (vp); 500 } 501 502 /* 503 * gfs_root_create_file(): create a root vnode for a GFS file as a filesystem 504 * 505 * Similar to gfs_root_create(), this creates a root vnode for a file to 506 * be the pseudo-filesystem. 507 */ 508 vnode_t * 509 gfs_root_create_file(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino) 510 { 511 vnode_t *vp = gfs_file_create(size, NULL, ops); 512 513 ((gfs_file_t *)vp->v_data)->gfs_ino = ino; 514 515 VFS_HOLD(vfsp); 516 VN_SET_VFS_TYPE_DEV(vp, vfsp, VREG, 0); 517 vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT; 518 519 return (vp); 520 } 521 522 /* 523 * gfs_file_inactive() 524 * 525 * Called from the VOP_INACTIVE() routine. If necessary, this routine will 526 * remove the given vnode from the parent directory and clean up any references 527 * in the VFS layer. 528 * 529 * If the vnode was not removed (due to a race with vget), then NULL is 530 * returned. Otherwise, a pointer to the private data is returned. 531 */ 532 void * 533 gfs_file_inactive(vnode_t *vp) 534 { 535 int i; 536 gfs_dirent_t *ge = NULL; 537 gfs_file_t *fp = vp->v_data; 538 gfs_dir_t *dp = NULL; 539 void *data; 540 541 if (fp->gfs_parent == NULL || (vp->v_flag & V_XATTRDIR)) 542 goto found; 543 544 dp = fp->gfs_parent->v_data; 545 546 /* 547 * First, see if this vnode is cached in the parent. 548 */ 549 gfs_dir_lock(dp); 550 551 /* 552 * Find it in the set of static entries. 553 */ 554 for (i = 0; i < dp->gfsd_nstatic; i++) { 555 ge = &dp->gfsd_static[i]; 556 557 if (ge->gfse_vnode == vp) 558 goto found; 559 } 560 561 /* 562 * If 'ge' is NULL, then it is a dynamic entry. 563 */ 564 ge = NULL; 565 566 found: 567 if (vp->v_flag & V_XATTRDIR) { 568 mutex_enter(&fp->gfs_parent->v_lock); 569 } 570 mutex_enter(&vp->v_lock); 571 if (vp->v_count == 1) { 572 /* 573 * Really remove this vnode 574 */ 575 data = vp->v_data; 576 if (ge != NULL) { 577 /* 578 * If this was a statically cached entry, simply set the 579 * cached vnode to NULL. 580 */ 581 ge->gfse_vnode = NULL; 582 } 583 if (vp->v_flag & V_XATTRDIR) { 584 fp->gfs_parent->v_xattrdir = NULL; 585 mutex_exit(&fp->gfs_parent->v_lock); 586 } 587 mutex_exit(&vp->v_lock); 588 589 /* 590 * Free vnode and release parent 591 */ 592 if (fp->gfs_parent) { 593 if (dp) { 594 gfs_dir_unlock(dp); 595 } 596 VN_RELE(fp->gfs_parent); 597 } else { 598 ASSERT(vp->v_vfsp != NULL); 599 VFS_RELE(vp->v_vfsp); 600 } 601 vn_free(vp); 602 } else { 603 vp->v_count--; 604 data = NULL; 605 mutex_exit(&vp->v_lock); 606 if (vp->v_flag & V_XATTRDIR) { 607 mutex_exit(&fp->gfs_parent->v_lock); 608 } 609 if (dp) 610 gfs_dir_unlock(dp); 611 } 612 613 return (data); 614 } 615 616 /* 617 * gfs_dir_inactive() 618 * 619 * Same as above, but for directories. 620 */ 621 void * 622 gfs_dir_inactive(vnode_t *vp) 623 { 624 gfs_dir_t *dp; 625 626 ASSERT(vp->v_type == VDIR); 627 628 if ((dp = gfs_file_inactive(vp)) != NULL) { 629 mutex_destroy(&dp->gfsd_lock); 630 if (dp->gfsd_nstatic) 631 kmem_free(dp->gfsd_static, 632 dp->gfsd_nstatic * sizeof (gfs_dirent_t)); 633 } 634 635 return (dp); 636 } 637 638 /* 639 * gfs_dir_lookup() 640 * 641 * Looks up the given name in the directory and returns the corresponding vnode, 642 * if found. 