1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 25 */ 26 27 /* 28 * DTrace - Dynamic Tracing for Solaris 29 * 30 * This is the implementation of the Solaris Dynamic Tracing framework 31 * (DTrace). The user-visible interface to DTrace is described at length in 32 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 33 * library, the in-kernel DTrace framework, and the DTrace providers are 34 * described in the block comments in the <sys/dtrace.h> header file. The 35 * internal architecture of DTrace is described in the block comments in the 36 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 37 * implementation very much assume mastery of all of these sources; if one has 38 * an unanswered question about the implementation, one should consult them 39 * first. 40 * 41 * The functions here are ordered roughly as follows: 42 * 43 * - Probe context functions 44 * - Probe hashing functions 45 * - Non-probe context utility functions 46 * - Matching functions 47 * - Provider-to-Framework API functions 48 * - Probe management functions 49 * - DIF object functions 50 * - Format functions 51 * - Predicate functions 52 * - ECB functions 53 * - Buffer functions 54 * - Enabling functions 55 * - DOF functions 56 * - Anonymous enabling functions 57 * - Consumer state functions 58 * - Helper functions 59 * - Hook functions 60 * - Driver cookbook functions 61 * 62 * Each group of functions begins with a block comment labelled the "DTrace 63 * [Group] Functions", allowing one to find each block by searching forward 64 * on capital-f functions. 65 */ 66 #include <sys/errno.h> 67 #include <sys/stat.h> 68 #include <sys/modctl.h> 69 #include <sys/conf.h> 70 #include <sys/systm.h> 71 #include <sys/ddi.h> 72 #include <sys/sunddi.h> 73 #include <sys/cpuvar.h> 74 #include <sys/kmem.h> 75 #include <sys/strsubr.h> 76 #include <sys/sysmacros.h> 77 #include <sys/dtrace_impl.h> 78 #include <sys/atomic.h> 79 #include <sys/cmn_err.h> 80 #include <sys/mutex_impl.h> 81 #include <sys/rwlock_impl.h> 82 #include <sys/ctf_api.h> 83 #include <sys/panic.h> 84 #include <sys/priv_impl.h> 85 #include <sys/policy.h> 86 #include <sys/cred_impl.h> 87 #include <sys/procfs_isa.h> 88 #include <sys/taskq.h> 89 #include <sys/mkdev.h> 90 #include <sys/kdi.h> 91 #include <sys/zone.h> 92 #include <sys/socket.h> 93 #include <netinet/in.h> 94 95 /* 96 * DTrace Tunable Variables 97 * 98 * The following variables may be tuned by adding a line to /etc/system that 99 * includes both the name of the DTrace module ("dtrace") and the name of the 100 * variable. For example: 101 * 102 * set dtrace:dtrace_destructive_disallow = 1 103 * 104 * In general, the only variables that one should be tuning this way are those 105 * that affect system-wide DTrace behavior, and for which the default behavior 106 * is undesirable. Most of these variables are tunable on a per-consumer 107 * basis using DTrace options, and need not be tuned on a system-wide basis. 108 * When tuning these variables, avoid pathological values; while some attempt 109 * is made to verify the integrity of these variables, they are not considered 110 * part of the supported interface to DTrace, and they are therefore not 111 * checked comprehensively. Further, these variables should not be tuned 112 * dynamically via "mdb -kw" or other means; they should only be tuned via 113 * /etc/system. 114 */ 115 int dtrace_destructive_disallow = 0; 116 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 117 size_t dtrace_difo_maxsize = (256 * 1024); 118 dtrace_optval_t dtrace_dof_maxsize = (256 * 1024); 119 size_t dtrace_global_maxsize = (16 * 1024); 120 size_t dtrace_actions_max = (16 * 1024); 121 size_t dtrace_retain_max = 1024; 122 dtrace_optval_t dtrace_helper_actions_max = 1024; 123 dtrace_optval_t dtrace_helper_providers_max = 32; 124 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 125 size_t dtrace_strsize_default = 256; 126 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 127 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 128 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 129 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 130 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 132 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_nspec_default = 1; 134 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 135 dtrace_optval_t dtrace_stackframes_default = 20; 136 dtrace_optval_t dtrace_ustackframes_default = 20; 137 dtrace_optval_t dtrace_jstackframes_default = 50; 138 dtrace_optval_t dtrace_jstackstrsize_default = 512; 139 int dtrace_msgdsize_max = 128; 140 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 141 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 142 int dtrace_devdepth_max = 32; 143 int dtrace_err_verbose; 144 hrtime_t dtrace_deadman_interval = NANOSEC; 145 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 146 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 147 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 148 149 /* 150 * DTrace External Variables 151 * 152 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 153 * available to DTrace consumers via the backtick (`) syntax. One of these, 154 * dtrace_zero, is made deliberately so: it is provided as a source of 155 * well-known, zero-filled memory. While this variable is not documented, 156 * it is used by some translators as an implementation detail. 157 */ 158 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 159 160 /* 161 * DTrace Internal Variables 162 */ 163 static dev_info_t *dtrace_devi; /* device info */ 164 static vmem_t *dtrace_arena; /* probe ID arena */ 165 static vmem_t *dtrace_minor; /* minor number arena */ 166 static taskq_t *dtrace_taskq; /* task queue */ 167 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 168 static int dtrace_nprobes; /* number of probes */ 169 static dtrace_provider_t *dtrace_provider; /* provider list */ 170 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 171 static int dtrace_opens; /* number of opens */ 172 static int dtrace_helpers; /* number of helpers */ 173 static void *dtrace_softstate; /* softstate pointer */ 174 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 175 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 176 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 177 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 178 static int dtrace_toxranges; /* number of toxic ranges */ 179 static int dtrace_toxranges_max; /* size of toxic range array */ 180 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 181 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 182 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 183 static kthread_t *dtrace_panicked; /* panicking thread */ 184 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 185 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 186 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 187 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 188 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 189 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 190 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 191 192 /* 193 * DTrace Locking 194 * DTrace is protected by three (relatively coarse-grained) locks: 195 * 196 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 197 * including enabling state, probes, ECBs, consumer state, helper state, 198 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 199 * probe context is lock-free -- synchronization is handled via the 200 * dtrace_sync() cross call mechanism. 201 * 202 * (2) dtrace_provider_lock is required when manipulating provider state, or 203 * when provider state must be held constant. 204 * 205 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 206 * when meta provider state must be held constant. 207 * 208 * The lock ordering between these three locks is dtrace_meta_lock before 209 * dtrace_provider_lock before dtrace_lock. (In particular, there are 210 * several places where dtrace_provider_lock is held by the framework as it 211 * calls into the providers -- which then call back into the framework, 212 * grabbing dtrace_lock.) 213 * 214 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 215 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 216 * role as a coarse-grained lock; it is acquired before both of these locks. 217 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 218 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 219 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 220 * acquired _between_ dtrace_provider_lock and dtrace_lock. 221 */ 222 static kmutex_t dtrace_lock; /* probe state lock */ 223 static kmutex_t dtrace_provider_lock; /* provider state lock */ 224 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 225 226 /* 227 * DTrace Provider Variables 228 * 229 * These are the variables relating to DTrace as a provider (that is, the 230 * provider of the BEGIN, END, and ERROR probes). 231 */ 232 static dtrace_pattr_t dtrace_provider_attr = { 233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 234 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 235 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 238 }; 239 240 static void 241 dtrace_nullop(void) 242 {} 243 244 static int 245 dtrace_enable_nullop(void) 246 { 247 return (0); 248 } 249 250 static dtrace_pops_t dtrace_provider_ops = { 251 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 252 (void (*)(void *, struct modctl *))dtrace_nullop, 253 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 254 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 255 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 256 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 257 NULL, 258 NULL, 259 NULL, 260 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 261 }; 262 263 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 264 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 265 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 266 267 /* 268 * DTrace Helper Tracing Variables 269 */ 270 uint32_t dtrace_helptrace_next = 0; 271 uint32_t dtrace_helptrace_nlocals; 272 char *dtrace_helptrace_buffer; 273 int dtrace_helptrace_bufsize = 512 * 1024; 274 275 #ifdef DEBUG 276 int dtrace_helptrace_enabled = 1; 277 #else 278 int dtrace_helptrace_enabled = 0; 279 #endif 280 281 /* 282 * DTrace Error Hashing 283 * 284 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 285 * table. This is very useful for checking coverage of tests that are 286 * expected to induce DIF or DOF processing errors, and may be useful for 287 * debugging problems in the DIF code generator or in DOF generation . The 288 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 289 */ 290 #ifdef DEBUG 291 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 292 static const char *dtrace_errlast; 293 static kthread_t *dtrace_errthread; 294 static kmutex_t dtrace_errlock; 295 #endif 296 297 /* 298 * DTrace Macros and Constants 299 * 300 * These are various macros that are useful in various spots in the 301 * implementation, along with a few random constants that have no meaning 302 * outside of the implementation. There is no real structure to this cpp 303 * mishmash -- but is there ever? 304 */ 305 #define DTRACE_HASHSTR(hash, probe) \ 306 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 307 308 #define DTRACE_HASHNEXT(hash, probe) \ 309 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 310 311 #define DTRACE_HASHPREV(hash, probe) \ 312 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 313 314 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 315 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 316 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 317 318 #define DTRACE_AGGHASHSIZE_SLEW 17 319 320 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 321 322 /* 323 * The key for a thread-local variable consists of the lower 61 bits of the 324 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 325 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 326 * equal to a variable identifier. This is necessary (but not sufficient) to 327 * assure that global associative arrays never collide with thread-local 328 * variables. To guarantee that they cannot collide, we must also define the 329 * order for keying dynamic variables. That order is: 330 * 331 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 332 * 333 * Because the variable-key and the tls-key are in orthogonal spaces, there is 334 * no way for a global variable key signature to match a thread-local key 335 * signature. 336 */ 337 #define DTRACE_TLS_THRKEY(where) { \ 338 uint_t intr = 0; \ 339 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 340 for (; actv; actv >>= 1) \ 341 intr++; \ 342 ASSERT(intr < (1 << 3)); \ 343 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 344 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 345 } 346 347 #define DT_BSWAP_8(x) ((x) & 0xff) 348 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 349 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 350 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 351 352 #define DT_MASK_LO 0x00000000FFFFFFFFULL 353 354 #define DTRACE_STORE(type, tomax, offset, what) \ 355 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 356 357 #ifndef __i386 358 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 359 if (addr & (size - 1)) { \ 360 *flags |= CPU_DTRACE_BADALIGN; \ 361 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 362 return (0); \ 363 } 364 #else 365 #define DTRACE_ALIGNCHECK(addr, size, flags) 366 #endif 367 368 /* 369 * Test whether a range of memory starting at testaddr of size testsz falls 370 * within the range of memory described by addr, sz. We take care to avoid 371 * problems with overflow and underflow of the unsigned quantities, and 372 * disallow all negative sizes. Ranges of size 0 are allowed. 373 */ 374 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 375 ((testaddr) - (baseaddr) < (basesz) && \ 376 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ 377 (testaddr) + (testsz) >= (testaddr)) 378 379 /* 380 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 381 * alloc_sz on the righthand side of the comparison in order to avoid overflow 382 * or underflow in the comparison with it. This is simpler than the INRANGE 383 * check above, because we know that the dtms_scratch_ptr is valid in the 384 * range. Allocations of size zero are allowed. 385 */ 386 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 387 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 388 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 389 390 #define DTRACE_LOADFUNC(bits) \ 391 /*CSTYLED*/ \ 392 uint##bits##_t \ 393 dtrace_load##bits(uintptr_t addr) \ 394 { \ 395 size_t size = bits / NBBY; \ 396 /*CSTYLED*/ \ 397 uint##bits##_t rval; \ 398 int i; \ 399 volatile uint16_t *flags = (volatile uint16_t *) \ 400 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 401 \ 402 DTRACE_ALIGNCHECK(addr, size, flags); \ 403 \ 404 for (i = 0; i < dtrace_toxranges; i++) { \ 405 if (addr >= dtrace_toxrange[i].dtt_limit) \ 406 continue; \ 407 \ 408 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 409 continue; \ 410 \ 411 /* \ 412 * This address falls within a toxic region; return 0. \ 413 */ \ 414 *flags |= CPU_DTRACE_BADADDR; \ 415 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 416 return (0); \ 417 } \ 418 \ 419 *flags |= CPU_DTRACE_NOFAULT; \ 420 /*CSTYLED*/ \ 421 rval = *((volatile uint##bits##_t *)addr); \ 422 *flags &= ~CPU_DTRACE_NOFAULT; \ 423 \ 424 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 425 } 426 427 #ifdef _LP64 428 #define dtrace_loadptr dtrace_load64 429 #else 430 #define dtrace_loadptr dtrace_load32 431 #endif 432 433 #define DTRACE_DYNHASH_FREE 0 434 #define DTRACE_DYNHASH_SINK 1 435 #define DTRACE_DYNHASH_VALID 2 436 437 #define DTRACE_MATCH_FAIL -1 438 #define DTRACE_MATCH_NEXT 0 439 #define DTRACE_MATCH_DONE 1 440 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 441 #define DTRACE_STATE_ALIGN 64 442 443 #define DTRACE_FLAGS2FLT(flags) \ 444 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 445 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 446 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 447 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 448 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 449 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 450 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 451 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 452 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 453 DTRACEFLT_UNKNOWN) 454 455 #define DTRACEACT_ISSTRING(act) \ 456 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 457 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 458 459 static size_t dtrace_strlen(const char *, size_t); 460 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 461 static void dtrace_enabling_provide(dtrace_provider_t *); 462 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 463 static void dtrace_enabling_matchall(void); 464 static void dtrace_enabling_reap(void); 465 static dtrace_state_t *dtrace_anon_grab(void); 466 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 467 dtrace_state_t *, uint64_t, uint64_t); 468 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 469 static void dtrace_buffer_drop(dtrace_buffer_t *); 470 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 471 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 472 dtrace_state_t *, dtrace_mstate_t *); 473 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 474 dtrace_optval_t); 475 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 476 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 477 478 /* 479 * DTrace Probe Context Functions 480 * 481 * These functions are called from probe context. Because probe context is 482 * any context in which C may be called, arbitrarily locks may be held, 483 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 484 * As a result, functions called from probe context may only call other DTrace 485 * support functions -- they may not interact at all with the system at large. 486 * (Note that the ASSERT macro is made probe-context safe by redefining it in 487 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 488 * loads are to be performed from probe context, they _must_ be in terms of 489 * the safe dtrace_load*() variants. 490 * 491 * Some functions in this block are not actually called from probe context; 492 * for these functions, there will be a comment above the function reading 493 * "Note: not called from probe context." 494 */ 495 void 496 dtrace_panic(const char *format, ...) 497 { 498 va_list alist; 499 500 va_start(alist, format); 501 dtrace_vpanic(format, alist); 502 va_end(alist); 503 } 504 505 int 506 dtrace_assfail(const char *a, const char *f, int l) 507 { 508 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 509 510 /* 511 * We just need something here that even the most clever compiler 512 * cannot optimize away. 513 */ 514 return (a[(uintptr_t)f]); 515 } 516 517 /* 518 * Atomically increment a specified error counter from probe context. 519 */ 520 static void 521 dtrace_error(uint32_t *counter) 522 { 523 /* 524 * Most counters stored to in probe context are per-CPU counters. 525 * However, there are some error conditions that are sufficiently 526 * arcane that they don't merit per-CPU storage. If these counters 527 * are incremented concurrently on different CPUs, scalability will be 528 * adversely affected -- but we don't expect them to be white-hot in a 529 * correctly constructed enabling... 530 */ 531 uint32_t oval, nval; 532 533 do { 534 oval = *counter; 535 536 if ((nval = oval + 1) == 0) { 537 /* 538 * If the counter would wrap, set it to 1 -- assuring 539 * that the counter is never zero when we have seen 540 * errors. (The counter must be 32-bits because we 541 * aren't guaranteed a 64-bit compare&swap operation.) 542 * To save this code both the infamy of being fingered 543 * by a priggish news story and the indignity of being 544 * the target of a neo-puritan witch trial, we're 545 * carefully avoiding any colorful description of the 546 * likelihood of this condition -- but suffice it to 547 * say that it is only slightly more likely than the 548 * overflow of predicate cache IDs, as discussed in 549 * dtrace_predicate_create(). 550 */ 551 nval = 1; 552 } 553 } while (dtrace_cas32(counter, oval, nval) != oval); 554 } 555 556 /* 557 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 558 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 559 */ 560 DTRACE_LOADFUNC(8) 561 DTRACE_LOADFUNC(16) 562 DTRACE_LOADFUNC(32) 563 DTRACE_LOADFUNC(64) 564 565 static int 566 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 567 { 568 if (dest < mstate->dtms_scratch_base) 569 return (0); 570 571 if (dest + size < dest) 572 return (0); 573 574 if (dest + size > mstate->dtms_scratch_ptr) 575 return (0); 576 577 return (1); 578 } 579 580 static int 581 dtrace_canstore_statvar(uint64_t addr, size_t sz, 582 dtrace_statvar_t **svars, int nsvars) 583 { 584 int i; 585 586 for (i = 0; i < nsvars; i++) { 587 dtrace_statvar_t *svar = svars[i]; 588 589 if (svar == NULL || svar->dtsv_size == 0) 590 continue; 591 592 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 593 return (1); 594 } 595 596 return (0); 597 } 598 599 /* 600 * Check to see if the address is within a memory region to which a store may 601 * be issued. This includes the DTrace scratch areas, and any DTrace variable 602 * region. The caller of dtrace_canstore() is responsible for performing any 603 * alignment checks that are needed before stores are actually executed. 604 */ 605 static int 606 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 607 dtrace_vstate_t *vstate) 608 { 609 /* 610 * First, check to see if the address is in scratch space... 611 */ 612 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 613 mstate->dtms_scratch_size)) 614 return (1); 615 616 /* 617 * Now check to see if it's a dynamic variable. This check will pick 618 * up both thread-local variables and any global dynamically-allocated 619 * variables. 620 */ 621 if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, 622 vstate->dtvs_dynvars.dtds_size)) { 623 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 624 uintptr_t base = (uintptr_t)dstate->dtds_base + 625 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 626 uintptr_t chunkoffs; 627 628 /* 629 * Before we assume that we can store here, we need to make 630 * sure that it isn't in our metadata -- storing to our 631 * dynamic variable metadata would corrupt our state. For 632 * the range to not include any dynamic variable metadata, 633 * it must: 634 * 635 * (1) Start above the hash table that is at the base of 636 * the dynamic variable space 637 * 638 * (2) Have a starting chunk offset that is beyond the 639 * dtrace_dynvar_t that is at the base of every chunk 640 * 641 * (3) Not span a chunk boundary 642 * 643 */ 644 if (addr < base) 645 return (0); 646 647 chunkoffs = (addr - base) % dstate->dtds_chunksize; 648 649 if (chunkoffs < sizeof (dtrace_dynvar_t)) 650 return (0); 651 652 if (chunkoffs + sz > dstate->dtds_chunksize) 653 return (0); 654 655 return (1); 656 } 657 658 /* 659 * Finally, check the static local and global variables. These checks 660 * take the longest, so we perform them last. 661 */ 662 if (dtrace_canstore_statvar(addr, sz, 663 vstate->dtvs_locals, vstate->dtvs_nlocals)) 664 return (1); 665 666 if (dtrace_canstore_statvar(addr, sz, 667 vstate->dtvs_globals, vstate->dtvs_nglobals)) 668 return (1); 669 670 return (0); 671 } 672 673 674 /* 675 * Convenience routine to check to see if the address is within a memory 676 * region in which a load may be issued given the user's privilege level; 677 * if not, it sets the appropriate error flags and loads 'addr' into the 678 * illegal value slot. 679 * 680 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 681 * appropriate memory access protection. 682 */ 683 static int 684 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 685 dtrace_vstate_t *vstate) 686 { 687 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 688 689 /* 690 * If we hold the privilege to read from kernel memory, then 691 * everything is readable. 692 */ 693 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 694 return (1); 695 696 /* 697 * You can obviously read that which you can store. 698 */ 699 if (dtrace_canstore(addr, sz, mstate, vstate)) 700 return (1); 701 702 /* 703 * We're allowed to read from our own string table. 704 */ 705 if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, 706 mstate->dtms_difo->dtdo_strlen)) 707 return (1); 708 709 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 710 *illval = addr; 711 return (0); 712 } 713 714 /* 715 * Convenience routine to check to see if a given string is within a memory 716 * region in which a load may be issued given the user's privilege level; 717 * this exists so that we don't need to issue unnecessary dtrace_strlen() 718 * calls in the event that the user has all privileges. 719 */ 720 static int 721 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 722 dtrace_vstate_t *vstate) 723 { 724 size_t strsz; 725 726 /* 727 * If we hold the privilege to read from kernel memory, then 728 * everything is readable. 729 */ 730 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 731 return (1); 732 733 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 734 if (dtrace_canload(addr, strsz, mstate, vstate)) 735 return (1); 736 737 return (0); 738 } 739 740 /* 741 * Convenience routine to check to see if a given variable is within a memory 742 * region in which a load may be issued given the user's privilege level. 743 */ 744 static int 745 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 746 dtrace_vstate_t *vstate) 747 { 748 size_t sz; 749 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 750 751 /* 752 * If we hold the privilege to read from kernel memory, then 753 * everything is readable. 754 */ 755 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 756 return (1); 757 758 if (type->dtdt_kind == DIF_TYPE_STRING) 759 sz = dtrace_strlen(src, 760 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 761 else 762 sz = type->dtdt_size; 763 764 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 765 } 766 767 /* 768 * Compare two strings using safe loads. 769 */ 770 static int 771 dtrace_strncmp(char *s1, char *s2, size_t limit) 772 { 773 uint8_t c1, c2; 774 volatile uint16_t *flags; 775 776 if (s1 == s2 || limit == 0) 777 return (0); 778 779 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 780 781 do { 782 if (s1 == NULL) { 783 c1 = '\0'; 784 } else { 785 c1 = dtrace_load8((uintptr_t)s1++); 786 } 787 788 if (s2 == NULL) { 789 c2 = '\0'; 790 } else { 791 c2 = dtrace_load8((uintptr_t)s2++); 792 } 793 794 if (c1 != c2) 795 return (c1 - c2); 796 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 797 798 return (0); 799 } 800 801 /* 802 * Compute strlen(s) for a string using safe memory accesses. The additional 803 * len parameter is used to specify a maximum length to ensure completion. 804 */ 805 static size_t 806 dtrace_strlen(const char *s, size_t lim) 807 { 808 uint_t len; 809 810 for (len = 0; len != lim; len++) { 811 if (dtrace_load8((uintptr_t)s++) == '\0') 812 break; 813 } 814 815 return (len); 816 } 817 818 /* 819 * Check if an address falls within a toxic region. 820 */ 821 static int 822 dtrace_istoxic(uintptr_t kaddr, size_t size) 823 { 824 uintptr_t taddr, tsize; 825 int i; 826 827 for (i = 0; i < dtrace_toxranges; i++) { 828 taddr = dtrace_toxrange[i].dtt_base; 829 tsize = dtrace_toxrange[i].dtt_limit - taddr; 830 831 if (kaddr - taddr < tsize) { 832 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 833 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 834 return (1); 835 } 836 837 if (taddr - kaddr < size) { 838 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 839 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 840 return (1); 841 } 842 } 843 844 return (0); 845 } 846 847 /* 848 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 849 * memory specified by the DIF program. The dst is assumed to be safe memory 850 * that we can store to directly because it is managed by DTrace. As with 851 * standard bcopy, overlapping copies are handled properly. 852 */ 853 static void 854 dtrace_bcopy(const void *src, void *dst, size_t len) 855 { 856 if (len != 0) { 857 uint8_t *s1 = dst; 858 const uint8_t *s2 = src; 859 860 if (s1 <= s2) { 861 do { 862 *s1++ = dtrace_load8((uintptr_t)s2++); 863 } while (--len != 0); 864 } else { 865 s2 += len; 866 s1 += len; 867 868 do { 869 *--s1 = dtrace_load8((uintptr_t)--s2); 870 } while (--len != 0); 871 } 872 } 873 } 874 875 /* 876 * Copy src to dst using safe memory accesses, up to either the specified 877 * length, or the point that a nul byte is encountered. The src is assumed to 878 * be unsafe memory specified by the DIF program. The dst is assumed to be 879 * safe memory that we can store to directly because it is managed by DTrace. 880 * Unlike dtrace_bcopy(), overlapping regions are not handled. 881 */ 882 static void 883 dtrace_strcpy(const void *src, void *dst, size_t len) 884 { 885 if (len != 0) { 886 uint8_t *s1 = dst, c; 887 const uint8_t *s2 = src; 888 889 do { 890 *s1++ = c = dtrace_load8((uintptr_t)s2++); 891 } while (--len != 0 && c != '\0'); 892 } 893 } 894 895 /* 896 * Copy src to dst, deriving the size and type from the specified (BYREF) 897 * variable type. The src is assumed to be unsafe memory specified by the DIF 898 * program. The dst is assumed to be DTrace variable memory that is of the 899 * specified type; we assume that we can store to directly. 900 */ 901 static void 902 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 903 { 904 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 905 906 if (type->dtdt_kind == DIF_TYPE_STRING) { 907 dtrace_strcpy(src, dst, type->dtdt_size); 908 } else { 909 dtrace_bcopy(src, dst, type->dtdt_size); 910 } 911 } 912 913 /* 914 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 915 * unsafe memory specified by the DIF program. The s2 data is assumed to be 916 * safe memory that we can access directly because it is managed by DTrace. 917 */ 918 static int 919 dtrace_bcmp(const void *s1, const void *s2, size_t len) 920 { 921 volatile uint16_t *flags; 922 923 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 924 925 if (s1 == s2) 926 return (0); 927 928 if (s1 == NULL || s2 == NULL) 929 return (1); 930 931 if (s1 != s2 && len != 0) { 932 const uint8_t *ps1 = s1; 933 const uint8_t *ps2 = s2; 934 935 do { 936 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 937 return (1); 938 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 939 } 940 return (0); 941 } 942 943 /* 944 * Zero the specified region using a simple byte-by-byte loop. Note that this 945 * is for safe DTrace-managed memory only. 946 */ 947 static void 948 dtrace_bzero(void *dst, size_t len) 949 { 950 uchar_t *cp; 951 952 for (cp = dst; len != 0; len--) 953 *cp++ = 0; 954 } 955 956 static void 957 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 958 { 959 uint64_t result[2]; 960 961 result[0] = addend1[0] + addend2[0]; 962 result[1] = addend1[1] + addend2[1] + 963 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 964 965 sum[0] = result[0]; 966 sum[1] = result[1]; 967 } 968 969 /* 970 * Shift the 128-bit value in a by b. If b is positive, shift left. 971 * If b is negative, shift right. 972 */ 973 static void 974 dtrace_shift_128(uint64_t *a, int b) 975 { 976 uint64_t mask; 977 978 if (b == 0) 979 return; 980 981 if (b < 0) { 982 b = -b; 983 if (b >= 64) { 984 a[0] = a[1] >> (b - 64); 985 a[1] = 0; 986 } else { 987 a[0] >>= b; 988 mask = 1LL << (64 - b); 989 mask -= 1; 990 a[0] |= ((a[1] & mask) << (64 - b)); 991 a[1] >>= b; 992 } 993 } else { 994 if (b >= 64) { 995 a[1] = a[0] << (b - 64); 996 a[0] = 0; 997 } else { 998 a[1] <<= b; 999 mask = a[0] >> (64 - b); 1000 a[1] |= mask; 1001 a[0] <<= b; 1002 } 1003 } 1004 } 1005 1006 /* 1007 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1008 * use native multiplication on those, and then re-combine into the 1009 * resulting 128-bit value. 1010 * 1011 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1012 * hi1 * hi2 << 64 + 1013 * hi1 * lo2 << 32 + 1014 * hi2 * lo1 << 32 + 1015 * lo1 * lo2 1016 */ 1017 static void 1018 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1019 { 1020 uint64_t hi1, hi2, lo1, lo2; 1021 uint64_t tmp[2]; 1022 1023 hi1 = factor1 >> 32; 1024 hi2 = factor2 >> 32; 1025 1026 lo1 = factor1 & DT_MASK_LO; 1027 lo2 = factor2 & DT_MASK_LO; 1028 1029 product[0] = lo1 * lo2; 1030 product[1] = hi1 * hi2; 1031 1032 tmp[0] = hi1 * lo2; 1033 tmp[1] = 0; 1034 dtrace_shift_128(tmp, 32); 1035 dtrace_add_128(product, tmp, product); 1036 1037 tmp[0] = hi2 * lo1; 1038 tmp[1] = 0; 1039 dtrace_shift_128(tmp, 32); 1040 dtrace_add_128(product, tmp, product); 1041 } 1042 1043 /* 1044 * This privilege check should be used by actions and subroutines to 1045 * verify that the user credentials of the process that enabled the 1046 * invoking ECB match the target credentials 1047 */ 1048 static int 1049 dtrace_priv_proc_common_user(dtrace_state_t *state) 1050 { 1051 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1052 1053 /* 1054 * We should always have a non-NULL state cred here, since if cred 1055 * is null (anonymous tracing), we fast-path bypass this routine. 1056 */ 1057 ASSERT(s_cr != NULL); 1058 1059 if ((cr = CRED()) != NULL && 1060 s_cr->cr_uid == cr->cr_uid && 1061 s_cr->cr_uid == cr->cr_ruid && 1062 s_cr->cr_uid == cr->cr_suid && 1063 s_cr->cr_gid == cr->cr_gid && 1064 s_cr->cr_gid == cr->cr_rgid && 1065 s_cr->cr_gid == cr->cr_sgid) 1066 return (1); 1067 1068 return (0); 1069 } 1070 1071 /* 1072 * This privilege check should be used by actions and subroutines to 1073 * verify that the zone of the process that enabled the invoking ECB 1074 * matches the target credentials 1075 */ 1076 static int 1077 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1078 { 1079 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1080 1081 /* 1082 * We should always have a non-NULL state cred here, since if cred 1083 * is null (anonymous tracing), we fast-path bypass this routine. 1084 */ 1085 ASSERT(s_cr != NULL); 1086 1087 if ((cr = CRED()) != NULL && 1088 s_cr->cr_zone == cr->cr_zone) 1089 return (1); 1090 1091 return (0); 1092 } 1093 1094 /* 1095 * This privilege check should be used by actions and subroutines to 1096 * verify that the process has not setuid or changed credentials. 1097 */ 1098 static int 1099 dtrace_priv_proc_common_nocd() 1100 { 1101 proc_t *proc; 1102 1103 if ((proc = ttoproc(curthread)) != NULL && 1104 !(proc->p_flag & SNOCD)) 1105 return (1); 1106 1107 return (0); 1108 } 1109 1110 static int 1111 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1112 { 1113 int action = state->dts_cred.dcr_action; 1114 1115 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1116 goto bad; 1117 1118 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1119 dtrace_priv_proc_common_zone(state) == 0) 1120 goto bad; 1121 1122 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1123 dtrace_priv_proc_common_user(state) == 0) 1124 goto bad; 1125 1126 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1127 dtrace_priv_proc_common_nocd() == 0) 1128 goto bad; 1129 1130 return (1); 1131 1132 bad: 1133 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1134 1135 return (0); 1136 } 1137 1138 static int 1139 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1140 { 1141 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1142 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1143 return (1); 1144 1145 if (dtrace_priv_proc_common_zone(state) && 1146 dtrace_priv_proc_common_user(state) && 1147 dtrace_priv_proc_common_nocd()) 1148 return (1); 1149 } 1150 1151 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1152 1153 return (0); 1154 } 1155 1156 static int 1157 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1158 { 1159 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1160 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1161 return (1); 1162 1163 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1164 1165 return (0); 1166 } 1167 1168 static int 1169 dtrace_priv_kernel(dtrace_state_t *state) 1170 { 1171 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1172 return (1); 1173 1174 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1175 1176 return (0); 1177 } 1178 1179 static int 1180 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1181 { 1182 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1183 return (1); 1184 1185 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Determine if the dte_cond of the specified ECB allows for processing of 1192 * the current probe to continue. Note that this routine may allow continued 1193 * processing, but with access(es) stripped from the mstate's dtms_access 1194 * field. 1195 */ 1196 static int 1197 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1198 dtrace_ecb_t *ecb) 1199 { 1200 dtrace_probe_t *probe = ecb->dte_probe; 1201 dtrace_provider_t *prov = probe->dtpr_provider; 1202 dtrace_pops_t *pops = &prov->dtpv_pops; 1203 int mode = DTRACE_MODE_NOPRIV_DROP; 1204 1205 ASSERT(ecb->dte_cond); 1206 1207 if (pops->dtps_mode != NULL) { 1208 mode = pops->dtps_mode(prov->dtpv_arg, 1209 probe->dtpr_id, probe->dtpr_arg); 1210 1211 ASSERT((mode & DTRACE_MODE_USER) || 1212 (mode & DTRACE_MODE_KERNEL)); 1213 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) || 1214 (mode & DTRACE_MODE_NOPRIV_DROP)); 1215 } 1216 1217 /* 1218 * If the dte_cond bits indicate that this consumer is only allowed to 1219 * see user-mode firings of this probe, call the provider's dtps_mode() 1220 * entry point to check that the probe was fired while in a user 1221 * context. If that's not the case, use the policy specified by the 1222 * provider to determine if we drop the probe or merely restrict 1223 * operation. 1224 */ 1225 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1226 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1227 1228 if (!(mode & DTRACE_MODE_USER)) { 1229 if (mode & DTRACE_MODE_NOPRIV_DROP) 1230 return (0); 1231 1232 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1233 } 1234 } 1235 1236 /* 1237 * This is more subtle than it looks. We have to be absolutely certain 1238 * that CRED() isn't going to change out from under us so it's only 1239 * legit to examine that structure if we're in constrained situations. 1240 * Currently, the only times we'll this check is if a non-super-user 1241 * has enabled the profile or syscall providers -- providers that 1242 * allow visibility of all processes. For the profile case, the check 1243 * above will ensure that we're examining a user context. 1244 */ 1245 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1246 cred_t *cr; 1247 cred_t *s_cr = state->dts_cred.dcr_cred; 1248 proc_t *proc; 1249 1250 ASSERT(s_cr != NULL); 1251 1252 if ((cr = CRED()) == NULL || 1253 s_cr->cr_uid != cr->cr_uid || 1254 s_cr->cr_uid != cr->cr_ruid || 1255 s_cr->cr_uid != cr->cr_suid || 1256 s_cr->cr_gid != cr->cr_gid || 1257 s_cr->cr_gid != cr->cr_rgid || 1258 s_cr->cr_gid != cr->cr_sgid || 1259 (proc = ttoproc(curthread)) == NULL || 1260 (proc->p_flag & SNOCD)) { 1261 if (mode & DTRACE_MODE_NOPRIV_DROP) 1262 return (0); 1263 1264 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1265 } 1266 } 1267 1268 /* 1269 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1270 * in our zone, check to see if our mode policy is to restrict rather 1271 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1272 * and DTRACE_ACCESS_ARGS 1273 */ 1274 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1275 cred_t *cr; 1276 cred_t *s_cr = state->dts_cred.dcr_cred; 1277 1278 ASSERT(s_cr != NULL); 1279 1280 if ((cr = CRED()) == NULL || 1281 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1282 if (mode & DTRACE_MODE_NOPRIV_DROP) 1283 return (0); 1284 1285 mstate->dtms_access &= 1286 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1287 } 1288 } 1289 1290 return (1); 1291 } 1292 1293 /* 1294 * Note: not called from probe context. This function is called 1295 * asynchronously (and at a regular interval) from outside of probe context to 1296 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1297 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1298 */ 1299 void 1300 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1301 { 1302 dtrace_dynvar_t *dirty; 1303 dtrace_dstate_percpu_t *dcpu; 1304 dtrace_dynvar_t **rinsep; 1305 int i, j, work = 0; 1306 1307 for (i = 0; i < NCPU; i++) { 1308 dcpu = &dstate->dtds_percpu[i]; 1309 rinsep = &dcpu->dtdsc_rinsing; 1310 1311 /* 1312 * If the dirty list is NULL, there is no dirty work to do. 1313 */ 1314 if (dcpu->dtdsc_dirty == NULL) 1315 continue; 1316 1317 if (dcpu->dtdsc_rinsing != NULL) { 1318 /* 1319 * If the rinsing list is non-NULL, then it is because 1320 * this CPU was selected to accept another CPU's 1321 * dirty list -- and since that time, dirty buffers 1322 * have accumulated. This is a highly unlikely 1323 * condition, but we choose to ignore the dirty 1324 * buffers -- they'll be picked up a future cleanse. 1325 */ 1326 continue; 1327 } 1328 1329 if (dcpu->dtdsc_clean != NULL) { 1330 /* 1331 * If the clean list is non-NULL, then we're in a 1332 * situation where a CPU has done deallocations (we 1333 * have a non-NULL dirty list) but no allocations (we 1334 * also have a non-NULL clean list). We can't simply 1335 * move the dirty list into the clean list on this 1336 * CPU, yet we also don't want to allow this condition 1337 * to persist, lest a short clean list prevent a 1338 * massive dirty list from being cleaned (which in 1339 * turn could lead to otherwise avoidable dynamic 1340 * drops). To deal with this, we look for some CPU 1341 * with a NULL clean list, NULL dirty list, and NULL 1342 * rinsing list -- and then we borrow this CPU to 1343 * rinse our dirty list. 1344 */ 1345 for (j = 0; j < NCPU; j++) { 1346 dtrace_dstate_percpu_t *rinser; 1347 1348 rinser = &dstate->dtds_percpu[j]; 1349 1350 if (rinser->dtdsc_rinsing != NULL) 1351 continue; 1352 1353 if (rinser->dtdsc_dirty != NULL) 1354 continue; 1355 1356 if (rinser->dtdsc_clean != NULL) 1357 continue; 1358 1359 rinsep = &rinser->dtdsc_rinsing; 1360 break; 1361 } 1362 1363 if (j == NCPU) { 1364 /* 1365 * We were unable to find another CPU that 1366 * could accept this dirty list -- we are 1367 * therefore unable to clean it now. 1368 */ 1369 dtrace_dynvar_failclean++; 1370 continue; 1371 } 1372 } 1373 1374 work = 1; 1375 1376 /* 1377 * Atomically move the dirty list aside. 1378 */ 1379 do { 1380 dirty = dcpu->dtdsc_dirty; 1381 1382 /* 1383 * Before we zap the dirty list, set the rinsing list. 1384 * (This allows for a potential assertion in 1385 * dtrace_dynvar(): if a free dynamic variable appears 1386 * on a hash chain, either the dirty list or the 1387 * rinsing list for some CPU must be non-NULL.) 1388 */ 1389 *rinsep = dirty; 1390 dtrace_membar_producer(); 1391 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1392 dirty, NULL) != dirty); 1393 } 1394 1395 if (!work) { 1396 /* 1397 * We have no work to do; we can simply return. 1398 */ 1399 return; 1400 } 1401 1402 dtrace_sync(); 1403 1404 for (i = 0; i < NCPU; i++) { 1405 dcpu = &dstate->dtds_percpu[i]; 1406 1407 if (dcpu->dtdsc_rinsing == NULL) 1408 continue; 1409 1410 /* 1411 * We are now guaranteed that no hash chain contains a pointer 1412 * into this dirty list; we can make it clean. 1413 */ 1414 ASSERT(dcpu->dtdsc_clean == NULL); 1415 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1416 dcpu->dtdsc_rinsing = NULL; 1417 } 1418 1419 /* 1420 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1421 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1422 * This prevents a race whereby a CPU incorrectly decides that 1423 * the state should be something other than DTRACE_DSTATE_CLEAN 1424 * after dtrace_dynvar_clean() has completed. 1425 */ 1426 dtrace_sync(); 1427 1428 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1429 } 1430 1431 /* 1432 * Depending on the value of the op parameter, this function looks-up, 1433 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1434 * allocation is requested, this function will return a pointer to a 1435 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1436 * variable can be allocated. If NULL is returned, the appropriate counter 1437 * will be incremented. 1438 */ 1439 dtrace_dynvar_t * 1440 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1441 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1442 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1443 { 1444 uint64_t hashval = DTRACE_DYNHASH_VALID; 1445 dtrace_dynhash_t *hash = dstate->dtds_hash; 1446 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1447 processorid_t me = CPU->cpu_id, cpu = me; 1448 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1449 size_t bucket, ksize; 1450 size_t chunksize = dstate->dtds_chunksize; 1451 uintptr_t kdata, lock, nstate; 1452 uint_t i; 1453 1454 ASSERT(nkeys != 0); 1455 1456 /* 1457 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1458 * algorithm. For the by-value portions, we perform the algorithm in 1459 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1460 * bit, and seems to have only a minute effect on distribution. For 1461 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1462 * over each referenced byte. It's painful to do this, but it's much 1463 * better than pathological hash distribution. The efficacy of the 1464 * hashing algorithm (and a comparison with other algorithms) may be 1465 * found by running the ::dtrace_dynstat MDB dcmd. 1466 */ 1467 for (i = 0; i < nkeys; i++) { 1468 if (key[i].dttk_size == 0) { 1469 uint64_t val = key[i].dttk_value; 1470 1471 hashval += (val >> 48) & 0xffff; 1472 hashval += (hashval << 10); 1473 hashval ^= (hashval >> 6); 1474 1475 hashval += (val >> 32) & 0xffff; 1476 hashval += (hashval << 10); 1477 hashval ^= (hashval >> 6); 1478 1479 hashval += (val >> 16) & 0xffff; 1480 hashval += (hashval << 10); 1481 hashval ^= (hashval >> 6); 1482 1483 hashval += val & 0xffff; 1484 hashval += (hashval << 10); 1485 hashval ^= (hashval >> 6); 1486 } else { 1487 /* 1488 * This is incredibly painful, but it beats the hell 1489 * out of the alternative. 1490 */ 1491 uint64_t j, size = key[i].dttk_size; 1492 uintptr_t base = (uintptr_t)key[i].dttk_value; 1493 1494 if (!dtrace_canload(base, size, mstate, vstate)) 1495 break; 1496 1497 for (j = 0; j < size; j++) { 1498 hashval += dtrace_load8(base + j); 1499 hashval += (hashval << 10); 1500 hashval ^= (hashval >> 6); 1501 } 1502 } 1503 } 1504 1505 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1506 return (NULL); 1507 1508 hashval += (hashval << 3); 1509 hashval ^= (hashval >> 11); 1510 hashval += (hashval << 15); 1511 1512 /* 1513 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1514 * comes out to be one of our two sentinel hash values. If this 1515 * actually happens, we set the hashval to be a value known to be a 1516 * non-sentinel value. 1517 */ 1518 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1519 hashval = DTRACE_DYNHASH_VALID; 1520 1521 /* 1522 * Yes, it's painful to do a divide here. If the cycle count becomes 1523 * important here, tricks can be pulled to reduce it. (However, it's 1524 * critical that hash collisions be kept to an absolute minimum; 1525 * they're much more painful than a divide.) It's better to have a 1526 * solution that generates few collisions and still keeps things 1527 * relatively simple. 1528 */ 1529 bucket = hashval % dstate->dtds_hashsize; 1530 1531 if (op == DTRACE_DYNVAR_DEALLOC) { 1532 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1533 1534 for (;;) { 1535 while ((lock = *lockp) & 1) 1536 continue; 1537 1538 if (dtrace_casptr((void *)lockp, 1539 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1540 break; 1541 } 1542 1543 dtrace_membar_producer(); 1544 } 1545 1546 top: 1547 prev = NULL; 1548 lock = hash[bucket].dtdh_lock; 1549 1550 dtrace_membar_consumer(); 1551 1552 start = hash[bucket].dtdh_chain; 1553 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1554 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1555 op != DTRACE_DYNVAR_DEALLOC)); 1556 1557 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1558 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1559 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1560 1561 if (dvar->dtdv_hashval != hashval) { 1562 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1563 /* 1564 * We've reached the sink, and therefore the 1565 * end of the hash chain; we can kick out of 1566 * the loop knowing that we have seen a valid 1567 * snapshot of state. 1568 */ 1569 ASSERT(dvar->dtdv_next == NULL); 1570 ASSERT(dvar == &dtrace_dynhash_sink); 1571 break; 1572 } 1573 1574 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1575 /* 1576 * We've gone off the rails: somewhere along 1577 * the line, one of the members of this hash 1578 * chain was deleted. Note that we could also 1579 * detect this by simply letting this loop run 1580 * to completion, as we would eventually hit 1581 * the end of the dirty list. However, we 1582 * want to avoid running the length of the 1583 * dirty list unnecessarily (it might be quite 1584 * long), so we catch this as early as 1585 * possible by detecting the hash marker. In 1586 * this case, we simply set dvar to NULL and 1587 * break; the conditional after the loop will 1588 * send us back to top. 1589 */ 1590 dvar = NULL; 1591 break; 1592 } 1593 1594 goto next; 1595 } 1596 1597 if (dtuple->dtt_nkeys != nkeys) 1598 goto next; 1599 1600 for (i = 0; i < nkeys; i++, dkey++) { 1601 if (dkey->dttk_size != key[i].dttk_size) 1602 goto next; /* size or type mismatch */ 1603 1604 if (dkey->dttk_size != 0) { 1605 if (dtrace_bcmp( 1606 (void *)(uintptr_t)key[i].dttk_value, 1607 (void *)(uintptr_t)dkey->dttk_value, 1608 dkey->dttk_size)) 1609 goto next; 1610 } else { 1611 if (dkey->dttk_value != key[i].dttk_value) 1612 goto next; 1613 } 1614 } 1615 1616 if (op != DTRACE_DYNVAR_DEALLOC) 1617 return (dvar); 1618 1619 ASSERT(dvar->dtdv_next == NULL || 1620 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1621 1622 if (prev != NULL) { 1623 ASSERT(hash[bucket].dtdh_chain != dvar); 1624 ASSERT(start != dvar); 1625 ASSERT(prev->dtdv_next == dvar); 1626 prev->dtdv_next = dvar->dtdv_next; 1627 } else { 1628 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1629 start, dvar->dtdv_next) != start) { 1630 /* 1631 * We have failed to atomically swing the 1632 * hash table head pointer, presumably because 1633 * of a conflicting allocation on another CPU. 1634 * We need to reread the hash chain and try 1635 * again. 1636 */ 1637 goto top; 1638 } 1639 } 1640 1641 dtrace_membar_producer(); 1642 1643 /* 1644 * Now set the hash value to indicate that it's free. 1645 */ 1646 ASSERT(hash[bucket].dtdh_chain != dvar); 1647 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1648 1649 dtrace_membar_producer(); 1650 1651 /* 1652 * Set the next pointer to point at the dirty list, and 1653 * atomically swing the dirty pointer to the newly freed dvar. 1654 */ 1655 do { 1656 next = dcpu->dtdsc_dirty; 1657 dvar->dtdv_next = next; 1658 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1659 1660 /* 1661 * Finally, unlock this hash bucket. 1662 */ 1663 ASSERT(hash[bucket].dtdh_lock == lock); 1664 ASSERT(lock & 1); 1665 hash[bucket].dtdh_lock++; 1666 1667 return (NULL); 1668 next: 1669 prev = dvar; 1670 continue; 1671 } 1672 1673 if (dvar == NULL) { 1674 /* 1675 * If dvar is NULL, it is because we went off the rails: 1676 * one of the elements that we traversed in the hash chain 1677 * was deleted while we were traversing it. In this case, 1678 * we assert that we aren't doing a dealloc (deallocs lock 1679 * the hash bucket to prevent themselves from racing with 1680 * one another), and retry the hash chain traversal. 1681 */ 1682 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1683 goto top; 1684 } 1685 1686 if (op != DTRACE_DYNVAR_ALLOC) { 1687 /* 1688 * If we are not to allocate a new variable, we want to 1689 * return NULL now. Before we return, check that the value 1690 * of the lock word hasn't changed. If it has, we may have 1691 * seen an inconsistent snapshot. 1692 */ 1693 if (op == DTRACE_DYNVAR_NOALLOC) { 1694 if (hash[bucket].dtdh_lock != lock) 1695 goto top; 1696 } else { 1697 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1698 ASSERT(hash[bucket].dtdh_lock == lock); 1699 ASSERT(lock & 1); 1700 hash[bucket].dtdh_lock++; 1701 } 1702 1703 return (NULL); 1704 } 1705 1706 /* 1707 * We need to allocate a new dynamic variable. The size we need is the 1708 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1709 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1710 * the size of any referred-to data (dsize). We then round the final 1711 * size up to the chunksize for allocation. 1712 */ 1713 for (ksize = 0, i = 0; i < nkeys; i++) 1714 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1715 1716 /* 1717 * This should be pretty much impossible, but could happen if, say, 1718 * strange DIF specified the tuple. Ideally, this should be an 1719 * assertion and not an error condition -- but that requires that the 1720 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1721 * bullet-proof. (That is, it must not be able to be fooled by 1722 * malicious DIF.) Given the lack of backwards branches in DIF, 1723 * solving this would presumably not amount to solving the Halting 1724 * Problem -- but it still seems awfully hard. 1725 */ 1726 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1727 ksize + dsize > chunksize) { 1728 dcpu->dtdsc_drops++; 1729 return (NULL); 1730 } 1731 1732 nstate = DTRACE_DSTATE_EMPTY; 1733 1734 do { 1735 retry: 1736 free = dcpu->dtdsc_free; 1737 1738 if (free == NULL) { 1739 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1740 void *rval; 1741 1742 if (clean == NULL) { 1743 /* 1744 * We're out of dynamic variable space on 1745 * this CPU. Unless we have tried all CPUs, 1746 * we'll try to allocate from a different 1747 * CPU. 1748 */ 1749 switch (dstate->dtds_state) { 1750 case DTRACE_DSTATE_CLEAN: { 1751 void *sp = &dstate->dtds_state; 1752 1753 if (++cpu >= NCPU) 1754 cpu = 0; 1755 1756 if (dcpu->dtdsc_dirty != NULL && 1757 nstate == DTRACE_DSTATE_EMPTY) 1758 nstate = DTRACE_DSTATE_DIRTY; 1759 1760 if (dcpu->dtdsc_rinsing != NULL) 1761 nstate = DTRACE_DSTATE_RINSING; 1762 1763 dcpu = &dstate->dtds_percpu[cpu]; 1764 1765 if (cpu != me) 1766 goto retry; 1767 1768 (void) dtrace_cas32(sp, 1769 DTRACE_DSTATE_CLEAN, nstate); 1770 1771 /* 1772 * To increment the correct bean 1773 * counter, take another lap. 1774 */ 1775 goto retry; 1776 } 1777 1778 case DTRACE_DSTATE_DIRTY: 1779 dcpu->dtdsc_dirty_drops++; 1780 break; 1781 1782 case DTRACE_DSTATE_RINSING: 1783 dcpu->dtdsc_rinsing_drops++; 1784 break; 1785 1786 case DTRACE_DSTATE_EMPTY: 1787 dcpu->dtdsc_drops++; 1788 break; 1789 } 1790 1791 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1792 return (NULL); 1793 } 1794 1795 /* 1796 * The clean list appears to be non-empty. We want to 1797 * move the clean list to the free list; we start by 1798 * moving the clean pointer aside. 1799 */ 1800 if (dtrace_casptr(&dcpu->dtdsc_clean, 1801 clean, NULL) != clean) { 1802 /* 1803 * We are in one of two situations: 1804 * 1805 * (a) The clean list was switched to the 1806 * free list by another CPU. 1807 * 1808 * (b) The clean list was added to by the 1809 * cleansing cyclic. 1810 * 1811 * In either of these situations, we can 1812 * just reattempt the free list allocation. 1813 */ 1814 goto retry; 1815 } 1816 1817 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1818 1819 /* 1820 * Now we'll move the clean list to our free list. 1821 * It's impossible for this to fail: the only way 1822 * the free list can be updated is through this 1823 * code path, and only one CPU can own the clean list. 1824 * Thus, it would only be possible for this to fail if 1825 * this code were racing with dtrace_dynvar_clean(). 1826 * (That is, if dtrace_dynvar_clean() updated the clean 1827 * list, and we ended up racing to update the free 1828 * list.) This race is prevented by the dtrace_sync() 1829 * in dtrace_dynvar_clean() -- which flushes the 1830 * owners of the clean lists out before resetting 1831 * the clean lists. 1832 */ 1833 dcpu = &dstate->dtds_percpu[me]; 1834 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1835 ASSERT(rval == NULL); 1836 goto retry; 1837 } 1838 1839 dvar = free; 1840 new_free = dvar->dtdv_next; 1841 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 1842 1843 /* 1844 * We have now allocated a new chunk. We copy the tuple keys into the 1845 * tuple array and copy any referenced key data into the data space 1846 * following the tuple array. As we do this, we relocate dttk_value 1847 * in the final tuple to point to the key data address in the chunk. 