1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __x86 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 /* 388 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 389 * alloc_sz on the righthand side of the comparison in order to avoid overflow 390 * or underflow in the comparison with it. This is simpler than the INRANGE 391 * check above, because we know that the dtms_scratch_ptr is valid in the 392 * range. Allocations of size zero are allowed. 393 */ 394 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 395 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 396 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 397 398 #define DTRACE_LOADFUNC(bits) \ 399 /*CSTYLED*/ \ 400 uint##bits##_t \ 401 dtrace_load##bits(uintptr_t addr) \ 402 { \ 403 size_t size = bits / NBBY; \ 404 /*CSTYLED*/ \ 405 uint##bits##_t rval; \ 406 int i; \ 407 volatile uint16_t *flags = (volatile uint16_t *) \ 408 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 409 \ 410 DTRACE_ALIGNCHECK(addr, size, flags); \ 411 \ 412 for (i = 0; i < dtrace_toxranges; i++) { \ 413 if (addr >= dtrace_toxrange[i].dtt_limit) \ 414 continue; \ 415 \ 416 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 417 continue; \ 418 \ 419 /* \ 420 * This address falls within a toxic region; return 0. \ 421 */ \ 422 *flags |= CPU_DTRACE_BADADDR; \ 423 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 424 return (0); \ 425 } \ 426 \ 427 *flags |= CPU_DTRACE_NOFAULT; \ 428 /*CSTYLED*/ \ 429 rval = *((volatile uint##bits##_t *)addr); \ 430 *flags &= ~CPU_DTRACE_NOFAULT; \ 431 \ 432 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 433 } 434 435 #ifdef _LP64 436 #define dtrace_loadptr dtrace_load64 437 #else 438 #define dtrace_loadptr dtrace_load32 439 #endif 440 441 #define DTRACE_DYNHASH_FREE 0 442 #define DTRACE_DYNHASH_SINK 1 443 #define DTRACE_DYNHASH_VALID 2 444 445 #define DTRACE_MATCH_FAIL -1 446 #define DTRACE_MATCH_NEXT 0 447 #define DTRACE_MATCH_DONE 1 448 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 449 #define DTRACE_STATE_ALIGN 64 450 451 #define DTRACE_FLAGS2FLT(flags) \ 452 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 453 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 454 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 455 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 456 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 457 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 458 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 459 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 460 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 461 DTRACEFLT_UNKNOWN) 462 463 #define DTRACEACT_ISSTRING(act) \ 464 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 465 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 466 467 static size_t dtrace_strlen(const char *, size_t); 468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 469 static void dtrace_enabling_provide(dtrace_provider_t *); 470 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 471 static void dtrace_enabling_matchall(void); 472 static void dtrace_enabling_reap(void); 473 static dtrace_state_t *dtrace_anon_grab(void); 474 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 475 dtrace_state_t *, uint64_t, uint64_t); 476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 477 static void dtrace_buffer_drop(dtrace_buffer_t *); 478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 480 dtrace_state_t *, dtrace_mstate_t *); 481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 482 dtrace_optval_t); 483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 486 static void dtrace_getf_barrier(void); 487 488 /* 489 * DTrace Probe Context Functions 490 * 491 * These functions are called from probe context. Because probe context is 492 * any context in which C may be called, arbitrarily locks may be held, 493 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 494 * As a result, functions called from probe context may only call other DTrace 495 * support functions -- they may not interact at all with the system at large. 496 * (Note that the ASSERT macro is made probe-context safe by redefining it in 497 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 498 * loads are to be performed from probe context, they _must_ be in terms of 499 * the safe dtrace_load*() variants. 500 * 501 * Some functions in this block are not actually called from probe context; 502 * for these functions, there will be a comment above the function reading 503 * "Note: not called from probe context." 504 */ 505 void 506 dtrace_panic(const char *format, ...) 507 { 508 va_list alist; 509 510 va_start(alist, format); 511 dtrace_vpanic(format, alist); 512 va_end(alist); 513 } 514 515 int 516 dtrace_assfail(const char *a, const char *f, int l) 517 { 518 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 519 520 /* 521 * We just need something here that even the most clever compiler 522 * cannot optimize away. 523 */ 524 return (a[(uintptr_t)f]); 525 } 526 527 /* 528 * Atomically increment a specified error counter from probe context. 529 */ 530 static void 531 dtrace_error(uint32_t *counter) 532 { 533 /* 534 * Most counters stored to in probe context are per-CPU counters. 535 * However, there are some error conditions that are sufficiently 536 * arcane that they don't merit per-CPU storage. If these counters 537 * are incremented concurrently on different CPUs, scalability will be 538 * adversely affected -- but we don't expect them to be white-hot in a 539 * correctly constructed enabling... 540 */ 541 uint32_t oval, nval; 542 543 do { 544 oval = *counter; 545 546 if ((nval = oval + 1) == 0) { 547 /* 548 * If the counter would wrap, set it to 1 -- assuring 549 * that the counter is never zero when we have seen 550 * errors. (The counter must be 32-bits because we 551 * aren't guaranteed a 64-bit compare&swap operation.) 552 * To save this code both the infamy of being fingered 553 * by a priggish news story and the indignity of being 554 * the target of a neo-puritan witch trial, we're 555 * carefully avoiding any colorful description of the 556 * likelihood of this condition -- but suffice it to 557 * say that it is only slightly more likely than the 558 * overflow of predicate cache IDs, as discussed in 559 * dtrace_predicate_create(). 560 */ 561 nval = 1; 562 } 563 } while (dtrace_cas32(counter, oval, nval) != oval); 564 } 565 566 /* 567 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 568 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 569 */ 570 DTRACE_LOADFUNC(8) 571 DTRACE_LOADFUNC(16) 572 DTRACE_LOADFUNC(32) 573 DTRACE_LOADFUNC(64) 574 575 static int 576 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 577 { 578 if (dest < mstate->dtms_scratch_base) 579 return (0); 580 581 if (dest + size < dest) 582 return (0); 583 584 if (dest + size > mstate->dtms_scratch_ptr) 585 return (0); 586 587 return (1); 588 } 589 590 static int 591 dtrace_canstore_statvar(uint64_t addr, size_t sz, 592 dtrace_statvar_t **svars, int nsvars) 593 { 594 int i; 595 596 for (i = 0; i < nsvars; i++) { 597 dtrace_statvar_t *svar = svars[i]; 598 599 if (svar == NULL || svar->dtsv_size == 0) 600 continue; 601 602 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 603 return (1); 604 } 605 606 return (0); 607 } 608 609 /* 610 * Check to see if the address is within a memory region to which a store may 611 * be issued. This includes the DTrace scratch areas, and any DTrace variable 612 * region. The caller of dtrace_canstore() is responsible for performing any 613 * alignment checks that are needed before stores are actually executed. 614 */ 615 static int 616 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 617 dtrace_vstate_t *vstate) 618 { 619 /* 620 * First, check to see if the address is in scratch space... 621 */ 622 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 623 mstate->dtms_scratch_size)) 624 return (1); 625 626 /* 627 * Now check to see if it's a dynamic variable. This check will pick 628 * up both thread-local variables and any global dynamically-allocated 629 * variables. 630 */ 631 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 632 vstate->dtvs_dynvars.dtds_size)) { 633 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 634 uintptr_t base = (uintptr_t)dstate->dtds_base + 635 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 636 uintptr_t chunkoffs; 637 638 /* 639 * Before we assume that we can store here, we need to make 640 * sure that it isn't in our metadata -- storing to our 641 * dynamic variable metadata would corrupt our state. For 642 * the range to not include any dynamic variable metadata, 643 * it must: 644 * 645 * (1) Start above the hash table that is at the base of 646 * the dynamic variable space 647 * 648 * (2) Have a starting chunk offset that is beyond the 649 * dtrace_dynvar_t that is at the base of every chunk 650 * 651 * (3) Not span a chunk boundary 652 * 653 */ 654 if (addr < base) 655 return (0); 656 657 chunkoffs = (addr - base) % dstate->dtds_chunksize; 658 659 if (chunkoffs < sizeof (dtrace_dynvar_t)) 660 return (0); 661 662 if (chunkoffs + sz > dstate->dtds_chunksize) 663 return (0); 664 665 return (1); 666 } 667 668 /* 669 * Finally, check the static local and global variables. These checks 670 * take the longest, so we perform them last. 671 */ 672 if (dtrace_canstore_statvar(addr, sz, 673 vstate->dtvs_locals, vstate->dtvs_nlocals)) 674 return (1); 675 676 if (dtrace_canstore_statvar(addr, sz, 677 vstate->dtvs_globals, vstate->dtvs_nglobals)) 678 return (1); 679 680 return (0); 681 } 682 683 684 /* 685 * Convenience routine to check to see if the address is within a memory 686 * region in which a load may be issued given the user's privilege level; 687 * if not, it sets the appropriate error flags and loads 'addr' into the 688 * illegal value slot. 689 * 690 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 691 * appropriate memory access protection. 692 */ 693 static int 694 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 695 dtrace_vstate_t *vstate) 696 { 697 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 698 file_t *fp; 699 700 /* 701 * If we hold the privilege to read from kernel memory, then 702 * everything is readable. 703 */ 704 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 705 return (1); 706 707 /* 708 * You can obviously read that which you can store. 709 */ 710 if (dtrace_canstore(addr, sz, mstate, vstate)) 711 return (1); 712 713 /* 714 * We're allowed to read from our own string table. 715 */ 716 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 717 mstate->dtms_difo->dtdo_strlen)) 718 return (1); 719 720 if (vstate->dtvs_state != NULL && 721 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 722 proc_t *p; 723 724 /* 725 * When we have privileges to the current process, there are 726 * several context-related kernel structures that are safe to 727 * read, even absent the privilege to read from kernel memory. 728 * These reads are safe because these structures contain only 729 * state that (1) we're permitted to read, (2) is harmless or 730 * (3) contains pointers to additional kernel state that we're 731 * not permitted to read (and as such, do not present an 732 * opportunity for privilege escalation). Finally (and 733 * critically), because of the nature of their relation with 734 * the current thread context, the memory associated with these 735 * structures cannot change over the duration of probe context, 736 * and it is therefore impossible for this memory to be 737 * deallocated and reallocated as something else while it's 738 * being operated upon. 739 */ 740 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 741 return (1); 742 743 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 744 sz, curthread->t_procp, sizeof (proc_t))) { 745 return (1); 746 } 747 748 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 749 curthread->t_cred, sizeof (cred_t))) { 750 return (1); 751 } 752 753 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 754 &(p->p_pidp->pid_id), sizeof (pid_t))) { 755 return (1); 756 } 757 758 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 759 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 760 return (1); 761 } 762 } 763 764 if ((fp = mstate->dtms_getf) != NULL) { 765 uintptr_t psz = sizeof (void *); 766 vnode_t *vp; 767 vnodeops_t *op; 768 769 /* 770 * When getf() returns a file_t, the enabling is implicitly 771 * granted the (transient) right to read the returned file_t 772 * as well as the v_path and v_op->vnop_name of the underlying 773 * vnode. These accesses are allowed after a successful 774 * getf() because the members that they refer to cannot change 775 * once set -- and the barrier logic in the kernel's closef() 776 * path assures that the file_t and its referenced vode_t 777 * cannot themselves be stale (that is, it impossible for 778 * either dtms_getf itself or its f_vnode member to reference 779 * freed memory). 780 */ 781 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 782 return (1); 783 784 if ((vp = fp->f_vnode) != NULL) { 785 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 786 return (1); 787 788 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 789 vp->v_path, strlen(vp->v_path) + 1)) { 790 return (1); 791 } 792 793 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 794 return (1); 795 796 if ((op = vp->v_op) != NULL && 797 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 798 return (1); 799 } 800 801 if (op != NULL && op->vnop_name != NULL && 802 DTRACE_INRANGE(addr, sz, op->vnop_name, 803 strlen(op->vnop_name) + 1)) { 804 return (1); 805 } 806 } 807 } 808 809 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 810 *illval = addr; 811 return (0); 812 } 813 814 /* 815 * Convenience routine to check to see if a given string is within a memory 816 * region in which a load may be issued given the user's privilege level; 817 * this exists so that we don't need to issue unnecessary dtrace_strlen() 818 * calls in the event that the user has all privileges. 819 */ 820 static int 821 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 822 dtrace_vstate_t *vstate) 823 { 824 size_t strsz; 825 826 /* 827 * If we hold the privilege to read from kernel memory, then 828 * everything is readable. 829 */ 830 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 831 return (1); 832 833 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 834 if (dtrace_canload(addr, strsz, mstate, vstate)) 835 return (1); 836 837 return (0); 838 } 839 840 /* 841 * Convenience routine to check to see if a given variable is within a memory 842 * region in which a load may be issued given the user's privilege level. 843 */ 844 static int 845 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 846 dtrace_vstate_t *vstate) 847 { 848 size_t sz; 849 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 850 851 /* 852 * If we hold the privilege to read from kernel memory, then 853 * everything is readable. 854 */ 855 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 856 return (1); 857 858 if (type->dtdt_kind == DIF_TYPE_STRING) 859 sz = dtrace_strlen(src, 860 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 861 else 862 sz = type->dtdt_size; 863 864 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 865 } 866 867 /* 868 * Convert a string to a signed integer using safe loads. 869 * 870 * NOTE: This function uses various macros from strtolctype.h to manipulate 871 * digit values, etc -- these have all been checked to ensure they make 872 * no additional function calls. 873 */ 874 static int64_t 875 dtrace_strtoll(char *input, int base, size_t limit) 876 { 877 uintptr_t pos = (uintptr_t)input; 878 int64_t val = 0; 879 int x; 880 boolean_t neg = B_FALSE; 881 char c, cc, ccc; 882 uintptr_t end = pos + limit; 883 884 /* 885 * Consume any whitespace preceding digits. 886 */ 887 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 888 pos++; 889 890 /* 891 * Handle an explicit sign if one is present. 892 */ 893 if (c == '-' || c == '+') { 894 if (c == '-') 895 neg = B_TRUE; 896 c = dtrace_load8(++pos); 897 } 898 899 /* 900 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 901 * if present. 902 */ 903 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 904 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 905 pos += 2; 906 c = ccc; 907 } 908 909 /* 910 * Read in contiguous digits until the first non-digit character. 911 */ 912 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 913 c = dtrace_load8(++pos)) 914 val = val * base + x; 915 916 return (neg ? -val : val); 917 } 918 919 /* 920 * Compare two strings using safe loads. 921 */ 922 static int 923 dtrace_strncmp(char *s1, char *s2, size_t limit) 924 { 925 uint8_t c1, c2; 926 volatile uint16_t *flags; 927 928 if (s1 == s2 || limit == 0) 929 return (0); 930 931 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 932 933 do { 934 if (s1 == NULL) { 935 c1 = '\0'; 936 } else { 937 c1 = dtrace_load8((uintptr_t)s1++); 938 } 939 940 if (s2 == NULL) { 941 c2 = '\0'; 942 } else { 943 c2 = dtrace_load8((uintptr_t)s2++); 944 } 945 946 if (c1 != c2) 947 return (c1 - c2); 948 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 949 950 return (0); 951 } 952 953 /* 954 * Compute strlen(s) for a string using safe memory accesses. The additional 955 * len parameter is used to specify a maximum length to ensure completion. 956 */ 957 static size_t 958 dtrace_strlen(const char *s, size_t lim) 959 { 960 uint_t len; 961 962 for (len = 0; len != lim; len++) { 963 if (dtrace_load8((uintptr_t)s++) == '\0') 964 break; 965 } 966 967 return (len); 968 } 969 970 /* 971 * Check if an address falls within a toxic region. 972 */ 973 static int 974 dtrace_istoxic(uintptr_t kaddr, size_t size) 975 { 976 uintptr_t taddr, tsize; 977 int i; 978 979 for (i = 0; i < dtrace_toxranges; i++) { 980 taddr = dtrace_toxrange[i].dtt_base; 981 tsize = dtrace_toxrange[i].dtt_limit - taddr; 982 983 if (kaddr - taddr < tsize) { 984 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 985 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 986 return (1); 987 } 988 989 if (taddr - kaddr < size) { 990 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 991 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 992 return (1); 993 } 994 } 995 996 return (0); 997 } 998 999 /* 1000 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1001 * memory specified by the DIF program. The dst is assumed to be safe memory 1002 * that we can store to directly because it is managed by DTrace. As with 1003 * standard bcopy, overlapping copies are handled properly. 1004 */ 1005 static void 1006 dtrace_bcopy(const void *src, void *dst, size_t len) 1007 { 1008 if (len != 0) { 1009 uint8_t *s1 = dst; 1010 const uint8_t *s2 = src; 1011 1012 if (s1 <= s2) { 1013 do { 1014 *s1++ = dtrace_load8((uintptr_t)s2++); 1015 } while (--len != 0); 1016 } else { 1017 s2 += len; 1018 s1 += len; 1019 1020 do { 1021 *--s1 = dtrace_load8((uintptr_t)--s2); 1022 } while (--len != 0); 1023 } 1024 } 1025 } 1026 1027 /* 1028 * Copy src to dst using safe memory accesses, up to either the specified 1029 * length, or the point that a nul byte is encountered. The src is assumed to 1030 * be unsafe memory specified by the DIF program. The dst is assumed to be 1031 * safe memory that we can store to directly because it is managed by DTrace. 1032 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1033 */ 1034 static void 1035 dtrace_strcpy(const void *src, void *dst, size_t len) 1036 { 1037 if (len != 0) { 1038 uint8_t *s1 = dst, c; 1039 const uint8_t *s2 = src; 1040 1041 do { 1042 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1043 } while (--len != 0 && c != '\0'); 1044 } 1045 } 1046 1047 /* 1048 * Copy src to dst, deriving the size and type from the specified (BYREF) 1049 * variable type. The src is assumed to be unsafe memory specified by the DIF 1050 * program. The dst is assumed to be DTrace variable memory that is of the 1051 * specified type; we assume that we can store to directly. 1052 */ 1053 static void 1054 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1055 { 1056 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1057 1058 if (type->dtdt_kind == DIF_TYPE_STRING) { 1059 dtrace_strcpy(src, dst, type->dtdt_size); 1060 } else { 1061 dtrace_bcopy(src, dst, type->dtdt_size); 1062 } 1063 } 1064 1065 /* 1066 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1067 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1068 * safe memory that we can access directly because it is managed by DTrace. 1069 */ 1070 static int 1071 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1072 { 1073 volatile uint16_t *flags; 1074 1075 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1076 1077 if (s1 == s2) 1078 return (0); 1079 1080 if (s1 == NULL || s2 == NULL) 1081 return (1); 1082 1083 if (s1 != s2 && len != 0) { 1084 const uint8_t *ps1 = s1; 1085 const uint8_t *ps2 = s2; 1086 1087 do { 1088 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1089 return (1); 1090 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1091 } 1092 return (0); 1093 } 1094 1095 /* 1096 * Zero the specified region using a simple byte-by-byte loop. Note that this 1097 * is for safe DTrace-managed memory only. 1098 */ 1099 static void 1100 dtrace_bzero(void *dst, size_t len) 1101 { 1102 uchar_t *cp; 1103 1104 for (cp = dst; len != 0; len--) 1105 *cp++ = 0; 1106 } 1107 1108 static void 1109 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1110 { 1111 uint64_t result[2]; 1112 1113 result[0] = addend1[0] + addend2[0]; 1114 result[1] = addend1[1] + addend2[1] + 1115 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1116 1117 sum[0] = result[0]; 1118 sum[1] = result[1]; 1119 } 1120 1121 /* 1122 * Shift the 128-bit value in a by b. If b is positive, shift left. 1123 * If b is negative, shift right. 1124 */ 1125 static void 1126 dtrace_shift_128(uint64_t *a, int b) 1127 { 1128 uint64_t mask; 1129 1130 if (b == 0) 1131 return; 1132 1133 if (b < 0) { 1134 b = -b; 1135 if (b >= 64) { 1136 a[0] = a[1] >> (b - 64); 1137 a[1] = 0; 1138 } else { 1139 a[0] >>= b; 1140 mask = 1LL << (64 - b); 1141 mask -= 1; 1142 a[0] |= ((a[1] & mask) << (64 - b)); 1143 a[1] >>= b; 1144 } 1145 } else { 1146 if (b >= 64) { 1147 a[1] = a[0] << (b - 64); 1148 a[0] = 0; 1149 } else { 1150 a[1] <<= b; 1151 mask = a[0] >> (64 - b); 1152 a[1] |= mask; 1153 a[0] <<= b; 1154 } 1155 } 1156 } 1157 1158 /* 1159 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1160 * use native multiplication on those, and then re-combine into the 1161 * resulting 128-bit value. 1162 * 1163 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1164 * hi1 * hi2 << 64 + 1165 * hi1 * lo2 << 32 + 1166 * hi2 * lo1 << 32 + 1167 * lo1 * lo2 1168 */ 1169 static void 1170 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1171 { 1172 uint64_t hi1, hi2, lo1, lo2; 1173 uint64_t tmp[2]; 1174 1175 hi1 = factor1 >> 32; 1176 hi2 = factor2 >> 32; 1177 1178 lo1 = factor1 & DT_MASK_LO; 1179 lo2 = factor2 & DT_MASK_LO; 1180 1181 product[0] = lo1 * lo2; 1182 product[1] = hi1 * hi2; 1183 1184 tmp[0] = hi1 * lo2; 1185 tmp[1] = 0; 1186 dtrace_shift_128(tmp, 32); 1187 dtrace_add_128(product, tmp, product); 1188 1189 tmp[0] = hi2 * lo1; 1190 tmp[1] = 0; 1191 dtrace_shift_128(tmp, 32); 1192 dtrace_add_128(product, tmp, product); 1193 } 1194 1195 /* 1196 * This privilege check should be used by actions and subroutines to 1197 * verify that the user credentials of the process that enabled the 1198 * invoking ECB match the target credentials 1199 */ 1200 static int 1201 dtrace_priv_proc_common_user(dtrace_state_t *state) 1202 { 1203 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1204 1205 /* 1206 * We should always have a non-NULL state cred here, since if cred 1207 * is null (anonymous tracing), we fast-path bypass this routine. 1208 */ 1209 ASSERT(s_cr != NULL); 1210 1211 if ((cr = CRED()) != NULL && 1212 s_cr->cr_uid == cr->cr_uid && 1213 s_cr->cr_uid == cr->cr_ruid && 1214 s_cr->cr_uid == cr->cr_suid && 1215 s_cr->cr_gid == cr->cr_gid && 1216 s_cr->cr_gid == cr->cr_rgid && 1217 s_cr->cr_gid == cr->cr_sgid) 1218 return (1); 1219 1220 return (0); 1221 } 1222 1223 /* 1224 * This privilege check should be used by actions and subroutines to 1225 * verify that the zone of the process that enabled the invoking ECB 1226 * matches the target credentials 1227 */ 1228 static int 1229 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1230 { 1231 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1232 1233 /* 1234 * We should always have a non-NULL state cred here, since if cred 1235 * is null (anonymous tracing), we fast-path bypass this routine. 1236 */ 1237 ASSERT(s_cr != NULL); 1238 1239 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1240 return (1); 1241 1242 return (0); 1243 } 1244 1245 /* 1246 * This privilege check should be used by actions and subroutines to 1247 * verify that the process has not setuid or changed credentials. 1248 */ 1249 static int 1250 dtrace_priv_proc_common_nocd() 1251 { 1252 proc_t *proc; 1253 1254 if ((proc = ttoproc(curthread)) != NULL && 1255 !(proc->p_flag & SNOCD)) 1256 return (1); 1257 1258 return (0); 1259 } 1260 1261 static int 1262 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1263 { 1264 int action = state->dts_cred.dcr_action; 1265 1266 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1267 goto bad; 1268 1269 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1270 dtrace_priv_proc_common_zone(state) == 0) 1271 goto bad; 1272 1273 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1274 dtrace_priv_proc_common_user(state) == 0) 1275 goto bad; 1276 1277 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1278 dtrace_priv_proc_common_nocd() == 0) 1279 goto bad; 1280 1281 return (1); 1282 1283 bad: 1284 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1285 1286 return (0); 1287 } 1288 1289 static int 1290 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1291 { 1292 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1293 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1294 return (1); 1295 1296 if (dtrace_priv_proc_common_zone(state) && 1297 dtrace_priv_proc_common_user(state) && 1298 dtrace_priv_proc_common_nocd()) 1299 return (1); 1300 } 1301 1302 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1303 1304 return (0); 1305 } 1306 1307 static int 1308 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1309 { 1310 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1311 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1312 return (1); 1313 1314 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1315 1316 return (0); 1317 } 1318 1319 static int 1320 dtrace_priv_kernel(dtrace_state_t *state) 1321 { 1322 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1323 return (1); 1324 1325 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1326 1327 return (0); 1328 } 1329 1330 static int 1331 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1332 { 1333 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1334 return (1); 1335 1336 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1337 1338 return (0); 1339 } 1340 1341 /* 1342 * Determine if the dte_cond of the specified ECB allows for processing of 1343 * the current probe to continue. Note that this routine may allow continued 1344 * processing, but with access(es) stripped from the mstate's dtms_access 1345 * field. 1346 */ 1347 static int 1348 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1349 dtrace_ecb_t *ecb) 1350 { 1351 dtrace_probe_t *probe = ecb->dte_probe; 1352 dtrace_provider_t *prov = probe->dtpr_provider; 1353 dtrace_pops_t *pops = &prov->dtpv_pops; 1354 int mode = DTRACE_MODE_NOPRIV_DROP; 1355 1356 ASSERT(ecb->dte_cond); 1357 1358 if (pops->dtps_mode != NULL) { 1359 mode = pops->dtps_mode(prov->dtpv_arg, 1360 probe->dtpr_id, probe->dtpr_arg); 1361 1362 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1363 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1364 DTRACE_MODE_NOPRIV_DROP)); 1365 } 1366 1367 /* 1368 * If the dte_cond bits indicate that this consumer is only allowed to 1369 * see user-mode firings of this probe, check that the probe was fired 1370 * while in a user context. If that's not the case, use the policy 1371 * specified by the provider to determine if we drop the probe or 1372 * merely restrict operation. 1373 */ 1374 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1375 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1376 1377 if (!(mode & DTRACE_MODE_USER)) { 1378 if (mode & DTRACE_MODE_NOPRIV_DROP) 1379 return (0); 1380 1381 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1382 } 1383 } 1384 1385 /* 1386 * This is more subtle than it looks. We have to be absolutely certain 1387 * that CRED() isn't going to change out from under us so it's only 1388 * legit to examine that structure if we're in constrained situations. 1389 * Currently, the only times we'll this check is if a non-super-user 1390 * has enabled the profile or syscall providers -- providers that 1391 * allow visibility of all processes. For the profile case, the check 1392 * above will ensure that we're examining a user context. 1393 */ 1394 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1395 cred_t *cr; 1396 cred_t *s_cr = state->dts_cred.dcr_cred; 1397 proc_t *proc; 1398 1399 ASSERT(s_cr != NULL); 1400 1401 if ((cr = CRED()) == NULL || 1402 s_cr->cr_uid != cr->cr_uid || 1403 s_cr->cr_uid != cr->cr_ruid || 1404 s_cr->cr_uid != cr->cr_suid || 1405 s_cr->cr_gid != cr->cr_gid || 1406 s_cr->cr_gid != cr->cr_rgid || 1407 s_cr->cr_gid != cr->cr_sgid || 1408 (proc = ttoproc(curthread)) == NULL || 1409 (proc->p_flag & SNOCD)) { 1410 if (mode & DTRACE_MODE_NOPRIV_DROP) 1411 return (0); 1412 1413 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1414 } 1415 } 1416 1417 /* 1418 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1419 * in our zone, check to see if our mode policy is to restrict rather 1420 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1421 * and DTRACE_ACCESS_ARGS 1422 */ 1423 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1424 cred_t *cr; 1425 cred_t *s_cr = state->dts_cred.dcr_cred; 1426 1427 ASSERT(s_cr != NULL); 1428 1429 if ((cr = CRED()) == NULL || 1430 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1431 if (mode & DTRACE_MODE_NOPRIV_DROP) 1432 return (0); 1433 1434 mstate->dtms_access &= 1435 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1436 } 1437 } 1438 1439 /* 1440 * By merits of being in this code path at all, we have limited 1441 * privileges. If the provider has indicated that limited privileges 1442 * are to denote restricted operation, strip off the ability to access 1443 * arguments. 1444 */ 1445 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1446 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1447 1448 return (1); 1449 } 1450 1451 /* 1452 * Note: not called from probe context. This function is called 1453 * asynchronously (and at a regular interval) from outside of probe context to 1454 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1455 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1456 */ 1457 void 1458 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1459 { 1460 dtrace_dynvar_t *dirty; 1461 dtrace_dstate_percpu_t *dcpu; 1462 dtrace_dynvar_t **rinsep; 1463 int i, j, work = 0; 1464 1465 for (i = 0; i < NCPU; i++) { 1466 dcpu = &dstate->dtds_percpu[i]; 1467 rinsep = &dcpu->dtdsc_rinsing; 1468 1469 /* 1470 * If the dirty list is NULL, there is no dirty work to do. 1471 */ 1472 if (dcpu->dtdsc_dirty == NULL) 1473 continue; 1474 1475 if (dcpu->dtdsc_rinsing != NULL) { 1476 /* 1477 * If the rinsing list is non-NULL, then it is because 1478 * this CPU was selected to accept another CPU's 1479 * dirty list -- and since that time, dirty buffers 1480 * have accumulated. This is a highly unlikely 1481 * condition, but we choose to ignore the dirty 1482 * buffers -- they'll be picked up a future cleanse. 