643 * 644 * First, we search statically defined entries, if any. If a match is found, 645 * and GFS_CACHE_VNODE is set and the vnode exists, we simply return the 646 * existing vnode. Otherwise, we call the static entry's callback routine, 647 * caching the result if necessary. 648 * 649 * If no static entry is found, we invoke the lookup callback, if any. The 650 * arguments to this callback are: 651 * 652 * int gfs_lookup_cb(vnode_t *pvp, const char *nm, vnode_t **vpp, cred_t *cr); 653 * 654 * pvp - parent vnode 655 * nm - name of entry 656 * vpp - pointer to resulting vnode 657 * cr - pointer to cred 658 * 659 * Returns 0 on success, non-zero on error. 660 */ 661 int 662 gfs_dir_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp, cred_t *cr) 663 { 664 int i; 665 gfs_dirent_t *ge; 666 vnode_t *vp; 667 gfs_dir_t *dp = dvp->v_data; 668 int ret = 0; 669 670 ASSERT(dvp->v_type == VDIR); 671 672 if (gfs_lookup_dot(vpp, dvp, dp->gfsd_file.gfs_parent, nm) == 0) 673 return (0); 674 675 gfs_dir_lock(dp); 676 677 /* 678 * Search static entries. 679 */ 680 for (i = 0; i < dp->gfsd_nstatic; i++) { 681 ge = &dp->gfsd_static[i]; 682 683 if (strcmp(ge->gfse_name, nm) == 0) { 684 if (ge->gfse_vnode) { 685 ASSERT(ge->gfse_flags & GFS_CACHE_VNODE); 686 vp = ge->gfse_vnode; 687 VN_HOLD(vp); 688 goto out; 689 } 690 691 /* 692 * We drop the directory lock, as the constructor will 693 * need to do KM_SLEEP allocations. If we return from 694 * the constructor only to find that a parallel 695 * operation has completed, and GFS_CACHE_VNODE is set 696 * for this entry, we discard the result in favor of the 697 * cached vnode. 698 */ 699 gfs_dir_unlock(dp); 700 vp = ge->gfse_ctor(dvp); 701 gfs_dir_lock(dp); 702 703 ((gfs_file_t *)vp->v_data)->gfs_index = i; 704 705 /* Set the inode according to the callback. */ 706 ((gfs_file_t *)vp->v_data)->gfs_ino = 707 dp->gfsd_inode(dvp, i); 708 709 if (ge->gfse_flags & GFS_CACHE_VNODE) { 710 if (ge->gfse_vnode == NULL) { 711 ge->gfse_vnode = vp; 712 } else { 713 /* 714 * A parallel constructor beat us to it; 715 * return existing vnode. We have to be 716 * careful because we can't release the 717 * current vnode while holding the 718 * directory lock; its inactive routine 719 * will try to lock this directory. 720 */ 721 vnode_t *oldvp = vp; 722 vp = ge->gfse_vnode; 723 VN_HOLD(vp); 724 725 gfs_dir_unlock(dp); 726 VN_RELE(oldvp); 727 gfs_dir_lock(dp); 728 } 729 } 730 731 goto out; 732 } 733 } 734 735 /* 736 * See if there is a dynamic constructor. 737 */ 738 if (dp->gfsd_lookup) { 739 ino64_t ino; 740 gfs_file_t *fp; 741 742 /* 743 * Once again, drop the directory lock, as the lookup routine 744 * will need to allocate memory, or otherwise deadlock on this 745 * directory. 746 */ 747 gfs_dir_unlock(dp); 748 ret = dp->gfsd_lookup(dvp, nm, &vp, &ino, cr); 749 gfs_dir_lock(dp); 750 if (ret != 0) 751 goto out; 752 753 /* 754 * The lookup_cb might be returning a non-GFS vnode. 755 * Currently this is true for extended attributes, 756 * where we're returning a vnode with v_data from an 757 * underlying fs. 758 */ 759 if ((dvp->v_flag & V_XATTRDIR) == 0) { 760 fp = (gfs_file_t *)vp->v_data; 761 fp->gfs_index = -1; 762 fp->gfs_ino = ino; 763 } 764 } else { 765 /* 766 * No static entry found, and there is no lookup callback, so 767 * return ENOENT. 