1848 */ 1849 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 1850 dvar->dtdv_data = (void *)(kdata + ksize); 1851 dvar->dtdv_tuple.dtt_nkeys = nkeys; 1852 1853 for (i = 0; i < nkeys; i++) { 1854 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 1855 size_t kesize = key[i].dttk_size; 1856 1857 if (kesize != 0) { 1858 dtrace_bcopy( 1859 (const void *)(uintptr_t)key[i].dttk_value, 1860 (void *)kdata, kesize); 1861 dkey->dttk_value = kdata; 1862 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 1863 } else { 1864 dkey->dttk_value = key[i].dttk_value; 1865 } 1866 1867 dkey->dttk_size = kesize; 1868 } 1869 1870 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 1871 dvar->dtdv_hashval = hashval; 1872 dvar->dtdv_next = start; 1873 1874 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 1875 return (dvar); 1876 1877 /* 1878 * The cas has failed. Either another CPU is adding an element to 1879 * this hash chain, or another CPU is deleting an element from this 1880 * hash chain. The simplest way to deal with both of these cases 1881 * (though not necessarily the most efficient) is to free our 1882 * allocated block and tail-call ourselves. Note that the free is 1883 * to the dirty list and _not_ to the free list. This is to prevent 1884 * races with allocators, above. 1885 */ 1886 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1887 1888 dtrace_membar_producer(); 1889 1890 do { 1891 free = dcpu->dtdsc_dirty; 1892 dvar->dtdv_next = free; 1893 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 1894 1895 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 1896 } 1897 1898 /*ARGSUSED*/ 1899 static void 1900 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 1901 { 1902 if ((int64_t)nval < (int64_t)*oval) 1903 *oval = nval; 1904 } 1905 1906 /*ARGSUSED*/ 1907 static void 1908 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 1909 { 1910 if ((int64_t)nval > (int64_t)*oval) 1911 *oval = nval; 1912 } 1913 1914 static void 1915 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 1916 { 1917 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 1918 int64_t val = (int64_t)nval; 1919 1920 if (val < 0) { 1921 for (i = 0; i < zero; i++) { 1922 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 1923 quanta[i] += incr; 1924 return; 1925 } 1926 } 1927 } else { 1928 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 1929 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 1930 quanta[i - 1] += incr; 1931 return; 1932 } 1933 } 1934 1935 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 1936 return; 1937 } 1938 1939 ASSERT(0); 1940 } 1941 1942 static void 1943 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 1944 { 1945 uint64_t arg = *lquanta++; 1946 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 1947 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 1948 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 1949 int32_t val = (int32_t)nval, level; 1950 1951 ASSERT(step != 0); 1952 ASSERT(levels != 0); 1953 1954 if (val < base) { 1955 /* 1956 * This is an underflow. 1957 */ 1958 lquanta[0] += incr; 1959 return; 1960 } 1961 1962 level = (val - base) / step; 1963 1964 if (level < levels) { 1965 lquanta[level + 1] += incr; 1966 return; 1967 } 1968 1969 /* 1970 * This is an overflow. 1971 */ 1972 lquanta[levels + 1] += incr; 1973 } 1974 1975 static int 1976 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 1977 uint16_t high, uint16_t nsteps, int64_t value) 1978 { 1979 int64_t this = 1, last, next; 1980 int base = 1, order; 1981 1982 ASSERT(factor <= nsteps); 1983 ASSERT(nsteps % factor == 0); 1984 1985 for (order = 0; order < low; order++) 1986 this *= factor; 1987 1988 /* 1989 * If our value is less than our factor taken to the power of the 1990 * low order of magnitude, it goes into the zeroth bucket. 1991 */ 1992 if (value < (last = this)) 1993 return (0); 1994 1995 for (this *= factor; order <= high; order++) { 1996 int nbuckets = this > nsteps ? nsteps : this; 1997 1998 if ((next = this * factor) < this) { 1999 /* 2000 * We should not generally get log/linear quantizations 2001 * with a high magnitude that allows 64-bits to 2002 * overflow, but we nonetheless protect against this 2003 * by explicitly checking for overflow, and clamping 2004 * our value accordingly. 2005 */ 2006 value = this - 1; 2007 } 2008 2009 if (value < this) { 2010 /* 2011 * If our value lies within this order of magnitude, 2012 * determine its position by taking the offset within 2013 * the order of magnitude, dividing by the bucket 2014 * width, and adding to our (accumulated) base. 2015 */ 2016 return (base + (value - last) / (this / nbuckets)); 2017 } 2018 2019 base += nbuckets - (nbuckets / factor); 2020 last = this; 2021 this = next; 2022 } 2023 2024 /* 2025 * Our value is greater than or equal to our factor taken to the 2026 * power of one plus the high magnitude -- return the top bucket. 2027 */ 2028 return (base); 2029 } 2030 2031 static void 2032 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2033 { 2034 uint64_t arg = *llquanta++; 2035 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2036 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2037 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2038 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2039 2040 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2041 low, high, nsteps, nval)] += incr; 2042 } 2043 2044 /*ARGSUSED*/ 2045 static void 2046 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2047 { 2048 data[0]++; 2049 data[1] += nval; 2050 } 2051 2052 /*ARGSUSED*/ 2053 static void 2054 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2055 { 2056 int64_t snval = (int64_t)nval; 2057 uint64_t tmp[2]; 2058 2059 data[0]++; 2060 data[1] += nval; 2061 2062 /* 2063 * What we want to say here is: 2064 * 2065 * data[2] += nval * nval; 2066 * 2067 * But given that nval is 64-bit, we could easily overflow, so 2068 * we do this as 128-bit arithmetic. 2069 */ 2070 if (snval < 0) 2071 snval = -snval; 2072 2073 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2074 dtrace_add_128(data + 2, tmp, data + 2); 2075 } 2076 2077 /*ARGSUSED*/ 2078 static void 2079 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2080 { 2081 *oval = *oval + 1; 2082 } 2083 2084 /*ARGSUSED*/ 2085 static void 2086 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2087 { 2088 *oval += nval; 2089 } 2090 2091 /* 2092 * Aggregate given the tuple in the principal data buffer, and the aggregating 2093 * action denoted by the specified dtrace_aggregation_t. The aggregation 2094 * buffer is specified as the buf parameter. This routine does not return 2095 * failure; if there is no space in the aggregation buffer, the data will be 2096 * dropped, and a corresponding counter incremented. 2097 */ 2098 static void 2099 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2100 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2101 { 2102 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2103 uint32_t i, ndx, size, fsize; 2104 uint32_t align = sizeof (uint64_t) - 1; 2105 dtrace_aggbuffer_t *agb; 2106 dtrace_aggkey_t *key; 2107 uint32_t hashval = 0, limit, isstr; 2108 caddr_t tomax, data, kdata; 2109 dtrace_actkind_t action; 2110 dtrace_action_t *act; 2111 uintptr_t offs; 2112 2113 if (buf == NULL) 2114 return; 2115 2116 if (!agg->dtag_hasarg) { 2117 /* 2118 * Currently, only quantize() and lquantize() take additional 2119 * arguments, and they have the same semantics: an increment 2120 * value that defaults to 1 when not present. If additional 2121 * aggregating actions take arguments, the setting of the 2122 * default argument value will presumably have to become more 2123 * sophisticated... 2124 */ 2125 arg = 1; 2126 } 2127 2128 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2129 size = rec->dtrd_offset - agg->dtag_base; 2130 fsize = size + rec->dtrd_size; 2131 2132 ASSERT(dbuf->dtb_tomax != NULL); 2133 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2134 2135 if ((tomax = buf->dtb_tomax) == NULL) { 2136 dtrace_buffer_drop(buf); 2137 return; 2138 } 2139 2140 /* 2141 * The metastructure is always at the bottom of the buffer. 2142 */ 2143 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2144 sizeof (dtrace_aggbuffer_t)); 2145 2146 if (buf->dtb_offset == 0) { 2147 /* 2148 * We just kludge up approximately 1/8th of the size to be 2149 * buckets. If this guess ends up being routinely 2150 * off-the-mark, we may need to dynamically readjust this 2151 * based on past performance. 2152 */ 2153 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2154 2155 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2156 (uintptr_t)tomax || hashsize == 0) { 2157 /* 2158 * We've been given a ludicrously small buffer; 2159 * increment our drop count and leave. 2160 */ 2161 dtrace_buffer_drop(buf); 2162 return; 2163 } 2164 2165 /* 2166 * And now, a pathetic attempt to try to get a an odd (or 2167 * perchance, a prime) hash size for better hash distribution. 2168 */ 2169 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2170 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2171 2172 agb->dtagb_hashsize = hashsize; 2173 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2174 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2175 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2176 2177 for (i = 0; i < agb->dtagb_hashsize; i++) 2178 agb->dtagb_hash[i] = NULL; 2179 } 2180 2181 ASSERT(agg->dtag_first != NULL); 2182 ASSERT(agg->dtag_first->dta_intuple); 2183 2184 /* 2185 * Calculate the hash value based on the key. Note that we _don't_ 2186 * include the aggid in the hashing (but we will store it as part of 2187 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2188 * algorithm: a simple, quick algorithm that has no known funnels, and 2189 * gets good distribution in practice. The efficacy of the hashing 2190 * algorithm (and a comparison with other algorithms) may be found by 2191 * running the ::dtrace_aggstat MDB dcmd. 2192 */ 2193 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2194 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2195 limit = i + act->dta_rec.dtrd_size; 2196 ASSERT(limit <= size); 2197 isstr = DTRACEACT_ISSTRING(act); 2198 2199 for (; i < limit; i++) { 2200 hashval += data[i]; 2201 hashval += (hashval << 10); 2202 hashval ^= (hashval >> 6); 2203 2204 if (isstr && data[i] == '\0') 2205 break; 2206 } 2207 } 2208 2209 hashval += (hashval << 3); 2210 hashval ^= (hashval >> 11); 2211 hashval += (hashval << 15); 2212 2213 /* 2214 * Yes, the divide here is expensive -- but it's generally the least 2215 * of the performance issues given the amount of data that we iterate 2216 * over to compute hash values, compare data, etc. 2217 */ 2218 ndx = hashval % agb->dtagb_hashsize; 2219 2220 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2221 ASSERT((caddr_t)key >= tomax); 2222 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2223 2224 if (hashval != key->dtak_hashval || key->dtak_size != size) 2225 continue; 2226 2227 kdata = key->dtak_data; 2228 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2229 2230 for (act = agg->dtag_first; act->dta_intuple; 2231 act = act->dta_next) { 2232 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2233 limit = i + act->dta_rec.dtrd_size; 2234 ASSERT(limit <= size); 2235 isstr = DTRACEACT_ISSTRING(act); 2236 2237 for (; i < limit; i++) { 2238 if (kdata[i] != data[i]) 2239 goto next; 2240 2241 if (isstr && data[i] == '\0') 2242 break; 2243 } 2244 } 2245 2246 if (action != key->dtak_action) { 2247 /* 2248 * We are aggregating on the same value in the same 2249 * aggregation with two different aggregating actions. 2250 * (This should have been picked up in the compiler, 2251 * so we may be dealing with errant or devious DIF.) 2252 * This is an error condition; we indicate as much, 2253 * and return. 2254 */ 2255 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2256 return; 2257 } 2258 2259 /* 2260 * This is a hit: we need to apply the aggregator to 2261 * the value at this key. 2262 */ 2263 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2264 return; 2265 next: 2266 continue; 2267 } 2268 2269 /* 2270 * We didn't find it. We need to allocate some zero-filled space, 2271 * link it into the hash table appropriately, and apply the aggregator 2272 * to the (zero-filled) value. 2273 */ 2274 offs = buf->dtb_offset; 2275 while (offs & (align - 1)) 2276 offs += sizeof (uint32_t); 2277 2278 /* 2279 * If we don't have enough room to both allocate a new key _and_ 2280 * its associated data, increment the drop count and return. 2281 */ 2282 if ((uintptr_t)tomax + offs + fsize > 2283 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2284 dtrace_buffer_drop(buf); 2285 return; 2286 } 2287 2288 /*CONSTCOND*/ 2289 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2290 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2291 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2292 2293 key->dtak_data = kdata = tomax + offs; 2294 buf->dtb_offset = offs + fsize; 2295 2296 /* 2297 * Now copy the data across. 2298 */ 2299 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2300 2301 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2302 kdata[i] = data[i]; 2303 2304 /* 2305 * Because strings are not zeroed out by default, we need to iterate 2306 * looking for actions that store strings, and we need to explicitly 2307 * pad these strings out with zeroes. 2308 */ 2309 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2310 int nul; 2311 2312 if (!DTRACEACT_ISSTRING(act)) 2313 continue; 2314 2315 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2316 limit = i + act->dta_rec.dtrd_size; 2317 ASSERT(limit <= size); 2318 2319 for (nul = 0; i < limit; i++) { 2320 if (nul) { 2321 kdata[i] = '\0'; 2322 continue; 2323 } 2324 2325 if (data[i] != '\0') 2326 continue; 2327 2328 nul = 1; 2329 } 2330 } 2331 2332 for (i = size; i < fsize; i++) 2333 kdata[i] = 0; 2334 2335 key->dtak_hashval = hashval; 2336 key->dtak_size = size; 2337 key->dtak_action = action; 2338 key->dtak_next = agb->dtagb_hash[ndx]; 2339 agb->dtagb_hash[ndx] = key; 2340 2341 /* 2342 * Finally, apply the aggregator. 2343 */ 2344 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2345 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2346 } 2347 2348 /* 2349 * Given consumer state, this routine finds a speculation in the INACTIVE 2350 * state and transitions it into the ACTIVE state. If there is no speculation 2351 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2352 * incremented -- it is up to the caller to take appropriate action. 2353 */ 2354 static int 2355 dtrace_speculation(dtrace_state_t *state) 2356 { 2357 int i = 0; 2358 dtrace_speculation_state_t current; 2359 uint32_t *stat = &state->dts_speculations_unavail, count; 2360 2361 while (i < state->dts_nspeculations) { 2362 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2363 2364 current = spec->dtsp_state; 2365 2366 if (current != DTRACESPEC_INACTIVE) { 2367 if (current == DTRACESPEC_COMMITTINGMANY || 2368 current == DTRACESPEC_COMMITTING || 2369 current == DTRACESPEC_DISCARDING) 2370 stat = &state->dts_speculations_busy; 2371 i++; 2372 continue; 2373 } 2374 2375 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2376 current, DTRACESPEC_ACTIVE) == current) 2377 return (i + 1); 2378 } 2379 2380 /* 2381 * We couldn't find a speculation. If we found as much as a single 2382 * busy speculation buffer, we'll attribute this failure as "busy" 2383 * instead of "unavail". 2384 */ 2385 do { 2386 count = *stat; 2387 } while (dtrace_cas32(stat, count, count + 1) != count); 2388 2389 return (0); 2390 } 2391 2392 /* 2393 * This routine commits an active speculation. If the specified speculation 2394 * is not in a valid state to perform a commit(), this routine will silently do 2395 * nothing. The state of the specified speculation is transitioned according 2396 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2397 */ 2398 static void 2399 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2400 dtrace_specid_t which) 2401 { 2402 dtrace_speculation_t *spec; 2403 dtrace_buffer_t *src, *dest; 2404 uintptr_t daddr, saddr, dlimit; 2405 dtrace_speculation_state_t current, new; 2406 intptr_t offs; 2407 2408 if (which == 0) 2409 return; 2410 2411 if (which > state->dts_nspeculations) { 2412 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2413 return; 2414 } 2415 2416 spec = &state->dts_speculations[which - 1]; 2417 src = &spec->dtsp_buffer[cpu]; 2418 dest = &state->dts_buffer[cpu]; 2419 2420 do { 2421 current = spec->dtsp_state; 2422 2423 if (current == DTRACESPEC_COMMITTINGMANY) 2424 break; 2425 2426 switch (current) { 2427 case DTRACESPEC_INACTIVE: 2428 case DTRACESPEC_DISCARDING: 2429 return; 2430 2431 case DTRACESPEC_COMMITTING: 2432 /* 2433 * This is only possible if we are (a) commit()'ing 2434 * without having done a prior speculate() on this CPU 2435 * and (b) racing with another commit() on a different 2436 * CPU. There's nothing to do -- we just assert that 2437 * our offset is 0. 2438 */ 2439 ASSERT(src->dtb_offset == 0); 2440 return; 2441 2442 case DTRACESPEC_ACTIVE: 2443 new = DTRACESPEC_COMMITTING; 2444 break; 2445 2446 case DTRACESPEC_ACTIVEONE: 2447 /* 2448 * This speculation is active on one CPU. If our 2449 * buffer offset is non-zero, we know that the one CPU 2450 * must be us. Otherwise, we are committing on a 2451 * different CPU from the speculate(), and we must 2452 * rely on being asynchronously cleaned. 2453 */ 2454 if (src->dtb_offset != 0) { 2455 new = DTRACESPEC_COMMITTING; 2456 break; 2457 } 2458 /*FALLTHROUGH*/ 2459 2460 case DTRACESPEC_ACTIVEMANY: 2461 new = DTRACESPEC_COMMITTINGMANY; 2462 break; 2463 2464 default: 2465 ASSERT(0); 2466 } 2467 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2468 current, new) != current); 2469 2470 /* 2471 * We have set the state to indicate that we are committing this 2472 * speculation. Now reserve the necessary space in the destination 2473 * buffer. 2474 */ 2475 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2476 sizeof (uint64_t), state, NULL)) < 0) { 2477 dtrace_buffer_drop(dest); 2478 goto out; 2479 } 2480 2481 /* 2482 * We have the space; copy the buffer across. (Note that this is a 2483 * highly subobtimal bcopy(); in the unlikely event that this becomes 2484 * a serious performance issue, a high-performance DTrace-specific 2485 * bcopy() should obviously be invented.) 2486 */ 2487 daddr = (uintptr_t)dest->dtb_tomax + offs; 2488 dlimit = daddr + src->dtb_offset; 2489 saddr = (uintptr_t)src->dtb_tomax; 2490 2491 /* 2492 * First, the aligned portion. 2493 */ 2494 while (dlimit - daddr >= sizeof (uint64_t)) { 2495 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2496 2497 daddr += sizeof (uint64_t); 2498 saddr += sizeof (uint64_t); 2499 } 2500 2501 /* 2502 * Now any left-over bit... 2503 */ 2504 while (dlimit - daddr) 2505 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2506 2507 /* 2508 * Finally, commit the reserved space in the destination buffer. 2509 */ 2510 dest->dtb_offset = offs + src->dtb_offset; 2511 2512 out: 2513 /* 2514 * If we're lucky enough to be the only active CPU on this speculation 2515 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2516 */ 2517 if (current == DTRACESPEC_ACTIVE || 2518 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2519 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2520 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2521 2522 ASSERT(rval == DTRACESPEC_COMMITTING); 2523 } 2524 2525 src->dtb_offset = 0; 2526 src->dtb_xamot_drops += src->dtb_drops; 2527 src->dtb_drops = 0; 2528 } 2529 2530 /* 2531 * This routine discards an active speculation. If the specified speculation 2532 * is not in a valid state to perform a discard(), this routine will silently 2533 * do nothing. The state of the specified speculation is transitioned 2534 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2535 */ 2536 static void 2537 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2538 dtrace_specid_t which) 2539 { 2540 dtrace_speculation_t *spec; 2541 dtrace_speculation_state_t current, new; 2542 dtrace_buffer_t *buf; 2543 2544 if (which == 0) 2545 return; 2546 2547 if (which > state->dts_nspeculations) { 2548 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2549 return; 2550 } 2551 2552 spec = &state->dts_speculations[which - 1]; 2553 buf = &spec->dtsp_buffer[cpu]; 2554 2555 do { 2556 current = spec->dtsp_state; 2557 2558 switch (current) { 2559 case DTRACESPEC_INACTIVE: 2560 case DTRACESPEC_COMMITTINGMANY: 2561 case DTRACESPEC_COMMITTING: 2562 case DTRACESPEC_DISCARDING: 2563 return; 2564 2565 case DTRACESPEC_ACTIVE: 2566 case DTRACESPEC_ACTIVEMANY: 2567 new = DTRACESPEC_DISCARDING; 2568 break; 2569 2570 case DTRACESPEC_ACTIVEONE: 2571 if (buf->dtb_offset != 0) { 2572 new = DTRACESPEC_INACTIVE; 2573 } else { 2574 new = DTRACESPEC_DISCARDING; 2575 } 2576 break; 2577 2578 default: 2579 ASSERT(0); 2580 } 2581 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2582 current, new) != current); 2583 2584 buf->dtb_offset = 0; 2585 buf->dtb_drops = 0; 2586 } 2587 2588 /* 2589 * Note: not called from probe context. This function is called 2590 * asynchronously from cross call context to clean any speculations that are 2591 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2592 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2593 * speculation. 2594 */ 2595 static void 2596 dtrace_speculation_clean_here(dtrace_state_t *state) 2597 { 2598 dtrace_icookie_t cookie; 2599 processorid_t cpu = CPU->cpu_id; 2600 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2601 dtrace_specid_t i; 2602 2603 cookie = dtrace_interrupt_disable(); 2604 2605 if (dest->dtb_tomax == NULL) { 2606 dtrace_interrupt_enable(cookie); 2607 return; 2608 } 2609 2610 for (i = 0; i < state->dts_nspeculations; i++) { 2611 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2612 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2613 2614 if (src->dtb_tomax == NULL) 2615 continue; 2616 2617 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2618 src->dtb_offset = 0; 2619 continue; 2620 } 2621 2622 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2623 continue; 2624 2625 if (src->dtb_offset == 0) 2626 continue; 2627 2628 dtrace_speculation_commit(state, cpu, i + 1); 2629 } 2630 2631 dtrace_interrupt_enable(cookie); 2632 } 2633 2634 /* 2635 * Note: not called from probe context. This function is called 2636 * asynchronously (and at a regular interval) to clean any speculations that 2637 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2638 * is work to be done, it cross calls all CPUs to perform that work; 2639 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2640 * INACTIVE state until they have been cleaned by all CPUs. 2641 */ 2642 static void 2643 dtrace_speculation_clean(dtrace_state_t *state) 2644 { 2645 int work = 0, rv; 2646 dtrace_specid_t i; 2647 2648 for (i = 0; i < state->dts_nspeculations; i++) { 2649 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2650 2651 ASSERT(!spec->dtsp_cleaning); 2652 2653 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2654 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2655 continue; 2656 2657 work++; 2658 spec->dtsp_cleaning = 1; 2659 } 2660 2661 if (!work) 2662 return; 2663 2664 dtrace_xcall(DTRACE_CPUALL, 2665 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2666 2667 /* 2668 * We now know that all CPUs have committed or discarded their 2669 * speculation buffers, as appropriate. We can now set the state 2670 * to inactive. 2671 */ 2672 for (i = 0; i < state->dts_nspeculations; i++) { 2673 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2674 dtrace_speculation_state_t current, new; 2675 2676 if (!spec->dtsp_cleaning) 2677 continue; 2678 2679 current = spec->dtsp_state; 2680 ASSERT(current == DTRACESPEC_DISCARDING || 2681 current == DTRACESPEC_COMMITTINGMANY); 2682 2683 new = DTRACESPEC_INACTIVE; 2684 2685 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2686 ASSERT(rv == current); 2687 spec->dtsp_cleaning = 0; 2688 } 2689 } 2690 2691 /* 2692 * Called as part of a speculate() to get the speculative buffer associated 2693 * with a given speculation. Returns NULL if the specified speculation is not 2694 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2695 * the active CPU is not the specified CPU -- the speculation will be 2696 * atomically transitioned into the ACTIVEMANY state. 2697 */ 2698 static dtrace_buffer_t * 2699 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2700 dtrace_specid_t which) 2701 { 2702 dtrace_speculation_t *spec; 2703 dtrace_speculation_state_t current, new; 2704 dtrace_buffer_t *buf; 2705 2706 if (which == 0) 2707 return (NULL); 2708 2709 if (which > state->dts_nspeculations) { 2710 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2711 return (NULL); 2712 } 2713 2714 spec = &state->dts_speculations[which - 1]; 2715 buf = &spec->dtsp_buffer[cpuid]; 2716 2717 do { 2718 current = spec->dtsp_state; 2719 2720 switch (current) { 2721 case DTRACESPEC_INACTIVE: 2722 case DTRACESPEC_COMMITTINGMANY: 2723 case DTRACESPEC_DISCARDING: 2724 return (NULL); 2725 2726 case DTRACESPEC_COMMITTING: 2727 ASSERT(buf->dtb_offset == 0); 2728 return (NULL); 2729 2730 case DTRACESPEC_ACTIVEONE: 2731 /* 2732 * This speculation is currently active on one CPU. 2733 * Check the offset in the buffer; if it's non-zero, 2734 * that CPU must be us (and we leave the state alone). 2735 * If it's zero, assume that we're starting on a new 2736 * CPU -- and change the state to indicate that the 2737 * speculation is active on more than one CPU. 2738 */ 2739 if (buf->dtb_offset != 0) 2740 return (buf); 2741 2742 new = DTRACESPEC_ACTIVEMANY; 2743 break; 2744 2745 case DTRACESPEC_ACTIVEMANY: 2746 return (buf); 2747 2748 case DTRACESPEC_ACTIVE: 2749 new = DTRACESPEC_ACTIVEONE; 2750 break; 2751 2752 default: 2753 ASSERT(0); 2754 } 2755 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2756 current, new) != current); 2757 2758 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2759 return (buf); 2760 } 2761 2762 /* 2763 * Return a string. In the event that the user lacks the privilege to access 2764 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2765 * don't fail access checking. 2766 * 2767 * dtrace_dif_variable() uses this routine as a helper for various 2768 * builtin values such as 'execname' and 'probefunc.' 2769 */ 2770 uintptr_t 2771 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2772 dtrace_mstate_t *mstate) 2773 { 2774 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2775 uintptr_t ret; 2776 size_t strsz; 2777 2778 /* 2779 * The easy case: this probe is allowed to read all of memory, so 2780 * we can just return this as a vanilla pointer. 2781 */ 2782 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2783 return (addr); 2784 2785 /* 2786 * This is the tougher case: we copy the string in question from 2787 * kernel memory into scratch memory and return it that way: this 2788 * ensures that we won't trip up when access checking tests the 2789 * BYREF return value. 2790 */ 2791 strsz = dtrace_strlen((char *)addr, size) + 1; 2792 2793 if (mstate->dtms_scratch_ptr + strsz > 2794 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2796 return (NULL); 2797 } 2798 2799 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2800 strsz); 2801 ret = mstate->dtms_scratch_ptr; 2802 mstate->dtms_scratch_ptr += strsz; 2803 return (ret); 2804 } 2805 2806 /* 2807 * This function implements the DIF emulator's variable lookups. The emulator 2808 * passes a reserved variable identifier and optional built-in array index. 2809 */ 2810 static uint64_t 2811 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 2812 uint64_t ndx) 2813 { 2814 /* 2815 * If we're accessing one of the uncached arguments, we'll turn this 2816 * into a reference in the args array. 2817 */ 2818 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 2819 ndx = v - DIF_VAR_ARG0; 2820 v = DIF_VAR_ARGS; 2821 } 2822 2823 switch (v) { 2824 case DIF_VAR_ARGS: 2825 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 2826 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 2827 CPU_DTRACE_KPRIV; 2828 return (0); 2829 } 2830 2831 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 2832 if (ndx >= sizeof (mstate->dtms_arg) / 2833 sizeof (mstate->dtms_arg[0])) { 2834 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2835 dtrace_provider_t *pv; 2836 uint64_t val; 2837 2838 pv = mstate->dtms_probe->dtpr_provider; 2839 if (pv->dtpv_pops.dtps_getargval != NULL) 2840 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 2841 mstate->dtms_probe->dtpr_id, 2842 mstate->dtms_probe->dtpr_arg, ndx, aframes); 2843 else 2844 val = dtrace_getarg(ndx, aframes); 2845 2846 /* 2847 * This is regrettably required to keep the compiler 2848 * from tail-optimizing the call to dtrace_getarg(). 2849 * The condition always evaluates to true, but the 2850 * compiler has no way of figuring that out a priori. 2851 * (None of this would be necessary if the compiler 2852 * could be relied upon to _always_ tail-optimize 2853 * the call to dtrace_getarg() -- but it can't.) 2854 */ 2855 if (mstate->dtms_probe != NULL) 2856 return (val); 2857 2858 ASSERT(0); 2859 } 2860 2861 return (mstate->dtms_arg[ndx]); 2862 2863 case DIF_VAR_UREGS: { 2864 klwp_t *lwp; 2865 2866 if (!dtrace_priv_proc(state, mstate)) 2867 return (0); 2868 2869 if ((lwp = curthread->t_lwp) == NULL) { 2870 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 2871 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 2872 return (0); 2873 } 2874 2875 return (dtrace_getreg(lwp->lwp_regs, ndx)); 2876 } 2877 2878 case DIF_VAR_VMREGS: { 2879 uint64_t rval; 2880 2881 if (!dtrace_priv_kernel(state)) 2882 return (0); 2883 2884 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2885 2886 rval = dtrace_getvmreg(ndx, 2887 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 2888 2889 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2890 2891 return (rval); 2892 } 2893 2894 case DIF_VAR_CURTHREAD: 2895 if (!dtrace_priv_kernel(state)) 2896 return (0); 2897 return ((uint64_t)(uintptr_t)curthread); 2898 2899 case DIF_VAR_TIMESTAMP: 2900 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 2901 mstate->dtms_timestamp = dtrace_gethrtime(); 2902 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 2903 } 2904 return (mstate->dtms_timestamp); 2905 2906 case DIF_VAR_VTIMESTAMP: 2907 ASSERT(dtrace_vtime_references != 0); 2908 return (curthread->t_dtrace_vtime); 2909 2910 case DIF_VAR_WALLTIMESTAMP: 2911 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 2912 mstate->dtms_walltimestamp = dtrace_gethrestime(); 2913 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 2914 } 2915 return (mstate->dtms_walltimestamp); 2916 2917 case DIF_VAR_IPL: 2918 if (!dtrace_priv_kernel(state)) 2919 return (0); 2920 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 2921 mstate->dtms_ipl = dtrace_getipl(); 2922 mstate->dtms_present |= DTRACE_MSTATE_IPL; 2923 } 2924 return (mstate->dtms_ipl); 2925 2926 case DIF_VAR_EPID: 2927 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 2928 return (mstate->dtms_epid); 2929 2930 case DIF_VAR_ID: 2931 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 2932 return (mstate->dtms_probe->dtpr_id); 2933 2934 case DIF_VAR_STACKDEPTH: 2935 if (!dtrace_priv_kernel(state)) 2936 return (0); 2937 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 2938 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2939 2940 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 2941 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 2942 } 2943 return (mstate->dtms_stackdepth); 2944 2945 case DIF_VAR_USTACKDEPTH: 2946 if (!dtrace_priv_proc(state, mstate)) 2947 return (0); 2948 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 2949 /* 2950 * See comment in DIF_VAR_PID. 2951 */ 2952 if (DTRACE_ANCHORED(mstate->dtms_probe) && 2953 CPU_ON_INTR(CPU)) { 2954 mstate->dtms_ustackdepth = 0; 2955 } else { 2956 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 2957 mstate->dtms_ustackdepth = 2958 dtrace_getustackdepth(); 2959 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 2960 } 2961 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 2962 } 2963 return (mstate->dtms_ustackdepth); 2964 2965 case DIF_VAR_CALLER: 2966 if (!dtrace_priv_kernel(state)) 2967 return (0); 2968 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 2969 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 2970 2971 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 2972 /* 2973 * If this is an unanchored probe, we are 2974 * required to go through the slow path: 2975 * dtrace_caller() only guarantees correct 2976 * results for anchored probes. 2977 */ 2978 pc_t caller[2]; 2979 2980 dtrace_getpcstack(caller, 2, aframes, 2981 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 2982 mstate->dtms_caller = caller[1]; 2983 } else if ((mstate->dtms_caller = 2984 dtrace_caller(aframes)) == -1) { 2985 /* 2986 * We have failed to do this the quick way; 2987 * we must resort to the slower approach of 2988 * calling dtrace_getpcstack(). 2989 */ 2990 pc_t caller; 2991 2992 dtrace_getpcstack(&caller, 1, aframes, NULL); 2993 mstate->dtms_caller = caller; 2994 } 2995 2996 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 2997 } 2998 return (mstate->dtms_caller); 2999 3000 case DIF_VAR_UCALLER: 3001 if (!dtrace_priv_proc(state, mstate)) 3002 return (0); 3003 3004 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3005 uint64_t ustack[3]; 3006 3007 /* 3008 * dtrace_getupcstack() fills in the first uint64_t 3009 * with the current PID. The second uint64_t will 3010 * be the program counter at user-level. The third 3011 * uint64_t will contain the caller, which is what 3012 * we're after. 3013 */ 3014 ustack[2] = NULL; 3015 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3016 dtrace_getupcstack(ustack, 3); 3017 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3018 mstate->dtms_ucaller = ustack[2]; 3019 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3020 } 3021 3022 return (mstate->dtms_ucaller); 3023 3024 case DIF_VAR_PROBEPROV: 3025 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3026 return (dtrace_dif_varstr( 3027 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3028 state, mstate)); 3029 3030 case DIF_VAR_PROBEMOD: 3031 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3032 return (dtrace_dif_varstr( 3033 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3034 state, mstate)); 3035 3036 case DIF_VAR_PROBEFUNC: 3037 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3038 return (dtrace_dif_varstr( 3039 (uintptr_t)mstate->dtms_probe->dtpr_func, 3040 state, mstate)); 3041 3042 case DIF_VAR_PROBENAME: 3043 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3044 return (dtrace_dif_varstr( 3045 (uintptr_t)mstate->dtms_probe->dtpr_name, 3046 state, mstate)); 3047 3048 case DIF_VAR_PID: 3049 if (!dtrace_priv_proc(state, mstate)) 3050 return (0); 3051 3052 /* 3053 * Note that we are assuming that an unanchored probe is 3054 * always due to a high-level interrupt. (And we're assuming 3055 * that there is only a single high level interrupt.) 3056 */ 3057 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3058 return (pid0.pid_id); 3059 3060 /* 3061 * It is always safe to dereference one's own t_procp pointer: 3062 * it always points to a valid, allocated proc structure. 3063 * Further, it is always safe to dereference the p_pidp member 3064 * of one's own proc structure. (These are truisms becuase 3065 * threads and processes don't clean up their own state -- 3066 * they leave that task to whomever reaps them.) 3067 */ 3068 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3069 3070 case DIF_VAR_PPID: 3071 if (!dtrace_priv_proc(state, mstate)) 3072 return (0); 3073 3074 /* 3075 * See comment in DIF_VAR_PID. 3076 */ 3077 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3078 return (pid0.pid_id); 3079 3080 /* 3081 * It is always safe to dereference one's own t_procp pointer: 3082 * it always points to a valid, allocated proc structure. 3083 * (This is true because threads don't clean up their own 3084 * state -- they leave that task to whomever reaps them.) 3085 */ 3086 return ((uint64_t)curthread->t_procp->p_ppid); 3087 3088 case DIF_VAR_TID: 3089 /* 3090 * See comment in DIF_VAR_PID. 3091 */ 3092 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3093 return (0); 3094 3095 return ((uint64_t)curthread->t_tid); 3096 3097 case DIF_VAR_EXECNAME: 3098 if (!dtrace_priv_proc(state, mstate)) 3099 return (0); 3100 3101 /* 3102 * See comment in DIF_VAR_PID. 3103 */ 3104 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3105 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3106 3107 /* 3108 * It is always safe to dereference one's own t_procp pointer: 3109 * it always points to a valid, allocated proc structure. 3110 * (This is true because threads don't clean up their own 3111 * state -- they leave that task to whomever reaps them.) 3112 */ 3113 return (dtrace_dif_varstr( 3114 (uintptr_t)curthread->t_procp->p_user.u_comm, 3115 state, mstate)); 3116 3117 case DIF_VAR_ZONENAME: 3118 if (!dtrace_priv_proc(state, mstate)) 3119 return (0); 3120 3121 /* 3122 * See comment in DIF_VAR_PID. 3123 */ 3124 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3125 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3126 3127 /* 3128 * It is always safe to dereference one's own t_procp pointer: 3129 * it always points to a valid, allocated proc structure. 3130 * (This is true because threads don't clean up their own 3131 * state -- they leave that task to whomever reaps them.) 3132 */ 3133 return (dtrace_dif_varstr( 3134 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3135 state, mstate)); 3136 3137 case DIF_VAR_UID: 3138 if (!dtrace_priv_proc(state, mstate)) 3139 return (0); 3140 3141 /* 3142 * See comment in DIF_VAR_PID. 3143 */ 3144 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3145 return ((uint64_t)p0.p_cred->cr_uid); 3146 3147 /* 3148 * It is always safe to dereference one's own t_procp pointer: 3149 * it always points to a valid, allocated proc structure. 3150 * (This is true because threads don't clean up their own 3151 * state -- they leave that task to whomever reaps them.) 3152 * 3153 * Additionally, it is safe to dereference one's own process 3154 * credential, since this is never NULL after process birth. 3155 */ 3156 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3157 3158 case DIF_VAR_GID: 3159 if (!dtrace_priv_proc(state, mstate)) 3160 return (0); 3161 3162 /* 3163 * See comment in DIF_VAR_PID. 3164 */ 3165 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3166 return ((uint64_t)p0.p_cred->cr_gid); 3167 3168 /* 3169 * It is always safe to dereference one's own t_procp pointer: 3170 * it always points to a valid, allocated proc structure. 3171 * (This is true because threads don't clean up their own 3172 * state -- they leave that task to whomever reaps them.) 3173 * 3174 * Additionally, it is safe to dereference one's own process 3175 * credential, since this is never NULL after process birth. 3176 */ 3177 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3178 3179 case DIF_VAR_ERRNO: { 3180 klwp_t *lwp; 3181 if (!dtrace_priv_proc(state, mstate)) 3182 return (0); 3183 3184 /* 3185 * See comment in DIF_VAR_PID. 3186 */ 3187 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3188 return (0); 3189 3190 /* 3191 * It is always safe to dereference one's own t_lwp pointer in 3192 * the event that this pointer is non-NULL. (This is true 3193 * because threads and lwps don't clean up their own state -- 3194 * they leave that task to whomever reaps them.) 3195 */ 3196 if ((lwp = curthread->t_lwp) == NULL) 3197 return (0); 3198 3199 return ((uint64_t)lwp->lwp_errno); 3200 } 3201 default: 3202 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3203 return (0); 3204 } 3205 } 3206 3207 /* 3208 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3209 * Notice that we don't bother validating the proper number of arguments or 3210 * their types in the tuple stack. This isn't needed because all argument 3211 * interpretation is safe because of our load safety -- the worst that can 3212 * happen is that a bogus program can obtain bogus results. 3213 */ 3214 static void 3215 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3216 dtrace_key_t *tupregs, int nargs, 3217 dtrace_mstate_t *mstate, dtrace_state_t *state) 3218 { 3219 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3220 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3221 dtrace_vstate_t *vstate = &state->dts_vstate; 3222 3223 union { 3224 mutex_impl_t mi; 3225 uint64_t mx; 3226 } m; 3227 3228 union { 3229 krwlock_t ri; 3230 uintptr_t rw; 3231 } r; 3232 3233 switch (subr) { 3234 case DIF_SUBR_RAND: 3235 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3236 break; 3237 3238 case DIF_SUBR_MUTEX_OWNED: 3239 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3240 mstate, vstate)) { 3241 regs[rd] = NULL; 3242 break; 3243 } 3244 3245 m.mx = dtrace_load64(tupregs[0].dttk_value); 3246 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3247 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3248 else 3249 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3250 break; 3251 3252 case DIF_SUBR_MUTEX_OWNER: 3253 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3254 mstate, vstate)) { 3255 regs[rd] = NULL; 3256 break; 3257 } 3258 3259 m.mx = dtrace_load64(tupregs[0].dttk_value); 3260 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3261 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3262 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3263 else 3264 regs[rd] = 0; 3265 break; 3266 3267 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3268 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3269 mstate, vstate)) { 3270 regs[rd] = NULL; 3271 break; 3272 } 3273 3274 m.mx = dtrace_load64(tupregs[0].dttk_value); 3275 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3276 break; 3277 3278 case DIF_SUBR_MUTEX_TYPE_SPIN: 3279 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3280 mstate, vstate)) { 3281 regs[rd] = NULL; 3282 break; 3283 } 3284 3285 m.mx = dtrace_load64(tupregs[0].dttk_value); 3286 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3287 break; 3288 3289 case DIF_SUBR_RW_READ_HELD: { 3290 uintptr_t tmp; 3291 3292 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3293 mstate, vstate)) { 3294 regs[rd] = NULL; 3295 break; 3296 } 3297 3298 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3299 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3300 break; 3301 } 3302 3303 case DIF_SUBR_RW_WRITE_HELD: 3304 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3305 mstate, vstate)) { 3306 regs[rd] = NULL; 3307 break; 3308 } 3309 3310 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3311 regs[rd] = _RW_WRITE_HELD(&r.ri); 3312 break; 3313 3314 case DIF_SUBR_RW_ISWRITER: 3315 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3316 mstate, vstate)) { 3317 regs[rd] = NULL; 3318 break; 3319 } 3320 3321 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3322 regs[rd] = _RW_ISWRITER(&r.ri); 3323 break; 3324 3325 case DIF_SUBR_BCOPY: { 3326 /* 3327 * We need to be sure that the destination is in the scratch 3328 * region -- no other region is allowed. 3329 */ 3330 uintptr_t src = tupregs[0].dttk_value; 3331 uintptr_t dest = tupregs[1].dttk_value; 3332 size_t size = tupregs[2].dttk_value; 3333 3334 if (!dtrace_inscratch(dest, size, mstate)) { 3335 *flags |= CPU_DTRACE_BADADDR; 3336 *illval = regs[rd]; 3337 break; 3338 } 3339 3340 if (!dtrace_canload(src, size, mstate, vstate)) { 3341 regs[rd] = NULL; 3342 break; 3343 } 3344 3345 dtrace_bcopy((void *)src, (void *)dest, size); 3346 break; 3347 } 3348 3349 case DIF_SUBR_ALLOCA: 3350 case DIF_SUBR_COPYIN: { 3351 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3352 uint64_t size = 3353 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 3354 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 3355 3356 /* 3357 * This action doesn't require any credential checks since 3358 * probes will not activate in user contexts to which the 3359 * enabling user does not have permissions. 3360 */ 3361 3362 /* 3363 * Rounding up the user allocation size could have overflowed 3364 * a large, bogus allocation (like -1ULL) to 0. 3365 */ 3366 if (scratch_size < size || 3367 !DTRACE_INSCRATCH(mstate, scratch_size)) { 3368 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3369 regs[rd] = NULL; 3370 break; 3371 } 3372 3373 if (subr == DIF_SUBR_COPYIN) { 3374 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3375 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3376 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3377 } 3378 3379 mstate->dtms_scratch_ptr += scratch_size; 3380 regs[rd] = dest; 3381 break; 3382 } 3383 3384 case DIF_SUBR_COPYINTO: { 3385 uint64_t size = tupregs[1].dttk_value; 3386 uintptr_t dest = tupregs[2].dttk_value; 3387 3388 /* 3389 * This action doesn't require any credential checks since 3390 * probes will not activate in user contexts to which the 3391 * enabling user does not have permissions. 3392 */ 3393 if (!dtrace_inscratch(dest, size, mstate)) { 3394 *flags |= CPU_DTRACE_BADADDR; 3395 *illval = regs[rd]; 3396 break; 3397 } 3398 3399 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3400 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 3401 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3402 break; 3403 } 3404 3405 case DIF_SUBR_COPYINSTR: { 3406 uintptr_t dest = mstate->dtms_scratch_ptr; 3407 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3408 3409 if (nargs > 1 && tupregs[1].dttk_value < size) 3410 size = tupregs[1].dttk_value + 1; 3411 3412 /* 3413 * This action doesn't require any credential checks since 3414 * probes will not activate in user contexts to which the 3415 * enabling user does not have permissions. 3416 */ 3417 if (!DTRACE_INSCRATCH(mstate, size)) { 3418 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3419 regs[rd] = NULL; 3420 break; 3421 } 3422 3423 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3424 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 3425 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3426 3427 ((char *)dest)[size - 1] = '\0'; 3428 mstate->dtms_scratch_ptr += size; 3429 regs[rd] = dest; 3430 break; 3431 } 3432 3433 case DIF_SUBR_MSGSIZE: 3434 case DIF_SUBR_MSGDSIZE: { 3435 uintptr_t baddr = tupregs[0].dttk_value, daddr; 3436 uintptr_t wptr, rptr; 3437 size_t count = 0; 3438 int cont = 0; 3439 3440 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 3441 3442 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 3443 vstate)) { 3444 regs[rd] = NULL; 3445 break; 3446 } 3447 3448 wptr = dtrace_loadptr(baddr + 3449 offsetof(mblk_t, b_wptr)); 3450 3451 rptr = dtrace_loadptr(baddr + 3452 offsetof(mblk_t, b_rptr)); 3453 3454 if (wptr < rptr) { 3455 *flags |= CPU_DTRACE_BADADDR; 3456 *illval = tupregs[0].dttk_value; 3457 break; 3458 } 3459 3460 daddr = dtrace_loadptr(baddr + 3461 offsetof(mblk_t, b_datap)); 3462 3463 baddr = dtrace_loadptr(baddr + 3464 offsetof(mblk_t, b_cont)); 3465 3466 /* 3467 * We want to prevent against denial-of-service here, 3468 * so we're only going to search the list for 3469 * dtrace_msgdsize_max mblks. 3470 */ 3471 if (cont++ > dtrace_msgdsize_max) { 3472 *flags |= CPU_DTRACE_ILLOP; 3473 break; 3474 } 3475 3476 if (subr == DIF_SUBR_MSGDSIZE) { 3477 if (dtrace_load8(daddr + 3478 offsetof(dblk_t, db_type)) != M_DATA) 3479 continue; 3480 } 3481 3482 count += wptr - rptr; 3483 } 3484 3485 if (!(*flags & CPU_DTRACE_FAULT)) 3486 regs[rd] = count; 3487 3488 break; 3489 } 3490 3491 case DIF_SUBR_PROGENYOF: { 3492 pid_t pid = tupregs[0].dttk_value; 3493 proc_t *p; 3494 int rval = 0; 3495 3496 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3497 3498 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 3499 if (p->p_pidp->pid_id == pid) { 3500 rval = 1; 3501 break; 3502 } 3503 } 3504 3505 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3506 3507 regs[rd] = rval; 3508 break; 3509 } 3510 3511 case DIF_SUBR_SPECULATION: 3512 regs[rd] = dtrace_speculation(state); 3513 break; 3514 3515 case DIF_SUBR_COPYOUT: { 3516 uintptr_t kaddr = tupregs[0].dttk_value; 3517 uintptr_t uaddr = tupregs[1].dttk_value; 3518 uint64_t size = tupregs[2].dttk_value; 3519 3520 if (!dtrace_destructive_disallow && 3521 dtrace_priv_proc_control(state, mstate) && 3522 !dtrace_istoxic(kaddr, size)) { 3523 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3524 dtrace_copyout(kaddr, uaddr, size, flags); 3525 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3526 } 3527 break; 3528 } 3529 3530 case DIF_SUBR_COPYOUTSTR: { 3531 uintptr_t kaddr = tupregs[0].dttk_value; 3532 uintptr_t uaddr = tupregs[1].dttk_value; 3533 uint64_t size = tupregs[2].dttk_value; 3534 3535 if (!dtrace_destructive_disallow && 3536 dtrace_priv_proc_control(state, mstate) && 3537 !dtrace_istoxic(kaddr, size)) { 3538 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3539 dtrace_copyoutstr(kaddr, uaddr, size, flags); 3540 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3541 } 3542 break; 3543 } 3544 3545 case DIF_SUBR_STRLEN: { 3546 size_t sz; 3547 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 3548 sz = dtrace_strlen((char *)addr, 3549 state->dts_options[DTRACEOPT_STRSIZE]); 3550 3551 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 3552 regs[rd] = NULL; 3553 break; 3554 } 3555 3556 regs[rd] = sz; 3557 3558 break; 3559 } 3560 3561 case DIF_SUBR_STRCHR: 3562 case DIF_SUBR_STRRCHR: { 3563 /* 3564 * We're going to iterate over the string looking for the 3565 * specified character. We will iterate until we have reached 3566 * the string length or we have found the character. If this 3567 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 3568 * of the specified character instead of the first. 3569 */ 3570 uintptr_t saddr = tupregs[0].dttk_value; 3571 uintptr_t addr = tupregs[0].dttk_value; 3572 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 3573 char c, target = (char)tupregs[1].dttk_value; 3574 3575 for (regs[rd] = NULL; addr < limit; addr++) { 3576 if ((c = dtrace_load8(addr)) == target) { 3577 regs[rd] = addr; 3578 3579 if (subr == DIF_SUBR_STRCHR) 3580 break; 3581 } 3582 3583 if (c == '\0') 3584 break; 3585 } 3586 3587 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 3588 regs[rd] = NULL; 3589 break; 3590 } 3591 3592 break; 3593 } 3594 3595 case DIF_SUBR_STRSTR: 3596 case DIF_SUBR_INDEX: 3597 case DIF_SUBR_RINDEX: { 3598 /* 3599 * We're going to iterate over the string looking for the 3600 * specified string. We will iterate until we have reached 3601 * the string length or we have found the string. (Yes, this 3602 * is done in the most naive way possible -- but considering 3603 * that the string we're searching for is likely to be 3604 * relatively short, the complexity of Rabin-Karp or similar 3605 * hardly seems merited.) 3606 */ 3607 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 3608 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 3609 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3610 size_t len = dtrace_strlen(addr, size); 3611 size_t sublen = dtrace_strlen(substr, size); 3612 char *limit = addr + len, *orig = addr; 3613 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 3614 int inc = 1; 3615 3616 regs[rd] = notfound; 3617 3618 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 3619 regs[rd] = NULL; 3620 break; 3621 } 3622 3623 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 3624 vstate)) { 3625 regs[rd] = NULL; 3626 break; 3627 } 3628 3629 /* 3630 * strstr() and index()/rindex() have similar semantics if 3631 * both strings are the empty string: strstr() returns a 3632 * pointer to the (empty) string, and index() and rindex() 3633 * both return index 0 (regardless of any position argument). 3634 */ 3635 if (sublen == 0 && len == 0) { 3636 if (subr == DIF_SUBR_STRSTR) 3637 regs[rd] = (uintptr_t)addr; 3638 else 3639 regs[rd] = 0; 3640 break; 3641 } 3642 3643 if (subr != DIF_SUBR_STRSTR) { 3644 if (subr == DIF_SUBR_RINDEX) { 3645 limit = orig - 1; 3646 addr += len; 3647 inc = -1; 3648 } 3649 3650 /* 3651 * Both index() and rindex() take an optional position 3652 * argument that denotes the starting position. 3653 */ 3654 if (nargs == 3) { 3655 int64_t pos = (int64_t)tupregs[2].dttk_value; 3656 3657 /* 3658 * If the position argument to index() is 3659 * negative, Perl implicitly clamps it at 3660 * zero. This semantic is a little surprising 3661 * given the special meaning of negative 3662 * positions to similar Perl functions like 3663 * substr(), but it appears to reflect a 3664 * notion that index() can start from a 3665 * negative index and increment its way up to 3666 * the string. Given this notion, Perl's 3667 * rindex() is at least self-consistent in 3668 * that it implicitly clamps positions greater 3669 * than the string length to be the string 3670 * length. Where Perl completely loses 3671 * coherence, however, is when the specified 3672 * substring is the empty string (""). In 3673 * this case, even if the position is 3674 * negative, rindex() returns 0 -- and even if 3675 * the position is greater than the length, 3676 * index() returns the string length. These 3677 * semantics violate the notion that index() 3678 * should never return a value less than the 3679 * specified position and that rindex() should 3680 * never return a value greater than the 3681 * specified position. (One assumes that 3682 * these semantics are artifacts of Perl's 3683 * implementation and not the results of 3684 * deliberate design -- it beggars belief that 3685 * even Larry Wall could desire such oddness.) 3686 * While in the abstract one would wish for 3687 * consistent position semantics across 3688 * substr(), index() and rindex() -- or at the 3689 * very least self-consistent position 3690 * semantics for index() and rindex() -- we 3691 * instead opt to keep with the extant Perl 3692 * semantics, in all their broken glory. (Do 3693 * we have more desire to maintain Perl's 3694 * semantics than Perl does? Probably.) 3695 */ 3696 if (subr == DIF_SUBR_RINDEX) { 3697 if (pos < 0) { 3698 if (sublen == 0) 3699 regs[rd] = 0; 3700 break; 3701 } 3702 3703 if (pos > len) 3704 pos = len; 3705 } else { 3706 if (pos < 0) 3707 pos = 0; 3708 3709 if (pos >= len) { 3710 if (sublen == 0) 3711 regs[rd] = len; 3712 break; 3713 } 3714 } 3715 3716 addr = orig + pos; 3717 } 3718 } 3719 3720 for (regs[rd] = notfound; addr != limit; addr += inc) { 3721 if (dtrace_strncmp(addr, substr, sublen) == 0) { 3722 if (subr != DIF_SUBR_STRSTR) { 3723 /* 3724 * As D index() and rindex() are 3725 * modeled on Perl (and not on awk), 3726 * we return a zero-based (and not a 3727 * one-based) index. (For you Perl 3728 * weenies: no, we're not going to add 3729 * $[ -- and shouldn't you be at a con 3730 * or something?) 3731 */ 3732 regs[rd] = (uintptr_t)(addr - orig); 3733 break; 3734 } 3735 3736 ASSERT(subr == DIF_SUBR_STRSTR); 3737 regs[rd] = (uintptr_t)addr; 3738 break; 3739 } 3740 } 3741 3742 break; 3743 } 3744 3745 case DIF_SUBR_STRTOK: { 3746 uintptr_t addr = tupregs[0].dttk_value; 3747 uintptr_t tokaddr = tupregs[1].dttk_value; 3748 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3749 uintptr_t limit, toklimit = tokaddr + size; 3750 uint8_t c, tokmap[32]; /* 256 / 8 */ 3751 char *dest = (char *)mstate->dtms_scratch_ptr; 3752 int i; 3753 3754 /* 3755 * Check both the token buffer and (later) the input buffer, 3756 * since both could be non-scratch addresses. 3757 */ 3758 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 3759 regs[rd] = NULL; 3760 break; 3761 } 3762 3763 if (!DTRACE_INSCRATCH(mstate, size)) { 3764 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3765 regs[rd] = NULL; 3766 break; 3767 } 3768 3769 if (addr == NULL) { 3770 /* 3771 * If the address specified is NULL, we use our saved 3772 * strtok pointer from the mstate. Note that this 3773 * means that the saved strtok pointer is _only_ 3774 * valid within multiple enablings of the same probe -- 3775 * it behaves like an implicit clause-local variable. 3776 */ 3777 addr = mstate->dtms_strtok; 3778 } else { 3779 /* 3780 * If the user-specified address is non-NULL we must 3781 * access check it. This is the only time we have 3782 * a chance to do so, since this address may reside 3783 * in the string table of this clause-- future calls 3784 * (when we fetch addr from mstate->dtms_strtok) 3785 * would fail this access check. 3786 */ 3787 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 3788 regs[rd] = NULL; 3789 break; 3790 } 3791 } 3792 3793 /* 3794 * First, zero the token map, and then process the token 3795 * string -- setting a bit in the map for every character 3796 * found in the token string. 3797 */ 3798 for (i = 0; i < sizeof (tokmap); i++) 3799 tokmap[i] = 0; 3800 3801 for (; tokaddr < toklimit; tokaddr++) { 3802 if ((c = dtrace_load8(tokaddr)) == '\0') 3803 break; 3804 3805 ASSERT((c >> 3) < sizeof (tokmap)); 3806 tokmap[c >> 3] |= (1 << (c & 0x7)); 3807 } 3808 3809 for (limit = addr + size; addr < limit; addr++) { 3810 /* 3811 * We're looking for a character that is _not_ contained 3812 * in the token string. 3813 */ 3814 if ((c = dtrace_load8(addr)) == '\0') 3815 break; 3816 3817 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 3818 break; 3819 } 3820 3821 if (c == '\0') { 3822 /* 3823 * We reached the end of the string without finding 3824 * any character that was not in the token string. 