1483 */ 1484 continue; 1485 } 1486 1487 if (dcpu->dtdsc_clean != NULL) { 1488 /* 1489 * If the clean list is non-NULL, then we're in a 1490 * situation where a CPU has done deallocations (we 1491 * have a non-NULL dirty list) but no allocations (we 1492 * also have a non-NULL clean list). We can't simply 1493 * move the dirty list into the clean list on this 1494 * CPU, yet we also don't want to allow this condition 1495 * to persist, lest a short clean list prevent a 1496 * massive dirty list from being cleaned (which in 1497 * turn could lead to otherwise avoidable dynamic 1498 * drops). To deal with this, we look for some CPU 1499 * with a NULL clean list, NULL dirty list, and NULL 1500 * rinsing list -- and then we borrow this CPU to 1501 * rinse our dirty list. 1502 */ 1503 for (j = 0; j < NCPU; j++) { 1504 dtrace_dstate_percpu_t *rinser; 1505 1506 rinser = &dstate->dtds_percpu[j]; 1507 1508 if (rinser->dtdsc_rinsing != NULL) 1509 continue; 1510 1511 if (rinser->dtdsc_dirty != NULL) 1512 continue; 1513 1514 if (rinser->dtdsc_clean != NULL) 1515 continue; 1516 1517 rinsep = &rinser->dtdsc_rinsing; 1518 break; 1519 } 1520 1521 if (j == NCPU) { 1522 /* 1523 * We were unable to find another CPU that 1524 * could accept this dirty list -- we are 1525 * therefore unable to clean it now. 1526 */ 1527 dtrace_dynvar_failclean++; 1528 continue; 1529 } 1530 } 1531 1532 work = 1; 1533 1534 /* 1535 * Atomically move the dirty list aside. 1536 */ 1537 do { 1538 dirty = dcpu->dtdsc_dirty; 1539 1540 /* 1541 * Before we zap the dirty list, set the rinsing list. 1542 * (This allows for a potential assertion in 1543 * dtrace_dynvar(): if a free dynamic variable appears 1544 * on a hash chain, either the dirty list or the 1545 * rinsing list for some CPU must be non-NULL.) 1546 */ 1547 *rinsep = dirty; 1548 dtrace_membar_producer(); 1549 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1550 dirty, NULL) != dirty); 1551 } 1552 1553 if (!work) { 1554 /* 1555 * We have no work to do; we can simply return. 1556 */ 1557 return; 1558 } 1559 1560 dtrace_sync(); 1561 1562 for (i = 0; i < NCPU; i++) { 1563 dcpu = &dstate->dtds_percpu[i]; 1564 1565 if (dcpu->dtdsc_rinsing == NULL) 1566 continue; 1567 1568 /* 1569 * We are now guaranteed that no hash chain contains a pointer 1570 * into this dirty list; we can make it clean. 1571 */ 1572 ASSERT(dcpu->dtdsc_clean == NULL); 1573 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1574 dcpu->dtdsc_rinsing = NULL; 1575 } 1576 1577 /* 1578 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1579 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1580 * This prevents a race whereby a CPU incorrectly decides that 1581 * the state should be something other than DTRACE_DSTATE_CLEAN 1582 * after dtrace_dynvar_clean() has completed. 1583 */ 1584 dtrace_sync(); 1585 1586 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1587 } 1588 1589 /* 1590 * Depending on the value of the op parameter, this function looks-up, 1591 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1592 * allocation is requested, this function will return a pointer to a 1593 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1594 * variable can be allocated. If NULL is returned, the appropriate counter 1595 * will be incremented. 1596 */ 1597 dtrace_dynvar_t * 1598 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1599 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1600 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1601 { 1602 uint64_t hashval = DTRACE_DYNHASH_VALID; 1603 dtrace_dynhash_t *hash = dstate->dtds_hash; 1604 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1605 processorid_t me = CPU->cpu_id, cpu = me; 1606 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1607 size_t bucket, ksize; 1608 size_t chunksize = dstate->dtds_chunksize; 1609 uintptr_t kdata, lock, nstate; 1610 uint_t i; 1611 1612 ASSERT(nkeys != 0); 1613 1614 /* 1615 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1616 * algorithm. For the by-value portions, we perform the algorithm in 1617 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1618 * bit, and seems to have only a minute effect on distribution. For 1619 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1620 * over each referenced byte. It's painful to do this, but it's much 1621 * better than pathological hash distribution. The efficacy of the 1622 * hashing algorithm (and a comparison with other algorithms) may be 1623 * found by running the ::dtrace_dynstat MDB dcmd. 1624 */ 1625 for (i = 0; i < nkeys; i++) { 1626 if (key[i].dttk_size == 0) { 1627 uint64_t val = key[i].dttk_value; 1628 1629 hashval += (val >> 48) & 0xffff; 1630 hashval += (hashval << 10); 1631 hashval ^= (hashval >> 6); 1632 1633 hashval += (val >> 32) & 0xffff; 1634 hashval += (hashval << 10); 1635 hashval ^= (hashval >> 6); 1636 1637 hashval += (val >> 16) & 0xffff; 1638 hashval += (hashval << 10); 1639 hashval ^= (hashval >> 6); 1640 1641 hashval += val & 0xffff; 1642 hashval += (hashval << 10); 1643 hashval ^= (hashval >> 6); 1644 } else { 1645 /* 1646 * This is incredibly painful, but it beats the hell 1647 * out of the alternative. 1648 */ 1649 uint64_t j, size = key[i].dttk_size; 1650 uintptr_t base = (uintptr_t)key[i].dttk_value; 1651 1652 if (!dtrace_canload(base, size, mstate, vstate)) 1653 break; 1654 1655 for (j = 0; j < size; j++) { 1656 hashval += dtrace_load8(base + j); 1657 hashval += (hashval << 10); 1658 hashval ^= (hashval >> 6); 1659 } 1660 } 1661 } 1662 1663 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1664 return (NULL); 1665 1666 hashval += (hashval << 3); 1667 hashval ^= (hashval >> 11); 1668 hashval += (hashval << 15); 1669 1670 /* 1671 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1672 * comes out to be one of our two sentinel hash values. If this 1673 * actually happens, we set the hashval to be a value known to be a 1674 * non-sentinel value. 1675 */ 1676 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1677 hashval = DTRACE_DYNHASH_VALID; 1678 1679 /* 1680 * Yes, it's painful to do a divide here. If the cycle count becomes 1681 * important here, tricks can be pulled to reduce it. (However, it's 1682 * critical that hash collisions be kept to an absolute minimum; 1683 * they're much more painful than a divide.) It's better to have a 1684 * solution that generates few collisions and still keeps things 1685 * relatively simple. 1686 */ 1687 bucket = hashval % dstate->dtds_hashsize; 1688 1689 if (op == DTRACE_DYNVAR_DEALLOC) { 1690 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1691 1692 for (;;) { 1693 while ((lock = *lockp) & 1) 1694 continue; 1695 1696 if (dtrace_casptr((void *)lockp, 1697 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1698 break; 1699 } 1700 1701 dtrace_membar_producer(); 1702 } 1703 1704 top: 1705 prev = NULL; 1706 lock = hash[bucket].dtdh_lock; 1707 1708 dtrace_membar_consumer(); 1709 1710 start = hash[bucket].dtdh_chain; 1711 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1712 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1713 op != DTRACE_DYNVAR_DEALLOC)); 1714 1715 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1716 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1717 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1718 1719 if (dvar->dtdv_hashval != hashval) { 1720 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1721 /* 1722 * We've reached the sink, and therefore the 1723 * end of the hash chain; we can kick out of 1724 * the loop knowing that we have seen a valid 1725 * snapshot of state. 1726 */ 1727 ASSERT(dvar->dtdv_next == NULL); 1728 ASSERT(dvar == &dtrace_dynhash_sink); 1729 break; 1730 } 1731 1732 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1733 /* 1734 * We've gone off the rails: somewhere along 1735 * the line, one of the members of this hash 1736 * chain was deleted. Note that we could also 1737 * detect this by simply letting this loop run 1738 * to completion, as we would eventually hit 1739 * the end of the dirty list. However, we 1740 * want to avoid running the length of the 1741 * dirty list unnecessarily (it might be quite 1742 * long), so we catch this as early as 1743 * possible by detecting the hash marker. In 1744 * this case, we simply set dvar to NULL and 1745 * break; the conditional after the loop will 1746 * send us back to top. 1747 */ 1748 dvar = NULL; 1749 break; 1750 } 1751 1752 goto next; 1753 } 1754 1755 if (dtuple->dtt_nkeys != nkeys) 1756 goto next; 1757 1758 for (i = 0; i < nkeys; i++, dkey++) { 1759 if (dkey->dttk_size != key[i].dttk_size) 1760 goto next; /* size or type mismatch */ 1761 1762 if (dkey->dttk_size != 0) { 1763 if (dtrace_bcmp( 1764 (void *)(uintptr_t)key[i].dttk_value, 1765 (void *)(uintptr_t)dkey->dttk_value, 1766 dkey->dttk_size)) 1767 goto next; 1768 } else { 1769 if (dkey->dttk_value != key[i].dttk_value) 1770 goto next; 1771 } 1772 } 1773 1774 if (op != DTRACE_DYNVAR_DEALLOC) 1775 return (dvar); 1776 1777 ASSERT(dvar->dtdv_next == NULL || 1778 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1779 1780 if (prev != NULL) { 1781 ASSERT(hash[bucket].dtdh_chain != dvar); 1782 ASSERT(start != dvar); 1783 ASSERT(prev->dtdv_next == dvar); 1784 prev->dtdv_next = dvar->dtdv_next; 1785 } else { 1786 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1787 start, dvar->dtdv_next) != start) { 1788 /* 1789 * We have failed to atomically swing the 1790 * hash table head pointer, presumably because 1791 * of a conflicting allocation on another CPU. 1792 * We need to reread the hash chain and try 1793 * again. 1794 */ 1795 goto top; 1796 } 1797 } 1798 1799 dtrace_membar_producer(); 1800 1801 /* 1802 * Now set the hash value to indicate that it's free. 1803 */ 1804 ASSERT(hash[bucket].dtdh_chain != dvar); 1805 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1806 1807 dtrace_membar_producer(); 1808 1809 /* 1810 * Set the next pointer to point at the dirty list, and 1811 * atomically swing the dirty pointer to the newly freed dvar. 1812 */ 1813 do { 1814 next = dcpu->dtdsc_dirty; 1815 dvar->dtdv_next = next; 1816 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1817 1818 /* 1819 * Finally, unlock this hash bucket. 1820 */ 1821 ASSERT(hash[bucket].dtdh_lock == lock); 1822 ASSERT(lock & 1); 1823 hash[bucket].dtdh_lock++; 1824 1825 return (NULL); 1826 next: 1827 prev = dvar; 1828 continue; 1829 } 1830 1831 if (dvar == NULL) { 1832 /* 1833 * If dvar is NULL, it is because we went off the rails: 1834 * one of the elements that we traversed in the hash chain 1835 * was deleted while we were traversing it. In this case, 1836 * we assert that we aren't doing a dealloc (deallocs lock 1837 * the hash bucket to prevent themselves from racing with 1838 * one another), and retry the hash chain traversal. 1839 */ 1840 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1841 goto top; 1842 } 1843 1844 if (op != DTRACE_DYNVAR_ALLOC) { 1845 /* 1846 * If we are not to allocate a new variable, we want to 1847 * return NULL now. Before we return, check that the value 1848 * of the lock word hasn't changed. If it has, we may have 1849 * seen an inconsistent snapshot. 1850 */ 1851 if (op == DTRACE_DYNVAR_NOALLOC) { 1852 if (hash[bucket].dtdh_lock != lock) 1853 goto top; 1854 } else { 1855 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1856 ASSERT(hash[bucket].dtdh_lock == lock); 1857 ASSERT(lock & 1); 1858 hash[bucket].dtdh_lock++; 1859 } 1860 1861 return (NULL); 1862 } 1863 1864 /* 1865 * We need to allocate a new dynamic variable. The size we need is the 1866 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1867 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1868 * the size of any referred-to data (dsize). We then round the final 1869 * size up to the chunksize for allocation. 1870 */ 1871 for (ksize = 0, i = 0; i < nkeys; i++) 1872 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1873 1874 /* 1875 * This should be pretty much impossible, but could happen if, say, 1876 * strange DIF specified the tuple. Ideally, this should be an 1877 * assertion and not an error condition -- but that requires that the 1878 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1879 * bullet-proof. (That is, it must not be able to be fooled by 1880 * malicious DIF.) Given the lack of backwards branches in DIF, 1881 * solving this would presumably not amount to solving the Halting 1882 * Problem -- but it still seems awfully hard. 1883 */ 1884 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1885 ksize + dsize > chunksize) { 1886 dcpu->dtdsc_drops++; 1887 return (NULL); 1888 } 1889 1890 nstate = DTRACE_DSTATE_EMPTY; 1891 1892 do { 1893 retry: 1894 free = dcpu->dtdsc_free; 1895 1896 if (free == NULL) { 1897 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1898 void *rval; 1899 1900 if (clean == NULL) { 1901 /* 1902 * We're out of dynamic variable space on 1903 * this CPU. Unless we have tried all CPUs, 1904 * we'll try to allocate from a different 1905 * CPU. 1906 */ 1907 switch (dstate->dtds_state) { 1908 case DTRACE_DSTATE_CLEAN: { 1909 void *sp = &dstate->dtds_state; 1910 1911 if (++cpu >= NCPU) 1912 cpu = 0; 1913 1914 if (dcpu->dtdsc_dirty != NULL && 1915 nstate == DTRACE_DSTATE_EMPTY) 1916 nstate = DTRACE_DSTATE_DIRTY; 1917 1918 if (dcpu->dtdsc_rinsing != NULL) 1919 nstate = DTRACE_DSTATE_RINSING; 1920 1921 dcpu = &dstate->dtds_percpu[cpu]; 1922 1923 if (cpu != me) 1924 goto retry; 1925 1926 (void) dtrace_cas32(sp, 1927 DTRACE_DSTATE_CLEAN, nstate); 1928 1929 /* 1930 * To increment the correct bean 1931 * counter, take another lap. 1932 */ 1933 goto retry; 1934 } 1935 1936 case DTRACE_DSTATE_DIRTY: 1937 dcpu->dtdsc_dirty_drops++; 1938 break; 1939 1940 case DTRACE_DSTATE_RINSING: 1941 dcpu->dtdsc_rinsing_drops++; 1942 break; 1943 1944 case DTRACE_DSTATE_EMPTY: 1945 dcpu->dtdsc_drops++; 1946 break; 1947 } 1948 1949 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1950 return (NULL); 1951 } 1952 1953 /* 1954 * The clean list appears to be non-empty. We want to 1955 * move the clean list to the free list; we start by 1956 * moving the clean pointer aside. 1957 */ 1958 if (dtrace_casptr(&dcpu->dtdsc_clean, 1959 clean, NULL) != clean) { 1960 /* 1961 * We are in one of two situations: 1962 * 1963 * (a) The clean list was switched to the 1964 * free list by another CPU. 1965 * 1966 * (b) The clean list was added to by the 1967 * cleansing cyclic. 1968 * 1969 * In either of these situations, we can 1970 * just reattempt the free list allocation. 1971 */ 1972 goto retry; 1973 } 1974 1975 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1976 1977 /* 1978 * Now we'll move the clean list to our free list. 1979 * It's impossible for this to fail: the only way 1980 * the free list can be updated is through this 1981 * code path, and only one CPU can own the clean list. 1982 * Thus, it would only be possible for this to fail if 1983 * this code were racing with dtrace_dynvar_clean(). 1984 * (That is, if dtrace_dynvar_clean() updated the clean 1985 * list, and we ended up racing to update the free 1986 * list.) This race is prevented by the dtrace_sync() 1987 * in dtrace_dynvar_clean() -- which flushes the 1988 * owners of the clean lists out before resetting 1989 * the clean lists. 1990 */ 1991 dcpu = &dstate->dtds_percpu[me]; 1992 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1993 ASSERT(rval == NULL); 1994 goto retry; 1995 } 1996 1997 dvar = free; 1998 new_free = dvar->dtdv_next; 1999 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2000 2001 /* 2002 * We have now allocated a new chunk. We copy the tuple keys into the 2003 * tuple array and copy any referenced key data into the data space 2004 * following the tuple array. As we do this, we relocate dttk_value 2005 * in the final tuple to point to the key data address in the chunk. 2006 */ 2007 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2008 dvar->dtdv_data = (void *)(kdata + ksize); 2009 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2010 2011 for (i = 0; i < nkeys; i++) { 2012 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2013 size_t kesize = key[i].dttk_size; 2014 2015 if (kesize != 0) { 2016 dtrace_bcopy( 2017 (const void *)(uintptr_t)key[i].dttk_value, 2018 (void *)kdata, kesize); 2019 dkey->dttk_value = kdata; 2020 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2021 } else { 2022 dkey->dttk_value = key[i].dttk_value; 2023 } 2024 2025 dkey->dttk_size = kesize; 2026 } 2027 2028 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2029 dvar->dtdv_hashval = hashval; 2030 dvar->dtdv_next = start; 2031 2032 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2033 return (dvar); 2034 2035 /* 2036 * The cas has failed. Either another CPU is adding an element to 2037 * this hash chain, or another CPU is deleting an element from this 2038 * hash chain. The simplest way to deal with both of these cases 2039 * (though not necessarily the most efficient) is to free our 2040 * allocated block and tail-call ourselves. Note that the free is 2041 * to the dirty list and _not_ to the free list. This is to prevent 2042 * races with allocators, above. 2043 */ 2044 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2045 2046 dtrace_membar_producer(); 2047 2048 do { 2049 free = dcpu->dtdsc_dirty; 2050 dvar->dtdv_next = free; 2051 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2052 2053 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 2054 } 2055 2056 /*ARGSUSED*/ 2057 static void 2058 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2059 { 2060 if ((int64_t)nval < (int64_t)*oval) 2061 *oval = nval; 2062 } 2063 2064 /*ARGSUSED*/ 2065 static void 2066 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2067 { 2068 if ((int64_t)nval > (int64_t)*oval) 2069 *oval = nval; 2070 } 2071 2072 static void 2073 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2074 { 2075 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2076 int64_t val = (int64_t)nval; 2077 2078 if (val < 0) { 2079 for (i = 0; i < zero; i++) { 2080 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2081 quanta[i] += incr; 2082 return; 2083 } 2084 } 2085 } else { 2086 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2087 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2088 quanta[i - 1] += incr; 2089 return; 2090 } 2091 } 2092 2093 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2094 return; 2095 } 2096 2097 ASSERT(0); 2098 } 2099 2100 static void 2101 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2102 { 2103 uint64_t arg = *lquanta++; 2104 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2105 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2106 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2107 int32_t val = (int32_t)nval, level; 2108 2109 ASSERT(step != 0); 2110 ASSERT(levels != 0); 2111 2112 if (val < base) { 2113 /* 2114 * This is an underflow. 2115 */ 2116 lquanta[0] += incr; 2117 return; 2118 } 2119 2120 level = (val - base) / step; 2121 2122 if (level < levels) { 2123 lquanta[level + 1] += incr; 2124 return; 2125 } 2126 2127 /* 2128 * This is an overflow. 2129 */ 2130 lquanta[levels + 1] += incr; 2131 } 2132 2133 static int 2134 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2135 uint16_t high, uint16_t nsteps, int64_t value) 2136 { 2137 int64_t this = 1, last, next; 2138 int base = 1, order; 2139 2140 ASSERT(factor <= nsteps); 2141 ASSERT(nsteps % factor == 0); 2142 2143 for (order = 0; order < low; order++) 2144 this *= factor; 2145 2146 /* 2147 * If our value is less than our factor taken to the power of the 2148 * low order of magnitude, it goes into the zeroth bucket. 2149 */ 2150 if (value < (last = this)) 2151 return (0); 2152 2153 for (this *= factor; order <= high; order++) { 2154 int nbuckets = this > nsteps ? nsteps : this; 2155 2156 if ((next = this * factor) < this) { 2157 /* 2158 * We should not generally get log/linear quantizations 2159 * with a high magnitude that allows 64-bits to 2160 * overflow, but we nonetheless protect against this 2161 * by explicitly checking for overflow, and clamping 2162 * our value accordingly. 2163 */ 2164 value = this - 1; 2165 } 2166 2167 if (value < this) { 2168 /* 2169 * If our value lies within this order of magnitude, 2170 * determine its position by taking the offset within 2171 * the order of magnitude, dividing by the bucket 2172 * width, and adding to our (accumulated) base. 2173 */ 2174 return (base + (value - last) / (this / nbuckets)); 2175 } 2176 2177 base += nbuckets - (nbuckets / factor); 2178 last = this; 2179 this = next; 2180 } 2181 2182 /* 2183 * Our value is greater than or equal to our factor taken to the 2184 * power of one plus the high magnitude -- return the top bucket. 2185 */ 2186 return (base); 2187 } 2188 2189 static void 2190 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2191 { 2192 uint64_t arg = *llquanta++; 2193 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2194 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2195 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2196 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2197 2198 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2199 low, high, nsteps, nval)] += incr; 2200 } 2201 2202 /*ARGSUSED*/ 2203 static void 2204 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2205 { 2206 data[0]++; 2207 data[1] += nval; 2208 } 2209 2210 /*ARGSUSED*/ 2211 static void 2212 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2213 { 2214 int64_t snval = (int64_t)nval; 2215 uint64_t tmp[2]; 2216 2217 data[0]++; 2218 data[1] += nval; 2219 2220 /* 2221 * What we want to say here is: 2222 * 2223 * data[2] += nval * nval; 2224 * 2225 * But given that nval is 64-bit, we could easily overflow, so 2226 * we do this as 128-bit arithmetic. 2227 */ 2228 if (snval < 0) 2229 snval = -snval; 2230 2231 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2232 dtrace_add_128(data + 2, tmp, data + 2); 2233 } 2234 2235 /*ARGSUSED*/ 2236 static void 2237 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2238 { 2239 *oval = *oval + 1; 2240 } 2241 2242 /*ARGSUSED*/ 2243 static void 2244 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2245 { 2246 *oval += nval; 2247 } 2248 2249 /* 2250 * Aggregate given the tuple in the principal data buffer, and the aggregating 2251 * action denoted by the specified dtrace_aggregation_t. The aggregation 2252 * buffer is specified as the buf parameter. This routine does not return 2253 * failure; if there is no space in the aggregation buffer, the data will be 2254 * dropped, and a corresponding counter incremented. 2255 */ 2256 static void 2257 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2258 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2259 { 2260 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2261 uint32_t i, ndx, size, fsize; 2262 uint32_t align = sizeof (uint64_t) - 1; 2263 dtrace_aggbuffer_t *agb; 2264 dtrace_aggkey_t *key; 2265 uint32_t hashval = 0, limit, isstr; 2266 caddr_t tomax, data, kdata; 2267 dtrace_actkind_t action; 2268 dtrace_action_t *act; 2269 uintptr_t offs; 2270 2271 if (buf == NULL) 2272 return; 2273 2274 if (!agg->dtag_hasarg) { 2275 /* 2276 * Currently, only quantize() and lquantize() take additional 2277 * arguments, and they have the same semantics: an increment 2278 * value that defaults to 1 when not present. If additional 2279 * aggregating actions take arguments, the setting of the 2280 * default argument value will presumably have to become more 2281 * sophisticated... 2282 */ 2283 arg = 1; 2284 } 2285 2286 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2287 size = rec->dtrd_offset - agg->dtag_base; 2288 fsize = size + rec->dtrd_size; 2289 2290 ASSERT(dbuf->dtb_tomax != NULL); 2291 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2292 2293 if ((tomax = buf->dtb_tomax) == NULL) { 2294 dtrace_buffer_drop(buf); 2295 return; 2296 } 2297 2298 /* 2299 * The metastructure is always at the bottom of the buffer. 2300 */ 2301 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2302 sizeof (dtrace_aggbuffer_t)); 2303 2304 if (buf->dtb_offset == 0) { 2305 /* 2306 * We just kludge up approximately 1/8th of the size to be 2307 * buckets. If this guess ends up being routinely 2308 * off-the-mark, we may need to dynamically readjust this 2309 * based on past performance. 2310 */ 2311 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2312 2313 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2314 (uintptr_t)tomax || hashsize == 0) { 2315 /* 2316 * We've been given a ludicrously small buffer; 2317 * increment our drop count and leave. 2318 */ 2319 dtrace_buffer_drop(buf); 2320 return; 2321 } 2322 2323 /* 2324 * And now, a pathetic attempt to try to get a an odd (or 2325 * perchance, a prime) hash size for better hash distribution. 2326 */ 2327 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2328 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2329 2330 agb->dtagb_hashsize = hashsize; 2331 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2332 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2333 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2334 2335 for (i = 0; i < agb->dtagb_hashsize; i++) 2336 agb->dtagb_hash[i] = NULL; 2337 } 2338 2339 ASSERT(agg->dtag_first != NULL); 2340 ASSERT(agg->dtag_first->dta_intuple); 2341 2342 /* 2343 * Calculate the hash value based on the key. Note that we _don't_ 2344 * include the aggid in the hashing (but we will store it as part of 2345 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2346 * algorithm: a simple, quick algorithm that has no known funnels, and 2347 * gets good distribution in practice. The efficacy of the hashing 2348 * algorithm (and a comparison with other algorithms) may be found by 2349 * running the ::dtrace_aggstat MDB dcmd. 2350 */ 2351 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2352 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2353 limit = i + act->dta_rec.dtrd_size; 2354 ASSERT(limit <= size); 2355 isstr = DTRACEACT_ISSTRING(act); 2356 2357 for (; i < limit; i++) { 2358 hashval += data[i]; 2359 hashval += (hashval << 10); 2360 hashval ^= (hashval >> 6); 2361 2362 if (isstr && data[i] == '\0') 2363 break; 2364 } 2365 } 2366 2367 hashval += (hashval << 3); 2368 hashval ^= (hashval >> 11); 2369 hashval += (hashval << 15); 2370 2371 /* 2372 * Yes, the divide here is expensive -- but it's generally the least 2373 * of the performance issues given the amount of data that we iterate 2374 * over to compute hash values, compare data, etc. 2375 */ 2376 ndx = hashval % agb->dtagb_hashsize; 2377 2378 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2379 ASSERT((caddr_t)key >= tomax); 2380 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2381 2382 if (hashval != key->dtak_hashval || key->dtak_size != size) 2383 continue; 2384 2385 kdata = key->dtak_data; 2386 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2387 2388 for (act = agg->dtag_first; act->dta_intuple; 2389 act = act->dta_next) { 2390 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2391 limit = i + act->dta_rec.dtrd_size; 2392 ASSERT(limit <= size); 2393 isstr = DTRACEACT_ISSTRING(act); 2394 2395 for (; i < limit; i++) { 2396 if (kdata[i] != data[i]) 2397 goto next; 2398 2399 if (isstr && data[i] == '\0') 2400 break; 2401 } 2402 } 2403 2404 if (action != key->dtak_action) { 2405 /* 2406 * We are aggregating on the same value in the same 2407 * aggregation with two different aggregating actions. 2408 * (This should have been picked up in the compiler, 2409 * so we may be dealing with errant or devious DIF.) 2410 * This is an error condition; we indicate as much, 2411 * and return. 2412 */ 2413 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2414 return; 2415 } 2416 2417 /* 2418 * This is a hit: we need to apply the aggregator to 2419 * the value at this key. 2420 */ 2421 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2422 return; 2423 next: 2424 continue; 2425 } 2426 2427 /* 2428 * We didn't find it. We need to allocate some zero-filled space, 2429 * link it into the hash table appropriately, and apply the aggregator 2430 * to the (zero-filled) value. 2431 */ 2432 offs = buf->dtb_offset; 2433 while (offs & (align - 1)) 2434 offs += sizeof (uint32_t); 2435 2436 /* 2437 * If we don't have enough room to both allocate a new key _and_ 2438 * its associated data, increment the drop count and return. 2439 */ 2440 if ((uintptr_t)tomax + offs + fsize > 2441 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2442 dtrace_buffer_drop(buf); 2443 return; 2444 } 2445 2446 /*CONSTCOND*/ 2447 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2448 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2449 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2450 2451 key->dtak_data = kdata = tomax + offs; 2452 buf->dtb_offset = offs + fsize; 2453 2454 /* 2455 * Now copy the data across. 2456 */ 2457 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2458 2459 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2460 kdata[i] = data[i]; 2461 2462 /* 2463 * Because strings are not zeroed out by default, we need to iterate 2464 * looking for actions that store strings, and we need to explicitly 2465 * pad these strings out with zeroes. 2466 */ 2467 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2468 int nul; 2469 2470 if (!DTRACEACT_ISSTRING(act)) 2471 continue; 2472 2473 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2474 limit = i + act->dta_rec.dtrd_size; 2475 ASSERT(limit <= size); 2476 2477 for (nul = 0; i < limit; i++) { 2478 if (nul) { 2479 kdata[i] = '\0'; 2480 continue; 2481 } 2482 2483 if (data[i] != '\0') 2484 continue; 2485 2486 nul = 1; 2487 } 2488 } 2489 2490 for (i = size; i < fsize; i++) 2491 kdata[i] = 0; 2492 2493 key->dtak_hashval = hashval; 2494 key->dtak_size = size; 2495 key->dtak_action = action; 2496 key->dtak_next = agb->dtagb_hash[ndx]; 2497 agb->dtagb_hash[ndx] = key; 2498 2499 /* 2500 * Finally, apply the aggregator. 2501 */ 2502 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2503 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2504 } 2505 2506 /* 2507 * Given consumer state, this routine finds a speculation in the INACTIVE 2508 * state and transitions it into the ACTIVE state. If there is no speculation 2509 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2510 * incremented -- it is up to the caller to take appropriate action. 2511 */ 2512 static int 2513 dtrace_speculation(dtrace_state_t *state) 2514 { 2515 int i = 0; 2516 dtrace_speculation_state_t current; 2517 uint32_t *stat = &state->dts_speculations_unavail, count; 2518 2519 while (i < state->dts_nspeculations) { 2520 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2521 2522 current = spec->dtsp_state; 2523 2524 if (current != DTRACESPEC_INACTIVE) { 2525 if (current == DTRACESPEC_COMMITTINGMANY || 2526 current == DTRACESPEC_COMMITTING || 2527 current == DTRACESPEC_DISCARDING) 2528 stat = &state->dts_speculations_busy; 2529 i++; 2530 continue; 2531 } 2532 2533 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2534 current, DTRACESPEC_ACTIVE) == current) 2535 return (i + 1); 2536 } 2537 2538 /* 2539 * We couldn't find a speculation. If we found as much as a single 2540 * busy speculation buffer, we'll attribute this failure as "busy" 2541 * instead of "unavail". 2542 */ 2543 do { 2544 count = *stat; 2545 } while (dtrace_cas32(stat, count, count + 1) != count); 2546 2547 return (0); 2548 } 2549 2550 /* 2551 * This routine commits an active speculation. If the specified speculation 2552 * is not in a valid state to perform a commit(), this routine will silently do 2553 * nothing. The state of the specified speculation is transitioned according 2554 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2555 */ 2556 static void 2557 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2558 dtrace_specid_t which) 2559 { 2560 dtrace_speculation_t *spec; 2561 dtrace_buffer_t *src, *dest; 2562 uintptr_t daddr, saddr, dlimit, slimit; 2563 dtrace_speculation_state_t current, new; 2564 intptr_t offs; 2565 uint64_t timestamp; 2566 2567 if (which == 0) 2568 return; 2569 2570 if (which > state->dts_nspeculations) { 2571 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2572 return; 2573 } 2574 2575 spec = &state->dts_speculations[which - 1]; 2576 src = &spec->dtsp_buffer[cpu]; 2577 dest = &state->dts_buffer[cpu]; 2578 2579 do { 2580 current = spec->dtsp_state; 2581 2582 if (current == DTRACESPEC_COMMITTINGMANY) 2583 break; 2584 2585 switch (current) { 2586 case DTRACESPEC_INACTIVE: 2587 case DTRACESPEC_DISCARDING: 2588 return; 2589 2590 case DTRACESPEC_COMMITTING: 2591 /* 2592 * This is only possible if we are (a) commit()'ing 2593 * without having done a prior speculate() on this CPU 2594 * and (b) racing with another commit() on a different 2595 * CPU. There's nothing to do -- we just assert that 2596 * our offset is 0. 