768 */ 769 ret = ENOENT; 770 } 771 772 out: 773 gfs_dir_unlock(dp); 774 775 if (ret == 0) 776 *vpp = vp; 777 else 778 *vpp = NULL; 779 780 return (ret); 781 } 782 783 /* 784 * gfs_dir_readdir: does a readdir() on the given directory 785 * 786 * dvp - directory vnode 787 * uiop - uio structure 788 * eofp - eof pointer 789 * data - arbitrary data passed to readdir callback 790 * 791 * This routine does all the readdir() dirty work. Even so, the caller must 792 * supply two callbacks in order to get full compatibility. 793 * 794 * If the directory contains static entries, an inode callback must be 795 * specified. This avoids having to create every vnode and call VOP_GETATTR() 796 * when reading the directory. This function has the following arguments: 797 * 798 * ino_t gfs_inode_cb(vnode_t *vp, int index); 799 * 800 * vp - vnode for the directory 801 * index - index in original gfs_dirent_t array 802 * 803 * Returns the inode number for the given entry. 804 * 805 * For directories with dynamic entries, a readdir callback must be provided. 806 * This is significantly more complex, thanks to the particulars of 807 * VOP_READDIR(). 808 * 809 * int gfs_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, 810 * offset_t *off, offset_t *nextoff, void *data) 811 * 812 * vp - directory vnode 813 * dp - directory entry, sized according to maxlen given to 814 * gfs_dir_create(). callback must fill in d_name and 815 * d_ino. 816 * eofp - callback must set to 1 when EOF has been reached 817 * off - on entry, the last offset read from the directory. Callback 818 * must set to the offset of the current entry, typically left 819 * untouched. 820 * nextoff - callback must set to offset of next entry. Typically 821 * (off + 1) 822 * data - caller-supplied data 823 * 824 * Return 0 on success, or error on failure. 825 */ 826 int 827 gfs_dir_readdir(vnode_t *dvp, uio_t *uiop, int *eofp, void *data, cred_t *cr, 828 caller_context_t *ct) 829 { 830 gfs_readdir_state_t gstate; 831 int error, eof = 0; 832 ino64_t ino, pino; 833 offset_t off, next; 834 gfs_dir_t *dp = dvp->v_data; 835 vnode_t *parent; 836 837 ino = dp->gfsd_file.gfs_ino; 838 parent = dp->gfsd_file.gfs_parent; 839 840 if (parent == NULL) 841 pino = ino; /* root of filesystem */ 842 else if (dvp->v_flag & V_XATTRDIR) { 843 vattr_t va; 844 845 va.va_mask = AT_NODEID; 846 error = VOP_GETATTR(parent, &va, 0, cr, ct); 847 if (error) 848 return (error); 849 pino = va.va_nodeid; 850 } else 851 pino = ((gfs_file_t *)(parent->v_data))->gfs_ino; 852 853 if ((error = gfs_readdir_init(&gstate, dp->gfsd_maxlen, 1, uiop, 854 pino, ino)) != 0) 855 return (error); 856 857 while ((error = gfs_readdir_pred(&gstate, uiop, &off)) == 0 && 858 !eof) { 859 860 if (off >= 0 && off < dp->gfsd_nstatic) { 861 ino = dp->gfsd_inode(dvp, off); 862 863 if ((error = gfs_readdir_emit(&gstate, uiop, 864 off, ino, dp->gfsd_static[off].gfse_name)) 865 != 0) 866 break; 867 868 } else if (dp->gfsd_readdir) { 869 off -= dp->gfsd_nstatic; 870 871 if ((error = dp->gfsd_readdir(dvp, 872 gstate.grd_dirent, &eof, &off, &next, 873 data)) != 0 || eof) 874 break; 875 876 off += dp->gfsd_nstatic + 2; 877 next += dp->gfsd_nstatic + 2; 878 879 if ((error = gfs_readdir_emit_int(&gstate, uiop, 880 next)) != 0) 881 break; 882 } else { 883 /* 884 * Offset is beyond the end of the static entries, and 885 * we have no dynamic entries. Set EOF. 886 */ 887 eof = 1; 888 } 889 } 890 891 return (gfs_readdir_fini(&gstate, error, eofp, eof)); 892 } 893 894 895 /* 896 * gfs_vop_lookup: VOP_LOOKUP() entry point 897 * 898 * For use directly in vnode ops table. Given a GFS directory, calls 899 * gfs_dir_lookup() as necessary. 