3825 * We return NULL in this case, and we set the saved 3826 * address to NULL as well. 3827 */ 3828 regs[rd] = NULL; 3829 mstate->dtms_strtok = NULL; 3830 break; 3831 } 3832 3833 /* 3834 * From here on, we're copying into the destination string. 3835 */ 3836 for (i = 0; addr < limit && i < size - 1; addr++) { 3837 if ((c = dtrace_load8(addr)) == '\0') 3838 break; 3839 3840 if (tokmap[c >> 3] & (1 << (c & 0x7))) 3841 break; 3842 3843 ASSERT(i < size); 3844 dest[i++] = c; 3845 } 3846 3847 ASSERT(i < size); 3848 dest[i] = '\0'; 3849 regs[rd] = (uintptr_t)dest; 3850 mstate->dtms_scratch_ptr += size; 3851 mstate->dtms_strtok = addr; 3852 break; 3853 } 3854 3855 case DIF_SUBR_SUBSTR: { 3856 uintptr_t s = tupregs[0].dttk_value; 3857 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3858 char *d = (char *)mstate->dtms_scratch_ptr; 3859 int64_t index = (int64_t)tupregs[1].dttk_value; 3860 int64_t remaining = (int64_t)tupregs[2].dttk_value; 3861 size_t len = dtrace_strlen((char *)s, size); 3862 int64_t i; 3863 3864 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3865 regs[rd] = NULL; 3866 break; 3867 } 3868 3869 if (!DTRACE_INSCRATCH(mstate, size)) { 3870 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3871 regs[rd] = NULL; 3872 break; 3873 } 3874 3875 if (nargs <= 2) 3876 remaining = (int64_t)size; 3877 3878 if (index < 0) { 3879 index += len; 3880 3881 if (index < 0 && index + remaining > 0) { 3882 remaining += index; 3883 index = 0; 3884 } 3885 } 3886 3887 if (index >= len || index < 0) { 3888 remaining = 0; 3889 } else if (remaining < 0) { 3890 remaining += len - index; 3891 } else if (index + remaining > size) { 3892 remaining = size - index; 3893 } 3894 3895 for (i = 0; i < remaining; i++) { 3896 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 3897 break; 3898 } 3899 3900 d[i] = '\0'; 3901 3902 mstate->dtms_scratch_ptr += size; 3903 regs[rd] = (uintptr_t)d; 3904 break; 3905 } 3906 3907 case DIF_SUBR_TOUPPER: 3908 case DIF_SUBR_TOLOWER: { 3909 uintptr_t s = tupregs[0].dttk_value; 3910 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3911 char *dest = (char *)mstate->dtms_scratch_ptr, c; 3912 size_t len = dtrace_strlen((char *)s, size); 3913 char lower, upper, convert; 3914 int64_t i; 3915 3916 if (subr == DIF_SUBR_TOUPPER) { 3917 lower = 'a'; 3918 upper = 'z'; 3919 convert = 'A'; 3920 } else { 3921 lower = 'A'; 3922 upper = 'Z'; 3923 convert = 'a'; 3924 } 3925 3926 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 3927 regs[rd] = NULL; 3928 break; 3929 } 3930 3931 if (!DTRACE_INSCRATCH(mstate, size)) { 3932 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3933 regs[rd] = NULL; 3934 break; 3935 } 3936 3937 for (i = 0; i < size - 1; i++) { 3938 if ((c = dtrace_load8(s + i)) == '\0') 3939 break; 3940 3941 if (c >= lower && c <= upper) 3942 c = convert + (c - lower); 3943 3944 dest[i] = c; 3945 } 3946 3947 ASSERT(i < size); 3948 dest[i] = '\0'; 3949 regs[rd] = (uintptr_t)dest; 3950 mstate->dtms_scratch_ptr += size; 3951 break; 3952 } 3953 3954 case DIF_SUBR_GETMAJOR: 3955 #ifdef _LP64 3956 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 3957 #else 3958 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 3959 #endif 3960 break; 3961 3962 case DIF_SUBR_GETMINOR: 3963 #ifdef _LP64 3964 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 3965 #else 3966 regs[rd] = tupregs[0].dttk_value & MAXMIN; 3967 #endif 3968 break; 3969 3970 case DIF_SUBR_DDI_PATHNAME: { 3971 /* 3972 * This one is a galactic mess. We are going to roughly 3973 * emulate ddi_pathname(), but it's made more complicated 3974 * by the fact that we (a) want to include the minor name and 3975 * (b) must proceed iteratively instead of recursively. 3976 */ 3977 uintptr_t dest = mstate->dtms_scratch_ptr; 3978 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 3979 char *start = (char *)dest, *end = start + size - 1; 3980 uintptr_t daddr = tupregs[0].dttk_value; 3981 int64_t minor = (int64_t)tupregs[1].dttk_value; 3982 char *s; 3983 int i, len, depth = 0; 3984 3985 /* 3986 * Due to all the pointer jumping we do and context we must 3987 * rely upon, we just mandate that the user must have kernel 3988 * read privileges to use this routine. 3989 */ 3990 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 3991 *flags |= CPU_DTRACE_KPRIV; 3992 *illval = daddr; 3993 regs[rd] = NULL; 3994 } 3995 3996 if (!DTRACE_INSCRATCH(mstate, size)) { 3997 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 3998 regs[rd] = NULL; 3999 break; 4000 } 4001 4002 *end = '\0'; 4003 4004 /* 4005 * We want to have a name for the minor. In order to do this, 4006 * we need to walk the minor list from the devinfo. We want 4007 * to be sure that we don't infinitely walk a circular list, 4008 * so we check for circularity by sending a scout pointer 4009 * ahead two elements for every element that we iterate over; 4010 * if the list is circular, these will ultimately point to the 4011 * same element. You may recognize this little trick as the 4012 * answer to a stupid interview question -- one that always 4013 * seems to be asked by those who had to have it laboriously 4014 * explained to them, and who can't even concisely describe 4015 * the conditions under which one would be forced to resort to 4016 * this technique. Needless to say, those conditions are 4017 * found here -- and probably only here. Is this the only use 4018 * of this infamous trick in shipping, production code? If it 4019 * isn't, it probably should be... 4020 */ 4021 if (minor != -1) { 4022 uintptr_t maddr = dtrace_loadptr(daddr + 4023 offsetof(struct dev_info, devi_minor)); 4024 4025 uintptr_t next = offsetof(struct ddi_minor_data, next); 4026 uintptr_t name = offsetof(struct ddi_minor_data, 4027 d_minor) + offsetof(struct ddi_minor, name); 4028 uintptr_t dev = offsetof(struct ddi_minor_data, 4029 d_minor) + offsetof(struct ddi_minor, dev); 4030 uintptr_t scout; 4031 4032 if (maddr != NULL) 4033 scout = dtrace_loadptr(maddr + next); 4034 4035 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4036 uint64_t m; 4037 #ifdef _LP64 4038 m = dtrace_load64(maddr + dev) & MAXMIN64; 4039 #else 4040 m = dtrace_load32(maddr + dev) & MAXMIN; 4041 #endif 4042 if (m != minor) { 4043 maddr = dtrace_loadptr(maddr + next); 4044 4045 if (scout == NULL) 4046 continue; 4047 4048 scout = dtrace_loadptr(scout + next); 4049 4050 if (scout == NULL) 4051 continue; 4052 4053 scout = dtrace_loadptr(scout + next); 4054 4055 if (scout == NULL) 4056 continue; 4057 4058 if (scout == maddr) { 4059 *flags |= CPU_DTRACE_ILLOP; 4060 break; 4061 } 4062 4063 continue; 4064 } 4065 4066 /* 4067 * We have the minor data. Now we need to 4068 * copy the minor's name into the end of the 4069 * pathname. 4070 */ 4071 s = (char *)dtrace_loadptr(maddr + name); 4072 len = dtrace_strlen(s, size); 4073 4074 if (*flags & CPU_DTRACE_FAULT) 4075 break; 4076 4077 if (len != 0) { 4078 if ((end -= (len + 1)) < start) 4079 break; 4080 4081 *end = ':'; 4082 } 4083 4084 for (i = 1; i <= len; i++) 4085 end[i] = dtrace_load8((uintptr_t)s++); 4086 break; 4087 } 4088 } 4089 4090 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4091 ddi_node_state_t devi_state; 4092 4093 devi_state = dtrace_load32(daddr + 4094 offsetof(struct dev_info, devi_node_state)); 4095 4096 if (*flags & CPU_DTRACE_FAULT) 4097 break; 4098 4099 if (devi_state >= DS_INITIALIZED) { 4100 s = (char *)dtrace_loadptr(daddr + 4101 offsetof(struct dev_info, devi_addr)); 4102 len = dtrace_strlen(s, size); 4103 4104 if (*flags & CPU_DTRACE_FAULT) 4105 break; 4106 4107 if (len != 0) { 4108 if ((end -= (len + 1)) < start) 4109 break; 4110 4111 *end = '@'; 4112 } 4113 4114 for (i = 1; i <= len; i++) 4115 end[i] = dtrace_load8((uintptr_t)s++); 4116 } 4117 4118 /* 4119 * Now for the node name... 4120 */ 4121 s = (char *)dtrace_loadptr(daddr + 4122 offsetof(struct dev_info, devi_node_name)); 4123 4124 daddr = dtrace_loadptr(daddr + 4125 offsetof(struct dev_info, devi_parent)); 4126 4127 /* 4128 * If our parent is NULL (that is, if we're the root 4129 * node), we're going to use the special path 4130 * "devices". 4131 */ 4132 if (daddr == NULL) 4133 s = "devices"; 4134 4135 len = dtrace_strlen(s, size); 4136 if (*flags & CPU_DTRACE_FAULT) 4137 break; 4138 4139 if ((end -= (len + 1)) < start) 4140 break; 4141 4142 for (i = 1; i <= len; i++) 4143 end[i] = dtrace_load8((uintptr_t)s++); 4144 *end = '/'; 4145 4146 if (depth++ > dtrace_devdepth_max) { 4147 *flags |= CPU_DTRACE_ILLOP; 4148 break; 4149 } 4150 } 4151 4152 if (end < start) 4153 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4154 4155 if (daddr == NULL) { 4156 regs[rd] = (uintptr_t)end; 4157 mstate->dtms_scratch_ptr += size; 4158 } 4159 4160 break; 4161 } 4162 4163 case DIF_SUBR_STRJOIN: { 4164 char *d = (char *)mstate->dtms_scratch_ptr; 4165 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4166 uintptr_t s1 = tupregs[0].dttk_value; 4167 uintptr_t s2 = tupregs[1].dttk_value; 4168 int i = 0; 4169 4170 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4171 !dtrace_strcanload(s2, size, mstate, vstate)) { 4172 regs[rd] = NULL; 4173 break; 4174 } 4175 4176 if (!DTRACE_INSCRATCH(mstate, size)) { 4177 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4178 regs[rd] = NULL; 4179 break; 4180 } 4181 4182 for (;;) { 4183 if (i >= size) { 4184 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4185 regs[rd] = NULL; 4186 break; 4187 } 4188 4189 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4190 i--; 4191 break; 4192 } 4193 } 4194 4195 for (;;) { 4196 if (i >= size) { 4197 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4198 regs[rd] = NULL; 4199 break; 4200 } 4201 4202 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4203 break; 4204 } 4205 4206 if (i < size) { 4207 mstate->dtms_scratch_ptr += i; 4208 regs[rd] = (uintptr_t)d; 4209 } 4210 4211 break; 4212 } 4213 4214 case DIF_SUBR_LLTOSTR: { 4215 int64_t i = (int64_t)tupregs[0].dttk_value; 4216 uint64_t val, digit; 4217 uint64_t size = 65; /* enough room for 2^64 in binary */ 4218 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4219 int base = 10; 4220 4221 if (nargs > 1) { 4222 if ((base = tupregs[1].dttk_value) <= 1 || 4223 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4224 *flags |= CPU_DTRACE_ILLOP; 4225 break; 4226 } 4227 } 4228 4229 val = (base == 10 && i < 0) ? i * -1 : i; 4230 4231 if (!DTRACE_INSCRATCH(mstate, size)) { 4232 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4233 regs[rd] = NULL; 4234 break; 4235 } 4236 4237 for (*end-- = '\0'; val; val /= base) { 4238 if ((digit = val % base) <= '9' - '0') { 4239 *end-- = '0' + digit; 4240 } else { 4241 *end-- = 'a' + (digit - ('9' - '0') - 1); 4242 } 4243 } 4244 4245 if (i == 0 && base == 16) 4246 *end-- = '0'; 4247 4248 if (base == 16) 4249 *end-- = 'x'; 4250 4251 if (i == 0 || base == 8 || base == 16) 4252 *end-- = '0'; 4253 4254 if (i < 0 && base == 10) 4255 *end-- = '-'; 4256 4257 regs[rd] = (uintptr_t)end + 1; 4258 mstate->dtms_scratch_ptr += size; 4259 break; 4260 } 4261 4262 case DIF_SUBR_HTONS: 4263 case DIF_SUBR_NTOHS: 4264 #ifdef _BIG_ENDIAN 4265 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4266 #else 4267 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4268 #endif 4269 break; 4270 4271 4272 case DIF_SUBR_HTONL: 4273 case DIF_SUBR_NTOHL: 4274 #ifdef _BIG_ENDIAN 4275 regs[rd] = (uint32_t)tupregs[0].dttk_value; 4276 #else 4277 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 4278 #endif 4279 break; 4280 4281 4282 case DIF_SUBR_HTONLL: 4283 case DIF_SUBR_NTOHLL: 4284 #ifdef _BIG_ENDIAN 4285 regs[rd] = (uint64_t)tupregs[0].dttk_value; 4286 #else 4287 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 4288 #endif 4289 break; 4290 4291 4292 case DIF_SUBR_DIRNAME: 4293 case DIF_SUBR_BASENAME: { 4294 char *dest = (char *)mstate->dtms_scratch_ptr; 4295 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4296 uintptr_t src = tupregs[0].dttk_value; 4297 int i, j, len = dtrace_strlen((char *)src, size); 4298 int lastbase = -1, firstbase = -1, lastdir = -1; 4299 int start, end; 4300 4301 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 4302 regs[rd] = NULL; 4303 break; 4304 } 4305 4306 if (!DTRACE_INSCRATCH(mstate, size)) { 4307 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4308 regs[rd] = NULL; 4309 break; 4310 } 4311 4312 /* 4313 * The basename and dirname for a zero-length string is 4314 * defined to be "." 4315 */ 4316 if (len == 0) { 4317 len = 1; 4318 src = (uintptr_t)"."; 4319 } 4320 4321 /* 4322 * Start from the back of the string, moving back toward the 4323 * front until we see a character that isn't a slash. That 4324 * character is the last character in the basename. 4325 */ 4326 for (i = len - 1; i >= 0; i--) { 4327 if (dtrace_load8(src + i) != '/') 4328 break; 4329 } 4330 4331 if (i >= 0) 4332 lastbase = i; 4333 4334 /* 4335 * Starting from the last character in the basename, move 4336 * towards the front until we find a slash. The character 4337 * that we processed immediately before that is the first 4338 * character in the basename. 4339 */ 4340 for (; i >= 0; i--) { 4341 if (dtrace_load8(src + i) == '/') 4342 break; 4343 } 4344 4345 if (i >= 0) 4346 firstbase = i + 1; 4347 4348 /* 4349 * Now keep going until we find a non-slash character. That 4350 * character is the last character in the dirname. 4351 */ 4352 for (; i >= 0; i--) { 4353 if (dtrace_load8(src + i) != '/') 4354 break; 4355 } 4356 4357 if (i >= 0) 4358 lastdir = i; 4359 4360 ASSERT(!(lastbase == -1 && firstbase != -1)); 4361 ASSERT(!(firstbase == -1 && lastdir != -1)); 4362 4363 if (lastbase == -1) { 4364 /* 4365 * We didn't find a non-slash character. We know that 4366 * the length is non-zero, so the whole string must be 4367 * slashes. In either the dirname or the basename 4368 * case, we return '/'. 4369 */ 4370 ASSERT(firstbase == -1); 4371 firstbase = lastbase = lastdir = 0; 4372 } 4373 4374 if (firstbase == -1) { 4375 /* 4376 * The entire string consists only of a basename 4377 * component. If we're looking for dirname, we need 4378 * to change our string to be just "."; if we're 4379 * looking for a basename, we'll just set the first 4380 * character of the basename to be 0. 4381 */ 4382 if (subr == DIF_SUBR_DIRNAME) { 4383 ASSERT(lastdir == -1); 4384 src = (uintptr_t)"."; 4385 lastdir = 0; 4386 } else { 4387 firstbase = 0; 4388 } 4389 } 4390 4391 if (subr == DIF_SUBR_DIRNAME) { 4392 if (lastdir == -1) { 4393 /* 4394 * We know that we have a slash in the name -- 4395 * or lastdir would be set to 0, above. And 4396 * because lastdir is -1, we know that this 4397 * slash must be the first character. (That 4398 * is, the full string must be of the form 4399 * "/basename".) In this case, the last 4400 * character of the directory name is 0. 4401 */ 4402 lastdir = 0; 4403 } 4404 4405 start = 0; 4406 end = lastdir; 4407 } else { 4408 ASSERT(subr == DIF_SUBR_BASENAME); 4409 ASSERT(firstbase != -1 && lastbase != -1); 4410 start = firstbase; 4411 end = lastbase; 4412 } 4413 4414 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 4415 dest[j] = dtrace_load8(src + i); 4416 4417 dest[j] = '\0'; 4418 regs[rd] = (uintptr_t)dest; 4419 mstate->dtms_scratch_ptr += size; 4420 break; 4421 } 4422 4423 case DIF_SUBR_CLEANPATH: { 4424 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4425 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4426 uintptr_t src = tupregs[0].dttk_value; 4427 int i = 0, j = 0; 4428 4429 if (!dtrace_strcanload(src, size, mstate, vstate)) { 4430 regs[rd] = NULL; 4431 break; 4432 } 4433 4434 if (!DTRACE_INSCRATCH(mstate, size)) { 4435 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4436 regs[rd] = NULL; 4437 break; 4438 } 4439 4440 /* 4441 * Move forward, loading each character. 4442 */ 4443 do { 4444 c = dtrace_load8(src + i++); 4445 next: 4446 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 4447 break; 4448 4449 if (c != '/') { 4450 dest[j++] = c; 4451 continue; 4452 } 4453 4454 c = dtrace_load8(src + i++); 4455 4456 if (c == '/') { 4457 /* 4458 * We have two slashes -- we can just advance 4459 * to the next character. 4460 */ 4461 goto next; 4462 } 4463 4464 if (c != '.') { 4465 /* 4466 * This is not "." and it's not ".." -- we can 4467 * just store the "/" and this character and 4468 * drive on. 4469 */ 4470 dest[j++] = '/'; 4471 dest[j++] = c; 4472 continue; 4473 } 4474 4475 c = dtrace_load8(src + i++); 4476 4477 if (c == '/') { 4478 /* 4479 * This is a "/./" component. We're not going 4480 * to store anything in the destination buffer; 4481 * we're just going to go to the next component. 4482 */ 4483 goto next; 4484 } 4485 4486 if (c != '.') { 4487 /* 4488 * This is not ".." -- we can just store the 4489 * "/." and this character and continue 4490 * processing. 4491 */ 4492 dest[j++] = '/'; 4493 dest[j++] = '.'; 4494 dest[j++] = c; 4495 continue; 4496 } 4497 4498 c = dtrace_load8(src + i++); 4499 4500 if (c != '/' && c != '\0') { 4501 /* 4502 * This is not ".." -- it's "..[mumble]". 4503 * We'll store the "/.." and this character 4504 * and continue processing. 4505 */ 4506 dest[j++] = '/'; 4507 dest[j++] = '.'; 4508 dest[j++] = '.'; 4509 dest[j++] = c; 4510 continue; 4511 } 4512 4513 /* 4514 * This is "/../" or "/..\0". We need to back up 4515 * our destination pointer until we find a "/". 4516 */ 4517 i--; 4518 while (j != 0 && dest[--j] != '/') 4519 continue; 4520 4521 if (c == '\0') 4522 dest[++j] = '/'; 4523 } while (c != '\0'); 4524 4525 dest[j] = '\0'; 4526 regs[rd] = (uintptr_t)dest; 4527 mstate->dtms_scratch_ptr += size; 4528 break; 4529 } 4530 4531 case DIF_SUBR_INET_NTOA: 4532 case DIF_SUBR_INET_NTOA6: 4533 case DIF_SUBR_INET_NTOP: { 4534 size_t size; 4535 int af, argi, i; 4536 char *base, *end; 4537 4538 if (subr == DIF_SUBR_INET_NTOP) { 4539 af = (int)tupregs[0].dttk_value; 4540 argi = 1; 4541 } else { 4542 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 4543 argi = 0; 4544 } 4545 4546 if (af == AF_INET) { 4547 ipaddr_t ip4; 4548 uint8_t *ptr8, val; 4549 4550 /* 4551 * Safely load the IPv4 address. 4552 */ 4553 ip4 = dtrace_load32(tupregs[argi].dttk_value); 4554 4555 /* 4556 * Check an IPv4 string will fit in scratch. 4557 */ 4558 size = INET_ADDRSTRLEN; 4559 if (!DTRACE_INSCRATCH(mstate, size)) { 4560 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4561 regs[rd] = NULL; 4562 break; 4563 } 4564 base = (char *)mstate->dtms_scratch_ptr; 4565 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4566 4567 /* 4568 * Stringify as a dotted decimal quad. 4569 */ 4570 *end-- = '\0'; 4571 ptr8 = (uint8_t *)&ip4; 4572 for (i = 3; i >= 0; i--) { 4573 val = ptr8[i]; 4574 4575 if (val == 0) { 4576 *end-- = '0'; 4577 } else { 4578 for (; val; val /= 10) { 4579 *end-- = '0' + (val % 10); 4580 } 4581 } 4582 4583 if (i > 0) 4584 *end-- = '.'; 4585 } 4586 ASSERT(end + 1 >= base); 4587 4588 } else if (af == AF_INET6) { 4589 struct in6_addr ip6; 4590 int firstzero, tryzero, numzero, v6end; 4591 uint16_t val; 4592 const char digits[] = "0123456789abcdef"; 4593 4594 /* 4595 * Stringify using RFC 1884 convention 2 - 16 bit 4596 * hexadecimal values with a zero-run compression. 4597 * Lower case hexadecimal digits are used. 4598 * eg, fe80::214:4fff:fe0b:76c8. 4599 * The IPv4 embedded form is returned for inet_ntop, 4600 * just the IPv4 string is returned for inet_ntoa6. 4601 */ 4602 4603 /* 4604 * Safely load the IPv6 address. 4605 */ 4606 dtrace_bcopy( 4607 (void *)(uintptr_t)tupregs[argi].dttk_value, 4608 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 4609 4610 /* 4611 * Check an IPv6 string will fit in scratch. 4612 */ 4613 size = INET6_ADDRSTRLEN; 4614 if (!DTRACE_INSCRATCH(mstate, size)) { 4615 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4616 regs[rd] = NULL; 4617 break; 4618 } 4619 base = (char *)mstate->dtms_scratch_ptr; 4620 end = (char *)mstate->dtms_scratch_ptr + size - 1; 4621 *end-- = '\0'; 4622 4623 /* 4624 * Find the longest run of 16 bit zero values 4625 * for the single allowed zero compression - "::". 4626 */ 4627 firstzero = -1; 4628 tryzero = -1; 4629 numzero = 1; 4630 for (i = 0; i < sizeof (struct in6_addr); i++) { 4631 if (ip6._S6_un._S6_u8[i] == 0 && 4632 tryzero == -1 && i % 2 == 0) { 4633 tryzero = i; 4634 continue; 4635 } 4636 4637 if (tryzero != -1 && 4638 (ip6._S6_un._S6_u8[i] != 0 || 4639 i == sizeof (struct in6_addr) - 1)) { 4640 4641 if (i - tryzero <= numzero) { 4642 tryzero = -1; 4643 continue; 4644 } 4645 4646 firstzero = tryzero; 4647 numzero = i - i % 2 - tryzero; 4648 tryzero = -1; 4649 4650 if (ip6._S6_un._S6_u8[i] == 0 && 4651 i == sizeof (struct in6_addr) - 1) 4652 numzero += 2; 4653 } 4654 } 4655 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 4656 4657 /* 4658 * Check for an IPv4 embedded address. 4659 */ 4660 v6end = sizeof (struct in6_addr) - 2; 4661 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 4662 IN6_IS_ADDR_V4COMPAT(&ip6)) { 4663 for (i = sizeof (struct in6_addr) - 1; 4664 i >= DTRACE_V4MAPPED_OFFSET; i--) { 4665 ASSERT(end >= base); 4666 4667 val = ip6._S6_un._S6_u8[i]; 4668 4669 if (val == 0) { 4670 *end-- = '0'; 4671 } else { 4672 for (; val; val /= 10) { 4673 *end-- = '0' + val % 10; 4674 } 4675 } 4676 4677 if (i > DTRACE_V4MAPPED_OFFSET) 4678 *end-- = '.'; 4679 } 4680 4681 if (subr == DIF_SUBR_INET_NTOA6) 4682 goto inetout; 4683 4684 /* 4685 * Set v6end to skip the IPv4 address that 4686 * we have already stringified. 4687 */ 4688 v6end = 10; 4689 } 4690 4691 /* 4692 * Build the IPv6 string by working through the 4693 * address in reverse. 4694 */ 4695 for (i = v6end; i >= 0; i -= 2) { 4696 ASSERT(end >= base); 4697 4698 if (i == firstzero + numzero - 2) { 4699 *end-- = ':'; 4700 *end-- = ':'; 4701 i -= numzero - 2; 4702 continue; 4703 } 4704 4705 if (i < 14 && i != firstzero - 2) 4706 *end-- = ':'; 4707 4708 val = (ip6._S6_un._S6_u8[i] << 8) + 4709 ip6._S6_un._S6_u8[i + 1]; 4710 4711 if (val == 0) { 4712 *end-- = '0'; 4713 } else { 4714 for (; val; val /= 16) { 4715 *end-- = digits[val % 16]; 4716 } 4717 } 4718 } 4719 ASSERT(end + 1 >= base); 4720 4721 } else { 4722 /* 4723 * The user didn't use AH_INET or AH_INET6. 4724 */ 4725 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 4726 regs[rd] = NULL; 4727 break; 4728 } 4729 4730 inetout: regs[rd] = (uintptr_t)end + 1; 4731 mstate->dtms_scratch_ptr += size; 4732 break; 4733 } 4734 4735 } 4736 } 4737 4738 /* 4739 * Emulate the execution of DTrace IR instructions specified by the given 4740 * DIF object. This function is deliberately void of assertions as all of 4741 * the necessary checks are handled by a call to dtrace_difo_validate(). 4742 */ 4743 static uint64_t 4744 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 4745 dtrace_vstate_t *vstate, dtrace_state_t *state) 4746 { 4747 const dif_instr_t *text = difo->dtdo_buf; 4748 const uint_t textlen = difo->dtdo_len; 4749 const char *strtab = difo->dtdo_strtab; 4750 const uint64_t *inttab = difo->dtdo_inttab; 4751 4752 uint64_t rval = 0; 4753 dtrace_statvar_t *svar; 4754 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 4755 dtrace_difv_t *v; 4756 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 4757 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 4758 4759 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 4760 uint64_t regs[DIF_DIR_NREGS]; 4761 uint64_t *tmp; 4762 4763 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 4764 int64_t cc_r; 4765 uint_t pc = 0, id, opc; 4766 uint8_t ttop = 0; 4767 dif_instr_t instr; 4768 uint_t r1, r2, rd; 4769 4770 /* 4771 * We stash the current DIF object into the machine state: we need it 4772 * for subsequent access checking. 4773 */ 4774 mstate->dtms_difo = difo; 4775 4776 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 4777 4778 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 4779 opc = pc; 4780 4781 instr = text[pc++]; 4782 r1 = DIF_INSTR_R1(instr); 4783 r2 = DIF_INSTR_R2(instr); 4784 rd = DIF_INSTR_RD(instr); 4785 4786 switch (DIF_INSTR_OP(instr)) { 4787 case DIF_OP_OR: 4788 regs[rd] = regs[r1] | regs[r2]; 4789 break; 4790 case DIF_OP_XOR: 4791 regs[rd] = regs[r1] ^ regs[r2]; 4792 break; 4793 case DIF_OP_AND: 4794 regs[rd] = regs[r1] & regs[r2]; 4795 break; 4796 case DIF_OP_SLL: 4797 regs[rd] = regs[r1] << regs[r2]; 4798 break; 4799 case DIF_OP_SRL: 4800 regs[rd] = regs[r1] >> regs[r2]; 4801 break; 4802 case DIF_OP_SUB: 4803 regs[rd] = regs[r1] - regs[r2]; 4804 break; 4805 case DIF_OP_ADD: 4806 regs[rd] = regs[r1] + regs[r2]; 4807 break; 4808 case DIF_OP_MUL: 4809 regs[rd] = regs[r1] * regs[r2]; 4810 break; 4811 case DIF_OP_SDIV: 4812 if (regs[r2] == 0) { 4813 regs[rd] = 0; 4814 *flags |= CPU_DTRACE_DIVZERO; 4815 } else { 4816 regs[rd] = (int64_t)regs[r1] / 4817 (int64_t)regs[r2]; 4818 } 4819 break; 4820 4821 case DIF_OP_UDIV: 4822 if (regs[r2] == 0) { 4823 regs[rd] = 0; 4824 *flags |= CPU_DTRACE_DIVZERO; 4825 } else { 4826 regs[rd] = regs[r1] / regs[r2]; 4827 } 4828 break; 4829 4830 case DIF_OP_SREM: 4831 if (regs[r2] == 0) { 4832 regs[rd] = 0; 4833 *flags |= CPU_DTRACE_DIVZERO; 4834 } else { 4835 regs[rd] = (int64_t)regs[r1] % 4836 (int64_t)regs[r2]; 4837 } 4838 break; 4839 4840 case DIF_OP_UREM: 4841 if (regs[r2] == 0) { 4842 regs[rd] = 0; 4843 *flags |= CPU_DTRACE_DIVZERO; 4844 } else { 4845 regs[rd] = regs[r1] % regs[r2]; 4846 } 4847 break; 4848 4849 case DIF_OP_NOT: 4850 regs[rd] = ~regs[r1]; 4851 break; 4852 case DIF_OP_MOV: 4853 regs[rd] = regs[r1]; 4854 break; 4855 case DIF_OP_CMP: 4856 cc_r = regs[r1] - regs[r2]; 4857 cc_n = cc_r < 0; 4858 cc_z = cc_r == 0; 4859 cc_v = 0; 4860 cc_c = regs[r1] < regs[r2]; 4861 break; 4862 case DIF_OP_TST: 4863 cc_n = cc_v = cc_c = 0; 4864 cc_z = regs[r1] == 0; 4865 break; 4866 case DIF_OP_BA: 4867 pc = DIF_INSTR_LABEL(instr); 4868 break; 4869 case DIF_OP_BE: 4870 if (cc_z) 4871 pc = DIF_INSTR_LABEL(instr); 4872 break; 4873 case DIF_OP_BNE: 4874 if (cc_z == 0) 4875 pc = DIF_INSTR_LABEL(instr); 4876 break; 4877 case DIF_OP_BG: 4878 if ((cc_z | (cc_n ^ cc_v)) == 0) 4879 pc = DIF_INSTR_LABEL(instr); 4880 break; 4881 case DIF_OP_BGU: 4882 if ((cc_c | cc_z) == 0) 4883 pc = DIF_INSTR_LABEL(instr); 4884 break; 4885 case DIF_OP_BGE: 4886 if ((cc_n ^ cc_v) == 0) 4887 pc = DIF_INSTR_LABEL(instr); 4888 break; 4889 case DIF_OP_BGEU: 4890 if (cc_c == 0) 4891 pc = DIF_INSTR_LABEL(instr); 4892 break; 4893 case DIF_OP_BL: 4894 if (cc_n ^ cc_v) 4895 pc = DIF_INSTR_LABEL(instr); 4896 break; 4897 case DIF_OP_BLU: 4898 if (cc_c) 4899 pc = DIF_INSTR_LABEL(instr); 4900 break; 4901 case DIF_OP_BLE: 4902 if (cc_z | (cc_n ^ cc_v)) 4903 pc = DIF_INSTR_LABEL(instr); 4904 break; 4905 case DIF_OP_BLEU: 4906 if (cc_c | cc_z) 4907 pc = DIF_INSTR_LABEL(instr); 4908 break; 4909 case DIF_OP_RLDSB: 4910 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4911 *flags |= CPU_DTRACE_KPRIV; 4912 *illval = regs[r1]; 4913 break; 4914 } 4915 /*FALLTHROUGH*/ 4916 case DIF_OP_LDSB: 4917 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 4918 break; 4919 case DIF_OP_RLDSH: 4920 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4921 *flags |= CPU_DTRACE_KPRIV; 4922 *illval = regs[r1]; 4923 break; 4924 } 4925 /*FALLTHROUGH*/ 4926 case DIF_OP_LDSH: 4927 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 4928 break; 4929 case DIF_OP_RLDSW: 4930 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4931 *flags |= CPU_DTRACE_KPRIV; 4932 *illval = regs[r1]; 4933 break; 4934 } 4935 /*FALLTHROUGH*/ 4936 case DIF_OP_LDSW: 4937 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 4938 break; 4939 case DIF_OP_RLDUB: 4940 if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) { 4941 *flags |= CPU_DTRACE_KPRIV; 4942 *illval = regs[r1]; 4943 break; 4944 } 4945 /*FALLTHROUGH*/ 4946 case DIF_OP_LDUB: 4947 regs[rd] = dtrace_load8(regs[r1]); 4948 break; 4949 case DIF_OP_RLDUH: 4950 if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) { 4951 *flags |= CPU_DTRACE_KPRIV; 4952 *illval = regs[r1]; 4953 break; 4954 } 4955 /*FALLTHROUGH*/ 4956 case DIF_OP_LDUH: 4957 regs[rd] = dtrace_load16(regs[r1]); 4958 break; 4959 case DIF_OP_RLDUW: 4960 if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) { 4961 *flags |= CPU_DTRACE_KPRIV; 4962 *illval = regs[r1]; 4963 break; 4964 } 4965 /*FALLTHROUGH*/ 4966 case DIF_OP_LDUW: 4967 regs[rd] = dtrace_load32(regs[r1]); 4968 break; 4969 case DIF_OP_RLDX: 4970 if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) { 4971 *flags |= CPU_DTRACE_KPRIV; 4972 *illval = regs[r1]; 4973 break; 4974 } 4975 /*FALLTHROUGH*/ 4976 case DIF_OP_LDX: 4977 regs[rd] = dtrace_load64(regs[r1]); 4978 break; 4979 case DIF_OP_ULDSB: 4980 regs[rd] = (int8_t) 4981 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4982 break; 4983 case DIF_OP_ULDSH: 4984 regs[rd] = (int16_t) 4985 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4986 break; 4987 case DIF_OP_ULDSW: 4988 regs[rd] = (int32_t) 4989 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 4990 break; 4991 case DIF_OP_ULDUB: 4992 regs[rd] = 4993 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 4994 break; 4995 case DIF_OP_ULDUH: 4996 regs[rd] = 4997 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 4998 break; 4999 case DIF_OP_ULDUW: 5000 regs[rd] = 5001 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5002 break; 5003 case DIF_OP_ULDX: 5004 regs[rd] = 5005 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5006 break; 5007 case DIF_OP_RET: 5008 rval = regs[rd]; 5009 pc = textlen; 5010 break; 5011 case DIF_OP_NOP: 5012 break; 5013 case DIF_OP_SETX: 5014 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5015 break; 5016 case DIF_OP_SETS: 5017 regs[rd] = (uint64_t)(uintptr_t) 5018 (strtab + DIF_INSTR_STRING(instr)); 5019 break; 5020 case DIF_OP_SCMP: { 5021 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5022 uintptr_t s1 = regs[r1]; 5023 uintptr_t s2 = regs[r2]; 5024 5025 if (s1 != NULL && 5026 !dtrace_strcanload(s1, sz, mstate, vstate)) 5027 break; 5028 if (s2 != NULL && 5029 !dtrace_strcanload(s2, sz, mstate, vstate)) 5030 break; 5031 5032 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5033 5034 cc_n = cc_r < 0; 5035 cc_z = cc_r == 0; 5036 cc_v = cc_c = 0; 5037 break; 5038 } 5039 case DIF_OP_LDGA: 5040 regs[rd] = dtrace_dif_variable(mstate, state, 5041 r1, regs[r2]); 5042 break; 5043 case DIF_OP_LDGS: 5044 id = DIF_INSTR_VAR(instr); 5045 5046 if (id >= DIF_VAR_OTHER_UBASE) { 5047 uintptr_t a; 5048 5049 id -= DIF_VAR_OTHER_UBASE; 5050 svar = vstate->dtvs_globals[id]; 5051 ASSERT(svar != NULL); 5052 v = &svar->dtsv_var; 5053 5054 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5055 regs[rd] = svar->dtsv_data; 5056 break; 5057 } 5058 5059 a = (uintptr_t)svar->dtsv_data; 5060 5061 if (*(uint8_t *)a == UINT8_MAX) { 5062 /* 5063 * If the 0th byte is set to UINT8_MAX 5064 * then this is to be treated as a 5065 * reference to a NULL variable. 5066 */ 5067 regs[rd] = NULL; 5068 } else { 5069 regs[rd] = a + sizeof (uint64_t); 5070 } 5071 5072 break; 5073 } 5074 5075 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5076 break; 5077 5078 case DIF_OP_STGS: 5079 id = DIF_INSTR_VAR(instr); 5080 5081 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5082 id -= DIF_VAR_OTHER_UBASE; 5083 5084 svar = vstate->dtvs_globals[id]; 5085 ASSERT(svar != NULL); 5086 v = &svar->dtsv_var; 5087 5088 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5089 uintptr_t a = (uintptr_t)svar->dtsv_data; 5090 5091 ASSERT(a != NULL); 5092 ASSERT(svar->dtsv_size != 0); 5093 5094 if (regs[rd] == NULL) { 5095 *(uint8_t *)a = UINT8_MAX; 5096 break; 5097 } else { 5098 *(uint8_t *)a = 0; 5099 a += sizeof (uint64_t); 5100 } 5101 if (!dtrace_vcanload( 5102 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5103 mstate, vstate)) 5104 break; 5105 5106 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5107 (void *)a, &v->dtdv_type); 5108 break; 5109 } 5110 5111 svar->dtsv_data = regs[rd]; 5112 break; 5113 5114 case DIF_OP_LDTA: 5115 /* 5116 * There are no DTrace built-in thread-local arrays at 5117 * present. This opcode is saved for future work. 5118 */ 5119 *flags |= CPU_DTRACE_ILLOP; 5120 regs[rd] = 0; 5121 break; 5122 5123 case DIF_OP_LDLS: 5124 id = DIF_INSTR_VAR(instr); 5125 5126 if (id < DIF_VAR_OTHER_UBASE) { 5127 /* 5128 * For now, this has no meaning. 5129 */ 5130 regs[rd] = 0; 5131 break; 5132 } 5133 5134 id -= DIF_VAR_OTHER_UBASE; 5135 5136 ASSERT(id < vstate->dtvs_nlocals); 5137 ASSERT(vstate->dtvs_locals != NULL); 5138 5139 svar = vstate->dtvs_locals[id]; 5140 ASSERT(svar != NULL); 5141 v = &svar->dtsv_var; 5142 5143 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5144 uintptr_t a = (uintptr_t)svar->dtsv_data; 5145 size_t sz = v->dtdv_type.dtdt_size; 5146 5147 sz += sizeof (uint64_t); 5148 ASSERT(svar->dtsv_size == NCPU * sz); 5149 a += CPU->cpu_id * sz; 5150 5151 if (*(uint8_t *)a == UINT8_MAX) { 5152 /* 5153 * If the 0th byte is set to UINT8_MAX 5154 * then this is to be treated as a 5155 * reference to a NULL variable. 5156 */ 5157 regs[rd] = NULL; 5158 } else { 5159 regs[rd] = a + sizeof (uint64_t); 5160 } 5161 5162 break; 5163 } 5164 5165 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5166 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5167 regs[rd] = tmp[CPU->cpu_id]; 5168 break; 5169 5170 case DIF_OP_STLS: 5171 id = DIF_INSTR_VAR(instr); 5172 5173 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5174 id -= DIF_VAR_OTHER_UBASE; 5175 ASSERT(id < vstate->dtvs_nlocals); 5176 5177 ASSERT(vstate->dtvs_locals != NULL); 5178 svar = vstate->dtvs_locals[id]; 5179 ASSERT(svar != NULL); 5180 v = &svar->dtsv_var; 5181 5182 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5183 uintptr_t a = (uintptr_t)svar->dtsv_data; 5184 size_t sz = v->dtdv_type.dtdt_size; 5185 5186 sz += sizeof (uint64_t); 5187 ASSERT(svar->dtsv_size == NCPU * sz); 5188 a += CPU->cpu_id * sz; 5189 5190 if (regs[rd] == NULL) { 5191 *(uint8_t *)a = UINT8_MAX; 5192 break; 5193 } else { 5194 *(uint8_t *)a = 0; 5195 a += sizeof (uint64_t); 5196 } 5197 5198 if (!dtrace_vcanload( 5199 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5200 mstate, vstate)) 5201 break; 5202 5203 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5204 (void *)a, &v->dtdv_type); 5205 break; 5206 } 5207 5208 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5209 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5210 tmp[CPU->cpu_id] = regs[rd]; 5211 break; 5212 5213 case DIF_OP_LDTS: { 5214 dtrace_dynvar_t *dvar; 5215 dtrace_key_t *key; 5216 5217 id = DIF_INSTR_VAR(instr); 5218 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5219 id -= DIF_VAR_OTHER_UBASE; 5220 v = &vstate->dtvs_tlocals[id]; 5221 5222 key = &tupregs[DIF_DTR_NREGS]; 5223 key[0].dttk_value = (uint64_t)id; 5224 key[0].dttk_size = 0; 5225 DTRACE_TLS_THRKEY(key[1].dttk_value); 5226 key[1].dttk_size = 0; 5227 5228 dvar = dtrace_dynvar(dstate, 2, key, 5229 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5230 mstate, vstate); 5231 5232 if (dvar == NULL) { 5233 regs[rd] = 0; 5234 break; 5235 } 5236 5237 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5238 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5239 } else { 5240 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5241 } 5242 5243 break; 5244 } 5245 5246 case DIF_OP_STTS: { 5247 dtrace_dynvar_t *dvar; 5248 dtrace_key_t *key; 5249 5250 id = DIF_INSTR_VAR(instr); 5251 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5252 id -= DIF_VAR_OTHER_UBASE; 5253 5254 key = &tupregs[DIF_DTR_NREGS]; 5255 key[0].dttk_value = (uint64_t)id; 5256 key[0].dttk_size = 0; 5257 DTRACE_TLS_THRKEY(key[1].dttk_value); 5258 key[1].dttk_size = 0; 5259 v = &vstate->dtvs_tlocals[id]; 5260 5261 dvar = dtrace_dynvar(dstate, 2, key, 5262 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5263 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5264 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5265 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5266 5267 /* 5268 * Given that we're storing to thread-local data, 5269 * we need to flush our predicate cache. 5270 */ 5271 curthread->t_predcache = NULL; 5272 5273 if (dvar == NULL) 5274 break; 5275 5276 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5277 if (!dtrace_vcanload( 5278 (void *)(uintptr_t)regs[rd], 5279 &v->dtdv_type, mstate, vstate)) 5280 break; 5281 5282 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5283 dvar->dtdv_data, &v->dtdv_type); 5284 } else { 5285 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5286 } 5287 5288 break; 5289 } 5290 5291 case DIF_OP_SRA: 5292 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 5293 break; 5294 5295 case DIF_OP_CALL: 5296 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 5297 regs, tupregs, ttop, mstate, state); 5298 break; 5299 5300 case DIF_OP_PUSHTR: 5301 if (ttop == DIF_DTR_NREGS) { 5302 *flags |= CPU_DTRACE_TUPOFLOW; 5303 break; 5304 } 5305 5306 if (r1 == DIF_TYPE_STRING) { 5307 /* 5308 * If this is a string type and the size is 0, 5309 * we'll use the system-wide default string 5310 * size. Note that we are _not_ looking at 5311 * the value of the DTRACEOPT_STRSIZE option; 5312 * had this been set, we would expect to have 5313 * a non-zero size value in the "pushtr". 5314 */ 5315 tupregs[ttop].dttk_size = 5316 dtrace_strlen((char *)(uintptr_t)regs[rd], 5317 regs[r2] ? regs[r2] : 5318 dtrace_strsize_default) + 1; 5319 } else { 5320 tupregs[ttop].dttk_size = regs[r2]; 5321 } 5322 5323 tupregs[ttop++].dttk_value = regs[rd]; 5324 break; 5325 5326 case DIF_OP_PUSHTV: 5327 if (ttop == DIF_DTR_NREGS) { 5328 *flags |= CPU_DTRACE_TUPOFLOW; 5329 break; 5330 } 5331 5332 tupregs[ttop].dttk_value = regs[rd]; 5333 tupregs[ttop++].dttk_size = 0; 5334 break; 5335 5336 case DIF_OP_POPTS: 5337 if (ttop != 0) 5338 ttop--; 5339 break; 5340 5341 case DIF_OP_FLUSHTS: 5342 ttop = 0; 5343 break; 5344 5345 case DIF_OP_LDGAA: 5346 case DIF_OP_LDTAA: { 5347 dtrace_dynvar_t *dvar; 5348 dtrace_key_t *key = tupregs; 5349 uint_t nkeys = ttop; 5350 5351 id = DIF_INSTR_VAR(instr); 5352 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5353 id -= DIF_VAR_OTHER_UBASE; 5354 5355 key[nkeys].dttk_value = (uint64_t)id; 5356 key[nkeys++].dttk_size = 0; 5357 5358 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 5359 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5360 key[nkeys++].dttk_size = 0; 5361 v = &vstate->dtvs_tlocals[id]; 5362 } else { 5363 v = &vstate->dtvs_globals[id]->dtsv_var; 5364 } 5365 5366 dvar = dtrace_dynvar(dstate, nkeys, key, 5367 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5368 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5369 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 5370 5371 if (dvar == NULL) { 5372 regs[rd] = 0; 5373 break; 5374 } 5375 5376 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5377 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 5378 } else { 5379 regs[rd] = *((uint64_t *)dvar->dtdv_data); 5380 } 5381 5382 break; 5383 } 5384 5385 case DIF_OP_STGAA: 5386 case DIF_OP_STTAA: { 5387 dtrace_dynvar_t *dvar; 5388 dtrace_key_t *key = tupregs; 5389 uint_t nkeys = ttop; 5390 5391 id = DIF_INSTR_VAR(instr); 5392 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5393 id -= DIF_VAR_OTHER_UBASE; 5394 5395 key[nkeys].dttk_value = (uint64_t)id; 5396 key[nkeys++].dttk_size = 0; 5397 5398 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 5399 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 5400 key[nkeys++].dttk_size = 0; 5401 v = &vstate->dtvs_tlocals[id]; 5402 } else { 5403 v = &vstate->dtvs_globals[id]->dtsv_var; 5404 } 5405 5406 dvar = dtrace_dynvar(dstate, nkeys, key, 5407 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 5408 v->dtdv_type.dtdt_size : sizeof (uint64_t), 5409 regs[rd] ? DTRACE_DYNVAR_ALLOC : 5410 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 5411 5412 if (dvar == NULL) 5413 break; 5414 5415 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5416 if (!dtrace_vcanload( 5417 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5418 mstate, vstate)) 5419 break; 5420 5421 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5422 dvar->dtdv_data, &v->dtdv_type); 5423 } else { 5424 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 5425 } 5426 5427 break; 5428 } 5429 5430 case DIF_OP_ALLOCS: { 5431 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5432 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 5433 5434 /* 5435 * Rounding up the user allocation size could have 5436 * overflowed large, bogus allocations (like -1ULL) to 5437 * 0. 5438 */ 5439 if (size < regs[r1] || 5440 !DTRACE_INSCRATCH(mstate, size)) { 5441 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5442 regs[rd] = NULL; 5443 break; 5444 } 5445 5446 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 5447 mstate->dtms_scratch_ptr += size; 5448 regs[rd] = ptr; 5449 break; 5450 } 5451 5452 case DIF_OP_COPYS: 5453 if (!dtrace_canstore(regs[rd], regs[r2], 5454 mstate, vstate)) { 5455 *flags |= CPU_DTRACE_BADADDR; 5456 *illval = regs[rd]; 5457 break; 5458 } 5459 5460 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 5461 break; 5462 5463 dtrace_bcopy((void *)(uintptr_t)regs[r1], 5464 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 5465 break; 5466 5467 case DIF_OP_STB: 5468 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 5469 *flags |= CPU_DTRACE_BADADDR; 5470 *illval = regs[rd]; 5471 break; 5472 } 5473 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 5474 break; 5475 5476 case DIF_OP_STH: 5477 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 5478 *flags |= CPU_DTRACE_BADADDR; 5479 *illval = regs[rd]; 5480 break; 5481 } 5482 if (regs[rd] & 1) { 5483 *flags |= CPU_DTRACE_BADALIGN; 5484 *illval = regs[rd]; 5485 break; 5486 } 5487 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 5488 break; 5489 5490 case DIF_OP_STW: 5491 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 5492 *flags |= CPU_DTRACE_BADADDR; 5493 *illval = regs[rd]; 5494 break; 5495 } 5496 if (regs[rd] & 3) { 5497 *flags |= CPU_DTRACE_BADALIGN; 5498 *illval = regs[rd]; 5499 break; 5500 } 5501 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 5502 break; 5503 5504 case DIF_OP_STX: 5505 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 5506 *flags |= CPU_DTRACE_BADADDR; 5507 *illval = regs[rd]; 5508 break; 5509 } 5510 if (regs[rd] & 7) { 5511 *flags |= CPU_DTRACE_BADALIGN; 5512 *illval = regs[rd]; 5513 break; 5514 } 5515 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 5516 break; 5517 } 5518 } 5519 5520 if (!(*flags & CPU_DTRACE_FAULT)) 5521 return (rval); 5522 5523 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 5524 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 5525 5526 return (0); 5527 } 5528 5529 static void 5530 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 5531 { 5532 dtrace_probe_t *probe = ecb->dte_probe; 5533 dtrace_provider_t *prov = probe->dtpr_provider; 5534 char c[DTRACE_FULLNAMELEN + 80], *str; 5535 char *msg = "dtrace: breakpoint action at probe "; 5536 char *ecbmsg = " (ecb "; 5537 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 5538 uintptr_t val = (uintptr_t)ecb; 5539 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 5540 5541 if (dtrace_destructive_disallow) 5542 return; 5543 5544 /* 5545 * It's impossible to be taking action on the NULL probe. 5546 */ 5547 ASSERT(probe != NULL); 5548 5549 /* 5550 * This is a poor man's (destitute man's?) sprintf(): we want to 5551 * print the provider name, module name, function name and name of 5552 * the probe, along with the hex address of the ECB with the breakpoint 5553 * action -- all of which we must place in the character buffer by 5554 * hand. 5555 */ 5556 while (*msg != '\0') 5557 c[i++] = *msg++; 5558 5559 for (str = prov->dtpv_name; *str != '\0'; str++) 5560 c[i++] = *str; 5561 c[i++] = ':'; 5562 5563 for (str = probe->dtpr_mod; *str != '\0'; str++) 5564 c[i++] = *str; 5565 c[i++] = ':'; 5566 5567 for (str = probe->dtpr_func; *str != '\0'; str++) 5568 c[i++] = *str; 5569 c[i++] = ':'; 5570 5571 for (str = probe->dtpr_name; *str != '\0'; str++) 5572 c[i++] = *str; 5573 5574 while (*ecbmsg != '\0') 5575 c[i++] = *ecbmsg++; 5576 5577 while (shift >= 0) { 5578 mask = (uintptr_t)0xf << shift; 5579 5580 if (val >= ((uintptr_t)1 << shift)) 5581 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 5582 shift -= 4; 5583 } 5584 5585 c[i++] = ')'; 5586 c[i] = '\0'; 5587 5588 debug_enter(c); 5589 } 5590 5591 static void 5592 dtrace_action_panic(dtrace_ecb_t *ecb) 5593 { 5594 dtrace_probe_t *probe = ecb->dte_probe; 5595 5596 /* 5597 * It's impossible to be taking action on the NULL probe. 5598 */ 5599 ASSERT(probe != NULL); 5600 5601 if (dtrace_destructive_disallow) 5602 return; 5603 5604 if (dtrace_panicked != NULL) 5605 return; 5606 5607 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 5608 return; 5609 5610 /* 5611 * We won the right to panic. (We want to be sure that only one 5612 * thread calls panic() from dtrace_probe(), and that panic() is 5613 * called exactly once.) 5614 */ 5615 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 5616 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 5617 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 5618 } 5619 5620 static void 5621 dtrace_action_raise(uint64_t sig) 5622 { 5623 if (dtrace_destructive_disallow) 5624 return; 5625 5626 if (sig >= NSIG) { 5627 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5628 return; 5629 } 5630 5631 /* 5632 * raise() has a queue depth of 1 -- we ignore all subsequent 5633 * invocations of the raise() action. 5634 */ 5635 if (curthread->t_dtrace_sig == 0) 5636 curthread->t_dtrace_sig = (uint8_t)sig; 5637 5638 curthread->t_sig_check = 1; 5639 aston(curthread); 5640 } 5641 5642 static void 5643 dtrace_action_stop(void) 5644 { 5645 if (dtrace_destructive_disallow) 5646 return; 5647 5648 if (!curthread->t_dtrace_stop) { 5649 curthread->t_dtrace_stop = 1; 5650 curthread->t_sig_check = 1; 5651 aston(curthread); 5652 } 5653 } 5654 5655 static void 5656 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 5657 { 5658 hrtime_t now; 5659 volatile uint16_t *flags; 5660 cpu_t *cpu = CPU; 5661 5662 if (dtrace_destructive_disallow) 5663 return; 5664 5665 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 5666 5667 now = dtrace_gethrtime(); 5668 5669 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 5670 /* 5671 * We need to advance the mark to the current time. 5672 */ 5673 cpu->cpu_dtrace_chillmark = now; 5674 cpu->cpu_dtrace_chilled = 0; 5675 } 5676 5677 /* 5678 * Now check to see if the requested chill time would take us over 5679 * the maximum amount of time allowed in the chill interval. (Or 5680 * worse, if the calculation itself induces overflow.) 5681 */ 5682 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 5683 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 5684 *flags |= CPU_DTRACE_ILLOP; 5685 return; 5686 } 5687 5688 while (dtrace_gethrtime() - now < val) 5689 continue; 5690 5691 /* 5692 * Normally, we assure that the value of the variable "timestamp" does 5693 * not change within an ECB. The presence of chill() represents an 5694 * exception to this rule, however. 5695 */ 5696 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 5697 cpu->cpu_dtrace_chilled += val; 5698 } 5699 5700 static void 5701 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 5702 uint64_t *buf, uint64_t arg) 5703 { 5704 int nframes = DTRACE_USTACK_NFRAMES(arg); 5705 int strsize = DTRACE_USTACK_STRSIZE(arg); 5706 uint64_t *pcs = &buf[1], *fps; 5707 char *str = (char *)&pcs[nframes]; 5708 int size, offs = 0, i, j; 5709 uintptr_t old = mstate->dtms_scratch_ptr, saved; 5710 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5711 char *sym; 5712 5713 /* 5714 * Should be taking a faster path if string space has not been 5715 * allocated. 5716 */ 5717 ASSERT(strsize != 0); 5718 5719 /* 5720 * We will first allocate some temporary space for the frame pointers. 5721 */ 5722 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 5723 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 5724 (nframes * sizeof (uint64_t)); 5725 5726 if (!DTRACE_INSCRATCH(mstate, size)) { 5727 /* 5728 * Not enough room for our frame pointers -- need to indicate 5729 * that we ran out of scratch space. 5730 */ 5731 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5732 return; 5733 } 5734 5735 mstate->dtms_scratch_ptr += size; 5736 saved = mstate->dtms_scratch_ptr; 5737 5738 /* 5739 * Now get a stack with both program counters and frame pointers. 5740 */ 5741 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5742 dtrace_getufpstack(buf, fps, nframes + 1); 5743 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5744 5745 /* 5746 * If that faulted, we're cooked. 5747 */ 5748 if (*flags & CPU_DTRACE_FAULT) 5749 goto out; 5750 5751 /* 5752 * Now we want to walk up the stack, calling the USTACK helper. For 5753 * each iteration, we restore the scratch pointer. 5754 */ 5755 for (i = 0; i < nframes; i++) { 5756 mstate->dtms_scratch_ptr = saved; 5757 5758 if (offs >= strsize) 5759 break; 5760 5761 sym = (char *)(uintptr_t)dtrace_helper( 5762 DTRACE_HELPER_ACTION_USTACK, 5763 mstate, state, pcs[i], fps[i]); 5764 5765 /* 5766 * If we faulted while running the helper, we're going to 5767 * clear the fault and null out the corresponding string. 5768 */ 5769 if (*flags & CPU_DTRACE_FAULT) { 5770 *flags &= ~CPU_DTRACE_FAULT; 5771 str[offs++] = '\0'; 5772 continue; 5773 } 5774 5775 if (sym == NULL) { 5776 str[offs++] = '\0'; 5777 continue; 5778 } 5779 5780 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5781 5782 /* 5783 * Now copy in the string that the helper returned to us. 5784 */ 5785 for (j = 0; offs + j < strsize; j++) { 5786 if ((str[offs + j] = sym[j]) == '\0') 5787 break; 5788 } 5789 5790 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5791 5792 offs += j + 1; 5793 } 5794 5795 if (offs >= strsize) { 5796 /* 5797 * If we didn't have room for all of the strings, we don't 5798 * abort processing -- this needn't be a fatal error -- but we 5799 * still want to increment a counter (dts_stkstroverflows) to 5800 * allow this condition to be warned about. (If this is from 5801 * a jstack() action, it is easily tuned via jstackstrsize.) 5802 */ 5803 dtrace_error(&state->dts_stkstroverflows); 5804 } 5805 5806 while (offs < strsize) 5807 str[offs++] = '\0'; 5808 5809 out: 5810 mstate->dtms_scratch_ptr = old; 5811 } 5812 5813 /* 5814 * If you're looking for the epicenter of DTrace, you just found it. This 5815 * is the function called by the provider to fire a probe -- from which all 5816 * subsequent probe-context DTrace activity emanates. 5817 */ 5818 void 5819 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 5820 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 5821 { 5822 processorid_t cpuid; 5823 dtrace_icookie_t cookie; 5824 dtrace_probe_t *probe; 5825 dtrace_mstate_t mstate; 5826 dtrace_ecb_t *ecb; 5827 dtrace_action_t *act; 5828 intptr_t offs; 5829 size_t size; 5830 int vtime, onintr; 5831 volatile uint16_t *flags; 5832 hrtime_t now; 5833 5834 /* 5835 * Kick out immediately if this CPU is still being born (in which case 5836 * curthread will be set to -1) or the current thread can't allow 5837 * probes in its current context. 5838 */ 5839 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 5840 return; 5841 5842 cookie = dtrace_interrupt_disable(); 5843 probe = dtrace_probes[id - 1]; 5844 cpuid = CPU->cpu_id; 5845 onintr = CPU_ON_INTR(CPU); 5846 5847 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 5848 probe->dtpr_predcache == curthread->t_predcache) { 5849 /* 5850 * We have hit in the predicate cache; we know that 5851 * this predicate would evaluate to be false. 5852 */ 5853 dtrace_interrupt_enable(cookie); 5854 return; 5855 } 5856 5857 if (panic_quiesce) { 5858 /* 5859 * We don't trace anything if we're panicking. 5860 */ 5861 dtrace_interrupt_enable(cookie); 5862 return; 5863 } 5864 5865 now = dtrace_gethrtime(); 5866 vtime = dtrace_vtime_references != 0; 5867 5868 if (vtime && curthread->t_dtrace_start) 5869 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 5870 5871 mstate.dtms_difo = NULL; 5872 mstate.dtms_probe = probe; 5873 mstate.dtms_strtok = NULL; 5874 mstate.dtms_arg[0] = arg0; 5875 mstate.dtms_arg[1] = arg1; 5876 mstate.dtms_arg[2] = arg2; 5877 mstate.dtms_arg[3] = arg3; 5878 mstate.dtms_arg[4] = arg4; 5879 5880 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 5881 5882 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 5883 dtrace_predicate_t *pred = ecb->dte_predicate; 5884 dtrace_state_t *state = ecb->dte_state; 5885 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 5886 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 5887 dtrace_vstate_t *vstate = &state->dts_vstate; 5888 dtrace_provider_t *prov = probe->dtpr_provider; 5889 uint64_t tracememsize = 0; 5890 int committed = 0; 5891 caddr_t tomax; 5892 5893 /* 5894 * A little subtlety with the following (seemingly innocuous) 5895 * declaration of the automatic 'val': by looking at the 5896 * code, you might think that it could be declared in the 5897 * action processing loop, below. (That is, it's only used in 5898 * the action processing loop.) However, it must be declared 5899 * out of that scope because in the case of DIF expression 5900 * arguments to aggregating actions, one iteration of the 5901 * action loop will use the last iteration's value. 5902 */ 5903 #ifdef lint 5904 uint64_t val = 0; 5905 #else 5906 uint64_t val; 5907 #endif 5908 5909 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 5910 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 5911 *flags &= ~CPU_DTRACE_ERROR; 5912 5913 if (prov == dtrace_provider) { 5914 /* 5915 * If dtrace itself is the provider of this probe, 5916 * we're only going to continue processing the ECB if 5917 * arg0 (the dtrace_state_t) is equal to the ECB's 5918 * creating state. (This prevents disjoint consumers 5919 * from seeing one another's metaprobes.) 5920 */ 5921 if (arg0 != (uint64_t)(uintptr_t)state) 5922 continue; 5923 } 5924 5925 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 5926 /* 5927 * We're not currently active. If our provider isn't 5928 * the dtrace pseudo provider, we're not interested. 5929 */ 5930 if (prov != dtrace_provider) 5931 continue; 5932 5933 /* 5934 * Now we must further check if we are in the BEGIN 5935 * probe. If we are, we will only continue processing 5936 * if we're still in WARMUP -- if one BEGIN enabling 5937 * has invoked the exit() action, we don't want to 5938 * evaluate subsequent BEGIN enablings. 5939 */ 5940 if (probe->dtpr_id == dtrace_probeid_begin && 5941 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 5942 ASSERT(state->dts_activity == 5943 DTRACE_ACTIVITY_DRAINING); 5944 continue; 5945 } 5946 } 5947 5948 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 5949 continue; 5950 5951 if (now - state->dts_alive > dtrace_deadman_timeout) { 5952 /* 5953 * We seem to be dead. Unless we (a) have kernel 5954 * destructive permissions (b) have expicitly enabled 5955 * destructive actions and (c) destructive actions have 5956 * not been disabled, we're going to transition into 5957 * the KILLED state, from which no further processing 5958 * on this state will be performed. 5959 */ 5960 if (!dtrace_priv_kernel_destructive(state) || 5961 !state->dts_cred.dcr_destructive || 5962 dtrace_destructive_disallow) { 5963 void *activity = &state->dts_activity; 5964 dtrace_activity_t current; 5965 5966 do { 5967 current = state->dts_activity; 5968 } while (dtrace_cas32(activity, current, 5969 DTRACE_ACTIVITY_KILLED) != current); 5970 5971 continue; 5972 } 5973 } 5974 5975 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 5976 ecb->dte_alignment, state, &mstate)) < 0) 5977 continue; 5978 5979 tomax = buf->dtb_tomax; 5980 ASSERT(tomax != NULL); 5981 5982 if (ecb->dte_size != 0) 5983 DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid); 5984 5985 mstate.dtms_epid = ecb->dte_epid; 5986 mstate.dtms_present |= DTRACE_MSTATE_EPID; 5987 5988 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 5989 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 5990 5991 if (pred != NULL) { 5992 dtrace_difo_t *dp = pred->dtp_difo; 5993 int rval; 5994 5995 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 5996 5997 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 5998 dtrace_cacheid_t cid = probe->dtpr_predcache; 5999 6000 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6001 /* 6002 * Update the predicate cache... 6003 */ 6004 ASSERT(cid == pred->dtp_cacheid); 6005 curthread->t_predcache = cid; 6006 } 6007 6008 continue; 6009 } 6010 } 6011 6012 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6013 act != NULL; act = act->dta_next) { 6014 size_t valoffs; 6015 dtrace_difo_t *dp; 6016 dtrace_recdesc_t *rec = &act->dta_rec; 6017 6018 size = rec->dtrd_size; 6019 valoffs = offs + rec->dtrd_offset; 6020 6021 if (DTRACEACT_ISAGG(act->dta_kind)) { 6022 uint64_t v = 0xbad; 6023 dtrace_aggregation_t *agg; 6024 6025 agg = (dtrace_aggregation_t *)act; 6026 6027 if ((dp = act->dta_difo) != NULL) 6028 v = dtrace_dif_emulate(dp, 6029 &mstate, vstate, state); 6030 6031 if (*flags & CPU_DTRACE_ERROR) 6032 continue; 6033 6034 /* 6035 * Note that we always pass the expression 6036 * value from the previous iteration of the 6037 * action loop. This value will only be used 6038 * if there is an expression argument to the 6039 * aggregating action, denoted by the 6040 * dtag_hasarg field. 