2597 */ 2598 ASSERT(src->dtb_offset == 0); 2599 return; 2600 2601 case DTRACESPEC_ACTIVE: 2602 new = DTRACESPEC_COMMITTING; 2603 break; 2604 2605 case DTRACESPEC_ACTIVEONE: 2606 /* 2607 * This speculation is active on one CPU. If our 2608 * buffer offset is non-zero, we know that the one CPU 2609 * must be us. Otherwise, we are committing on a 2610 * different CPU from the speculate(), and we must 2611 * rely on being asynchronously cleaned. 2612 */ 2613 if (src->dtb_offset != 0) { 2614 new = DTRACESPEC_COMMITTING; 2615 break; 2616 } 2617 /*FALLTHROUGH*/ 2618 2619 case DTRACESPEC_ACTIVEMANY: 2620 new = DTRACESPEC_COMMITTINGMANY; 2621 break; 2622 2623 default: 2624 ASSERT(0); 2625 } 2626 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2627 current, new) != current); 2628 2629 /* 2630 * We have set the state to indicate that we are committing this 2631 * speculation. Now reserve the necessary space in the destination 2632 * buffer. 2633 */ 2634 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2635 sizeof (uint64_t), state, NULL)) < 0) { 2636 dtrace_buffer_drop(dest); 2637 goto out; 2638 } 2639 2640 /* 2641 * We have sufficient space to copy the speculative buffer into the 2642 * primary buffer. First, modify the speculative buffer, filling 2643 * in the timestamp of all entries with the current time. The data 2644 * must have the commit() time rather than the time it was traced, 2645 * so that all entries in the primary buffer are in timestamp order. 2646 */ 2647 timestamp = dtrace_gethrtime(); 2648 saddr = (uintptr_t)src->dtb_tomax; 2649 slimit = saddr + src->dtb_offset; 2650 while (saddr < slimit) { 2651 size_t size; 2652 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2653 2654 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2655 saddr += sizeof (dtrace_epid_t); 2656 continue; 2657 } 2658 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2659 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2660 2661 ASSERT3U(saddr + size, <=, slimit); 2662 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2663 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2664 2665 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2666 2667 saddr += size; 2668 } 2669 2670 /* 2671 * Copy the buffer across. (Note that this is a 2672 * highly subobtimal bcopy(); in the unlikely event that this becomes 2673 * a serious performance issue, a high-performance DTrace-specific 2674 * bcopy() should obviously be invented.) 2675 */ 2676 daddr = (uintptr_t)dest->dtb_tomax + offs; 2677 dlimit = daddr + src->dtb_offset; 2678 saddr = (uintptr_t)src->dtb_tomax; 2679 2680 /* 2681 * First, the aligned portion. 2682 */ 2683 while (dlimit - daddr >= sizeof (uint64_t)) { 2684 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2685 2686 daddr += sizeof (uint64_t); 2687 saddr += sizeof (uint64_t); 2688 } 2689 2690 /* 2691 * Now any left-over bit... 2692 */ 2693 while (dlimit - daddr) 2694 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2695 2696 /* 2697 * Finally, commit the reserved space in the destination buffer. 2698 */ 2699 dest->dtb_offset = offs + src->dtb_offset; 2700 2701 out: 2702 /* 2703 * If we're lucky enough to be the only active CPU on this speculation 2704 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2705 */ 2706 if (current == DTRACESPEC_ACTIVE || 2707 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2708 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2709 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2710 2711 ASSERT(rval == DTRACESPEC_COMMITTING); 2712 } 2713 2714 src->dtb_offset = 0; 2715 src->dtb_xamot_drops += src->dtb_drops; 2716 src->dtb_drops = 0; 2717 } 2718 2719 /* 2720 * This routine discards an active speculation. If the specified speculation 2721 * is not in a valid state to perform a discard(), this routine will silently 2722 * do nothing. The state of the specified speculation is transitioned 2723 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2724 */ 2725 static void 2726 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2727 dtrace_specid_t which) 2728 { 2729 dtrace_speculation_t *spec; 2730 dtrace_speculation_state_t current, new; 2731 dtrace_buffer_t *buf; 2732 2733 if (which == 0) 2734 return; 2735 2736 if (which > state->dts_nspeculations) { 2737 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2738 return; 2739 } 2740 2741 spec = &state->dts_speculations[which - 1]; 2742 buf = &spec->dtsp_buffer[cpu]; 2743 2744 do { 2745 current = spec->dtsp_state; 2746 2747 switch (current) { 2748 case DTRACESPEC_INACTIVE: 2749 case DTRACESPEC_COMMITTINGMANY: 2750 case DTRACESPEC_COMMITTING: 2751 case DTRACESPEC_DISCARDING: 2752 return; 2753 2754 case DTRACESPEC_ACTIVE: 2755 case DTRACESPEC_ACTIVEMANY: 2756 new = DTRACESPEC_DISCARDING; 2757 break; 2758 2759 case DTRACESPEC_ACTIVEONE: 2760 if (buf->dtb_offset != 0) { 2761 new = DTRACESPEC_INACTIVE; 2762 } else { 2763 new = DTRACESPEC_DISCARDING; 2764 } 2765 break; 2766 2767 default: 2768 ASSERT(0); 2769 } 2770 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2771 current, new) != current); 2772 2773 buf->dtb_offset = 0; 2774 buf->dtb_drops = 0; 2775 } 2776 2777 /* 2778 * Note: not called from probe context. This function is called 2779 * asynchronously from cross call context to clean any speculations that are 2780 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2781 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2782 * speculation. 2783 */ 2784 static void 2785 dtrace_speculation_clean_here(dtrace_state_t *state) 2786 { 2787 dtrace_icookie_t cookie; 2788 processorid_t cpu = CPU->cpu_id; 2789 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2790 dtrace_specid_t i; 2791 2792 cookie = dtrace_interrupt_disable(); 2793 2794 if (dest->dtb_tomax == NULL) { 2795 dtrace_interrupt_enable(cookie); 2796 return; 2797 } 2798 2799 for (i = 0; i < state->dts_nspeculations; i++) { 2800 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2801 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2802 2803 if (src->dtb_tomax == NULL) 2804 continue; 2805 2806 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2807 src->dtb_offset = 0; 2808 continue; 2809 } 2810 2811 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2812 continue; 2813 2814 if (src->dtb_offset == 0) 2815 continue; 2816 2817 dtrace_speculation_commit(state, cpu, i + 1); 2818 } 2819 2820 dtrace_interrupt_enable(cookie); 2821 } 2822 2823 /* 2824 * Note: not called from probe context. This function is called 2825 * asynchronously (and at a regular interval) to clean any speculations that 2826 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2827 * is work to be done, it cross calls all CPUs to perform that work; 2828 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2829 * INACTIVE state until they have been cleaned by all CPUs. 2830 */ 2831 static void 2832 dtrace_speculation_clean(dtrace_state_t *state) 2833 { 2834 int work = 0, rv; 2835 dtrace_specid_t i; 2836 2837 for (i = 0; i < state->dts_nspeculations; i++) { 2838 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2839 2840 ASSERT(!spec->dtsp_cleaning); 2841 2842 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2843 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2844 continue; 2845 2846 work++; 2847 spec->dtsp_cleaning = 1; 2848 } 2849 2850 if (!work) 2851 return; 2852 2853 dtrace_xcall(DTRACE_CPUALL, 2854 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2855 2856 /* 2857 * We now know that all CPUs have committed or discarded their 2858 * speculation buffers, as appropriate. We can now set the state 2859 * to inactive. 2860 */ 2861 for (i = 0; i < state->dts_nspeculations; i++) { 2862 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2863 dtrace_speculation_state_t current, new; 2864 2865 if (!spec->dtsp_cleaning) 2866 continue; 2867 2868 current = spec->dtsp_state; 2869 ASSERT(current == DTRACESPEC_DISCARDING || 2870 current == DTRACESPEC_COMMITTINGMANY); 2871 2872 new = DTRACESPEC_INACTIVE; 2873 2874 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2875 ASSERT(rv == current); 2876 spec->dtsp_cleaning = 0; 2877 } 2878 } 2879 2880 /* 2881 * Called as part of a speculate() to get the speculative buffer associated 2882 * with a given speculation. Returns NULL if the specified speculation is not 2883 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2884 * the active CPU is not the specified CPU -- the speculation will be 2885 * atomically transitioned into the ACTIVEMANY state. 2886 */ 2887 static dtrace_buffer_t * 2888 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2889 dtrace_specid_t which) 2890 { 2891 dtrace_speculation_t *spec; 2892 dtrace_speculation_state_t current, new; 2893 dtrace_buffer_t *buf; 2894 2895 if (which == 0) 2896 return (NULL); 2897 2898 if (which > state->dts_nspeculations) { 2899 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2900 return (NULL); 2901 } 2902 2903 spec = &state->dts_speculations[which - 1]; 2904 buf = &spec->dtsp_buffer[cpuid]; 2905 2906 do { 2907 current = spec->dtsp_state; 2908 2909 switch (current) { 2910 case DTRACESPEC_INACTIVE: 2911 case DTRACESPEC_COMMITTINGMANY: 2912 case DTRACESPEC_DISCARDING: 2913 return (NULL); 2914 2915 case DTRACESPEC_COMMITTING: 2916 ASSERT(buf->dtb_offset == 0); 2917 return (NULL); 2918 2919 case DTRACESPEC_ACTIVEONE: 2920 /* 2921 * This speculation is currently active on one CPU. 2922 * Check the offset in the buffer; if it's non-zero, 2923 * that CPU must be us (and we leave the state alone). 2924 * If it's zero, assume that we're starting on a new 2925 * CPU -- and change the state to indicate that the 2926 * speculation is active on more than one CPU. 2927 */ 2928 if (buf->dtb_offset != 0) 2929 return (buf); 2930 2931 new = DTRACESPEC_ACTIVEMANY; 2932 break; 2933 2934 case DTRACESPEC_ACTIVEMANY: 2935 return (buf); 2936 2937 case DTRACESPEC_ACTIVE: 2938 new = DTRACESPEC_ACTIVEONE; 2939 break; 2940 2941 default: 2942 ASSERT(0); 2943 } 2944 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2945 current, new) != current); 2946 2947 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2948 return (buf); 2949 } 2950 2951 /* 2952 * Return a string. In the event that the user lacks the privilege to access 2953 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2954 * don't fail access checking. 2955 * 2956 * dtrace_dif_variable() uses this routine as a helper for various 2957 * builtin values such as 'execname' and 'probefunc.' 2958 */ 2959 uintptr_t 2960 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2961 dtrace_mstate_t *mstate) 2962 { 2963 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2964 uintptr_t ret; 2965 size_t strsz; 2966 2967 /* 2968 * The easy case: this probe is allowed to read all of memory, so 2969 * we can just return this as a vanilla pointer. 2970 */ 2971 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2972 return (addr); 2973 2974 /* 2975 * This is the tougher case: we copy the string in question from 2976 * kernel memory into scratch memory and return it that way: this 2977 * ensures that we won't trip up when access checking tests the 2978 * BYREF return value. 2979 */ 2980 strsz = dtrace_strlen((char *)addr, size) + 1; 2981 2982 if (mstate->dtms_scratch_ptr + strsz > 2983 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2984 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2985 return (NULL); 2986 } 2987 2988 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2989 strsz); 2990 ret = mstate->dtms_scratch_ptr; 2991 mstate->dtms_scratch_ptr += strsz; 2992 return (ret); 2993 } 2994 2995 /* 2996 * This function implements the DIF emulator's variable lookups. The emulator 2997 * passes a reserved variable identifier and optional built-in array index. 2998 */ 2999 static uint64_t 3000 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3001 uint64_t ndx) 3002 { 3003 /* 3004 * If we're accessing one of the uncached arguments, we'll turn this 3005 * into a reference in the args array. 3006 */ 3007 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3008 ndx = v - DIF_VAR_ARG0; 3009 v = DIF_VAR_ARGS; 3010 } 3011 3012 switch (v) { 3013 case DIF_VAR_ARGS: 3014 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3015 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3016 CPU_DTRACE_KPRIV; 3017 return (0); 3018 } 3019 3020 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3021 if (ndx >= sizeof (mstate->dtms_arg) / 3022 sizeof (mstate->dtms_arg[0])) { 3023 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3024 dtrace_provider_t *pv; 3025 uint64_t val; 3026 3027 pv = mstate->dtms_probe->dtpr_provider; 3028 if (pv->dtpv_pops.dtps_getargval != NULL) 3029 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3030 mstate->dtms_probe->dtpr_id, 3031 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3032 else 3033 val = dtrace_getarg(ndx, aframes); 3034 3035 /* 3036 * This is regrettably required to keep the compiler 3037 * from tail-optimizing the call to dtrace_getarg(). 3038 * The condition always evaluates to true, but the 3039 * compiler has no way of figuring that out a priori. 3040 * (None of this would be necessary if the compiler 3041 * could be relied upon to _always_ tail-optimize 3042 * the call to dtrace_getarg() -- but it can't.) 3043 */ 3044 if (mstate->dtms_probe != NULL) 3045 return (val); 3046 3047 ASSERT(0); 3048 } 3049 3050 return (mstate->dtms_arg[ndx]); 3051 3052 case DIF_VAR_UREGS: { 3053 klwp_t *lwp; 3054 3055 if (!dtrace_priv_proc(state, mstate)) 3056 return (0); 3057 3058 if ((lwp = curthread->t_lwp) == NULL) { 3059 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3060 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3061 return (0); 3062 } 3063 3064 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3065 } 3066 3067 case DIF_VAR_VMREGS: { 3068 uint64_t rval; 3069 3070 if (!dtrace_priv_kernel(state)) 3071 return (0); 3072 3073 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3074 3075 rval = dtrace_getvmreg(ndx, 3076 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3077 3078 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3079 3080 return (rval); 3081 } 3082 3083 case DIF_VAR_CURTHREAD: 3084 if (!dtrace_priv_proc(state, mstate)) 3085 return (0); 3086 return ((uint64_t)(uintptr_t)curthread); 3087 3088 case DIF_VAR_TIMESTAMP: 3089 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3090 mstate->dtms_timestamp = dtrace_gethrtime(); 3091 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3092 } 3093 return (mstate->dtms_timestamp); 3094 3095 case DIF_VAR_VTIMESTAMP: 3096 ASSERT(dtrace_vtime_references != 0); 3097 return (curthread->t_dtrace_vtime); 3098 3099 case DIF_VAR_WALLTIMESTAMP: 3100 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3101 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3102 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3103 } 3104 return (mstate->dtms_walltimestamp); 3105 3106 case DIF_VAR_IPL: 3107 if (!dtrace_priv_kernel(state)) 3108 return (0); 3109 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3110 mstate->dtms_ipl = dtrace_getipl(); 3111 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3112 } 3113 return (mstate->dtms_ipl); 3114 3115 case DIF_VAR_EPID: 3116 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3117 return (mstate->dtms_epid); 3118 3119 case DIF_VAR_ID: 3120 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3121 return (mstate->dtms_probe->dtpr_id); 3122 3123 case DIF_VAR_STACKDEPTH: 3124 if (!dtrace_priv_kernel(state)) 3125 return (0); 3126 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3127 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3128 3129 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3130 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3131 } 3132 return (mstate->dtms_stackdepth); 3133 3134 case DIF_VAR_USTACKDEPTH: 3135 if (!dtrace_priv_proc(state, mstate)) 3136 return (0); 3137 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3138 /* 3139 * See comment in DIF_VAR_PID. 3140 */ 3141 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3142 CPU_ON_INTR(CPU)) { 3143 mstate->dtms_ustackdepth = 0; 3144 } else { 3145 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3146 mstate->dtms_ustackdepth = 3147 dtrace_getustackdepth(); 3148 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3149 } 3150 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3151 } 3152 return (mstate->dtms_ustackdepth); 3153 3154 case DIF_VAR_CALLER: 3155 if (!dtrace_priv_kernel(state)) 3156 return (0); 3157 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3158 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3159 3160 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3161 /* 3162 * If this is an unanchored probe, we are 3163 * required to go through the slow path: 3164 * dtrace_caller() only guarantees correct 3165 * results for anchored probes. 3166 */ 3167 pc_t caller[2]; 3168 3169 dtrace_getpcstack(caller, 2, aframes, 3170 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3171 mstate->dtms_caller = caller[1]; 3172 } else if ((mstate->dtms_caller = 3173 dtrace_caller(aframes)) == -1) { 3174 /* 3175 * We have failed to do this the quick way; 3176 * we must resort to the slower approach of 3177 * calling dtrace_getpcstack(). 3178 */ 3179 pc_t caller; 3180 3181 dtrace_getpcstack(&caller, 1, aframes, NULL); 3182 mstate->dtms_caller = caller; 3183 } 3184 3185 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3186 } 3187 return (mstate->dtms_caller); 3188 3189 case DIF_VAR_UCALLER: 3190 if (!dtrace_priv_proc(state, mstate)) 3191 return (0); 3192 3193 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3194 uint64_t ustack[3]; 3195 3196 /* 3197 * dtrace_getupcstack() fills in the first uint64_t 3198 * with the current PID. The second uint64_t will 3199 * be the program counter at user-level. The third 3200 * uint64_t will contain the caller, which is what 3201 * we're after. 3202 */ 3203 ustack[2] = NULL; 3204 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3205 dtrace_getupcstack(ustack, 3); 3206 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3207 mstate->dtms_ucaller = ustack[2]; 3208 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3209 } 3210 3211 return (mstate->dtms_ucaller); 3212 3213 case DIF_VAR_PROBEPROV: 3214 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3215 return (dtrace_dif_varstr( 3216 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3217 state, mstate)); 3218 3219 case DIF_VAR_PROBEMOD: 3220 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3221 return (dtrace_dif_varstr( 3222 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3223 state, mstate)); 3224 3225 case DIF_VAR_PROBEFUNC: 3226 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3227 return (dtrace_dif_varstr( 3228 (uintptr_t)mstate->dtms_probe->dtpr_func, 3229 state, mstate)); 3230 3231 case DIF_VAR_PROBENAME: 3232 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3233 return (dtrace_dif_varstr( 3234 (uintptr_t)mstate->dtms_probe->dtpr_name, 3235 state, mstate)); 3236 3237 case DIF_VAR_PID: 3238 if (!dtrace_priv_proc(state, mstate)) 3239 return (0); 3240 3241 /* 3242 * Note that we are assuming that an unanchored probe is 3243 * always due to a high-level interrupt. (And we're assuming 3244 * that there is only a single high level interrupt.) 3245 */ 3246 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3247 return (pid0.pid_id); 3248 3249 /* 3250 * It is always safe to dereference one's own t_procp pointer: 3251 * it always points to a valid, allocated proc structure. 3252 * Further, it is always safe to dereference the p_pidp member 3253 * of one's own proc structure. (These are truisms becuase 3254 * threads and processes don't clean up their own state -- 3255 * they leave that task to whomever reaps them.) 3256 */ 3257 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3258 3259 case DIF_VAR_PPID: 3260 if (!dtrace_priv_proc(state, mstate)) 3261 return (0); 3262 3263 /* 3264 * See comment in DIF_VAR_PID. 3265 */ 3266 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3267 return (pid0.pid_id); 3268 3269 /* 3270 * It is always safe to dereference one's own t_procp pointer: 3271 * it always points to a valid, allocated proc structure. 3272 * (This is true because threads don't clean up their own 3273 * state -- they leave that task to whomever reaps them.) 3274 */ 3275 return ((uint64_t)curthread->t_procp->p_ppid); 3276 3277 case DIF_VAR_TID: 3278 /* 3279 * See comment in DIF_VAR_PID. 3280 */ 3281 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3282 return (0); 3283 3284 return ((uint64_t)curthread->t_tid); 3285 3286 case DIF_VAR_EXECNAME: 3287 if (!dtrace_priv_proc(state, mstate)) 3288 return (0); 3289 3290 /* 3291 * See comment in DIF_VAR_PID. 3292 */ 3293 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3294 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3295 3296 /* 3297 * It is always safe to dereference one's own t_procp pointer: 3298 * it always points to a valid, allocated proc structure. 3299 * (This is true because threads don't clean up their own 3300 * state -- they leave that task to whomever reaps them.) 3301 */ 3302 return (dtrace_dif_varstr( 3303 (uintptr_t)curthread->t_procp->p_user.u_comm, 3304 state, mstate)); 3305 3306 case DIF_VAR_ZONENAME: 3307 if (!dtrace_priv_proc(state, mstate)) 3308 return (0); 3309 3310 /* 3311 * See comment in DIF_VAR_PID. 3312 */ 3313 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3314 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3315 3316 /* 3317 * It is always safe to dereference one's own t_procp pointer: 3318 * it always points to a valid, allocated proc structure. 3319 * (This is true because threads don't clean up their own 3320 * state -- they leave that task to whomever reaps them.) 3321 */ 3322 return (dtrace_dif_varstr( 3323 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3324 state, mstate)); 3325 3326 case DIF_VAR_UID: 3327 if (!dtrace_priv_proc(state, mstate)) 3328 return (0); 3329 3330 /* 3331 * See comment in DIF_VAR_PID. 3332 */ 3333 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3334 return ((uint64_t)p0.p_cred->cr_uid); 3335 3336 /* 3337 * It is always safe to dereference one's own t_procp pointer: 3338 * it always points to a valid, allocated proc structure. 3339 * (This is true because threads don't clean up their own 3340 * state -- they leave that task to whomever reaps them.) 3341 * 3342 * Additionally, it is safe to dereference one's own process 3343 * credential, since this is never NULL after process birth. 3344 */ 3345 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3346 3347 case DIF_VAR_GID: 3348 if (!dtrace_priv_proc(state, mstate)) 3349 return (0); 3350 3351 /* 3352 * See comment in DIF_VAR_PID. 3353 */ 3354 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3355 return ((uint64_t)p0.p_cred->cr_gid); 3356 3357 /* 3358 * It is always safe to dereference one's own t_procp pointer: 3359 * it always points to a valid, allocated proc structure. 3360 * (This is true because threads don't clean up their own 3361 * state -- they leave that task to whomever reaps them.) 3362 * 3363 * Additionally, it is safe to dereference one's own process 3364 * credential, since this is never NULL after process birth. 3365 */ 3366 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3367 3368 case DIF_VAR_ERRNO: { 3369 klwp_t *lwp; 3370 if (!dtrace_priv_proc(state, mstate)) 3371 return (0); 3372 3373 /* 3374 * See comment in DIF_VAR_PID. 3375 */ 3376 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3377 return (0); 3378 3379 /* 3380 * It is always safe to dereference one's own t_lwp pointer in 3381 * the event that this pointer is non-NULL. (This is true 3382 * because threads and lwps don't clean up their own state -- 3383 * they leave that task to whomever reaps them.) 3384 */ 3385 if ((lwp = curthread->t_lwp) == NULL) 3386 return (0); 3387 3388 return ((uint64_t)lwp->lwp_errno); 3389 } 3390 default: 3391 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3392 return (0); 3393 } 3394 } 3395 3396 3397 typedef enum dtrace_json_state { 3398 DTRACE_JSON_REST = 1, 3399 DTRACE_JSON_OBJECT, 3400 DTRACE_JSON_STRING, 3401 DTRACE_JSON_STRING_ESCAPE, 3402 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3403 DTRACE_JSON_COLON, 3404 DTRACE_JSON_COMMA, 3405 DTRACE_JSON_VALUE, 3406 DTRACE_JSON_IDENTIFIER, 3407 DTRACE_JSON_NUMBER, 3408 DTRACE_JSON_NUMBER_FRAC, 3409 DTRACE_JSON_NUMBER_EXP, 3410 DTRACE_JSON_COLLECT_OBJECT 3411 } dtrace_json_state_t; 3412 3413 /* 3414 * This function possesses just enough knowledge about JSON to extract a single 3415 * value from a JSON string and store it in the scratch buffer. It is able 3416 * to extract nested object values, and members of arrays by index. 3417 * 3418 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3419 * be looked up as we descend into the object tree. e.g. 3420 * 3421 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3422 * with nelems = 5. 3423 * 3424 * The run time of this function must be bounded above by strsize to limit the 3425 * amount of work done in probe context. As such, it is implemented as a 3426 * simple state machine, reading one character at a time using safe loads 3427 * until we find the requested element, hit a parsing error or run off the 3428 * end of the object or string. 3429 * 3430 * As there is no way for a subroutine to return an error without interrupting 3431 * clause execution, we simply return NULL in the event of a missing key or any 3432 * other error condition. Each NULL return in this function is commented with 3433 * the error condition it represents -- parsing or otherwise. 3434 * 3435 * The set of states for the state machine closely matches the JSON 3436 * specification (http://json.org/). Briefly: 3437 * 3438 * DTRACE_JSON_REST: 3439 * Skip whitespace until we find either a top-level Object, moving 3440 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3441 * 3442 * DTRACE_JSON_OBJECT: 3443 * Locate the next key String in an Object. Sets a flag to denote 3444 * the next String as a key string and moves to DTRACE_JSON_STRING. 3445 * 3446 * DTRACE_JSON_COLON: 3447 * Skip whitespace until we find the colon that separates key Strings 3448 * from their values. Once found, move to DTRACE_JSON_VALUE. 3449 * 3450 * DTRACE_JSON_VALUE: 3451 * Detects the type of the next value (String, Number, Identifier, Object 3452 * or Array) and routes to the states that process that type. Here we also 3453 * deal with the element selector list if we are requested to traverse down 3454 * into the object tree. 3455 * 3456 * DTRACE_JSON_COMMA: 3457 * Skip whitespace until we find the comma that separates key-value pairs 3458 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3459 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3460 * states return to this state at the end of their value, unless otherwise 3461 * noted. 3462 * 3463 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3464 * Processes a Number literal from the JSON, including any exponent 3465 * component that may be present. Numbers are returned as strings, which 3466 * may be passed to strtoll() if an integer is required. 3467 * 3468 * DTRACE_JSON_IDENTIFIER: 3469 * Processes a "true", "false" or "null" literal in the JSON. 3470 * 3471 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3472 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3473 * Processes a String literal from the JSON, whether the String denotes 3474 * a key, a value or part of a larger Object. Handles all escape sequences 3475 * present in the specification, including four-digit unicode characters, 3476 * but merely includes the escape sequence without converting it to the 3477 * actual escaped character. If the String is flagged as a key, we 3478 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3479 * 3480 * DTRACE_JSON_COLLECT_OBJECT: 3481 * This state collects an entire Object (or Array), correctly handling 3482 * embedded strings. If the full element selector list matches this nested 3483 * object, we return the Object in full as a string. If not, we use this 3484 * state to skip to the next value at this level and continue processing. 3485 * 3486 * NOTE: This function uses various macros from strtolctype.h to manipulate 3487 * digit values, etc -- these have all been checked to ensure they make 3488 * no additional function calls. 3489 */ 3490 static char * 3491 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3492 char *dest) 3493 { 3494 dtrace_json_state_t state = DTRACE_JSON_REST; 3495 int64_t array_elem = INT64_MIN; 3496 int64_t array_pos = 0; 3497 uint8_t escape_unicount = 0; 3498 boolean_t string_is_key = B_FALSE; 3499 boolean_t collect_object = B_FALSE; 3500 boolean_t found_key = B_FALSE; 3501 boolean_t in_array = B_FALSE; 3502 uint32_t braces = 0, brackets = 0; 3503 char *elem = elemlist; 3504 char *dd = dest; 3505 uintptr_t cur; 3506 3507 for (cur = json; cur < json + size; cur++) { 3508 char cc = dtrace_load8(cur); 3509 if (cc == '\0') 3510 return (NULL); 3511 3512 switch (state) { 3513 case DTRACE_JSON_REST: 3514 if (isspace(cc)) 3515 break; 3516 3517 if (cc == '{') { 3518 state = DTRACE_JSON_OBJECT; 3519 break; 3520 } 3521 3522 if (cc == '[') { 3523 in_array = B_TRUE; 3524 array_pos = 0; 3525 array_elem = dtrace_strtoll(elem, 10, size); 3526 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3527 state = DTRACE_JSON_VALUE; 3528 break; 3529 } 3530 3531 /* 3532 * ERROR: expected to find a top-level object or array. 3533 */ 3534 return (NULL); 3535 case DTRACE_JSON_OBJECT: 3536 if (isspace(cc)) 3537 break; 3538 3539 if (cc == '"') { 3540 state = DTRACE_JSON_STRING; 3541 string_is_key = B_TRUE; 3542 break; 3543 } 3544 3545 /* 3546 * ERROR: either the object did not start with a key 3547 * string, or we've run off the end of the object 3548 * without finding the requested key. 3549 */ 3550 return (NULL); 3551 case DTRACE_JSON_STRING: 3552 if (cc == '\\') { 3553 *dd++ = '\\'; 3554 state = DTRACE_JSON_STRING_ESCAPE; 3555 break; 3556 } 3557 3558 if (cc == '"') { 3559 if (collect_object) { 3560 /* 3561 * We don't reset the dest here, as 3562 * the string is part of a larger 3563 * object being collected. 3564 */ 3565 *dd++ = cc; 3566 collect_object = B_FALSE; 3567 state = DTRACE_JSON_COLLECT_OBJECT; 3568 break; 3569 } 3570 *dd = '\0'; 3571 dd = dest; /* reset string buffer */ 3572 if (string_is_key) { 3573 if (dtrace_strncmp(dest, elem, 3574 size) == 0) 3575 found_key = B_TRUE; 3576 } else if (found_key) { 3577 if (nelems > 1) { 3578 /* 3579 * We expected an object, not 3580 * this string. 3581 */ 3582 return (NULL); 3583 } 3584 return (dest); 3585 } 3586 state = string_is_key ? DTRACE_JSON_COLON : 3587 DTRACE_JSON_COMMA; 3588 string_is_key = B_FALSE; 3589 break; 3590 } 3591 3592 *dd++ = cc; 3593 break; 3594 case DTRACE_JSON_STRING_ESCAPE: 3595 *dd++ = cc; 3596 if (cc == 'u') { 3597 escape_unicount = 0; 3598 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3599 } else { 3600 state = DTRACE_JSON_STRING; 3601 } 3602 break; 3603 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3604 if (!isxdigit(cc)) { 3605 /* 3606 * ERROR: invalid unicode escape, expected 3607 * four valid hexidecimal digits. 3608 */ 3609 return (NULL); 3610 } 3611 3612 *dd++ = cc; 3613 if (++escape_unicount == 4) 3614 state = DTRACE_JSON_STRING; 3615 break; 3616 case DTRACE_JSON_COLON: 3617 if (isspace(cc)) 3618 break; 3619 3620 if (cc == ':') { 3621 state = DTRACE_JSON_VALUE; 3622 break; 3623 } 3624 3625 /* 3626 * ERROR: expected a colon. 3627 */ 3628 return (NULL); 3629 case DTRACE_JSON_COMMA: 3630 if (isspace(cc)) 3631 break; 3632 3633 if (cc == ',') { 3634 if (in_array) { 3635 state = DTRACE_JSON_VALUE; 3636 if (++array_pos == array_elem) 3637 found_key = B_TRUE; 3638 } else { 3639 state = DTRACE_JSON_OBJECT; 3640 } 3641 break; 3642 } 3643 3644 /* 3645 * ERROR: either we hit an unexpected character, or 3646 * we reached the end of the object or array without 3647 * finding the requested key. 3648 */ 3649 return (NULL); 3650 case DTRACE_JSON_IDENTIFIER: 3651 if (islower(cc)) { 3652 *dd++ = cc; 3653 break; 3654 } 3655 3656 *dd = '\0'; 3657 dd = dest; /* reset string buffer */ 3658 3659 if (dtrace_strncmp(dest, "true", 5) == 0 || 3660 dtrace_strncmp(dest, "false", 6) == 0 || 3661 dtrace_strncmp(dest, "null", 5) == 0) { 3662 if (found_key) { 3663 if (nelems > 1) { 3664 /* 3665 * ERROR: We expected an object, 3666 * not this identifier. 