900 */ 901 /* ARGSUSED */ 902 int 903 gfs_vop_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 904 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 905 int *direntflags, pathname_t *realpnp) 906 { 907 return (gfs_dir_lookup(dvp, nm, vpp, cr)); 908 } 909 910 /* 911 * gfs_vop_readdir: VOP_READDIR() entry point 912 * 913 * For use directly in vnode ops table. Given a GFS directory, calls 914 * gfs_dir_readdir() as necessary. 915 */ 916 /* ARGSUSED */ 917 int 918 gfs_vop_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 919 caller_context_t *ct, int flags) 920 { 921 return (gfs_dir_readdir(vp, uiop, eofp, NULL, cr, ct)); 922 } 923 924 925 /* 926 * gfs_vop_map: VOP_MAP() entry point 927 * 928 * Convenient routine for handling pseudo-files that wish to allow mmap() calls. 929 * This function only works for readonly files, and uses the read function for 930 * the vnode to fill in the data. The mapped data is immediately faulted in and 931 * filled with the necessary data during this call; there are no getpage() or 932 * putpage() routines. 933 */ 934 /* ARGSUSED */ 935 int 936 gfs_vop_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 937 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cred, 938 caller_context_t *ct) 939 { 940 int rv; 941 ssize_t resid = len; 942 943 /* 944 * Check for bad parameters 945 */ 946 #ifdef _ILP32 947 if (len > MAXOFF_T) 948 return (ENOMEM); 949 #endif 950 if (vp->v_flag & VNOMAP) 951 return (ENOTSUP); 952 if (off > MAXOFF_T) 953 return (EFBIG); 954 if ((long)off < 0 || (long)(off + len) < 0) 955 return (EINVAL); 956 if (vp->v_type != VREG) 957 return (ENODEV); 958 if ((prot & (PROT_EXEC | PROT_WRITE)) != 0) 959 return (EACCES); 960 961 /* 962 * Find appropriate address if needed, otherwise clear address range. 963 */ 964 as_rangelock(as); 965 if ((flags & MAP_FIXED) == 0) { 966 map_addr(addrp, len, (offset_t)off, 1, flags); 967 if (*addrp == NULL) { 968 as_rangeunlock(as); 969 return (ENOMEM); 970 } 971 } else { 972 (void) as_unmap(as, *addrp, len); 973 } 974 975 /* 976 * Create mapping 977 */ 978 rv = as_map(as, *addrp, len, segvn_create, zfod_argsp); 979 as_rangeunlock(as); 980 if (rv != 0) 981 return (rv); 982 983 /* 984 * Fill with data from read() 985 */ 986 rv = vn_rdwr(UIO_READ, vp, *addrp, len, off, UIO_USERSPACE, 987 0, (rlim64_t)0, cred, &resid); 988 989 if (rv == 0 && resid != 0) 990 rv = ENXIO; 991 992 if (rv != 0) { 993 as_rangelock(as); 994 (void) as_unmap(as, *addrp, len); 995 as_rangeunlock(as); 996 } 997 998 return (rv); 999 } 1000 1001 /* 1002 * gfs_vop_inactive: VOP_INACTIVE() entry point 1003 * 1004 * Given a vnode that is a GFS file or directory, call gfs_file_inactive() or 1005 * gfs_dir_inactive() as necessary, and kmem_free()s associated private data. 1006 */ 1007 /* ARGSUSED */ 1008 void 1009 gfs_vop_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1010 { 1011 gfs_file_t *fp = vp->v_data; 1012 void *data; 1013 1014 if (fp->gfs_type == GFS_DIR) 1015 data = gfs_dir_inactive(vp); 1016 else 1017 data = gfs_file_inactive(vp); 1018 1019 if (data != NULL) 1020 kmem_free(data, fp->gfs_size); 1021 } 1022