6041 */ 6042 dtrace_aggregate(agg, buf, 6043 offs, aggbuf, v, val); 6044 continue; 6045 } 6046 6047 switch (act->dta_kind) { 6048 case DTRACEACT_STOP: 6049 if (dtrace_priv_proc_destructive(state, 6050 &mstate)) 6051 dtrace_action_stop(); 6052 continue; 6053 6054 case DTRACEACT_BREAKPOINT: 6055 if (dtrace_priv_kernel_destructive(state)) 6056 dtrace_action_breakpoint(ecb); 6057 continue; 6058 6059 case DTRACEACT_PANIC: 6060 if (dtrace_priv_kernel_destructive(state)) 6061 dtrace_action_panic(ecb); 6062 continue; 6063 6064 case DTRACEACT_STACK: 6065 if (!dtrace_priv_kernel(state)) 6066 continue; 6067 6068 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6069 size / sizeof (pc_t), probe->dtpr_aframes, 6070 DTRACE_ANCHORED(probe) ? NULL : 6071 (uint32_t *)arg0); 6072 6073 continue; 6074 6075 case DTRACEACT_JSTACK: 6076 case DTRACEACT_USTACK: 6077 if (!dtrace_priv_proc(state, &mstate)) 6078 continue; 6079 6080 /* 6081 * See comment in DIF_VAR_PID. 6082 */ 6083 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6084 CPU_ON_INTR(CPU)) { 6085 int depth = DTRACE_USTACK_NFRAMES( 6086 rec->dtrd_arg) + 1; 6087 6088 dtrace_bzero((void *)(tomax + valoffs), 6089 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6090 + depth * sizeof (uint64_t)); 6091 6092 continue; 6093 } 6094 6095 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6096 curproc->p_dtrace_helpers != NULL) { 6097 /* 6098 * This is the slow path -- we have 6099 * allocated string space, and we're 6100 * getting the stack of a process that 6101 * has helpers. Call into a separate 6102 * routine to perform this processing. 6103 */ 6104 dtrace_action_ustack(&mstate, state, 6105 (uint64_t *)(tomax + valoffs), 6106 rec->dtrd_arg); 6107 continue; 6108 } 6109 6110 /* 6111 * Clear the string space, since there's no 6112 * helper to do it for us. 6113 */ 6114 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6115 int depth = DTRACE_USTACK_NFRAMES( 6116 rec->dtrd_arg); 6117 size_t strsize = DTRACE_USTACK_STRSIZE( 6118 rec->dtrd_arg); 6119 uint64_t *buf = (uint64_t *)(tomax + 6120 valoffs); 6121 void *strspace = &buf[depth + 1]; 6122 6123 dtrace_bzero(strspace, 6124 MIN(depth, strsize)); 6125 } 6126 6127 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6128 dtrace_getupcstack((uint64_t *) 6129 (tomax + valoffs), 6130 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6131 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6132 continue; 6133 6134 default: 6135 break; 6136 } 6137 6138 dp = act->dta_difo; 6139 ASSERT(dp != NULL); 6140 6141 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6142 6143 if (*flags & CPU_DTRACE_ERROR) 6144 continue; 6145 6146 switch (act->dta_kind) { 6147 case DTRACEACT_SPECULATE: 6148 ASSERT(buf == &state->dts_buffer[cpuid]); 6149 buf = dtrace_speculation_buffer(state, 6150 cpuid, val); 6151 6152 if (buf == NULL) { 6153 *flags |= CPU_DTRACE_DROP; 6154 continue; 6155 } 6156 6157 offs = dtrace_buffer_reserve(buf, 6158 ecb->dte_needed, ecb->dte_alignment, 6159 state, NULL); 6160 6161 if (offs < 0) { 6162 *flags |= CPU_DTRACE_DROP; 6163 continue; 6164 } 6165 6166 tomax = buf->dtb_tomax; 6167 ASSERT(tomax != NULL); 6168 6169 if (ecb->dte_size != 0) 6170 DTRACE_STORE(uint32_t, tomax, offs, 6171 ecb->dte_epid); 6172 continue; 6173 6174 case DTRACEACT_CHILL: 6175 if (dtrace_priv_kernel_destructive(state)) 6176 dtrace_action_chill(&mstate, val); 6177 continue; 6178 6179 case DTRACEACT_RAISE: 6180 if (dtrace_priv_proc_destructive(state, 6181 &mstate)) 6182 dtrace_action_raise(val); 6183 continue; 6184 6185 case DTRACEACT_COMMIT: 6186 ASSERT(!committed); 6187 6188 /* 6189 * We need to commit our buffer state. 6190 */ 6191 if (ecb->dte_size) 6192 buf->dtb_offset = offs + ecb->dte_size; 6193 buf = &state->dts_buffer[cpuid]; 6194 dtrace_speculation_commit(state, cpuid, val); 6195 committed = 1; 6196 continue; 6197 6198 case DTRACEACT_DISCARD: 6199 dtrace_speculation_discard(state, cpuid, val); 6200 continue; 6201 6202 case DTRACEACT_DIFEXPR: 6203 case DTRACEACT_LIBACT: 6204 case DTRACEACT_PRINTF: 6205 case DTRACEACT_PRINTA: 6206 case DTRACEACT_SYSTEM: 6207 case DTRACEACT_FREOPEN: 6208 case DTRACEACT_TRACEMEM: 6209 break; 6210 6211 case DTRACEACT_TRACEMEM_DYNSIZE: 6212 tracememsize = val; 6213 break; 6214 6215 case DTRACEACT_SYM: 6216 case DTRACEACT_MOD: 6217 if (!dtrace_priv_kernel(state)) 6218 continue; 6219 break; 6220 6221 case DTRACEACT_USYM: 6222 case DTRACEACT_UMOD: 6223 case DTRACEACT_UADDR: { 6224 struct pid *pid = curthread->t_procp->p_pidp; 6225 6226 if (!dtrace_priv_proc(state, &mstate)) 6227 continue; 6228 6229 DTRACE_STORE(uint64_t, tomax, 6230 valoffs, (uint64_t)pid->pid_id); 6231 DTRACE_STORE(uint64_t, tomax, 6232 valoffs + sizeof (uint64_t), val); 6233 6234 continue; 6235 } 6236 6237 case DTRACEACT_EXIT: { 6238 /* 6239 * For the exit action, we are going to attempt 6240 * to atomically set our activity to be 6241 * draining. If this fails (either because 6242 * another CPU has beat us to the exit action, 6243 * or because our current activity is something 6244 * other than ACTIVE or WARMUP), we will 6245 * continue. This assures that the exit action 6246 * can be successfully recorded at most once 6247 * when we're in the ACTIVE state. If we're 6248 * encountering the exit() action while in 6249 * COOLDOWN, however, we want to honor the new 6250 * status code. (We know that we're the only 6251 * thread in COOLDOWN, so there is no race.) 6252 */ 6253 void *activity = &state->dts_activity; 6254 dtrace_activity_t current = state->dts_activity; 6255 6256 if (current == DTRACE_ACTIVITY_COOLDOWN) 6257 break; 6258 6259 if (current != DTRACE_ACTIVITY_WARMUP) 6260 current = DTRACE_ACTIVITY_ACTIVE; 6261 6262 if (dtrace_cas32(activity, current, 6263 DTRACE_ACTIVITY_DRAINING) != current) { 6264 *flags |= CPU_DTRACE_DROP; 6265 continue; 6266 } 6267 6268 break; 6269 } 6270 6271 default: 6272 ASSERT(0); 6273 } 6274 6275 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) { 6276 uintptr_t end = valoffs + size; 6277 6278 if (tracememsize != 0 && 6279 valoffs + tracememsize < end) { 6280 end = valoffs + tracememsize; 6281 tracememsize = 0; 6282 } 6283 6284 if (!dtrace_vcanload((void *)(uintptr_t)val, 6285 &dp->dtdo_rtype, &mstate, vstate)) 6286 continue; 6287 6288 /* 6289 * If this is a string, we're going to only 6290 * load until we find the zero byte -- after 6291 * which we'll store zero bytes. 6292 */ 6293 if (dp->dtdo_rtype.dtdt_kind == 6294 DIF_TYPE_STRING) { 6295 char c = '\0' + 1; 6296 int intuple = act->dta_intuple; 6297 size_t s; 6298 6299 for (s = 0; s < size; s++) { 6300 if (c != '\0') 6301 c = dtrace_load8(val++); 6302 6303 DTRACE_STORE(uint8_t, tomax, 6304 valoffs++, c); 6305 6306 if (c == '\0' && intuple) 6307 break; 6308 } 6309 6310 continue; 6311 } 6312 6313 while (valoffs < end) { 6314 DTRACE_STORE(uint8_t, tomax, valoffs++, 6315 dtrace_load8(val++)); 6316 } 6317 6318 continue; 6319 } 6320 6321 switch (size) { 6322 case 0: 6323 break; 6324 6325 case sizeof (uint8_t): 6326 DTRACE_STORE(uint8_t, tomax, valoffs, val); 6327 break; 6328 case sizeof (uint16_t): 6329 DTRACE_STORE(uint16_t, tomax, valoffs, val); 6330 break; 6331 case sizeof (uint32_t): 6332 DTRACE_STORE(uint32_t, tomax, valoffs, val); 6333 break; 6334 case sizeof (uint64_t): 6335 DTRACE_STORE(uint64_t, tomax, valoffs, val); 6336 break; 6337 default: 6338 /* 6339 * Any other size should have been returned by 6340 * reference, not by value. 6341 */ 6342 ASSERT(0); 6343 break; 6344 } 6345 } 6346 6347 if (*flags & CPU_DTRACE_DROP) 6348 continue; 6349 6350 if (*flags & CPU_DTRACE_FAULT) { 6351 int ndx; 6352 dtrace_action_t *err; 6353 6354 buf->dtb_errors++; 6355 6356 if (probe->dtpr_id == dtrace_probeid_error) { 6357 /* 6358 * There's nothing we can do -- we had an 6359 * error on the error probe. We bump an 6360 * error counter to at least indicate that 6361 * this condition happened. 6362 */ 6363 dtrace_error(&state->dts_dblerrors); 6364 continue; 6365 } 6366 6367 if (vtime) { 6368 /* 6369 * Before recursing on dtrace_probe(), we 6370 * need to explicitly clear out our start 6371 * time to prevent it from being accumulated 6372 * into t_dtrace_vtime. 6373 */ 6374 curthread->t_dtrace_start = 0; 6375 } 6376 6377 /* 6378 * Iterate over the actions to figure out which action 6379 * we were processing when we experienced the error. 6380 * Note that act points _past_ the faulting action; if 6381 * act is ecb->dte_action, the fault was in the 6382 * predicate, if it's ecb->dte_action->dta_next it's 6383 * in action #1, and so on. 6384 */ 6385 for (err = ecb->dte_action, ndx = 0; 6386 err != act; err = err->dta_next, ndx++) 6387 continue; 6388 6389 dtrace_probe_error(state, ecb->dte_epid, ndx, 6390 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 6391 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 6392 cpu_core[cpuid].cpuc_dtrace_illval); 6393 6394 continue; 6395 } 6396 6397 if (!committed) 6398 buf->dtb_offset = offs + ecb->dte_size; 6399 } 6400 6401 if (vtime) 6402 curthread->t_dtrace_start = dtrace_gethrtime(); 6403 6404 dtrace_interrupt_enable(cookie); 6405 } 6406 6407 /* 6408 * DTrace Probe Hashing Functions 6409 * 6410 * The functions in this section (and indeed, the functions in remaining 6411 * sections) are not _called_ from probe context. (Any exceptions to this are 6412 * marked with a "Note:".) Rather, they are called from elsewhere in the 6413 * DTrace framework to look-up probes in, add probes to and remove probes from 6414 * the DTrace probe hashes. (Each probe is hashed by each element of the 6415 * probe tuple -- allowing for fast lookups, regardless of what was 6416 * specified.) 6417 */ 6418 static uint_t 6419 dtrace_hash_str(char *p) 6420 { 6421 unsigned int g; 6422 uint_t hval = 0; 6423 6424 while (*p) { 6425 hval = (hval << 4) + *p++; 6426 if ((g = (hval & 0xf0000000)) != 0) 6427 hval ^= g >> 24; 6428 hval &= ~g; 6429 } 6430 return (hval); 6431 } 6432 6433 static dtrace_hash_t * 6434 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 6435 { 6436 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 6437 6438 hash->dth_stroffs = stroffs; 6439 hash->dth_nextoffs = nextoffs; 6440 hash->dth_prevoffs = prevoffs; 6441 6442 hash->dth_size = 1; 6443 hash->dth_mask = hash->dth_size - 1; 6444 6445 hash->dth_tab = kmem_zalloc(hash->dth_size * 6446 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 6447 6448 return (hash); 6449 } 6450 6451 static void 6452 dtrace_hash_destroy(dtrace_hash_t *hash) 6453 { 6454 #ifdef DEBUG 6455 int i; 6456 6457 for (i = 0; i < hash->dth_size; i++) 6458 ASSERT(hash->dth_tab[i] == NULL); 6459 #endif 6460 6461 kmem_free(hash->dth_tab, 6462 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 6463 kmem_free(hash, sizeof (dtrace_hash_t)); 6464 } 6465 6466 static void 6467 dtrace_hash_resize(dtrace_hash_t *hash) 6468 { 6469 int size = hash->dth_size, i, ndx; 6470 int new_size = hash->dth_size << 1; 6471 int new_mask = new_size - 1; 6472 dtrace_hashbucket_t **new_tab, *bucket, *next; 6473 6474 ASSERT((new_size & new_mask) == 0); 6475 6476 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 6477 6478 for (i = 0; i < size; i++) { 6479 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 6480 dtrace_probe_t *probe = bucket->dthb_chain; 6481 6482 ASSERT(probe != NULL); 6483 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 6484 6485 next = bucket->dthb_next; 6486 bucket->dthb_next = new_tab[ndx]; 6487 new_tab[ndx] = bucket; 6488 } 6489 } 6490 6491 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 6492 hash->dth_tab = new_tab; 6493 hash->dth_size = new_size; 6494 hash->dth_mask = new_mask; 6495 } 6496 6497 static void 6498 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 6499 { 6500 int hashval = DTRACE_HASHSTR(hash, new); 6501 int ndx = hashval & hash->dth_mask; 6502 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6503 dtrace_probe_t **nextp, **prevp; 6504 6505 for (; bucket != NULL; bucket = bucket->dthb_next) { 6506 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 6507 goto add; 6508 } 6509 6510 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 6511 dtrace_hash_resize(hash); 6512 dtrace_hash_add(hash, new); 6513 return; 6514 } 6515 6516 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 6517 bucket->dthb_next = hash->dth_tab[ndx]; 6518 hash->dth_tab[ndx] = bucket; 6519 hash->dth_nbuckets++; 6520 6521 add: 6522 nextp = DTRACE_HASHNEXT(hash, new); 6523 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 6524 *nextp = bucket->dthb_chain; 6525 6526 if (bucket->dthb_chain != NULL) { 6527 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 6528 ASSERT(*prevp == NULL); 6529 *prevp = new; 6530 } 6531 6532 bucket->dthb_chain = new; 6533 bucket->dthb_len++; 6534 } 6535 6536 static dtrace_probe_t * 6537 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 6538 { 6539 int hashval = DTRACE_HASHSTR(hash, template); 6540 int ndx = hashval & hash->dth_mask; 6541 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6542 6543 for (; bucket != NULL; bucket = bucket->dthb_next) { 6544 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6545 return (bucket->dthb_chain); 6546 } 6547 6548 return (NULL); 6549 } 6550 6551 static int 6552 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 6553 { 6554 int hashval = DTRACE_HASHSTR(hash, template); 6555 int ndx = hashval & hash->dth_mask; 6556 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6557 6558 for (; bucket != NULL; bucket = bucket->dthb_next) { 6559 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 6560 return (bucket->dthb_len); 6561 } 6562 6563 return (NULL); 6564 } 6565 6566 static void 6567 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 6568 { 6569 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 6570 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 6571 6572 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 6573 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 6574 6575 /* 6576 * Find the bucket that we're removing this probe from. 6577 */ 6578 for (; bucket != NULL; bucket = bucket->dthb_next) { 6579 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 6580 break; 6581 } 6582 6583 ASSERT(bucket != NULL); 6584 6585 if (*prevp == NULL) { 6586 if (*nextp == NULL) { 6587 /* 6588 * The removed probe was the only probe on this 6589 * bucket; we need to remove the bucket. 6590 */ 6591 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 6592 6593 ASSERT(bucket->dthb_chain == probe); 6594 ASSERT(b != NULL); 6595 6596 if (b == bucket) { 6597 hash->dth_tab[ndx] = bucket->dthb_next; 6598 } else { 6599 while (b->dthb_next != bucket) 6600 b = b->dthb_next; 6601 b->dthb_next = bucket->dthb_next; 6602 } 6603 6604 ASSERT(hash->dth_nbuckets > 0); 6605 hash->dth_nbuckets--; 6606 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 6607 return; 6608 } 6609 6610 bucket->dthb_chain = *nextp; 6611 } else { 6612 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 6613 } 6614 6615 if (*nextp != NULL) 6616 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 6617 } 6618 6619 /* 6620 * DTrace Utility Functions 6621 * 6622 * These are random utility functions that are _not_ called from probe context. 6623 */ 6624 static int 6625 dtrace_badattr(const dtrace_attribute_t *a) 6626 { 6627 return (a->dtat_name > DTRACE_STABILITY_MAX || 6628 a->dtat_data > DTRACE_STABILITY_MAX || 6629 a->dtat_class > DTRACE_CLASS_MAX); 6630 } 6631 6632 /* 6633 * Return a duplicate copy of a string. If the specified string is NULL, 6634 * this function returns a zero-length string. 6635 */ 6636 static char * 6637 dtrace_strdup(const char *str) 6638 { 6639 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 6640 6641 if (str != NULL) 6642 (void) strcpy(new, str); 6643 6644 return (new); 6645 } 6646 6647 #define DTRACE_ISALPHA(c) \ 6648 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 6649 6650 static int 6651 dtrace_badname(const char *s) 6652 { 6653 char c; 6654 6655 if (s == NULL || (c = *s++) == '\0') 6656 return (0); 6657 6658 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 6659 return (1); 6660 6661 while ((c = *s++) != '\0') { 6662 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 6663 c != '-' && c != '_' && c != '.' && c != '`') 6664 return (1); 6665 } 6666 6667 return (0); 6668 } 6669 6670 static void 6671 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 6672 { 6673 uint32_t priv; 6674 6675 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 6676 /* 6677 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 6678 */ 6679 priv = DTRACE_PRIV_ALL; 6680 } else { 6681 *uidp = crgetuid(cr); 6682 *zoneidp = crgetzoneid(cr); 6683 6684 priv = 0; 6685 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 6686 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 6687 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 6688 priv |= DTRACE_PRIV_USER; 6689 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 6690 priv |= DTRACE_PRIV_PROC; 6691 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 6692 priv |= DTRACE_PRIV_OWNER; 6693 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 6694 priv |= DTRACE_PRIV_ZONEOWNER; 6695 } 6696 6697 *privp = priv; 6698 } 6699 6700 #ifdef DTRACE_ERRDEBUG 6701 static void 6702 dtrace_errdebug(const char *str) 6703 { 6704 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 6705 int occupied = 0; 6706 6707 mutex_enter(&dtrace_errlock); 6708 dtrace_errlast = str; 6709 dtrace_errthread = curthread; 6710 6711 while (occupied++ < DTRACE_ERRHASHSZ) { 6712 if (dtrace_errhash[hval].dter_msg == str) { 6713 dtrace_errhash[hval].dter_count++; 6714 goto out; 6715 } 6716 6717 if (dtrace_errhash[hval].dter_msg != NULL) { 6718 hval = (hval + 1) % DTRACE_ERRHASHSZ; 6719 continue; 6720 } 6721 6722 dtrace_errhash[hval].dter_msg = str; 6723 dtrace_errhash[hval].dter_count = 1; 6724 goto out; 6725 } 6726 6727 panic("dtrace: undersized error hash"); 6728 out: 6729 mutex_exit(&dtrace_errlock); 6730 } 6731 #endif 6732 6733 /* 6734 * DTrace Matching Functions 6735 * 6736 * These functions are used to match groups of probes, given some elements of 6737 * a probe tuple, or some globbed expressions for elements of a probe tuple. 6738 */ 6739 static int 6740 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 6741 zoneid_t zoneid) 6742 { 6743 if (priv != DTRACE_PRIV_ALL) { 6744 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 6745 uint32_t match = priv & ppriv; 6746 6747 /* 6748 * No PRIV_DTRACE_* privileges... 6749 */ 6750 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 6751 DTRACE_PRIV_KERNEL)) == 0) 6752 return (0); 6753 6754 /* 6755 * No matching bits, but there were bits to match... 6756 */ 6757 if (match == 0 && ppriv != 0) 6758 return (0); 6759 6760 /* 6761 * Need to have permissions to the process, but don't... 6762 */ 6763 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 6764 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 6765 return (0); 6766 } 6767 6768 /* 6769 * Need to be in the same zone unless we possess the 6770 * privilege to examine all zones. 6771 */ 6772 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 6773 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 6774 return (0); 6775 } 6776 } 6777 6778 return (1); 6779 } 6780 6781 /* 6782 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 6783 * consists of input pattern strings and an ops-vector to evaluate them. 6784 * This function returns >0 for match, 0 for no match, and <0 for error. 6785 */ 6786 static int 6787 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 6788 uint32_t priv, uid_t uid, zoneid_t zoneid) 6789 { 6790 dtrace_provider_t *pvp = prp->dtpr_provider; 6791 int rv; 6792 6793 if (pvp->dtpv_defunct) 6794 return (0); 6795 6796 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 6797 return (rv); 6798 6799 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 6800 return (rv); 6801 6802 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 6803 return (rv); 6804 6805 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 6806 return (rv); 6807 6808 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 6809 return (0); 6810 6811 return (rv); 6812 } 6813 6814 /* 6815 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 6816 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 6817 * libc's version, the kernel version only applies to 8-bit ASCII strings. 6818 * In addition, all of the recursion cases except for '*' matching have been 6819 * unwound. For '*', we still implement recursive evaluation, but a depth 6820 * counter is maintained and matching is aborted if we recurse too deep. 6821 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 6822 */ 6823 static int 6824 dtrace_match_glob(const char *s, const char *p, int depth) 6825 { 6826 const char *olds; 6827 char s1, c; 6828 int gs; 6829 6830 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 6831 return (-1); 6832 6833 if (s == NULL) 6834 s = ""; /* treat NULL as empty string */ 6835 6836 top: 6837 olds = s; 6838 s1 = *s++; 6839 6840 if (p == NULL) 6841 return (0); 6842 6843 if ((c = *p++) == '\0') 6844 return (s1 == '\0'); 6845 6846 switch (c) { 6847 case '[': { 6848 int ok = 0, notflag = 0; 6849 char lc = '\0'; 6850 6851 if (s1 == '\0') 6852 return (0); 6853 6854 if (*p == '!') { 6855 notflag = 1; 6856 p++; 6857 } 6858 6859 if ((c = *p++) == '\0') 6860 return (0); 6861 6862 do { 6863 if (c == '-' && lc != '\0' && *p != ']') { 6864 if ((c = *p++) == '\0') 6865 return (0); 6866 if (c == '\\' && (c = *p++) == '\0') 6867 return (0); 6868 6869 if (notflag) { 6870 if (s1 < lc || s1 > c) 6871 ok++; 6872 else 6873 return (0); 6874 } else if (lc <= s1 && s1 <= c) 6875 ok++; 6876 6877 } else if (c == '\\' && (c = *p++) == '\0') 6878 return (0); 6879 6880 lc = c; /* save left-hand 'c' for next iteration */ 6881 6882 if (notflag) { 6883 if (s1 != c) 6884 ok++; 6885 else 6886 return (0); 6887 } else if (s1 == c) 6888 ok++; 6889 6890 if ((c = *p++) == '\0') 6891 return (0); 6892 6893 } while (c != ']'); 6894 6895 if (ok) 6896 goto top; 6897 6898 return (0); 6899 } 6900 6901 case '\\': 6902 if ((c = *p++) == '\0') 6903 return (0); 6904 /*FALLTHRU*/ 6905 6906 default: 6907 if (c != s1) 6908 return (0); 6909 /*FALLTHRU*/ 6910 6911 case '?': 6912 if (s1 != '\0') 6913 goto top; 6914 return (0); 6915 6916 case '*': 6917 while (*p == '*') 6918 p++; /* consecutive *'s are identical to a single one */ 6919 6920 if (*p == '\0') 6921 return (1); 6922 6923 for (s = olds; *s != '\0'; s++) { 6924 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 6925 return (gs); 6926 } 6927 6928 return (0); 6929 } 6930 } 6931 6932 /*ARGSUSED*/ 6933 static int 6934 dtrace_match_string(const char *s, const char *p, int depth) 6935 { 6936 return (s != NULL && strcmp(s, p) == 0); 6937 } 6938 6939 /*ARGSUSED*/ 6940 static int 6941 dtrace_match_nul(const char *s, const char *p, int depth) 6942 { 6943 return (1); /* always match the empty pattern */ 6944 } 6945 6946 /*ARGSUSED*/ 6947 static int 6948 dtrace_match_nonzero(const char *s, const char *p, int depth) 6949 { 6950 return (s != NULL && s[0] != '\0'); 6951 } 6952 6953 static int 6954 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 6955 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 6956 { 6957 dtrace_probe_t template, *probe; 6958 dtrace_hash_t *hash = NULL; 6959 int len, rc, best = INT_MAX, nmatched = 0; 6960 dtrace_id_t i; 6961 6962 ASSERT(MUTEX_HELD(&dtrace_lock)); 6963 6964 /* 6965 * If the probe ID is specified in the key, just lookup by ID and 6966 * invoke the match callback once if a matching probe is found. 6967 */ 6968 if (pkp->dtpk_id != DTRACE_IDNONE) { 6969 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 6970 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 6971 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 6972 return (DTRACE_MATCH_FAIL); 6973 nmatched++; 6974 } 6975 return (nmatched); 6976 } 6977 6978 template.dtpr_mod = (char *)pkp->dtpk_mod; 6979 template.dtpr_func = (char *)pkp->dtpk_func; 6980 template.dtpr_name = (char *)pkp->dtpk_name; 6981 6982 /* 6983 * We want to find the most distinct of the module name, function 6984 * name, and name. So for each one that is not a glob pattern or 6985 * empty string, we perform a lookup in the corresponding hash and 6986 * use the hash table with the fewest collisions to do our search. 6987 */ 6988 if (pkp->dtpk_mmatch == &dtrace_match_string && 6989 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 6990 best = len; 6991 hash = dtrace_bymod; 6992 } 6993 6994 if (pkp->dtpk_fmatch == &dtrace_match_string && 6995 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 6996 best = len; 6997 hash = dtrace_byfunc; 6998 } 6999 7000 if (pkp->dtpk_nmatch == &dtrace_match_string && 7001 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7002 best = len; 7003 hash = dtrace_byname; 7004 } 7005 7006 /* 7007 * If we did not select a hash table, iterate over every probe and 7008 * invoke our callback for each one that matches our input probe key. 7009 */ 7010 if (hash == NULL) { 7011 for (i = 0; i < dtrace_nprobes; i++) { 7012 if ((probe = dtrace_probes[i]) == NULL || 7013 dtrace_match_probe(probe, pkp, priv, uid, 7014 zoneid) <= 0) 7015 continue; 7016 7017 nmatched++; 7018 7019 if ((rc = (*matched)(probe, arg)) != 7020 DTRACE_MATCH_NEXT) { 7021 if (rc == DTRACE_MATCH_FAIL) 7022 return (DTRACE_MATCH_FAIL); 7023 break; 7024 } 7025 } 7026 7027 return (nmatched); 7028 } 7029 7030 /* 7031 * If we selected a hash table, iterate over each probe of the same key 7032 * name and invoke the callback for every probe that matches the other 7033 * attributes of our input probe key. 7034 */ 7035 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7036 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7037 7038 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7039 continue; 7040 7041 nmatched++; 7042 7043 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7044 if (rc == DTRACE_MATCH_FAIL) 7045 return (DTRACE_MATCH_FAIL); 7046 break; 7047 } 7048 } 7049 7050 return (nmatched); 7051 } 7052 7053 /* 7054 * Return the function pointer dtrace_probecmp() should use to compare the 7055 * specified pattern with a string. For NULL or empty patterns, we select 7056 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7057 * For non-empty non-glob strings, we use dtrace_match_string(). 7058 */ 7059 static dtrace_probekey_f * 7060 dtrace_probekey_func(const char *p) 7061 { 7062 char c; 7063 7064 if (p == NULL || *p == '\0') 7065 return (&dtrace_match_nul); 7066 7067 while ((c = *p++) != '\0') { 7068 if (c == '[' || c == '?' || c == '*' || c == '\\') 7069 return (&dtrace_match_glob); 7070 } 7071 7072 return (&dtrace_match_string); 7073 } 7074 7075 /* 7076 * Build a probe comparison key for use with dtrace_match_probe() from the 7077 * given probe description. By convention, a null key only matches anchored 7078 * probes: if each field is the empty string, reset dtpk_fmatch to 7079 * dtrace_match_nonzero(). 7080 */ 7081 static void 7082 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7083 { 7084 pkp->dtpk_prov = pdp->dtpd_provider; 7085 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7086 7087 pkp->dtpk_mod = pdp->dtpd_mod; 7088 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7089 7090 pkp->dtpk_func = pdp->dtpd_func; 7091 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7092 7093 pkp->dtpk_name = pdp->dtpd_name; 7094 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7095 7096 pkp->dtpk_id = pdp->dtpd_id; 7097 7098 if (pkp->dtpk_id == DTRACE_IDNONE && 7099 pkp->dtpk_pmatch == &dtrace_match_nul && 7100 pkp->dtpk_mmatch == &dtrace_match_nul && 7101 pkp->dtpk_fmatch == &dtrace_match_nul && 7102 pkp->dtpk_nmatch == &dtrace_match_nul) 7103 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7104 } 7105 7106 /* 7107 * DTrace Provider-to-Framework API Functions 7108 * 7109 * These functions implement much of the Provider-to-Framework API, as 7110 * described in <sys/dtrace.h>. The parts of the API not in this section are 7111 * the functions in the API for probe management (found below), and 7112 * dtrace_probe() itself (found above). 7113 */ 7114 7115 /* 7116 * Register the calling provider with the DTrace framework. This should 7117 * generally be called by DTrace providers in their attach(9E) entry point. 7118 */ 7119 int 7120 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7121 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7122 { 7123 dtrace_provider_t *provider; 7124 7125 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7126 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7127 "arguments", name ? name : "<NULL>"); 7128 return (EINVAL); 7129 } 7130 7131 if (name[0] == '\0' || dtrace_badname(name)) { 7132 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7133 "provider name", name); 7134 return (EINVAL); 7135 } 7136 7137 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7138 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7139 pops->dtps_destroy == NULL || 7140 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7141 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7142 "provider ops", name); 7143 return (EINVAL); 7144 } 7145 7146 if (dtrace_badattr(&pap->dtpa_provider) || 7147 dtrace_badattr(&pap->dtpa_mod) || 7148 dtrace_badattr(&pap->dtpa_func) || 7149 dtrace_badattr(&pap->dtpa_name) || 7150 dtrace_badattr(&pap->dtpa_args)) { 7151 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7152 "provider attributes", name); 7153 return (EINVAL); 7154 } 7155 7156 if (priv & ~DTRACE_PRIV_ALL) { 7157 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7158 "privilege attributes", name); 7159 return (EINVAL); 7160 } 7161 7162 if ((priv & DTRACE_PRIV_KERNEL) && 7163 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7164 pops->dtps_mode == NULL) { 7165 cmn_err(CE_WARN, "failed to register provider '%s': need " 7166 "dtps_mode() op for given privilege attributes", name); 7167 return (EINVAL); 7168 } 7169 7170 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7171 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7172 (void) strcpy(provider->dtpv_name, name); 7173 7174 provider->dtpv_attr = *pap; 7175 provider->dtpv_priv.dtpp_flags = priv; 7176 if (cr != NULL) { 7177 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 7178 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 7179 } 7180 provider->dtpv_pops = *pops; 7181 7182 if (pops->dtps_provide == NULL) { 7183 ASSERT(pops->dtps_provide_module != NULL); 7184 provider->dtpv_pops.dtps_provide = 7185 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 7186 } 7187 7188 if (pops->dtps_provide_module == NULL) { 7189 ASSERT(pops->dtps_provide != NULL); 7190 provider->dtpv_pops.dtps_provide_module = 7191 (void (*)(void *, struct modctl *))dtrace_nullop; 7192 } 7193 7194 if (pops->dtps_suspend == NULL) { 7195 ASSERT(pops->dtps_resume == NULL); 7196 provider->dtpv_pops.dtps_suspend = 7197 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7198 provider->dtpv_pops.dtps_resume = 7199 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 7200 } 7201 7202 provider->dtpv_arg = arg; 7203 *idp = (dtrace_provider_id_t)provider; 7204 7205 if (pops == &dtrace_provider_ops) { 7206 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7207 ASSERT(MUTEX_HELD(&dtrace_lock)); 7208 ASSERT(dtrace_anon.dta_enabling == NULL); 7209 7210 /* 7211 * We make sure that the DTrace provider is at the head of 7212 * the provider chain. 7213 */ 7214 provider->dtpv_next = dtrace_provider; 7215 dtrace_provider = provider; 7216 return (0); 7217 } 7218 7219 mutex_enter(&dtrace_provider_lock); 7220 mutex_enter(&dtrace_lock); 7221 7222 /* 7223 * If there is at least one provider registered, we'll add this 7224 * provider after the first provider. 7225 */ 7226 if (dtrace_provider != NULL) { 7227 provider->dtpv_next = dtrace_provider->dtpv_next; 7228 dtrace_provider->dtpv_next = provider; 7229 } else { 7230 dtrace_provider = provider; 7231 } 7232 7233 if (dtrace_retained != NULL) { 7234 dtrace_enabling_provide(provider); 7235 7236 /* 7237 * Now we need to call dtrace_enabling_matchall() -- which 7238 * will acquire cpu_lock and dtrace_lock. We therefore need 7239 * to drop all of our locks before calling into it... 7240 */ 7241 mutex_exit(&dtrace_lock); 7242 mutex_exit(&dtrace_provider_lock); 7243 dtrace_enabling_matchall(); 7244 7245 return (0); 7246 } 7247 7248 mutex_exit(&dtrace_lock); 7249 mutex_exit(&dtrace_provider_lock); 7250 7251 return (0); 7252 } 7253 7254 /* 7255 * Unregister the specified provider from the DTrace framework. This should 7256 * generally be called by DTrace providers in their detach(9E) entry point. 7257 */ 7258 int 7259 dtrace_unregister(dtrace_provider_id_t id) 7260 { 7261 dtrace_provider_t *old = (dtrace_provider_t *)id; 7262 dtrace_provider_t *prev = NULL; 7263 int i, self = 0, noreap = 0; 7264 dtrace_probe_t *probe, *first = NULL; 7265 7266 if (old->dtpv_pops.dtps_enable == 7267 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 7268 /* 7269 * If DTrace itself is the provider, we're called with locks 7270 * already held. 7271 */ 7272 ASSERT(old == dtrace_provider); 7273 ASSERT(dtrace_devi != NULL); 7274 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7275 ASSERT(MUTEX_HELD(&dtrace_lock)); 7276 self = 1; 7277 7278 if (dtrace_provider->dtpv_next != NULL) { 7279 /* 7280 * There's another provider here; return failure. 7281 */ 7282 return (EBUSY); 7283 } 7284 } else { 7285 mutex_enter(&dtrace_provider_lock); 7286 mutex_enter(&mod_lock); 7287 mutex_enter(&dtrace_lock); 7288 } 7289 7290 /* 7291 * If anyone has /dev/dtrace open, or if there are anonymous enabled 7292 * probes, we refuse to let providers slither away, unless this 7293 * provider has already been explicitly invalidated. 7294 */ 7295 if (!old->dtpv_defunct && 7296 (dtrace_opens || (dtrace_anon.dta_state != NULL && 7297 dtrace_anon.dta_state->dts_necbs > 0))) { 7298 if (!self) { 7299 mutex_exit(&dtrace_lock); 7300 mutex_exit(&mod_lock); 7301 mutex_exit(&dtrace_provider_lock); 7302 } 7303 return (EBUSY); 7304 } 7305 7306 /* 7307 * Attempt to destroy the probes associated with this provider. 7308 */ 7309 for (i = 0; i < dtrace_nprobes; i++) { 7310 if ((probe = dtrace_probes[i]) == NULL) 7311 continue; 7312 7313 if (probe->dtpr_provider != old) 7314 continue; 7315 7316 if (probe->dtpr_ecb == NULL) 7317 continue; 7318 7319 /* 7320 * If we are trying to unregister a defunct provider, and the 7321 * provider was made defunct within the interval dictated by 7322 * dtrace_unregister_defunct_reap, we'll (asynchronously) 7323 * attempt to reap our enablings. To denote that the provider 7324 * should reattempt to unregister itself at some point in the 7325 * future, we will return a differentiable error code (EAGAIN 7326 * instead of EBUSY) in this case. 7327 */ 7328 if (dtrace_gethrtime() - old->dtpv_defunct > 7329 dtrace_unregister_defunct_reap) 7330 noreap = 1; 7331 7332 if (!self) { 7333 mutex_exit(&dtrace_lock); 7334 mutex_exit(&mod_lock); 7335 mutex_exit(&dtrace_provider_lock); 7336 } 7337 7338 if (noreap) 7339 return (EBUSY); 7340 7341 (void) taskq_dispatch(dtrace_taskq, 7342 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 7343 7344 return (EAGAIN); 7345 } 7346 7347 /* 7348 * All of the probes for this provider are disabled; we can safely 7349 * remove all of them from their hash chains and from the probe array. 7350 */ 7351 for (i = 0; i < dtrace_nprobes; i++) { 7352 if ((probe = dtrace_probes[i]) == NULL) 7353 continue; 7354 7355 if (probe->dtpr_provider != old) 7356 continue; 7357 7358 dtrace_probes[i] = NULL; 7359 7360 dtrace_hash_remove(dtrace_bymod, probe); 7361 dtrace_hash_remove(dtrace_byfunc, probe); 7362 dtrace_hash_remove(dtrace_byname, probe); 7363 7364 if (first == NULL) { 7365 first = probe; 7366 probe->dtpr_nextmod = NULL; 7367 } else { 7368 probe->dtpr_nextmod = first; 7369 first = probe; 7370 } 7371 } 7372 7373 /* 7374 * The provider's probes have been removed from the hash chains and 7375 * from the probe array. Now issue a dtrace_sync() to be sure that 7376 * everyone has cleared out from any probe array processing. 7377 */ 7378 dtrace_sync(); 7379 7380 for (probe = first; probe != NULL; probe = first) { 7381 first = probe->dtpr_nextmod; 7382 7383 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 7384 probe->dtpr_arg); 7385 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7386 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7387 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7388 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 7389 kmem_free(probe, sizeof (dtrace_probe_t)); 7390 } 7391 7392 if ((prev = dtrace_provider) == old) { 7393 ASSERT(self || dtrace_devi == NULL); 7394 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 7395 dtrace_provider = old->dtpv_next; 7396 } else { 7397 while (prev != NULL && prev->dtpv_next != old) 7398 prev = prev->dtpv_next; 7399 7400 if (prev == NULL) { 7401 panic("attempt to unregister non-existent " 7402 "dtrace provider %p\n", (void *)id); 7403 } 7404 7405 prev->dtpv_next = old->dtpv_next; 7406 } 7407 7408 if (!self) { 7409 mutex_exit(&dtrace_lock); 7410 mutex_exit(&mod_lock); 7411 mutex_exit(&dtrace_provider_lock); 7412 } 7413 7414 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 7415 kmem_free(old, sizeof (dtrace_provider_t)); 7416 7417 return (0); 7418 } 7419 7420 /* 7421 * Invalidate the specified provider. All subsequent probe lookups for the 7422 * specified provider will fail, but its probes will not be removed. 7423 */ 7424 void 7425 dtrace_invalidate(dtrace_provider_id_t id) 7426 { 7427 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 7428 7429 ASSERT(pvp->dtpv_pops.dtps_enable != 7430 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7431 7432 mutex_enter(&dtrace_provider_lock); 7433 mutex_enter(&dtrace_lock); 7434 7435 pvp->dtpv_defunct = dtrace_gethrtime(); 7436 7437 mutex_exit(&dtrace_lock); 7438 mutex_exit(&dtrace_provider_lock); 7439 } 7440 7441 /* 7442 * Indicate whether or not DTrace has attached. 7443 */ 7444 int 7445 dtrace_attached(void) 7446 { 7447 /* 7448 * dtrace_provider will be non-NULL iff the DTrace driver has 7449 * attached. (It's non-NULL because DTrace is always itself a 7450 * provider.) 7451 */ 7452 return (dtrace_provider != NULL); 7453 } 7454 7455 /* 7456 * Remove all the unenabled probes for the given provider. This function is 7457 * not unlike dtrace_unregister(), except that it doesn't remove the provider 7458 * -- just as many of its associated probes as it can. 7459 */ 7460 int 7461 dtrace_condense(dtrace_provider_id_t id) 7462 { 7463 dtrace_provider_t *prov = (dtrace_provider_t *)id; 7464 int i; 7465 dtrace_probe_t *probe; 7466 7467 /* 7468 * Make sure this isn't the dtrace provider itself. 7469 */ 7470 ASSERT(prov->dtpv_pops.dtps_enable != 7471 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 7472 7473 mutex_enter(&dtrace_provider_lock); 7474 mutex_enter(&dtrace_lock); 7475 7476 /* 7477 * Attempt to destroy the probes associated with this provider. 7478 */ 7479 for (i = 0; i < dtrace_nprobes; i++) { 7480 if ((probe = dtrace_probes[i]) == NULL) 7481 continue; 7482 7483 if (probe->dtpr_provider != prov) 7484 continue; 7485 7486 if (probe->dtpr_ecb != NULL) 7487 continue; 7488 7489 dtrace_probes[i] = NULL; 7490 7491 dtrace_hash_remove(dtrace_bymod, probe); 7492 dtrace_hash_remove(dtrace_byfunc, probe); 7493 dtrace_hash_remove(dtrace_byname, probe); 7494 7495 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 7496 probe->dtpr_arg); 7497 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 7498 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 7499 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 7500 kmem_free(probe, sizeof (dtrace_probe_t)); 7501 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 7502 } 7503 7504 mutex_exit(&dtrace_lock); 7505 mutex_exit(&dtrace_provider_lock); 7506 7507 return (0); 7508 } 7509 7510 /* 7511 * DTrace Probe Management Functions 7512 * 7513 * The functions in this section perform the DTrace probe management, 7514 * including functions to create probes, look-up probes, and call into the 7515 * providers to request that probes be provided. Some of these functions are 7516 * in the Provider-to-Framework API; these functions can be identified by the 7517 * fact that they are not declared "static". 7518 */ 7519 7520 /* 7521 * Create a probe with the specified module name, function name, and name. 7522 */ 7523 dtrace_id_t 7524 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 7525 const char *func, const char *name, int aframes, void *arg) 7526 { 7527 dtrace_probe_t *probe, **probes; 7528 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 7529 dtrace_id_t id; 7530 7531 if (provider == dtrace_provider) { 7532 ASSERT(MUTEX_HELD(&dtrace_lock)); 7533 } else { 7534 mutex_enter(&dtrace_lock); 7535 } 7536 7537 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 7538 VM_BESTFIT | VM_SLEEP); 7539 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 7540 7541 probe->dtpr_id = id; 7542 probe->dtpr_gen = dtrace_probegen++; 7543 probe->dtpr_mod = dtrace_strdup(mod); 7544 probe->dtpr_func = dtrace_strdup(func); 7545 probe->dtpr_name = dtrace_strdup(name); 7546 probe->dtpr_arg = arg; 7547 probe->dtpr_aframes = aframes; 7548 probe->dtpr_provider = provider; 7549 7550 dtrace_hash_add(dtrace_bymod, probe); 7551 dtrace_hash_add(dtrace_byfunc, probe); 7552 dtrace_hash_add(dtrace_byname, probe); 7553 7554 if (id - 1 >= dtrace_nprobes) { 7555 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 7556 size_t nsize = osize << 1; 7557 7558 if (nsize == 0) { 7559 ASSERT(osize == 0); 7560 ASSERT(dtrace_probes == NULL); 7561 nsize = sizeof (dtrace_probe_t *); 7562 } 7563 7564 probes = kmem_zalloc(nsize, KM_SLEEP); 7565 7566 if (dtrace_probes == NULL) { 7567 ASSERT(osize == 0); 7568 dtrace_probes = probes; 7569 dtrace_nprobes = 1; 7570 } else { 7571 dtrace_probe_t **oprobes = dtrace_probes; 7572 7573 bcopy(oprobes, probes, osize); 7574 dtrace_membar_producer(); 7575 dtrace_probes = probes; 7576 7577 dtrace_sync(); 7578 7579 /* 7580 * All CPUs are now seeing the new probes array; we can 7581 * safely free the old array. 7582 */ 7583 kmem_free(oprobes, osize); 7584 dtrace_nprobes <<= 1; 7585 } 7586 7587 ASSERT(id - 1 < dtrace_nprobes); 7588 } 7589 7590 ASSERT(dtrace_probes[id - 1] == NULL); 7591 dtrace_probes[id - 1] = probe; 7592 7593 if (provider != dtrace_provider) 7594 mutex_exit(&dtrace_lock); 7595 7596 return (id); 7597 } 7598 7599 static dtrace_probe_t * 7600 dtrace_probe_lookup_id(dtrace_id_t id) 7601 { 7602 ASSERT(MUTEX_HELD(&dtrace_lock)); 7603 7604 if (id == 0 || id > dtrace_nprobes) 7605 return (NULL); 7606 7607 return (dtrace_probes[id - 1]); 7608 } 7609 7610 static int 7611 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 7612 { 7613 *((dtrace_id_t *)arg) = probe->dtpr_id; 7614 7615 return (DTRACE_MATCH_DONE); 7616 } 7617 7618 /* 7619 * Look up a probe based on provider and one or more of module name, function 7620 * name and probe name. 7621 */ 7622 dtrace_id_t 7623 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 7624 const char *func, const char *name) 7625 { 7626 dtrace_probekey_t pkey; 7627 dtrace_id_t id; 7628 int match; 7629 7630 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 7631 pkey.dtpk_pmatch = &dtrace_match_string; 7632 pkey.dtpk_mod = mod; 7633 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 7634 pkey.dtpk_func = func; 7635 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 7636 pkey.dtpk_name = name; 7637 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 7638 pkey.dtpk_id = DTRACE_IDNONE; 7639 7640 mutex_enter(&dtrace_lock); 7641 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 7642 dtrace_probe_lookup_match, &id); 7643 mutex_exit(&dtrace_lock); 7644 7645 ASSERT(match == 1 || match == 0); 7646 return (match ? id : 0); 7647 } 7648 7649 /* 7650 * Returns the probe argument associated with the specified probe. 7651 */ 7652 void * 7653 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 7654 { 7655 dtrace_probe_t *probe; 7656 void *rval = NULL; 7657 7658 mutex_enter(&dtrace_lock); 7659 7660 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 7661 probe->dtpr_provider == (dtrace_provider_t *)id) 7662 rval = probe->dtpr_arg; 7663 7664 mutex_exit(&dtrace_lock); 7665 7666 return (rval); 7667 } 7668 7669 /* 7670 * Copy a probe into a probe description. 7671 */ 7672 static void 7673 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 7674 { 7675 bzero(pdp, sizeof (dtrace_probedesc_t)); 7676 pdp->dtpd_id = prp->dtpr_id; 7677 7678 (void) strncpy(pdp->dtpd_provider, 7679 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 7680 7681 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 7682 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 7683 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 7684 } 7685 7686 /* 7687 * Called to indicate that a probe -- or probes -- should be provided by a 7688 * specfied provider. If the specified description is NULL, the provider will 7689 * be told to provide all of its probes. (This is done whenever a new 7690 * consumer comes along, or whenever a retained enabling is to be matched.) If 7691 * the specified description is non-NULL, the provider is given the 7692 * opportunity to dynamically provide the specified probe, allowing providers 7693 * to support the creation of probes on-the-fly. (So-called _autocreated_ 7694 * probes.) If the provider is NULL, the operations will be applied to all 7695 * providers; if the provider is non-NULL the operations will only be applied 7696 * to the specified provider. The dtrace_provider_lock must be held, and the 7697 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 7698 * will need to grab the dtrace_lock when it reenters the framework through 7699 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 7700 */ 7701 static void 7702 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 7703 { 7704 struct modctl *ctl; 7705 int all = 0; 7706 7707 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 7708 7709 if (prv == NULL) { 7710 all = 1; 7711 prv = dtrace_provider; 7712 } 7713 7714 do { 7715 /* 7716 * First, call the blanket provide operation. 7717 */ 7718 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 7719 7720 /* 7721 * Now call the per-module provide operation. We will grab 7722 * mod_lock to prevent the list from being modified. Note 7723 * that this also prevents the mod_busy bits from changing. 7724 * (mod_busy can only be changed with mod_lock held.) 7725 */ 7726 mutex_enter(&mod_lock); 7727 7728 ctl = &modules; 7729 do { 7730 if (ctl->mod_busy || ctl->mod_mp == NULL) 7731 continue; 7732 7733 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 7734 7735 } while ((ctl = ctl->mod_next) != &modules); 7736 7737 mutex_exit(&mod_lock); 7738 } while (all && (prv = prv->dtpv_next) != NULL); 7739 } 7740 7741 /* 7742 * Iterate over each probe, and call the Framework-to-Provider API function 7743 * denoted by offs. 7744 */ 7745 static void 7746 dtrace_probe_foreach(uintptr_t offs) 7747 { 7748 dtrace_provider_t *prov; 7749 void (*func)(void *, dtrace_id_t, void *); 7750 dtrace_probe_t *probe; 7751 dtrace_icookie_t cookie; 7752 int i; 7753 7754 /* 7755 * We disable interrupts to walk through the probe array. This is 7756 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 7757 * won't see stale data. 7758 */ 7759 cookie = dtrace_interrupt_disable(); 7760 7761 for (i = 0; i < dtrace_nprobes; i++) { 7762 if ((probe = dtrace_probes[i]) == NULL) 7763 continue; 7764 7765 if (probe->dtpr_ecb == NULL) { 7766 /* 7767 * This probe isn't enabled -- don't call the function. 7768 */ 7769 continue; 7770 } 7771 7772 prov = probe->dtpr_provider; 7773 func = *((void(**)(void *, dtrace_id_t, void *)) 7774 ((uintptr_t)&prov->dtpv_pops + offs)); 7775 7776 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 7777 } 7778 7779 dtrace_interrupt_enable(cookie); 7780 } 7781 7782 static int 7783 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 7784 { 7785 dtrace_probekey_t pkey; 7786 uint32_t priv; 7787 uid_t uid; 7788 zoneid_t zoneid; 7789 7790 ASSERT(MUTEX_HELD(&dtrace_lock)); 7791 dtrace_ecb_create_cache = NULL; 7792 7793 if (desc == NULL) { 7794 /* 7795 * If we're passed a NULL description, we're being asked to 7796 * create an ECB with a NULL probe. 7797 */ 7798 (void) dtrace_ecb_create_enable(NULL, enab); 7799 return (0); 7800 } 7801 7802 dtrace_probekey(desc, &pkey); 7803 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 7804 &priv, &uid, &zoneid); 7805 7806 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 7807 enab)); 7808 } 7809 7810 /* 7811 * DTrace Helper Provider Functions 7812 */ 7813 static void 7814 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 7815 { 7816 attr->dtat_name = DOF_ATTR_NAME(dofattr); 7817 attr->dtat_data = DOF_ATTR_DATA(dofattr); 7818 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 7819 } 7820 7821 static void 7822 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 7823 const dof_provider_t *dofprov, char *strtab) 7824 { 7825 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 7826 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 7827 dofprov->dofpv_provattr); 7828 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 7829 dofprov->dofpv_modattr); 7830 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 7831 dofprov->dofpv_funcattr); 7832 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 7833 dofprov->dofpv_nameattr); 7834 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 7835 dofprov->dofpv_argsattr); 7836 } 7837 7838 static void 7839 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7840 { 7841 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7842 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7843 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 7844 dof_provider_t *provider; 7845 dof_probe_t *probe; 7846 uint32_t *off, *enoff; 7847 uint8_t *arg; 7848 char *strtab; 7849 uint_t i, nprobes; 7850 dtrace_helper_provdesc_t dhpv; 7851 dtrace_helper_probedesc_t dhpb; 7852 dtrace_meta_t *meta = dtrace_meta_pid; 7853 dtrace_mops_t *mops = &meta->dtm_mops; 7854 void *parg; 7855 7856 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7857 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7858 provider->dofpv_strtab * dof->dofh_secsize); 7859 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7860 provider->dofpv_probes * dof->dofh_secsize); 7861 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7862 provider->dofpv_prargs * dof->dofh_secsize); 7863 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7864 provider->dofpv_proffs * dof->dofh_secsize); 7865 7866 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7867 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 7868 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 7869 enoff = NULL; 7870 7871 /* 7872 * See dtrace_helper_provider_validate(). 7873 */ 7874 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 7875 provider->dofpv_prenoffs != DOF_SECT_NONE) { 7876 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7877 provider->dofpv_prenoffs * dof->dofh_secsize); 7878 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 7879 } 7880 7881 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 7882 7883 /* 7884 * Create the provider. 7885 */ 7886 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7887 7888 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 7889 return; 7890 7891 meta->dtm_count++; 7892 7893 /* 7894 * Create the probes. 7895 */ 7896 for (i = 0; i < nprobes; i++) { 7897 probe = (dof_probe_t *)(uintptr_t)(daddr + 7898 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 7899 7900 dhpb.dthpb_mod = dhp->dofhp_mod; 7901 dhpb.dthpb_func = strtab + probe->dofpr_func; 7902 dhpb.dthpb_name = strtab + probe->dofpr_name; 7903 dhpb.dthpb_base = probe->dofpr_addr; 7904 dhpb.dthpb_offs = off + probe->dofpr_offidx; 7905 dhpb.dthpb_noffs = probe->dofpr_noffs; 7906 if (enoff != NULL) { 7907 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 7908 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 7909 } else { 7910 dhpb.dthpb_enoffs = NULL; 7911 dhpb.dthpb_nenoffs = 0; 7912 } 7913 dhpb.dthpb_args = arg + probe->dofpr_argidx; 7914 dhpb.dthpb_nargc = probe->dofpr_nargc; 7915 dhpb.dthpb_xargc = probe->dofpr_xargc; 7916 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 7917 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 7918 7919 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 7920 } 7921 } 7922 7923 static void 7924 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 7925 { 7926 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7927 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7928 int i; 7929 7930 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7931 7932 for (i = 0; i < dof->dofh_secnum; i++) { 7933 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7934 dof->dofh_secoff + i * dof->dofh_secsize); 7935 7936 if (sec->dofs_type != DOF_SECT_PROVIDER) 7937 continue; 7938 7939 dtrace_helper_provide_one(dhp, sec, pid); 7940 } 7941 7942 /* 7943 * We may have just created probes, so we must now rematch against 7944 * any retained enablings. Note that this call will acquire both 7945 * cpu_lock and dtrace_lock; the fact that we are holding 7946 * dtrace_meta_lock now is what defines the ordering with respect to 7947 * these three locks. 7948 */ 7949 dtrace_enabling_matchall(); 7950 } 7951 7952 static void 7953 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 7954 { 7955 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7956 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7957 dof_sec_t *str_sec; 7958 dof_provider_t *provider; 7959 char *strtab; 7960 dtrace_helper_provdesc_t dhpv; 7961 dtrace_meta_t *meta = dtrace_meta_pid; 7962 dtrace_mops_t *mops = &meta->dtm_mops; 7963 7964 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 7965 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 7966 provider->dofpv_strtab * dof->dofh_secsize); 7967 7968 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 7969 7970 /* 7971 * Create the provider. 7972 */ 7973 dtrace_dofprov2hprov(&dhpv, provider, strtab); 7974 7975 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 7976 7977 meta->dtm_count--; 7978 } 7979 7980 static void 7981 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 7982 { 7983 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 7984 dof_hdr_t *dof = (dof_hdr_t *)daddr; 7985 int i; 7986 7987 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 7988 7989 for (i = 0; i < dof->dofh_secnum; i++) { 7990 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 7991 dof->dofh_secoff + i * dof->dofh_secsize); 7992 7993 if (sec->dofs_type != DOF_SECT_PROVIDER) 7994 continue; 7995 7996 dtrace_helper_provider_remove_one(dhp, sec, pid); 7997 } 7998 } 7999 8000 /* 8001 * DTrace Meta Provider-to-Framework API Functions 8002 * 8003 * These functions implement the Meta Provider-to-Framework API, as described 8004 * in <sys/dtrace.h>. 8005 */ 8006 int 8007 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8008 dtrace_meta_provider_id_t *idp) 8009 { 8010 dtrace_meta_t *meta; 8011 dtrace_helpers_t *help, *next; 8012 int i; 8013 8014 *idp = DTRACE_METAPROVNONE; 8015 8016 /* 8017 * We strictly don't need the name, but we hold onto it for 8018 * debuggability. All hail error queues! 8019 */ 8020 if (name == NULL) { 8021 cmn_err(CE_WARN, "failed to register meta-provider: " 8022 "invalid name"); 8023 return (EINVAL); 8024 } 8025 8026 if (mops == NULL || 8027 mops->dtms_create_probe == NULL || 8028 mops->dtms_provide_pid == NULL || 8029 mops->dtms_remove_pid == NULL) { 8030 cmn_err(CE_WARN, "failed to register meta-register %s: " 8031 "invalid ops", name); 8032 return (EINVAL); 8033 } 8034 8035 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8036 meta->dtm_mops = *mops; 8037 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8038 (void) strcpy(meta->dtm_name, name); 8039 meta->dtm_arg = arg; 8040 8041 mutex_enter(&dtrace_meta_lock); 8042 mutex_enter(&dtrace_lock); 8043 8044 if (dtrace_meta_pid != NULL) { 8045 mutex_exit(&dtrace_lock); 8046 mutex_exit(&dtrace_meta_lock); 8047 cmn_err(CE_WARN, "failed to register meta-register %s: " 8048 "user-land meta-provider exists", name); 8049 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8050 kmem_free(meta, sizeof (dtrace_meta_t)); 8051 return (EINVAL); 8052 } 8053 8054 dtrace_meta_pid = meta; 8055 *idp = (dtrace_meta_provider_id_t)meta; 8056 8057 /* 8058 * If there are providers and probes ready to go, pass them 8059 * off to the new meta provider now. 8060 */ 8061 8062 help = dtrace_deferred_pid; 8063 dtrace_deferred_pid = NULL; 8064 8065 mutex_exit(&dtrace_lock); 8066 8067 while (help != NULL) { 8068 for (i = 0; i < help->dthps_nprovs; i++) { 8069 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8070 help->dthps_pid); 8071 } 8072 8073 next = help->dthps_next; 8074 help->dthps_next = NULL; 8075 help->dthps_prev = NULL; 8076 help->dthps_deferred = 0; 8077 help = next; 8078 } 8079 8080 mutex_exit(&dtrace_meta_lock); 8081 8082 return (0); 8083 } 8084 8085 int 8086 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8087 { 8088 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8089 8090 mutex_enter(&dtrace_meta_lock); 8091 mutex_enter(&dtrace_lock); 8092 8093 if (old == dtrace_meta_pid) { 8094 pp = &dtrace_meta_pid; 8095 } else { 8096 panic("attempt to unregister non-existent " 8097 "dtrace meta-provider %p\n", (void *)old); 8098 } 8099 8100 if (old->dtm_count != 0) { 8101 mutex_exit(&dtrace_lock); 8102 mutex_exit(&dtrace_meta_lock); 8103 return (EBUSY); 8104 } 8105 8106 *pp = NULL; 8107 8108 mutex_exit(&dtrace_lock); 8109 mutex_exit(&dtrace_meta_lock); 8110 8111 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8112 kmem_free(old, sizeof (dtrace_meta_t)); 8113 8114 return (0); 8115 } 8116 8117 8118 /* 8119 * DTrace DIF Object Functions 8120 */ 8121 static int 8122 dtrace_difo_err(uint_t pc, const char *format, ...) 