3667 */ 3668 return (NULL); 3669 } 3670 return (dest); 3671 } else { 3672 cur--; 3673 state = DTRACE_JSON_COMMA; 3674 break; 3675 } 3676 } 3677 3678 /* 3679 * ERROR: we did not recognise the identifier as one 3680 * of those in the JSON specification. 3681 */ 3682 return (NULL); 3683 case DTRACE_JSON_NUMBER: 3684 if (cc == '.') { 3685 *dd++ = cc; 3686 state = DTRACE_JSON_NUMBER_FRAC; 3687 break; 3688 } 3689 3690 if (cc == 'x' || cc == 'X') { 3691 /* 3692 * ERROR: specification explicitly excludes 3693 * hexidecimal or octal numbers. 3694 */ 3695 return (NULL); 3696 } 3697 3698 /* FALLTHRU */ 3699 case DTRACE_JSON_NUMBER_FRAC: 3700 if (cc == 'e' || cc == 'E') { 3701 *dd++ = cc; 3702 state = DTRACE_JSON_NUMBER_EXP; 3703 break; 3704 } 3705 3706 if (cc == '+' || cc == '-') { 3707 /* 3708 * ERROR: expect sign as part of exponent only. 3709 */ 3710 return (NULL); 3711 } 3712 /* FALLTHRU */ 3713 case DTRACE_JSON_NUMBER_EXP: 3714 if (isdigit(cc) || cc == '+' || cc == '-') { 3715 *dd++ = cc; 3716 break; 3717 } 3718 3719 *dd = '\0'; 3720 dd = dest; /* reset string buffer */ 3721 if (found_key) { 3722 if (nelems > 1) { 3723 /* 3724 * ERROR: We expected an object, not 3725 * this number. 3726 */ 3727 return (NULL); 3728 } 3729 return (dest); 3730 } 3731 3732 cur--; 3733 state = DTRACE_JSON_COMMA; 3734 break; 3735 case DTRACE_JSON_VALUE: 3736 if (isspace(cc)) 3737 break; 3738 3739 if (cc == '{' || cc == '[') { 3740 if (nelems > 1 && found_key) { 3741 in_array = cc == '[' ? B_TRUE : B_FALSE; 3742 /* 3743 * If our element selector directs us 3744 * to descend into this nested object, 3745 * then move to the next selector 3746 * element in the list and restart the 3747 * state machine. 3748 */ 3749 while (*elem != '\0') 3750 elem++; 3751 elem++; /* skip the inter-element NUL */ 3752 nelems--; 3753 dd = dest; 3754 if (in_array) { 3755 state = DTRACE_JSON_VALUE; 3756 array_pos = 0; 3757 array_elem = dtrace_strtoll( 3758 elem, 10, size); 3759 found_key = array_elem == 0 ? 3760 B_TRUE : B_FALSE; 3761 } else { 3762 found_key = B_FALSE; 3763 state = DTRACE_JSON_OBJECT; 3764 } 3765 break; 3766 } 3767 3768 /* 3769 * Otherwise, we wish to either skip this 3770 * nested object or return it in full. 3771 */ 3772 if (cc == '[') 3773 brackets = 1; 3774 else 3775 braces = 1; 3776 *dd++ = cc; 3777 state = DTRACE_JSON_COLLECT_OBJECT; 3778 break; 3779 } 3780 3781 if (cc == '"') { 3782 state = DTRACE_JSON_STRING; 3783 break; 3784 } 3785 3786 if (islower(cc)) { 3787 /* 3788 * Here we deal with true, false and null. 3789 */ 3790 *dd++ = cc; 3791 state = DTRACE_JSON_IDENTIFIER; 3792 break; 3793 } 3794 3795 if (cc == '-' || isdigit(cc)) { 3796 *dd++ = cc; 3797 state = DTRACE_JSON_NUMBER; 3798 break; 3799 } 3800 3801 /* 3802 * ERROR: unexpected character at start of value. 3803 */ 3804 return (NULL); 3805 case DTRACE_JSON_COLLECT_OBJECT: 3806 if (cc == '\0') 3807 /* 3808 * ERROR: unexpected end of input. 3809 */ 3810 return (NULL); 3811 3812 *dd++ = cc; 3813 if (cc == '"') { 3814 collect_object = B_TRUE; 3815 state = DTRACE_JSON_STRING; 3816 break; 3817 } 3818 3819 if (cc == ']') { 3820 if (brackets-- == 0) { 3821 /* 3822 * ERROR: unbalanced brackets. 3823 */ 3824 return (NULL); 3825 } 3826 } else if (cc == '}') { 3827 if (braces-- == 0) { 3828 /* 3829 * ERROR: unbalanced braces. 3830 */ 3831 return (NULL); 3832 } 3833 } else if (cc == '{') { 3834 braces++; 3835 } else if (cc == '[') { 3836 brackets++; 3837 } 3838 3839 if (brackets == 0 && braces == 0) { 3840 if (found_key) { 3841 *dd = '\0'; 3842 return (dest); 3843 } 3844 dd = dest; /* reset string buffer */ 3845 state = DTRACE_JSON_COMMA; 3846 } 3847 break; 3848 } 3849 } 3850 return (NULL); 3851 } 3852 3853 /* 3854 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3855 * Notice that we don't bother validating the proper number of arguments or 3856 * their types in the tuple stack. This isn't needed because all argument 3857 * interpretation is safe because of our load safety -- the worst that can 3858 * happen is that a bogus program can obtain bogus results. 3859 */ 3860 static void 3861 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3862 dtrace_key_t *tupregs, int nargs, 3863 dtrace_mstate_t *mstate, dtrace_state_t *state) 3864 { 3865 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3866 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3867 dtrace_vstate_t *vstate = &state->dts_vstate; 3868 3869 union { 3870 mutex_impl_t mi; 3871 uint64_t mx; 3872 } m; 3873 3874 union { 3875 krwlock_t ri; 3876 uintptr_t rw; 3877 } r; 3878 3879 switch (subr) { 3880 case DIF_SUBR_RAND: 3881 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3882 break; 3883 3884 case DIF_SUBR_MUTEX_OWNED: 3885 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3886 mstate, vstate)) { 3887 regs[rd] = NULL; 3888 break; 3889 } 3890 3891 m.mx = dtrace_load64(tupregs[0].dttk_value); 3892 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3893 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3894 else 3895 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3896 break; 3897 3898 case DIF_SUBR_MUTEX_OWNER: 3899 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3900 mstate, vstate)) { 3901 regs[rd] = NULL; 3902 break; 3903 } 3904 3905 m.mx = dtrace_load64(tupregs[0].dttk_value); 3906 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3907 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3908 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3909 else 3910 regs[rd] = 0; 3911 break; 3912 3913 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3914 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3915 mstate, vstate)) { 3916 regs[rd] = NULL; 3917 break; 3918 } 3919 3920 m.mx = dtrace_load64(tupregs[0].dttk_value); 3921 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3922 break; 3923 3924 case DIF_SUBR_MUTEX_TYPE_SPIN: 3925 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3926 mstate, vstate)) { 3927 regs[rd] = NULL; 3928 break; 3929 } 3930 3931 m.mx = dtrace_load64(tupregs[0].dttk_value); 3932 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3933 break; 3934 3935 case DIF_SUBR_RW_READ_HELD: { 3936 uintptr_t tmp; 3937 3938 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3939 mstate, vstate)) { 3940 regs[rd] = NULL; 3941 break; 3942 } 3943 3944 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3945 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3946 break; 3947 } 3948 3949 case DIF_SUBR_RW_WRITE_HELD: 3950 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3951 mstate, vstate)) { 3952 regs[rd] = NULL; 3953 break; 3954 } 3955 3956 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3957 regs[rd] = _RW_WRITE_HELD(&r.ri); 3958 break; 3959 3960 case DIF_SUBR_RW_ISWRITER: 3961 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3962 mstate, vstate)) { 3963 regs[rd] = NULL; 3964 break; 3965 } 3966 3967 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3968 regs[rd] = _RW_ISWRITER(&r.ri); 3969 break; 3970 3971 case DIF_SUBR_BCOPY: { 3972 /* 3973 * We need to be sure that the destination is in the scratch 3974 * region -- no other region is allowed. 3975 */ 3976 uintptr_t src = tupregs[0].dttk_value; 3977 uintptr_t dest = tupregs[1].dttk_value; 3978 size_t size = tupregs[2].dttk_value; 3979 3980 if (!dtrace_inscratch(dest, size, mstate)) { 3981 *flags |= CPU_DTRACE_BADADDR; 3982 *illval = regs[rd]; 3983 break; 3984 } 3985 3986 if (!dtrace_canload(src, size, mstate, vstate)) { 3987 regs[rd] = NULL; 3988 break; 3989 } 3990 3991 dtrace_bcopy((void *)src, (void *)dest, size); 3992 break; 3993 } 3994 3995 case DIF_SUBR_ALLOCA: 3996 case DIF_SUBR_COPYIN: { 3997 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3998 uint64_t size = 3999 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4000 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4001 4002 /* 4003 * This action doesn't require any credential checks since 4004 * probes will not activate in user contexts to which the 4005 * enabling user does not have permissions. 4006 */ 4007 4008 /* 4009 * Rounding up the user allocation size could have overflowed 4010 * a large, bogus allocation (like -1ULL) to 0. 4011 */ 4012 if (scratch_size < size || 4013 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4014 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4015 regs[rd] = NULL; 4016 break; 4017 } 4018 4019 if (subr == DIF_SUBR_COPYIN) { 4020 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4021 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4022 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4023 } 4024 4025 mstate->dtms_scratch_ptr += scratch_size; 4026 regs[rd] = dest; 4027 break; 4028 } 4029 4030 case DIF_SUBR_COPYINTO: { 4031 uint64_t size = tupregs[1].dttk_value; 4032 uintptr_t dest = tupregs[2].dttk_value; 4033 4034 /* 4035 * This action doesn't require any credential checks since 4036 * probes will not activate in user contexts to which the 4037 * enabling user does not have permissions. 4038 */ 4039 if (!dtrace_inscratch(dest, size, mstate)) { 4040 *flags |= CPU_DTRACE_BADADDR; 4041 *illval = regs[rd]; 4042 break; 4043 } 4044 4045 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4046 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4047 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4048 break; 4049 } 4050 4051 case DIF_SUBR_COPYINSTR: { 4052 uintptr_t dest = mstate->dtms_scratch_ptr; 4053 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4054 4055 if (nargs > 1 && tupregs[1].dttk_value < size) 4056 size = tupregs[1].dttk_value + 1; 4057 4058 /* 4059 * This action doesn't require any credential checks since 4060 * probes will not activate in user contexts to which the 4061 * enabling user does not have permissions. 4062 */ 4063 if (!DTRACE_INSCRATCH(mstate, size)) { 4064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4065 regs[rd] = NULL; 4066 break; 4067 } 4068 4069 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4070 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4071 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4072 4073 ((char *)dest)[size - 1] = '\0'; 4074 mstate->dtms_scratch_ptr += size; 4075 regs[rd] = dest; 4076 break; 4077 } 4078 4079 case DIF_SUBR_MSGSIZE: 4080 case DIF_SUBR_MSGDSIZE: { 4081 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4082 uintptr_t wptr, rptr; 4083 size_t count = 0; 4084 int cont = 0; 4085 4086 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4087 4088 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4089 vstate)) { 4090 regs[rd] = NULL; 4091 break; 4092 } 4093 4094 wptr = dtrace_loadptr(baddr + 4095 offsetof(mblk_t, b_wptr)); 4096 4097 rptr = dtrace_loadptr(baddr + 4098 offsetof(mblk_t, b_rptr)); 4099 4100 if (wptr < rptr) { 4101 *flags |= CPU_DTRACE_BADADDR; 4102 *illval = tupregs[0].dttk_value; 4103 break; 4104 } 4105 4106 daddr = dtrace_loadptr(baddr + 4107 offsetof(mblk_t, b_datap)); 4108 4109 baddr = dtrace_loadptr(baddr + 4110 offsetof(mblk_t, b_cont)); 4111 4112 /* 4113 * We want to prevent against denial-of-service here, 4114 * so we're only going to search the list for 4115 * dtrace_msgdsize_max mblks. 4116 */ 4117 if (cont++ > dtrace_msgdsize_max) { 4118 *flags |= CPU_DTRACE_ILLOP; 4119 break; 4120 } 4121 4122 if (subr == DIF_SUBR_MSGDSIZE) { 4123 if (dtrace_load8(daddr + 4124 offsetof(dblk_t, db_type)) != M_DATA) 4125 continue; 4126 } 4127 4128 count += wptr - rptr; 4129 } 4130 4131 if (!(*flags & CPU_DTRACE_FAULT)) 4132 regs[rd] = count; 4133 4134 break; 4135 } 4136 4137 case DIF_SUBR_PROGENYOF: { 4138 pid_t pid = tupregs[0].dttk_value; 4139 proc_t *p; 4140 int rval = 0; 4141 4142 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4143 4144 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4145 if (p->p_pidp->pid_id == pid) { 4146 rval = 1; 4147 break; 4148 } 4149 } 4150 4151 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4152 4153 regs[rd] = rval; 4154 break; 4155 } 4156 4157 case DIF_SUBR_SPECULATION: 4158 regs[rd] = dtrace_speculation(state); 4159 break; 4160 4161 case DIF_SUBR_COPYOUT: { 4162 uintptr_t kaddr = tupregs[0].dttk_value; 4163 uintptr_t uaddr = tupregs[1].dttk_value; 4164 uint64_t size = tupregs[2].dttk_value; 4165 4166 if (!dtrace_destructive_disallow && 4167 dtrace_priv_proc_control(state, mstate) && 4168 !dtrace_istoxic(kaddr, size)) { 4169 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4170 dtrace_copyout(kaddr, uaddr, size, flags); 4171 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4172 } 4173 break; 4174 } 4175 4176 case DIF_SUBR_COPYOUTSTR: { 4177 uintptr_t kaddr = tupregs[0].dttk_value; 4178 uintptr_t uaddr = tupregs[1].dttk_value; 4179 uint64_t size = tupregs[2].dttk_value; 4180 4181 if (!dtrace_destructive_disallow && 4182 dtrace_priv_proc_control(state, mstate) && 4183 !dtrace_istoxic(kaddr, size)) { 4184 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4185 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4186 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4187 } 4188 break; 4189 } 4190 4191 case DIF_SUBR_STRLEN: { 4192 size_t sz; 4193 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4194 sz = dtrace_strlen((char *)addr, 4195 state->dts_options[DTRACEOPT_STRSIZE]); 4196 4197 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4198 regs[rd] = NULL; 4199 break; 4200 } 4201 4202 regs[rd] = sz; 4203 4204 break; 4205 } 4206 4207 case DIF_SUBR_STRCHR: 4208 case DIF_SUBR_STRRCHR: { 4209 /* 4210 * We're going to iterate over the string looking for the 4211 * specified character. We will iterate until we have reached 4212 * the string length or we have found the character. If this 4213 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4214 * of the specified character instead of the first. 4215 */ 4216 uintptr_t saddr = tupregs[0].dttk_value; 4217 uintptr_t addr = tupregs[0].dttk_value; 4218 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4219 char c, target = (char)tupregs[1].dttk_value; 4220 4221 for (regs[rd] = NULL; addr < limit; addr++) { 4222 if ((c = dtrace_load8(addr)) == target) { 4223 regs[rd] = addr; 4224 4225 if (subr == DIF_SUBR_STRCHR) 4226 break; 4227 } 4228 4229 if (c == '\0') 4230 break; 4231 } 4232 4233 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4234 regs[rd] = NULL; 4235 break; 4236 } 4237 4238 break; 4239 } 4240 4241 case DIF_SUBR_STRSTR: 4242 case DIF_SUBR_INDEX: 4243 case DIF_SUBR_RINDEX: { 4244 /* 4245 * We're going to iterate over the string looking for the 4246 * specified string. We will iterate until we have reached 4247 * the string length or we have found the string. (Yes, this 4248 * is done in the most naive way possible -- but considering 4249 * that the string we're searching for is likely to be 4250 * relatively short, the complexity of Rabin-Karp or similar 4251 * hardly seems merited.) 4252 */ 4253 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4254 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4255 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4256 size_t len = dtrace_strlen(addr, size); 4257 size_t sublen = dtrace_strlen(substr, size); 4258 char *limit = addr + len, *orig = addr; 4259 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4260 int inc = 1; 4261 4262 regs[rd] = notfound; 4263 4264 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4265 regs[rd] = NULL; 4266 break; 4267 } 4268 4269 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4270 vstate)) { 4271 regs[rd] = NULL; 4272 break; 4273 } 4274 4275 /* 4276 * strstr() and index()/rindex() have similar semantics if 4277 * both strings are the empty string: strstr() returns a 4278 * pointer to the (empty) string, and index() and rindex() 4279 * both return index 0 (regardless of any position argument). 4280 */ 4281 if (sublen == 0 && len == 0) { 4282 if (subr == DIF_SUBR_STRSTR) 4283 regs[rd] = (uintptr_t)addr; 4284 else 4285 regs[rd] = 0; 4286 break; 4287 } 4288 4289 if (subr != DIF_SUBR_STRSTR) { 4290 if (subr == DIF_SUBR_RINDEX) { 4291 limit = orig - 1; 4292 addr += len; 4293 inc = -1; 4294 } 4295 4296 /* 4297 * Both index() and rindex() take an optional position 4298 * argument that denotes the starting position. 4299 */ 4300 if (nargs == 3) { 4301 int64_t pos = (int64_t)tupregs[2].dttk_value; 4302 4303 /* 4304 * If the position argument to index() is 4305 * negative, Perl implicitly clamps it at 4306 * zero. This semantic is a little surprising 4307 * given the special meaning of negative 4308 * positions to similar Perl functions like 4309 * substr(), but it appears to reflect a 4310 * notion that index() can start from a 4311 * negative index and increment its way up to 4312 * the string. Given this notion, Perl's 4313 * rindex() is at least self-consistent in 4314 * that it implicitly clamps positions greater 4315 * than the string length to be the string 4316 * length. Where Perl completely loses 4317 * coherence, however, is when the specified 4318 * substring is the empty string (""). In 4319 * this case, even if the position is 4320 * negative, rindex() returns 0 -- and even if 4321 * the position is greater than the length, 4322 * index() returns the string length. These 4323 * semantics violate the notion that index() 4324 * should never return a value less than the 4325 * specified position and that rindex() should 4326 * never return a value greater than the 4327 * specified position. (One assumes that 4328 * these semantics are artifacts of Perl's 4329 * implementation and not the results of 4330 * deliberate design -- it beggars belief that 4331 * even Larry Wall could desire such oddness.) 4332 * While in the abstract one would wish for 4333 * consistent position semantics across 4334 * substr(), index() and rindex() -- or at the 4335 * very least self-consistent position 4336 * semantics for index() and rindex() -- we 4337 * instead opt to keep with the extant Perl 4338 * semantics, in all their broken glory. (Do 4339 * we have more desire to maintain Perl's 4340 * semantics than Perl does? Probably.) 4341 */ 4342 if (subr == DIF_SUBR_RINDEX) { 4343 if (pos < 0) { 4344 if (sublen == 0) 4345 regs[rd] = 0; 4346 break; 4347 } 4348 4349 if (pos > len) 4350 pos = len; 4351 } else { 4352 if (pos < 0) 4353 pos = 0; 4354 4355 if (pos >= len) { 4356 if (sublen == 0) 4357 regs[rd] = len; 4358 break; 4359 } 4360 } 4361 4362 addr = orig + pos; 4363 } 4364 } 4365 4366 for (regs[rd] = notfound; addr != limit; addr += inc) { 4367 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4368 if (subr != DIF_SUBR_STRSTR) { 4369 /* 4370 * As D index() and rindex() are 4371 * modeled on Perl (and not on awk), 4372 * we return a zero-based (and not a 4373 * one-based) index. (For you Perl 4374 * weenies: no, we're not going to add 4375 * $[ -- and shouldn't you be at a con 4376 * or something?) 4377 */ 4378 regs[rd] = (uintptr_t)(addr - orig); 4379 break; 4380 } 4381 4382 ASSERT(subr == DIF_SUBR_STRSTR); 4383 regs[rd] = (uintptr_t)addr; 4384 break; 4385 } 4386 } 4387 4388 break; 4389 } 4390 4391 case DIF_SUBR_STRTOK: { 4392 uintptr_t addr = tupregs[0].dttk_value; 4393 uintptr_t tokaddr = tupregs[1].dttk_value; 4394 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4395 uintptr_t limit, toklimit = tokaddr + size; 4396 uint8_t c, tokmap[32]; /* 256 / 8 */ 4397 char *dest = (char *)mstate->dtms_scratch_ptr; 4398 int i; 4399 4400 /* 4401 * Check both the token buffer and (later) the input buffer, 4402 * since both could be non-scratch addresses. 4403 */ 4404 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4405 regs[rd] = NULL; 4406 break; 4407 } 4408 4409 if (!DTRACE_INSCRATCH(mstate, size)) { 4410 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4411 regs[rd] = NULL; 4412 break; 4413 } 4414 4415 if (addr == NULL) { 4416 /* 4417 * If the address specified is NULL, we use our saved 4418 * strtok pointer from the mstate. Note that this 4419 * means that the saved strtok pointer is _only_ 4420 * valid within multiple enablings of the same probe -- 4421 * it behaves like an implicit clause-local variable. 4422 */ 4423 addr = mstate->dtms_strtok; 4424 } else { 4425 /* 4426 * If the user-specified address is non-NULL we must 4427 * access check it. This is the only time we have 4428 * a chance to do so, since this address may reside 4429 * in the string table of this clause-- future calls 4430 * (when we fetch addr from mstate->dtms_strtok) 4431 * would fail this access check. 4432 */ 4433 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4434 regs[rd] = NULL; 4435 break; 4436 } 4437 } 4438 4439 /* 4440 * First, zero the token map, and then process the token 4441 * string -- setting a bit in the map for every character 4442 * found in the token string. 4443 */ 4444 for (i = 0; i < sizeof (tokmap); i++) 4445 tokmap[i] = 0; 4446 4447 for (; tokaddr < toklimit; tokaddr++) { 4448 if ((c = dtrace_load8(tokaddr)) == '\0') 4449 break; 4450 4451 ASSERT((c >> 3) < sizeof (tokmap)); 4452 tokmap[c >> 3] |= (1 << (c & 0x7)); 4453 } 4454 4455 for (limit = addr + size; addr < limit; addr++) { 4456 /* 4457 * We're looking for a character that is _not_ contained 4458 * in the token string. 4459 */ 4460 if ((c = dtrace_load8(addr)) == '\0') 4461 break; 4462 4463 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4464 break; 4465 } 4466 4467 if (c == '\0') { 4468 /* 4469 * We reached the end of the string without finding 4470 * any character that was not in the token string. 4471 * We return NULL in this case, and we set the saved 4472 * address to NULL as well. 4473 */ 4474 regs[rd] = NULL; 4475 mstate->dtms_strtok = NULL; 4476 break; 4477 } 4478 4479 /* 4480 * From here on, we're copying into the destination string. 4481 */ 4482 for (i = 0; addr < limit && i < size - 1; addr++) { 4483 if ((c = dtrace_load8(addr)) == '\0') 4484 break; 4485 4486 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4487 break; 4488 4489 ASSERT(i < size); 4490 dest[i++] = c; 4491 } 4492 4493 ASSERT(i < size); 4494 dest[i] = '\0'; 4495 regs[rd] = (uintptr_t)dest; 4496 mstate->dtms_scratch_ptr += size; 4497 mstate->dtms_strtok = addr; 4498 break; 4499 } 4500 4501 case DIF_SUBR_SUBSTR: { 4502 uintptr_t s = tupregs[0].dttk_value; 4503 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4504 char *d = (char *)mstate->dtms_scratch_ptr; 4505 int64_t index = (int64_t)tupregs[1].dttk_value; 4506 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4507 size_t len = dtrace_strlen((char *)s, size); 4508 int64_t i; 4509 4510 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4511 regs[rd] = NULL; 4512 break; 4513 } 4514 4515 if (!DTRACE_INSCRATCH(mstate, size)) { 4516 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4517 regs[rd] = NULL; 4518 break; 4519 } 4520 4521 if (nargs <= 2) 4522 remaining = (int64_t)size; 4523 4524 if (index < 0) { 4525 index += len; 4526 4527 if (index < 0 && index + remaining > 0) { 4528 remaining += index; 4529 index = 0; 4530 } 4531 } 4532 4533 if (index >= len || index < 0) { 4534 remaining = 0; 4535 } else if (remaining < 0) { 4536 remaining += len - index; 4537 } else if (index + remaining > size) { 4538 remaining = size - index; 4539 } 4540 4541 for (i = 0; i < remaining; i++) { 4542 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4543 break; 4544 } 4545 4546 d[i] = '\0'; 4547 4548 mstate->dtms_scratch_ptr += size; 4549 regs[rd] = (uintptr_t)d; 4550 break; 4551 } 4552 4553 case DIF_SUBR_JSON: { 4554 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4555 uintptr_t json = tupregs[0].dttk_value; 4556 size_t jsonlen = dtrace_strlen((char *)json, size); 4557 uintptr_t elem = tupregs[1].dttk_value; 4558 size_t elemlen = dtrace_strlen((char *)elem, size); 4559 4560 char *dest = (char *)mstate->dtms_scratch_ptr; 4561 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4562 char *ee = elemlist; 4563 int nelems = 1; 4564 uintptr_t cur; 4565 4566 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4567 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4568 regs[rd] = NULL; 4569 break; 4570 } 4571 4572 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4573 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4574 regs[rd] = NULL; 4575 break; 4576 } 4577 4578 /* 4579 * Read the element selector and split it up into a packed list 4580 * of strings. 4581 */ 4582 for (cur = elem; cur < elem + elemlen; cur++) { 4583 char cc = dtrace_load8(cur); 4584 4585 if (cur == elem && cc == '[') { 4586 /* 4587 * If the first element selector key is 4588 * actually an array index then ignore the 4589 * bracket. 4590 */ 4591 continue; 4592 } 4593 4594 if (cc == ']') 4595 continue; 4596 4597 if (cc == '.' || cc == '[') { 4598 nelems++; 4599 cc = '\0'; 4600 } 4601 4602 *ee++ = cc; 4603 } 4604 *ee++ = '\0'; 4605 4606 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4607 nelems, dest)) != NULL) 4608 mstate->dtms_scratch_ptr += jsonlen + 1; 4609 break; 4610 } 4611 4612 case DIF_SUBR_TOUPPER: 4613 case DIF_SUBR_TOLOWER: { 4614 uintptr_t s = tupregs[0].dttk_value; 4615 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4616 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4617 size_t len = dtrace_strlen((char *)s, size); 4618 char lower, upper, convert; 4619 int64_t i; 4620 4621 if (subr == DIF_SUBR_TOUPPER) { 4622 lower = 'a'; 4623 upper = 'z'; 4624 convert = 'A'; 4625 } else { 4626 lower = 'A'; 4627 upper = 'Z'; 4628 convert = 'a'; 4629 } 4630 4631 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4632 regs[rd] = NULL; 4633 break; 4634 } 4635 4636 if (!DTRACE_INSCRATCH(mstate, size)) { 4637 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4638 regs[rd] = NULL; 4639 break; 4640 } 4641 4642 for (i = 0; i < size - 1; i++) { 4643 if ((c = dtrace_load8(s + i)) == '\0') 4644 break; 4645 4646 if (c >= lower && c <= upper) 4647 c = convert + (c - lower); 4648 4649 dest[i] = c; 4650 } 4651 4652 ASSERT(i < size); 4653 dest[i] = '\0'; 4654 regs[rd] = (uintptr_t)dest; 4655 mstate->dtms_scratch_ptr += size; 4656 break; 4657 } 4658 4659 case DIF_SUBR_GETMAJOR: 4660 #ifdef _LP64 4661 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4662 #else 4663 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4664 #endif 4665 break; 4666 4667 case DIF_SUBR_GETMINOR: 4668 #ifdef _LP64 4669 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4670 #else 4671 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4672 #endif 4673 break; 4674 4675 case DIF_SUBR_DDI_PATHNAME: { 4676 /* 4677 * This one is a galactic mess. We are going to roughly 4678 * emulate ddi_pathname(), but it's made more complicated 4679 * by the fact that we (a) want to include the minor name and 4680 * (b) must proceed iteratively instead of recursively. 4681 */ 4682 uintptr_t dest = mstate->dtms_scratch_ptr; 4683 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4684 char *start = (char *)dest, *end = start + size - 1; 4685 uintptr_t daddr = tupregs[0].dttk_value; 4686 int64_t minor = (int64_t)tupregs[1].dttk_value; 4687 char *s; 4688 int i, len, depth = 0; 4689 4690 /* 4691 * Due to all the pointer jumping we do and context we must 4692 * rely upon, we just mandate that the user must have kernel 4693 * read privileges to use this routine. 4694 */ 4695 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4696 *flags |= CPU_DTRACE_KPRIV; 4697 *illval = daddr; 4698 regs[rd] = NULL; 4699 } 4700 4701 if (!DTRACE_INSCRATCH(mstate, size)) { 4702 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4703 regs[rd] = NULL; 4704 break; 4705 } 4706 4707 *end = '\0'; 4708 4709 /* 4710 * We want to have a name for the minor. In order to do this, 4711 * we need to walk the minor list from the devinfo. We want 4712 * to be sure that we don't infinitely walk a circular list, 4713 * so we check for circularity by sending a scout pointer 4714 * ahead two elements for every element that we iterate over; 4715 * if the list is circular, these will ultimately point to the 4716 * same element. You may recognize this little trick as the 4717 * answer to a stupid interview question -- one that always 4718 * seems to be asked by those who had to have it laboriously 4719 * explained to them, and who can't even concisely describe 4720 * the conditions under which one would be forced to resort to 4721 * this technique. Needless to say, those conditions are 4722 * found here -- and probably only here. Is this the only use 4723 * of this infamous trick in shipping, production code? If it 4724 * isn't, it probably should be... 4725 */ 4726 if (minor != -1) { 4727 uintptr_t maddr = dtrace_loadptr(daddr + 4728 offsetof(struct dev_info, devi_minor)); 4729 4730 uintptr_t next = offsetof(struct ddi_minor_data, next); 4731 uintptr_t name = offsetof(struct ddi_minor_data, 4732 d_minor) + offsetof(struct ddi_minor, name); 4733 uintptr_t dev = offsetof(struct ddi_minor_data, 4734 d_minor) + offsetof(struct ddi_minor, dev); 4735 uintptr_t scout; 4736 4737 if (maddr != NULL) 4738 scout = dtrace_loadptr(maddr + next); 4739 4740 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4741 uint64_t m; 4742 #ifdef _LP64 4743 m = dtrace_load64(maddr + dev) & MAXMIN64; 4744 #else 4745 m = dtrace_load32(maddr + dev) & MAXMIN; 4746 #endif 4747 if (m != minor) { 4748 maddr = dtrace_loadptr(maddr + next); 4749 4750 if (scout == NULL) 4751 continue; 4752 4753 scout = dtrace_loadptr(scout + next); 4754 4755 if (scout == NULL) 4756 continue; 4757 4758 scout = dtrace_loadptr(scout + next); 4759 4760 if (scout == NULL) 4761 continue; 4762 4763 if (scout == maddr) { 4764 *flags |= CPU_DTRACE_ILLOP; 4765 break; 4766 } 4767 4768 continue; 4769 } 4770 4771 /* 4772 * We have the minor data. Now we need to 4773 * copy the minor's name into the end of the 4774 * pathname. 4775 */ 4776 s = (char *)dtrace_loadptr(maddr + name); 4777 len = dtrace_strlen(s, size); 4778 4779 if (*flags & CPU_DTRACE_FAULT) 4780 break; 4781 4782 if (len != 0) { 4783 if ((end -= (len + 1)) < start) 4784 break; 4785 4786 *end = ':'; 4787 } 4788 4789 for (i = 1; i <= len; i++) 4790 end[i] = dtrace_load8((uintptr_t)s++); 4791 break; 4792 } 4793 } 4794 4795 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4796 ddi_node_state_t devi_state; 4797 4798 devi_state = dtrace_load32(daddr + 4799 offsetof(struct dev_info, devi_node_state)); 4800 4801 if (*flags & CPU_DTRACE_FAULT) 4802 break; 4803 4804 if (devi_state >= DS_INITIALIZED) { 4805 s = (char *)dtrace_loadptr(daddr + 4806 offsetof(struct dev_info, devi_addr)); 4807 len = dtrace_strlen(s, size); 4808 4809 if (*flags & CPU_DTRACE_FAULT) 4810 break; 4811 4812 if (len != 0) { 4813 if ((end -= (len + 1)) < start) 4814 break; 4815 4816 *end = '@'; 4817 } 4818 4819 for (i = 1; i <= len; i++) 4820 end[i] = dtrace_load8((uintptr_t)s++); 4821 } 4822 4823 /* 4824 * Now for the node name... 4825 */ 4826 s = (char *)dtrace_loadptr(daddr + 4827 offsetof(struct dev_info, devi_node_name)); 4828 4829 daddr = dtrace_loadptr(daddr + 4830 offsetof(struct dev_info, devi_parent)); 4831 4832 /* 4833 * If our parent is NULL (that is, if we're the root 4834 * node), we're going to use the special path 4835 * "devices". 