8123 { 8124 if (dtrace_err_verbose) { 8125 va_list alist; 8126 8127 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8128 va_start(alist, format); 8129 (void) vuprintf(format, alist); 8130 va_end(alist); 8131 } 8132 8133 #ifdef DTRACE_ERRDEBUG 8134 dtrace_errdebug(format); 8135 #endif 8136 return (1); 8137 } 8138 8139 /* 8140 * Validate a DTrace DIF object by checking the IR instructions. The following 8141 * rules are currently enforced by dtrace_difo_validate(): 8142 * 8143 * 1. Each instruction must have a valid opcode 8144 * 2. Each register, string, variable, or subroutine reference must be valid 8145 * 3. No instruction can modify register %r0 (must be zero) 8146 * 4. All instruction reserved bits must be set to zero 8147 * 5. The last instruction must be a "ret" instruction 8148 * 6. All branch targets must reference a valid instruction _after_ the branch 8149 */ 8150 static int 8151 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8152 cred_t *cr) 8153 { 8154 int err = 0, i; 8155 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8156 int kcheckload; 8157 uint_t pc; 8158 8159 kcheckload = cr == NULL || 8160 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8161 8162 dp->dtdo_destructive = 0; 8163 8164 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8165 dif_instr_t instr = dp->dtdo_buf[pc]; 8166 8167 uint_t r1 = DIF_INSTR_R1(instr); 8168 uint_t r2 = DIF_INSTR_R2(instr); 8169 uint_t rd = DIF_INSTR_RD(instr); 8170 uint_t rs = DIF_INSTR_RS(instr); 8171 uint_t label = DIF_INSTR_LABEL(instr); 8172 uint_t v = DIF_INSTR_VAR(instr); 8173 uint_t subr = DIF_INSTR_SUBR(instr); 8174 uint_t type = DIF_INSTR_TYPE(instr); 8175 uint_t op = DIF_INSTR_OP(instr); 8176 8177 switch (op) { 8178 case DIF_OP_OR: 8179 case DIF_OP_XOR: 8180 case DIF_OP_AND: 8181 case DIF_OP_SLL: 8182 case DIF_OP_SRL: 8183 case DIF_OP_SRA: 8184 case DIF_OP_SUB: 8185 case DIF_OP_ADD: 8186 case DIF_OP_MUL: 8187 case DIF_OP_SDIV: 8188 case DIF_OP_UDIV: 8189 case DIF_OP_SREM: 8190 case DIF_OP_UREM: 8191 case DIF_OP_COPYS: 8192 if (r1 >= nregs) 8193 err += efunc(pc, "invalid register %u\n", r1); 8194 if (r2 >= nregs) 8195 err += efunc(pc, "invalid register %u\n", r2); 8196 if (rd >= nregs) 8197 err += efunc(pc, "invalid register %u\n", rd); 8198 if (rd == 0) 8199 err += efunc(pc, "cannot write to %r0\n"); 8200 break; 8201 case DIF_OP_NOT: 8202 case DIF_OP_MOV: 8203 case DIF_OP_ALLOCS: 8204 if (r1 >= nregs) 8205 err += efunc(pc, "invalid register %u\n", r1); 8206 if (r2 != 0) 8207 err += efunc(pc, "non-zero reserved bits\n"); 8208 if (rd >= nregs) 8209 err += efunc(pc, "invalid register %u\n", rd); 8210 if (rd == 0) 8211 err += efunc(pc, "cannot write to %r0\n"); 8212 break; 8213 case DIF_OP_LDSB: 8214 case DIF_OP_LDSH: 8215 case DIF_OP_LDSW: 8216 case DIF_OP_LDUB: 8217 case DIF_OP_LDUH: 8218 case DIF_OP_LDUW: 8219 case DIF_OP_LDX: 8220 if (r1 >= nregs) 8221 err += efunc(pc, "invalid register %u\n", r1); 8222 if (r2 != 0) 8223 err += efunc(pc, "non-zero reserved bits\n"); 8224 if (rd >= nregs) 8225 err += efunc(pc, "invalid register %u\n", rd); 8226 if (rd == 0) 8227 err += efunc(pc, "cannot write to %r0\n"); 8228 if (kcheckload) 8229 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 8230 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 8231 break; 8232 case DIF_OP_RLDSB: 8233 case DIF_OP_RLDSH: 8234 case DIF_OP_RLDSW: 8235 case DIF_OP_RLDUB: 8236 case DIF_OP_RLDUH: 8237 case DIF_OP_RLDUW: 8238 case DIF_OP_RLDX: 8239 if (r1 >= nregs) 8240 err += efunc(pc, "invalid register %u\n", r1); 8241 if (r2 != 0) 8242 err += efunc(pc, "non-zero reserved bits\n"); 8243 if (rd >= nregs) 8244 err += efunc(pc, "invalid register %u\n", rd); 8245 if (rd == 0) 8246 err += efunc(pc, "cannot write to %r0\n"); 8247 break; 8248 case DIF_OP_ULDSB: 8249 case DIF_OP_ULDSH: 8250 case DIF_OP_ULDSW: 8251 case DIF_OP_ULDUB: 8252 case DIF_OP_ULDUH: 8253 case DIF_OP_ULDUW: 8254 case DIF_OP_ULDX: 8255 if (r1 >= nregs) 8256 err += efunc(pc, "invalid register %u\n", r1); 8257 if (r2 != 0) 8258 err += efunc(pc, "non-zero reserved bits\n"); 8259 if (rd >= nregs) 8260 err += efunc(pc, "invalid register %u\n", rd); 8261 if (rd == 0) 8262 err += efunc(pc, "cannot write to %r0\n"); 8263 break; 8264 case DIF_OP_STB: 8265 case DIF_OP_STH: 8266 case DIF_OP_STW: 8267 case DIF_OP_STX: 8268 if (r1 >= nregs) 8269 err += efunc(pc, "invalid register %u\n", r1); 8270 if (r2 != 0) 8271 err += efunc(pc, "non-zero reserved bits\n"); 8272 if (rd >= nregs) 8273 err += efunc(pc, "invalid register %u\n", rd); 8274 if (rd == 0) 8275 err += efunc(pc, "cannot write to 0 address\n"); 8276 break; 8277 case DIF_OP_CMP: 8278 case DIF_OP_SCMP: 8279 if (r1 >= nregs) 8280 err += efunc(pc, "invalid register %u\n", r1); 8281 if (r2 >= nregs) 8282 err += efunc(pc, "invalid register %u\n", r2); 8283 if (rd != 0) 8284 err += efunc(pc, "non-zero reserved bits\n"); 8285 break; 8286 case DIF_OP_TST: 8287 if (r1 >= nregs) 8288 err += efunc(pc, "invalid register %u\n", r1); 8289 if (r2 != 0 || rd != 0) 8290 err += efunc(pc, "non-zero reserved bits\n"); 8291 break; 8292 case DIF_OP_BA: 8293 case DIF_OP_BE: 8294 case DIF_OP_BNE: 8295 case DIF_OP_BG: 8296 case DIF_OP_BGU: 8297 case DIF_OP_BGE: 8298 case DIF_OP_BGEU: 8299 case DIF_OP_BL: 8300 case DIF_OP_BLU: 8301 case DIF_OP_BLE: 8302 case DIF_OP_BLEU: 8303 if (label >= dp->dtdo_len) { 8304 err += efunc(pc, "invalid branch target %u\n", 8305 label); 8306 } 8307 if (label <= pc) { 8308 err += efunc(pc, "backward branch to %u\n", 8309 label); 8310 } 8311 break; 8312 case DIF_OP_RET: 8313 if (r1 != 0 || r2 != 0) 8314 err += efunc(pc, "non-zero reserved bits\n"); 8315 if (rd >= nregs) 8316 err += efunc(pc, "invalid register %u\n", rd); 8317 break; 8318 case DIF_OP_NOP: 8319 case DIF_OP_POPTS: 8320 case DIF_OP_FLUSHTS: 8321 if (r1 != 0 || r2 != 0 || rd != 0) 8322 err += efunc(pc, "non-zero reserved bits\n"); 8323 break; 8324 case DIF_OP_SETX: 8325 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 8326 err += efunc(pc, "invalid integer ref %u\n", 8327 DIF_INSTR_INTEGER(instr)); 8328 } 8329 if (rd >= nregs) 8330 err += efunc(pc, "invalid register %u\n", rd); 8331 if (rd == 0) 8332 err += efunc(pc, "cannot write to %r0\n"); 8333 break; 8334 case DIF_OP_SETS: 8335 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 8336 err += efunc(pc, "invalid string ref %u\n", 8337 DIF_INSTR_STRING(instr)); 8338 } 8339 if (rd >= nregs) 8340 err += efunc(pc, "invalid register %u\n", rd); 8341 if (rd == 0) 8342 err += efunc(pc, "cannot write to %r0\n"); 8343 break; 8344 case DIF_OP_LDGA: 8345 case DIF_OP_LDTA: 8346 if (r1 > DIF_VAR_ARRAY_MAX) 8347 err += efunc(pc, "invalid array %u\n", r1); 8348 if (r2 >= nregs) 8349 err += efunc(pc, "invalid register %u\n", r2); 8350 if (rd >= nregs) 8351 err += efunc(pc, "invalid register %u\n", rd); 8352 if (rd == 0) 8353 err += efunc(pc, "cannot write to %r0\n"); 8354 break; 8355 case DIF_OP_LDGS: 8356 case DIF_OP_LDTS: 8357 case DIF_OP_LDLS: 8358 case DIF_OP_LDGAA: 8359 case DIF_OP_LDTAA: 8360 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 8361 err += efunc(pc, "invalid variable %u\n", v); 8362 if (rd >= nregs) 8363 err += efunc(pc, "invalid register %u\n", rd); 8364 if (rd == 0) 8365 err += efunc(pc, "cannot write to %r0\n"); 8366 break; 8367 case DIF_OP_STGS: 8368 case DIF_OP_STTS: 8369 case DIF_OP_STLS: 8370 case DIF_OP_STGAA: 8371 case DIF_OP_STTAA: 8372 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 8373 err += efunc(pc, "invalid variable %u\n", v); 8374 if (rs >= nregs) 8375 err += efunc(pc, "invalid register %u\n", rd); 8376 break; 8377 case DIF_OP_CALL: 8378 if (subr > DIF_SUBR_MAX) 8379 err += efunc(pc, "invalid subr %u\n", subr); 8380 if (rd >= nregs) 8381 err += efunc(pc, "invalid register %u\n", rd); 8382 if (rd == 0) 8383 err += efunc(pc, "cannot write to %r0\n"); 8384 8385 if (subr == DIF_SUBR_COPYOUT || 8386 subr == DIF_SUBR_COPYOUTSTR) { 8387 dp->dtdo_destructive = 1; 8388 } 8389 break; 8390 case DIF_OP_PUSHTR: 8391 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 8392 err += efunc(pc, "invalid ref type %u\n", type); 8393 if (r2 >= nregs) 8394 err += efunc(pc, "invalid register %u\n", r2); 8395 if (rs >= nregs) 8396 err += efunc(pc, "invalid register %u\n", rs); 8397 break; 8398 case DIF_OP_PUSHTV: 8399 if (type != DIF_TYPE_CTF) 8400 err += efunc(pc, "invalid val type %u\n", type); 8401 if (r2 >= nregs) 8402 err += efunc(pc, "invalid register %u\n", r2); 8403 if (rs >= nregs) 8404 err += efunc(pc, "invalid register %u\n", rs); 8405 break; 8406 default: 8407 err += efunc(pc, "invalid opcode %u\n", 8408 DIF_INSTR_OP(instr)); 8409 } 8410 } 8411 8412 if (dp->dtdo_len != 0 && 8413 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 8414 err += efunc(dp->dtdo_len - 1, 8415 "expected 'ret' as last DIF instruction\n"); 8416 } 8417 8418 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) { 8419 /* 8420 * If we're not returning by reference, the size must be either 8421 * 0 or the size of one of the base types. 8422 */ 8423 switch (dp->dtdo_rtype.dtdt_size) { 8424 case 0: 8425 case sizeof (uint8_t): 8426 case sizeof (uint16_t): 8427 case sizeof (uint32_t): 8428 case sizeof (uint64_t): 8429 break; 8430 8431 default: 8432 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 8433 } 8434 } 8435 8436 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 8437 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 8438 dtrace_diftype_t *vt, *et; 8439 uint_t id, ndx; 8440 8441 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 8442 v->dtdv_scope != DIFV_SCOPE_THREAD && 8443 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 8444 err += efunc(i, "unrecognized variable scope %d\n", 8445 v->dtdv_scope); 8446 break; 8447 } 8448 8449 if (v->dtdv_kind != DIFV_KIND_ARRAY && 8450 v->dtdv_kind != DIFV_KIND_SCALAR) { 8451 err += efunc(i, "unrecognized variable type %d\n", 8452 v->dtdv_kind); 8453 break; 8454 } 8455 8456 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 8457 err += efunc(i, "%d exceeds variable id limit\n", id); 8458 break; 8459 } 8460 8461 if (id < DIF_VAR_OTHER_UBASE) 8462 continue; 8463 8464 /* 8465 * For user-defined variables, we need to check that this 8466 * definition is identical to any previous definition that we 8467 * encountered. 8468 */ 8469 ndx = id - DIF_VAR_OTHER_UBASE; 8470 8471 switch (v->dtdv_scope) { 8472 case DIFV_SCOPE_GLOBAL: 8473 if (ndx < vstate->dtvs_nglobals) { 8474 dtrace_statvar_t *svar; 8475 8476 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 8477 existing = &svar->dtsv_var; 8478 } 8479 8480 break; 8481 8482 case DIFV_SCOPE_THREAD: 8483 if (ndx < vstate->dtvs_ntlocals) 8484 existing = &vstate->dtvs_tlocals[ndx]; 8485 break; 8486 8487 case DIFV_SCOPE_LOCAL: 8488 if (ndx < vstate->dtvs_nlocals) { 8489 dtrace_statvar_t *svar; 8490 8491 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 8492 existing = &svar->dtsv_var; 8493 } 8494 8495 break; 8496 } 8497 8498 vt = &v->dtdv_type; 8499 8500 if (vt->dtdt_flags & DIF_TF_BYREF) { 8501 if (vt->dtdt_size == 0) { 8502 err += efunc(i, "zero-sized variable\n"); 8503 break; 8504 } 8505 8506 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 8507 vt->dtdt_size > dtrace_global_maxsize) { 8508 err += efunc(i, "oversized by-ref global\n"); 8509 break; 8510 } 8511 } 8512 8513 if (existing == NULL || existing->dtdv_id == 0) 8514 continue; 8515 8516 ASSERT(existing->dtdv_id == v->dtdv_id); 8517 ASSERT(existing->dtdv_scope == v->dtdv_scope); 8518 8519 if (existing->dtdv_kind != v->dtdv_kind) 8520 err += efunc(i, "%d changed variable kind\n", id); 8521 8522 et = &existing->dtdv_type; 8523 8524 if (vt->dtdt_flags != et->dtdt_flags) { 8525 err += efunc(i, "%d changed variable type flags\n", id); 8526 break; 8527 } 8528 8529 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 8530 err += efunc(i, "%d changed variable type size\n", id); 8531 break; 8532 } 8533 } 8534 8535 return (err); 8536 } 8537 8538 /* 8539 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 8540 * are much more constrained than normal DIFOs. Specifically, they may 8541 * not: 8542 * 8543 * 1. Make calls to subroutines other than copyin(), copyinstr() or 8544 * miscellaneous string routines 8545 * 2. Access DTrace variables other than the args[] array, and the 8546 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 8547 * 3. Have thread-local variables. 8548 * 4. Have dynamic variables. 8549 */ 8550 static int 8551 dtrace_difo_validate_helper(dtrace_difo_t *dp) 8552 { 8553 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8554 int err = 0; 8555 uint_t pc; 8556 8557 for (pc = 0; pc < dp->dtdo_len; pc++) { 8558 dif_instr_t instr = dp->dtdo_buf[pc]; 8559 8560 uint_t v = DIF_INSTR_VAR(instr); 8561 uint_t subr = DIF_INSTR_SUBR(instr); 8562 uint_t op = DIF_INSTR_OP(instr); 8563 8564 switch (op) { 8565 case DIF_OP_OR: 8566 case DIF_OP_XOR: 8567 case DIF_OP_AND: 8568 case DIF_OP_SLL: 8569 case DIF_OP_SRL: 8570 case DIF_OP_SRA: 8571 case DIF_OP_SUB: 8572 case DIF_OP_ADD: 8573 case DIF_OP_MUL: 8574 case DIF_OP_SDIV: 8575 case DIF_OP_UDIV: 8576 case DIF_OP_SREM: 8577 case DIF_OP_UREM: 8578 case DIF_OP_COPYS: 8579 case DIF_OP_NOT: 8580 case DIF_OP_MOV: 8581 case DIF_OP_RLDSB: 8582 case DIF_OP_RLDSH: 8583 case DIF_OP_RLDSW: 8584 case DIF_OP_RLDUB: 8585 case DIF_OP_RLDUH: 8586 case DIF_OP_RLDUW: 8587 case DIF_OP_RLDX: 8588 case DIF_OP_ULDSB: 8589 case DIF_OP_ULDSH: 8590 case DIF_OP_ULDSW: 8591 case DIF_OP_ULDUB: 8592 case DIF_OP_ULDUH: 8593 case DIF_OP_ULDUW: 8594 case DIF_OP_ULDX: 8595 case DIF_OP_STB: 8596 case DIF_OP_STH: 8597 case DIF_OP_STW: 8598 case DIF_OP_STX: 8599 case DIF_OP_ALLOCS: 8600 case DIF_OP_CMP: 8601 case DIF_OP_SCMP: 8602 case DIF_OP_TST: 8603 case DIF_OP_BA: 8604 case DIF_OP_BE: 8605 case DIF_OP_BNE: 8606 case DIF_OP_BG: 8607 case DIF_OP_BGU: 8608 case DIF_OP_BGE: 8609 case DIF_OP_BGEU: 8610 case DIF_OP_BL: 8611 case DIF_OP_BLU: 8612 case DIF_OP_BLE: 8613 case DIF_OP_BLEU: 8614 case DIF_OP_RET: 8615 case DIF_OP_NOP: 8616 case DIF_OP_POPTS: 8617 case DIF_OP_FLUSHTS: 8618 case DIF_OP_SETX: 8619 case DIF_OP_SETS: 8620 case DIF_OP_LDGA: 8621 case DIF_OP_LDLS: 8622 case DIF_OP_STGS: 8623 case DIF_OP_STLS: 8624 case DIF_OP_PUSHTR: 8625 case DIF_OP_PUSHTV: 8626 break; 8627 8628 case DIF_OP_LDGS: 8629 if (v >= DIF_VAR_OTHER_UBASE) 8630 break; 8631 8632 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 8633 break; 8634 8635 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 8636 v == DIF_VAR_PPID || v == DIF_VAR_TID || 8637 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 8638 v == DIF_VAR_UID || v == DIF_VAR_GID) 8639 break; 8640 8641 err += efunc(pc, "illegal variable %u\n", v); 8642 break; 8643 8644 case DIF_OP_LDTA: 8645 case DIF_OP_LDTS: 8646 case DIF_OP_LDGAA: 8647 case DIF_OP_LDTAA: 8648 err += efunc(pc, "illegal dynamic variable load\n"); 8649 break; 8650 8651 case DIF_OP_STTS: 8652 case DIF_OP_STGAA: 8653 case DIF_OP_STTAA: 8654 err += efunc(pc, "illegal dynamic variable store\n"); 8655 break; 8656 8657 case DIF_OP_CALL: 8658 if (subr == DIF_SUBR_ALLOCA || 8659 subr == DIF_SUBR_BCOPY || 8660 subr == DIF_SUBR_COPYIN || 8661 subr == DIF_SUBR_COPYINTO || 8662 subr == DIF_SUBR_COPYINSTR || 8663 subr == DIF_SUBR_INDEX || 8664 subr == DIF_SUBR_INET_NTOA || 8665 subr == DIF_SUBR_INET_NTOA6 || 8666 subr == DIF_SUBR_INET_NTOP || 8667 subr == DIF_SUBR_LLTOSTR || 8668 subr == DIF_SUBR_RINDEX || 8669 subr == DIF_SUBR_STRCHR || 8670 subr == DIF_SUBR_STRJOIN || 8671 subr == DIF_SUBR_STRRCHR || 8672 subr == DIF_SUBR_STRSTR || 8673 subr == DIF_SUBR_HTONS || 8674 subr == DIF_SUBR_HTONL || 8675 subr == DIF_SUBR_HTONLL || 8676 subr == DIF_SUBR_NTOHS || 8677 subr == DIF_SUBR_NTOHL || 8678 subr == DIF_SUBR_NTOHLL) 8679 break; 8680 8681 err += efunc(pc, "invalid subr %u\n", subr); 8682 break; 8683 8684 default: 8685 err += efunc(pc, "invalid opcode %u\n", 8686 DIF_INSTR_OP(instr)); 8687 } 8688 } 8689 8690 return (err); 8691 } 8692 8693 /* 8694 * Returns 1 if the expression in the DIF object can be cached on a per-thread 8695 * basis; 0 if not. 8696 */ 8697 static int 8698 dtrace_difo_cacheable(dtrace_difo_t *dp) 8699 { 8700 int i; 8701 8702 if (dp == NULL) 8703 return (0); 8704 8705 for (i = 0; i < dp->dtdo_varlen; i++) { 8706 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8707 8708 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 8709 continue; 8710 8711 switch (v->dtdv_id) { 8712 case DIF_VAR_CURTHREAD: 8713 case DIF_VAR_PID: 8714 case DIF_VAR_TID: 8715 case DIF_VAR_EXECNAME: 8716 case DIF_VAR_ZONENAME: 8717 break; 8718 8719 default: 8720 return (0); 8721 } 8722 } 8723 8724 /* 8725 * This DIF object may be cacheable. Now we need to look for any 8726 * array loading instructions, any memory loading instructions, or 8727 * any stores to thread-local variables. 8728 */ 8729 for (i = 0; i < dp->dtdo_len; i++) { 8730 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 8731 8732 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 8733 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 8734 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 8735 op == DIF_OP_LDGA || op == DIF_OP_STTS) 8736 return (0); 8737 } 8738 8739 return (1); 8740 } 8741 8742 static void 8743 dtrace_difo_hold(dtrace_difo_t *dp) 8744 { 8745 int i; 8746 8747 ASSERT(MUTEX_HELD(&dtrace_lock)); 8748 8749 dp->dtdo_refcnt++; 8750 ASSERT(dp->dtdo_refcnt != 0); 8751 8752 /* 8753 * We need to check this DIF object for references to the variable 8754 * DIF_VAR_VTIMESTAMP. 8755 */ 8756 for (i = 0; i < dp->dtdo_varlen; i++) { 8757 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8758 8759 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 8760 continue; 8761 8762 if (dtrace_vtime_references++ == 0) 8763 dtrace_vtime_enable(); 8764 } 8765 } 8766 8767 /* 8768 * This routine calculates the dynamic variable chunksize for a given DIF 8769 * object. The calculation is not fool-proof, and can probably be tricked by 8770 * malicious DIF -- but it works for all compiler-generated DIF. Because this 8771 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 8772 * if a dynamic variable size exceeds the chunksize. 8773 */ 8774 static void 8775 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8776 { 8777 uint64_t sval; 8778 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 8779 const dif_instr_t *text = dp->dtdo_buf; 8780 uint_t pc, srd = 0; 8781 uint_t ttop = 0; 8782 size_t size, ksize; 8783 uint_t id, i; 8784 8785 for (pc = 0; pc < dp->dtdo_len; pc++) { 8786 dif_instr_t instr = text[pc]; 8787 uint_t op = DIF_INSTR_OP(instr); 8788 uint_t rd = DIF_INSTR_RD(instr); 8789 uint_t r1 = DIF_INSTR_R1(instr); 8790 uint_t nkeys = 0; 8791 uchar_t scope; 8792 8793 dtrace_key_t *key = tupregs; 8794 8795 switch (op) { 8796 case DIF_OP_SETX: 8797 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 8798 srd = rd; 8799 continue; 8800 8801 case DIF_OP_STTS: 8802 key = &tupregs[DIF_DTR_NREGS]; 8803 key[0].dttk_size = 0; 8804 key[1].dttk_size = 0; 8805 nkeys = 2; 8806 scope = DIFV_SCOPE_THREAD; 8807 break; 8808 8809 case DIF_OP_STGAA: 8810 case DIF_OP_STTAA: 8811 nkeys = ttop; 8812 8813 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 8814 key[nkeys++].dttk_size = 0; 8815 8816 key[nkeys++].dttk_size = 0; 8817 8818 if (op == DIF_OP_STTAA) { 8819 scope = DIFV_SCOPE_THREAD; 8820 } else { 8821 scope = DIFV_SCOPE_GLOBAL; 8822 } 8823 8824 break; 8825 8826 case DIF_OP_PUSHTR: 8827 if (ttop == DIF_DTR_NREGS) 8828 return; 8829 8830 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 8831 /* 8832 * If the register for the size of the "pushtr" 8833 * is %r0 (or the value is 0) and the type is 8834 * a string, we'll use the system-wide default 8835 * string size. 8836 */ 8837 tupregs[ttop++].dttk_size = 8838 dtrace_strsize_default; 8839 } else { 8840 if (srd == 0) 8841 return; 8842 8843 tupregs[ttop++].dttk_size = sval; 8844 } 8845 8846 break; 8847 8848 case DIF_OP_PUSHTV: 8849 if (ttop == DIF_DTR_NREGS) 8850 return; 8851 8852 tupregs[ttop++].dttk_size = 0; 8853 break; 8854 8855 case DIF_OP_FLUSHTS: 8856 ttop = 0; 8857 break; 8858 8859 case DIF_OP_POPTS: 8860 if (ttop != 0) 8861 ttop--; 8862 break; 8863 } 8864 8865 sval = 0; 8866 srd = 0; 8867 8868 if (nkeys == 0) 8869 continue; 8870 8871 /* 8872 * We have a dynamic variable allocation; calculate its size. 8873 */ 8874 for (ksize = 0, i = 0; i < nkeys; i++) 8875 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 8876 8877 size = sizeof (dtrace_dynvar_t); 8878 size += sizeof (dtrace_key_t) * (nkeys - 1); 8879 size += ksize; 8880 8881 /* 8882 * Now we need to determine the size of the stored data. 8883 */ 8884 id = DIF_INSTR_VAR(instr); 8885 8886 for (i = 0; i < dp->dtdo_varlen; i++) { 8887 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8888 8889 if (v->dtdv_id == id && v->dtdv_scope == scope) { 8890 size += v->dtdv_type.dtdt_size; 8891 break; 8892 } 8893 } 8894 8895 if (i == dp->dtdo_varlen) 8896 return; 8897 8898 /* 8899 * We have the size. If this is larger than the chunk size 8900 * for our dynamic variable state, reset the chunk size. 8901 */ 8902 size = P2ROUNDUP(size, sizeof (uint64_t)); 8903 8904 if (size > vstate->dtvs_dynvars.dtds_chunksize) 8905 vstate->dtvs_dynvars.dtds_chunksize = size; 8906 } 8907 } 8908 8909 static void 8910 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 8911 { 8912 int i, oldsvars, osz, nsz, otlocals, ntlocals; 8913 uint_t id; 8914 8915 ASSERT(MUTEX_HELD(&dtrace_lock)); 8916 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 8917 8918 for (i = 0; i < dp->dtdo_varlen; i++) { 8919 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 8920 dtrace_statvar_t *svar, ***svarp; 8921 size_t dsize = 0; 8922 uint8_t scope = v->dtdv_scope; 8923 int *np; 8924 8925 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 8926 continue; 8927 8928 id -= DIF_VAR_OTHER_UBASE; 8929 8930 switch (scope) { 8931 case DIFV_SCOPE_THREAD: 8932 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 8933 dtrace_difv_t *tlocals; 8934 8935 if ((ntlocals = (otlocals << 1)) == 0) 8936 ntlocals = 1; 8937 8938 osz = otlocals * sizeof (dtrace_difv_t); 8939 nsz = ntlocals * sizeof (dtrace_difv_t); 8940 8941 tlocals = kmem_zalloc(nsz, KM_SLEEP); 8942 8943 if (osz != 0) { 8944 bcopy(vstate->dtvs_tlocals, 8945 tlocals, osz); 8946 kmem_free(vstate->dtvs_tlocals, osz); 8947 } 8948 8949 vstate->dtvs_tlocals = tlocals; 8950 vstate->dtvs_ntlocals = ntlocals; 8951 } 8952 8953 vstate->dtvs_tlocals[id] = *v; 8954 continue; 8955 8956 case DIFV_SCOPE_LOCAL: 8957 np = &vstate->dtvs_nlocals; 8958 svarp = &vstate->dtvs_locals; 8959 8960 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8961 dsize = NCPU * (v->dtdv_type.dtdt_size + 8962 sizeof (uint64_t)); 8963 else 8964 dsize = NCPU * sizeof (uint64_t); 8965 8966 break; 8967 8968 case DIFV_SCOPE_GLOBAL: 8969 np = &vstate->dtvs_nglobals; 8970 svarp = &vstate->dtvs_globals; 8971 8972 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 8973 dsize = v->dtdv_type.dtdt_size + 8974 sizeof (uint64_t); 8975 8976 break; 8977 8978 default: 8979 ASSERT(0); 8980 } 8981 8982 while (id >= (oldsvars = *np)) { 8983 dtrace_statvar_t **statics; 8984 int newsvars, oldsize, newsize; 8985 8986 if ((newsvars = (oldsvars << 1)) == 0) 8987 newsvars = 1; 8988 8989 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 8990 newsize = newsvars * sizeof (dtrace_statvar_t *); 8991 8992 statics = kmem_zalloc(newsize, KM_SLEEP); 8993 8994 if (oldsize != 0) { 8995 bcopy(*svarp, statics, oldsize); 8996 kmem_free(*svarp, oldsize); 8997 } 8998 8999 *svarp = statics; 9000 *np = newsvars; 9001 } 9002 9003 if ((svar = (*svarp)[id]) == NULL) { 9004 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9005 svar->dtsv_var = *v; 9006 9007 if ((svar->dtsv_size = dsize) != 0) { 9008 svar->dtsv_data = (uint64_t)(uintptr_t) 9009 kmem_zalloc(dsize, KM_SLEEP); 9010 } 9011 9012 (*svarp)[id] = svar; 9013 } 9014 9015 svar->dtsv_refcnt++; 9016 } 9017 9018 dtrace_difo_chunksize(dp, vstate); 9019 dtrace_difo_hold(dp); 9020 } 9021 9022 static dtrace_difo_t * 9023 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9024 { 9025 dtrace_difo_t *new; 9026 size_t sz; 9027 9028 ASSERT(dp->dtdo_buf != NULL); 9029 ASSERT(dp->dtdo_refcnt != 0); 9030 9031 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9032 9033 ASSERT(dp->dtdo_buf != NULL); 9034 sz = dp->dtdo_len * sizeof (dif_instr_t); 9035 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9036 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9037 new->dtdo_len = dp->dtdo_len; 9038 9039 if (dp->dtdo_strtab != NULL) { 9040 ASSERT(dp->dtdo_strlen != 0); 9041 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9042 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9043 new->dtdo_strlen = dp->dtdo_strlen; 9044 } 9045 9046 if (dp->dtdo_inttab != NULL) { 9047 ASSERT(dp->dtdo_intlen != 0); 9048 sz = dp->dtdo_intlen * sizeof (uint64_t); 9049 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9050 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9051 new->dtdo_intlen = dp->dtdo_intlen; 9052 } 9053 9054 if (dp->dtdo_vartab != NULL) { 9055 ASSERT(dp->dtdo_varlen != 0); 9056 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9057 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9058 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9059 new->dtdo_varlen = dp->dtdo_varlen; 9060 } 9061 9062 dtrace_difo_init(new, vstate); 9063 return (new); 9064 } 9065 9066 static void 9067 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9068 { 9069 int i; 9070 9071 ASSERT(dp->dtdo_refcnt == 0); 9072 9073 for (i = 0; i < dp->dtdo_varlen; i++) { 9074 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9075 dtrace_statvar_t *svar, **svarp; 9076 uint_t id; 9077 uint8_t scope = v->dtdv_scope; 9078 int *np; 9079 9080 switch (scope) { 9081 case DIFV_SCOPE_THREAD: 9082 continue; 9083 9084 case DIFV_SCOPE_LOCAL: 9085 np = &vstate->dtvs_nlocals; 9086 svarp = vstate->dtvs_locals; 9087 break; 9088 9089 case DIFV_SCOPE_GLOBAL: 9090 np = &vstate->dtvs_nglobals; 9091 svarp = vstate->dtvs_globals; 9092 break; 9093 9094 default: 9095 ASSERT(0); 9096 } 9097 9098 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9099 continue; 9100 9101 id -= DIF_VAR_OTHER_UBASE; 9102 ASSERT(id < *np); 9103 9104 svar = svarp[id]; 9105 ASSERT(svar != NULL); 9106 ASSERT(svar->dtsv_refcnt > 0); 9107 9108 if (--svar->dtsv_refcnt > 0) 9109 continue; 9110 9111 if (svar->dtsv_size != 0) { 9112 ASSERT(svar->dtsv_data != NULL); 9113 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9114 svar->dtsv_size); 9115 } 9116 9117 kmem_free(svar, sizeof (dtrace_statvar_t)); 9118 svarp[id] = NULL; 9119 } 9120 9121 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9122 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9123 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9124 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9125 9126 kmem_free(dp, sizeof (dtrace_difo_t)); 9127 } 9128 9129 static void 9130 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9131 { 9132 int i; 9133 9134 ASSERT(MUTEX_HELD(&dtrace_lock)); 9135 ASSERT(dp->dtdo_refcnt != 0); 9136 9137 for (i = 0; i < dp->dtdo_varlen; i++) { 9138 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9139 9140 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9141 continue; 9142 9143 ASSERT(dtrace_vtime_references > 0); 9144 if (--dtrace_vtime_references == 0) 9145 dtrace_vtime_disable(); 9146 } 9147 9148 if (--dp->dtdo_refcnt == 0) 9149 dtrace_difo_destroy(dp, vstate); 9150 } 9151 9152 /* 9153 * DTrace Format Functions 9154 */ 9155 static uint16_t 9156 dtrace_format_add(dtrace_state_t *state, char *str) 9157 { 9158 char *fmt, **new; 9159 uint16_t ndx, len = strlen(str) + 1; 9160 9161 fmt = kmem_zalloc(len, KM_SLEEP); 9162 bcopy(str, fmt, len); 9163 9164 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 9165 if (state->dts_formats[ndx] == NULL) { 9166 state->dts_formats[ndx] = fmt; 9167 return (ndx + 1); 9168 } 9169 } 9170 9171 if (state->dts_nformats == USHRT_MAX) { 9172 /* 9173 * This is only likely if a denial-of-service attack is being 9174 * attempted. As such, it's okay to fail silently here. 9175 */ 9176 kmem_free(fmt, len); 9177 return (0); 9178 } 9179 9180 /* 9181 * For simplicity, we always resize the formats array to be exactly the 9182 * number of formats. 9183 */ 9184 ndx = state->dts_nformats++; 9185 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 9186 9187 if (state->dts_formats != NULL) { 9188 ASSERT(ndx != 0); 9189 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 9190 kmem_free(state->dts_formats, ndx * sizeof (char *)); 9191 } 9192 9193 state->dts_formats = new; 9194 state->dts_formats[ndx] = fmt; 9195 9196 return (ndx + 1); 9197 } 9198 9199 static void 9200 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 9201 { 9202 char *fmt; 9203 9204 ASSERT(state->dts_formats != NULL); 9205 ASSERT(format <= state->dts_nformats); 9206 ASSERT(state->dts_formats[format - 1] != NULL); 9207 9208 fmt = state->dts_formats[format - 1]; 9209 kmem_free(fmt, strlen(fmt) + 1); 9210 state->dts_formats[format - 1] = NULL; 9211 } 9212 9213 static void 9214 dtrace_format_destroy(dtrace_state_t *state) 9215 { 9216 int i; 9217 9218 if (state->dts_nformats == 0) { 9219 ASSERT(state->dts_formats == NULL); 9220 return; 9221 } 9222 9223 ASSERT(state->dts_formats != NULL); 9224 9225 for (i = 0; i < state->dts_nformats; i++) { 9226 char *fmt = state->dts_formats[i]; 9227 9228 if (fmt == NULL) 9229 continue; 9230 9231 kmem_free(fmt, strlen(fmt) + 1); 9232 } 9233 9234 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 9235 state->dts_nformats = 0; 9236 state->dts_formats = NULL; 9237 } 9238 9239 /* 9240 * DTrace Predicate Functions 9241 */ 9242 static dtrace_predicate_t * 9243 dtrace_predicate_create(dtrace_difo_t *dp) 9244 { 9245 dtrace_predicate_t *pred; 9246 9247 ASSERT(MUTEX_HELD(&dtrace_lock)); 9248 ASSERT(dp->dtdo_refcnt != 0); 9249 9250 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 9251 pred->dtp_difo = dp; 9252 pred->dtp_refcnt = 1; 9253 9254 if (!dtrace_difo_cacheable(dp)) 9255 return (pred); 9256 9257 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 9258 /* 9259 * This is only theoretically possible -- we have had 2^32 9260 * cacheable predicates on this machine. We cannot allow any 9261 * more predicates to become cacheable: as unlikely as it is, 9262 * there may be a thread caching a (now stale) predicate cache 9263 * ID. (N.B.: the temptation is being successfully resisted to 9264 * have this cmn_err() "Holy shit -- we executed this code!") 9265 */ 9266 return (pred); 9267 } 9268 9269 pred->dtp_cacheid = dtrace_predcache_id++; 9270 9271 return (pred); 9272 } 9273 9274 static void 9275 dtrace_predicate_hold(dtrace_predicate_t *pred) 9276 { 9277 ASSERT(MUTEX_HELD(&dtrace_lock)); 9278 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 9279 ASSERT(pred->dtp_refcnt > 0); 9280 9281 pred->dtp_refcnt++; 9282 } 9283 9284 static void 9285 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 9286 { 9287 dtrace_difo_t *dp = pred->dtp_difo; 9288 9289 ASSERT(MUTEX_HELD(&dtrace_lock)); 9290 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 9291 ASSERT(pred->dtp_refcnt > 0); 9292 9293 if (--pred->dtp_refcnt == 0) { 9294 dtrace_difo_release(pred->dtp_difo, vstate); 9295 kmem_free(pred, sizeof (dtrace_predicate_t)); 9296 } 9297 } 9298 9299 /* 9300 * DTrace Action Description Functions 9301 */ 9302 static dtrace_actdesc_t * 9303 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 9304 uint64_t uarg, uint64_t arg) 9305 { 9306 dtrace_actdesc_t *act; 9307 9308 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 9309 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 9310 9311 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 9312 act->dtad_kind = kind; 9313 act->dtad_ntuple = ntuple; 9314 act->dtad_uarg = uarg; 9315 act->dtad_arg = arg; 9316 act->dtad_refcnt = 1; 9317 9318 return (act); 9319 } 9320 9321 static void 9322 dtrace_actdesc_hold(dtrace_actdesc_t *act) 9323 { 9324 ASSERT(act->dtad_refcnt >= 1); 9325 act->dtad_refcnt++; 9326 } 9327 9328 static void 9329 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 9330 { 9331 dtrace_actkind_t kind = act->dtad_kind; 9332 dtrace_difo_t *dp; 9333 9334 ASSERT(act->dtad_refcnt >= 1); 9335 9336 if (--act->dtad_refcnt != 0) 9337 return; 9338 9339 if ((dp = act->dtad_difo) != NULL) 9340 dtrace_difo_release(dp, vstate); 9341 9342 if (DTRACEACT_ISPRINTFLIKE(kind)) { 9343 char *str = (char *)(uintptr_t)act->dtad_arg; 9344 9345 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 9346 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 9347 9348 if (str != NULL) 9349 kmem_free(str, strlen(str) + 1); 9350 } 9351 9352 kmem_free(act, sizeof (dtrace_actdesc_t)); 9353 } 9354 9355 /* 9356 * DTrace ECB Functions 9357 */ 9358 static dtrace_ecb_t * 9359 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 9360 { 9361 dtrace_ecb_t *ecb; 9362 dtrace_epid_t epid; 9363 9364 ASSERT(MUTEX_HELD(&dtrace_lock)); 9365 9366 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 9367 ecb->dte_predicate = NULL; 9368 ecb->dte_probe = probe; 9369 9370 /* 9371 * The default size is the size of the default action: recording 9372 * the epid. 9373 */ 9374 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9375 ecb->dte_alignment = sizeof (dtrace_epid_t); 9376 9377 epid = state->dts_epid++; 9378 9379 if (epid - 1 >= state->dts_necbs) { 9380 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 9381 int necbs = state->dts_necbs << 1; 9382 9383 ASSERT(epid == state->dts_necbs + 1); 9384 9385 if (necbs == 0) { 9386 ASSERT(oecbs == NULL); 9387 necbs = 1; 9388 } 9389 9390 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 9391 9392 if (oecbs != NULL) 9393 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 9394 9395 dtrace_membar_producer(); 9396 state->dts_ecbs = ecbs; 9397 9398 if (oecbs != NULL) { 9399 /* 9400 * If this state is active, we must dtrace_sync() 9401 * before we can free the old dts_ecbs array: we're 9402 * coming in hot, and there may be active ring 9403 * buffer processing (which indexes into the dts_ecbs 9404 * array) on another CPU. 9405 */ 9406 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 9407 dtrace_sync(); 9408 9409 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 9410 } 9411 9412 dtrace_membar_producer(); 9413 state->dts_necbs = necbs; 9414 } 9415 9416 ecb->dte_state = state; 9417 9418 ASSERT(state->dts_ecbs[epid - 1] == NULL); 9419 dtrace_membar_producer(); 9420 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 9421 9422 return (ecb); 9423 } 9424 9425 static int 9426 dtrace_ecb_enable(dtrace_ecb_t *ecb) 9427 { 9428 dtrace_probe_t *probe = ecb->dte_probe; 9429 9430 ASSERT(MUTEX_HELD(&cpu_lock)); 9431 ASSERT(MUTEX_HELD(&dtrace_lock)); 9432 ASSERT(ecb->dte_next == NULL); 9433 9434 if (probe == NULL) { 9435 /* 9436 * This is the NULL probe -- there's nothing to do. 9437 */ 9438 return (0); 9439 } 9440 9441 if (probe->dtpr_ecb == NULL) { 9442 dtrace_provider_t *prov = probe->dtpr_provider; 9443 9444 /* 9445 * We're the first ECB on this probe. 9446 */ 9447 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 9448 9449 if (ecb->dte_predicate != NULL) 9450 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 9451 9452 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 9453 probe->dtpr_id, probe->dtpr_arg)); 9454 } else { 9455 /* 9456 * This probe is already active. Swing the last pointer to 9457 * point to the new ECB, and issue a dtrace_sync() to assure 9458 * that all CPUs have seen the change. 9459 */ 9460 ASSERT(probe->dtpr_ecb_last != NULL); 9461 probe->dtpr_ecb_last->dte_next = ecb; 9462 probe->dtpr_ecb_last = ecb; 9463 probe->dtpr_predcache = 0; 9464 9465 dtrace_sync(); 9466 return (0); 9467 } 9468 } 9469 9470 static void 9471 dtrace_ecb_resize(dtrace_ecb_t *ecb) 9472 { 9473 uint32_t maxalign = sizeof (dtrace_epid_t); 9474 uint32_t align = sizeof (uint8_t), offs, diff; 9475 dtrace_action_t *act; 9476 int wastuple = 0; 9477 uint32_t aggbase = UINT32_MAX; 9478 dtrace_state_t *state = ecb->dte_state; 9479 9480 /* 9481 * If we record anything, we always record the epid. (And we always 9482 * record it first.) 9483 */ 9484 offs = sizeof (dtrace_epid_t); 9485 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t); 9486 9487 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9488 dtrace_recdesc_t *rec = &act->dta_rec; 9489 9490 if ((align = rec->dtrd_alignment) > maxalign) 9491 maxalign = align; 9492 9493 if (!wastuple && act->dta_intuple) { 9494 /* 9495 * This is the first record in a tuple. Align the 9496 * offset to be at offset 4 in an 8-byte aligned 9497 * block. 9498 */ 9499 diff = offs + sizeof (dtrace_aggid_t); 9500 9501 if (diff = (diff & (sizeof (uint64_t) - 1))) 9502 offs += sizeof (uint64_t) - diff; 9503 9504 aggbase = offs - sizeof (dtrace_aggid_t); 9505 ASSERT(!(aggbase & (sizeof (uint64_t) - 1))); 9506 } 9507 9508 /*LINTED*/ 9509 if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) { 9510 /* 9511 * The current offset is not properly aligned; align it. 9512 */ 9513 offs += align - diff; 9514 } 9515 9516 rec->dtrd_offset = offs; 9517 9518 if (offs + rec->dtrd_size > ecb->dte_needed) { 9519 ecb->dte_needed = offs + rec->dtrd_size; 9520 9521 if (ecb->dte_needed > state->dts_needed) 9522 state->dts_needed = ecb->dte_needed; 9523 } 9524 9525 if (DTRACEACT_ISAGG(act->dta_kind)) { 9526 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9527 dtrace_action_t *first = agg->dtag_first, *prev; 9528 9529 ASSERT(rec->dtrd_size != 0 && first != NULL); 9530 ASSERT(wastuple); 9531 ASSERT(aggbase != UINT32_MAX); 9532 9533 agg->dtag_base = aggbase; 9534 9535 while ((prev = first->dta_prev) != NULL && 9536 DTRACEACT_ISAGG(prev->dta_kind)) { 9537 agg = (dtrace_aggregation_t *)prev; 9538 first = agg->dtag_first; 9539 } 9540 9541 if (prev != NULL) { 9542 offs = prev->dta_rec.dtrd_offset + 9543 prev->dta_rec.dtrd_size; 9544 } else { 9545 offs = sizeof (dtrace_epid_t); 9546 } 9547 wastuple = 0; 9548 } else { 9549 if (!act->dta_intuple) 9550 ecb->dte_size = offs + rec->dtrd_size; 9551 9552 offs += rec->dtrd_size; 9553 } 9554 9555 wastuple = act->dta_intuple; 9556 } 9557 9558 if ((act = ecb->dte_action) != NULL && 9559 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 9560 ecb->dte_size == sizeof (dtrace_epid_t)) { 9561 /* 9562 * If the size is still sizeof (dtrace_epid_t), then all 9563 * actions store no data; set the size to 0. 9564 */ 9565 ecb->dte_alignment = maxalign; 9566 ecb->dte_size = 0; 9567 9568 /* 9569 * If the needed space is still sizeof (dtrace_epid_t), then 9570 * all actions need no additional space; set the needed 9571 * size to 0. 9572 */ 9573 if (ecb->dte_needed == sizeof (dtrace_epid_t)) 9574 ecb->dte_needed = 0; 9575 9576 return; 9577 } 9578 9579 /* 9580 * Set our alignment, and make sure that the dte_size and dte_needed 9581 * are aligned to the size of an EPID. 9582 */ 9583 ecb->dte_alignment = maxalign; 9584 ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) & 9585 ~(sizeof (dtrace_epid_t) - 1); 9586 ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) & 9587 ~(sizeof (dtrace_epid_t) - 1); 9588 ASSERT(ecb->dte_size <= ecb->dte_needed); 9589 } 9590 9591 static dtrace_action_t * 9592 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9593 { 9594 dtrace_aggregation_t *agg; 9595 size_t size = sizeof (uint64_t); 9596 int ntuple = desc->dtad_ntuple; 9597 dtrace_action_t *act; 9598 dtrace_recdesc_t *frec; 9599 dtrace_aggid_t aggid; 9600 dtrace_state_t *state = ecb->dte_state; 9601 9602 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 9603 agg->dtag_ecb = ecb; 9604 9605 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 9606 9607 switch (desc->dtad_kind) { 9608 case DTRACEAGG_MIN: 9609 agg->dtag_initial = INT64_MAX; 9610 agg->dtag_aggregate = dtrace_aggregate_min; 9611 break; 9612 9613 case DTRACEAGG_MAX: 9614 agg->dtag_initial = INT64_MIN; 9615 agg->dtag_aggregate = dtrace_aggregate_max; 9616 break; 9617 9618 case DTRACEAGG_COUNT: 9619 agg->dtag_aggregate = dtrace_aggregate_count; 9620 break; 9621 9622 case DTRACEAGG_QUANTIZE: 9623 agg->dtag_aggregate = dtrace_aggregate_quantize; 9624 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 9625 sizeof (uint64_t); 9626 break; 9627 9628 case DTRACEAGG_LQUANTIZE: { 9629 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 9630 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 9631 9632 agg->dtag_initial = desc->dtad_arg; 9633 agg->dtag_aggregate = dtrace_aggregate_lquantize; 9634 9635 if (step == 0 || levels == 0) 9636 goto err; 9637 9638 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 9639 break; 9640 } 9641 9642 case DTRACEAGG_LLQUANTIZE: { 9643 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 9644 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 9645 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 9646 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 9647 int64_t v; 9648 9649 agg->dtag_initial = desc->dtad_arg; 9650 agg->dtag_aggregate = dtrace_aggregate_llquantize; 9651 9652 if (factor < 2 || low >= high || nsteps < factor) 9653 goto err; 9654 9655 /* 9656 * Now check that the number of steps evenly divides a power 9657 * of the factor. (This assures both integer bucket size and 9658 * linearity within each magnitude.) 9659 */ 9660 for (v = factor; v < nsteps; v *= factor) 9661 continue; 9662 9663 if ((v % nsteps) || (nsteps % factor)) 9664 goto err; 9665 9666 size = (dtrace_aggregate_llquantize_bucket(factor, 9667 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 9668 break; 9669 } 9670 9671 case DTRACEAGG_AVG: 9672 agg->dtag_aggregate = dtrace_aggregate_avg; 9673 size = sizeof (uint64_t) * 2; 9674 break; 9675 9676 case DTRACEAGG_STDDEV: 9677 agg->dtag_aggregate = dtrace_aggregate_stddev; 9678 size = sizeof (uint64_t) * 4; 9679 break; 9680 9681 case DTRACEAGG_SUM: 9682 agg->dtag_aggregate = dtrace_aggregate_sum; 9683 break; 9684 9685 default: 9686 goto err; 9687 } 9688 9689 agg->dtag_action.dta_rec.dtrd_size = size; 9690 9691 if (ntuple == 0) 9692 goto err; 9693 9694 /* 9695 * We must make sure that we have enough actions for the n-tuple. 9696 */ 9697 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 9698 if (DTRACEACT_ISAGG(act->dta_kind)) 9699 break; 9700 9701 if (--ntuple == 0) { 9702 /* 9703 * This is the action with which our n-tuple begins. 9704 */ 9705 agg->dtag_first = act; 9706 goto success; 9707 } 9708 } 9709 9710 /* 9711 * This n-tuple is short by ntuple elements. Return failure. 9712 */ 9713 ASSERT(ntuple != 0); 9714 err: 9715 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9716 return (NULL); 9717 9718 success: 9719 /* 9720 * If the last action in the tuple has a size of zero, it's actually 9721 * an expression argument for the aggregating action. 9722 */ 9723 ASSERT(ecb->dte_action_last != NULL); 9724 act = ecb->dte_action_last; 9725 9726 if (act->dta_kind == DTRACEACT_DIFEXPR) { 9727 ASSERT(act->dta_difo != NULL); 9728 9729 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 9730 agg->dtag_hasarg = 1; 9731 } 9732 9733 /* 9734 * We need to allocate an id for this aggregation. 9735 */ 9736 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 9737 VM_BESTFIT | VM_SLEEP); 9738 9739 if (aggid - 1 >= state->dts_naggregations) { 9740 dtrace_aggregation_t **oaggs = state->dts_aggregations; 9741 dtrace_aggregation_t **aggs; 9742 int naggs = state->dts_naggregations << 1; 9743 int onaggs = state->dts_naggregations; 9744 9745 ASSERT(aggid == state->dts_naggregations + 1); 9746 9747 if (naggs == 0) { 9748 ASSERT(oaggs == NULL); 9749 naggs = 1; 9750 } 9751 9752 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 9753 9754 if (oaggs != NULL) { 9755 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 9756 kmem_free(oaggs, onaggs * sizeof (*aggs)); 9757 } 9758 9759 state->dts_aggregations = aggs; 9760 state->dts_naggregations = naggs; 9761 } 9762 9763 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 9764 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 9765 9766 frec = &agg->dtag_first->dta_rec; 9767 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 9768 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 9769 9770 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 9771 ASSERT(!act->dta_intuple); 9772 act->dta_intuple = 1; 9773 } 9774 9775 return (&agg->dtag_action); 9776 } 9777 9778 static void 9779 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 9780 { 9781 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 9782 dtrace_state_t *state = ecb->dte_state; 9783 dtrace_aggid_t aggid = agg->dtag_id; 9784 9785 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 9786 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 9787 9788 ASSERT(state->dts_aggregations[aggid - 1] == agg); 9789 state->dts_aggregations[aggid - 1] = NULL; 9790 9791 kmem_free(agg, sizeof (dtrace_aggregation_t)); 9792 } 9793 9794 static int 9795 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 9796 { 9797 dtrace_action_t *action, *last; 9798 dtrace_difo_t *dp = desc->dtad_difo; 9799 uint32_t size = 0, align = sizeof (uint8_t), mask; 9800 uint16_t format = 0; 9801 dtrace_recdesc_t *rec; 9802 dtrace_state_t *state = ecb->dte_state; 9803 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 9804 uint64_t arg = desc->dtad_arg; 9805 9806 ASSERT(MUTEX_HELD(&dtrace_lock)); 9807 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 9808 9809 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 9810 /* 9811 * If this is an aggregating action, there must be neither 9812 * a speculate nor a commit on the action chain. 9813 */ 9814 dtrace_action_t *act; 9815 9816 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 9817 if (act->dta_kind == DTRACEACT_COMMIT) 9818 return (EINVAL); 9819 9820 if (act->dta_kind == DTRACEACT_SPECULATE) 9821 return (EINVAL); 9822 } 9823 9824 action = dtrace_ecb_aggregation_create(ecb, desc); 9825 9826 if (action == NULL) 9827 return (EINVAL); 9828 } else { 9829 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 9830 (desc->dtad_kind == DTRACEACT_DIFEXPR && 9831 dp != NULL && dp->dtdo_destructive)) { 9832 state->dts_destructive = 1; 9833 } 9834 9835 switch (desc->dtad_kind) { 9836 case DTRACEACT_PRINTF: 9837 case DTRACEACT_PRINTA: 9838 case DTRACEACT_SYSTEM: 9839 case DTRACEACT_FREOPEN: 9840 case DTRACEACT_DIFEXPR: 9841 /* 9842 * We know that our arg is a string -- turn it into a 9843 * format. 9844 */ 9845 if (arg == NULL) { 9846 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 9847 desc->dtad_kind == DTRACEACT_DIFEXPR); 9848 format = 0; 9849 } else { 9850 ASSERT(arg != NULL); 9851 ASSERT(arg > KERNELBASE); 9852 format = dtrace_format_add(state, 9853 (char *)(uintptr_t)arg); 9854 } 9855 9856 /*FALLTHROUGH*/ 9857 case DTRACEACT_LIBACT: 9858 case DTRACEACT_TRACEMEM: 9859 case DTRACEACT_TRACEMEM_DYNSIZE: 9860 if (dp == NULL) 9861 return (EINVAL); 9862 9863 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 9864 break; 9865 9866 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 9867 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9868 return (EINVAL); 9869 9870 size = opt[DTRACEOPT_STRSIZE]; 9871 } 9872 9873 break; 9874 9875 case DTRACEACT_STACK: 9876 if ((nframes = arg) == 0) { 9877 nframes = opt[DTRACEOPT_STACKFRAMES]; 9878 ASSERT(nframes > 0); 9879 arg = nframes; 9880 } 9881 9882 size = nframes * sizeof (pc_t); 9883 break; 9884 9885 case DTRACEACT_JSTACK: 9886 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 9887 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 9888 9889 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 9890 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 9891 9892 arg = DTRACE_USTACK_ARG(nframes, strsize); 9893 9894 /*FALLTHROUGH*/ 9895 case DTRACEACT_USTACK: 9896 if (desc->dtad_kind != DTRACEACT_JSTACK && 9897 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 9898 strsize = DTRACE_USTACK_STRSIZE(arg); 9899 nframes = opt[DTRACEOPT_USTACKFRAMES]; 9900 ASSERT(nframes > 0); 9901 arg = DTRACE_USTACK_ARG(nframes, strsize); 9902 } 9903 9904 /* 9905 * Save a slot for the pid. 9906 */ 9907 size = (nframes + 1) * sizeof (uint64_t); 9908 size += DTRACE_USTACK_STRSIZE(arg); 9909 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 9910 9911 break; 9912 9913 case DTRACEACT_SYM: 9914 case DTRACEACT_MOD: 9915 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 9916 sizeof (uint64_t)) || 9917 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9918 return (EINVAL); 9919 break; 9920 9921 case DTRACEACT_USYM: 9922 case DTRACEACT_UMOD: 9923 case DTRACEACT_UADDR: 9924 if (dp == NULL || 9925 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 9926 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9927 return (EINVAL); 9928 9929 /* 9930 * We have a slot for the pid, plus a slot for the 9931 * argument. To keep things simple (aligned with 9932 * bitness-neutral sizing), we store each as a 64-bit 9933 * quantity. 9934 */ 9935 size = 2 * sizeof (uint64_t); 9936 break; 9937 9938 case DTRACEACT_STOP: 9939 case DTRACEACT_BREAKPOINT: 9940 case DTRACEACT_PANIC: 9941 break; 9942 9943 case DTRACEACT_CHILL: 9944 case DTRACEACT_DISCARD: 9945 case DTRACEACT_RAISE: 9946 if (dp == NULL) 9947 return (EINVAL); 9948 break; 9949 9950 case DTRACEACT_EXIT: 9951 if (dp == NULL || 9952 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 9953 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 9954 return (EINVAL); 9955 break; 9956 9957 case DTRACEACT_SPECULATE: 9958 if (ecb->dte_size > sizeof (dtrace_epid_t)) 9959 return (EINVAL); 9960 9961 if (dp == NULL) 9962 return (EINVAL); 9963 9964 state->dts_speculates = 1; 9965 break; 9966 9967 case DTRACEACT_COMMIT: { 9968 dtrace_action_t *act = ecb->dte_action; 9969 9970 for (; act != NULL; act = act->dta_next) { 9971 if (act->dta_kind == DTRACEACT_COMMIT) 9972 return (EINVAL); 9973 } 9974 9975 if (dp == NULL) 9976 return (EINVAL); 9977 break; 9978 } 9979 9980 default: 9981 return (EINVAL); 9982 } 9983 9984 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 9985 /* 9986 * If this is a data-storing action or a speculate, 9987 * we must be sure that there isn't a commit on the 9988 * action chain. 9989 */ 9990 dtrace_action_t *act = ecb->dte_action; 9991 9992 for (; act != NULL; act = act->dta_next) { 9993 if (act->dta_kind == DTRACEACT_COMMIT) 9994 return (EINVAL); 9995 } 9996 } 9997 9998 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 9999 action->dta_rec.dtrd_size = size; 10000 } 10001 10002 action->dta_refcnt = 1; 10003 rec = &action->dta_rec; 10004 size = rec->dtrd_size; 10005 10006 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10007 if (!(size & mask)) { 10008 align = mask + 1; 10009 break; 10010 } 10011 } 10012 10013 action->dta_kind = desc->dtad_kind; 10014 10015 if ((action->dta_difo = dp) != NULL) 10016 dtrace_difo_hold(dp); 10017 10018 rec->dtrd_action = action->dta_kind; 10019 rec->dtrd_arg = arg; 10020 rec->dtrd_uarg = desc->dtad_uarg; 10021 rec->dtrd_alignment = (uint16_t)align; 10022 rec->dtrd_format = format; 10023 10024 if ((last = ecb->dte_action_last) != NULL) { 10025 ASSERT(ecb->dte_action != NULL); 10026 action->dta_prev = last; 10027 last->dta_next = action; 10028 } else { 10029 ASSERT(ecb->dte_action == NULL); 10030 ecb->dte_action = action; 10031 } 10032 10033 ecb->dte_action_last = action; 10034 10035 return (0); 10036 } 10037 10038 static void 10039 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10040 { 10041 dtrace_action_t *act = ecb->dte_action, *next; 10042 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10043 dtrace_difo_t *dp; 10044 uint16_t format; 10045 10046 if (act != NULL && act->dta_refcnt > 1) { 10047 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10048 act->dta_refcnt--; 10049 } else { 10050 for (; act != NULL; act = next) { 10051 next = act->dta_next; 10052 ASSERT(next != NULL || act == ecb->dte_action_last); 10053 ASSERT(act->dta_refcnt == 1); 10054 10055 if ((format = act->dta_rec.dtrd_format) != 0) 10056 dtrace_format_remove(ecb->dte_state, format); 10057 10058 if ((dp = act->dta_difo) != NULL) 10059 dtrace_difo_release(dp, vstate); 10060 10061 if (DTRACEACT_ISAGG(act->dta_kind)) { 10062 dtrace_ecb_aggregation_destroy(ecb, act); 10063 } else { 10064 kmem_free(act, sizeof (dtrace_action_t)); 10065 } 10066 } 10067 } 10068 10069 ecb->dte_action = NULL; 10070 ecb->dte_action_last = NULL; 10071 ecb->dte_size = sizeof (dtrace_epid_t); 10072 } 10073 10074 static void 10075 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10076 { 10077 /* 10078 * We disable the ECB by removing it from its probe. 10079 */ 10080 dtrace_ecb_t *pecb, *prev = NULL; 10081 dtrace_probe_t *probe = ecb->dte_probe; 10082 10083 ASSERT(MUTEX_HELD(&dtrace_lock)); 10084 10085 if (probe == NULL) { 10086 /* 10087 * This is the NULL probe; there is nothing to disable. 10088 */ 10089 return; 10090 } 10091 10092 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10093 if (pecb == ecb) 10094 break; 10095 prev = pecb; 10096 } 10097 10098 ASSERT(pecb != NULL); 10099 10100 if (prev == NULL) { 10101 probe->dtpr_ecb = ecb->dte_next; 10102 } else { 10103 prev->dte_next = ecb->dte_next; 10104 } 10105 10106 if (ecb == probe->dtpr_ecb_last) { 10107 ASSERT(ecb->dte_next == NULL); 10108 probe->dtpr_ecb_last = prev; 10109 } 10110 10111 /* 10112 * The ECB has been disconnected from the probe; now sync to assure 10113 * that all CPUs have seen the change before returning. 10114 */ 10115 dtrace_sync(); 10116 10117 if (probe->dtpr_ecb == NULL) { 10118 /* 10119 * That was the last ECB on the probe; clear the predicate 10120 * cache ID for the probe, disable it and sync one more time 10121 * to assure that we'll never hit it again. 10122 */ 10123 dtrace_provider_t *prov = probe->dtpr_provider; 10124 10125 ASSERT(ecb->dte_next == NULL); 10126 ASSERT(probe->dtpr_ecb_last == NULL); 10127 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10128 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10129 probe->dtpr_id, probe->dtpr_arg); 10130 dtrace_sync(); 10131 } else { 10132 /* 10133 * There is at least one ECB remaining on the probe. If there 10134 * is _exactly_ one, set the probe's predicate cache ID to be 10135 * the predicate cache ID of the remaining ECB. 10136 */ 10137 ASSERT(probe->dtpr_ecb_last != NULL); 10138 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10139 10140 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10141 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10142 10143 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10144 10145 if (p != NULL) 10146 probe->dtpr_predcache = p->dtp_cacheid; 10147 } 10148 10149 ecb->dte_next = NULL; 10150 } 10151 } 10152 10153 static void 10154 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10155 { 10156 dtrace_state_t *state = ecb->dte_state; 10157 dtrace_vstate_t *vstate = &state->dts_vstate; 10158 dtrace_predicate_t *pred; 10159 dtrace_epid_t epid = ecb->dte_epid; 10160 10161 ASSERT(MUTEX_HELD(&dtrace_lock)); 10162 ASSERT(ecb->dte_next == NULL); 10163 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10164 10165 if ((pred = ecb->dte_predicate) != NULL) 10166 dtrace_predicate_release(pred, vstate); 10167 10168 dtrace_ecb_action_remove(ecb); 10169 10170 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10171 state->dts_ecbs[epid - 1] = NULL; 10172 10173 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10174 } 10175 10176 static dtrace_ecb_t * 10177 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10178 dtrace_enabling_t *enab) 10179 { 10180 dtrace_ecb_t *ecb; 10181 dtrace_predicate_t *pred; 10182 dtrace_actdesc_t *act; 10183 dtrace_provider_t *prov; 10184 dtrace_ecbdesc_t *desc = enab->dten_current; 10185 10186 ASSERT(MUTEX_HELD(&dtrace_lock)); 10187 ASSERT(state != NULL); 10188 10189 ecb = dtrace_ecb_add(state, probe); 10190 ecb->dte_uarg = desc->dted_uarg; 10191 10192 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 10193 dtrace_predicate_hold(pred); 10194 ecb->dte_predicate = pred; 10195 } 10196 10197 if (probe != NULL) { 10198 /* 10199 * If the provider shows more leg than the consumer is old 10200 * enough to see, we need to enable the appropriate implicit 10201 * predicate bits to prevent the ecb from activating at 10202 * revealing times. 10203 * 10204 * Providers specifying DTRACE_PRIV_USER at register time 10205 * are stating that they need the /proc-style privilege 10206 * model to be enforced, and this is what DTRACE_COND_OWNER 10207 * and DTRACE_COND_ZONEOWNER will then do at probe time. 10208 */ 10209 prov = probe->dtpr_provider; 10210 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 10211 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10212 ecb->dte_cond |= DTRACE_COND_OWNER; 10213 10214 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 10215 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 10216 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 10217 10218 /* 10219 * If the provider shows us kernel innards and the user 10220 * is lacking sufficient privilege, enable the 10221 * DTRACE_COND_USERMODE implicit predicate. 10222 */ 10223 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 10224 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 10225 ecb->dte_cond |= DTRACE_COND_USERMODE; 10226 } 10227 10228 if (dtrace_ecb_create_cache != NULL) { 10229 /* 10230 * If we have a cached ecb, we'll use its action list instead 10231 * of creating our own (saving both time and space). 