4836 */ 4837 if (daddr == NULL) 4838 s = "devices"; 4839 4840 len = dtrace_strlen(s, size); 4841 if (*flags & CPU_DTRACE_FAULT) 4842 break; 4843 4844 if ((end -= (len + 1)) < start) 4845 break; 4846 4847 for (i = 1; i <= len; i++) 4848 end[i] = dtrace_load8((uintptr_t)s++); 4849 *end = '/'; 4850 4851 if (depth++ > dtrace_devdepth_max) { 4852 *flags |= CPU_DTRACE_ILLOP; 4853 break; 4854 } 4855 } 4856 4857 if (end < start) 4858 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4859 4860 if (daddr == NULL) { 4861 regs[rd] = (uintptr_t)end; 4862 mstate->dtms_scratch_ptr += size; 4863 } 4864 4865 break; 4866 } 4867 4868 case DIF_SUBR_STRJOIN: { 4869 char *d = (char *)mstate->dtms_scratch_ptr; 4870 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4871 uintptr_t s1 = tupregs[0].dttk_value; 4872 uintptr_t s2 = tupregs[1].dttk_value; 4873 int i = 0; 4874 4875 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4876 !dtrace_strcanload(s2, size, mstate, vstate)) { 4877 regs[rd] = NULL; 4878 break; 4879 } 4880 4881 if (!DTRACE_INSCRATCH(mstate, size)) { 4882 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4883 regs[rd] = NULL; 4884 break; 4885 } 4886 4887 for (;;) { 4888 if (i >= size) { 4889 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4890 regs[rd] = NULL; 4891 break; 4892 } 4893 4894 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4895 i--; 4896 break; 4897 } 4898 } 4899 4900 for (;;) { 4901 if (i >= size) { 4902 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4903 regs[rd] = NULL; 4904 break; 4905 } 4906 4907 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4908 break; 4909 } 4910 4911 if (i < size) { 4912 mstate->dtms_scratch_ptr += i; 4913 regs[rd] = (uintptr_t)d; 4914 } 4915 4916 break; 4917 } 4918 4919 case DIF_SUBR_STRTOLL: { 4920 uintptr_t s = tupregs[0].dttk_value; 4921 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4922 int base = 10; 4923 4924 if (nargs > 1) { 4925 if ((base = tupregs[1].dttk_value) <= 1 || 4926 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4927 *flags |= CPU_DTRACE_ILLOP; 4928 break; 4929 } 4930 } 4931 4932 if (!dtrace_strcanload(s, size, mstate, vstate)) { 4933 regs[rd] = INT64_MIN; 4934 break; 4935 } 4936 4937 regs[rd] = dtrace_strtoll((char *)s, base, size); 4938 break; 4939 } 4940 4941 case DIF_SUBR_LLTOSTR: { 4942 int64_t i = (int64_t)tupregs[0].dttk_value; 4943 uint64_t val, digit; 4944 uint64_t size = 65; /* enough room for 2^64 in binary */ 4945 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4946 int base = 10; 4947 4948 if (nargs > 1) { 4949 if ((base = tupregs[1].dttk_value) <= 1 || 4950 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4951 *flags |= CPU_DTRACE_ILLOP; 4952 break; 4953 } 4954 } 4955 4956 val = (base == 10 && i < 0) ? i * -1 : i; 4957 4958 if (!DTRACE_INSCRATCH(mstate, size)) { 4959 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4960 regs[rd] = NULL; 4961 break; 4962 } 4963 4964 for (*end-- = '\0'; val; val /= base) { 4965 if ((digit = val % base) <= '9' - '0') { 4966 *end-- = '0' + digit; 4967 } else { 4968 *end-- = 'a' + (digit - ('9' - '0') - 1); 4969 } 4970 } 4971 4972 if (i == 0 && base == 16) 4973 *end-- = '0'; 4974 4975 if (base == 16) 4976 *end-- = 'x'; 4977 4978 if (i == 0 || base == 8 || base == 16) 4979 *end-- = '0'; 4980 4981 if (i < 0 && base == 10) 4982 *end-- = '-'; 4983 4984 regs[rd] = (uintptr_t)end + 1; 4985 mstate->dtms_scratch_ptr += size; 4986 break; 4987 } 4988 4989 case DIF_SUBR_HTONS: 4990 case DIF_SUBR_NTOHS: 4991 #ifdef _BIG_ENDIAN 4992 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4993 #else 4994 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4995 #endif 4996 break; 4997 4998 4999 case DIF_SUBR_HTONL: 5000 case DIF_SUBR_NTOHL: 5001 #ifdef _BIG_ENDIAN 5002 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5003 #else 5004 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5005 #endif 5006 break; 5007 5008 5009 case DIF_SUBR_HTONLL: 5010 case DIF_SUBR_NTOHLL: 5011 #ifdef _BIG_ENDIAN 5012 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5013 #else 5014 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5015 #endif 5016 break; 5017 5018 5019 case DIF_SUBR_DIRNAME: 5020 case DIF_SUBR_BASENAME: { 5021 char *dest = (char *)mstate->dtms_scratch_ptr; 5022 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5023 uintptr_t src = tupregs[0].dttk_value; 5024 int i, j, len = dtrace_strlen((char *)src, size); 5025 int lastbase = -1, firstbase = -1, lastdir = -1; 5026 int start, end; 5027 5028 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5029 regs[rd] = NULL; 5030 break; 5031 } 5032 5033 if (!DTRACE_INSCRATCH(mstate, size)) { 5034 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5035 regs[rd] = NULL; 5036 break; 5037 } 5038 5039 /* 5040 * The basename and dirname for a zero-length string is 5041 * defined to be "." 5042 */ 5043 if (len == 0) { 5044 len = 1; 5045 src = (uintptr_t)"."; 5046 } 5047 5048 /* 5049 * Start from the back of the string, moving back toward the 5050 * front until we see a character that isn't a slash. That 5051 * character is the last character in the basename. 5052 */ 5053 for (i = len - 1; i >= 0; i--) { 5054 if (dtrace_load8(src + i) != '/') 5055 break; 5056 } 5057 5058 if (i >= 0) 5059 lastbase = i; 5060 5061 /* 5062 * Starting from the last character in the basename, move 5063 * towards the front until we find a slash. The character 5064 * that we processed immediately before that is the first 5065 * character in the basename. 5066 */ 5067 for (; i >= 0; i--) { 5068 if (dtrace_load8(src + i) == '/') 5069 break; 5070 } 5071 5072 if (i >= 0) 5073 firstbase = i + 1; 5074 5075 /* 5076 * Now keep going until we find a non-slash character. That 5077 * character is the last character in the dirname. 5078 */ 5079 for (; i >= 0; i--) { 5080 if (dtrace_load8(src + i) != '/') 5081 break; 5082 } 5083 5084 if (i >= 0) 5085 lastdir = i; 5086 5087 ASSERT(!(lastbase == -1 && firstbase != -1)); 5088 ASSERT(!(firstbase == -1 && lastdir != -1)); 5089 5090 if (lastbase == -1) { 5091 /* 5092 * We didn't find a non-slash character. We know that 5093 * the length is non-zero, so the whole string must be 5094 * slashes. In either the dirname or the basename 5095 * case, we return '/'. 5096 */ 5097 ASSERT(firstbase == -1); 5098 firstbase = lastbase = lastdir = 0; 5099 } 5100 5101 if (firstbase == -1) { 5102 /* 5103 * The entire string consists only of a basename 5104 * component. If we're looking for dirname, we need 5105 * to change our string to be just "."; if we're 5106 * looking for a basename, we'll just set the first 5107 * character of the basename to be 0. 5108 */ 5109 if (subr == DIF_SUBR_DIRNAME) { 5110 ASSERT(lastdir == -1); 5111 src = (uintptr_t)"."; 5112 lastdir = 0; 5113 } else { 5114 firstbase = 0; 5115 } 5116 } 5117 5118 if (subr == DIF_SUBR_DIRNAME) { 5119 if (lastdir == -1) { 5120 /* 5121 * We know that we have a slash in the name -- 5122 * or lastdir would be set to 0, above. And 5123 * because lastdir is -1, we know that this 5124 * slash must be the first character. (That 5125 * is, the full string must be of the form 5126 * "/basename".) In this case, the last 5127 * character of the directory name is 0. 5128 */ 5129 lastdir = 0; 5130 } 5131 5132 start = 0; 5133 end = lastdir; 5134 } else { 5135 ASSERT(subr == DIF_SUBR_BASENAME); 5136 ASSERT(firstbase != -1 && lastbase != -1); 5137 start = firstbase; 5138 end = lastbase; 5139 } 5140 5141 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5142 dest[j] = dtrace_load8(src + i); 5143 5144 dest[j] = '\0'; 5145 regs[rd] = (uintptr_t)dest; 5146 mstate->dtms_scratch_ptr += size; 5147 break; 5148 } 5149 5150 case DIF_SUBR_GETF: { 5151 uintptr_t fd = tupregs[0].dttk_value; 5152 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5153 file_t *fp; 5154 5155 if (!dtrace_priv_proc(state, mstate)) { 5156 regs[rd] = NULL; 5157 break; 5158 } 5159 5160 /* 5161 * This is safe because fi_nfiles only increases, and the 5162 * fi_list array is not freed when the array size doubles. 5163 * (See the comment in flist_grow() for details on the 5164 * management of the u_finfo structure.) 5165 */ 5166 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5167 5168 mstate->dtms_getf = fp; 5169 regs[rd] = (uintptr_t)fp; 5170 break; 5171 } 5172 5173 case DIF_SUBR_CLEANPATH: { 5174 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5175 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5176 uintptr_t src = tupregs[0].dttk_value; 5177 int i = 0, j = 0; 5178 zone_t *z; 5179 5180 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5181 regs[rd] = NULL; 5182 break; 5183 } 5184 5185 if (!DTRACE_INSCRATCH(mstate, size)) { 5186 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5187 regs[rd] = NULL; 5188 break; 5189 } 5190 5191 /* 5192 * Move forward, loading each character. 5193 */ 5194 do { 5195 c = dtrace_load8(src + i++); 5196 next: 5197 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5198 break; 5199 5200 if (c != '/') { 5201 dest[j++] = c; 5202 continue; 5203 } 5204 5205 c = dtrace_load8(src + i++); 5206 5207 if (c == '/') { 5208 /* 5209 * We have two slashes -- we can just advance 5210 * to the next character. 5211 */ 5212 goto next; 5213 } 5214 5215 if (c != '.') { 5216 /* 5217 * This is not "." and it's not ".." -- we can 5218 * just store the "/" and this character and 5219 * drive on. 5220 */ 5221 dest[j++] = '/'; 5222 dest[j++] = c; 5223 continue; 5224 } 5225 5226 c = dtrace_load8(src + i++); 5227 5228 if (c == '/') { 5229 /* 5230 * This is a "/./" component. We're not going 5231 * to store anything in the destination buffer; 5232 * we're just going to go to the next component. 5233 */ 5234 goto next; 5235 } 5236 5237 if (c != '.') { 5238 /* 5239 * This is not ".." -- we can just store the 5240 * "/." and this character and continue 5241 * processing. 5242 */ 5243 dest[j++] = '/'; 5244 dest[j++] = '.'; 5245 dest[j++] = c; 5246 continue; 5247 } 5248 5249 c = dtrace_load8(src + i++); 5250 5251 if (c != '/' && c != '\0') { 5252 /* 5253 * This is not ".." -- it's "..[mumble]". 5254 * We'll store the "/.." and this character 5255 * and continue processing. 5256 */ 5257 dest[j++] = '/'; 5258 dest[j++] = '.'; 5259 dest[j++] = '.'; 5260 dest[j++] = c; 5261 continue; 5262 } 5263 5264 /* 5265 * This is "/../" or "/..\0". We need to back up 5266 * our destination pointer until we find a "/". 5267 */ 5268 i--; 5269 while (j != 0 && dest[--j] != '/') 5270 continue; 5271 5272 if (c == '\0') 5273 dest[++j] = '/'; 5274 } while (c != '\0'); 5275 5276 dest[j] = '\0'; 5277 5278 if (mstate->dtms_getf != NULL && 5279 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5280 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5281 /* 5282 * If we've done a getf() as a part of this ECB and we 5283 * don't have kernel access (and we're not in the global 5284 * zone), check if the path we cleaned up begins with 5285 * the zone's root path, and trim it off if so. Note 5286 * that this is an output cleanliness issue, not a 5287 * security issue: knowing one's zone root path does 5288 * not enable privilege escalation. 5289 */ 5290 if (strstr(dest, z->zone_rootpath) == dest) 5291 dest += strlen(z->zone_rootpath) - 1; 5292 } 5293 5294 regs[rd] = (uintptr_t)dest; 5295 mstate->dtms_scratch_ptr += size; 5296 break; 5297 } 5298 5299 case DIF_SUBR_INET_NTOA: 5300 case DIF_SUBR_INET_NTOA6: 5301 case DIF_SUBR_INET_NTOP: { 5302 size_t size; 5303 int af, argi, i; 5304 char *base, *end; 5305 5306 if (subr == DIF_SUBR_INET_NTOP) { 5307 af = (int)tupregs[0].dttk_value; 5308 argi = 1; 5309 } else { 5310 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5311 argi = 0; 5312 } 5313 5314 if (af == AF_INET) { 5315 ipaddr_t ip4; 5316 uint8_t *ptr8, val; 5317 5318 /* 5319 * Safely load the IPv4 address. 5320 */ 5321 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5322 5323 /* 5324 * Check an IPv4 string will fit in scratch. 5325 */ 5326 size = INET_ADDRSTRLEN; 5327 if (!DTRACE_INSCRATCH(mstate, size)) { 5328 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5329 regs[rd] = NULL; 5330 break; 5331 } 5332 base = (char *)mstate->dtms_scratch_ptr; 5333 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5334 5335 /* 5336 * Stringify as a dotted decimal quad. 5337 */ 5338 *end-- = '\0'; 5339 ptr8 = (uint8_t *)&ip4; 5340 for (i = 3; i >= 0; i--) { 5341 val = ptr8[i]; 5342 5343 if (val == 0) { 5344 *end-- = '0'; 5345 } else { 5346 for (; val; val /= 10) { 5347 *end-- = '0' + (val % 10); 5348 } 5349 } 5350 5351 if (i > 0) 5352 *end-- = '.'; 5353 } 5354 ASSERT(end + 1 >= base); 5355 5356 } else if (af == AF_INET6) { 5357 struct in6_addr ip6; 5358 int firstzero, tryzero, numzero, v6end; 5359 uint16_t val; 5360 const char digits[] = "0123456789abcdef"; 5361 5362 /* 5363 * Stringify using RFC 1884 convention 2 - 16 bit 5364 * hexadecimal values with a zero-run compression. 5365 * Lower case hexadecimal digits are used. 5366 * eg, fe80::214:4fff:fe0b:76c8. 5367 * The IPv4 embedded form is returned for inet_ntop, 5368 * just the IPv4 string is returned for inet_ntoa6. 5369 */ 5370 5371 /* 5372 * Safely load the IPv6 address. 5373 */ 5374 dtrace_bcopy( 5375 (void *)(uintptr_t)tupregs[argi].dttk_value, 5376 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5377 5378 /* 5379 * Check an IPv6 string will fit in scratch. 5380 */ 5381 size = INET6_ADDRSTRLEN; 5382 if (!DTRACE_INSCRATCH(mstate, size)) { 5383 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5384 regs[rd] = NULL; 5385 break; 5386 } 5387 base = (char *)mstate->dtms_scratch_ptr; 5388 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5389 *end-- = '\0'; 5390 5391 /* 5392 * Find the longest run of 16 bit zero values 5393 * for the single allowed zero compression - "::". 5394 */ 5395 firstzero = -1; 5396 tryzero = -1; 5397 numzero = 1; 5398 for (i = 0; i < sizeof (struct in6_addr); i++) { 5399 if (ip6._S6_un._S6_u8[i] == 0 && 5400 tryzero == -1 && i % 2 == 0) { 5401 tryzero = i; 5402 continue; 5403 } 5404 5405 if (tryzero != -1 && 5406 (ip6._S6_un._S6_u8[i] != 0 || 5407 i == sizeof (struct in6_addr) - 1)) { 5408 5409 if (i - tryzero <= numzero) { 5410 tryzero = -1; 5411 continue; 5412 } 5413 5414 firstzero = tryzero; 5415 numzero = i - i % 2 - tryzero; 5416 tryzero = -1; 5417 5418 if (ip6._S6_un._S6_u8[i] == 0 && 5419 i == sizeof (struct in6_addr) - 1) 5420 numzero += 2; 5421 } 5422 } 5423 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5424 5425 /* 5426 * Check for an IPv4 embedded address. 5427 */ 5428 v6end = sizeof (struct in6_addr) - 2; 5429 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5430 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5431 for (i = sizeof (struct in6_addr) - 1; 5432 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5433 ASSERT(end >= base); 5434 5435 val = ip6._S6_un._S6_u8[i]; 5436 5437 if (val == 0) { 5438 *end-- = '0'; 5439 } else { 5440 for (; val; val /= 10) { 5441 *end-- = '0' + val % 10; 5442 } 5443 } 5444 5445 if (i > DTRACE_V4MAPPED_OFFSET) 5446 *end-- = '.'; 5447 } 5448 5449 if (subr == DIF_SUBR_INET_NTOA6) 5450 goto inetout; 5451 5452 /* 5453 * Set v6end to skip the IPv4 address that 5454 * we have already stringified. 5455 */ 5456 v6end = 10; 5457 } 5458 5459 /* 5460 * Build the IPv6 string by working through the 5461 * address in reverse. 5462 */ 5463 for (i = v6end; i >= 0; i -= 2) { 5464 ASSERT(end >= base); 5465 5466 if (i == firstzero + numzero - 2) { 5467 *end-- = ':'; 5468 *end-- = ':'; 5469 i -= numzero - 2; 5470 continue; 5471 } 5472 5473 if (i < 14 && i != firstzero - 2) 5474 *end-- = ':'; 5475 5476 val = (ip6._S6_un._S6_u8[i] << 8) + 5477 ip6._S6_un._S6_u8[i + 1]; 5478 5479 if (val == 0) { 5480 *end-- = '0'; 5481 } else { 5482 for (; val; val /= 16) { 5483 *end-- = digits[val % 16]; 5484 } 5485 } 5486 } 5487 ASSERT(end + 1 >= base); 5488 5489 } else { 5490 /* 5491 * The user didn't use AH_INET or AH_INET6. 5492 */ 5493 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5494 regs[rd] = NULL; 5495 break; 5496 } 5497 5498 inetout: regs[rd] = (uintptr_t)end + 1; 5499 mstate->dtms_scratch_ptr += size; 5500 break; 5501 } 5502 5503 } 5504 } 5505 5506 /* 5507 * Emulate the execution of DTrace IR instructions specified by the given 5508 * DIF object. This function is deliberately void of assertions as all of 5509 * the necessary checks are handled by a call to dtrace_difo_validate(). 5510 */ 5511 static uint64_t 5512 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5513 dtrace_vstate_t *vstate, dtrace_state_t *state) 5514 { 5515 const dif_instr_t *text = difo->dtdo_buf; 5516 const uint_t textlen = difo->dtdo_len; 5517 const char *strtab = difo->dtdo_strtab; 5518 const uint64_t *inttab = difo->dtdo_inttab; 5519 5520 uint64_t rval = 0; 5521 dtrace_statvar_t *svar; 5522 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5523 dtrace_difv_t *v; 5524 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5525 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5526 5527 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5528 uint64_t regs[DIF_DIR_NREGS]; 5529 uint64_t *tmp; 5530 5531 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5532 int64_t cc_r; 5533 uint_t pc = 0, id, opc; 5534 uint8_t ttop = 0; 5535 dif_instr_t instr; 5536 uint_t r1, r2, rd; 5537 5538 /* 5539 * We stash the current DIF object into the machine state: we need it 5540 * for subsequent access checking. 5541 */ 5542 mstate->dtms_difo = difo; 5543 5544 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5545 5546 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5547 opc = pc; 5548 5549 instr = text[pc++]; 5550 r1 = DIF_INSTR_R1(instr); 5551 r2 = DIF_INSTR_R2(instr); 5552 rd = DIF_INSTR_RD(instr); 5553 5554 switch (DIF_INSTR_OP(instr)) { 5555 case DIF_OP_OR: 5556 regs[rd] = regs[r1] | regs[r2]; 5557 break; 5558 case DIF_OP_XOR: 5559 regs[rd] = regs[r1] ^ regs[r2]; 5560 break; 5561 case DIF_OP_AND: 5562 regs[rd] = regs[r1] & regs[r2]; 5563 break; 5564 case DIF_OP_SLL: 5565 regs[rd] = regs[r1] << regs[r2]; 5566 break; 5567 case DIF_OP_SRL: 5568 regs[rd] = regs[r1] >> regs[r2]; 5569 break; 5570 case DIF_OP_SUB: 5571 regs[rd] = regs[r1] - regs[r2]; 5572 break; 5573 case DIF_OP_ADD: 5574 regs[rd] = regs[r1] + regs[r2]; 5575 break; 5576 case DIF_OP_MUL: 5577 regs[rd] = regs[r1] * regs[r2]; 5578 break; 5579 case DIF_OP_SDIV: 5580 if (regs[r2] == 0) { 5581 regs[rd] = 0; 5582 *flags |= CPU_DTRACE_DIVZERO; 5583 } else { 5584 regs[rd] = (int64_t)regs[r1] / 5585 (int64_t)regs[r2]; 5586 } 5587 break; 5588 5589 case DIF_OP_UDIV: 5590 if (regs[r2] == 0) { 5591 regs[rd] = 0; 5592 *flags |= CPU_DTRACE_DIVZERO; 5593 } else { 5594 regs[rd] = regs[r1] / regs[r2]; 5595 } 5596 break; 5597 5598 case DIF_OP_SREM: 5599 if (regs[r2] == 0) { 5600 regs[rd] = 0; 5601 *flags |= CPU_DTRACE_DIVZERO; 5602 } else { 5603 regs[rd] = (int64_t)regs[r1] % 5604 (int64_t)regs[r2]; 5605 } 5606 break; 5607 5608 case DIF_OP_UREM: 5609 if (regs[r2] == 0) { 5610 regs[rd] = 0; 5611 *flags |= CPU_DTRACE_DIVZERO; 5612 } else { 5613 regs[rd] = regs[r1] % regs[r2]; 5614 } 5615 break; 5616 5617 case DIF_OP_NOT: 5618 regs[rd] = ~regs[r1]; 5619 break; 5620 case DIF_OP_MOV: 5621 regs[rd] = regs[r1]; 5622 break; 5623 case DIF_OP_CMP: 5624 cc_r = regs[r1] - regs[r2]; 5625 cc_n = cc_r < 0; 5626 cc_z = cc_r == 0; 5627 cc_v = 0; 5628 cc_c = regs[r1] < regs[r2]; 5629 break; 5630 case DIF_OP_TST: 5631 cc_n = cc_v = cc_c = 0; 5632 cc_z = regs[r1] == 0; 5633 break; 5634 case DIF_OP_BA: 5635 pc = DIF_INSTR_LABEL(instr); 5636 break; 5637 case DIF_OP_BE: 5638 if (cc_z) 5639 pc = DIF_INSTR_LABEL(instr); 5640 break; 5641 case DIF_OP_BNE: 5642 if (cc_z == 0) 5643 pc = DIF_INSTR_LABEL(instr); 5644 break; 5645 case DIF_OP_BG: 5646 if ((cc_z | (cc_n ^ cc_v)) == 0) 5647 pc = DIF_INSTR_LABEL(instr); 5648 break; 5649 case DIF_OP_BGU: 5650 if ((cc_c | cc_z) == 0) 5651 pc = DIF_INSTR_LABEL(instr); 5652 break; 5653 case DIF_OP_BGE: 5654 if ((cc_n ^ cc_v) == 0) 5655 pc = DIF_INSTR_LABEL(instr); 5656 break; 5657 case DIF_OP_BGEU: 5658 if (cc_c == 0) 5659 pc = DIF_INSTR_LABEL(instr); 5660 break; 5661 case DIF_OP_BL: 5662 if (cc_n ^ cc_v) 5663 pc = DIF_INSTR_LABEL(instr); 5664 break; 5665 case DIF_OP_BLU: 5666 if (cc_c) 5667 pc = DIF_INSTR_LABEL(instr); 5668 break; 5669 case DIF_OP_BLE: 5670 if (cc_z | (cc_n ^ cc_v)) 5671 pc = DIF_INSTR_LABEL(instr); 5672 break; 5673 case DIF_OP_BLEU: 5674 if (cc_c | cc_z) 5675 pc = DIF_INSTR_LABEL(instr); 5676 break; 5677 case DIF_OP_RLDSB: 5678 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5679 break; 5680 /*FALLTHROUGH*/ 5681 case DIF_OP_LDSB: 5682 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5683 break; 5684 case DIF_OP_RLDSH: 5685 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5686 break; 5687 /*FALLTHROUGH*/ 5688 case DIF_OP_LDSH: 5689 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5690 break; 5691 case DIF_OP_RLDSW: 5692 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5693 break; 5694 /*FALLTHROUGH*/ 5695 case DIF_OP_LDSW: 5696 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5697 break; 5698 case DIF_OP_RLDUB: 5699 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5700 break; 5701 /*FALLTHROUGH*/ 5702 case DIF_OP_LDUB: 5703 regs[rd] = dtrace_load8(regs[r1]); 5704 break; 5705 case DIF_OP_RLDUH: 5706 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5707 break; 5708 /*FALLTHROUGH*/ 5709 case DIF_OP_LDUH: 5710 regs[rd] = dtrace_load16(regs[r1]); 5711 break; 5712 case DIF_OP_RLDUW: 5713 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5714 break; 5715 /*FALLTHROUGH*/ 5716 case DIF_OP_LDUW: 5717 regs[rd] = dtrace_load32(regs[r1]); 5718 break; 5719 case DIF_OP_RLDX: 5720 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5721 break; 5722 /*FALLTHROUGH*/ 5723 case DIF_OP_LDX: 5724 regs[rd] = dtrace_load64(regs[r1]); 5725 break; 5726 case DIF_OP_ULDSB: 5727 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5728 regs[rd] = (int8_t) 5729 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5730 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5731 break; 5732 case DIF_OP_ULDSH: 5733 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5734 regs[rd] = (int16_t) 5735 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5736 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5737 break; 5738 case DIF_OP_ULDSW: 5739 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5740 regs[rd] = (int32_t) 5741 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5742 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5743 break; 5744 case DIF_OP_ULDUB: 5745 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5746 regs[rd] = 5747 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5748 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5749 break; 5750 case DIF_OP_ULDUH: 5751 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5752 regs[rd] = 5753 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5754 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5755 break; 5756 case DIF_OP_ULDUW: 5757 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5758 regs[rd] = 5759 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5760 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5761 break; 5762 case DIF_OP_ULDX: 5763 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5764 regs[rd] = 5765 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5766 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5767 break; 5768 case DIF_OP_RET: 5769 rval = regs[rd]; 5770 pc = textlen; 5771 break; 5772 case DIF_OP_NOP: 5773 break; 5774 case DIF_OP_SETX: 5775 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5776 break; 5777 case DIF_OP_SETS: 5778 regs[rd] = (uint64_t)(uintptr_t) 5779 (strtab + DIF_INSTR_STRING(instr)); 5780 break; 5781 case DIF_OP_SCMP: { 5782 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5783 uintptr_t s1 = regs[r1]; 5784 uintptr_t s2 = regs[r2]; 5785 5786 if (s1 != NULL && 5787 !dtrace_strcanload(s1, sz, mstate, vstate)) 5788 break; 5789 if (s2 != NULL && 5790 !dtrace_strcanload(s2, sz, mstate, vstate)) 5791 break; 5792 5793 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5794 5795 cc_n = cc_r < 0; 5796 cc_z = cc_r == 0; 5797 cc_v = cc_c = 0; 5798 break; 5799 } 5800 case DIF_OP_LDGA: 5801 regs[rd] = dtrace_dif_variable(mstate, state, 5802 r1, regs[r2]); 5803 break; 5804 case DIF_OP_LDGS: 5805 id = DIF_INSTR_VAR(instr); 5806 5807 if (id >= DIF_VAR_OTHER_UBASE) { 5808 uintptr_t a; 5809 5810 id -= DIF_VAR_OTHER_UBASE; 5811 svar = vstate->dtvs_globals[id]; 5812 ASSERT(svar != NULL); 5813 v = &svar->dtsv_var; 5814 5815 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5816 regs[rd] = svar->dtsv_data; 5817 break; 5818 } 5819 5820 a = (uintptr_t)svar->dtsv_data; 5821 5822 if (*(uint8_t *)a == UINT8_MAX) { 5823 /* 5824 * If the 0th byte is set to UINT8_MAX 5825 * then this is to be treated as a 5826 * reference to a NULL variable. 5827 */ 5828 regs[rd] = NULL; 5829 } else { 5830 regs[rd] = a + sizeof (uint64_t); 5831 } 5832 5833 break; 5834 } 5835 5836 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5837 break; 5838 5839 case DIF_OP_STGS: 5840 id = DIF_INSTR_VAR(instr); 5841 5842 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5843 id -= DIF_VAR_OTHER_UBASE; 5844 5845 svar = vstate->dtvs_globals[id]; 5846 ASSERT(svar != NULL); 5847 v = &svar->dtsv_var; 5848 5849 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5850 uintptr_t a = (uintptr_t)svar->dtsv_data; 5851 5852 ASSERT(a != NULL); 5853 ASSERT(svar->dtsv_size != 0); 5854 5855 if (regs[rd] == NULL) { 5856 *(uint8_t *)a = UINT8_MAX; 5857 break; 5858 } else { 5859 *(uint8_t *)a = 0; 5860 a += sizeof (uint64_t); 5861 } 5862 if (!dtrace_vcanload( 5863 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5864 mstate, vstate)) 5865 break; 5866 5867 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5868 (void *)a, &v->dtdv_type); 5869 break; 5870 } 5871 5872 svar->dtsv_data = regs[rd]; 5873 break; 5874 5875 case DIF_OP_LDTA: 5876 /* 5877 * There are no DTrace built-in thread-local arrays at 5878 * present. This opcode is saved for future work. 5879 */ 5880 *flags |= CPU_DTRACE_ILLOP; 5881 regs[rd] = 0; 5882 break; 5883 5884 case DIF_OP_LDLS: 5885 id = DIF_INSTR_VAR(instr); 5886 5887 if (id < DIF_VAR_OTHER_UBASE) { 5888 /* 5889 * For now, this has no meaning. 5890 */ 5891 regs[rd] = 0; 5892 break; 5893 } 5894 5895 id -= DIF_VAR_OTHER_UBASE; 5896 5897 ASSERT(id < vstate->dtvs_nlocals); 5898 ASSERT(vstate->dtvs_locals != NULL); 5899 5900 svar = vstate->dtvs_locals[id]; 5901 ASSERT(svar != NULL); 5902 v = &svar->dtsv_var; 5903 5904 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5905 uintptr_t a = (uintptr_t)svar->dtsv_data; 5906 size_t sz = v->dtdv_type.dtdt_size; 5907 5908 sz += sizeof (uint64_t); 5909 ASSERT(svar->dtsv_size == NCPU * sz); 5910 a += CPU->cpu_id * sz; 5911 5912 if (*(uint8_t *)a == UINT8_MAX) { 5913 /* 5914 * If the 0th byte is set to UINT8_MAX 5915 * then this is to be treated as a 5916 * reference to a NULL variable. 5917 */ 5918 regs[rd] = NULL; 5919 } else { 5920 regs[rd] = a + sizeof (uint64_t); 5921 } 5922 5923 break; 5924 } 5925 5926 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5927 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5928 regs[rd] = tmp[CPU->cpu_id]; 5929 break; 5930 5931 case DIF_OP_STLS: 5932 id = DIF_INSTR_VAR(instr); 5933 5934 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5935 id -= DIF_VAR_OTHER_UBASE; 5936 ASSERT(id < vstate->dtvs_nlocals); 5937 5938 ASSERT(vstate->dtvs_locals != NULL); 5939 svar = vstate->dtvs_locals[id]; 5940 ASSERT(svar != NULL); 5941 v = &svar->dtsv_var; 5942 5943 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5944 uintptr_t a = (uintptr_t)svar->dtsv_data; 5945 size_t sz = v->dtdv_type.dtdt_size; 5946 5947 sz += sizeof (uint64_t); 5948 ASSERT(svar->dtsv_size == NCPU * sz); 5949 a += CPU->cpu_id * sz; 5950 5951 if (regs[rd] == NULL) { 5952 *(uint8_t *)a = UINT8_MAX; 5953 break; 5954 } else { 5955 *(uint8_t *)a = 0; 5956 a += sizeof (uint64_t); 5957 } 5958 5959 if (!dtrace_vcanload( 5960 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5961 mstate, vstate)) 5962 break; 5963 5964 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5965 (void *)a, &v->dtdv_type); 5966 break; 5967 } 5968 5969 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5970 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5971 tmp[CPU->cpu_id] = regs[rd]; 5972 break; 5973 5974 case DIF_OP_LDTS: { 5975 dtrace_dynvar_t *dvar; 5976 dtrace_key_t *key; 5977 5978 id = DIF_INSTR_VAR(instr); 5979 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5980 id -= DIF_VAR_OTHER_UBASE; 5981 v = &vstate->dtvs_tlocals[id]; 5982 5983 key = &tupregs[DIF_DTR_NREGS]; 5984 key[0].dttk_value = (uint64_t)id; 5985 key[0].dttk_size = 0; 5986 DTRACE_TLS_THRKEY(key[1].dttk_value); 5987 key[1].dttk_size = 0; 5988 5989 dvar = dtrace_dynvar(dstate, 2, key, 5990 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5991 mstate, vstate); 5992 5993 if (dvar == NULL) { 5994 regs[rd] = 0; 5995 break; 5996 } 5997 5998 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5999 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6000 } else { 6001 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6002 } 6003 6004 break; 6005 } 6006 6007 case DIF_OP_STTS: { 6008 dtrace_dynvar_t *dvar; 6009 dtrace_key_t *key; 6010 6011 id = DIF_INSTR_VAR(instr); 6012 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6013 id -= DIF_VAR_OTHER_UBASE; 6014 6015 key = &tupregs[DIF_DTR_NREGS]; 6016 key[0].dttk_value = (uint64_t)id; 6017 key[0].dttk_size = 0; 6018 DTRACE_TLS_THRKEY(key[1].dttk_value); 6019 key[1].dttk_size = 0; 6020 v = &vstate->dtvs_tlocals[id]; 6021 6022 dvar = dtrace_dynvar(dstate, 2, key, 6023 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6024 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6025 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6026 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6027 6028 /* 6029 * Given that we're storing to thread-local data, 6030 * we need to flush our predicate cache. 6031 */ 6032 curthread->t_predcache = NULL; 6033 6034 if (dvar == NULL) 6035 break; 6036 6037 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6038 if (!dtrace_vcanload( 6039 (void *)(uintptr_t)regs[rd], 6040 &v->dtdv_type, mstate, vstate)) 6041 break; 6042 6043 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6044 dvar->dtdv_data, &v->dtdv_type); 6045 } else { 6046 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6047 } 6048 6049 break; 6050 } 6051 6052 case DIF_OP_SRA: 6053 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6054 break; 6055 6056 case DIF_OP_CALL: 6057 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6058 regs, tupregs, ttop, mstate, state); 6059 break; 6060 6061 case DIF_OP_PUSHTR: 6062 if (ttop == DIF_DTR_NREGS) { 6063 *flags |= CPU_DTRACE_TUPOFLOW; 6064 break; 6065 } 6066 6067 if (r1 == DIF_TYPE_STRING) { 6068 /* 6069 * If this is a string type and the size is 0, 6070 * we'll use the system-wide default string 6071 * size. Note that we are _not_ looking at 6072 * the value of the DTRACEOPT_STRSIZE option; 6073 * had this been set, we would expect to have 6074 * a non-zero size value in the "pushtr". 6075 */ 6076 tupregs[ttop].dttk_size = 6077 dtrace_strlen((char *)(uintptr_t)regs[rd], 6078 regs[r2] ? regs[r2] : 6079 dtrace_strsize_default) + 1; 6080 } else { 6081 tupregs[ttop].dttk_size = regs[r2]; 6082 } 6083 6084 tupregs[ttop++].dttk_value = regs[rd]; 6085 break; 6086 6087 case DIF_OP_PUSHTV: 6088 if (ttop == DIF_DTR_NREGS) { 6089 *flags |= CPU_DTRACE_TUPOFLOW; 6090 break; 6091 } 6092 6093 tupregs[ttop].dttk_value = regs[rd]; 6094 tupregs[ttop++].dttk_size = 0; 6095 break; 6096 6097 case DIF_OP_POPTS: 6098 if (ttop != 0) 6099 ttop--; 6100 break; 6101 6102 case DIF_OP_FLUSHTS: 6103 ttop = 0; 6104 break; 6105 6106 case DIF_OP_LDGAA: 6107 case DIF_OP_LDTAA: { 6108 dtrace_dynvar_t *dvar; 6109 dtrace_key_t *key = tupregs; 6110 uint_t nkeys = ttop; 6111 6112 id = DIF_INSTR_VAR(instr); 6113 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6114 id -= DIF_VAR_OTHER_UBASE; 6115 6116 key[nkeys].dttk_value = (uint64_t)id; 6117 key[nkeys++].dttk_size = 0; 6118 6119 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6120 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6121 key[nkeys++].dttk_size = 0; 6122 v = &vstate->dtvs_tlocals[id]; 6123 } else { 6124 v = &vstate->dtvs_globals[id]->dtsv_var; 6125 } 6126 6127 dvar = dtrace_dynvar(dstate, nkeys, key, 6128 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6129 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6130 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6131 6132 if (dvar == NULL) { 6133 regs[rd] = 0; 6134 break; 6135 } 6136 6137 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6138 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6139 } else { 6140 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6141 } 6142 6143 break; 6144 } 6145 6146 case DIF_OP_STGAA: 6147 case DIF_OP_STTAA: { 6148 dtrace_dynvar_t *dvar; 6149 dtrace_key_t *key = tupregs; 6150 uint_t nkeys = ttop; 6151 6152 id = DIF_INSTR_VAR(instr); 6153 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6154 id -= DIF_VAR_OTHER_UBASE; 6155 6156 key[nkeys].dttk_value = (uint64_t)id; 6157 key[nkeys++].dttk_size = 0; 6158 6159 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6160 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6161 key[nkeys++].dttk_size = 0; 6162 v = &vstate->dtvs_tlocals[id]; 6163 } else { 6164 v = &vstate->dtvs_globals[id]->dtsv_var; 6165 } 6166 6167 dvar = dtrace_dynvar(dstate, nkeys, key, 6168 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6169 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6170 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6171 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6172 6173 if (dvar == NULL) 6174 break; 6175 6176 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6177 if (!dtrace_vcanload( 6178 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6179 mstate, vstate)) 6180 break; 6181 6182 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6183 dvar->dtdv_data, &v->dtdv_type); 6184 } else { 6185 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6186 } 6187 6188 break; 6189 } 6190 6191 case DIF_OP_ALLOCS: { 6192 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6193 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6194 6195 /* 6196 * Rounding up the user allocation size could have 6197 * overflowed large, bogus allocations (like -1ULL) to 6198 * 0. 6199 */ 6200 if (size < regs[r1] || 6201 !DTRACE_INSCRATCH(mstate, size)) { 6202 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6203 regs[rd] = NULL; 6204 break; 6205 } 6206 6207 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6208 mstate->dtms_scratch_ptr += size; 6209 regs[rd] = ptr; 6210 break; 6211 } 6212 6213 case DIF_OP_COPYS: 6214 if (!dtrace_canstore(regs[rd], regs[r2], 6215 mstate, vstate)) { 6216 *flags |= CPU_DTRACE_BADADDR; 6217 *illval = regs[rd]; 6218 break; 6219 } 6220 6221 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6222 break; 6223 6224 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6225 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6226 break; 6227 6228 case DIF_OP_STB: 6229 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6230 *flags |= CPU_DTRACE_BADADDR; 6231 *illval = regs[rd]; 6232 break; 6233 } 6234 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6235 break; 6236 6237 case DIF_OP_STH: 6238 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6239 *flags |= CPU_DTRACE_BADADDR; 6240 *illval = regs[rd]; 6241 break; 6242 } 6243 if (regs[rd] & 1) { 6244 *flags |= CPU_DTRACE_BADALIGN; 6245 *illval = regs[rd]; 6246 break; 6247 } 6248 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6249 break; 6250 6251 case DIF_OP_STW: 6252 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6253 *flags |= CPU_DTRACE_BADADDR; 6254 *illval = regs[rd]; 6255 break; 6256 } 6257 if (regs[rd] & 3) { 6258 *flags |= CPU_DTRACE_BADALIGN; 6259 *illval = regs[rd]; 6260 break; 6261 } 6262 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6263 break; 6264 6265 case DIF_OP_STX: 6266 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6267 *flags |= CPU_DTRACE_BADADDR; 6268 *illval = regs[rd]; 6269 break; 6270 } 6271 if (regs[rd] & 7) { 6272 *flags |= CPU_DTRACE_BADALIGN; 6273 *illval = regs[rd]; 6274 break; 6275 } 6276 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6277 break; 6278 } 6279 } 6280 6281 if (!(*flags & CPU_DTRACE_FAULT)) 6282 return (rval); 6283 6284 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6285 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6286 6287 return (0); 6288 } 6289 6290 static void 6291 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6292 { 6293 dtrace_probe_t *probe = ecb->dte_probe; 6294 dtrace_provider_t *prov = probe->dtpr_provider; 6295 char c[DTRACE_FULLNAMELEN + 80], *str; 6296 char *msg = "dtrace: breakpoint action at probe "; 6297 char *ecbmsg = " (ecb "; 6298 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6299 uintptr_t val = (uintptr_t)ecb; 6300 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6301 6302 if (dtrace_destructive_disallow) 6303 return; 6304 6305 /* 6306 * It's impossible to be taking action on the NULL probe. 6307 */ 6308 ASSERT(probe != NULL); 6309 6310 /* 6311 * This is a poor man's (destitute man's?) sprintf(): we want to 6312 * print the provider name, module name, function name and name of 6313 * the probe, along with the hex address of the ECB with the breakpoint 6314 * action -- all of which we must place in the character buffer by 6315 * hand. 6316 */ 6317 while (*msg != '\0') 6318 c[i++] = *msg++; 6319 6320 for (str = prov->dtpv_name; *str != '\0'; str++) 6321 c[i++] = *str; 6322 c[i++] = ':'; 6323 6324 for (str = probe->dtpr_mod; *str != '\0'; str++) 6325 c[i++] = *str; 6326 c[i++] = ':'; 6327 6328 for (str = probe->dtpr_func; *str != '\0'; str++) 6329 c[i++] = *str; 6330 c[i++] = ':'; 6331 6332 for (str = probe->dtpr_name; *str != '\0'; str++) 6333 c[i++] = *str; 6334 6335 while (*ecbmsg != '\0') 6336 c[i++] = *ecbmsg++; 6337 6338 while (shift >= 0) { 6339 mask = (uintptr_t)0xf << shift; 6340 6341 if (val >= ((uintptr_t)1 << shift)) 6342 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6343 shift -= 4; 6344 } 6345 6346 c[i++] = ')'; 6347 c[i] = '\0'; 6348 6349 debug_enter(c); 6350 } 6351 6352 static void 6353 dtrace_action_panic(dtrace_ecb_t *ecb) 6354 { 6355 dtrace_probe_t *probe = ecb->dte_probe; 6356 6357 /* 6358 * It's impossible to be taking action on the NULL probe. 6359 */ 6360 ASSERT(probe != NULL); 6361 6362 if (dtrace_destructive_disallow) 6363 return; 6364 6365 if (dtrace_panicked != NULL) 6366 return; 6367 6368 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6369 return; 6370 6371 /* 6372 * We won the right to panic. (We want to be sure that only one 6373 * thread calls panic() from dtrace_probe(), and that panic() is 6374 * called exactly once.) 6375 */ 6376 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6377 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6378 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6379 } 6380 6381 static void 6382 dtrace_action_raise(uint64_t sig) 6383 { 6384 if (dtrace_destructive_disallow) 6385 return; 6386 6387 if (sig >= NSIG) { 6388 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6389 return; 6390 } 6391 6392 /* 6393 * raise() has a queue depth of 1 -- we ignore all subsequent 6394 * invocations of the raise() action. 6395 */ 6396 if (curthread->t_dtrace_sig == 0) 6397 curthread->t_dtrace_sig = (uint8_t)sig; 6398 6399 curthread->t_sig_check = 1; 6400 aston(curthread); 6401 } 6402 6403 static void 6404 dtrace_action_stop(void) 6405 { 6406 if (dtrace_destructive_disallow) 6407 return; 6408 6409 if (!curthread->t_dtrace_stop) { 6410 curthread->t_dtrace_stop = 1; 6411 curthread->t_sig_check = 1; 6412 aston(curthread); 6413 } 6414 } 6415 6416 static void 6417 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6418 { 6419 hrtime_t now; 6420 volatile uint16_t *flags; 6421 cpu_t *cpu = CPU; 6422 6423 if (dtrace_destructive_disallow) 6424 return; 6425 6426 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6427 6428 now = dtrace_gethrtime(); 6429 6430 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6431 /* 6432 * We need to advance the mark to the current time. 6433 */ 6434 cpu->cpu_dtrace_chillmark = now; 6435 cpu->cpu_dtrace_chilled = 0; 6436 } 6437 6438 /* 6439 * Now check to see if the requested chill time would take us over 6440 * the maximum amount of time allowed in the chill interval. (Or 6441 * worse, if the calculation itself induces overflow.) 6442 */ 6443 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6444 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6445 *flags |= CPU_DTRACE_ILLOP; 6446 return; 6447 } 6448 6449 while (dtrace_gethrtime() - now < val) 6450 continue; 6451 6452 /* 6453 * Normally, we assure that the value of the variable "timestamp" does 6454 * not change within an ECB. The presence of chill() represents an 6455 * exception to this rule, however. 6456 */ 6457 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6458 cpu->cpu_dtrace_chilled += val; 6459 } 6460 6461 static void 6462 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6463 uint64_t *buf, uint64_t arg) 6464 { 6465 int nframes = DTRACE_USTACK_NFRAMES(arg); 6466 int strsize = DTRACE_USTACK_STRSIZE(arg); 6467 uint64_t *pcs = &buf[1], *fps; 6468 char *str = (char *)&pcs[nframes]; 6469 int size, offs = 0, i, j; 6470 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6471 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6472 char *sym; 6473 6474 /* 6475 * Should be taking a faster path if string space has not been 6476 * allocated. 6477 */ 6478 ASSERT(strsize != 0); 6479 6480 /* 6481 * We will first allocate some temporary space for the frame pointers. 6482 */ 6483 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6484 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6485 (nframes * sizeof (uint64_t)); 6486 6487 if (!DTRACE_INSCRATCH(mstate, size)) { 6488 /* 6489 * Not enough room for our frame pointers -- need to indicate 6490 * that we ran out of scratch space. 6491 */ 6492 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6493 return; 6494 } 6495 6496 mstate->dtms_scratch_ptr += size; 6497 saved = mstate->dtms_scratch_ptr; 6498 6499 /* 6500 * Now get a stack with both program counters and frame pointers. 6501 */ 6502 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6503 dtrace_getufpstack(buf, fps, nframes + 1); 6504 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6505 6506 /* 6507 * If that faulted, we're cooked. 6508 */ 6509 if (*flags & CPU_DTRACE_FAULT) 6510 goto out; 6511 6512 /* 6513 * Now we want to walk up the stack, calling the USTACK helper. For 6514 * each iteration, we restore the scratch pointer. 6515 */ 6516 for (i = 0; i < nframes; i++) { 6517 mstate->dtms_scratch_ptr = saved; 6518 6519 if (offs >= strsize) 6520 break; 6521 6522 sym = (char *)(uintptr_t)dtrace_helper( 6523 DTRACE_HELPER_ACTION_USTACK, 6524 mstate, state, pcs[i], fps[i]); 6525 6526 /* 6527 * If we faulted while running the helper, we're going to 6528 * clear the fault and null out the corresponding string. 6529 */ 6530 if (*flags & CPU_DTRACE_FAULT) { 6531 *flags &= ~CPU_DTRACE_FAULT; 6532 str[offs++] = '\0'; 6533 continue; 6534 } 6535 6536 if (sym == NULL) { 6537 str[offs++] = '\0'; 6538 continue; 6539 } 6540 6541 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6542 6543 /* 6544 * Now copy in the string that the helper returned to us. 6545 */ 6546 for (j = 0; offs + j < strsize; j++) { 6547 if ((str[offs + j] = sym[j]) == '\0') 6548 break; 6549 } 6550 6551 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6552 6553 offs += j + 1; 6554 } 6555 6556 if (offs >= strsize) { 6557 /* 6558 * If we didn't have room for all of the strings, we don't 6559 * abort processing -- this needn't be a fatal error -- but we 6560 * still want to increment a counter (dts_stkstroverflows) to 6561 * allow this condition to be warned about. (If this is from 6562 * a jstack() action, it is easily tuned via jstackstrsize.) 6563 */ 6564 dtrace_error(&state->dts_stkstroverflows); 6565 } 6566 6567 while (offs < strsize) 6568 str[offs++] = '\0'; 6569 6570 out: 6571 mstate->dtms_scratch_ptr = old; 6572 } 6573 6574 static void 6575 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6576 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6577 { 6578 volatile uint16_t *flags; 6579 uint64_t val = *valp; 6580 size_t valoffs = *valoffsp; 6581 6582 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6583 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6584 6585 /* 6586 * If this is a string, we're going to only load until we find the zero 6587 * byte -- after which we'll store zero bytes. 6588 */ 6589 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6590 char c = '\0' + 1; 6591 size_t s; 6592 6593 for (s = 0; s < size; s++) { 6594 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6595 c = dtrace_load8(val++); 6596 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6597 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6598 c = dtrace_fuword8((void *)(uintptr_t)val++); 6599 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6600 if (*flags & CPU_DTRACE_FAULT) 6601 break; 6602 } 6603 6604 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6605 6606 if (c == '\0' && intuple) 6607 break; 6608 } 6609 } else { 6610 uint8_t c; 6611 while (valoffs < end) { 6612 if (dtkind == DIF_TF_BYREF) { 6613 c = dtrace_load8(val++); 6614 } else if (dtkind == DIF_TF_BYUREF) { 6615 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6616 c = dtrace_fuword8((void *)(uintptr_t)val++); 6617 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6618 if (*flags & CPU_DTRACE_FAULT) 6619 break; 6620 } 6621 6622 DTRACE_STORE(uint8_t, tomax, 6623 valoffs++, c); 6624 } 6625 } 6626 6627 *valp = val; 6628 *valoffsp = valoffs; 6629 } 6630 6631 /* 6632 * If you're looking for the epicenter of DTrace, you just found it. This 6633 * is the function called by the provider to fire a probe -- from which all 6634 * subsequent probe-context DTrace activity emanates. 6635 */ 6636 void 6637 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6638 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6639 { 6640 processorid_t cpuid; 6641 dtrace_icookie_t cookie; 6642 dtrace_probe_t *probe; 6643 dtrace_mstate_t mstate; 6644 dtrace_ecb_t *ecb; 6645 dtrace_action_t *act; 6646 intptr_t offs; 6647 size_t size; 6648 int vtime, onintr; 6649 volatile uint16_t *flags; 6650 hrtime_t now, end; 6651 6652 /* 6653 * Kick out immediately if this CPU is still being born (in which case 6654 * curthread will be set to -1) or the current thread can't allow 6655 * probes in its current context. 6656 */ 6657 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6658 return; 6659 6660 cookie = dtrace_interrupt_disable(); 6661 probe = dtrace_probes[id - 1]; 6662 cpuid = CPU->cpu_id; 6663 onintr = CPU_ON_INTR(CPU); 6664 6665 CPU->cpu_dtrace_probes++; 6666 6667 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6668 probe->dtpr_predcache == curthread->t_predcache) { 6669 /* 6670 * We have hit in the predicate cache; we know that 6671 * this predicate would evaluate to be false. 6672 */ 6673 dtrace_interrupt_enable(cookie); 6674 return; 6675 } 6676 6677 if (panic_quiesce) { 6678 /* 6679 * We don't trace anything if we're panicking. 6680 */ 6681 dtrace_interrupt_enable(cookie); 6682 return; 6683 } 6684 6685 now = mstate.dtms_timestamp = dtrace_gethrtime(); 6686 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6687 vtime = dtrace_vtime_references != 0; 6688 6689 if (vtime && curthread->t_dtrace_start) 6690 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6691 6692 mstate.dtms_difo = NULL; 6693 mstate.dtms_probe = probe; 6694 mstate.dtms_strtok = NULL; 6695 mstate.dtms_arg[0] = arg0; 6696 mstate.dtms_arg[1] = arg1; 6697 mstate.dtms_arg[2] = arg2; 6698 mstate.dtms_arg[3] = arg3; 6699 mstate.dtms_arg[4] = arg4; 6700 6701 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6702 6703 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6704 dtrace_predicate_t *pred = ecb->dte_predicate; 6705 dtrace_state_t *state = ecb->dte_state; 6706 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6707 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6708 dtrace_vstate_t *vstate = &state->dts_vstate; 6709 dtrace_provider_t *prov = probe->dtpr_provider; 6710 uint64_t tracememsize = 0; 6711 int committed = 0; 6712 caddr_t tomax; 6713 6714 /* 6715 * A little subtlety with the following (seemingly innocuous) 6716 * declaration of the automatic 'val': by looking at the 6717 * code, you might think that it could be declared in the 6718 * action processing loop, below. (That is, it's only used in 6719 * the action processing loop.) However, it must be declared 6720 * out of that scope because in the case of DIF expression 6721 * arguments to aggregating actions, one iteration of the 6722 * action loop will use the last iteration's value. 6723 */ 6724 #ifdef lint 6725 uint64_t val = 0; 6726 #else 6727 uint64_t val; 6728 #endif 6729 6730 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6731 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6732 mstate.dtms_getf = NULL; 6733 6734 *flags &= ~CPU_DTRACE_ERROR; 6735 6736 if (prov == dtrace_provider) { 6737 /* 6738 * If dtrace itself is the provider of this probe, 6739 * we're only going to continue processing the ECB if 6740 * arg0 (the dtrace_state_t) is equal to the ECB's 6741 * creating state. (This prevents disjoint consumers 6742 * from seeing one another's metaprobes.) 6743 */ 6744 if (arg0 != (uint64_t)(uintptr_t)state) 6745 continue; 6746 } 6747 6748 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6749 /* 6750 * We're not currently active. If our provider isn't 6751 * the dtrace pseudo provider, we're not interested. 6752 */ 6753 if (prov != dtrace_provider) 6754 continue; 6755 6756 /* 6757 * Now we must further check if we are in the BEGIN 6758 * probe. If we are, we will only continue processing 6759 * if we're still in WARMUP -- if one BEGIN enabling 6760 * has invoked the exit() action, we don't want to 6761 * evaluate subsequent BEGIN enablings. 6762 */ 6763 if (probe->dtpr_id == dtrace_probeid_begin && 6764 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6765 ASSERT(state->dts_activity == 6766 DTRACE_ACTIVITY_DRAINING); 6767 continue; 6768 } 6769 } 6770 6771 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6772 continue; 6773 6774 if (now - state->dts_alive > dtrace_deadman_timeout) { 6775 /* 6776 * We seem to be dead. Unless we (a) have kernel 6777 * destructive permissions (b) have explicitly enabled 6778 * destructive actions and (c) destructive actions have 6779 * not been disabled, we're going to transition into 6780 * the KILLED state, from which no further processing 6781 * on this state will be performed. 6782 */ 6783 if (!dtrace_priv_kernel_destructive(state) || 6784 !state->dts_cred.dcr_destructive || 6785 dtrace_destructive_disallow) { 6786 void *activity = &state->dts_activity; 6787 dtrace_activity_t current; 6788 6789 do { 6790 current = state->dts_activity; 6791 } while (dtrace_cas32(activity, current, 6792 DTRACE_ACTIVITY_KILLED) != current); 6793 6794 continue; 6795 } 6796 } 6797 6798 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6799 ecb->dte_alignment, state, &mstate)) < 0) 6800 continue; 6801 6802 tomax = buf->dtb_tomax; 6803 ASSERT(tomax != NULL); 6804 6805 if (ecb->dte_size != 0) { 6806 dtrace_rechdr_t dtrh; 6807 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6808 mstate.dtms_timestamp = dtrace_gethrtime(); 6809 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6810 } 6811 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6812 dtrh.dtrh_epid = ecb->dte_epid; 6813 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6814 mstate.dtms_timestamp); 6815 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6816 } 6817 6818 mstate.dtms_epid = ecb->dte_epid; 6819 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6820 6821 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6822 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6823 6824 if (pred != NULL) { 6825 dtrace_difo_t *dp = pred->dtp_difo; 6826 int rval; 6827 6828 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6829 6830 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6831 dtrace_cacheid_t cid = probe->dtpr_predcache; 6832 6833 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6834 /* 6835 * Update the predicate cache... 6836 */ 6837 ASSERT(cid == pred->dtp_cacheid); 6838 curthread->t_predcache = cid; 6839 } 6840 6841 continue; 6842 } 6843 } 6844 6845 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6846 act != NULL; act = act->dta_next) { 6847 size_t valoffs; 6848 dtrace_difo_t *dp; 6849 dtrace_recdesc_t *rec = &act->dta_rec; 6850 6851 size = rec->dtrd_size; 6852 valoffs = offs + rec->dtrd_offset; 6853 6854 if (DTRACEACT_ISAGG(act->dta_kind)) { 6855 uint64_t v = 0xbad; 6856 dtrace_aggregation_t *agg; 6857 6858 agg = (dtrace_aggregation_t *)act; 6859 6860 if ((dp = act->dta_difo) != NULL) 6861 v = dtrace_dif_emulate(dp, 6862 &mstate, vstate, state); 6863 6864 if (*flags & CPU_DTRACE_ERROR) 6865 continue; 6866 6867 /* 6868 * Note that we always pass the expression 6869 * value from the previous iteration of the 6870 * action loop. This value will only be used 6871 * if there is an expression argument to the 6872 * aggregating action, denoted by the 6873 * dtag_hasarg field. 6874 */ 6875 dtrace_aggregate(agg, buf, 6876 offs, aggbuf, v, val); 6877 continue; 6878 } 6879 6880 switch (act->dta_kind) { 6881 case DTRACEACT_STOP: 6882 if (dtrace_priv_proc_destructive(state, 6883 &mstate)) 6884 dtrace_action_stop(); 6885 continue; 6886 6887 case DTRACEACT_BREAKPOINT: 6888 if (dtrace_priv_kernel_destructive(state)) 6889 dtrace_action_breakpoint(ecb); 6890 continue; 6891 6892 case DTRACEACT_PANIC: 6893 if (dtrace_priv_kernel_destructive(state)) 6894 dtrace_action_panic(ecb); 6895 continue; 6896 6897 case DTRACEACT_STACK: 6898 if (!dtrace_priv_kernel(state)) 6899 continue; 6900 6901 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6902 size / sizeof (pc_t), probe->dtpr_aframes, 6903 DTRACE_ANCHORED(probe) ? NULL : 6904 (uint32_t *)arg0); 6905 6906 continue; 6907 6908 case DTRACEACT_JSTACK: 6909 case DTRACEACT_USTACK: 6910 if (!dtrace_priv_proc(state, &mstate)) 6911 continue; 6912 6913 /* 6914 * See comment in DIF_VAR_PID. 6915 */ 6916 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6917 CPU_ON_INTR(CPU)) { 6918 int depth = DTRACE_USTACK_NFRAMES( 6919 rec->dtrd_arg) + 1; 6920 6921 dtrace_bzero((void *)(tomax + valoffs), 6922 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6923 + depth * sizeof (uint64_t)); 6924 6925 continue; 6926 } 6927 6928 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6929 curproc->p_dtrace_helpers != NULL) { 6930 /* 6931 * This is the slow path -- we have 6932 * allocated string space, and we're 6933 * getting the stack of a process that 6934 * has helpers. Call into a separate 6935 * routine to perform this processing. 6936 */ 6937 dtrace_action_ustack(&mstate, state, 6938 (uint64_t *)(tomax + valoffs), 6939 rec->dtrd_arg); 6940 continue; 6941 } 6942 6943 /* 6944 * Clear the string space, since there's no 6945 * helper to do it for us. 6946 */ 6947 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6948 int depth = DTRACE_USTACK_NFRAMES( 6949 rec->dtrd_arg); 6950 size_t strsize = DTRACE_USTACK_STRSIZE( 6951 rec->dtrd_arg); 6952 uint64_t *buf = (uint64_t *)(tomax + 6953 valoffs); 6954 void *strspace = &buf[depth + 1]; 6955 6956 dtrace_bzero(strspace, 6957 MIN(depth, strsize)); 6958 } 6959 6960 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6961 dtrace_getupcstack((uint64_t *) 6962 (tomax + valoffs), 6963 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6964 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6965 continue; 6966 6967 default: 6968 break; 6969 } 6970 6971 dp = act->dta_difo; 6972 ASSERT(dp != NULL); 6973 6974 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6975 6976 if (*flags & CPU_DTRACE_ERROR) 6977 continue; 6978 6979 switch (act->dta_kind) { 6980 case DTRACEACT_SPECULATE: { 6981 dtrace_rechdr_t *dtrh; 6982 6983 ASSERT(buf == &state->dts_buffer[cpuid]); 6984 buf = dtrace_speculation_buffer(state, 6985 cpuid, val); 6986 6987 if (buf == NULL) { 6988 *flags |= CPU_DTRACE_DROP; 6989 continue; 6990 } 6991 6992 offs = dtrace_buffer_reserve(buf, 6993 ecb->dte_needed, ecb->dte_alignment, 6994 state, NULL); 6995 6996 if (offs < 0) { 6997 *flags |= CPU_DTRACE_DROP; 6998 continue; 6999 } 7000 7001 tomax = buf->dtb_tomax; 7002 ASSERT(tomax != NULL); 7003 7004 if (ecb->dte_size == 0) 7005 continue; 7006 7007 ASSERT3U(ecb->dte_size, >=, 7008 sizeof (dtrace_rechdr_t)); 7009 dtrh = ((void *)(tomax + offs)); 7010 dtrh->dtrh_epid = ecb->dte_epid; 7011 /* 7012 * When the speculation is committed, all of 7013 * the records in the speculative buffer will 7014 * have their timestamps set to the commit 7015 * time. Until then, it is set to a sentinel 7016 * value, for debugability. 7017 */ 7018 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7019 continue; 7020 } 7021 7022 case DTRACEACT_CHILL: 7023 if (dtrace_priv_kernel_destructive(state)) 7024 dtrace_action_chill(&mstate, val); 7025 continue; 7026 7027 case DTRACEACT_RAISE: 7028 if (dtrace_priv_proc_destructive(state, 7029 &mstate)) 7030 dtrace_action_raise(val); 7031 continue; 7032 7033 case DTRACEACT_COMMIT: 7034 ASSERT(!committed); 7035 7036 /* 7037 * We need to commit our buffer state. 7038 */ 7039 if (ecb->dte_size) 7040 buf->dtb_offset = offs + ecb->dte_size; 7041 buf = &state->dts_buffer[cpuid]; 7042 dtrace_speculation_commit(state, cpuid, val); 7043 committed = 1; 7044 continue; 7045 7046 case DTRACEACT_DISCARD: 7047 dtrace_speculation_discard(state, cpuid, val); 7048 continue; 7049 7050 case DTRACEACT_DIFEXPR: 7051 case DTRACEACT_LIBACT: 7052 case DTRACEACT_PRINTF: 7053 case DTRACEACT_PRINTA: 7054 case DTRACEACT_SYSTEM: 7055 case DTRACEACT_FREOPEN: 7056 case DTRACEACT_TRACEMEM: 7057 break; 7058 7059 case DTRACEACT_TRACEMEM_DYNSIZE: 7060 tracememsize = val; 7061 break; 7062 7063 case DTRACEACT_SYM: 7064 case DTRACEACT_MOD: 7065 if (!dtrace_priv_kernel(state)) 7066 continue; 7067 break; 7068 7069 case DTRACEACT_USYM: 7070 case DTRACEACT_UMOD: 7071 case DTRACEACT_UADDR: { 7072 struct pid *pid = curthread->t_procp->p_pidp; 7073 7074 if (!dtrace_priv_proc(state, &mstate)) 7075 continue; 7076 7077 DTRACE_STORE(uint64_t, tomax, 7078 valoffs, (uint64_t)pid->pid_id); 7079 DTRACE_STORE(uint64_t, tomax, 7080 valoffs + sizeof (uint64_t), val); 7081 7082 continue; 7083 } 7084 7085 case DTRACEACT_EXIT: { 7086 /* 7087 * For the exit action, we are going to attempt 7088 * to atomically set our activity to be 7089 * draining. If this fails (either because 7090 * another CPU has beat us to the exit action, 7091 * or because our current activity is something 7092 * other than ACTIVE or WARMUP), we will 7093 * continue. This assures that the exit action 7094 * can be successfully recorded at most once 7095 * when we're in the ACTIVE state. If we're 7096 * encountering the exit() action while in 7097 * COOLDOWN, however, we want to honor the new 7098 * status code. (We know that we're the only 7099 * thread in COOLDOWN, so there is no race.) 7100 */ 7101 void *activity = &state->dts_activity; 7102 dtrace_activity_t current = state->dts_activity; 7103 7104 if (current == DTRACE_ACTIVITY_COOLDOWN) 7105 break; 7106 7107 if (current != DTRACE_ACTIVITY_WARMUP) 7108 current = DTRACE_ACTIVITY_ACTIVE; 7109 7110 if (dtrace_cas32(activity, current, 7111 DTRACE_ACTIVITY_DRAINING) != current) { 7112 *flags |= CPU_DTRACE_DROP; 7113 continue; 7114 } 7115 7116 break; 7117 } 7118 7119 default: 7120 ASSERT(0); 7121 } 7122 7123 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7124 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7125 uintptr_t end = valoffs + size; 7126 7127 if (tracememsize != 0 && 7128 valoffs + tracememsize < end) { 7129 end = valoffs + tracememsize; 7130 tracememsize = 0; 7131 } 7132 7133 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7134 !dtrace_vcanload((void *)(uintptr_t)val, 7135 &dp->dtdo_rtype, &mstate, vstate)) 7136 continue; 7137 7138 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7139 &val, end, act->dta_intuple, 7140 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7141 DIF_TF_BYREF: DIF_TF_BYUREF); 7142 continue; 7143 } 7144 7145 switch (size) { 7146 case 0: 7147 break; 7148 7149 case sizeof (uint8_t): 7150 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7151 break; 7152 case sizeof (uint16_t): 7153 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7154 break; 7155 case sizeof (uint32_t): 7156 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7157 break; 7158 case sizeof (uint64_t): 7159 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7160 break; 7161 default: 7162 /* 7163 * Any other size should have been returned by 7164 * reference, not by value. 7165 */ 7166 ASSERT(0); 7167 break; 7168 } 7169 } 7170 7171 if (*flags & CPU_DTRACE_DROP) 7172 continue; 7173 7174 if (*flags & CPU_DTRACE_FAULT) { 7175 int ndx; 7176 dtrace_action_t *err; 7177 7178 buf->dtb_errors++; 7179 7180 if (probe->dtpr_id == dtrace_probeid_error) { 7181 /* 7182 * There's nothing we can do -- we had an 7183 * error on the error probe. We bump an 7184 * error counter to at least indicate that 7185 * this condition happened. 7186 */ 7187 dtrace_error(&state->dts_dblerrors); 7188 continue; 7189 } 7190 7191 if (vtime) { 7192 /* 7193 * Before recursing on dtrace_probe(), we 7194 * need to explicitly clear out our start 7195 * time to prevent it from being accumulated 7196 * into t_dtrace_vtime. 7197 */ 7198 curthread->t_dtrace_start = 0; 7199 } 7200 7201 /* 7202 * Iterate over the actions to figure out which action 7203 * we were processing when we experienced the error. 7204 * Note that act points _past_ the faulting action; if 7205 * act is ecb->dte_action, the fault was in the 7206 * predicate, if it's ecb->dte_action->dta_next it's 7207 * in action #1, and so on. 7208 */ 7209 for (err = ecb->dte_action, ndx = 0; 7210 err != act; err = err->dta_next, ndx++) 7211 continue; 7212 7213 dtrace_probe_error(state, ecb->dte_epid, ndx, 7214 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7215 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7216 cpu_core[cpuid].cpuc_dtrace_illval); 7217 7218 continue; 7219 } 7220 7221 if (!committed) 7222 buf->dtb_offset = offs + ecb->dte_size; 7223 } 7224 7225 end = dtrace_gethrtime(); 7226 if (vtime) 7227 curthread->t_dtrace_start = end; 7228 7229 CPU->cpu_dtrace_nsec += end - now; 7230 7231 dtrace_interrupt_enable(cookie); 7232 } 7233 7234 /* 7235 * DTrace Probe Hashing Functions 7236 * 7237 * The functions in this section (and indeed, the functions in remaining 7238 * sections) are not _called_ from probe context. (Any exceptions to this are 7239 * marked with a "Note:".) Rather, they are called from elsewhere in the 7240 * DTrace framework to look-up probes in, add probes to and remove probes from 7241 * the DTrace probe hashes. (Each probe is hashed by each element of the 7242 * probe tuple -- allowing for fast lookups, regardless of what was 7243 * specified.) 7244 */ 7245 static uint_t 7246 dtrace_hash_str(char *p) 7247 { 7248 unsigned int g; 7249 uint_t hval = 0; 7250 7251 while (*p) { 7252 hval = (hval << 4) + *p++; 7253 if ((g = (hval & 0xf0000000)) != 0) 7254 hval ^= g >> 24; 7255 hval &= ~g; 7256 } 7257 return (hval); 7258 } 7259 7260 static dtrace_hash_t * 7261 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7262 { 7263 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7264 7265 hash->dth_stroffs = stroffs; 7266 hash->dth_nextoffs = nextoffs; 7267 hash->dth_prevoffs = prevoffs; 7268 7269 hash->dth_size = 1; 7270 hash->dth_mask = hash->dth_size - 1; 7271 7272 hash->dth_tab = kmem_zalloc(hash->dth_size * 7273 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7274 7275 return (hash); 7276 } 7277 7278 static void 7279 dtrace_hash_destroy(dtrace_hash_t *hash) 7280 { 7281 #ifdef DEBUG 7282 int i; 7283 7284 for (i = 0; i < hash->dth_size; i++) 7285 ASSERT(hash->dth_tab[i] == NULL); 7286 #endif 7287 7288 kmem_free(hash->dth_tab, 7289 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7290 kmem_free(hash, sizeof (dtrace_hash_t)); 7291 } 7292 7293 static void 7294 dtrace_hash_resize(dtrace_hash_t *hash) 7295 { 7296 int size = hash->dth_size, i, ndx; 7297 int new_size = hash->dth_size << 1; 7298 int new_mask = new_size - 1; 7299 dtrace_hashbucket_t **new_tab, *bucket, *next; 7300 7301 ASSERT((new_size & new_mask) == 0); 7302 7303 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7304 7305 for (i = 0; i < size; i++) { 7306 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7307 dtrace_probe_t *probe = bucket->dthb_chain; 7308 7309 ASSERT(probe != NULL); 7310 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7311 7312 next = bucket->dthb_next; 7313 bucket->dthb_next = new_tab[ndx]; 7314 new_tab[ndx] = bucket; 7315 } 7316 } 7317 7318 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7319 hash->dth_tab = new_tab; 7320 hash->dth_size = new_size; 7321 hash->dth_mask = new_mask; 7322 } 7323 7324 static void 7325 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7326 { 7327 int hashval = DTRACE_HASHSTR(hash, new); 7328 int ndx = hashval & hash->dth_mask; 7329 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7330 dtrace_probe_t **nextp, **prevp; 7331 7332 for (; bucket != NULL; bucket = bucket->dthb_next) { 7333 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7334 goto add; 7335 } 7336 7337 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7338 dtrace_hash_resize(hash); 7339 dtrace_hash_add(hash, new); 7340 return; 7341 } 7342 7343 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7344 bucket->dthb_next = hash->dth_tab[ndx]; 7345 hash->dth_tab[ndx] = bucket; 7346 hash->dth_nbuckets++; 7347 7348 add: 7349 nextp = DTRACE_HASHNEXT(hash, new); 7350 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7351 *nextp = bucket->dthb_chain; 7352 7353 if (bucket->dthb_chain != NULL) { 7354 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7355 ASSERT(*prevp == NULL); 7356 *prevp = new; 7357 } 7358 7359 bucket->dthb_chain = new; 7360 bucket->dthb_len++; 7361 } 7362 7363 static dtrace_probe_t * 7364 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7365 { 7366 int hashval = DTRACE_HASHSTR(hash, template); 7367 int ndx = hashval & hash->dth_mask; 7368 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7369 7370 for (; bucket != NULL; bucket = bucket->dthb_next) { 7371 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7372 return (bucket->dthb_chain); 7373 } 7374 7375 return (NULL); 7376 } 7377 7378 static int 7379 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7380 { 7381 int hashval = DTRACE_HASHSTR(hash, template); 7382 int ndx = hashval & hash->dth_mask; 7383 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7384 7385 for (; bucket != NULL; bucket = bucket->dthb_next) { 7386 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7387 return (bucket->dthb_len); 7388 } 7389 7390 return (NULL); 7391 } 7392 7393 static void 7394 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7395 { 7396 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7397 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7398 7399 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7400 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7401 7402 /* 7403 * Find the bucket that we're removing this probe from. 7404 */ 7405 for (; bucket != NULL; bucket = bucket->dthb_next) { 7406 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7407 break; 7408 } 7409 7410 ASSERT(bucket != NULL); 7411 7412 if (*prevp == NULL) { 7413 if (*nextp == NULL) { 7414 /* 7415 * The removed probe was the only probe on this 7416 * bucket; we need to remove the bucket. 