10232 */ 10233 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 10234 dtrace_action_t *act = cached->dte_action; 10235 10236 if (act != NULL) { 10237 ASSERT(act->dta_refcnt > 0); 10238 act->dta_refcnt++; 10239 ecb->dte_action = act; 10240 ecb->dte_action_last = cached->dte_action_last; 10241 ecb->dte_needed = cached->dte_needed; 10242 ecb->dte_size = cached->dte_size; 10243 ecb->dte_alignment = cached->dte_alignment; 10244 } 10245 10246 return (ecb); 10247 } 10248 10249 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 10250 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 10251 dtrace_ecb_destroy(ecb); 10252 return (NULL); 10253 } 10254 } 10255 10256 dtrace_ecb_resize(ecb); 10257 10258 return (dtrace_ecb_create_cache = ecb); 10259 } 10260 10261 static int 10262 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 10263 { 10264 dtrace_ecb_t *ecb; 10265 dtrace_enabling_t *enab = arg; 10266 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 10267 10268 ASSERT(state != NULL); 10269 10270 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 10271 /* 10272 * This probe was created in a generation for which this 10273 * enabling has previously created ECBs; we don't want to 10274 * enable it again, so just kick out. 10275 */ 10276 return (DTRACE_MATCH_NEXT); 10277 } 10278 10279 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 10280 return (DTRACE_MATCH_DONE); 10281 10282 if (dtrace_ecb_enable(ecb) < 0) 10283 return (DTRACE_MATCH_FAIL); 10284 10285 return (DTRACE_MATCH_NEXT); 10286 } 10287 10288 static dtrace_ecb_t * 10289 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 10290 { 10291 dtrace_ecb_t *ecb; 10292 10293 ASSERT(MUTEX_HELD(&dtrace_lock)); 10294 10295 if (id == 0 || id > state->dts_necbs) 10296 return (NULL); 10297 10298 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 10299 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 10300 10301 return (state->dts_ecbs[id - 1]); 10302 } 10303 10304 static dtrace_aggregation_t * 10305 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 10306 { 10307 dtrace_aggregation_t *agg; 10308 10309 ASSERT(MUTEX_HELD(&dtrace_lock)); 10310 10311 if (id == 0 || id > state->dts_naggregations) 10312 return (NULL); 10313 10314 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 10315 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 10316 agg->dtag_id == id); 10317 10318 return (state->dts_aggregations[id - 1]); 10319 } 10320 10321 /* 10322 * DTrace Buffer Functions 10323 * 10324 * The following functions manipulate DTrace buffers. Most of these functions 10325 * are called in the context of establishing or processing consumer state; 10326 * exceptions are explicitly noted. 10327 */ 10328 10329 /* 10330 * Note: called from cross call context. This function switches the two 10331 * buffers on a given CPU. The atomicity of this operation is assured by 10332 * disabling interrupts while the actual switch takes place; the disabling of 10333 * interrupts serializes the execution with any execution of dtrace_probe() on 10334 * the same CPU. 10335 */ 10336 static void 10337 dtrace_buffer_switch(dtrace_buffer_t *buf) 10338 { 10339 caddr_t tomax = buf->dtb_tomax; 10340 caddr_t xamot = buf->dtb_xamot; 10341 dtrace_icookie_t cookie; 10342 hrtime_t now = dtrace_gethrtime(); 10343 10344 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10345 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 10346 10347 cookie = dtrace_interrupt_disable(); 10348 buf->dtb_tomax = xamot; 10349 buf->dtb_xamot = tomax; 10350 buf->dtb_xamot_drops = buf->dtb_drops; 10351 buf->dtb_xamot_offset = buf->dtb_offset; 10352 buf->dtb_xamot_errors = buf->dtb_errors; 10353 buf->dtb_xamot_flags = buf->dtb_flags; 10354 buf->dtb_offset = 0; 10355 buf->dtb_drops = 0; 10356 buf->dtb_errors = 0; 10357 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 10358 buf->dtb_interval = now - buf->dtb_switched; 10359 buf->dtb_switched = now; 10360 dtrace_interrupt_enable(cookie); 10361 } 10362 10363 /* 10364 * Note: called from cross call context. This function activates a buffer 10365 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 10366 * is guaranteed by the disabling of interrupts. 10367 */ 10368 static void 10369 dtrace_buffer_activate(dtrace_state_t *state) 10370 { 10371 dtrace_buffer_t *buf; 10372 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 10373 10374 buf = &state->dts_buffer[CPU->cpu_id]; 10375 10376 if (buf->dtb_tomax != NULL) { 10377 /* 10378 * We might like to assert that the buffer is marked inactive, 10379 * but this isn't necessarily true: the buffer for the CPU 10380 * that processes the BEGIN probe has its buffer activated 10381 * manually. In this case, we take the (harmless) action 10382 * re-clearing the bit INACTIVE bit. 10383 */ 10384 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 10385 } 10386 10387 dtrace_interrupt_enable(cookie); 10388 } 10389 10390 static int 10391 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 10392 processorid_t cpu, int *factor) 10393 { 10394 cpu_t *cp; 10395 dtrace_buffer_t *buf; 10396 int allocated = 0, desired = 0; 10397 10398 ASSERT(MUTEX_HELD(&cpu_lock)); 10399 ASSERT(MUTEX_HELD(&dtrace_lock)); 10400 10401 *factor = 1; 10402 10403 if (size > dtrace_nonroot_maxsize && 10404 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 10405 return (EFBIG); 10406 10407 cp = cpu_list; 10408 10409 do { 10410 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10411 continue; 10412 10413 buf = &bufs[cp->cpu_id]; 10414 10415 /* 10416 * If there is already a buffer allocated for this CPU, it 10417 * is only possible that this is a DR event. In this case, 10418 * the buffer size must match our specified size. 10419 */ 10420 if (buf->dtb_tomax != NULL) { 10421 ASSERT(buf->dtb_size == size); 10422 continue; 10423 } 10424 10425 ASSERT(buf->dtb_xamot == NULL); 10426 10427 if ((buf->dtb_tomax = kmem_zalloc(size, 10428 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10429 goto err; 10430 10431 buf->dtb_size = size; 10432 buf->dtb_flags = flags; 10433 buf->dtb_offset = 0; 10434 buf->dtb_drops = 0; 10435 10436 if (flags & DTRACEBUF_NOSWITCH) 10437 continue; 10438 10439 if ((buf->dtb_xamot = kmem_zalloc(size, 10440 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 10441 goto err; 10442 } while ((cp = cp->cpu_next) != cpu_list); 10443 10444 return (0); 10445 10446 err: 10447 cp = cpu_list; 10448 10449 do { 10450 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 10451 continue; 10452 10453 buf = &bufs[cp->cpu_id]; 10454 desired += 2; 10455 10456 if (buf->dtb_xamot != NULL) { 10457 ASSERT(buf->dtb_tomax != NULL); 10458 ASSERT(buf->dtb_size == size); 10459 kmem_free(buf->dtb_xamot, size); 10460 allocated++; 10461 } 10462 10463 if (buf->dtb_tomax != NULL) { 10464 ASSERT(buf->dtb_size == size); 10465 kmem_free(buf->dtb_tomax, size); 10466 allocated++; 10467 } 10468 10469 buf->dtb_tomax = NULL; 10470 buf->dtb_xamot = NULL; 10471 buf->dtb_size = 0; 10472 } while ((cp = cp->cpu_next) != cpu_list); 10473 10474 *factor = desired / (allocated > 0 ? allocated : 1); 10475 10476 return (ENOMEM); 10477 } 10478 10479 /* 10480 * Note: called from probe context. This function just increments the drop 10481 * count on a buffer. It has been made a function to allow for the 10482 * possibility of understanding the source of mysterious drop counts. (A 10483 * problem for which one may be particularly disappointed that DTrace cannot 10484 * be used to understand DTrace.) 10485 */ 10486 static void 10487 dtrace_buffer_drop(dtrace_buffer_t *buf) 10488 { 10489 buf->dtb_drops++; 10490 } 10491 10492 /* 10493 * Note: called from probe context. This function is called to reserve space 10494 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 10495 * mstate. Returns the new offset in the buffer, or a negative value if an 10496 * error has occurred. 10497 */ 10498 static intptr_t 10499 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 10500 dtrace_state_t *state, dtrace_mstate_t *mstate) 10501 { 10502 intptr_t offs = buf->dtb_offset, soffs; 10503 intptr_t woffs; 10504 caddr_t tomax; 10505 size_t total; 10506 10507 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 10508 return (-1); 10509 10510 if ((tomax = buf->dtb_tomax) == NULL) { 10511 dtrace_buffer_drop(buf); 10512 return (-1); 10513 } 10514 10515 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 10516 while (offs & (align - 1)) { 10517 /* 10518 * Assert that our alignment is off by a number which 10519 * is itself sizeof (uint32_t) aligned. 10520 */ 10521 ASSERT(!((align - (offs & (align - 1))) & 10522 (sizeof (uint32_t) - 1))); 10523 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10524 offs += sizeof (uint32_t); 10525 } 10526 10527 if ((soffs = offs + needed) > buf->dtb_size) { 10528 dtrace_buffer_drop(buf); 10529 return (-1); 10530 } 10531 10532 if (mstate == NULL) 10533 return (offs); 10534 10535 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 10536 mstate->dtms_scratch_size = buf->dtb_size - soffs; 10537 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10538 10539 return (offs); 10540 } 10541 10542 if (buf->dtb_flags & DTRACEBUF_FILL) { 10543 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 10544 (buf->dtb_flags & DTRACEBUF_FULL)) 10545 return (-1); 10546 goto out; 10547 } 10548 10549 total = needed + (offs & (align - 1)); 10550 10551 /* 10552 * For a ring buffer, life is quite a bit more complicated. Before 10553 * we can store any padding, we need to adjust our wrapping offset. 10554 * (If we've never before wrapped or we're not about to, no adjustment 10555 * is required.) 10556 */ 10557 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 10558 offs + total > buf->dtb_size) { 10559 woffs = buf->dtb_xamot_offset; 10560 10561 if (offs + total > buf->dtb_size) { 10562 /* 10563 * We can't fit in the end of the buffer. First, a 10564 * sanity check that we can fit in the buffer at all. 10565 */ 10566 if (total > buf->dtb_size) { 10567 dtrace_buffer_drop(buf); 10568 return (-1); 10569 } 10570 10571 /* 10572 * We're going to be storing at the top of the buffer, 10573 * so now we need to deal with the wrapped offset. We 10574 * only reset our wrapped offset to 0 if it is 10575 * currently greater than the current offset. If it 10576 * is less than the current offset, it is because a 10577 * previous allocation induced a wrap -- but the 10578 * allocation didn't subsequently take the space due 10579 * to an error or false predicate evaluation. In this 10580 * case, we'll just leave the wrapped offset alone: if 10581 * the wrapped offset hasn't been advanced far enough 10582 * for this allocation, it will be adjusted in the 10583 * lower loop. 10584 */ 10585 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 10586 if (woffs >= offs) 10587 woffs = 0; 10588 } else { 10589 woffs = 0; 10590 } 10591 10592 /* 10593 * Now we know that we're going to be storing to the 10594 * top of the buffer and that there is room for us 10595 * there. We need to clear the buffer from the current 10596 * offset to the end (there may be old gunk there). 10597 */ 10598 while (offs < buf->dtb_size) 10599 tomax[offs++] = 0; 10600 10601 /* 10602 * We need to set our offset to zero. And because we 10603 * are wrapping, we need to set the bit indicating as 10604 * much. We can also adjust our needed space back 10605 * down to the space required by the ECB -- we know 10606 * that the top of the buffer is aligned. 10607 */ 10608 offs = 0; 10609 total = needed; 10610 buf->dtb_flags |= DTRACEBUF_WRAPPED; 10611 } else { 10612 /* 10613 * There is room for us in the buffer, so we simply 10614 * need to check the wrapped offset. 10615 */ 10616 if (woffs < offs) { 10617 /* 10618 * The wrapped offset is less than the offset. 10619 * This can happen if we allocated buffer space 10620 * that induced a wrap, but then we didn't 10621 * subsequently take the space due to an error 10622 * or false predicate evaluation. This is 10623 * okay; we know that _this_ allocation isn't 10624 * going to induce a wrap. We still can't 10625 * reset the wrapped offset to be zero, 10626 * however: the space may have been trashed in 10627 * the previous failed probe attempt. But at 10628 * least the wrapped offset doesn't need to 10629 * be adjusted at all... 10630 */ 10631 goto out; 10632 } 10633 } 10634 10635 while (offs + total > woffs) { 10636 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 10637 size_t size; 10638 10639 if (epid == DTRACE_EPIDNONE) { 10640 size = sizeof (uint32_t); 10641 } else { 10642 ASSERT(epid <= state->dts_necbs); 10643 ASSERT(state->dts_ecbs[epid - 1] != NULL); 10644 10645 size = state->dts_ecbs[epid - 1]->dte_size; 10646 } 10647 10648 ASSERT(woffs + size <= buf->dtb_size); 10649 ASSERT(size != 0); 10650 10651 if (woffs + size == buf->dtb_size) { 10652 /* 10653 * We've reached the end of the buffer; we want 10654 * to set the wrapped offset to 0 and break 10655 * out. However, if the offs is 0, then we're 10656 * in a strange edge-condition: the amount of 10657 * space that we want to reserve plus the size 10658 * of the record that we're overwriting is 10659 * greater than the size of the buffer. This 10660 * is problematic because if we reserve the 10661 * space but subsequently don't consume it (due 10662 * to a failed predicate or error) the wrapped 10663 * offset will be 0 -- yet the EPID at offset 0 10664 * will not be committed. This situation is 10665 * relatively easy to deal with: if we're in 10666 * this case, the buffer is indistinguishable 10667 * from one that hasn't wrapped; we need only 10668 * finish the job by clearing the wrapped bit, 10669 * explicitly setting the offset to be 0, and 10670 * zero'ing out the old data in the buffer. 10671 */ 10672 if (offs == 0) { 10673 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 10674 buf->dtb_offset = 0; 10675 woffs = total; 10676 10677 while (woffs < buf->dtb_size) 10678 tomax[woffs++] = 0; 10679 } 10680 10681 woffs = 0; 10682 break; 10683 } 10684 10685 woffs += size; 10686 } 10687 10688 /* 10689 * We have a wrapped offset. It may be that the wrapped offset 10690 * has become zero -- that's okay. 10691 */ 10692 buf->dtb_xamot_offset = woffs; 10693 } 10694 10695 out: 10696 /* 10697 * Now we can plow the buffer with any necessary padding. 10698 */ 10699 while (offs & (align - 1)) { 10700 /* 10701 * Assert that our alignment is off by a number which 10702 * is itself sizeof (uint32_t) aligned. 10703 */ 10704 ASSERT(!((align - (offs & (align - 1))) & 10705 (sizeof (uint32_t) - 1))); 10706 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 10707 offs += sizeof (uint32_t); 10708 } 10709 10710 if (buf->dtb_flags & DTRACEBUF_FILL) { 10711 if (offs + needed > buf->dtb_size - state->dts_reserve) { 10712 buf->dtb_flags |= DTRACEBUF_FULL; 10713 return (-1); 10714 } 10715 } 10716 10717 if (mstate == NULL) 10718 return (offs); 10719 10720 /* 10721 * For ring buffers and fill buffers, the scratch space is always 10722 * the inactive buffer. 10723 */ 10724 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 10725 mstate->dtms_scratch_size = buf->dtb_size; 10726 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 10727 10728 return (offs); 10729 } 10730 10731 static void 10732 dtrace_buffer_polish(dtrace_buffer_t *buf) 10733 { 10734 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 10735 ASSERT(MUTEX_HELD(&dtrace_lock)); 10736 10737 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 10738 return; 10739 10740 /* 10741 * We need to polish the ring buffer. There are three cases: 10742 * 10743 * - The first (and presumably most common) is that there is no gap 10744 * between the buffer offset and the wrapped offset. In this case, 10745 * there is nothing in the buffer that isn't valid data; we can 10746 * mark the buffer as polished and return. 10747 * 10748 * - The second (less common than the first but still more common 10749 * than the third) is that there is a gap between the buffer offset 10750 * and the wrapped offset, and the wrapped offset is larger than the 10751 * buffer offset. This can happen because of an alignment issue, or 10752 * can happen because of a call to dtrace_buffer_reserve() that 10753 * didn't subsequently consume the buffer space. In this case, 10754 * we need to zero the data from the buffer offset to the wrapped 10755 * offset. 10756 * 10757 * - The third (and least common) is that there is a gap between the 10758 * buffer offset and the wrapped offset, but the wrapped offset is 10759 * _less_ than the buffer offset. This can only happen because a 10760 * call to dtrace_buffer_reserve() induced a wrap, but the space 10761 * was not subsequently consumed. In this case, we need to zero the 10762 * space from the offset to the end of the buffer _and_ from the 10763 * top of the buffer to the wrapped offset. 10764 */ 10765 if (buf->dtb_offset < buf->dtb_xamot_offset) { 10766 bzero(buf->dtb_tomax + buf->dtb_offset, 10767 buf->dtb_xamot_offset - buf->dtb_offset); 10768 } 10769 10770 if (buf->dtb_offset > buf->dtb_xamot_offset) { 10771 bzero(buf->dtb_tomax + buf->dtb_offset, 10772 buf->dtb_size - buf->dtb_offset); 10773 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 10774 } 10775 } 10776 10777 /* 10778 * This routine determines if data generated at the specified time has likely 10779 * been entirely consumed at user-level. This routine is called to determine 10780 * if an ECB on a defunct probe (but for an active enabling) can be safely 10781 * disabled and destroyed. 10782 */ 10783 static int 10784 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 10785 { 10786 int i; 10787 10788 for (i = 0; i < NCPU; i++) { 10789 dtrace_buffer_t *buf = &bufs[i]; 10790 10791 if (buf->dtb_size == 0) 10792 continue; 10793 10794 if (buf->dtb_flags & DTRACEBUF_RING) 10795 return (0); 10796 10797 if (!buf->dtb_switched && buf->dtb_offset != 0) 10798 return (0); 10799 10800 if (buf->dtb_switched - buf->dtb_interval < when) 10801 return (0); 10802 } 10803 10804 return (1); 10805 } 10806 10807 static void 10808 dtrace_buffer_free(dtrace_buffer_t *bufs) 10809 { 10810 int i; 10811 10812 for (i = 0; i < NCPU; i++) { 10813 dtrace_buffer_t *buf = &bufs[i]; 10814 10815 if (buf->dtb_tomax == NULL) { 10816 ASSERT(buf->dtb_xamot == NULL); 10817 ASSERT(buf->dtb_size == 0); 10818 continue; 10819 } 10820 10821 if (buf->dtb_xamot != NULL) { 10822 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 10823 kmem_free(buf->dtb_xamot, buf->dtb_size); 10824 } 10825 10826 kmem_free(buf->dtb_tomax, buf->dtb_size); 10827 buf->dtb_size = 0; 10828 buf->dtb_tomax = NULL; 10829 buf->dtb_xamot = NULL; 10830 } 10831 } 10832 10833 /* 10834 * DTrace Enabling Functions 10835 */ 10836 static dtrace_enabling_t * 10837 dtrace_enabling_create(dtrace_vstate_t *vstate) 10838 { 10839 dtrace_enabling_t *enab; 10840 10841 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 10842 enab->dten_vstate = vstate; 10843 10844 return (enab); 10845 } 10846 10847 static void 10848 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 10849 { 10850 dtrace_ecbdesc_t **ndesc; 10851 size_t osize, nsize; 10852 10853 /* 10854 * We can't add to enablings after we've enabled them, or after we've 10855 * retained them. 10856 */ 10857 ASSERT(enab->dten_probegen == 0); 10858 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10859 10860 if (enab->dten_ndesc < enab->dten_maxdesc) { 10861 enab->dten_desc[enab->dten_ndesc++] = ecb; 10862 return; 10863 } 10864 10865 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10866 10867 if (enab->dten_maxdesc == 0) { 10868 enab->dten_maxdesc = 1; 10869 } else { 10870 enab->dten_maxdesc <<= 1; 10871 } 10872 10873 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 10874 10875 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 10876 ndesc = kmem_zalloc(nsize, KM_SLEEP); 10877 bcopy(enab->dten_desc, ndesc, osize); 10878 kmem_free(enab->dten_desc, osize); 10879 10880 enab->dten_desc = ndesc; 10881 enab->dten_desc[enab->dten_ndesc++] = ecb; 10882 } 10883 10884 static void 10885 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 10886 dtrace_probedesc_t *pd) 10887 { 10888 dtrace_ecbdesc_t *new; 10889 dtrace_predicate_t *pred; 10890 dtrace_actdesc_t *act; 10891 10892 /* 10893 * We're going to create a new ECB description that matches the 10894 * specified ECB in every way, but has the specified probe description. 10895 */ 10896 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 10897 10898 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 10899 dtrace_predicate_hold(pred); 10900 10901 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 10902 dtrace_actdesc_hold(act); 10903 10904 new->dted_action = ecb->dted_action; 10905 new->dted_pred = ecb->dted_pred; 10906 new->dted_probe = *pd; 10907 new->dted_uarg = ecb->dted_uarg; 10908 10909 dtrace_enabling_add(enab, new); 10910 } 10911 10912 static void 10913 dtrace_enabling_dump(dtrace_enabling_t *enab) 10914 { 10915 int i; 10916 10917 for (i = 0; i < enab->dten_ndesc; i++) { 10918 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 10919 10920 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 10921 desc->dtpd_provider, desc->dtpd_mod, 10922 desc->dtpd_func, desc->dtpd_name); 10923 } 10924 } 10925 10926 static void 10927 dtrace_enabling_destroy(dtrace_enabling_t *enab) 10928 { 10929 int i; 10930 dtrace_ecbdesc_t *ep; 10931 dtrace_vstate_t *vstate = enab->dten_vstate; 10932 10933 ASSERT(MUTEX_HELD(&dtrace_lock)); 10934 10935 for (i = 0; i < enab->dten_ndesc; i++) { 10936 dtrace_actdesc_t *act, *next; 10937 dtrace_predicate_t *pred; 10938 10939 ep = enab->dten_desc[i]; 10940 10941 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 10942 dtrace_predicate_release(pred, vstate); 10943 10944 for (act = ep->dted_action; act != NULL; act = next) { 10945 next = act->dtad_next; 10946 dtrace_actdesc_release(act, vstate); 10947 } 10948 10949 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 10950 } 10951 10952 kmem_free(enab->dten_desc, 10953 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 10954 10955 /* 10956 * If this was a retained enabling, decrement the dts_nretained count 10957 * and take it off of the dtrace_retained list. 10958 */ 10959 if (enab->dten_prev != NULL || enab->dten_next != NULL || 10960 dtrace_retained == enab) { 10961 ASSERT(enab->dten_vstate->dtvs_state != NULL); 10962 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 10963 enab->dten_vstate->dtvs_state->dts_nretained--; 10964 dtrace_retained_gen++; 10965 } 10966 10967 if (enab->dten_prev == NULL) { 10968 if (dtrace_retained == enab) { 10969 dtrace_retained = enab->dten_next; 10970 10971 if (dtrace_retained != NULL) 10972 dtrace_retained->dten_prev = NULL; 10973 } 10974 } else { 10975 ASSERT(enab != dtrace_retained); 10976 ASSERT(dtrace_retained != NULL); 10977 enab->dten_prev->dten_next = enab->dten_next; 10978 } 10979 10980 if (enab->dten_next != NULL) { 10981 ASSERT(dtrace_retained != NULL); 10982 enab->dten_next->dten_prev = enab->dten_prev; 10983 } 10984 10985 kmem_free(enab, sizeof (dtrace_enabling_t)); 10986 } 10987 10988 static int 10989 dtrace_enabling_retain(dtrace_enabling_t *enab) 10990 { 10991 dtrace_state_t *state; 10992 10993 ASSERT(MUTEX_HELD(&dtrace_lock)); 10994 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 10995 ASSERT(enab->dten_vstate != NULL); 10996 10997 state = enab->dten_vstate->dtvs_state; 10998 ASSERT(state != NULL); 10999 11000 /* 11001 * We only allow each state to retain dtrace_retain_max enablings. 11002 */ 11003 if (state->dts_nretained >= dtrace_retain_max) 11004 return (ENOSPC); 11005 11006 state->dts_nretained++; 11007 dtrace_retained_gen++; 11008 11009 if (dtrace_retained == NULL) { 11010 dtrace_retained = enab; 11011 return (0); 11012 } 11013 11014 enab->dten_next = dtrace_retained; 11015 dtrace_retained->dten_prev = enab; 11016 dtrace_retained = enab; 11017 11018 return (0); 11019 } 11020 11021 static int 11022 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11023 dtrace_probedesc_t *create) 11024 { 11025 dtrace_enabling_t *new, *enab; 11026 int found = 0, err = ENOENT; 11027 11028 ASSERT(MUTEX_HELD(&dtrace_lock)); 11029 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11030 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11031 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11032 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11033 11034 new = dtrace_enabling_create(&state->dts_vstate); 11035 11036 /* 11037 * Iterate over all retained enablings, looking for enablings that 11038 * match the specified state. 11039 */ 11040 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11041 int i; 11042 11043 /* 11044 * dtvs_state can only be NULL for helper enablings -- and 11045 * helper enablings can't be retained. 11046 */ 11047 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11048 11049 if (enab->dten_vstate->dtvs_state != state) 11050 continue; 11051 11052 /* 11053 * Now iterate over each probe description; we're looking for 11054 * an exact match to the specified probe description. 11055 */ 11056 for (i = 0; i < enab->dten_ndesc; i++) { 11057 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11058 dtrace_probedesc_t *pd = &ep->dted_probe; 11059 11060 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11061 continue; 11062 11063 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11064 continue; 11065 11066 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11067 continue; 11068 11069 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11070 continue; 11071 11072 /* 11073 * We have a winning probe! Add it to our growing 11074 * enabling. 11075 */ 11076 found = 1; 11077 dtrace_enabling_addlike(new, ep, create); 11078 } 11079 } 11080 11081 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11082 dtrace_enabling_destroy(new); 11083 return (err); 11084 } 11085 11086 return (0); 11087 } 11088 11089 static void 11090 dtrace_enabling_retract(dtrace_state_t *state) 11091 { 11092 dtrace_enabling_t *enab, *next; 11093 11094 ASSERT(MUTEX_HELD(&dtrace_lock)); 11095 11096 /* 11097 * Iterate over all retained enablings, destroy the enablings retained 11098 * for the specified state. 11099 */ 11100 for (enab = dtrace_retained; enab != NULL; enab = next) { 11101 next = enab->dten_next; 11102 11103 /* 11104 * dtvs_state can only be NULL for helper enablings -- and 11105 * helper enablings can't be retained. 11106 */ 11107 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11108 11109 if (enab->dten_vstate->dtvs_state == state) { 11110 ASSERT(state->dts_nretained > 0); 11111 dtrace_enabling_destroy(enab); 11112 } 11113 } 11114 11115 ASSERT(state->dts_nretained == 0); 11116 } 11117 11118 static int 11119 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11120 { 11121 int i = 0; 11122 int total_matched = 0, matched = 0; 11123 11124 ASSERT(MUTEX_HELD(&cpu_lock)); 11125 ASSERT(MUTEX_HELD(&dtrace_lock)); 11126 11127 for (i = 0; i < enab->dten_ndesc; i++) { 11128 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11129 11130 enab->dten_current = ep; 11131 enab->dten_error = 0; 11132 11133 /* 11134 * If a provider failed to enable a probe then get out and 11135 * let the consumer know we failed. 11136 */ 11137 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11138 return (EBUSY); 11139 11140 total_matched += matched; 11141 11142 if (enab->dten_error != 0) { 11143 /* 11144 * If we get an error half-way through enabling the 11145 * probes, we kick out -- perhaps with some number of 11146 * them enabled. Leaving enabled probes enabled may 11147 * be slightly confusing for user-level, but we expect 11148 * that no one will attempt to actually drive on in 11149 * the face of such errors. If this is an anonymous 11150 * enabling (indicated with a NULL nmatched pointer), 11151 * we cmn_err() a message. We aren't expecting to 11152 * get such an error -- such as it can exist at all, 11153 * it would be a result of corrupted DOF in the driver 11154 * properties. 11155 */ 11156 if (nmatched == NULL) { 11157 cmn_err(CE_WARN, "dtrace_enabling_match() " 11158 "error on %p: %d", (void *)ep, 11159 enab->dten_error); 11160 } 11161 11162 return (enab->dten_error); 11163 } 11164 } 11165 11166 enab->dten_probegen = dtrace_probegen; 11167 if (nmatched != NULL) 11168 *nmatched = total_matched; 11169 11170 return (0); 11171 } 11172 11173 static void 11174 dtrace_enabling_matchall(void) 11175 { 11176 dtrace_enabling_t *enab; 11177 11178 mutex_enter(&cpu_lock); 11179 mutex_enter(&dtrace_lock); 11180 11181 /* 11182 * Iterate over all retained enablings to see if any probes match 11183 * against them. We only perform this operation on enablings for which 11184 * we have sufficient permissions by virtue of being in the global zone 11185 * or in the same zone as the DTrace client. Because we can be called 11186 * after dtrace_detach() has been called, we cannot assert that there 11187 * are retained enablings. We can safely load from dtrace_retained, 11188 * however: the taskq_destroy() at the end of dtrace_detach() will 11189 * block pending our completion. 11190 */ 11191 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11192 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 11193 cred_t *cr = dcr->dcr_cred; 11194 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 11195 11196 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 11197 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 11198 (void) dtrace_enabling_match(enab, NULL); 11199 } 11200 11201 mutex_exit(&dtrace_lock); 11202 mutex_exit(&cpu_lock); 11203 } 11204 11205 /* 11206 * If an enabling is to be enabled without having matched probes (that is, if 11207 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 11208 * enabling must be _primed_ by creating an ECB for every ECB description. 11209 * This must be done to assure that we know the number of speculations, the 11210 * number of aggregations, the minimum buffer size needed, etc. before we 11211 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 11212 * enabling any probes, we create ECBs for every ECB decription, but with a 11213 * NULL probe -- which is exactly what this function does. 11214 */ 11215 static void 11216 dtrace_enabling_prime(dtrace_state_t *state) 11217 { 11218 dtrace_enabling_t *enab; 11219 int i; 11220 11221 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11222 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11223 11224 if (enab->dten_vstate->dtvs_state != state) 11225 continue; 11226 11227 /* 11228 * We don't want to prime an enabling more than once, lest 11229 * we allow a malicious user to induce resource exhaustion. 11230 * (The ECBs that result from priming an enabling aren't 11231 * leaked -- but they also aren't deallocated until the 11232 * consumer state is destroyed.) 11233 */ 11234 if (enab->dten_primed) 11235 continue; 11236 11237 for (i = 0; i < enab->dten_ndesc; i++) { 11238 enab->dten_current = enab->dten_desc[i]; 11239 (void) dtrace_probe_enable(NULL, enab); 11240 } 11241 11242 enab->dten_primed = 1; 11243 } 11244 } 11245 11246 /* 11247 * Called to indicate that probes should be provided due to retained 11248 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 11249 * must take an initial lap through the enabling calling the dtps_provide() 11250 * entry point explicitly to allow for autocreated probes. 11251 */ 11252 static void 11253 dtrace_enabling_provide(dtrace_provider_t *prv) 11254 { 11255 int i, all = 0; 11256 dtrace_probedesc_t desc; 11257 dtrace_genid_t gen; 11258 11259 ASSERT(MUTEX_HELD(&dtrace_lock)); 11260 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 11261 11262 if (prv == NULL) { 11263 all = 1; 11264 prv = dtrace_provider; 11265 } 11266 11267 do { 11268 dtrace_enabling_t *enab; 11269 void *parg = prv->dtpv_arg; 11270 11271 retry: 11272 gen = dtrace_retained_gen; 11273 for (enab = dtrace_retained; enab != NULL; 11274 enab = enab->dten_next) { 11275 for (i = 0; i < enab->dten_ndesc; i++) { 11276 desc = enab->dten_desc[i]->dted_probe; 11277 mutex_exit(&dtrace_lock); 11278 prv->dtpv_pops.dtps_provide(parg, &desc); 11279 mutex_enter(&dtrace_lock); 11280 /* 11281 * Process the retained enablings again if 11282 * they have changed while we weren't holding 11283 * dtrace_lock. 11284 */ 11285 if (gen != dtrace_retained_gen) 11286 goto retry; 11287 } 11288 } 11289 } while (all && (prv = prv->dtpv_next) != NULL); 11290 11291 mutex_exit(&dtrace_lock); 11292 dtrace_probe_provide(NULL, all ? NULL : prv); 11293 mutex_enter(&dtrace_lock); 11294 } 11295 11296 /* 11297 * Called to reap ECBs that are attached to probes from defunct providers. 11298 */ 11299 static void 11300 dtrace_enabling_reap(void) 11301 { 11302 dtrace_provider_t *prov; 11303 dtrace_probe_t *probe; 11304 dtrace_ecb_t *ecb; 11305 hrtime_t when; 11306 int i; 11307 11308 mutex_enter(&cpu_lock); 11309 mutex_enter(&dtrace_lock); 11310 11311 for (i = 0; i < dtrace_nprobes; i++) { 11312 if ((probe = dtrace_probes[i]) == NULL) 11313 continue; 11314 11315 if (probe->dtpr_ecb == NULL) 11316 continue; 11317 11318 prov = probe->dtpr_provider; 11319 11320 if ((when = prov->dtpv_defunct) == 0) 11321 continue; 11322 11323 /* 11324 * We have ECBs on a defunct provider: we want to reap these 11325 * ECBs to allow the provider to unregister. The destruction 11326 * of these ECBs must be done carefully: if we destroy the ECB 11327 * and the consumer later wishes to consume an EPID that 11328 * corresponds to the destroyed ECB (and if the EPID metadata 11329 * has not been previously consumed), the consumer will abort 11330 * processing on the unknown EPID. To reduce (but not, sadly, 11331 * eliminate) the possibility of this, we will only destroy an 11332 * ECB for a defunct provider if, for the state that 11333 * corresponds to the ECB: 11334 * 11335 * (a) There is no speculative tracing (which can effectively 11336 * cache an EPID for an arbitrary amount of time). 11337 * 11338 * (b) The principal buffers have been switched twice since the 11339 * provider became defunct. 11340 * 11341 * (c) The aggregation buffers are of zero size or have been 11342 * switched twice since the provider became defunct. 11343 * 11344 * We use dts_speculates to determine (a) and call a function 11345 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 11346 * that as soon as we've been unable to destroy one of the ECBs 11347 * associated with the probe, we quit trying -- reaping is only 11348 * fruitful in as much as we can destroy all ECBs associated 11349 * with the defunct provider's probes. 11350 */ 11351 while ((ecb = probe->dtpr_ecb) != NULL) { 11352 dtrace_state_t *state = ecb->dte_state; 11353 dtrace_buffer_t *buf = state->dts_buffer; 11354 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 11355 11356 if (state->dts_speculates) 11357 break; 11358 11359 if (!dtrace_buffer_consumed(buf, when)) 11360 break; 11361 11362 if (!dtrace_buffer_consumed(aggbuf, when)) 11363 break; 11364 11365 dtrace_ecb_disable(ecb); 11366 ASSERT(probe->dtpr_ecb != ecb); 11367 dtrace_ecb_destroy(ecb); 11368 } 11369 } 11370 11371 mutex_exit(&dtrace_lock); 11372 mutex_exit(&cpu_lock); 11373 } 11374 11375 /* 11376 * DTrace DOF Functions 11377 */ 11378 /*ARGSUSED*/ 11379 static void 11380 dtrace_dof_error(dof_hdr_t *dof, const char *str) 11381 { 11382 if (dtrace_err_verbose) 11383 cmn_err(CE_WARN, "failed to process DOF: %s", str); 11384 11385 #ifdef DTRACE_ERRDEBUG 11386 dtrace_errdebug(str); 11387 #endif 11388 } 11389 11390 /* 11391 * Create DOF out of a currently enabled state. Right now, we only create 11392 * DOF containing the run-time options -- but this could be expanded to create 11393 * complete DOF representing the enabled state. 11394 */ 11395 static dof_hdr_t * 11396 dtrace_dof_create(dtrace_state_t *state) 11397 { 11398 dof_hdr_t *dof; 11399 dof_sec_t *sec; 11400 dof_optdesc_t *opt; 11401 int i, len = sizeof (dof_hdr_t) + 11402 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 11403 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11404 11405 ASSERT(MUTEX_HELD(&dtrace_lock)); 11406 11407 dof = kmem_zalloc(len, KM_SLEEP); 11408 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 11409 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 11410 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 11411 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 11412 11413 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 11414 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 11415 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 11416 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 11417 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 11418 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 11419 11420 dof->dofh_flags = 0; 11421 dof->dofh_hdrsize = sizeof (dof_hdr_t); 11422 dof->dofh_secsize = sizeof (dof_sec_t); 11423 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 11424 dof->dofh_secoff = sizeof (dof_hdr_t); 11425 dof->dofh_loadsz = len; 11426 dof->dofh_filesz = len; 11427 dof->dofh_pad = 0; 11428 11429 /* 11430 * Fill in the option section header... 11431 */ 11432 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 11433 sec->dofs_type = DOF_SECT_OPTDESC; 11434 sec->dofs_align = sizeof (uint64_t); 11435 sec->dofs_flags = DOF_SECF_LOAD; 11436 sec->dofs_entsize = sizeof (dof_optdesc_t); 11437 11438 opt = (dof_optdesc_t *)((uintptr_t)sec + 11439 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 11440 11441 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 11442 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 11443 11444 for (i = 0; i < DTRACEOPT_MAX; i++) { 11445 opt[i].dofo_option = i; 11446 opt[i].dofo_strtab = DOF_SECIDX_NONE; 11447 opt[i].dofo_value = state->dts_options[i]; 11448 } 11449 11450 return (dof); 11451 } 11452 11453 static dof_hdr_t * 11454 dtrace_dof_copyin(uintptr_t uarg, int *errp) 11455 { 11456 dof_hdr_t hdr, *dof; 11457 11458 ASSERT(!MUTEX_HELD(&dtrace_lock)); 11459 11460 /* 11461 * First, we're going to copyin() the sizeof (dof_hdr_t). 11462 */ 11463 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 11464 dtrace_dof_error(NULL, "failed to copyin DOF header"); 11465 *errp = EFAULT; 11466 return (NULL); 11467 } 11468 11469 /* 11470 * Now we'll allocate the entire DOF and copy it in -- provided 11471 * that the length isn't outrageous. 11472 */ 11473 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 11474 dtrace_dof_error(&hdr, "load size exceeds maximum"); 11475 *errp = E2BIG; 11476 return (NULL); 11477 } 11478 11479 if (hdr.dofh_loadsz < sizeof (hdr)) { 11480 dtrace_dof_error(&hdr, "invalid load size"); 11481 *errp = EINVAL; 11482 return (NULL); 11483 } 11484 11485 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 11486 11487 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 11488 dof->dofh_loadsz != hdr.dofh_loadsz) { 11489 kmem_free(dof, hdr.dofh_loadsz); 11490 *errp = EFAULT; 11491 return (NULL); 11492 } 11493 11494 return (dof); 11495 } 11496 11497 static dof_hdr_t * 11498 dtrace_dof_property(const char *name) 11499 { 11500 uchar_t *buf; 11501 uint64_t loadsz; 11502 unsigned int len, i; 11503 dof_hdr_t *dof; 11504 11505 /* 11506 * Unfortunately, array of values in .conf files are always (and 11507 * only) interpreted to be integer arrays. We must read our DOF 11508 * as an integer array, and then squeeze it into a byte array. 11509 */ 11510 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 11511 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 11512 return (NULL); 11513 11514 for (i = 0; i < len; i++) 11515 buf[i] = (uchar_t)(((int *)buf)[i]); 11516 11517 if (len < sizeof (dof_hdr_t)) { 11518 ddi_prop_free(buf); 11519 dtrace_dof_error(NULL, "truncated header"); 11520 return (NULL); 11521 } 11522 11523 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 11524 ddi_prop_free(buf); 11525 dtrace_dof_error(NULL, "truncated DOF"); 11526 return (NULL); 11527 } 11528 11529 if (loadsz >= dtrace_dof_maxsize) { 11530 ddi_prop_free(buf); 11531 dtrace_dof_error(NULL, "oversized DOF"); 11532 return (NULL); 11533 } 11534 11535 dof = kmem_alloc(loadsz, KM_SLEEP); 11536 bcopy(buf, dof, loadsz); 11537 ddi_prop_free(buf); 11538 11539 return (dof); 11540 } 11541 11542 static void 11543 dtrace_dof_destroy(dof_hdr_t *dof) 11544 { 11545 kmem_free(dof, dof->dofh_loadsz); 11546 } 11547 11548 /* 11549 * Return the dof_sec_t pointer corresponding to a given section index. If the 11550 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 11551 * a type other than DOF_SECT_NONE is specified, the header is checked against 11552 * this type and NULL is returned if the types do not match. 11553 */ 11554 static dof_sec_t * 11555 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 11556 { 11557 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 11558 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 11559 11560 if (i >= dof->dofh_secnum) { 11561 dtrace_dof_error(dof, "referenced section index is invalid"); 11562 return (NULL); 11563 } 11564 11565 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 11566 dtrace_dof_error(dof, "referenced section is not loadable"); 11567 return (NULL); 11568 } 11569 11570 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 11571 dtrace_dof_error(dof, "referenced section is the wrong type"); 11572 return (NULL); 11573 } 11574 11575 return (sec); 11576 } 11577 11578 static dtrace_probedesc_t * 11579 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 11580 { 11581 dof_probedesc_t *probe; 11582 dof_sec_t *strtab; 11583 uintptr_t daddr = (uintptr_t)dof; 11584 uintptr_t str; 11585 size_t size; 11586 11587 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 11588 dtrace_dof_error(dof, "invalid probe section"); 11589 return (NULL); 11590 } 11591 11592 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11593 dtrace_dof_error(dof, "bad alignment in probe description"); 11594 return (NULL); 11595 } 11596 11597 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 11598 dtrace_dof_error(dof, "truncated probe description"); 11599 return (NULL); 11600 } 11601 11602 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 11603 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 11604 11605 if (strtab == NULL) 11606 return (NULL); 11607 11608 str = daddr + strtab->dofs_offset; 11609 size = strtab->dofs_size; 11610 11611 if (probe->dofp_provider >= strtab->dofs_size) { 11612 dtrace_dof_error(dof, "corrupt probe provider"); 11613 return (NULL); 11614 } 11615 11616 (void) strncpy(desc->dtpd_provider, 11617 (char *)(str + probe->dofp_provider), 11618 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 11619 11620 if (probe->dofp_mod >= strtab->dofs_size) { 11621 dtrace_dof_error(dof, "corrupt probe module"); 11622 return (NULL); 11623 } 11624 11625 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 11626 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 11627 11628 if (probe->dofp_func >= strtab->dofs_size) { 11629 dtrace_dof_error(dof, "corrupt probe function"); 11630 return (NULL); 11631 } 11632 11633 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 11634 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 11635 11636 if (probe->dofp_name >= strtab->dofs_size) { 11637 dtrace_dof_error(dof, "corrupt probe name"); 11638 return (NULL); 11639 } 11640 11641 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 11642 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 11643 11644 return (desc); 11645 } 11646 11647 static dtrace_difo_t * 11648 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11649 cred_t *cr) 11650 { 11651 dtrace_difo_t *dp; 11652 size_t ttl = 0; 11653 dof_difohdr_t *dofd; 11654 uintptr_t daddr = (uintptr_t)dof; 11655 size_t max = dtrace_difo_maxsize; 11656 int i, l, n; 11657 11658 static const struct { 11659 int section; 11660 int bufoffs; 11661 int lenoffs; 11662 int entsize; 11663 int align; 11664 const char *msg; 11665 } difo[] = { 11666 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 11667 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 11668 sizeof (dif_instr_t), "multiple DIF sections" }, 11669 11670 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 11671 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 11672 sizeof (uint64_t), "multiple integer tables" }, 11673 11674 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 11675 offsetof(dtrace_difo_t, dtdo_strlen), 0, 11676 sizeof (char), "multiple string tables" }, 11677 11678 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 11679 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 11680 sizeof (uint_t), "multiple variable tables" }, 11681 11682 { DOF_SECT_NONE, 0, 0, 0, NULL } 11683 }; 11684 11685 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 11686 dtrace_dof_error(dof, "invalid DIFO header section"); 11687 return (NULL); 11688 } 11689 11690 if (sec->dofs_align != sizeof (dof_secidx_t)) { 11691 dtrace_dof_error(dof, "bad alignment in DIFO header"); 11692 return (NULL); 11693 } 11694 11695 if (sec->dofs_size < sizeof (dof_difohdr_t) || 11696 sec->dofs_size % sizeof (dof_secidx_t)) { 11697 dtrace_dof_error(dof, "bad size in DIFO header"); 11698 return (NULL); 11699 } 11700 11701 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 11702 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 11703 11704 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 11705 dp->dtdo_rtype = dofd->dofd_rtype; 11706 11707 for (l = 0; l < n; l++) { 11708 dof_sec_t *subsec; 11709 void **bufp; 11710 uint32_t *lenp; 11711 11712 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 11713 dofd->dofd_links[l])) == NULL) 11714 goto err; /* invalid section link */ 11715 11716 if (ttl + subsec->dofs_size > max) { 11717 dtrace_dof_error(dof, "exceeds maximum size"); 11718 goto err; 11719 } 11720 11721 ttl += subsec->dofs_size; 11722 11723 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 11724 if (subsec->dofs_type != difo[i].section) 11725 continue; 11726 11727 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 11728 dtrace_dof_error(dof, "section not loaded"); 11729 goto err; 11730 } 11731 11732 if (subsec->dofs_align != difo[i].align) { 11733 dtrace_dof_error(dof, "bad alignment"); 11734 goto err; 11735 } 11736 11737 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 11738 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 11739 11740 if (*bufp != NULL) { 11741 dtrace_dof_error(dof, difo[i].msg); 11742 goto err; 11743 } 11744 11745 if (difo[i].entsize != subsec->dofs_entsize) { 11746 dtrace_dof_error(dof, "entry size mismatch"); 11747 goto err; 11748 } 11749 11750 if (subsec->dofs_entsize != 0 && 11751 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 11752 dtrace_dof_error(dof, "corrupt entry size"); 11753 goto err; 11754 } 11755 11756 *lenp = subsec->dofs_size; 11757 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 11758 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 11759 *bufp, subsec->dofs_size); 11760 11761 if (subsec->dofs_entsize != 0) 11762 *lenp /= subsec->dofs_entsize; 11763 11764 break; 11765 } 11766 11767 /* 11768 * If we encounter a loadable DIFO sub-section that is not 11769 * known to us, assume this is a broken program and fail. 11770 */ 11771 if (difo[i].section == DOF_SECT_NONE && 11772 (subsec->dofs_flags & DOF_SECF_LOAD)) { 11773 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 11774 goto err; 11775 } 11776 } 11777 11778 if (dp->dtdo_buf == NULL) { 11779 /* 11780 * We can't have a DIF object without DIF text. 11781 */ 11782 dtrace_dof_error(dof, "missing DIF text"); 11783 goto err; 11784 } 11785 11786 /* 11787 * Before we validate the DIF object, run through the variable table 11788 * looking for the strings -- if any of their size are under, we'll set 11789 * their size to be the system-wide default string size. Note that 11790 * this should _not_ happen if the "strsize" option has been set -- 11791 * in this case, the compiler should have set the size to reflect the 11792 * setting of the option. 11793 */ 11794 for (i = 0; i < dp->dtdo_varlen; i++) { 11795 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 11796 dtrace_diftype_t *t = &v->dtdv_type; 11797 11798 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 11799 continue; 11800 11801 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 11802 t->dtdt_size = dtrace_strsize_default; 11803 } 11804 11805 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 11806 goto err; 11807 11808 dtrace_difo_init(dp, vstate); 11809 return (dp); 11810 11811 err: 11812 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 11813 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 11814 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 11815 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 11816 11817 kmem_free(dp, sizeof (dtrace_difo_t)); 11818 return (NULL); 11819 } 11820 11821 static dtrace_predicate_t * 11822 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11823 cred_t *cr) 11824 { 11825 dtrace_difo_t *dp; 11826 11827 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 11828 return (NULL); 11829 11830 return (dtrace_predicate_create(dp)); 11831 } 11832 11833 static dtrace_actdesc_t * 11834 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11835 cred_t *cr) 11836 { 11837 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 11838 dof_actdesc_t *desc; 11839 dof_sec_t *difosec; 11840 size_t offs; 11841 uintptr_t daddr = (uintptr_t)dof; 11842 uint64_t arg; 11843 dtrace_actkind_t kind; 11844 11845 if (sec->dofs_type != DOF_SECT_ACTDESC) { 11846 dtrace_dof_error(dof, "invalid action section"); 11847 return (NULL); 11848 } 11849 11850 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 11851 dtrace_dof_error(dof, "truncated action description"); 11852 return (NULL); 11853 } 11854 11855 if (sec->dofs_align != sizeof (uint64_t)) { 11856 dtrace_dof_error(dof, "bad alignment in action description"); 11857 return (NULL); 11858 } 11859 11860 if (sec->dofs_size < sec->dofs_entsize) { 11861 dtrace_dof_error(dof, "section entry size exceeds total size"); 11862 return (NULL); 11863 } 11864 11865 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 11866 dtrace_dof_error(dof, "bad entry size in action description"); 11867 return (NULL); 11868 } 11869 11870 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 11871 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 11872 return (NULL); 11873 } 11874 11875 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 11876 desc = (dof_actdesc_t *)(daddr + 11877 (uintptr_t)sec->dofs_offset + offs); 11878 kind = (dtrace_actkind_t)desc->dofa_kind; 11879 11880 if ((DTRACEACT_ISPRINTFLIKE(kind) && 11881 (kind != DTRACEACT_PRINTA || 11882 desc->dofa_strtab != DOF_SECIDX_NONE)) || 11883 (kind == DTRACEACT_DIFEXPR && 11884 desc->dofa_strtab != DOF_SECIDX_NONE)) { 11885 dof_sec_t *strtab; 11886 char *str, *fmt; 11887 uint64_t i; 11888 11889 /* 11890 * The argument to these actions is an index into the 11891 * DOF string table. For printf()-like actions, this 11892 * is the format string. For print(), this is the 11893 * CTF type of the expression result. 11894 */ 11895 if ((strtab = dtrace_dof_sect(dof, 11896 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 11897 goto err; 11898 11899 str = (char *)((uintptr_t)dof + 11900 (uintptr_t)strtab->dofs_offset); 11901 11902 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 11903 if (str[i] == '\0') 11904 break; 11905 } 11906 11907 if (i >= strtab->dofs_size) { 11908 dtrace_dof_error(dof, "bogus format string"); 11909 goto err; 11910 } 11911 11912 if (i == desc->dofa_arg) { 11913 dtrace_dof_error(dof, "empty format string"); 11914 goto err; 11915 } 11916 11917 i -= desc->dofa_arg; 11918 fmt = kmem_alloc(i + 1, KM_SLEEP); 11919 bcopy(&str[desc->dofa_arg], fmt, i + 1); 11920 arg = (uint64_t)(uintptr_t)fmt; 11921 } else { 11922 if (kind == DTRACEACT_PRINTA) { 11923 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 11924 arg = 0; 11925 } else { 11926 arg = desc->dofa_arg; 11927 } 11928 } 11929 11930 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 11931 desc->dofa_uarg, arg); 11932 11933 if (last != NULL) { 11934 last->dtad_next = act; 11935 } else { 11936 first = act; 11937 } 11938 11939 last = act; 11940 11941 if (desc->dofa_difo == DOF_SECIDX_NONE) 11942 continue; 11943 11944 if ((difosec = dtrace_dof_sect(dof, 11945 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 11946 goto err; 11947 11948 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 11949 11950 if (act->dtad_difo == NULL) 11951 goto err; 11952 } 11953 11954 ASSERT(first != NULL); 11955 return (first); 11956 11957 err: 11958 for (act = first; act != NULL; act = next) { 11959 next = act->dtad_next; 11960 dtrace_actdesc_release(act, vstate); 11961 } 11962 11963 return (NULL); 11964 } 11965 11966 static dtrace_ecbdesc_t * 11967 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 11968 cred_t *cr) 11969 { 11970 dtrace_ecbdesc_t *ep; 11971 dof_ecbdesc_t *ecb; 11972 dtrace_probedesc_t *desc; 11973 dtrace_predicate_t *pred = NULL; 11974 11975 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 11976 dtrace_dof_error(dof, "truncated ECB description"); 11977 return (NULL); 11978 } 11979 11980 if (sec->dofs_align != sizeof (uint64_t)) { 11981 dtrace_dof_error(dof, "bad alignment in ECB description"); 11982 return (NULL); 11983 } 11984 11985 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 11986 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 11987 11988 if (sec == NULL) 11989 return (NULL); 11990 11991 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11992 ep->dted_uarg = ecb->dofe_uarg; 11993 desc = &ep->dted_probe; 11994 11995 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 11996 goto err; 11997 11998 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 11999 if ((sec = dtrace_dof_sect(dof, 12000 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12001 goto err; 12002 12003 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12004 goto err; 12005 12006 ep->dted_pred.dtpdd_predicate = pred; 12007 } 12008 12009 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12010 if ((sec = dtrace_dof_sect(dof, 12011 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12012 goto err; 12013 12014 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12015 12016 if (ep->dted_action == NULL) 12017 goto err; 12018 } 12019 12020 return (ep); 12021 12022 err: 12023 if (pred != NULL) 12024 dtrace_predicate_release(pred, vstate); 12025 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12026 return (NULL); 12027 } 12028 12029 /* 12030 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12031 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12032 * site of any user SETX relocations to account for load object base address. 12033 * In the future, if we need other relocations, this function can be extended. 12034 */ 12035 static int 12036 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12037 { 12038 uintptr_t daddr = (uintptr_t)dof; 12039 dof_relohdr_t *dofr = 12040 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12041 dof_sec_t *ss, *rs, *ts; 12042 dof_relodesc_t *r; 12043 uint_t i, n; 12044 12045 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12046 sec->dofs_align != sizeof (dof_secidx_t)) { 12047 dtrace_dof_error(dof, "invalid relocation header"); 12048 return (-1); 12049 } 12050 12051 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12052 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12053 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12054 12055 if (ss == NULL || rs == NULL || ts == NULL) 12056 return (-1); /* dtrace_dof_error() has been called already */ 12057 12058 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12059 rs->dofs_align != sizeof (uint64_t)) { 12060 dtrace_dof_error(dof, "invalid relocation section"); 12061 return (-1); 12062 } 12063 12064 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12065 n = rs->dofs_size / rs->dofs_entsize; 12066 12067 for (i = 0; i < n; i++) { 12068 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12069 12070 switch (r->dofr_type) { 12071 case DOF_RELO_NONE: 12072 break; 12073 case DOF_RELO_SETX: 12074 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12075 sizeof (uint64_t) > ts->dofs_size) { 12076 dtrace_dof_error(dof, "bad relocation offset"); 12077 return (-1); 12078 } 12079 12080 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12081 dtrace_dof_error(dof, "misaligned setx relo"); 12082 return (-1); 12083 } 12084 12085 *(uint64_t *)taddr += ubase; 12086 break; 12087 default: 12088 dtrace_dof_error(dof, "invalid relocation type"); 12089 return (-1); 12090 } 12091 12092 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12093 } 12094 12095 return (0); 12096 } 12097 12098 /* 12099 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12100 * header: it should be at the front of a memory region that is at least 12101 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12102 * size. It need not be validated in any other way. 12103 */ 12104 static int 12105 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12106 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12107 { 12108 uint64_t len = dof->dofh_loadsz, seclen; 12109 uintptr_t daddr = (uintptr_t)dof; 12110 dtrace_ecbdesc_t *ep; 12111 dtrace_enabling_t *enab; 12112 uint_t i; 12113 12114 ASSERT(MUTEX_HELD(&dtrace_lock)); 12115 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12116 12117 /* 12118 * Check the DOF header identification bytes. In addition to checking 12119 * valid settings, we also verify that unused bits/bytes are zeroed so 12120 * we can use them later without fear of regressing existing binaries. 