7417 */ 7418 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7419 7420 ASSERT(bucket->dthb_chain == probe); 7421 ASSERT(b != NULL); 7422 7423 if (b == bucket) { 7424 hash->dth_tab[ndx] = bucket->dthb_next; 7425 } else { 7426 while (b->dthb_next != bucket) 7427 b = b->dthb_next; 7428 b->dthb_next = bucket->dthb_next; 7429 } 7430 7431 ASSERT(hash->dth_nbuckets > 0); 7432 hash->dth_nbuckets--; 7433 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7434 return; 7435 } 7436 7437 bucket->dthb_chain = *nextp; 7438 } else { 7439 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7440 } 7441 7442 if (*nextp != NULL) 7443 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7444 } 7445 7446 /* 7447 * DTrace Utility Functions 7448 * 7449 * These are random utility functions that are _not_ called from probe context. 7450 */ 7451 static int 7452 dtrace_badattr(const dtrace_attribute_t *a) 7453 { 7454 return (a->dtat_name > DTRACE_STABILITY_MAX || 7455 a->dtat_data > DTRACE_STABILITY_MAX || 7456 a->dtat_class > DTRACE_CLASS_MAX); 7457 } 7458 7459 /* 7460 * Return a duplicate copy of a string. If the specified string is NULL, 7461 * this function returns a zero-length string. 7462 */ 7463 static char * 7464 dtrace_strdup(const char *str) 7465 { 7466 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7467 7468 if (str != NULL) 7469 (void) strcpy(new, str); 7470 7471 return (new); 7472 } 7473 7474 #define DTRACE_ISALPHA(c) \ 7475 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7476 7477 static int 7478 dtrace_badname(const char *s) 7479 { 7480 char c; 7481 7482 if (s == NULL || (c = *s++) == '\0') 7483 return (0); 7484 7485 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7486 return (1); 7487 7488 while ((c = *s++) != '\0') { 7489 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7490 c != '-' && c != '_' && c != '.' && c != '`') 7491 return (1); 7492 } 7493 7494 return (0); 7495 } 7496 7497 static void 7498 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7499 { 7500 uint32_t priv; 7501 7502 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7503 /* 7504 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7505 */ 7506 priv = DTRACE_PRIV_ALL; 7507 } else { 7508 *uidp = crgetuid(cr); 7509 *zoneidp = crgetzoneid(cr); 7510 7511 priv = 0; 7512 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7513 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7514 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7515 priv |= DTRACE_PRIV_USER; 7516 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7517 priv |= DTRACE_PRIV_PROC; 7518 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7519 priv |= DTRACE_PRIV_OWNER; 7520 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7521 priv |= DTRACE_PRIV_ZONEOWNER; 7522 } 7523 7524 *privp = priv; 7525 } 7526 7527 #ifdef DTRACE_ERRDEBUG 7528 static void 7529 dtrace_errdebug(const char *str) 7530 { 7531 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7532 int occupied = 0; 7533 7534 mutex_enter(&dtrace_errlock); 7535 dtrace_errlast = str; 7536 dtrace_errthread = curthread; 7537 7538 while (occupied++ < DTRACE_ERRHASHSZ) { 7539 if (dtrace_errhash[hval].dter_msg == str) { 7540 dtrace_errhash[hval].dter_count++; 7541 goto out; 7542 } 7543 7544 if (dtrace_errhash[hval].dter_msg != NULL) { 7545 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7546 continue; 7547 } 7548 7549 dtrace_errhash[hval].dter_msg = str; 7550 dtrace_errhash[hval].dter_count = 1; 7551 goto out; 7552 } 7553 7554 panic("dtrace: undersized error hash"); 7555 out: 7556 mutex_exit(&dtrace_errlock); 7557 } 7558 #endif 7559 7560 /* 7561 * DTrace Matching Functions 7562 * 7563 * These functions are used to match groups of probes, given some elements of 7564 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7565 */ 7566 static int 7567 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7568 zoneid_t zoneid) 7569 { 7570 if (priv != DTRACE_PRIV_ALL) { 7571 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7572 uint32_t match = priv & ppriv; 7573 7574 /* 7575 * No PRIV_DTRACE_* privileges... 7576 */ 7577 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7578 DTRACE_PRIV_KERNEL)) == 0) 7579 return (0); 7580 7581 /* 7582 * No matching bits, but there were bits to match... 7583 */ 7584 if (match == 0 && ppriv != 0) 7585 return (0); 7586 7587 /* 7588 * Need to have permissions to the process, but don't... 7589 */ 7590 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7591 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7592 return (0); 7593 } 7594 7595 /* 7596 * Need to be in the same zone unless we possess the 7597 * privilege to examine all zones. 7598 */ 7599 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7600 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7601 return (0); 7602 } 7603 } 7604 7605 return (1); 7606 } 7607 7608 /* 7609 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7610 * consists of input pattern strings and an ops-vector to evaluate them. 7611 * This function returns >0 for match, 0 for no match, and <0 for error. 7612 */ 7613 static int 7614 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7615 uint32_t priv, uid_t uid, zoneid_t zoneid) 7616 { 7617 dtrace_provider_t *pvp = prp->dtpr_provider; 7618 int rv; 7619 7620 if (pvp->dtpv_defunct) 7621 return (0); 7622 7623 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7624 return (rv); 7625 7626 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7627 return (rv); 7628 7629 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7630 return (rv); 7631 7632 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7633 return (rv); 7634 7635 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7636 return (0); 7637 7638 return (rv); 7639 } 7640 7641 /* 7642 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7643 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7644 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7645 * In addition, all of the recursion cases except for '*' matching have been 7646 * unwound. For '*', we still implement recursive evaluation, but a depth 7647 * counter is maintained and matching is aborted if we recurse too deep. 7648 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7649 */ 7650 static int 7651 dtrace_match_glob(const char *s, const char *p, int depth) 7652 { 7653 const char *olds; 7654 char s1, c; 7655 int gs; 7656 7657 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7658 return (-1); 7659 7660 if (s == NULL) 7661 s = ""; /* treat NULL as empty string */ 7662 7663 top: 7664 olds = s; 7665 s1 = *s++; 7666 7667 if (p == NULL) 7668 return (0); 7669 7670 if ((c = *p++) == '\0') 7671 return (s1 == '\0'); 7672 7673 switch (c) { 7674 case '[': { 7675 int ok = 0, notflag = 0; 7676 char lc = '\0'; 7677 7678 if (s1 == '\0') 7679 return (0); 7680 7681 if (*p == '!') { 7682 notflag = 1; 7683 p++; 7684 } 7685 7686 if ((c = *p++) == '\0') 7687 return (0); 7688 7689 do { 7690 if (c == '-' && lc != '\0' && *p != ']') { 7691 if ((c = *p++) == '\0') 7692 return (0); 7693 if (c == '\\' && (c = *p++) == '\0') 7694 return (0); 7695 7696 if (notflag) { 7697 if (s1 < lc || s1 > c) 7698 ok++; 7699 else 7700 return (0); 7701 } else if (lc <= s1 && s1 <= c) 7702 ok++; 7703 7704 } else if (c == '\\' && (c = *p++) == '\0') 7705 return (0); 7706 7707 lc = c; /* save left-hand 'c' for next iteration */ 7708 7709 if (notflag) { 7710 if (s1 != c) 7711 ok++; 7712 else 7713 return (0); 7714 } else if (s1 == c) 7715 ok++; 7716 7717 if ((c = *p++) == '\0') 7718 return (0); 7719 7720 } while (c != ']'); 7721 7722 if (ok) 7723 goto top; 7724 7725 return (0); 7726 } 7727 7728 case '\\': 7729 if ((c = *p++) == '\0') 7730 return (0); 7731 /*FALLTHRU*/ 7732 7733 default: 7734 if (c != s1) 7735 return (0); 7736 /*FALLTHRU*/ 7737 7738 case '?': 7739 if (s1 != '\0') 7740 goto top; 7741 return (0); 7742 7743 case '*': 7744 while (*p == '*') 7745 p++; /* consecutive *'s are identical to a single one */ 7746 7747 if (*p == '\0') 7748 return (1); 7749 7750 for (s = olds; *s != '\0'; s++) { 7751 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7752 return (gs); 7753 } 7754 7755 return (0); 7756 } 7757 } 7758 7759 /*ARGSUSED*/ 7760 static int 7761 dtrace_match_string(const char *s, const char *p, int depth) 7762 { 7763 return (s != NULL && strcmp(s, p) == 0); 7764 } 7765 7766 /*ARGSUSED*/ 7767 static int 7768 dtrace_match_nul(const char *s, const char *p, int depth) 7769 { 7770 return (1); /* always match the empty pattern */ 7771 } 7772 7773 /*ARGSUSED*/ 7774 static int 7775 dtrace_match_nonzero(const char *s, const char *p, int depth) 7776 { 7777 return (s != NULL && s[0] != '\0'); 7778 } 7779 7780 static int 7781 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7782 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7783 { 7784 dtrace_probe_t template, *probe; 7785 dtrace_hash_t *hash = NULL; 7786 int len, rc, best = INT_MAX, nmatched = 0; 7787 dtrace_id_t i; 7788 7789 ASSERT(MUTEX_HELD(&dtrace_lock)); 7790 7791 /* 7792 * If the probe ID is specified in the key, just lookup by ID and 7793 * invoke the match callback once if a matching probe is found. 7794 */ 7795 if (pkp->dtpk_id != DTRACE_IDNONE) { 7796 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7797 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7798 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7799 return (DTRACE_MATCH_FAIL); 7800 nmatched++; 7801 } 7802 return (nmatched); 7803 } 7804 7805 template.dtpr_mod = (char *)pkp->dtpk_mod; 7806 template.dtpr_func = (char *)pkp->dtpk_func; 7807 template.dtpr_name = (char *)pkp->dtpk_name; 7808 7809 /* 7810 * We want to find the most distinct of the module name, function 7811 * name, and name. So for each one that is not a glob pattern or 7812 * empty string, we perform a lookup in the corresponding hash and 7813 * use the hash table with the fewest collisions to do our search. 7814 */ 7815 if (pkp->dtpk_mmatch == &dtrace_match_string && 7816 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7817 best = len; 7818 hash = dtrace_bymod; 7819 } 7820 7821 if (pkp->dtpk_fmatch == &dtrace_match_string && 7822 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7823 best = len; 7824 hash = dtrace_byfunc; 7825 } 7826 7827 if (pkp->dtpk_nmatch == &dtrace_match_string && 7828 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7829 best = len; 7830 hash = dtrace_byname; 7831 } 7832 7833 /* 7834 * If we did not select a hash table, iterate over every probe and 7835 * invoke our callback for each one that matches our input probe key. 7836 */ 7837 if (hash == NULL) { 7838 for (i = 0; i < dtrace_nprobes; i++) { 7839 if ((probe = dtrace_probes[i]) == NULL || 7840 dtrace_match_probe(probe, pkp, priv, uid, 7841 zoneid) <= 0) 7842 continue; 7843 7844 nmatched++; 7845 7846 if ((rc = (*matched)(probe, arg)) != 7847 DTRACE_MATCH_NEXT) { 7848 if (rc == DTRACE_MATCH_FAIL) 7849 return (DTRACE_MATCH_FAIL); 7850 break; 7851 } 7852 } 7853 7854 return (nmatched); 7855 } 7856 7857 /* 7858 * If we selected a hash table, iterate over each probe of the same key 7859 * name and invoke the callback for every probe that matches the other 7860 * attributes of our input probe key. 7861 */ 7862 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7863 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7864 7865 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7866 continue; 7867 7868 nmatched++; 7869 7870 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7871 if (rc == DTRACE_MATCH_FAIL) 7872 return (DTRACE_MATCH_FAIL); 7873 break; 7874 } 7875 } 7876 7877 return (nmatched); 7878 } 7879 7880 /* 7881 * Return the function pointer dtrace_probecmp() should use to compare the 7882 * specified pattern with a string. For NULL or empty patterns, we select 7883 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7884 * For non-empty non-glob strings, we use dtrace_match_string(). 7885 */ 7886 static dtrace_probekey_f * 7887 dtrace_probekey_func(const char *p) 7888 { 7889 char c; 7890 7891 if (p == NULL || *p == '\0') 7892 return (&dtrace_match_nul); 7893 7894 while ((c = *p++) != '\0') { 7895 if (c == '[' || c == '?' || c == '*' || c == '\\') 7896 return (&dtrace_match_glob); 7897 } 7898 7899 return (&dtrace_match_string); 7900 } 7901 7902 /* 7903 * Build a probe comparison key for use with dtrace_match_probe() from the 7904 * given probe description. By convention, a null key only matches anchored 7905 * probes: if each field is the empty string, reset dtpk_fmatch to 7906 * dtrace_match_nonzero(). 7907 */ 7908 static void 7909 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7910 { 7911 pkp->dtpk_prov = pdp->dtpd_provider; 7912 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7913 7914 pkp->dtpk_mod = pdp->dtpd_mod; 7915 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7916 7917 pkp->dtpk_func = pdp->dtpd_func; 7918 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7919 7920 pkp->dtpk_name = pdp->dtpd_name; 7921 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7922 7923 pkp->dtpk_id = pdp->dtpd_id; 7924 7925 if (pkp->dtpk_id == DTRACE_IDNONE && 7926 pkp->dtpk_pmatch == &dtrace_match_nul && 7927 pkp->dtpk_mmatch == &dtrace_match_nul && 7928 pkp->dtpk_fmatch == &dtrace_match_nul && 7929 pkp->dtpk_nmatch == &dtrace_match_nul) 7930 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7931 } 7932 7933 /* 7934 * DTrace Provider-to-Framework API Functions 7935 * 7936 * These functions implement much of the Provider-to-Framework API, as 7937 * described in <sys/dtrace.h>. The parts of the API not in this section are 7938 * the functions in the API for probe management (found below), and 7939 * dtrace_probe() itself (found above). 7940 */ 7941 7942 /* 7943 * Register the calling provider with the DTrace framework. This should 7944 * generally be called by DTrace providers in their attach(9E) entry point. 7945 */ 7946 int 7947 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7948 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7949 { 7950 dtrace_provider_t *provider; 7951 7952 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7953 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7954 "arguments", name ? name : "<NULL>"); 7955 return (EINVAL); 7956 } 7957 7958 if (name[0] == '\0' || dtrace_badname(name)) { 7959 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7960 "provider name", name); 7961 return (EINVAL); 7962 } 7963 7964 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7965 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7966 pops->dtps_destroy == NULL || 7967 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7968 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7969 "provider ops", name); 7970 return (EINVAL); 7971 } 7972 7973 if (dtrace_badattr(&pap->dtpa_provider) || 7974 dtrace_badattr(&pap->dtpa_mod) || 7975 dtrace_badattr(&pap->dtpa_func) || 7976 dtrace_badattr(&pap->dtpa_name) || 7977 dtrace_badattr(&pap->dtpa_args)) { 7978 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7979 "provider attributes", name); 7980 return (EINVAL); 7981 } 7982 7983 if (priv & ~DTRACE_PRIV_ALL) { 7984 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7985 "privilege attributes", name); 7986 return (EINVAL); 7987 } 7988 7989 if ((priv & DTRACE_PRIV_KERNEL) && 7990 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7991 pops->dtps_mode == NULL) { 7992 cmn_err(CE_WARN, "failed to register provider '%s': need " 7993 "dtps_mode() op for given privilege attributes", name); 7994 return (EINVAL); 7995 } 7996 7997 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7998 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7999 (void) strcpy(provider->dtpv_name, name); 8000 8001 provider->dtpv_attr = *pap; 8002 provider->dtpv_priv.dtpp_flags = priv; 8003 if (cr != NULL) { 8004 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8005 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8006 } 8007 provider->dtpv_pops = *pops; 8008 8009 if (pops->dtps_provide == NULL) { 8010 ASSERT(pops->dtps_provide_module != NULL); 8011 provider->dtpv_pops.dtps_provide = 8012 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8013 } 8014 8015 if (pops->dtps_provide_module == NULL) { 8016 ASSERT(pops->dtps_provide != NULL); 8017 provider->dtpv_pops.dtps_provide_module = 8018 (void (*)(void *, struct modctl *))dtrace_nullop; 8019 } 8020 8021 if (pops->dtps_suspend == NULL) { 8022 ASSERT(pops->dtps_resume == NULL); 8023 provider->dtpv_pops.dtps_suspend = 8024 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8025 provider->dtpv_pops.dtps_resume = 8026 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8027 } 8028 8029 provider->dtpv_arg = arg; 8030 *idp = (dtrace_provider_id_t)provider; 8031 8032 if (pops == &dtrace_provider_ops) { 8033 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8034 ASSERT(MUTEX_HELD(&dtrace_lock)); 8035 ASSERT(dtrace_anon.dta_enabling == NULL); 8036 8037 /* 8038 * We make sure that the DTrace provider is at the head of 8039 * the provider chain. 8040 */ 8041 provider->dtpv_next = dtrace_provider; 8042 dtrace_provider = provider; 8043 return (0); 8044 } 8045 8046 mutex_enter(&dtrace_provider_lock); 8047 mutex_enter(&dtrace_lock); 8048 8049 /* 8050 * If there is at least one provider registered, we'll add this 8051 * provider after the first provider. 8052 */ 8053 if (dtrace_provider != NULL) { 8054 provider->dtpv_next = dtrace_provider->dtpv_next; 8055 dtrace_provider->dtpv_next = provider; 8056 } else { 8057 dtrace_provider = provider; 8058 } 8059 8060 if (dtrace_retained != NULL) { 8061 dtrace_enabling_provide(provider); 8062 8063 /* 8064 * Now we need to call dtrace_enabling_matchall() -- which 8065 * will acquire cpu_lock and dtrace_lock. We therefore need 8066 * to drop all of our locks before calling into it... 8067 */ 8068 mutex_exit(&dtrace_lock); 8069 mutex_exit(&dtrace_provider_lock); 8070 dtrace_enabling_matchall(); 8071 8072 return (0); 8073 } 8074 8075 mutex_exit(&dtrace_lock); 8076 mutex_exit(&dtrace_provider_lock); 8077 8078 return (0); 8079 } 8080 8081 /* 8082 * Unregister the specified provider from the DTrace framework. This should 8083 * generally be called by DTrace providers in their detach(9E) entry point. 8084 */ 8085 int 8086 dtrace_unregister(dtrace_provider_id_t id) 8087 { 8088 dtrace_provider_t *old = (dtrace_provider_t *)id; 8089 dtrace_provider_t *prev = NULL; 8090 int i, self = 0, noreap = 0; 8091 dtrace_probe_t *probe, *first = NULL; 8092 8093 if (old->dtpv_pops.dtps_enable == 8094 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8095 /* 8096 * If DTrace itself is the provider, we're called with locks 8097 * already held. 8098 */ 8099 ASSERT(old == dtrace_provider); 8100 ASSERT(dtrace_devi != NULL); 8101 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8102 ASSERT(MUTEX_HELD(&dtrace_lock)); 8103 self = 1; 8104 8105 if (dtrace_provider->dtpv_next != NULL) { 8106 /* 8107 * There's another provider here; return failure. 8108 */ 8109 return (EBUSY); 8110 } 8111 } else { 8112 mutex_enter(&dtrace_provider_lock); 8113 mutex_enter(&mod_lock); 8114 mutex_enter(&dtrace_lock); 8115 } 8116 8117 /* 8118 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8119 * probes, we refuse to let providers slither away, unless this 8120 * provider has already been explicitly invalidated. 8121 */ 8122 if (!old->dtpv_defunct && 8123 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8124 dtrace_anon.dta_state->dts_necbs > 0))) { 8125 if (!self) { 8126 mutex_exit(&dtrace_lock); 8127 mutex_exit(&mod_lock); 8128 mutex_exit(&dtrace_provider_lock); 8129 } 8130 return (EBUSY); 8131 } 8132 8133 /* 8134 * Attempt to destroy the probes associated with this provider. 8135 */ 8136 for (i = 0; i < dtrace_nprobes; i++) { 8137 if ((probe = dtrace_probes[i]) == NULL) 8138 continue; 8139 8140 if (probe->dtpr_provider != old) 8141 continue; 8142 8143 if (probe->dtpr_ecb == NULL) 8144 continue; 8145 8146 /* 8147 * If we are trying to unregister a defunct provider, and the 8148 * provider was made defunct within the interval dictated by 8149 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8150 * attempt to reap our enablings. To denote that the provider 8151 * should reattempt to unregister itself at some point in the 8152 * future, we will return a differentiable error code (EAGAIN 8153 * instead of EBUSY) in this case. 8154 */ 8155 if (dtrace_gethrtime() - old->dtpv_defunct > 8156 dtrace_unregister_defunct_reap) 8157 noreap = 1; 8158 8159 if (!self) { 8160 mutex_exit(&dtrace_lock); 8161 mutex_exit(&mod_lock); 8162 mutex_exit(&dtrace_provider_lock); 8163 } 8164 8165 if (noreap) 8166 return (EBUSY); 8167 8168 (void) taskq_dispatch(dtrace_taskq, 8169 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8170 8171 return (EAGAIN); 8172 } 8173 8174 /* 8175 * All of the probes for this provider are disabled; we can safely 8176 * remove all of them from their hash chains and from the probe array. 8177 */ 8178 for (i = 0; i < dtrace_nprobes; i++) { 8179 if ((probe = dtrace_probes[i]) == NULL) 8180 continue; 8181 8182 if (probe->dtpr_provider != old) 8183 continue; 8184 8185 dtrace_probes[i] = NULL; 8186 8187 dtrace_hash_remove(dtrace_bymod, probe); 8188 dtrace_hash_remove(dtrace_byfunc, probe); 8189 dtrace_hash_remove(dtrace_byname, probe); 8190 8191 if (first == NULL) { 8192 first = probe; 8193 probe->dtpr_nextmod = NULL; 8194 } else { 8195 probe->dtpr_nextmod = first; 8196 first = probe; 8197 } 8198 } 8199 8200 /* 8201 * The provider's probes have been removed from the hash chains and 8202 * from the probe array. Now issue a dtrace_sync() to be sure that 8203 * everyone has cleared out from any probe array processing. 8204 */ 8205 dtrace_sync(); 8206 8207 for (probe = first; probe != NULL; probe = first) { 8208 first = probe->dtpr_nextmod; 8209 8210 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8211 probe->dtpr_arg); 8212 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8213 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8214 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8215 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8216 kmem_free(probe, sizeof (dtrace_probe_t)); 8217 } 8218 8219 if ((prev = dtrace_provider) == old) { 8220 ASSERT(self || dtrace_devi == NULL); 8221 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8222 dtrace_provider = old->dtpv_next; 8223 } else { 8224 while (prev != NULL && prev->dtpv_next != old) 8225 prev = prev->dtpv_next; 8226 8227 if (prev == NULL) { 8228 panic("attempt to unregister non-existent " 8229 "dtrace provider %p\n", (void *)id); 8230 } 8231 8232 prev->dtpv_next = old->dtpv_next; 8233 } 8234 8235 if (!self) { 8236 mutex_exit(&dtrace_lock); 8237 mutex_exit(&mod_lock); 8238 mutex_exit(&dtrace_provider_lock); 8239 } 8240 8241 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8242 kmem_free(old, sizeof (dtrace_provider_t)); 8243 8244 return (0); 8245 } 8246 8247 /* 8248 * Invalidate the specified provider. All subsequent probe lookups for the 8249 * specified provider will fail, but its probes will not be removed. 8250 */ 8251 void 8252 dtrace_invalidate(dtrace_provider_id_t id) 8253 { 8254 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8255 8256 ASSERT(pvp->dtpv_pops.dtps_enable != 8257 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8258 8259 mutex_enter(&dtrace_provider_lock); 8260 mutex_enter(&dtrace_lock); 8261 8262 pvp->dtpv_defunct = dtrace_gethrtime(); 8263 8264 mutex_exit(&dtrace_lock); 8265 mutex_exit(&dtrace_provider_lock); 8266 } 8267 8268 /* 8269 * Indicate whether or not DTrace has attached. 8270 */ 8271 int 8272 dtrace_attached(void) 8273 { 8274 /* 8275 * dtrace_provider will be non-NULL iff the DTrace driver has 8276 * attached. (It's non-NULL because DTrace is always itself a 8277 * provider.) 8278 */ 8279 return (dtrace_provider != NULL); 8280 } 8281 8282 /* 8283 * Remove all the unenabled probes for the given provider. This function is 8284 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8285 * -- just as many of its associated probes as it can. 8286 */ 8287 int 8288 dtrace_condense(dtrace_provider_id_t id) 8289 { 8290 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8291 int i; 8292 dtrace_probe_t *probe; 8293 8294 /* 8295 * Make sure this isn't the dtrace provider itself. 8296 */ 8297 ASSERT(prov->dtpv_pops.dtps_enable != 8298 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8299 8300 mutex_enter(&dtrace_provider_lock); 8301 mutex_enter(&dtrace_lock); 8302 8303 /* 8304 * Attempt to destroy the probes associated with this provider. 8305 */ 8306 for (i = 0; i < dtrace_nprobes; i++) { 8307 if ((probe = dtrace_probes[i]) == NULL) 8308 continue; 8309 8310 if (probe->dtpr_provider != prov) 8311 continue; 8312 8313 if (probe->dtpr_ecb != NULL) 8314 continue; 8315 8316 dtrace_probes[i] = NULL; 8317 8318 dtrace_hash_remove(dtrace_bymod, probe); 8319 dtrace_hash_remove(dtrace_byfunc, probe); 8320 dtrace_hash_remove(dtrace_byname, probe); 8321 8322 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8323 probe->dtpr_arg); 8324 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8325 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8326 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8327 kmem_free(probe, sizeof (dtrace_probe_t)); 8328 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8329 } 8330 8331 mutex_exit(&dtrace_lock); 8332 mutex_exit(&dtrace_provider_lock); 8333 8334 return (0); 8335 } 8336 8337 /* 8338 * DTrace Probe Management Functions 8339 * 8340 * The functions in this section perform the DTrace probe management, 8341 * including functions to create probes, look-up probes, and call into the 8342 * providers to request that probes be provided. Some of these functions are 8343 * in the Provider-to-Framework API; these functions can be identified by the 8344 * fact that they are not declared "static". 8345 */ 8346 8347 /* 8348 * Create a probe with the specified module name, function name, and name. 8349 */ 8350 dtrace_id_t 8351 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8352 const char *func, const char *name, int aframes, void *arg) 8353 { 8354 dtrace_probe_t *probe, **probes; 8355 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8356 dtrace_id_t id; 8357 8358 if (provider == dtrace_provider) { 8359 ASSERT(MUTEX_HELD(&dtrace_lock)); 8360 } else { 8361 mutex_enter(&dtrace_lock); 8362 } 8363 8364 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8365 VM_BESTFIT | VM_SLEEP); 8366 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8367 8368 probe->dtpr_id = id; 8369 probe->dtpr_gen = dtrace_probegen++; 8370 probe->dtpr_mod = dtrace_strdup(mod); 8371 probe->dtpr_func = dtrace_strdup(func); 8372 probe->dtpr_name = dtrace_strdup(name); 8373 probe->dtpr_arg = arg; 8374 probe->dtpr_aframes = aframes; 8375 probe->dtpr_provider = provider; 8376 8377 dtrace_hash_add(dtrace_bymod, probe); 8378 dtrace_hash_add(dtrace_byfunc, probe); 8379 dtrace_hash_add(dtrace_byname, probe); 8380 8381 if (id - 1 >= dtrace_nprobes) { 8382 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8383 size_t nsize = osize << 1; 8384 8385 if (nsize == 0) { 8386 ASSERT(osize == 0); 8387 ASSERT(dtrace_probes == NULL); 8388 nsize = sizeof (dtrace_probe_t *); 8389 } 8390 8391 probes = kmem_zalloc(nsize, KM_SLEEP); 8392 8393 if (dtrace_probes == NULL) { 8394 ASSERT(osize == 0); 8395 dtrace_probes = probes; 8396 dtrace_nprobes = 1; 8397 } else { 8398 dtrace_probe_t **oprobes = dtrace_probes; 8399 8400 bcopy(oprobes, probes, osize); 8401 dtrace_membar_producer(); 8402 dtrace_probes = probes; 8403 8404 dtrace_sync(); 8405 8406 /* 8407 * All CPUs are now seeing the new probes array; we can 8408 * safely free the old array. 8409 */ 8410 kmem_free(oprobes, osize); 8411 dtrace_nprobes <<= 1; 8412 } 8413 8414 ASSERT(id - 1 < dtrace_nprobes); 8415 } 8416 8417 ASSERT(dtrace_probes[id - 1] == NULL); 8418 dtrace_probes[id - 1] = probe; 8419 8420 if (provider != dtrace_provider) 8421 mutex_exit(&dtrace_lock); 8422 8423 return (id); 8424 } 8425 8426 static dtrace_probe_t * 8427 dtrace_probe_lookup_id(dtrace_id_t id) 8428 { 8429 ASSERT(MUTEX_HELD(&dtrace_lock)); 8430 8431 if (id == 0 || id > dtrace_nprobes) 8432 return (NULL); 8433 8434 return (dtrace_probes[id - 1]); 8435 } 8436 8437 static int 8438 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8439 { 8440 *((dtrace_id_t *)arg) = probe->dtpr_id; 8441 8442 return (DTRACE_MATCH_DONE); 8443 } 8444 8445 /* 8446 * Look up a probe based on provider and one or more of module name, function 8447 * name and probe name. 8448 */ 8449 dtrace_id_t 8450 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8451 const char *func, const char *name) 8452 { 8453 dtrace_probekey_t pkey; 8454 dtrace_id_t id; 8455 int match; 8456 8457 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8458 pkey.dtpk_pmatch = &dtrace_match_string; 8459 pkey.dtpk_mod = mod; 8460 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8461 pkey.dtpk_func = func; 8462 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8463 pkey.dtpk_name = name; 8464 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8465 pkey.dtpk_id = DTRACE_IDNONE; 8466 8467 mutex_enter(&dtrace_lock); 8468 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8469 dtrace_probe_lookup_match, &id); 8470 mutex_exit(&dtrace_lock); 8471 8472 ASSERT(match == 1 || match == 0); 8473 return (match ? id : 0); 8474 } 8475 8476 /* 8477 * Returns the probe argument associated with the specified probe. 8478 */ 8479 void * 8480 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8481 { 8482 dtrace_probe_t *probe; 8483 void *rval = NULL; 8484 8485 mutex_enter(&dtrace_lock); 8486 8487 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8488 probe->dtpr_provider == (dtrace_provider_t *)id) 8489 rval = probe->dtpr_arg; 8490 8491 mutex_exit(&dtrace_lock); 8492 8493 return (rval); 8494 } 8495 8496 /* 8497 * Copy a probe into a probe description. 8498 */ 8499 static void 8500 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8501 { 8502 bzero(pdp, sizeof (dtrace_probedesc_t)); 8503 pdp->dtpd_id = prp->dtpr_id; 8504 8505 (void) strncpy(pdp->dtpd_provider, 8506 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8507 8508 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8509 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8510 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8511 } 8512 8513 /* 8514 * Called to indicate that a probe -- or probes -- should be provided by a 8515 * specfied provider. If the specified description is NULL, the provider will 8516 * be told to provide all of its probes. (This is done whenever a new 8517 * consumer comes along, or whenever a retained enabling is to be matched.) If 8518 * the specified description is non-NULL, the provider is given the 8519 * opportunity to dynamically provide the specified probe, allowing providers 8520 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8521 * probes.) If the provider is NULL, the operations will be applied to all 8522 * providers; if the provider is non-NULL the operations will only be applied 8523 * to the specified provider. The dtrace_provider_lock must be held, and the 8524 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8525 * will need to grab the dtrace_lock when it reenters the framework through 8526 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8527 */ 8528 static void 8529 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8530 { 8531 struct modctl *ctl; 8532 int all = 0; 8533 8534 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8535 8536 if (prv == NULL) { 8537 all = 1; 8538 prv = dtrace_provider; 8539 } 8540 8541 do { 8542 /* 8543 * First, call the blanket provide operation. 