12121 */ 12122 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12123 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12124 dtrace_dof_error(dof, "DOF magic string mismatch"); 12125 return (-1); 12126 } 12127 12128 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12129 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12130 dtrace_dof_error(dof, "DOF has invalid data model"); 12131 return (-1); 12132 } 12133 12134 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12135 dtrace_dof_error(dof, "DOF encoding mismatch"); 12136 return (-1); 12137 } 12138 12139 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12140 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12141 dtrace_dof_error(dof, "DOF version mismatch"); 12142 return (-1); 12143 } 12144 12145 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12146 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12147 return (-1); 12148 } 12149 12150 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12151 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12152 return (-1); 12153 } 12154 12155 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12156 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12157 return (-1); 12158 } 12159 12160 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12161 if (dof->dofh_ident[i] != 0) { 12162 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12163 return (-1); 12164 } 12165 } 12166 12167 if (dof->dofh_flags & ~DOF_FL_VALID) { 12168 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12169 return (-1); 12170 } 12171 12172 if (dof->dofh_secsize == 0) { 12173 dtrace_dof_error(dof, "zero section header size"); 12174 return (-1); 12175 } 12176 12177 /* 12178 * Check that the section headers don't exceed the amount of DOF 12179 * data. Note that we cast the section size and number of sections 12180 * to uint64_t's to prevent possible overflow in the multiplication. 12181 */ 12182 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12183 12184 if (dof->dofh_secoff > len || seclen > len || 12185 dof->dofh_secoff + seclen > len) { 12186 dtrace_dof_error(dof, "truncated section headers"); 12187 return (-1); 12188 } 12189 12190 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 12191 dtrace_dof_error(dof, "misaligned section headers"); 12192 return (-1); 12193 } 12194 12195 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 12196 dtrace_dof_error(dof, "misaligned section size"); 12197 return (-1); 12198 } 12199 12200 /* 12201 * Take an initial pass through the section headers to be sure that 12202 * the headers don't have stray offsets. If the 'noprobes' flag is 12203 * set, do not permit sections relating to providers, probes, or args. 12204 */ 12205 for (i = 0; i < dof->dofh_secnum; i++) { 12206 dof_sec_t *sec = (dof_sec_t *)(daddr + 12207 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12208 12209 if (noprobes) { 12210 switch (sec->dofs_type) { 12211 case DOF_SECT_PROVIDER: 12212 case DOF_SECT_PROBES: 12213 case DOF_SECT_PRARGS: 12214 case DOF_SECT_PROFFS: 12215 dtrace_dof_error(dof, "illegal sections " 12216 "for enabling"); 12217 return (-1); 12218 } 12219 } 12220 12221 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 12222 !(sec->dofs_flags & DOF_SECF_LOAD)) { 12223 dtrace_dof_error(dof, "loadable section with load " 12224 "flag unset"); 12225 return (-1); 12226 } 12227 12228 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12229 continue; /* just ignore non-loadable sections */ 12230 12231 if (sec->dofs_align & (sec->dofs_align - 1)) { 12232 dtrace_dof_error(dof, "bad section alignment"); 12233 return (-1); 12234 } 12235 12236 if (sec->dofs_offset & (sec->dofs_align - 1)) { 12237 dtrace_dof_error(dof, "misaligned section"); 12238 return (-1); 12239 } 12240 12241 if (sec->dofs_offset > len || sec->dofs_size > len || 12242 sec->dofs_offset + sec->dofs_size > len) { 12243 dtrace_dof_error(dof, "corrupt section header"); 12244 return (-1); 12245 } 12246 12247 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 12248 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 12249 dtrace_dof_error(dof, "non-terminating string table"); 12250 return (-1); 12251 } 12252 } 12253 12254 /* 12255 * Take a second pass through the sections and locate and perform any 12256 * relocations that are present. We do this after the first pass to 12257 * be sure that all sections have had their headers validated. 12258 */ 12259 for (i = 0; i < dof->dofh_secnum; i++) { 12260 dof_sec_t *sec = (dof_sec_t *)(daddr + 12261 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12262 12263 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 12264 continue; /* skip sections that are not loadable */ 12265 12266 switch (sec->dofs_type) { 12267 case DOF_SECT_URELHDR: 12268 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 12269 return (-1); 12270 break; 12271 } 12272 } 12273 12274 if ((enab = *enabp) == NULL) 12275 enab = *enabp = dtrace_enabling_create(vstate); 12276 12277 for (i = 0; i < dof->dofh_secnum; i++) { 12278 dof_sec_t *sec = (dof_sec_t *)(daddr + 12279 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12280 12281 if (sec->dofs_type != DOF_SECT_ECBDESC) 12282 continue; 12283 12284 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 12285 dtrace_enabling_destroy(enab); 12286 *enabp = NULL; 12287 return (-1); 12288 } 12289 12290 dtrace_enabling_add(enab, ep); 12291 } 12292 12293 return (0); 12294 } 12295 12296 /* 12297 * Process DOF for any options. This routine assumes that the DOF has been 12298 * at least processed by dtrace_dof_slurp(). 12299 */ 12300 static int 12301 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 12302 { 12303 int i, rval; 12304 uint32_t entsize; 12305 size_t offs; 12306 dof_optdesc_t *desc; 12307 12308 for (i = 0; i < dof->dofh_secnum; i++) { 12309 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 12310 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 12311 12312 if (sec->dofs_type != DOF_SECT_OPTDESC) 12313 continue; 12314 12315 if (sec->dofs_align != sizeof (uint64_t)) { 12316 dtrace_dof_error(dof, "bad alignment in " 12317 "option description"); 12318 return (EINVAL); 12319 } 12320 12321 if ((entsize = sec->dofs_entsize) == 0) { 12322 dtrace_dof_error(dof, "zeroed option entry size"); 12323 return (EINVAL); 12324 } 12325 12326 if (entsize < sizeof (dof_optdesc_t)) { 12327 dtrace_dof_error(dof, "bad option entry size"); 12328 return (EINVAL); 12329 } 12330 12331 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 12332 desc = (dof_optdesc_t *)((uintptr_t)dof + 12333 (uintptr_t)sec->dofs_offset + offs); 12334 12335 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 12336 dtrace_dof_error(dof, "non-zero option string"); 12337 return (EINVAL); 12338 } 12339 12340 if (desc->dofo_value == DTRACEOPT_UNSET) { 12341 dtrace_dof_error(dof, "unset option"); 12342 return (EINVAL); 12343 } 12344 12345 if ((rval = dtrace_state_option(state, 12346 desc->dofo_option, desc->dofo_value)) != 0) { 12347 dtrace_dof_error(dof, "rejected option"); 12348 return (rval); 12349 } 12350 } 12351 } 12352 12353 return (0); 12354 } 12355 12356 /* 12357 * DTrace Consumer State Functions 12358 */ 12359 int 12360 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 12361 { 12362 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 12363 void *base; 12364 uintptr_t limit; 12365 dtrace_dynvar_t *dvar, *next, *start; 12366 int i; 12367 12368 ASSERT(MUTEX_HELD(&dtrace_lock)); 12369 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 12370 12371 bzero(dstate, sizeof (dtrace_dstate_t)); 12372 12373 if ((dstate->dtds_chunksize = chunksize) == 0) 12374 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 12375 12376 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 12377 size = min; 12378 12379 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 12380 return (ENOMEM); 12381 12382 dstate->dtds_size = size; 12383 dstate->dtds_base = base; 12384 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 12385 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 12386 12387 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 12388 12389 if (hashsize != 1 && (hashsize & 1)) 12390 hashsize--; 12391 12392 dstate->dtds_hashsize = hashsize; 12393 dstate->dtds_hash = dstate->dtds_base; 12394 12395 /* 12396 * Set all of our hash buckets to point to the single sink, and (if 12397 * it hasn't already been set), set the sink's hash value to be the 12398 * sink sentinel value. The sink is needed for dynamic variable 12399 * lookups to know that they have iterated over an entire, valid hash 12400 * chain. 12401 */ 12402 for (i = 0; i < hashsize; i++) 12403 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 12404 12405 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 12406 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 12407 12408 /* 12409 * Determine number of active CPUs. Divide free list evenly among 12410 * active CPUs. 12411 */ 12412 start = (dtrace_dynvar_t *) 12413 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 12414 limit = (uintptr_t)base + size; 12415 12416 maxper = (limit - (uintptr_t)start) / NCPU; 12417 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 12418 12419 for (i = 0; i < NCPU; i++) { 12420 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 12421 12422 /* 12423 * If we don't even have enough chunks to make it once through 12424 * NCPUs, we're just going to allocate everything to the first 12425 * CPU. And if we're on the last CPU, we're going to allocate 12426 * whatever is left over. In either case, we set the limit to 12427 * be the limit of the dynamic variable space. 12428 */ 12429 if (maxper == 0 || i == NCPU - 1) { 12430 limit = (uintptr_t)base + size; 12431 start = NULL; 12432 } else { 12433 limit = (uintptr_t)start + maxper; 12434 start = (dtrace_dynvar_t *)limit; 12435 } 12436 12437 ASSERT(limit <= (uintptr_t)base + size); 12438 12439 for (;;) { 12440 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 12441 dstate->dtds_chunksize); 12442 12443 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 12444 break; 12445 12446 dvar->dtdv_next = next; 12447 dvar = next; 12448 } 12449 12450 if (maxper == 0) 12451 break; 12452 } 12453 12454 return (0); 12455 } 12456 12457 void 12458 dtrace_dstate_fini(dtrace_dstate_t *dstate) 12459 { 12460 ASSERT(MUTEX_HELD(&cpu_lock)); 12461 12462 if (dstate->dtds_base == NULL) 12463 return; 12464 12465 kmem_free(dstate->dtds_base, dstate->dtds_size); 12466 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 12467 } 12468 12469 static void 12470 dtrace_vstate_fini(dtrace_vstate_t *vstate) 12471 { 12472 /* 12473 * Logical XOR, where are you? 12474 */ 12475 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 12476 12477 if (vstate->dtvs_nglobals > 0) { 12478 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 12479 sizeof (dtrace_statvar_t *)); 12480 } 12481 12482 if (vstate->dtvs_ntlocals > 0) { 12483 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 12484 sizeof (dtrace_difv_t)); 12485 } 12486 12487 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 12488 12489 if (vstate->dtvs_nlocals > 0) { 12490 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 12491 sizeof (dtrace_statvar_t *)); 12492 } 12493 } 12494 12495 static void 12496 dtrace_state_clean(dtrace_state_t *state) 12497 { 12498 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 12499 return; 12500 12501 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 12502 dtrace_speculation_clean(state); 12503 } 12504 12505 static void 12506 dtrace_state_deadman(dtrace_state_t *state) 12507 { 12508 hrtime_t now; 12509 12510 dtrace_sync(); 12511 12512 now = dtrace_gethrtime(); 12513 12514 if (state != dtrace_anon.dta_state && 12515 now - state->dts_laststatus >= dtrace_deadman_user) 12516 return; 12517 12518 /* 12519 * We must be sure that dts_alive never appears to be less than the 12520 * value upon entry to dtrace_state_deadman(), and because we lack a 12521 * dtrace_cas64(), we cannot store to it atomically. We thus instead 12522 * store INT64_MAX to it, followed by a memory barrier, followed by 12523 * the new value. This assures that dts_alive never appears to be 12524 * less than its true value, regardless of the order in which the 12525 * stores to the underlying storage are issued. 12526 */ 12527 state->dts_alive = INT64_MAX; 12528 dtrace_membar_producer(); 12529 state->dts_alive = now; 12530 } 12531 12532 dtrace_state_t * 12533 dtrace_state_create(dev_t *devp, cred_t *cr) 12534 { 12535 minor_t minor; 12536 major_t major; 12537 char c[30]; 12538 dtrace_state_t *state; 12539 dtrace_optval_t *opt; 12540 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 12541 12542 ASSERT(MUTEX_HELD(&dtrace_lock)); 12543 ASSERT(MUTEX_HELD(&cpu_lock)); 12544 12545 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 12546 VM_BESTFIT | VM_SLEEP); 12547 12548 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 12549 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 12550 return (NULL); 12551 } 12552 12553 state = ddi_get_soft_state(dtrace_softstate, minor); 12554 state->dts_epid = DTRACE_EPIDNONE + 1; 12555 12556 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 12557 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 12558 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 12559 12560 if (devp != NULL) { 12561 major = getemajor(*devp); 12562 } else { 12563 major = ddi_driver_major(dtrace_devi); 12564 } 12565 12566 state->dts_dev = makedevice(major, minor); 12567 12568 if (devp != NULL) 12569 *devp = state->dts_dev; 12570 12571 /* 12572 * We allocate NCPU buffers. On the one hand, this can be quite 12573 * a bit of memory per instance (nearly 36K on a Starcat). On the 12574 * other hand, it saves an additional memory reference in the probe 12575 * path. 12576 */ 12577 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 12578 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 12579 state->dts_cleaner = CYCLIC_NONE; 12580 state->dts_deadman = CYCLIC_NONE; 12581 state->dts_vstate.dtvs_state = state; 12582 12583 for (i = 0; i < DTRACEOPT_MAX; i++) 12584 state->dts_options[i] = DTRACEOPT_UNSET; 12585 12586 /* 12587 * Set the default options. 12588 */ 12589 opt = state->dts_options; 12590 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 12591 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 12592 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 12593 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 12594 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 12595 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 12596 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 12597 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 12598 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 12599 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 12600 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 12601 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 12602 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 12603 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 12604 12605 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 12606 12607 /* 12608 * Depending on the user credentials, we set flag bits which alter probe 12609 * visibility or the amount of destructiveness allowed. In the case of 12610 * actual anonymous tracing, or the possession of all privileges, all of 12611 * the normal checks are bypassed. 12612 */ 12613 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 12614 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 12615 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 12616 } else { 12617 /* 12618 * Set up the credentials for this instantiation. We take a 12619 * hold on the credential to prevent it from disappearing on 12620 * us; this in turn prevents the zone_t referenced by this 12621 * credential from disappearing. This means that we can 12622 * examine the credential and the zone from probe context. 12623 */ 12624 crhold(cr); 12625 state->dts_cred.dcr_cred = cr; 12626 12627 /* 12628 * CRA_PROC means "we have *some* privilege for dtrace" and 12629 * unlocks the use of variables like pid, zonename, etc. 12630 */ 12631 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 12632 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12633 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 12634 } 12635 12636 /* 12637 * dtrace_user allows use of syscall and profile providers. 12638 * If the user also has proc_owner and/or proc_zone, we 12639 * extend the scope to include additional visibility and 12640 * destructive power. 12641 */ 12642 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 12643 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 12644 state->dts_cred.dcr_visible |= 12645 DTRACE_CRV_ALLPROC; 12646 12647 state->dts_cred.dcr_action |= 12648 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12649 } 12650 12651 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 12652 state->dts_cred.dcr_visible |= 12653 DTRACE_CRV_ALLZONE; 12654 12655 state->dts_cred.dcr_action |= 12656 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12657 } 12658 12659 /* 12660 * If we have all privs in whatever zone this is, 12661 * we can do destructive things to processes which 12662 * have altered credentials. 12663 */ 12664 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12665 cr->cr_zone->zone_privset)) { 12666 state->dts_cred.dcr_action |= 12667 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12668 } 12669 } 12670 12671 /* 12672 * Holding the dtrace_kernel privilege also implies that 12673 * the user has the dtrace_user privilege from a visibility 12674 * perspective. But without further privileges, some 12675 * destructive actions are not available. 12676 */ 12677 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 12678 /* 12679 * Make all probes in all zones visible. However, 12680 * this doesn't mean that all actions become available 12681 * to all zones. 12682 */ 12683 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 12684 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 12685 12686 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 12687 DTRACE_CRA_PROC; 12688 /* 12689 * Holding proc_owner means that destructive actions 12690 * for *this* zone are allowed. 12691 */ 12692 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12693 state->dts_cred.dcr_action |= 12694 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12695 12696 /* 12697 * Holding proc_zone means that destructive actions 12698 * for this user/group ID in all zones is allowed. 12699 */ 12700 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12701 state->dts_cred.dcr_action |= 12702 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12703 12704 /* 12705 * If we have all privs in whatever zone this is, 12706 * we can do destructive things to processes which 12707 * have altered credentials. 12708 */ 12709 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 12710 cr->cr_zone->zone_privset)) { 12711 state->dts_cred.dcr_action |= 12712 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 12713 } 12714 } 12715 12716 /* 12717 * Holding the dtrace_proc privilege gives control over fasttrap 12718 * and pid providers. We need to grant wider destructive 12719 * privileges in the event that the user has proc_owner and/or 12720 * proc_zone. 12721 */ 12722 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 12723 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 12724 state->dts_cred.dcr_action |= 12725 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 12726 12727 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 12728 state->dts_cred.dcr_action |= 12729 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 12730 } 12731 } 12732 12733 return (state); 12734 } 12735 12736 static int 12737 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 12738 { 12739 dtrace_optval_t *opt = state->dts_options, size; 12740 processorid_t cpu; 12741 int flags = 0, rval, factor, divisor = 1; 12742 12743 ASSERT(MUTEX_HELD(&dtrace_lock)); 12744 ASSERT(MUTEX_HELD(&cpu_lock)); 12745 ASSERT(which < DTRACEOPT_MAX); 12746 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 12747 (state == dtrace_anon.dta_state && 12748 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 12749 12750 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 12751 return (0); 12752 12753 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 12754 cpu = opt[DTRACEOPT_CPU]; 12755 12756 if (which == DTRACEOPT_SPECSIZE) 12757 flags |= DTRACEBUF_NOSWITCH; 12758 12759 if (which == DTRACEOPT_BUFSIZE) { 12760 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 12761 flags |= DTRACEBUF_RING; 12762 12763 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 12764 flags |= DTRACEBUF_FILL; 12765 12766 if (state != dtrace_anon.dta_state || 12767 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 12768 flags |= DTRACEBUF_INACTIVE; 12769 } 12770 12771 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 12772 /* 12773 * The size must be 8-byte aligned. If the size is not 8-byte 12774 * aligned, drop it down by the difference. 12775 */ 12776 if (size & (sizeof (uint64_t) - 1)) 12777 size -= size & (sizeof (uint64_t) - 1); 12778 12779 if (size < state->dts_reserve) { 12780 /* 12781 * Buffers always must be large enough to accommodate 12782 * their prereserved space. We return E2BIG instead 12783 * of ENOMEM in this case to allow for user-level 12784 * software to differentiate the cases. 12785 */ 12786 return (E2BIG); 12787 } 12788 12789 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 12790 12791 if (rval != ENOMEM) { 12792 opt[which] = size; 12793 return (rval); 12794 } 12795 12796 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 12797 return (rval); 12798 12799 for (divisor = 2; divisor < factor; divisor <<= 1) 12800 continue; 12801 } 12802 12803 return (ENOMEM); 12804 } 12805 12806 static int 12807 dtrace_state_buffers(dtrace_state_t *state) 12808 { 12809 dtrace_speculation_t *spec = state->dts_speculations; 12810 int rval, i; 12811 12812 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 12813 DTRACEOPT_BUFSIZE)) != 0) 12814 return (rval); 12815 12816 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 12817 DTRACEOPT_AGGSIZE)) != 0) 12818 return (rval); 12819 12820 for (i = 0; i < state->dts_nspeculations; i++) { 12821 if ((rval = dtrace_state_buffer(state, 12822 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 12823 return (rval); 12824 } 12825 12826 return (0); 12827 } 12828 12829 static void 12830 dtrace_state_prereserve(dtrace_state_t *state) 12831 { 12832 dtrace_ecb_t *ecb; 12833 dtrace_probe_t *probe; 12834 12835 state->dts_reserve = 0; 12836 12837 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 12838 return; 12839 12840 /* 12841 * If our buffer policy is a "fill" buffer policy, we need to set the 12842 * prereserved space to be the space required by the END probes. 12843 */ 12844 probe = dtrace_probes[dtrace_probeid_end - 1]; 12845 ASSERT(probe != NULL); 12846 12847 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 12848 if (ecb->dte_state != state) 12849 continue; 12850 12851 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 12852 } 12853 } 12854 12855 static int 12856 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 12857 { 12858 dtrace_optval_t *opt = state->dts_options, sz, nspec; 12859 dtrace_speculation_t *spec; 12860 dtrace_buffer_t *buf; 12861 cyc_handler_t hdlr; 12862 cyc_time_t when; 12863 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 12864 dtrace_icookie_t cookie; 12865 12866 mutex_enter(&cpu_lock); 12867 mutex_enter(&dtrace_lock); 12868 12869 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 12870 rval = EBUSY; 12871 goto out; 12872 } 12873 12874 /* 12875 * Before we can perform any checks, we must prime all of the 12876 * retained enablings that correspond to this state. 12877 */ 12878 dtrace_enabling_prime(state); 12879 12880 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 12881 rval = EACCES; 12882 goto out; 12883 } 12884 12885 dtrace_state_prereserve(state); 12886 12887 /* 12888 * Now we want to do is try to allocate our speculations. 12889 * We do not automatically resize the number of speculations; if 12890 * this fails, we will fail the operation. 12891 */ 12892 nspec = opt[DTRACEOPT_NSPEC]; 12893 ASSERT(nspec != DTRACEOPT_UNSET); 12894 12895 if (nspec > INT_MAX) { 12896 rval = ENOMEM; 12897 goto out; 12898 } 12899 12900 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 12901 KM_NOSLEEP | KM_NORMALPRI); 12902 12903 if (spec == NULL) { 12904 rval = ENOMEM; 12905 goto out; 12906 } 12907 12908 state->dts_speculations = spec; 12909 state->dts_nspeculations = (int)nspec; 12910 12911 for (i = 0; i < nspec; i++) { 12912 if ((buf = kmem_zalloc(bufsize, 12913 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 12914 rval = ENOMEM; 12915 goto err; 12916 } 12917 12918 spec[i].dtsp_buffer = buf; 12919 } 12920 12921 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 12922 if (dtrace_anon.dta_state == NULL) { 12923 rval = ENOENT; 12924 goto out; 12925 } 12926 12927 if (state->dts_necbs != 0) { 12928 rval = EALREADY; 12929 goto out; 12930 } 12931 12932 state->dts_anon = dtrace_anon_grab(); 12933 ASSERT(state->dts_anon != NULL); 12934 state = state->dts_anon; 12935 12936 /* 12937 * We want "grabanon" to be set in the grabbed state, so we'll 12938 * copy that option value from the grabbing state into the 12939 * grabbed state. 12940 */ 12941 state->dts_options[DTRACEOPT_GRABANON] = 12942 opt[DTRACEOPT_GRABANON]; 12943 12944 *cpu = dtrace_anon.dta_beganon; 12945 12946 /* 12947 * If the anonymous state is active (as it almost certainly 12948 * is if the anonymous enabling ultimately matched anything), 12949 * we don't allow any further option processing -- but we 12950 * don't return failure. 12951 */ 12952 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 12953 goto out; 12954 } 12955 12956 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 12957 opt[DTRACEOPT_AGGSIZE] != 0) { 12958 if (state->dts_aggregations == NULL) { 12959 /* 12960 * We're not going to create an aggregation buffer 12961 * because we don't have any ECBs that contain 12962 * aggregations -- set this option to 0. 12963 */ 12964 opt[DTRACEOPT_AGGSIZE] = 0; 12965 } else { 12966 /* 12967 * If we have an aggregation buffer, we must also have 12968 * a buffer to use as scratch. 12969 */ 12970 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 12971 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 12972 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 12973 } 12974 } 12975 } 12976 12977 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 12978 opt[DTRACEOPT_SPECSIZE] != 0) { 12979 if (!state->dts_speculates) { 12980 /* 12981 * We're not going to create speculation buffers 12982 * because we don't have any ECBs that actually 12983 * speculate -- set the speculation size to 0. 12984 */ 12985 opt[DTRACEOPT_SPECSIZE] = 0; 12986 } 12987 } 12988 12989 /* 12990 * The bare minimum size for any buffer that we're actually going to 12991 * do anything to is sizeof (uint64_t). 12992 */ 12993 sz = sizeof (uint64_t); 12994 12995 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 12996 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 12997 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 12998 /* 12999 * A buffer size has been explicitly set to 0 (or to a size 13000 * that will be adjusted to 0) and we need the space -- we 13001 * need to return failure. We return ENOSPC to differentiate 13002 * it from failing to allocate a buffer due to failure to meet 13003 * the reserve (for which we return E2BIG). 13004 */ 13005 rval = ENOSPC; 13006 goto out; 13007 } 13008 13009 if ((rval = dtrace_state_buffers(state)) != 0) 13010 goto err; 13011 13012 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13013 sz = dtrace_dstate_defsize; 13014 13015 do { 13016 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13017 13018 if (rval == 0) 13019 break; 13020 13021 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13022 goto err; 13023 } while (sz >>= 1); 13024 13025 opt[DTRACEOPT_DYNVARSIZE] = sz; 13026 13027 if (rval != 0) 13028 goto err; 13029 13030 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13031 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13032 13033 if (opt[DTRACEOPT_CLEANRATE] == 0) 13034 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13035 13036 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13037 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13038 13039 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13040 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13041 13042 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13043 hdlr.cyh_arg = state; 13044 hdlr.cyh_level = CY_LOW_LEVEL; 13045 13046 when.cyt_when = 0; 13047 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13048 13049 state->dts_cleaner = cyclic_add(&hdlr, &when); 13050 13051 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13052 hdlr.cyh_arg = state; 13053 hdlr.cyh_level = CY_LOW_LEVEL; 13054 13055 when.cyt_when = 0; 13056 when.cyt_interval = dtrace_deadman_interval; 13057 13058 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13059 state->dts_deadman = cyclic_add(&hdlr, &when); 13060 13061 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13062 13063 /* 13064 * Now it's time to actually fire the BEGIN probe. We need to disable 13065 * interrupts here both to record the CPU on which we fired the BEGIN 13066 * probe (the data from this CPU will be processed first at user 13067 * level) and to manually activate the buffer for this CPU. 13068 */ 13069 cookie = dtrace_interrupt_disable(); 13070 *cpu = CPU->cpu_id; 13071 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13072 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13073 13074 dtrace_probe(dtrace_probeid_begin, 13075 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13076 dtrace_interrupt_enable(cookie); 13077 /* 13078 * We may have had an exit action from a BEGIN probe; only change our 13079 * state to ACTIVE if we're still in WARMUP. 13080 */ 13081 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13082 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13083 13084 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13085 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13086 13087 /* 13088 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13089 * want each CPU to transition its principal buffer out of the 13090 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13091 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13092 * atomically transition from processing none of a state's ECBs to 13093 * processing all of them. 13094 */ 13095 dtrace_xcall(DTRACE_CPUALL, 13096 (dtrace_xcall_t)dtrace_buffer_activate, state); 13097 goto out; 13098 13099 err: 13100 dtrace_buffer_free(state->dts_buffer); 13101 dtrace_buffer_free(state->dts_aggbuffer); 13102 13103 if ((nspec = state->dts_nspeculations) == 0) { 13104 ASSERT(state->dts_speculations == NULL); 13105 goto out; 13106 } 13107 13108 spec = state->dts_speculations; 13109 ASSERT(spec != NULL); 13110 13111 for (i = 0; i < state->dts_nspeculations; i++) { 13112 if ((buf = spec[i].dtsp_buffer) == NULL) 13113 break; 13114 13115 dtrace_buffer_free(buf); 13116 kmem_free(buf, bufsize); 13117 } 13118 13119 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13120 state->dts_nspeculations = 0; 13121 state->dts_speculations = NULL; 13122 13123 out: 13124 mutex_exit(&dtrace_lock); 13125 mutex_exit(&cpu_lock); 13126 13127 return (rval); 13128 } 13129 13130 static int 13131 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13132 { 13133 dtrace_icookie_t cookie; 13134 13135 ASSERT(MUTEX_HELD(&dtrace_lock)); 13136 13137 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13138 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13139 return (EINVAL); 13140 13141 /* 13142 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13143 * to be sure that every CPU has seen it. See below for the details 13144 * on why this is done. 13145 */ 13146 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13147 dtrace_sync(); 13148 13149 /* 13150 * By this point, it is impossible for any CPU to be still processing 13151 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13152 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13153 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13154 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13155 * iff we're in the END probe. 13156 */ 13157 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13158 dtrace_sync(); 13159 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13160 13161 /* 13162 * Finally, we can release the reserve and call the END probe. We 13163 * disable interrupts across calling the END probe to allow us to 13164 * return the CPU on which we actually called the END probe. This 13165 * allows user-land to be sure that this CPU's principal buffer is 13166 * processed last. 13167 */ 13168 state->dts_reserve = 0; 13169 13170 cookie = dtrace_interrupt_disable(); 13171 *cpu = CPU->cpu_id; 13172 dtrace_probe(dtrace_probeid_end, 13173 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13174 dtrace_interrupt_enable(cookie); 13175 13176 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 13177 dtrace_sync(); 13178 13179 return (0); 13180 } 13181 13182 static int 13183 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 13184 dtrace_optval_t val) 13185 { 13186 ASSERT(MUTEX_HELD(&dtrace_lock)); 13187 13188 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13189 return (EBUSY); 13190 13191 if (option >= DTRACEOPT_MAX) 13192 return (EINVAL); 13193 13194 if (option != DTRACEOPT_CPU && val < 0) 13195 return (EINVAL); 13196 13197 switch (option) { 13198 case DTRACEOPT_DESTRUCTIVE: 13199 if (dtrace_destructive_disallow) 13200 return (EACCES); 13201 13202 state->dts_cred.dcr_destructive = 1; 13203 break; 13204 13205 case DTRACEOPT_BUFSIZE: 13206 case DTRACEOPT_DYNVARSIZE: 13207 case DTRACEOPT_AGGSIZE: 13208 case DTRACEOPT_SPECSIZE: 13209 case DTRACEOPT_STRSIZE: 13210 if (val < 0) 13211 return (EINVAL); 13212 13213 if (val >= LONG_MAX) { 13214 /* 13215 * If this is an otherwise negative value, set it to 13216 * the highest multiple of 128m less than LONG_MAX. 13217 * Technically, we're adjusting the size without 13218 * regard to the buffer resizing policy, but in fact, 13219 * this has no effect -- if we set the buffer size to 13220 * ~LONG_MAX and the buffer policy is ultimately set to 13221 * be "manual", the buffer allocation is guaranteed to 13222 * fail, if only because the allocation requires two 13223 * buffers. (We set the the size to the highest 13224 * multiple of 128m because it ensures that the size 13225 * will remain a multiple of a megabyte when 13226 * repeatedly halved -- all the way down to 15m.) 13227 */ 13228 val = LONG_MAX - (1 << 27) + 1; 13229 } 13230 } 13231 13232 state->dts_options[option] = val; 13233 13234 return (0); 13235 } 13236 13237 static void 13238 dtrace_state_destroy(dtrace_state_t *state) 13239 { 13240 dtrace_ecb_t *ecb; 13241 dtrace_vstate_t *vstate = &state->dts_vstate; 13242 minor_t minor = getminor(state->dts_dev); 13243 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13244 dtrace_speculation_t *spec = state->dts_speculations; 13245 int nspec = state->dts_nspeculations; 13246 uint32_t match; 13247 13248 ASSERT(MUTEX_HELD(&dtrace_lock)); 13249 ASSERT(MUTEX_HELD(&cpu_lock)); 13250 13251 /* 13252 * First, retract any retained enablings for this state. 13253 */ 13254 dtrace_enabling_retract(state); 13255 ASSERT(state->dts_nretained == 0); 13256 13257 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 13258 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 13259 /* 13260 * We have managed to come into dtrace_state_destroy() on a 13261 * hot enabling -- almost certainly because of a disorderly 13262 * shutdown of a consumer. (That is, a consumer that is 13263 * exiting without having called dtrace_stop().) In this case, 13264 * we're going to set our activity to be KILLED, and then 13265 * issue a sync to be sure that everyone is out of probe 13266 * context before we start blowing away ECBs. 13267 */ 13268 state->dts_activity = DTRACE_ACTIVITY_KILLED; 13269 dtrace_sync(); 13270 } 13271 13272 /* 13273 * Release the credential hold we took in dtrace_state_create(). 13274 */ 13275 if (state->dts_cred.dcr_cred != NULL) 13276 crfree(state->dts_cred.dcr_cred); 13277 13278 /* 13279 * Now we can safely disable and destroy any enabled probes. Because 13280 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 13281 * (especially if they're all enabled), we take two passes through the 13282 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 13283 * in the second we disable whatever is left over. 13284 */ 13285 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 13286 for (i = 0; i < state->dts_necbs; i++) { 13287 if ((ecb = state->dts_ecbs[i]) == NULL) 13288 continue; 13289 13290 if (match && ecb->dte_probe != NULL) { 13291 dtrace_probe_t *probe = ecb->dte_probe; 13292 dtrace_provider_t *prov = probe->dtpr_provider; 13293 13294 if (!(prov->dtpv_priv.dtpp_flags & match)) 13295 continue; 13296 } 13297 13298 dtrace_ecb_disable(ecb); 13299 dtrace_ecb_destroy(ecb); 13300 } 13301 13302 if (!match) 13303 break; 13304 } 13305 13306 /* 13307 * Before we free the buffers, perform one more sync to assure that 13308 * every CPU is out of probe context. 13309 */ 13310 dtrace_sync(); 13311 13312 dtrace_buffer_free(state->dts_buffer); 13313 dtrace_buffer_free(state->dts_aggbuffer); 13314 13315 for (i = 0; i < nspec; i++) 13316 dtrace_buffer_free(spec[i].dtsp_buffer); 13317 13318 if (state->dts_cleaner != CYCLIC_NONE) 13319 cyclic_remove(state->dts_cleaner); 13320 13321 if (state->dts_deadman != CYCLIC_NONE) 13322 cyclic_remove(state->dts_deadman); 13323 13324 dtrace_dstate_fini(&vstate->dtvs_dynvars); 13325 dtrace_vstate_fini(vstate); 13326 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 13327 13328 if (state->dts_aggregations != NULL) { 13329 #ifdef DEBUG 13330 for (i = 0; i < state->dts_naggregations; i++) 13331 ASSERT(state->dts_aggregations[i] == NULL); 13332 #endif 13333 ASSERT(state->dts_naggregations > 0); 13334 kmem_free(state->dts_aggregations, 13335 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 13336 } 13337 13338 kmem_free(state->dts_buffer, bufsize); 13339 kmem_free(state->dts_aggbuffer, bufsize); 13340 13341 for (i = 0; i < nspec; i++) 13342 kmem_free(spec[i].dtsp_buffer, bufsize); 13343 13344 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13345 13346 dtrace_format_destroy(state); 13347 13348 vmem_destroy(state->dts_aggid_arena); 13349 ddi_soft_state_free(dtrace_softstate, minor); 13350 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13351 } 13352 13353 /* 13354 * DTrace Anonymous Enabling Functions 13355 */ 13356 static dtrace_state_t * 13357 dtrace_anon_grab(void) 13358 { 13359 dtrace_state_t *state; 13360 13361 ASSERT(MUTEX_HELD(&dtrace_lock)); 13362 13363 if ((state = dtrace_anon.dta_state) == NULL) { 13364 ASSERT(dtrace_anon.dta_enabling == NULL); 13365 return (NULL); 13366 } 13367 13368 ASSERT(dtrace_anon.dta_enabling != NULL); 13369 ASSERT(dtrace_retained != NULL); 13370 13371 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 13372 dtrace_anon.dta_enabling = NULL; 13373 dtrace_anon.dta_state = NULL; 13374 13375 return (state); 13376 } 13377 13378 static void 13379 dtrace_anon_property(void) 13380 { 13381 int i, rv; 13382 dtrace_state_t *state; 13383 dof_hdr_t *dof; 13384 char c[32]; /* enough for "dof-data-" + digits */ 13385 13386 ASSERT(MUTEX_HELD(&dtrace_lock)); 13387 ASSERT(MUTEX_HELD(&cpu_lock)); 13388 13389 for (i = 0; ; i++) { 13390 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 13391 13392 dtrace_err_verbose = 1; 13393 13394 if ((dof = dtrace_dof_property(c)) == NULL) { 13395 dtrace_err_verbose = 0; 13396 break; 13397 } 13398 13399 /* 13400 * We want to create anonymous state, so we need to transition 13401 * the kernel debugger to indicate that DTrace is active. If 13402 * this fails (e.g. because the debugger has modified text in 13403 * some way), we won't continue with the processing. 13404 */ 13405 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 13406 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 13407 "enabling ignored."); 13408 dtrace_dof_destroy(dof); 13409 break; 13410 } 13411 13412 /* 13413 * If we haven't allocated an anonymous state, we'll do so now. 13414 */ 13415 if ((state = dtrace_anon.dta_state) == NULL) { 13416 state = dtrace_state_create(NULL, NULL); 13417 dtrace_anon.dta_state = state; 13418 13419 if (state == NULL) { 13420 /* 13421 * This basically shouldn't happen: the only 13422 * failure mode from dtrace_state_create() is a 13423 * failure of ddi_soft_state_zalloc() that 13424 * itself should never happen. Still, the 13425 * interface allows for a failure mode, and 13426 * we want to fail as gracefully as possible: 13427 * we'll emit an error message and cease 13428 * processing anonymous state in this case. 13429 */ 13430 cmn_err(CE_WARN, "failed to create " 13431 "anonymous state"); 13432 dtrace_dof_destroy(dof); 13433 break; 13434 } 13435 } 13436 13437 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 13438 &dtrace_anon.dta_enabling, 0, B_TRUE); 13439 13440 if (rv == 0) 13441 rv = dtrace_dof_options(dof, state); 13442 13443 dtrace_err_verbose = 0; 13444 dtrace_dof_destroy(dof); 13445 13446 if (rv != 0) { 13447 /* 13448 * This is malformed DOF; chuck any anonymous state 13449 * that we created. 13450 */ 13451 ASSERT(dtrace_anon.dta_enabling == NULL); 13452 dtrace_state_destroy(state); 13453 dtrace_anon.dta_state = NULL; 13454 break; 13455 } 13456 13457 ASSERT(dtrace_anon.dta_enabling != NULL); 13458 } 13459 13460 if (dtrace_anon.dta_enabling != NULL) { 13461 int rval; 13462 13463 /* 13464 * dtrace_enabling_retain() can only fail because we are 13465 * trying to retain more enablings than are allowed -- but 13466 * we only have one anonymous enabling, and we are guaranteed 13467 * to be allowed at least one retained enabling; we assert 13468 * that dtrace_enabling_retain() returns success. 13469 */ 13470 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 13471 ASSERT(rval == 0); 13472 13473 dtrace_enabling_dump(dtrace_anon.dta_enabling); 13474 } 13475 } 13476 13477 /* 13478 * DTrace Helper Functions 13479 */ 13480 static void 13481 dtrace_helper_trace(dtrace_helper_action_t *helper, 13482 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 13483 { 13484 uint32_t size, next, nnext, i; 13485 dtrace_helptrace_t *ent; 13486 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13487 13488 if (!dtrace_helptrace_enabled) 13489 return; 13490 13491 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 13492 13493 /* 13494 * What would a tracing framework be without its own tracing 13495 * framework? (Well, a hell of a lot simpler, for starters...) 13496 */ 13497 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 13498 sizeof (uint64_t) - sizeof (uint64_t); 13499 13500 /* 13501 * Iterate until we can allocate a slot in the trace buffer. 13502 */ 13503 do { 13504 next = dtrace_helptrace_next; 13505 13506 if (next + size < dtrace_helptrace_bufsize) { 13507 nnext = next + size; 13508 } else { 13509 nnext = size; 13510 } 13511 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 13512 13513 /* 13514 * We have our slot; fill it in. 13515 */ 13516 if (nnext == size) 13517 next = 0; 13518 13519 ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; 13520 ent->dtht_helper = helper; 13521 ent->dtht_where = where; 13522 ent->dtht_nlocals = vstate->dtvs_nlocals; 13523 13524 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 13525 mstate->dtms_fltoffs : -1; 13526 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 13527 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 13528 13529 for (i = 0; i < vstate->dtvs_nlocals; i++) { 13530 dtrace_statvar_t *svar; 13531 13532 if ((svar = vstate->dtvs_locals[i]) == NULL) 13533 continue; 13534 13535 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 13536 ent->dtht_locals[i] = 13537 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 13538 } 13539 } 13540 13541 static uint64_t 13542 dtrace_helper(int which, dtrace_mstate_t *mstate, 13543 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 13544 { 13545 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 13546 uint64_t sarg0 = mstate->dtms_arg[0]; 13547 uint64_t sarg1 = mstate->dtms_arg[1]; 13548 uint64_t rval; 13549 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 13550 dtrace_helper_action_t *helper; 13551 dtrace_vstate_t *vstate; 13552 dtrace_difo_t *pred; 13553 int i, trace = dtrace_helptrace_enabled; 13554 13555 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 13556 13557 if (helpers == NULL) 13558 return (0); 13559 13560 if ((helper = helpers->dthps_actions[which]) == NULL) 13561 return (0); 13562 13563 vstate = &helpers->dthps_vstate; 13564 mstate->dtms_arg[0] = arg0; 13565 mstate->dtms_arg[1] = arg1; 13566 13567 /* 13568 * Now iterate over each helper. If its predicate evaluates to 'true', 13569 * we'll call the corresponding actions. Note that the below calls 13570 * to dtrace_dif_emulate() may set faults in machine state. This is 13571 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 13572 * the stored DIF offset with its own (which is the desired behavior). 13573 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 13574 * from machine state; this is okay, too. 13575 */ 13576 for (; helper != NULL; helper = helper->dtha_next) { 13577 if ((pred = helper->dtha_predicate) != NULL) { 13578 if (trace) 13579 dtrace_helper_trace(helper, mstate, vstate, 0); 13580 13581 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 13582 goto next; 13583 13584 if (*flags & CPU_DTRACE_FAULT) 13585 goto err; 13586 } 13587 13588 for (i = 0; i < helper->dtha_nactions; i++) { 13589 if (trace) 13590 dtrace_helper_trace(helper, 13591 mstate, vstate, i + 1); 13592 13593 rval = dtrace_dif_emulate(helper->dtha_actions[i], 13594 mstate, vstate, state); 13595 13596 if (*flags & CPU_DTRACE_FAULT) 13597 goto err; 13598 } 13599 13600 next: 13601 if (trace) 13602 dtrace_helper_trace(helper, mstate, vstate, 13603 DTRACE_HELPTRACE_NEXT); 13604 } 13605 13606 if (trace) 13607 dtrace_helper_trace(helper, mstate, vstate, 13608 DTRACE_HELPTRACE_DONE); 13609 13610 /* 13611 * Restore the arg0 that we saved upon entry. 13612 */ 13613 mstate->dtms_arg[0] = sarg0; 13614 mstate->dtms_arg[1] = sarg1; 13615 13616 return (rval); 13617 13618 err: 13619 if (trace) 13620 dtrace_helper_trace(helper, mstate, vstate, 13621 DTRACE_HELPTRACE_ERR); 13622 13623 /* 13624 * Restore the arg0 that we saved upon entry. 13625 */ 13626 mstate->dtms_arg[0] = sarg0; 13627 mstate->dtms_arg[1] = sarg1; 13628 13629 return (NULL); 13630 } 13631 13632 static void 13633 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 13634 dtrace_vstate_t *vstate) 13635 { 13636 int i; 13637 13638 if (helper->dtha_predicate != NULL) 13639 dtrace_difo_release(helper->dtha_predicate, vstate); 13640 13641 for (i = 0; i < helper->dtha_nactions; i++) { 13642 ASSERT(helper->dtha_actions[i] != NULL); 13643 dtrace_difo_release(helper->dtha_actions[i], vstate); 13644 } 13645 13646 kmem_free(helper->dtha_actions, 13647 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 13648 kmem_free(helper, sizeof (dtrace_helper_action_t)); 13649 } 13650 13651 static int 13652 dtrace_helper_destroygen(int gen) 13653 { 13654 proc_t *p = curproc; 13655 dtrace_helpers_t *help = p->p_dtrace_helpers; 13656 dtrace_vstate_t *vstate; 13657 int i; 13658 13659 ASSERT(MUTEX_HELD(&dtrace_lock)); 13660 13661 if (help == NULL || gen > help->dthps_generation) 13662 return (EINVAL); 13663 13664 vstate = &help->dthps_vstate; 13665 13666 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 13667 dtrace_helper_action_t *last = NULL, *h, *next; 13668 13669 for (h = help->dthps_actions[i]; h != NULL; h = next) { 13670 next = h->dtha_next; 13671 13672 if (h->dtha_generation == gen) { 13673 if (last != NULL) { 13674 last->dtha_next = next; 13675 } else { 13676 help->dthps_actions[i] = next; 13677 } 13678 13679 dtrace_helper_action_destroy(h, vstate); 13680 } else { 13681 last = h; 13682 } 13683 } 13684 } 13685 13686 /* 13687 * Interate until we've cleared out all helper providers with the 13688 * given generation number. 13689 */ 13690 for (;;) { 13691 dtrace_helper_provider_t *prov; 13692 13693 /* 13694 * Look for a helper provider with the right generation. We 13695 * have to start back at the beginning of the list each time 13696 * because we drop dtrace_lock. It's unlikely that we'll make 13697 * more than two passes. 13698 */ 13699 for (i = 0; i < help->dthps_nprovs; i++) { 13700 prov = help->dthps_provs[i]; 13701 13702 if (prov->dthp_generation == gen) 13703 break; 13704 } 13705 13706 /* 13707 * If there were no matches, we're done. 13708 */ 13709 if (i == help->dthps_nprovs) 13710 break; 13711 13712 /* 13713 * Move the last helper provider into this slot. 13714 */ 13715 help->dthps_nprovs--; 13716 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 13717 help->dthps_provs[help->dthps_nprovs] = NULL; 13718 13719 mutex_exit(&dtrace_lock); 13720 13721 /* 13722 * If we have a meta provider, remove this helper provider. 13723 */ 13724 mutex_enter(&dtrace_meta_lock); 13725 if (dtrace_meta_pid != NULL) { 13726 ASSERT(dtrace_deferred_pid == NULL); 13727 dtrace_helper_provider_remove(&prov->dthp_prov, 13728 p->p_pid); 13729 } 13730 mutex_exit(&dtrace_meta_lock); 13731 13732 dtrace_helper_provider_destroy(prov); 13733 13734 mutex_enter(&dtrace_lock); 13735 } 13736 13737 return (0); 13738 } 13739 13740 static int 13741 dtrace_helper_validate(dtrace_helper_action_t *helper) 13742 { 13743 int err = 0, i; 13744 dtrace_difo_t *dp; 13745 13746 if ((dp = helper->dtha_predicate) != NULL) 13747 err += dtrace_difo_validate_helper(dp); 13748 13749 for (i = 0; i < helper->dtha_nactions; i++) 13750 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 13751 13752 return (err == 0); 13753 } 13754 13755 static int 13756 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 13757 { 13758 dtrace_helpers_t *help; 13759 dtrace_helper_action_t *helper, *last; 13760 dtrace_actdesc_t *act; 13761 dtrace_vstate_t *vstate; 13762 dtrace_predicate_t *pred; 13763 int count = 0, nactions = 0, i; 13764 13765 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 13766 return (EINVAL); 13767 13768 help = curproc->p_dtrace_helpers; 13769 last = help->dthps_actions[which]; 13770 vstate = &help->dthps_vstate; 13771 13772 for (count = 0; last != NULL; last = last->dtha_next) { 13773 count++; 13774 if (last->dtha_next == NULL) 13775 break; 13776 } 13777 13778 /* 13779 * If we already have dtrace_helper_actions_max helper actions for this 13780 * helper action type, we'll refuse to add a new one. 13781 */ 13782 if (count >= dtrace_helper_actions_max) 13783 return (ENOSPC); 13784 13785 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 13786 helper->dtha_generation = help->dthps_generation; 13787 13788 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 13789 ASSERT(pred->dtp_difo != NULL); 13790 dtrace_difo_hold(pred->dtp_difo); 13791 helper->dtha_predicate = pred->dtp_difo; 13792 } 13793 13794 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 13795 if (act->dtad_kind != DTRACEACT_DIFEXPR) 13796 goto err; 13797 13798 if (act->dtad_difo == NULL) 13799 goto err; 13800 13801 nactions++; 13802 } 13803 13804 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 13805 (helper->dtha_nactions = nactions), KM_SLEEP); 13806 13807 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 13808 dtrace_difo_hold(act->dtad_difo); 13809 helper->dtha_actions[i++] = act->dtad_difo; 13810 } 13811 13812 if (!dtrace_helper_validate(helper)) 13813 goto err; 13814 13815 if (last == NULL) { 13816 help->dthps_actions[which] = helper; 13817 } else { 13818 last->dtha_next = helper; 13819 } 13820 13821 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 13822 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 13823 dtrace_helptrace_next = 0; 13824 } 13825 13826 return (0); 13827 err: 13828 dtrace_helper_action_destroy(helper, vstate); 13829 return (EINVAL); 13830 } 13831 13832 static void 13833 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 13834 dof_helper_t *dofhp) 13835 { 13836 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 13837 13838 mutex_enter(&dtrace_meta_lock); 13839 mutex_enter(&dtrace_lock); 13840 13841 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 13842 /* 13843 * If the dtrace module is loaded but not attached, or if 13844 * there aren't isn't a meta provider registered to deal with 13845 * these provider descriptions, we need to postpone creating 13846 * the actual providers until later. 13847 */ 13848 13849 if (help->dthps_next == NULL && help->dthps_prev == NULL && 13850 dtrace_deferred_pid != help) { 13851 help->dthps_deferred = 1; 13852 help->dthps_pid = p->p_pid; 13853 help->dthps_next = dtrace_deferred_pid; 13854 help->dthps_prev = NULL; 13855 if (dtrace_deferred_pid != NULL) 13856 dtrace_deferred_pid->dthps_prev = help; 13857 dtrace_deferred_pid = help; 13858 } 13859 13860 mutex_exit(&dtrace_lock); 13861 13862 } else if (dofhp != NULL) { 13863 /* 13864 * If the dtrace module is loaded and we have a particular 13865 * helper provider description, pass that off to the 13866 * meta provider. 13867 */ 13868 13869 mutex_exit(&dtrace_lock); 13870 13871 dtrace_helper_provide(dofhp, p->p_pid); 13872 13873 } else { 13874 /* 13875 * Otherwise, just pass all the helper provider descriptions 13876 * off to the meta provider. 13877 */ 13878 13879 int i; 13880 mutex_exit(&dtrace_lock); 13881 13882 for (i = 0; i < help->dthps_nprovs; i++) { 13883 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 13884 p->p_pid); 13885 } 13886 } 13887 13888 mutex_exit(&dtrace_meta_lock); 13889 } 13890 13891 static int 13892 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 13893 { 13894 dtrace_helpers_t *help; 13895 dtrace_helper_provider_t *hprov, **tmp_provs; 13896 uint_t tmp_maxprovs, i; 13897 13898 ASSERT(MUTEX_HELD(&dtrace_lock)); 13899 13900 help = curproc->p_dtrace_helpers; 13901 ASSERT(help != NULL); 13902 13903 /* 13904 * If we already have dtrace_helper_providers_max helper providers, 13905 * we're refuse to add a new one. 13906 */ 13907 if (help->dthps_nprovs >= dtrace_helper_providers_max) 13908 return (ENOSPC); 13909 13910 /* 13911 * Check to make sure this isn't a duplicate. 13912 */ 13913 for (i = 0; i < help->dthps_nprovs; i++) { 13914 if (dofhp->dofhp_addr == 13915 help->dthps_provs[i]->dthp_prov.dofhp_addr) 13916 return (EALREADY); 13917 } 13918 13919 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 13920 hprov->dthp_prov = *dofhp; 13921 hprov->dthp_ref = 1; 13922 hprov->dthp_generation = gen; 13923 13924 /* 13925 * Allocate a bigger table for helper providers if it's already full. 13926 */ 13927 if (help->dthps_maxprovs == help->dthps_nprovs) { 13928 tmp_maxprovs = help->dthps_maxprovs; 13929 tmp_provs = help->dthps_provs; 13930 13931 if (help->dthps_maxprovs == 0) 13932 help->dthps_maxprovs = 2; 13933 else 13934 help->dthps_maxprovs *= 2; 13935 if (help->dthps_maxprovs > dtrace_helper_providers_max) 13936 help->dthps_maxprovs = dtrace_helper_providers_max; 13937 13938 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 13939 13940 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 13941 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 13942 13943 if (tmp_provs != NULL) { 13944 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 13945 sizeof (dtrace_helper_provider_t *)); 13946 kmem_free(tmp_provs, tmp_maxprovs * 13947 sizeof (dtrace_helper_provider_t *)); 13948 } 13949 } 13950 13951 help->dthps_provs[help->dthps_nprovs] = hprov; 13952 help->dthps_nprovs++; 13953 13954 return (0); 13955 } 13956 13957 static void 13958 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 13959 { 13960 mutex_enter(&dtrace_lock); 13961 13962 if (--hprov->dthp_ref == 0) { 13963 dof_hdr_t *dof; 13964 mutex_exit(&dtrace_lock); 13965 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 13966 dtrace_dof_destroy(dof); 13967 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 13968 } else { 13969 mutex_exit(&dtrace_lock); 13970 } 13971 } 13972 13973 static int 13974 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 13975 { 13976 uintptr_t daddr = (uintptr_t)dof; 13977 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 13978 dof_provider_t *provider; 13979 dof_probe_t *probe; 13980 uint8_t *arg; 13981 char *strtab, *typestr; 13982 dof_stridx_t typeidx; 13983 size_t typesz; 13984 uint_t nprobes, j, k; 13985 13986 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 13987 13988 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 13989 dtrace_dof_error(dof, "misaligned section offset"); 13990 return (-1); 13991 } 13992 13993 /* 13994 * The section needs to be large enough to contain the DOF provider 13995 * structure appropriate for the given version. 13996 */ 13997 if (sec->dofs_size < 13998 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 13999 offsetof(dof_provider_t, dofpv_prenoffs) : 14000 sizeof (dof_provider_t))) { 14001 dtrace_dof_error(dof, "provider section too small"); 14002 return (-1); 14003 } 14004 14005 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14006 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14007 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14008 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14009 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14010 14011 if (str_sec == NULL || prb_sec == NULL || 14012 arg_sec == NULL || off_sec == NULL) 14013 return (-1); 14014 14015 enoff_sec = NULL; 14016 14017 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14018 provider->dofpv_prenoffs != DOF_SECT_NONE && 14019 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14020 provider->dofpv_prenoffs)) == NULL) 14021 return (-1); 14022 14023 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14024 14025 if (provider->dofpv_name >= str_sec->dofs_size || 14026 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14027 dtrace_dof_error(dof, "invalid provider name"); 14028 return (-1); 14029 } 14030 14031 if (prb_sec->dofs_entsize == 0 || 14032 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14033 dtrace_dof_error(dof, "invalid entry size"); 14034 return (-1); 14035 } 14036 14037 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14038 dtrace_dof_error(dof, "misaligned entry size"); 14039 return (-1); 14040 } 14041 14042 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14043 dtrace_dof_error(dof, "invalid entry size"); 14044 return (-1); 14045 } 14046 14047 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14048 dtrace_dof_error(dof, "misaligned section offset"); 14049 return (-1); 14050 } 14051 14052 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14053 dtrace_dof_error(dof, "invalid entry size"); 14054 return (-1); 14055 } 14056 14057 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14058 14059 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14060 14061 /* 14062 * Take a pass through the probes to check for errors. 14063 */ 14064 for (j = 0; j < nprobes; j++) { 14065 probe = (dof_probe_t *)(uintptr_t)(daddr + 14066 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14067 14068 if (probe->dofpr_func >= str_sec->dofs_size) { 14069 dtrace_dof_error(dof, "invalid function name"); 14070 return (-1); 14071 } 14072 14073 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14074 dtrace_dof_error(dof, "function name too long"); 14075 return (-1); 14076 } 14077 14078 if (probe->dofpr_name >= str_sec->dofs_size || 14079 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14080 dtrace_dof_error(dof, "invalid probe name"); 14081 return (-1); 14082 } 14083 14084 /* 14085 * The offset count must not wrap the index, and the offsets 14086 * must also not overflow the section's data. 14087 */ 14088 if (probe->dofpr_offidx + probe->dofpr_noffs < 14089 probe->dofpr_offidx || 14090 (probe->dofpr_offidx + probe->dofpr_noffs) * 14091 off_sec->dofs_entsize > off_sec->dofs_size) { 14092 dtrace_dof_error(dof, "invalid probe offset"); 14093 return (-1); 14094 } 14095 14096 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14097 /* 14098 * If there's no is-enabled offset section, make sure 14099 * there aren't any is-enabled offsets. Otherwise 14100 * perform the same checks as for probe offsets 14101 * (immediately above). 14102 */ 14103 if (enoff_sec == NULL) { 14104 if (probe->dofpr_enoffidx != 0 || 14105 probe->dofpr_nenoffs != 0) { 14106 dtrace_dof_error(dof, "is-enabled " 14107 "offsets with null section"); 14108 return (-1); 14109 } 14110 } else if (probe->dofpr_enoffidx + 14111 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14112 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14113 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14114 dtrace_dof_error(dof, "invalid is-enabled " 14115 "offset"); 14116 return (-1); 14117 } 14118 14119 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14120 dtrace_dof_error(dof, "zero probe and " 14121 "is-enabled offsets"); 14122 return (-1); 14123 } 14124 } else if (probe->dofpr_noffs == 0) { 14125 dtrace_dof_error(dof, "zero probe offsets"); 14126 return (-1); 14127 } 14128 14129 if (probe->dofpr_argidx + probe->dofpr_xargc < 14130 probe->dofpr_argidx || 14131 (probe->dofpr_argidx + probe->dofpr_xargc) * 14132 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14133 dtrace_dof_error(dof, "invalid args"); 14134 return (-1); 14135 } 14136 14137 typeidx = probe->dofpr_nargv; 14138 typestr = strtab + probe->dofpr_nargv; 14139 for (k = 0; k < probe->dofpr_nargc; k++) { 14140 if (typeidx >= str_sec->dofs_size) { 14141 dtrace_dof_error(dof, "bad " 14142 "native argument type"); 14143 return (-1); 14144 } 14145 14146 typesz = strlen(typestr) + 1; 14147 if (typesz > DTRACE_ARGTYPELEN) { 14148 dtrace_dof_error(dof, "native " 14149 "argument type too long"); 14150 return (-1); 14151 } 14152 typeidx += typesz; 14153 typestr += typesz; 14154 } 14155 14156 typeidx = probe->dofpr_xargv; 14157 typestr = strtab + probe->dofpr_xargv; 14158 for (k = 0; k < probe->dofpr_xargc; k++) { 14159 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 14160 dtrace_dof_error(dof, "bad " 14161 "native argument index"); 14162 return (-1); 14163 } 14164 14165 if (typeidx >= str_sec->dofs_size) { 14166 dtrace_dof_error(dof, "bad " 14167 "translated argument type"); 14168 return (-1); 14169 } 14170 14171 typesz = strlen(typestr) + 1; 14172 if (typesz > DTRACE_ARGTYPELEN) { 14173 dtrace_dof_error(dof, "translated argument " 14174 "type too long"); 14175 return (-1); 14176 } 14177 14178 typeidx += typesz; 14179 typestr += typesz; 14180 } 14181 } 14182 14183 return (0); 14184 } 14185 14186 static int 14187 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 14188 { 14189 dtrace_helpers_t *help; 14190 dtrace_vstate_t *vstate; 14191 dtrace_enabling_t *enab = NULL; 14192 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 14193 uintptr_t daddr = (uintptr_t)dof; 14194 14195 ASSERT(MUTEX_HELD(&dtrace_lock)); 14196 14197 if ((help = curproc->p_dtrace_helpers) == NULL) 14198 help = dtrace_helpers_create(curproc); 14199 14200 vstate = &help->dthps_vstate; 14201 14202 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 14203 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 14204 dtrace_dof_destroy(dof); 14205 return (rv); 14206 } 14207 14208 /* 14209 * Look for helper providers and validate their descriptions. 14210 */ 14211 if (dhp != NULL) { 14212 for (i = 0; i < dof->dofh_secnum; i++) { 14213 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 14214 dof->dofh_secoff + i * dof->dofh_secsize); 14215 14216 if (sec->dofs_type != DOF_SECT_PROVIDER) 14217 continue; 14218 14219 if (dtrace_helper_provider_validate(dof, sec) != 0) { 14220 dtrace_enabling_destroy(enab); 14221 dtrace_dof_destroy(dof); 14222 return (-1); 14223 } 14224 14225 nprovs++; 14226 } 14227 } 14228 14229 /* 14230 * Now we need to walk through the ECB descriptions in the enabling. 14231 */ 14232 for (i = 0; i < enab->dten_ndesc; i++) { 14233 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 14234 dtrace_probedesc_t *desc = &ep->dted_probe; 14235 14236 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 14237 continue; 14238 14239 if (strcmp(desc->dtpd_mod, "helper") != 0) 14240 continue; 14241 14242 if (strcmp(desc->dtpd_func, "ustack") != 0) 14243 continue; 14244 14245 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 14246 ep)) != 0) { 14247 /* 14248 * Adding this helper action failed -- we are now going 14249 * to rip out the entire generation and return failure. 14250 */ 14251 (void) dtrace_helper_destroygen(help->dthps_generation); 14252 dtrace_enabling_destroy(enab); 14253 dtrace_dof_destroy(dof); 14254 return (-1); 14255 } 14256 14257 nhelpers++; 14258 } 14259 14260 if (nhelpers < enab->dten_ndesc) 14261 dtrace_dof_error(dof, "unmatched helpers"); 14262 14263 gen = help->dthps_generation++; 14264 dtrace_enabling_destroy(enab); 14265 14266 if (dhp != NULL && nprovs > 0) { 14267 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 14268 if (dtrace_helper_provider_add(dhp, gen) == 0) { 14269 mutex_exit(&dtrace_lock); 14270 dtrace_helper_provider_register(curproc, help, dhp); 14271 mutex_enter(&dtrace_lock); 14272 14273 destroy = 0; 14274 } 14275 } 14276 14277 if (destroy) 14278 dtrace_dof_destroy(dof); 14279 14280 return (gen); 14281 } 14282 14283 static dtrace_helpers_t * 14284 dtrace_helpers_create(proc_t *p) 14285 { 14286 dtrace_helpers_t *help; 14287 14288 ASSERT(MUTEX_HELD(&dtrace_lock)); 14289 ASSERT(p->p_dtrace_helpers == NULL); 14290 14291 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 14292 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 14293 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 14294 14295 p->p_dtrace_helpers = help; 14296 dtrace_helpers++; 14297 14298 return (help); 14299 } 14300 14301 static void 14302 dtrace_helpers_destroy(void) 14303 { 14304 dtrace_helpers_t *help; 14305 dtrace_vstate_t *vstate; 14306 proc_t *p = curproc; 14307 int i; 14308 14309 mutex_enter(&dtrace_lock); 14310 14311 ASSERT(p->p_dtrace_helpers != NULL); 14312 ASSERT(dtrace_helpers > 0); 14313 14314 help = p->p_dtrace_helpers; 14315 vstate = &help->dthps_vstate; 14316 14317 /* 14318 * We're now going to lose the help from this process. 14319 */ 14320 p->p_dtrace_helpers = NULL; 14321 dtrace_sync(); 14322 14323 /* 14324 * Destory the helper actions. 14325 */ 14326 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14327 dtrace_helper_action_t *h, *next; 14328 14329 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14330 next = h->dtha_next; 14331 dtrace_helper_action_destroy(h, vstate); 14332 h = next; 14333 } 14334 } 14335 14336 mutex_exit(&dtrace_lock); 14337 14338 /* 14339 * Destroy the helper providers. 14340 */ 14341 if (help->dthps_maxprovs > 0) { 14342 mutex_enter(&dtrace_meta_lock); 14343 if (dtrace_meta_pid != NULL) { 14344 ASSERT(dtrace_deferred_pid == NULL); 14345 14346 for (i = 0; i < help->dthps_nprovs; i++) { 14347 dtrace_helper_provider_remove( 14348 &help->dthps_provs[i]->dthp_prov, p->p_pid); 14349 } 14350 } else { 14351 mutex_enter(&dtrace_lock); 14352 ASSERT(help->dthps_deferred == 0 || 14353 help->dthps_next != NULL || 14354 help->dthps_prev != NULL || 14355 help == dtrace_deferred_pid); 14356 14357 /* 14358 * Remove the helper from the deferred list. 14359 */ 14360 if (help->dthps_next != NULL) 14361 help->dthps_next->dthps_prev = help->dthps_prev; 14362 if (help->dthps_prev != NULL) 14363 help->dthps_prev->dthps_next = help->dthps_next; 14364 if (dtrace_deferred_pid == help) { 14365 dtrace_deferred_pid = help->dthps_next; 14366 ASSERT(help->dthps_prev == NULL); 14367 } 14368 14369 mutex_exit(&dtrace_lock); 14370 } 14371 14372 mutex_exit(&dtrace_meta_lock); 14373 14374 for (i = 0; i < help->dthps_nprovs; i++) { 14375 dtrace_helper_provider_destroy(help->dthps_provs[i]); 14376 } 14377 14378 kmem_free(help->dthps_provs, help->dthps_maxprovs * 14379 sizeof (dtrace_helper_provider_t *)); 14380 } 14381 14382 mutex_enter(&dtrace_lock); 14383 14384 dtrace_vstate_fini(&help->dthps_vstate); 14385 kmem_free(help->dthps_actions, 14386 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 14387 kmem_free(help, sizeof (dtrace_helpers_t)); 14388 14389 --dtrace_helpers; 14390 mutex_exit(&dtrace_lock); 14391 } 14392 14393 static void 14394 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 14395 { 14396 dtrace_helpers_t *help, *newhelp; 14397 dtrace_helper_action_t *helper, *new, *last; 14398 dtrace_difo_t *dp; 14399 dtrace_vstate_t *vstate; 14400 int i, j, sz, hasprovs = 0; 14401 14402 mutex_enter(&dtrace_lock); 14403 ASSERT(from->p_dtrace_helpers != NULL); 14404 ASSERT(dtrace_helpers > 0); 14405 14406 help = from->p_dtrace_helpers; 14407 newhelp = dtrace_helpers_create(to); 14408 ASSERT(to->p_dtrace_helpers != NULL); 14409 14410 newhelp->dthps_generation = help->dthps_generation; 14411 vstate = &newhelp->dthps_vstate; 14412 14413 /* 14414 * Duplicate the helper actions. 14415 */ 14416 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14417 if ((helper = help->dthps_actions[i]) == NULL) 14418 continue; 14419 14420 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 14421 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 14422 KM_SLEEP); 14423 new->dtha_generation = helper->dtha_generation; 14424 14425 if ((dp = helper->dtha_predicate) != NULL) { 14426 dp = dtrace_difo_duplicate(dp, vstate); 14427 new->dtha_predicate = dp; 14428 } 14429 14430 new->dtha_nactions = helper->dtha_nactions; 14431 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 14432 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 14433 14434 for (j = 0; j < new->dtha_nactions; j++) { 14435 dtrace_difo_t *dp = helper->dtha_actions[j]; 14436 14437 ASSERT(dp != NULL); 14438 dp = dtrace_difo_duplicate(dp, vstate); 14439 new->dtha_actions[j] = dp; 14440 } 14441 14442 if (last != NULL) { 14443 last->dtha_next = new; 14444 } else { 14445 newhelp->dthps_actions[i] = new; 14446 } 14447 14448 last = new; 14449 } 14450 } 14451 14452 /* 14453 * Duplicate the helper providers and register them with the 14454 * DTrace framework. 14455 */ 14456 if (help->dthps_nprovs > 0) { 14457 newhelp->dthps_nprovs = help->dthps_nprovs; 14458 newhelp->dthps_maxprovs = help->dthps_nprovs; 14459 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 14460 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14461 for (i = 0; i < newhelp->dthps_nprovs; i++) { 14462 newhelp->dthps_provs[i] = help->dthps_provs[i]; 14463 newhelp->dthps_provs[i]->dthp_ref++; 14464 } 14465 14466 hasprovs = 1; 14467 } 14468 14469 mutex_exit(&dtrace_lock); 14470 14471 if (hasprovs) 14472 dtrace_helper_provider_register(to, newhelp, NULL); 14473 } 14474 14475 /* 14476 * DTrace Hook Functions 14477 */ 14478 static void 14479 dtrace_module_loaded(struct modctl *ctl) 14480 { 14481 dtrace_provider_t *prv; 14482 14483 mutex_enter(&dtrace_provider_lock); 14484 mutex_enter(&mod_lock); 14485 14486 ASSERT(ctl->mod_busy); 14487 14488 /* 14489 * We're going to call each providers per-module provide operation 14490 * specifying only this module. 14491 */ 14492 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 14493 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 14494 14495 mutex_exit(&mod_lock); 14496 mutex_exit(&dtrace_provider_lock); 14497 14498 /* 14499 * If we have any retained enablings, we need to match against them. 14500 * Enabling probes requires that cpu_lock be held, and we cannot hold 14501 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 14502 * module. (In particular, this happens when loading scheduling 14503 * classes.) So if we have any retained enablings, we need to dispatch 14504 * our task queue to do the match for us. 14505 */ 14506 mutex_enter(&dtrace_lock); 14507 14508 if (dtrace_retained == NULL) { 14509 mutex_exit(&dtrace_lock); 14510 return; 14511 } 14512 14513 (void) taskq_dispatch(dtrace_taskq, 14514 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 14515 14516 mutex_exit(&dtrace_lock); 14517 14518 /* 14519 * And now, for a little heuristic sleaze: in general, we want to 14520 * match modules as soon as they load. However, we cannot guarantee 14521 * this, because it would lead us to the lock ordering violation 14522 * outlined above. The common case, of course, is that cpu_lock is 14523 * _not_ held -- so we delay here for a clock tick, hoping that that's 14524 * long enough for the task queue to do its work. If it's not, it's 14525 * not a serious problem -- it just means that the module that we 14526 * just loaded may not be immediately instrumentable. 14527 */ 14528 delay(1); 14529 } 14530 14531 static void 14532 dtrace_module_unloaded(struct modctl *ctl) 14533 { 14534 dtrace_probe_t template, *probe, *first, *next; 14535 dtrace_provider_t *prov; 14536 14537 template.dtpr_mod = ctl->mod_modname; 14538 14539 mutex_enter(&dtrace_provider_lock); 14540 mutex_enter(&mod_lock); 14541 mutex_enter(&dtrace_lock); 14542 14543 if (dtrace_bymod == NULL) { 14544 /* 14545 * The DTrace module is loaded (obviously) but not attached; 14546 * we don't have any work to do. 14547 */ 14548 mutex_exit(&dtrace_provider_lock); 14549 mutex_exit(&mod_lock); 14550 mutex_exit(&dtrace_lock); 14551 return; 14552 } 14553 14554 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 14555 probe != NULL; probe = probe->dtpr_nextmod) { 14556 if (probe->dtpr_ecb != NULL) { 14557 mutex_exit(&dtrace_provider_lock); 14558 mutex_exit(&mod_lock); 14559 mutex_exit(&dtrace_lock); 14560 14561 /* 14562 * This shouldn't _actually_ be possible -- we're 14563 * unloading a module that has an enabled probe in it. 14564 * (It's normally up to the provider to make sure that 14565 * this can't happen.) However, because dtps_enable() 14566 * doesn't have a failure mode, there can be an 14567 * enable/unload race. Upshot: we don't want to 14568 * assert, but we're not going to disable the 14569 * probe, either. 14570 */ 14571 if (dtrace_err_verbose) { 14572 cmn_err(CE_WARN, "unloaded module '%s' had " 14573 "enabled probes", ctl->mod_modname); 14574 } 14575 14576 return; 14577 } 14578 } 14579 14580 probe = first; 14581 14582 for (first = NULL; probe != NULL; probe = next) { 14583 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 14584 14585 dtrace_probes[probe->dtpr_id - 1] = NULL; 14586 14587 next = probe->dtpr_nextmod; 14588 dtrace_hash_remove(dtrace_bymod, probe); 14589 dtrace_hash_remove(dtrace_byfunc, probe); 14590 dtrace_hash_remove(dtrace_byname, probe); 14591 14592 if (first == NULL) { 14593 first = probe; 14594 probe->dtpr_nextmod = NULL; 14595 } else { 14596 probe->dtpr_nextmod = first; 14597 first = probe; 14598 } 14599 } 14600 14601 /* 14602 * We've removed all of the module's probes from the hash chains and 14603 * from the probe array. Now issue a dtrace_sync() to be sure that 14604 * everyone has cleared out from any probe array processing. 14605 */ 14606 dtrace_sync(); 14607 14608 for (probe = first; probe != NULL; probe = first) { 14609 first = probe->dtpr_nextmod; 14610 prov = probe->dtpr_provider; 14611 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 14612 probe->dtpr_arg); 14613 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 14614 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 14615 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 14616 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 14617 kmem_free(probe, sizeof (dtrace_probe_t)); 14618 } 14619 14620 mutex_exit(&dtrace_lock); 14621 mutex_exit(&mod_lock); 14622 mutex_exit(&dtrace_provider_lock); 14623 } 14624 14625 void 14626 dtrace_suspend(void) 14627 { 14628 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 14629 } 14630 14631 void 14632 dtrace_resume(void) 14633 { 14634 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 14635 } 14636 14637 static int 14638 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 14639 { 14640 ASSERT(MUTEX_HELD(&cpu_lock)); 14641 mutex_enter(&dtrace_lock); 14642 14643 switch (what) { 14644 case CPU_CONFIG: { 14645 dtrace_state_t *state; 14646 dtrace_optval_t *opt, rs, c; 14647 14648 /* 14649 * For now, we only allocate a new buffer for anonymous state. 14650 */ 14651 if ((state = dtrace_anon.dta_state) == NULL) 14652 break; 14653 14654 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 14655 break; 14656 14657 opt = state->dts_options; 14658 c = opt[DTRACEOPT_CPU]; 14659 14660 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 14661 break; 14662 14663 /* 14664 * Regardless of what the actual policy is, we're going to 14665 * temporarily set our resize policy to be manual. We're 14666 * also going to temporarily set our CPU option to denote 14667 * the newly configured CPU. 14668 */ 14669 rs = opt[DTRACEOPT_BUFRESIZE]; 14670 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 14671 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 14672 14673 (void) dtrace_state_buffers(state); 14674 14675 opt[DTRACEOPT_BUFRESIZE] = rs; 14676 opt[DTRACEOPT_CPU] = c; 14677 14678 break; 14679 } 14680 14681 case CPU_UNCONFIG: 14682 /* 14683 * We don't free the buffer in the CPU_UNCONFIG case. (The 14684 * buffer will be freed when the consumer exits.) 14685 */ 14686 break; 14687 14688 default: 14689 break; 14690 } 14691 14692 mutex_exit(&dtrace_lock); 14693 return (0); 14694 } 14695 14696 static void 14697 dtrace_cpu_setup_initial(processorid_t cpu) 14698 { 14699 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 14700 } 14701 14702 static void 14703 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 14704 { 14705 if (dtrace_toxranges >= dtrace_toxranges_max) { 14706 int osize, nsize; 14707 dtrace_toxrange_t *range; 14708 14709 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14710 14711 if (osize == 0) { 14712 ASSERT(dtrace_toxrange == NULL); 14713 ASSERT(dtrace_toxranges_max == 0); 14714 dtrace_toxranges_max = 1; 14715 } else { 14716 dtrace_toxranges_max <<= 1; 14717 } 14718 14719 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 14720 range = kmem_zalloc(nsize, KM_SLEEP); 14721 14722 if (dtrace_toxrange != NULL) { 14723 ASSERT(osize != 0); 14724 bcopy(dtrace_toxrange, range, osize); 14725 kmem_free(dtrace_toxrange, osize); 14726 } 14727 14728 dtrace_toxrange = range; 14729 } 14730 14731 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 14732 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 14733 14734 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 14735 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 14736 dtrace_toxranges++; 14737 } 14738 14739 /* 14740 * DTrace Driver Cookbook Functions 14741 */ 14742 /*ARGSUSED*/ 14743 static int 14744 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 14745 { 14746 dtrace_provider_id_t id; 14747 dtrace_state_t *state = NULL; 14748 dtrace_enabling_t *enab; 14749 14750 mutex_enter(&cpu_lock); 14751 mutex_enter(&dtrace_provider_lock); 14752 mutex_enter(&dtrace_lock); 14753 14754 if (ddi_soft_state_init(&dtrace_softstate, 14755 sizeof (dtrace_state_t), 0) != 0) { 14756 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 14757 mutex_exit(&cpu_lock); 14758 mutex_exit(&dtrace_provider_lock); 14759 mutex_exit(&dtrace_lock); 14760 return (DDI_FAILURE); 14761 } 14762 14763 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 14764 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 14765 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 14766 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 14767 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 14768 ddi_remove_minor_node(devi, NULL); 14769 ddi_soft_state_fini(&dtrace_softstate); 14770 mutex_exit(&cpu_lock); 14771 mutex_exit(&dtrace_provider_lock); 14772 mutex_exit(&dtrace_lock); 14773 return (DDI_FAILURE); 14774 } 14775 14776 ddi_report_dev(devi); 14777 dtrace_devi = devi; 14778 14779 dtrace_modload = dtrace_module_loaded; 14780 dtrace_modunload = dtrace_module_unloaded; 14781 dtrace_cpu_init = dtrace_cpu_setup_initial; 14782 dtrace_helpers_cleanup = dtrace_helpers_destroy; 14783 dtrace_helpers_fork = dtrace_helpers_duplicate; 14784 dtrace_cpustart_init = dtrace_suspend; 14785 dtrace_cpustart_fini = dtrace_resume; 14786 dtrace_debugger_init = dtrace_suspend; 14787 dtrace_debugger_fini = dtrace_resume; 14788 14789 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 14790 14791 ASSERT(MUTEX_HELD(&cpu_lock)); 14792 14793 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 14794 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 14795 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 14796 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 14797 VM_SLEEP | VMC_IDENTIFIER); 14798 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 14799 1, INT_MAX, 0); 14800 14801 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 14802 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 14803 NULL, NULL, NULL, NULL, NULL, 0); 14804 14805 ASSERT(MUTEX_HELD(&cpu_lock)); 14806 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 14807 offsetof(dtrace_probe_t, dtpr_nextmod), 14808 offsetof(dtrace_probe_t, dtpr_prevmod)); 14809 14810 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 14811 offsetof(dtrace_probe_t, dtpr_nextfunc), 14812 offsetof(dtrace_probe_t, dtpr_prevfunc)); 14813 14814 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 14815 offsetof(dtrace_probe_t, dtpr_nextname), 14816 offsetof(dtrace_probe_t, dtpr_prevname)); 14817 14818 if (dtrace_retain_max < 1) { 14819 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 14820 "setting to 1", dtrace_retain_max); 14821 dtrace_retain_max = 1; 14822 } 14823 14824 /* 14825 * Now discover our toxic ranges. 14826 */ 14827 dtrace_toxic_ranges(dtrace_toxrange_add); 14828 14829 /* 14830 * Before we register ourselves as a provider to our own framework, 14831 * we would like to assert that dtrace_provider is NULL -- but that's 14832 * not true if we were loaded as a dependency of a DTrace provider. 14833 * Once we've registered, we can assert that dtrace_provider is our 14834 * pseudo provider. 14835 */ 14836 (void) dtrace_register("dtrace", &dtrace_provider_attr, 14837 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 14838 14839 ASSERT(dtrace_provider != NULL); 14840 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 14841 14842 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 14843 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 14844 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 14845 dtrace_provider, NULL, NULL, "END", 0, NULL); 14846 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 14847 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 14848 14849 dtrace_anon_property(); 14850 mutex_exit(&cpu_lock); 14851 14852 /* 14853 * If DTrace helper tracing is enabled, we need to allocate the 14854 * trace buffer and initialize the values. 14855 */ 14856 if (dtrace_helptrace_enabled) { 14857 ASSERT(dtrace_helptrace_buffer == NULL); 14858 dtrace_helptrace_buffer = 14859 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 14860 dtrace_helptrace_next = 0; 14861 } 14862 14863 /* 14864 * If there are already providers, we must ask them to provide their 14865 * probes, and then match any anonymous enabling against them. Note 14866 * that there should be no other retained enablings at this time: 14867 * the only retained enablings at this time should be the anonymous 14868 * enabling. 14869 */ 14870 if (dtrace_anon.dta_enabling != NULL) { 14871 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 14872 14873 dtrace_enabling_provide(NULL); 14874 state = dtrace_anon.dta_state; 14875 14876 /* 14877 * We couldn't hold cpu_lock across the above call to 14878 * dtrace_enabling_provide(), but we must hold it to actually 14879 * enable the probes. We have to drop all of our locks, pick 14880 * up cpu_lock, and regain our locks before matching the 14881 * retained anonymous enabling. 14882 */ 14883 mutex_exit(&dtrace_lock); 14884 mutex_exit(&dtrace_provider_lock); 14885 14886 mutex_enter(&cpu_lock); 14887 mutex_enter(&dtrace_provider_lock); 14888 mutex_enter(&dtrace_lock); 14889 14890 if ((enab = dtrace_anon.dta_enabling) != NULL) 14891 (void) dtrace_enabling_match(enab, NULL); 14892 14893 mutex_exit(&cpu_lock); 14894 } 14895 14896 mutex_exit(&dtrace_lock); 14897 mutex_exit(&dtrace_provider_lock); 14898 14899 if (state != NULL) { 14900 /* 14901 * If we created any anonymous state, set it going now. 14902 */ 14903 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 14904 } 14905 14906 return (DDI_SUCCESS); 14907 } 14908 14909 /*ARGSUSED*/ 14910 static int 14911 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 14912 { 14913 dtrace_state_t *state; 14914 uint32_t priv; 14915 uid_t uid; 14916 zoneid_t zoneid; 14917 14918 if (getminor(*devp) == DTRACEMNRN_HELPER) 14919 return (0); 14920 14921 /* 14922 * If this wasn't an open with the "helper" minor, then it must be 14923 * the "dtrace" minor. 14924 */ 14925 if (getminor(*devp) != DTRACEMNRN_DTRACE) 14926 return (ENXIO); 14927 14928 /* 14929 * If no DTRACE_PRIV_* bits are set in the credential, then the 14930 * caller lacks sufficient permission to do anything with DTrace. 14931 */ 14932 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 14933 if (priv == DTRACE_PRIV_NONE) 14934 return (EACCES); 14935 14936 /* 14937 * Ask all providers to provide all their probes. 14938 */ 14939 mutex_enter(&dtrace_provider_lock); 14940 dtrace_probe_provide(NULL, NULL); 14941 mutex_exit(&dtrace_provider_lock); 14942 14943 mutex_enter(&cpu_lock); 14944 mutex_enter(&dtrace_lock); 14945 dtrace_opens++; 14946 dtrace_membar_producer(); 14947 14948 /* 14949 * If the kernel debugger is active (that is, if the kernel debugger 14950 * modified text in some way), we won't allow the open. 14951 */ 14952 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14953 dtrace_opens--; 14954 mutex_exit(&cpu_lock); 14955 mutex_exit(&dtrace_lock); 14956 return (EBUSY); 14957 } 14958 14959 state = dtrace_state_create(devp, cred_p); 14960 mutex_exit(&cpu_lock); 14961 14962 if (state == NULL) { 14963 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 14964 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 14965 mutex_exit(&dtrace_lock); 14966 return (EAGAIN); 14967 } 14968 14969 mutex_exit(&dtrace_lock); 14970 14971 return (0); 14972 } 14973 14974 /*ARGSUSED*/ 14975 static int 14976 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 14977 { 14978 minor_t minor = getminor(dev); 14979 dtrace_state_t *state; 14980 14981 if (minor == DTRACEMNRN_HELPER) 14982 return (0); 14983 14984 state = ddi_get_soft_state(dtrace_softstate, minor); 14985 14986 mutex_enter(&cpu_lock); 14987 mutex_enter(&dtrace_lock); 14988 14989 if (state->dts_anon) { 14990 /* 14991 * There is anonymous state. Destroy that first. 14992 */ 14993 ASSERT(dtrace_anon.dta_state == NULL); 14994 dtrace_state_destroy(state->dts_anon); 14995 } 14996 14997 dtrace_state_destroy(state); 14998 ASSERT(dtrace_opens > 0); 14999 15000 /* 15001 * Only relinquish control of the kernel debugger interface when there 15002 * are no consumers and no anonymous enablings. 15003 */ 15004 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15005 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15006 15007 mutex_exit(&dtrace_lock); 15008 mutex_exit(&cpu_lock); 15009 15010 return (0); 15011 } 15012 15013 /*ARGSUSED*/ 15014 static int 15015 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15016 { 15017 int rval; 15018 dof_helper_t help, *dhp = NULL; 15019 15020 switch (cmd) { 15021 case DTRACEHIOC_ADDDOF: 15022 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15023 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15024 return (EFAULT); 15025 } 15026 15027 dhp = &help; 15028 arg = (intptr_t)help.dofhp_dof; 15029 /*FALLTHROUGH*/ 15030 15031 case DTRACEHIOC_ADD: { 15032 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15033 15034 if (dof == NULL) 15035 return (rval); 15036 15037 mutex_enter(&dtrace_lock); 15038 15039 /* 15040 * dtrace_helper_slurp() takes responsibility for the dof -- 15041 * it may free it now or it may save it and free it later. 15042 */ 15043 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15044 *rv = rval; 15045 rval = 0; 15046 } else { 15047 rval = EINVAL; 15048 } 15049 15050 mutex_exit(&dtrace_lock); 15051 return (rval); 15052 } 15053 15054 case DTRACEHIOC_REMOVE: { 15055 mutex_enter(&dtrace_lock); 15056 rval = dtrace_helper_destroygen(arg); 15057 mutex_exit(&dtrace_lock); 15058 15059 return (rval); 15060 } 15061 15062 default: 15063 break; 15064 } 15065 15066 return (ENOTTY); 15067 } 15068 15069 /*ARGSUSED*/ 15070 static int 15071 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15072 { 15073 minor_t minor = getminor(dev); 15074 dtrace_state_t *state; 15075 int rval; 15076 15077 if (minor == DTRACEMNRN_HELPER) 15078 return (dtrace_ioctl_helper(cmd, arg, rv)); 15079 15080 state = ddi_get_soft_state(dtrace_softstate, minor); 15081 15082 if (state->dts_anon) { 15083 ASSERT(dtrace_anon.dta_state == NULL); 15084 state = state->dts_anon; 15085 } 15086 15087 switch (cmd) { 15088 case DTRACEIOC_PROVIDER: { 15089 dtrace_providerdesc_t pvd; 15090 dtrace_provider_t *pvp; 15091 15092 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15093 return (EFAULT); 15094 15095 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15096 mutex_enter(&dtrace_provider_lock); 15097 15098 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15099 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15100 break; 15101 } 15102 15103 mutex_exit(&dtrace_provider_lock); 15104 15105 if (pvp == NULL) 15106 return (ESRCH); 15107 15108 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15109 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15110 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15111 return (EFAULT); 15112 15113 return (0); 15114 } 15115 15116 case DTRACEIOC_EPROBE: { 15117 dtrace_eprobedesc_t epdesc; 15118 dtrace_ecb_t *ecb; 15119 dtrace_action_t *act; 15120 void *buf; 15121 size_t size; 15122 uintptr_t dest; 15123 int nrecs; 15124 15125 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 15126 return (EFAULT); 15127 15128 mutex_enter(&dtrace_lock); 15129 15130 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 15131 mutex_exit(&dtrace_lock); 15132 return (EINVAL); 15133 } 15134 15135 if (ecb->dte_probe == NULL) { 15136 mutex_exit(&dtrace_lock); 15137 return (EINVAL); 15138 } 15139 15140 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 15141 epdesc.dtepd_uarg = ecb->dte_uarg; 15142 epdesc.dtepd_size = ecb->dte_size; 15143 15144 nrecs = epdesc.dtepd_nrecs; 15145 epdesc.dtepd_nrecs = 0; 15146 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15147 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15148 continue; 15149 15150 epdesc.dtepd_nrecs++; 15151 } 15152 15153 /* 15154 * Now that we have the size, we need to allocate a temporary 15155 * buffer in which to store the complete description. We need 15156 * the temporary buffer to be able to drop dtrace_lock() 15157 * across the copyout(), below. 15158 */ 15159 size = sizeof (dtrace_eprobedesc_t) + 15160 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 15161 15162 buf = kmem_alloc(size, KM_SLEEP); 15163 dest = (uintptr_t)buf; 15164 15165 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 15166 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 15167 15168 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 15169 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 15170 continue; 15171 15172 if (nrecs-- == 0) 15173 break; 15174 15175 bcopy(&act->dta_rec, (void *)dest, 15176 sizeof (dtrace_recdesc_t)); 15177 dest += sizeof (dtrace_recdesc_t); 15178 } 15179 15180 mutex_exit(&dtrace_lock); 15181 15182 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15183 kmem_free(buf, size); 15184 return (EFAULT); 15185 } 15186 15187 kmem_free(buf, size); 15188 return (0); 15189 } 15190 15191 case DTRACEIOC_AGGDESC: { 15192 dtrace_aggdesc_t aggdesc; 15193 dtrace_action_t *act; 15194 dtrace_aggregation_t *agg; 15195 int nrecs; 15196 uint32_t offs; 15197 dtrace_recdesc_t *lrec; 15198 void *buf; 15199 size_t size; 15200 uintptr_t dest; 15201 15202 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 15203 return (EFAULT); 15204 15205 mutex_enter(&dtrace_lock); 15206 15207 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 15208 mutex_exit(&dtrace_lock); 15209 return (EINVAL); 15210 } 15211 15212 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 15213 15214 nrecs = aggdesc.dtagd_nrecs; 15215 aggdesc.dtagd_nrecs = 0; 15216 15217 offs = agg->dtag_base; 15218 lrec = &agg->dtag_action.dta_rec; 15219 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 15220 15221 for (act = agg->dtag_first; ; act = act->dta_next) { 15222 ASSERT(act->dta_intuple || 15223 DTRACEACT_ISAGG(act->dta_kind)); 15224 15225 /* 15226 * If this action has a record size of zero, it 15227 * denotes an argument to the aggregating action. 15228 * Because the presence of this record doesn't (or 15229 * shouldn't) affect the way the data is interpreted, 15230 * we don't copy it out to save user-level the 15231 * confusion of dealing with a zero-length record. 15232 */ 15233 if (act->dta_rec.dtrd_size == 0) { 15234 ASSERT(agg->dtag_hasarg); 15235 continue; 15236 } 15237 15238 aggdesc.dtagd_nrecs++; 15239 15240 if (act == &agg->dtag_action) 15241 break; 15242 } 15243 15244 /* 15245 * Now that we have the size, we need to allocate a temporary 15246 * buffer in which to store the complete description. We need 15247 * the temporary buffer to be able to drop dtrace_lock() 15248 * across the copyout(), below. 15249 */ 15250 size = sizeof (dtrace_aggdesc_t) + 15251 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 15252 15253 buf = kmem_alloc(size, KM_SLEEP); 15254 dest = (uintptr_t)buf; 15255 15256 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 15257 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 15258 15259 for (act = agg->dtag_first; ; act = act->dta_next) { 15260 dtrace_recdesc_t rec = act->dta_rec; 15261 15262 /* 15263 * See the comment in the above loop for why we pass 15264 * over zero-length records. 15265 */ 15266 if (rec.dtrd_size == 0) { 15267 ASSERT(agg->dtag_hasarg); 15268 continue; 15269 } 15270 15271 if (nrecs-- == 0) 15272 break; 15273 15274 rec.dtrd_offset -= offs; 15275 bcopy(&rec, (void *)dest, sizeof (rec)); 15276 dest += sizeof (dtrace_recdesc_t); 15277 15278 if (act == &agg->dtag_action) 15279 break; 15280 } 15281 15282 mutex_exit(&dtrace_lock); 15283 15284 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 15285 kmem_free(buf, size); 15286 return (EFAULT); 15287 } 15288 15289 kmem_free(buf, size); 15290 return (0); 15291 } 15292 15293 case DTRACEIOC_ENABLE: { 15294 dof_hdr_t *dof; 15295 dtrace_enabling_t *enab = NULL; 15296 dtrace_vstate_t *vstate; 15297 int err = 0; 15298 15299 *rv = 0; 15300 15301 /* 15302 * If a NULL argument has been passed, we take this as our 15303 * cue to reevaluate our enablings. 15304 */ 15305 if (arg == NULL) { 15306 dtrace_enabling_matchall(); 15307 15308 return (0); 15309 } 15310 15311 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 15312 return (rval); 15313 15314 mutex_enter(&cpu_lock); 15315 mutex_enter(&dtrace_lock); 15316 vstate = &state->dts_vstate; 15317 15318 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 15319 mutex_exit(&dtrace_lock); 15320 mutex_exit(&cpu_lock); 15321 dtrace_dof_destroy(dof); 15322 return (EBUSY); 15323 } 15324 15325 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 15326 mutex_exit(&dtrace_lock); 15327 mutex_exit(&cpu_lock); 15328 dtrace_dof_destroy(dof); 15329 return (EINVAL); 15330 } 15331 15332 if ((rval = dtrace_dof_options(dof, state)) != 0) { 15333 dtrace_enabling_destroy(enab); 15334 mutex_exit(&dtrace_lock); 15335 mutex_exit(&cpu_lock); 15336 dtrace_dof_destroy(dof); 15337 return (rval); 15338 } 15339 15340 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 15341 err = dtrace_enabling_retain(enab); 15342 } else { 15343 dtrace_enabling_destroy(enab); 15344 } 15345 15346 mutex_exit(&cpu_lock); 15347 mutex_exit(&dtrace_lock); 15348 dtrace_dof_destroy(dof); 15349 15350 return (err); 15351 } 15352 15353 case DTRACEIOC_REPLICATE: { 15354 dtrace_repldesc_t desc; 15355 dtrace_probedesc_t *match = &desc.dtrpd_match; 15356 dtrace_probedesc_t *create = &desc.dtrpd_create; 15357 int err; 15358 15359 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15360 return (EFAULT); 15361 15362 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15363 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15364 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15365 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15366 15367 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15368 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15369 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15370 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15371 15372 mutex_enter(&dtrace_lock); 15373 err = dtrace_enabling_replicate(state, match, create); 15374 mutex_exit(&dtrace_lock); 15375 15376 return (err); 15377 } 15378 15379 case DTRACEIOC_PROBEMATCH: 15380 case DTRACEIOC_PROBES: { 15381 dtrace_probe_t *probe = NULL; 15382 dtrace_probedesc_t desc; 15383 dtrace_probekey_t pkey; 15384 dtrace_id_t i; 15385 int m = 0; 15386 uint32_t priv; 15387 uid_t uid; 15388 zoneid_t zoneid; 15389 15390 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15391 return (EFAULT); 15392 15393 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 15394 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 15395 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 15396 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 15397 15398 /* 15399 * Before we attempt to match this probe, we want to give 15400 * all providers the opportunity to provide it. 15401 */ 15402 if (desc.dtpd_id == DTRACE_IDNONE) { 15403 mutex_enter(&dtrace_provider_lock); 15404 dtrace_probe_provide(&desc, NULL); 15405 mutex_exit(&dtrace_provider_lock); 15406 desc.dtpd_id++; 15407 } 15408 15409 if (cmd == DTRACEIOC_PROBEMATCH) { 15410 dtrace_probekey(&desc, &pkey); 15411 pkey.dtpk_id = DTRACE_IDNONE; 15412 } 15413 15414 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 15415 15416 mutex_enter(&dtrace_lock); 15417 15418 if (cmd == DTRACEIOC_PROBEMATCH) { 15419 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15420 if ((probe = dtrace_probes[i - 1]) != NULL && 15421 (m = dtrace_match_probe(probe, &pkey, 15422 priv, uid, zoneid)) != 0) 15423 break; 15424 } 15425 15426 if (m < 0) { 15427 mutex_exit(&dtrace_lock); 15428 return (EINVAL); 15429 } 15430 15431 } else { 15432 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 15433 if ((probe = dtrace_probes[i - 1]) != NULL && 15434 dtrace_match_priv(probe, priv, uid, zoneid)) 15435 break; 15436 } 15437 } 15438 15439 if (probe == NULL) { 15440 mutex_exit(&dtrace_lock); 15441 return (ESRCH); 15442 } 15443 15444 dtrace_probe_description(probe, &desc); 15445 mutex_exit(&dtrace_lock); 15446 15447 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15448 return (EFAULT); 15449 15450 return (0); 15451 } 15452 15453 case DTRACEIOC_PROBEARG: { 15454 dtrace_argdesc_t desc; 15455 dtrace_probe_t *probe; 15456 dtrace_provider_t *prov; 15457 15458 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15459 return (EFAULT); 15460 15461 if (desc.dtargd_id == DTRACE_IDNONE) 15462 return (EINVAL); 15463 15464 if (desc.dtargd_ndx == DTRACE_ARGNONE) 15465 return (EINVAL); 15466 15467 mutex_enter(&dtrace_provider_lock); 15468 mutex_enter(&mod_lock); 15469 mutex_enter(&dtrace_lock); 15470 15471 if (desc.dtargd_id > dtrace_nprobes) { 15472 mutex_exit(&dtrace_lock); 15473 mutex_exit(&mod_lock); 15474 mutex_exit(&dtrace_provider_lock); 15475 return (EINVAL); 15476 } 15477 15478 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 15479 mutex_exit(&dtrace_lock); 15480 mutex_exit(&mod_lock); 15481 mutex_exit(&dtrace_provider_lock); 15482 return (EINVAL); 15483 } 15484 15485 mutex_exit(&dtrace_lock); 15486 15487 prov = probe->dtpr_provider; 15488 15489 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 15490 /* 15491 * There isn't any typed information for this probe. 15492 * Set the argument number to DTRACE_ARGNONE. 15493 */ 15494 desc.dtargd_ndx = DTRACE_ARGNONE; 15495 } else { 15496 desc.dtargd_native[0] = '\0'; 15497 desc.dtargd_xlate[0] = '\0'; 15498 desc.dtargd_mapping = desc.dtargd_ndx; 15499 15500 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 15501 probe->dtpr_id, probe->dtpr_arg, &desc); 15502 } 15503 15504 mutex_exit(&mod_lock); 15505 mutex_exit(&dtrace_provider_lock); 15506 15507 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15508 return (EFAULT); 15509 15510 return (0); 15511 } 15512 15513 case DTRACEIOC_GO: { 15514 processorid_t cpuid; 15515 rval = dtrace_state_go(state, &cpuid); 15516 15517 if (rval != 0) 15518 return (rval); 15519 15520 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15521 return (EFAULT); 15522 15523 return (0); 15524 } 15525 15526 case DTRACEIOC_STOP: { 15527 processorid_t cpuid; 15528 15529 mutex_enter(&dtrace_lock); 15530 rval = dtrace_state_stop(state, &cpuid); 15531 mutex_exit(&dtrace_lock); 15532 15533 if (rval != 0) 15534 return (rval); 15535 15536 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 15537 return (EFAULT); 15538 15539 return (0); 15540 } 15541 15542 case DTRACEIOC_DOFGET: { 15543 dof_hdr_t hdr, *dof; 15544 uint64_t len; 15545 15546 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 15547 return (EFAULT); 15548 15549 mutex_enter(&dtrace_lock); 15550 dof = dtrace_dof_create(state); 15551 mutex_exit(&dtrace_lock); 15552 15553 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 15554 rval = copyout(dof, (void *)arg, len); 15555 dtrace_dof_destroy(dof); 15556 15557 return (rval == 0 ? 0 : EFAULT); 15558 } 15559 15560 case DTRACEIOC_AGGSNAP: 15561 case DTRACEIOC_BUFSNAP: { 15562 dtrace_bufdesc_t desc; 15563 caddr_t cached; 15564 dtrace_buffer_t *buf; 15565 15566 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 15567 return (EFAULT); 15568 15569 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 15570 return (EINVAL); 15571 15572 mutex_enter(&dtrace_lock); 15573 15574 if (cmd == DTRACEIOC_BUFSNAP) { 15575 buf = &state->dts_buffer[desc.dtbd_cpu]; 15576 } else { 15577 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 15578 } 15579 15580 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 15581 size_t sz = buf->dtb_offset; 15582 15583 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 15584 mutex_exit(&dtrace_lock); 15585 return (EBUSY); 15586 } 15587 15588 /* 15589 * If this buffer has already been consumed, we're 15590 * going to indicate that there's nothing left here 15591 * to consume. 15592 */ 15593 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 15594 mutex_exit(&dtrace_lock); 15595 15596 desc.dtbd_size = 0; 15597 desc.dtbd_drops = 0; 15598 desc.dtbd_errors = 0; 15599 desc.dtbd_oldest = 0; 15600 sz = sizeof (desc); 15601 15602 if (copyout(&desc, (void *)arg, sz) != 0) 15603 return (EFAULT); 15604 15605 return (0); 15606 } 15607 15608 /* 15609 * If this is a ring buffer that has wrapped, we want 15610 * to copy the whole thing out. 15611 */ 15612 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 15613 dtrace_buffer_polish(buf); 15614 sz = buf->dtb_size; 15615 } 15616 15617 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 15618 mutex_exit(&dtrace_lock); 15619 return (EFAULT); 15620 } 15621 15622 desc.dtbd_size = sz; 15623 desc.dtbd_drops = buf->dtb_drops; 15624 desc.dtbd_errors = buf->dtb_errors; 15625 desc.dtbd_oldest = buf->dtb_xamot_offset; 15626 15627 mutex_exit(&dtrace_lock); 15628 15629 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15630 return (EFAULT); 15631 15632 buf->dtb_flags |= DTRACEBUF_CONSUMED; 15633 15634 return (0); 15635 } 15636 15637 if (buf->dtb_tomax == NULL) { 15638 ASSERT(buf->dtb_xamot == NULL); 15639 mutex_exit(&dtrace_lock); 15640 return (ENOENT); 15641 } 15642 15643 cached = buf->dtb_tomax; 15644 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 15645 15646 dtrace_xcall(desc.dtbd_cpu, 15647 (dtrace_xcall_t)dtrace_buffer_switch, buf); 15648 15649 state->dts_errors += buf->dtb_xamot_errors; 15650 15651 /* 15652 * If the buffers did not actually switch, then the cross call 15653 * did not take place -- presumably because the given CPU is 15654 * not in the ready set. If this is the case, we'll return 15655 * ENOENT. 15656 */ 15657 if (buf->dtb_tomax == cached) { 15658 ASSERT(buf->dtb_xamot != cached); 15659 mutex_exit(&dtrace_lock); 15660 return (ENOENT); 15661 } 15662 15663 ASSERT(cached == buf->dtb_xamot); 15664 15665 /* 15666 * We have our snapshot; now copy it out. 15667 */ 15668 if (copyout(buf->dtb_xamot, desc.dtbd_data, 15669 buf->dtb_xamot_offset) != 0) { 15670 mutex_exit(&dtrace_lock); 15671 return (EFAULT); 15672 } 15673 15674 desc.dtbd_size = buf->dtb_xamot_offset; 15675 desc.dtbd_drops = buf->dtb_xamot_drops; 15676 desc.dtbd_errors = buf->dtb_xamot_errors; 15677 desc.dtbd_oldest = 0; 15678 15679 mutex_exit(&dtrace_lock); 15680 15681 /* 15682 * Finally, copy out the buffer description. 15683 */ 15684 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 15685 return (EFAULT); 15686 15687 return (0); 15688 } 15689 15690 case DTRACEIOC_CONF: { 15691 dtrace_conf_t conf; 15692 15693 bzero(&conf, sizeof (conf)); 15694 conf.dtc_difversion = DIF_VERSION; 15695 conf.dtc_difintregs = DIF_DIR_NREGS; 15696 conf.dtc_diftupregs = DIF_DTR_NREGS; 15697 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 15698 15699 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 15700 return (EFAULT); 15701 15702 return (0); 15703 } 15704 15705 case DTRACEIOC_STATUS: { 15706 dtrace_status_t stat; 15707 dtrace_dstate_t *dstate; 15708 int i, j; 15709 uint64_t nerrs; 15710 15711 /* 15712 * See the comment in dtrace_state_deadman() for the reason 15713 * for setting dts_laststatus to INT64_MAX before setting 15714 * it to the correct value. 15715 */ 15716 state->dts_laststatus = INT64_MAX; 15717 dtrace_membar_producer(); 15718 state->dts_laststatus = dtrace_gethrtime(); 15719 15720 bzero(&stat, sizeof (stat)); 15721 15722 mutex_enter(&dtrace_lock); 15723 15724 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 15725 mutex_exit(&dtrace_lock); 15726 return (ENOENT); 15727 } 15728 15729 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 15730 stat.dtst_exiting = 1; 15731 15732 nerrs = state->dts_errors; 15733 dstate = &state->dts_vstate.dtvs_dynvars; 15734 15735 for (i = 0; i < NCPU; i++) { 15736 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 15737 15738 stat.dtst_dyndrops += dcpu->dtdsc_drops; 15739 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 15740 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 15741 15742 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 15743 stat.dtst_filled++; 15744 15745 nerrs += state->dts_buffer[i].dtb_errors; 15746 15747 for (j = 0; j < state->dts_nspeculations; j++) { 15748 dtrace_speculation_t *spec; 15749 dtrace_buffer_t *buf; 15750 15751 spec = &state->dts_speculations[j]; 15752 buf = &spec->dtsp_buffer[i]; 15753 stat.dtst_specdrops += buf->dtb_xamot_drops; 15754 } 15755 } 15756 15757 stat.dtst_specdrops_busy = state->dts_speculations_busy; 15758 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 15759 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 15760 stat.dtst_dblerrors = state->dts_dblerrors; 15761 stat.dtst_killed = 15762 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 15763 stat.dtst_errors = nerrs; 15764 15765 mutex_exit(&dtrace_lock); 15766 15767 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 15768 return (EFAULT); 15769 15770 return (0); 15771 } 15772 15773 case DTRACEIOC_FORMAT: { 15774 dtrace_fmtdesc_t fmt; 15775 char *str; 15776 int len; 15777 15778 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 15779 return (EFAULT); 15780 15781 mutex_enter(&dtrace_lock); 15782 15783 if (fmt.dtfd_format == 0 || 15784 fmt.dtfd_format > state->dts_nformats) { 15785 mutex_exit(&dtrace_lock); 15786 return (EINVAL); 15787 } 15788 15789 /* 15790 * Format strings are allocated contiguously and they are 15791 * never freed; if a format index is less than the number 15792 * of formats, we can assert that the format map is non-NULL 15793 * and that the format for the specified index is non-NULL. 15794 */ 15795 ASSERT(state->dts_formats != NULL); 15796 str = state->dts_formats[fmt.dtfd_format - 1]; 15797 ASSERT(str != NULL); 15798 15799 len = strlen(str) + 1; 15800 15801 if (len > fmt.dtfd_length) { 15802 fmt.dtfd_length = len; 15803 15804 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 15805 mutex_exit(&dtrace_lock); 15806 return (EINVAL); 15807 } 15808 } else { 15809 if (copyout(str, fmt.dtfd_string, len) != 0) { 15810 mutex_exit(&dtrace_lock); 15811 return (EINVAL); 15812 } 15813 } 15814 15815 mutex_exit(&dtrace_lock); 15816 return (0); 15817 } 15818 15819 default: 15820 break; 15821 } 15822 15823 return (ENOTTY); 15824 } 15825 15826 /*ARGSUSED*/ 15827 static int 15828 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 15829 { 15830 dtrace_state_t *state; 15831 15832 switch (cmd) { 15833 case DDI_DETACH: 15834 break; 15835 15836 case DDI_SUSPEND: 15837 return (DDI_SUCCESS); 15838 15839 default: 15840 return (DDI_FAILURE); 15841 } 15842 15843 mutex_enter(&cpu_lock); 15844 mutex_enter(&dtrace_provider_lock); 15845 mutex_enter(&dtrace_lock); 15846 15847 ASSERT(dtrace_opens == 0); 15848 15849 if (dtrace_helpers > 0) { 15850 mutex_exit(&dtrace_provider_lock); 15851 mutex_exit(&dtrace_lock); 15852 mutex_exit(&cpu_lock); 15853 return (DDI_FAILURE); 15854 } 15855 15856 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 15857 mutex_exit(&dtrace_provider_lock); 15858 mutex_exit(&dtrace_lock); 15859 mutex_exit(&cpu_lock); 15860 return (DDI_FAILURE); 15861 } 15862 15863 dtrace_provider = NULL; 15864 15865 if ((state = dtrace_anon_grab()) != NULL) { 15866 /* 15867 * If there were ECBs on this state, the provider should 15868 * have not been allowed to detach; assert that there is 15869 * none. 15870 */ 15871 ASSERT(state->dts_necbs == 0); 15872 dtrace_state_destroy(state); 15873 15874 /* 15875 * If we're being detached with anonymous state, we need to 15876 * indicate to the kernel debugger that DTrace is now inactive. 15877 */ 15878 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15879 } 15880 15881 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 15882 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15883 dtrace_cpu_init = NULL; 15884 dtrace_helpers_cleanup = NULL; 15885 dtrace_helpers_fork = NULL; 15886 dtrace_cpustart_init = NULL; 15887 dtrace_cpustart_fini = NULL; 15888 dtrace_debugger_init = NULL; 15889 dtrace_debugger_fini = NULL; 15890 dtrace_modload = NULL; 15891 dtrace_modunload = NULL; 15892 15893 mutex_exit(&cpu_lock); 15894 15895 if (dtrace_helptrace_enabled) { 15896 kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); 15897 dtrace_helptrace_buffer = NULL; 15898 } 15899 15900 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 15901 dtrace_probes = NULL; 15902 dtrace_nprobes = 0; 15903 15904 dtrace_hash_destroy(dtrace_bymod); 15905 dtrace_hash_destroy(dtrace_byfunc); 15906 dtrace_hash_destroy(dtrace_byname); 15907 dtrace_bymod = NULL; 15908 dtrace_byfunc = NULL; 15909 dtrace_byname = NULL; 15910 15911 kmem_cache_destroy(dtrace_state_cache); 15912 vmem_destroy(dtrace_minor); 15913 vmem_destroy(dtrace_arena); 15914 15915 if (dtrace_toxrange != NULL) { 15916 kmem_free(dtrace_toxrange, 15917 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 15918 dtrace_toxrange = NULL; 15919 dtrace_toxranges = 0; 15920 dtrace_toxranges_max = 0; 15921 } 15922 15923 ddi_remove_minor_node(dtrace_devi, NULL); 15924 dtrace_devi = NULL; 15925 15926 ddi_soft_state_fini(&dtrace_softstate); 15927 15928 ASSERT(dtrace_vtime_references == 0); 15929 ASSERT(dtrace_opens == 0); 15930 ASSERT(dtrace_retained == NULL); 15931 15932 mutex_exit(&dtrace_lock); 15933 mutex_exit(&dtrace_provider_lock); 15934 15935 /* 15936 * We don't destroy the task queue until after we have dropped our 15937 * locks (taskq_destroy() may block on running tasks). To prevent 15938 * attempting to do work after we have effectively detached but before 15939 * the task queue has been destroyed, all tasks dispatched via the 15940 * task queue must check that DTrace is still attached before 15941 * performing any operation. 15942 */ 15943 taskq_destroy(dtrace_taskq); 15944 dtrace_taskq = NULL; 15945 15946 return (DDI_SUCCESS); 15947 } 15948 15949 /*ARGSUSED*/ 15950 static int 15951 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 15952 { 15953 int error; 15954 15955 switch (infocmd) { 15956 case DDI_INFO_DEVT2DEVINFO: 15957 *result = (void *)dtrace_devi; 15958 error = DDI_SUCCESS; 15959 break; 15960 case DDI_INFO_DEVT2INSTANCE: 15961 *result = (void *)0; 15962 error = DDI_SUCCESS; 15963 break; 15964 default: 15965 error = DDI_FAILURE; 15966 } 15967 return (error); 15968 } 15969 15970 static struct cb_ops dtrace_cb_ops = { 15971 dtrace_open, /* open */ 15972 dtrace_close, /* close */ 15973 nulldev, /* strategy */ 15974 nulldev, /* print */ 15975 nodev, /* dump */ 15976 nodev, /* read */ 15977 nodev, /* write */ 15978 dtrace_ioctl, /* ioctl */ 15979 nodev, /* devmap */ 15980 nodev, /* mmap */ 15981 nodev, /* segmap */ 15982 nochpoll, /* poll */ 15983 ddi_prop_op, /* cb_prop_op */ 15984 0, /* streamtab */ 15985 D_NEW | D_MP /* Driver compatibility flag */ 15986 }; 15987 15988 static struct dev_ops dtrace_ops = { 15989 DEVO_REV, /* devo_rev */ 15990 0, /* refcnt */ 15991 dtrace_info, /* get_dev_info */ 15992 nulldev, /* identify */ 15993 nulldev, /* probe */ 15994 dtrace_attach, /* attach */ 15995 dtrace_detach, /* detach */ 15996 nodev, /* reset */ 15997 &dtrace_cb_ops, /* driver operations */ 15998 NULL, /* bus operations */ 15999 nodev, /* dev power */ 16000 ddi_quiesce_not_needed, /* quiesce */ 16001 }; 16002 16003 static struct modldrv modldrv = { 16004 &mod_driverops, /* module type (this is a pseudo driver) */ 16005 "Dynamic Tracing", /* name of module */ 16006 &dtrace_ops, /* driver ops */ 16007 }; 16008 16009 static struct modlinkage modlinkage = { 16010 MODREV_1, 16011 (void *)&modldrv, 16012 NULL 16013 }; 16014 16015 int 16016 _init(void) 16017 { 16018 return (mod_install(&modlinkage)); 16019 } 16020 16021 int 16022 _info(struct modinfo *modinfop) 16023 { 16024 return (mod_info(&modlinkage, modinfop)); 16025 } 16026 16027 int 16028 _fini(void) 16029 { 16030 return (mod_remove(&modlinkage)); 16031 } 16032