8544 */ 8545 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8546 8547 /* 8548 * Now call the per-module provide operation. We will grab 8549 * mod_lock to prevent the list from being modified. Note 8550 * that this also prevents the mod_busy bits from changing. 8551 * (mod_busy can only be changed with mod_lock held.) 8552 */ 8553 mutex_enter(&mod_lock); 8554 8555 ctl = &modules; 8556 do { 8557 if (ctl->mod_busy || ctl->mod_mp == NULL) 8558 continue; 8559 8560 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8561 8562 } while ((ctl = ctl->mod_next) != &modules); 8563 8564 mutex_exit(&mod_lock); 8565 } while (all && (prv = prv->dtpv_next) != NULL); 8566 } 8567 8568 /* 8569 * Iterate over each probe, and call the Framework-to-Provider API function 8570 * denoted by offs. 8571 */ 8572 static void 8573 dtrace_probe_foreach(uintptr_t offs) 8574 { 8575 dtrace_provider_t *prov; 8576 void (*func)(void *, dtrace_id_t, void *); 8577 dtrace_probe_t *probe; 8578 dtrace_icookie_t cookie; 8579 int i; 8580 8581 /* 8582 * We disable interrupts to walk through the probe array. This is 8583 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8584 * won't see stale data. 8585 */ 8586 cookie = dtrace_interrupt_disable(); 8587 8588 for (i = 0; i < dtrace_nprobes; i++) { 8589 if ((probe = dtrace_probes[i]) == NULL) 8590 continue; 8591 8592 if (probe->dtpr_ecb == NULL) { 8593 /* 8594 * This probe isn't enabled -- don't call the function. 8595 */ 8596 continue; 8597 } 8598 8599 prov = probe->dtpr_provider; 8600 func = *((void(**)(void *, dtrace_id_t, void *)) 8601 ((uintptr_t)&prov->dtpv_pops + offs)); 8602 8603 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8604 } 8605 8606 dtrace_interrupt_enable(cookie); 8607 } 8608 8609 static int 8610 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8611 { 8612 dtrace_probekey_t pkey; 8613 uint32_t priv; 8614 uid_t uid; 8615 zoneid_t zoneid; 8616 8617 ASSERT(MUTEX_HELD(&dtrace_lock)); 8618 dtrace_ecb_create_cache = NULL; 8619 8620 if (desc == NULL) { 8621 /* 8622 * If we're passed a NULL description, we're being asked to 8623 * create an ECB with a NULL probe. 8624 */ 8625 (void) dtrace_ecb_create_enable(NULL, enab); 8626 return (0); 8627 } 8628 8629 dtrace_probekey(desc, &pkey); 8630 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8631 &priv, &uid, &zoneid); 8632 8633 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8634 enab)); 8635 } 8636 8637 /* 8638 * DTrace Helper Provider Functions 8639 */ 8640 static void 8641 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8642 { 8643 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8644 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8645 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8646 } 8647 8648 static void 8649 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8650 const dof_provider_t *dofprov, char *strtab) 8651 { 8652 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8653 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8654 dofprov->dofpv_provattr); 8655 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8656 dofprov->dofpv_modattr); 8657 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8658 dofprov->dofpv_funcattr); 8659 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8660 dofprov->dofpv_nameattr); 8661 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8662 dofprov->dofpv_argsattr); 8663 } 8664 8665 static void 8666 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8667 { 8668 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8669 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8670 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8671 dof_provider_t *provider; 8672 dof_probe_t *probe; 8673 uint32_t *off, *enoff; 8674 uint8_t *arg; 8675 char *strtab; 8676 uint_t i, nprobes; 8677 dtrace_helper_provdesc_t dhpv; 8678 dtrace_helper_probedesc_t dhpb; 8679 dtrace_meta_t *meta = dtrace_meta_pid; 8680 dtrace_mops_t *mops = &meta->dtm_mops; 8681 void *parg; 8682 8683 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8684 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8685 provider->dofpv_strtab * dof->dofh_secsize); 8686 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8687 provider->dofpv_probes * dof->dofh_secsize); 8688 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8689 provider->dofpv_prargs * dof->dofh_secsize); 8690 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8691 provider->dofpv_proffs * dof->dofh_secsize); 8692 8693 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8694 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8695 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8696 enoff = NULL; 8697 8698 /* 8699 * See dtrace_helper_provider_validate(). 8700 */ 8701 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8702 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8703 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8704 provider->dofpv_prenoffs * dof->dofh_secsize); 8705 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8706 } 8707 8708 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8709 8710 /* 8711 * Create the provider. 8712 */ 8713 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8714 8715 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8716 return; 8717 8718 meta->dtm_count++; 8719 8720 /* 8721 * Create the probes. 8722 */ 8723 for (i = 0; i < nprobes; i++) { 8724 probe = (dof_probe_t *)(uintptr_t)(daddr + 8725 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8726 8727 dhpb.dthpb_mod = dhp->dofhp_mod; 8728 dhpb.dthpb_func = strtab + probe->dofpr_func; 8729 dhpb.dthpb_name = strtab + probe->dofpr_name; 8730 dhpb.dthpb_base = probe->dofpr_addr; 8731 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8732 dhpb.dthpb_noffs = probe->dofpr_noffs; 8733 if (enoff != NULL) { 8734 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8735 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8736 } else { 8737 dhpb.dthpb_enoffs = NULL; 8738 dhpb.dthpb_nenoffs = 0; 8739 } 8740 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8741 dhpb.dthpb_nargc = probe->dofpr_nargc; 8742 dhpb.dthpb_xargc = probe->dofpr_xargc; 8743 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8744 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8745 8746 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8747 } 8748 } 8749 8750 static void 8751 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8752 { 8753 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8754 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8755 int i; 8756 8757 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8758 8759 for (i = 0; i < dof->dofh_secnum; i++) { 8760 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8761 dof->dofh_secoff + i * dof->dofh_secsize); 8762 8763 if (sec->dofs_type != DOF_SECT_PROVIDER) 8764 continue; 8765 8766 dtrace_helper_provide_one(dhp, sec, pid); 8767 } 8768 8769 /* 8770 * We may have just created probes, so we must now rematch against 8771 * any retained enablings. Note that this call will acquire both 8772 * cpu_lock and dtrace_lock; the fact that we are holding 8773 * dtrace_meta_lock now is what defines the ordering with respect to 8774 * these three locks. 8775 */ 8776 dtrace_enabling_matchall(); 8777 } 8778 8779 static void 8780 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8781 { 8782 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8783 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8784 dof_sec_t *str_sec; 8785 dof_provider_t *provider; 8786 char *strtab; 8787 dtrace_helper_provdesc_t dhpv; 8788 dtrace_meta_t *meta = dtrace_meta_pid; 8789 dtrace_mops_t *mops = &meta->dtm_mops; 8790 8791 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8792 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8793 provider->dofpv_strtab * dof->dofh_secsize); 8794 8795 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8796 8797 /* 8798 * Create the provider. 8799 */ 8800 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8801 8802 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8803 8804 meta->dtm_count--; 8805 } 8806 8807 static void 8808 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8809 { 8810 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8811 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8812 int i; 8813 8814 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8815 8816 for (i = 0; i < dof->dofh_secnum; i++) { 8817 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8818 dof->dofh_secoff + i * dof->dofh_secsize); 8819 8820 if (sec->dofs_type != DOF_SECT_PROVIDER) 8821 continue; 8822 8823 dtrace_helper_provider_remove_one(dhp, sec, pid); 8824 } 8825 } 8826 8827 /* 8828 * DTrace Meta Provider-to-Framework API Functions 8829 * 8830 * These functions implement the Meta Provider-to-Framework API, as described 8831 * in <sys/dtrace.h>. 8832 */ 8833 int 8834 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8835 dtrace_meta_provider_id_t *idp) 8836 { 8837 dtrace_meta_t *meta; 8838 dtrace_helpers_t *help, *next; 8839 int i; 8840 8841 *idp = DTRACE_METAPROVNONE; 8842 8843 /* 8844 * We strictly don't need the name, but we hold onto it for 8845 * debuggability. All hail error queues! 8846 */ 8847 if (name == NULL) { 8848 cmn_err(CE_WARN, "failed to register meta-provider: " 8849 "invalid name"); 8850 return (EINVAL); 8851 } 8852 8853 if (mops == NULL || 8854 mops->dtms_create_probe == NULL || 8855 mops->dtms_provide_pid == NULL || 8856 mops->dtms_remove_pid == NULL) { 8857 cmn_err(CE_WARN, "failed to register meta-register %s: " 8858 "invalid ops", name); 8859 return (EINVAL); 8860 } 8861 8862 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8863 meta->dtm_mops = *mops; 8864 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8865 (void) strcpy(meta->dtm_name, name); 8866 meta->dtm_arg = arg; 8867 8868 mutex_enter(&dtrace_meta_lock); 8869 mutex_enter(&dtrace_lock); 8870 8871 if (dtrace_meta_pid != NULL) { 8872 mutex_exit(&dtrace_lock); 8873 mutex_exit(&dtrace_meta_lock); 8874 cmn_err(CE_WARN, "failed to register meta-register %s: " 8875 "user-land meta-provider exists", name); 8876 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8877 kmem_free(meta, sizeof (dtrace_meta_t)); 8878 return (EINVAL); 8879 } 8880 8881 dtrace_meta_pid = meta; 8882 *idp = (dtrace_meta_provider_id_t)meta; 8883 8884 /* 8885 * If there are providers and probes ready to go, pass them 8886 * off to the new meta provider now. 8887 */ 8888 8889 help = dtrace_deferred_pid; 8890 dtrace_deferred_pid = NULL; 8891 8892 mutex_exit(&dtrace_lock); 8893 8894 while (help != NULL) { 8895 for (i = 0; i < help->dthps_nprovs; i++) { 8896 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8897 help->dthps_pid); 8898 } 8899 8900 next = help->dthps_next; 8901 help->dthps_next = NULL; 8902 help->dthps_prev = NULL; 8903 help->dthps_deferred = 0; 8904 help = next; 8905 } 8906 8907 mutex_exit(&dtrace_meta_lock); 8908 8909 return (0); 8910 } 8911 8912 int 8913 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8914 { 8915 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8916 8917 mutex_enter(&dtrace_meta_lock); 8918 mutex_enter(&dtrace_lock); 8919 8920 if (old == dtrace_meta_pid) { 8921 pp = &dtrace_meta_pid; 8922 } else { 8923 panic("attempt to unregister non-existent " 8924 "dtrace meta-provider %p\n", (void *)old); 8925 } 8926 8927 if (old->dtm_count != 0) { 8928 mutex_exit(&dtrace_lock); 8929 mutex_exit(&dtrace_meta_lock); 8930 return (EBUSY); 8931 } 8932 8933 *pp = NULL; 8934 8935 mutex_exit(&dtrace_lock); 8936 mutex_exit(&dtrace_meta_lock); 8937 8938 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8939 kmem_free(old, sizeof (dtrace_meta_t)); 8940 8941 return (0); 8942 } 8943 8944 8945 /* 8946 * DTrace DIF Object Functions 8947 */ 8948 static int 8949 dtrace_difo_err(uint_t pc, const char *format, ...) 8950 { 8951 if (dtrace_err_verbose) { 8952 va_list alist; 8953 8954 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8955 va_start(alist, format); 8956 (void) vuprintf(format, alist); 8957 va_end(alist); 8958 } 8959 8960 #ifdef DTRACE_ERRDEBUG 8961 dtrace_errdebug(format); 8962 #endif 8963 return (1); 8964 } 8965 8966 /* 8967 * Validate a DTrace DIF object by checking the IR instructions. The following 8968 * rules are currently enforced by dtrace_difo_validate(): 8969 * 8970 * 1. Each instruction must have a valid opcode 8971 * 2. Each register, string, variable, or subroutine reference must be valid 8972 * 3. No instruction can modify register %r0 (must be zero) 8973 * 4. All instruction reserved bits must be set to zero 8974 * 5. The last instruction must be a "ret" instruction 8975 * 6. All branch targets must reference a valid instruction _after_ the branch 8976 */ 8977 static int 8978 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8979 cred_t *cr) 8980 { 8981 int err = 0, i; 8982 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8983 int kcheckload; 8984 uint_t pc; 8985 8986 kcheckload = cr == NULL || 8987 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8988 8989 dp->dtdo_destructive = 0; 8990 8991 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8992 dif_instr_t instr = dp->dtdo_buf[pc]; 8993 8994 uint_t r1 = DIF_INSTR_R1(instr); 8995 uint_t r2 = DIF_INSTR_R2(instr); 8996 uint_t rd = DIF_INSTR_RD(instr); 8997 uint_t rs = DIF_INSTR_RS(instr); 8998 uint_t label = DIF_INSTR_LABEL(instr); 8999 uint_t v = DIF_INSTR_VAR(instr); 9000 uint_t subr = DIF_INSTR_SUBR(instr); 9001 uint_t type = DIF_INSTR_TYPE(instr); 9002 uint_t op = DIF_INSTR_OP(instr); 9003 9004 switch (op) { 9005 case DIF_OP_OR: 9006 case DIF_OP_XOR: 9007 case DIF_OP_AND: 9008 case DIF_OP_SLL: 9009 case DIF_OP_SRL: 9010 case DIF_OP_SRA: 9011 case DIF_OP_SUB: 9012 case DIF_OP_ADD: 9013 case DIF_OP_MUL: 9014 case DIF_OP_SDIV: 9015 case DIF_OP_UDIV: 9016 case DIF_OP_SREM: 9017 case DIF_OP_UREM: 9018 case DIF_OP_COPYS: 9019 if (r1 >= nregs) 9020 err += efunc(pc, "invalid register %u\n", r1); 9021 if (r2 >= nregs) 9022 err += efunc(pc, "invalid register %u\n", r2); 9023 if (rd >= nregs) 9024 err += efunc(pc, "invalid register %u\n", rd); 9025 if (rd == 0) 9026 err += efunc(pc, "cannot write to %r0\n"); 9027 break; 9028 case DIF_OP_NOT: 9029 case DIF_OP_MOV: 9030 case DIF_OP_ALLOCS: 9031 if (r1 >= nregs) 9032 err += efunc(pc, "invalid register %u\n", r1); 9033 if (r2 != 0) 9034 err += efunc(pc, "non-zero reserved bits\n"); 9035 if (rd >= nregs) 9036 err += efunc(pc, "invalid register %u\n", rd); 9037 if (rd == 0) 9038 err += efunc(pc, "cannot write to %r0\n"); 9039 break; 9040 case DIF_OP_LDSB: 9041 case DIF_OP_LDSH: 9042 case DIF_OP_LDSW: 9043 case DIF_OP_LDUB: 9044 case DIF_OP_LDUH: 9045 case DIF_OP_LDUW: 9046 case DIF_OP_LDX: 9047 if (r1 >= nregs) 9048 err += efunc(pc, "invalid register %u\n", r1); 9049 if (r2 != 0) 9050 err += efunc(pc, "non-zero reserved bits\n"); 9051 if (rd >= nregs) 9052 err += efunc(pc, "invalid register %u\n", rd); 9053 if (rd == 0) 9054 err += efunc(pc, "cannot write to %r0\n"); 9055 if (kcheckload) 9056 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9057 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9058 break; 9059 case DIF_OP_RLDSB: 9060 case DIF_OP_RLDSH: 9061 case DIF_OP_RLDSW: 9062 case DIF_OP_RLDUB: 9063 case DIF_OP_RLDUH: 9064 case DIF_OP_RLDUW: 9065 case DIF_OP_RLDX: 9066 if (r1 >= nregs) 9067 err += efunc(pc, "invalid register %u\n", r1); 9068 if (r2 != 0) 9069 err += efunc(pc, "non-zero reserved bits\n"); 9070 if (rd >= nregs) 9071 err += efunc(pc, "invalid register %u\n", rd); 9072 if (rd == 0) 9073 err += efunc(pc, "cannot write to %r0\n"); 9074 break; 9075 case DIF_OP_ULDSB: 9076 case DIF_OP_ULDSH: 9077 case DIF_OP_ULDSW: 9078 case DIF_OP_ULDUB: 9079 case DIF_OP_ULDUH: 9080 case DIF_OP_ULDUW: 9081 case DIF_OP_ULDX: 9082 if (r1 >= nregs) 9083 err += efunc(pc, "invalid register %u\n", r1); 9084 if (r2 != 0) 9085 err += efunc(pc, "non-zero reserved bits\n"); 9086 if (rd >= nregs) 9087 err += efunc(pc, "invalid register %u\n", rd); 9088 if (rd == 0) 9089 err += efunc(pc, "cannot write to %r0\n"); 9090 break; 9091 case DIF_OP_STB: 9092 case DIF_OP_STH: 9093 case DIF_OP_STW: 9094 case DIF_OP_STX: 9095 if (r1 >= nregs) 9096 err += efunc(pc, "invalid register %u\n", r1); 9097 if (r2 != 0) 9098 err += efunc(pc, "non-zero reserved bits\n"); 9099 if (rd >= nregs) 9100 err += efunc(pc, "invalid register %u\n", rd); 9101 if (rd == 0) 9102 err += efunc(pc, "cannot write to 0 address\n"); 9103 break; 9104 case DIF_OP_CMP: 9105 case DIF_OP_SCMP: 9106 if (r1 >= nregs) 9107 err += efunc(pc, "invalid register %u\n", r1); 9108 if (r2 >= nregs) 9109 err += efunc(pc, "invalid register %u\n", r2); 9110 if (rd != 0) 9111 err += efunc(pc, "non-zero reserved bits\n"); 9112 break; 9113 case DIF_OP_TST: 9114 if (r1 >= nregs) 9115 err += efunc(pc, "invalid register %u\n", r1); 9116 if (r2 != 0 || rd != 0) 9117 err += efunc(pc, "non-zero reserved bits\n"); 9118 break; 9119 case DIF_OP_BA: 9120 case DIF_OP_BE: 9121 case DIF_OP_BNE: 9122 case DIF_OP_BG: 9123 case DIF_OP_BGU: 9124 case DIF_OP_BGE: 9125 case DIF_OP_BGEU: 9126 case DIF_OP_BL: 9127 case DIF_OP_BLU: 9128 case DIF_OP_BLE: 9129 case DIF_OP_BLEU: 9130 if (label >= dp->dtdo_len) { 9131 err += efunc(pc, "invalid branch target %u\n", 9132 label); 9133 } 9134 if (label <= pc) { 9135 err += efunc(pc, "backward branch to %u\n", 9136 label); 9137 } 9138 break; 9139 case DIF_OP_RET: 9140 if (r1 != 0 || r2 != 0) 9141 err += efunc(pc, "non-zero reserved bits\n"); 9142 if (rd >= nregs) 9143 err += efunc(pc, "invalid register %u\n", rd); 9144 break; 9145 case DIF_OP_NOP: 9146 case DIF_OP_POPTS: 9147 case DIF_OP_FLUSHTS: 9148 if (r1 != 0 || r2 != 0 || rd != 0) 9149 err += efunc(pc, "non-zero reserved bits\n"); 9150 break; 9151 case DIF_OP_SETX: 9152 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9153 err += efunc(pc, "invalid integer ref %u\n", 9154 DIF_INSTR_INTEGER(instr)); 9155 } 9156 if (rd >= nregs) 9157 err += efunc(pc, "invalid register %u\n", rd); 9158 if (rd == 0) 9159 err += efunc(pc, "cannot write to %r0\n"); 9160 break; 9161 case DIF_OP_SETS: 9162 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9163 err += efunc(pc, "invalid string ref %u\n", 9164 DIF_INSTR_STRING(instr)); 9165 } 9166 if (rd >= nregs) 9167 err += efunc(pc, "invalid register %u\n", rd); 9168 if (rd == 0) 9169 err += efunc(pc, "cannot write to %r0\n"); 9170 break; 9171 case DIF_OP_LDGA: 9172 case DIF_OP_LDTA: 9173 if (r1 > DIF_VAR_ARRAY_MAX) 9174 err += efunc(pc, "invalid array %u\n", r1); 9175 if (r2 >= nregs) 9176 err += efunc(pc, "invalid register %u\n", r2); 9177 if (rd >= nregs) 9178 err += efunc(pc, "invalid register %u\n", rd); 9179 if (rd == 0) 9180 err += efunc(pc, "cannot write to %r0\n"); 9181 break; 9182 case DIF_OP_LDGS: 9183 case DIF_OP_LDTS: 9184 case DIF_OP_LDLS: 9185 case DIF_OP_LDGAA: 9186 case DIF_OP_LDTAA: 9187 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9188 err += efunc(pc, "invalid variable %u\n", v); 9189 if (rd >= nregs) 9190 err += efunc(pc, "invalid register %u\n", rd); 9191 if (rd == 0) 9192 err += efunc(pc, "cannot write to %r0\n"); 9193 break; 9194 case DIF_OP_STGS: 9195 case DIF_OP_STTS: 9196 case DIF_OP_STLS: 9197 case DIF_OP_STGAA: 9198 case DIF_OP_STTAA: 9199 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9200 err += efunc(pc, "invalid variable %u\n", v); 9201 if (rs >= nregs) 9202 err += efunc(pc, "invalid register %u\n", rd); 9203 break; 9204 case DIF_OP_CALL: 9205 if (subr > DIF_SUBR_MAX) 9206 err += efunc(pc, "invalid subr %u\n", subr); 9207 if (rd >= nregs) 9208 err += efunc(pc, "invalid register %u\n", rd); 9209 if (rd == 0) 9210 err += efunc(pc, "cannot write to %r0\n"); 9211 9212 if (subr == DIF_SUBR_COPYOUT || 9213 subr == DIF_SUBR_COPYOUTSTR) { 9214 dp->dtdo_destructive = 1; 9215 } 9216 9217 if (subr == DIF_SUBR_GETF) { 9218 /* 9219 * If we have a getf() we need to record that 9220 * in our state. Note that our state can be 9221 * NULL if this is a helper -- but in that 9222 * case, the call to getf() is itself illegal, 9223 * and will be caught (slightly later) when 9224 * the helper is validated. 9225 */ 9226 if (vstate->dtvs_state != NULL) 9227 vstate->dtvs_state->dts_getf++; 9228 } 9229 9230 break; 9231 case DIF_OP_PUSHTR: 9232 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9233 err += efunc(pc, "invalid ref type %u\n", type); 9234 if (r2 >= nregs) 9235 err += efunc(pc, "invalid register %u\n", r2); 9236 if (rs >= nregs) 9237 err += efunc(pc, "invalid register %u\n", rs); 9238 break; 9239 case DIF_OP_PUSHTV: 9240 if (type != DIF_TYPE_CTF) 9241 err += efunc(pc, "invalid val type %u\n", type); 9242 if (r2 >= nregs) 9243 err += efunc(pc, "invalid register %u\n", r2); 9244 if (rs >= nregs) 9245 err += efunc(pc, "invalid register %u\n", rs); 9246 break; 9247 default: 9248 err += efunc(pc, "invalid opcode %u\n", 9249 DIF_INSTR_OP(instr)); 9250 } 9251 } 9252 9253 if (dp->dtdo_len != 0 && 9254 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9255 err += efunc(dp->dtdo_len - 1, 9256 "expected 'ret' as last DIF instruction\n"); 9257 } 9258 9259 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9260 /* 9261 * If we're not returning by reference, the size must be either 9262 * 0 or the size of one of the base types. 9263 */ 9264 switch (dp->dtdo_rtype.dtdt_size) { 9265 case 0: 9266 case sizeof (uint8_t): 9267 case sizeof (uint16_t): 9268 case sizeof (uint32_t): 9269 case sizeof (uint64_t): 9270 break; 9271 9272 default: 9273 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9274 } 9275 } 9276 9277 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9278 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9279 dtrace_diftype_t *vt, *et; 9280 uint_t id, ndx; 9281 9282 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9283 v->dtdv_scope != DIFV_SCOPE_THREAD && 9284 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9285 err += efunc(i, "unrecognized variable scope %d\n", 9286 v->dtdv_scope); 9287 break; 9288 } 9289 9290 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9291 v->dtdv_kind != DIFV_KIND_SCALAR) { 9292 err += efunc(i, "unrecognized variable type %d\n", 9293 v->dtdv_kind); 9294 break; 9295 } 9296 9297 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9298 err += efunc(i, "%d exceeds variable id limit\n", id); 9299 break; 9300 } 9301 9302 if (id < DIF_VAR_OTHER_UBASE) 9303 continue; 9304 9305 /* 9306 * For user-defined variables, we need to check that this 9307 * definition is identical to any previous definition that we 9308 * encountered. 9309 */ 9310 ndx = id - DIF_VAR_OTHER_UBASE; 9311 9312 switch (v->dtdv_scope) { 9313 case DIFV_SCOPE_GLOBAL: 9314 if (ndx < vstate->dtvs_nglobals) { 9315 dtrace_statvar_t *svar; 9316 9317 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9318 existing = &svar->dtsv_var; 9319 } 9320 9321 break; 9322 9323 case DIFV_SCOPE_THREAD: 9324 if (ndx < vstate->dtvs_ntlocals) 9325 existing = &vstate->dtvs_tlocals[ndx]; 9326 break; 9327 9328 case DIFV_SCOPE_LOCAL: 9329 if (ndx < vstate->dtvs_nlocals) { 9330 dtrace_statvar_t *svar; 9331 9332 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9333 existing = &svar->dtsv_var; 9334 } 9335 9336 break; 9337 } 9338 9339 vt = &v->dtdv_type; 9340 9341 if (vt->dtdt_flags & DIF_TF_BYREF) { 9342 if (vt->dtdt_size == 0) { 9343 err += efunc(i, "zero-sized variable\n"); 9344 break; 9345 } 9346 9347 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 9348 vt->dtdt_size > dtrace_global_maxsize) { 9349 err += efunc(i, "oversized by-ref global\n"); 9350 break; 9351 } 9352 } 9353 9354 if (existing == NULL || existing->dtdv_id == 0) 9355 continue; 9356 9357 ASSERT(existing->dtdv_id == v->dtdv_id); 9358 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9359 9360 if (existing->dtdv_kind != v->dtdv_kind) 9361 err += efunc(i, "%d changed variable kind\n", id); 9362 9363 et = &existing->dtdv_type; 9364 9365 if (vt->dtdt_flags != et->dtdt_flags) { 9366 err += efunc(i, "%d changed variable type flags\n", id); 9367 break; 9368 } 9369 9370 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9371 err += efunc(i, "%d changed variable type size\n", id); 9372 break; 9373 } 9374 } 9375 9376 return (err); 9377 } 9378 9379 /* 9380 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9381 * are much more constrained than normal DIFOs. Specifically, they may 9382 * not: 9383 * 9384 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9385 * miscellaneous string routines 9386 * 2. Access DTrace variables other than the args[] array, and the 9387 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9388 * 3. Have thread-local variables. 9389 * 4. Have dynamic variables. 9390 */ 9391 static int 9392 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9393 { 9394 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9395 int err = 0; 9396 uint_t pc; 9397 9398 for (pc = 0; pc < dp->dtdo_len; pc++) { 9399 dif_instr_t instr = dp->dtdo_buf[pc]; 9400 9401 uint_t v = DIF_INSTR_VAR(instr); 9402 uint_t subr = DIF_INSTR_SUBR(instr); 9403 uint_t op = DIF_INSTR_OP(instr); 9404 9405 switch (op) { 9406 case DIF_OP_OR: 9407 case DIF_OP_XOR: 9408 case DIF_OP_AND: 9409 case DIF_OP_SLL: 9410 case DIF_OP_SRL: 9411 case DIF_OP_SRA: 9412 case DIF_OP_SUB: 9413 case DIF_OP_ADD: 9414 case DIF_OP_MUL: 9415 case DIF_OP_SDIV: 9416 case DIF_OP_UDIV: 9417 case DIF_OP_SREM: 9418 case DIF_OP_UREM: 9419 case DIF_OP_COPYS: 9420 case DIF_OP_NOT: 9421 case DIF_OP_MOV: 9422 case DIF_OP_RLDSB: 9423 case DIF_OP_RLDSH: 9424 case DIF_OP_RLDSW: 9425 case DIF_OP_RLDUB: 9426 case DIF_OP_RLDUH: 9427 case DIF_OP_RLDUW: 9428 case DIF_OP_RLDX: 9429 case DIF_OP_ULDSB: 9430 case DIF_OP_ULDSH: 9431 case DIF_OP_ULDSW: 9432 case DIF_OP_ULDUB: 9433 case DIF_OP_ULDUH: 9434 case DIF_OP_ULDUW: 9435 case DIF_OP_ULDX: 9436 case DIF_OP_STB: 9437 case DIF_OP_STH: 9438 case DIF_OP_STW: 9439 case DIF_OP_STX: 9440 case DIF_OP_ALLOCS: 9441 case DIF_OP_CMP: 9442 case DIF_OP_SCMP: 9443 case DIF_OP_TST: 9444 case DIF_OP_BA: 9445 case DIF_OP_BE: 9446 case DIF_OP_BNE: 9447 case DIF_OP_BG: 9448 case DIF_OP_BGU: 9449 case DIF_OP_BGE: 9450 case DIF_OP_BGEU: 9451 case DIF_OP_BL: 9452 case DIF_OP_BLU: 9453 case DIF_OP_BLE: 9454 case DIF_OP_BLEU: 9455 case DIF_OP_RET: 9456 case DIF_OP_NOP: 9457 case DIF_OP_POPTS: 9458 case DIF_OP_FLUSHTS: 9459 case DIF_OP_SETX: 9460 case DIF_OP_SETS: 9461 case DIF_OP_LDGA: 9462 case DIF_OP_LDLS: 9463 case DIF_OP_STGS: 9464 case DIF_OP_STLS: 9465 case DIF_OP_PUSHTR: 9466 case DIF_OP_PUSHTV: 9467 break; 9468 9469 case DIF_OP_LDGS: 9470 if (v >= DIF_VAR_OTHER_UBASE) 9471 break; 9472 9473 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9474 break; 9475 9476 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9477 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9478 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9479 v == DIF_VAR_UID || v == DIF_VAR_GID) 9480 break; 9481 9482 err += efunc(pc, "illegal variable %u\n", v); 9483 break; 9484 9485 case DIF_OP_LDTA: 9486 case DIF_OP_LDTS: 9487 case DIF_OP_LDGAA: 9488 case DIF_OP_LDTAA: 9489 err += efunc(pc, "illegal dynamic variable load\n"); 9490 break; 9491 9492 case DIF_OP_STTS: 9493 case DIF_OP_STGAA: 9494 case DIF_OP_STTAA: 9495 err += efunc(pc, "illegal dynamic variable store\n"); 9496 break; 9497 9498 case DIF_OP_CALL: 9499 if (subr == DIF_SUBR_ALLOCA || 9500 subr == DIF_SUBR_BCOPY || 9501 subr == DIF_SUBR_COPYIN || 9502 subr == DIF_SUBR_COPYINTO || 9503 subr == DIF_SUBR_COPYINSTR || 9504 subr == DIF_SUBR_INDEX || 9505 subr == DIF_SUBR_INET_NTOA || 9506 subr == DIF_SUBR_INET_NTOA6 || 9507 subr == DIF_SUBR_INET_NTOP || 9508 subr == DIF_SUBR_JSON || 9509 subr == DIF_SUBR_LLTOSTR || 9510 subr == DIF_SUBR_STRTOLL || 9511 subr == DIF_SUBR_RINDEX || 9512 subr == DIF_SUBR_STRCHR || 9513 subr == DIF_SUBR_STRJOIN || 9514 subr == DIF_SUBR_STRRCHR || 9515 subr == DIF_SUBR_STRSTR || 9516 subr == DIF_SUBR_HTONS || 9517 subr == DIF_SUBR_HTONL || 9518 subr == DIF_SUBR_HTONLL || 9519 subr == DIF_SUBR_NTOHS || 9520 subr == DIF_SUBR_NTOHL || 9521 subr == DIF_SUBR_NTOHLL) 9522 break; 9523 9524 err += efunc(pc, "invalid subr %u\n", subr); 9525 break; 9526 9527 default: 9528 err += efunc(pc, "invalid opcode %u\n", 9529 DIF_INSTR_OP(instr)); 9530 } 9531 } 9532 9533 return (err); 9534 } 9535 9536 /* 9537 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9538 * basis; 0 if not. 9539 */ 9540 static int 9541 dtrace_difo_cacheable(dtrace_difo_t *dp) 9542 { 9543 int i; 9544 9545 if (dp == NULL) 9546 return (0); 9547 9548 for (i = 0; i < dp->dtdo_varlen; i++) { 9549 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9550 9551 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9552 continue; 9553 9554 switch (v->dtdv_id) { 9555 case DIF_VAR_CURTHREAD: 9556 case DIF_VAR_PID: 9557 case DIF_VAR_TID: 9558 case DIF_VAR_EXECNAME: 9559 case DIF_VAR_ZONENAME: 9560 break; 9561 9562 default: 9563 return (0); 9564 } 9565 } 9566 9567 /* 9568 * This DIF object may be cacheable. Now we need to look for any 9569 * array loading instructions, any memory loading instructions, or 9570 * any stores to thread-local variables. 9571 */ 9572 for (i = 0; i < dp->dtdo_len; i++) { 9573 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9574 9575 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9576 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9577 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9578 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9579 return (0); 9580 } 9581 9582 return (1); 9583 } 9584 9585 static void 9586 dtrace_difo_hold(dtrace_difo_t *dp) 9587 { 9588 int i; 9589 9590 ASSERT(MUTEX_HELD(&dtrace_lock)); 9591 9592 dp->dtdo_refcnt++; 9593 ASSERT(dp->dtdo_refcnt != 0); 9594 9595 /* 9596 * We need to check this DIF object for references to the variable 9597 * DIF_VAR_VTIMESTAMP. 9598 */ 9599 for (i = 0; i < dp->dtdo_varlen; i++) { 9600 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9601 9602 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9603 continue; 9604 9605 if (dtrace_vtime_references++ == 0) 9606 dtrace_vtime_enable(); 9607 } 9608 } 9609 9610 /* 9611 * This routine calculates the dynamic variable chunksize for a given DIF 9612 * object. The calculation is not fool-proof, and can probably be tricked by 9613 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9614 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9615 * if a dynamic variable size exceeds the chunksize. 9616 */ 9617 static void 9618 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9619 { 9620 uint64_t sval; 9621 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9622 const dif_instr_t *text = dp->dtdo_buf; 9623 uint_t pc, srd = 0; 9624 uint_t ttop = 0; 9625 size_t size, ksize; 9626 uint_t id, i; 9627 9628 for (pc = 0; pc < dp->dtdo_len; pc++) { 9629 dif_instr_t instr = text[pc]; 9630 uint_t op = DIF_INSTR_OP(instr); 9631 uint_t rd = DIF_INSTR_RD(instr); 9632 uint_t r1 = DIF_INSTR_R1(instr); 9633 uint_t nkeys = 0; 9634 uchar_t scope; 9635 9636 dtrace_key_t *key = tupregs; 9637 9638 switch (op) { 9639 case DIF_OP_SETX: 9640 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9641 srd = rd; 9642 continue; 9643 9644 case DIF_OP_STTS: 9645 key = &tupregs[DIF_DTR_NREGS]; 9646 key[0].dttk_size = 0; 9647 key[1].dttk_size = 0; 9648 nkeys = 2; 9649 scope = DIFV_SCOPE_THREAD; 9650 break; 9651 9652 case DIF_OP_STGAA: 9653 case DIF_OP_STTAA: 9654 nkeys = ttop; 9655 9656 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9657 key[nkeys++].dttk_size = 0; 9658 9659 key[nkeys++].dttk_size = 0; 9660 9661 if (op == DIF_OP_STTAA) { 9662 scope = DIFV_SCOPE_THREAD; 9663 } else { 9664 scope = DIFV_SCOPE_GLOBAL; 9665 } 9666 9667 break; 9668 9669 case DIF_OP_PUSHTR: 9670 if (ttop == DIF_DTR_NREGS) 9671 return; 9672 9673 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9674 /* 9675 * If the register for the size of the "pushtr" 9676 * is %r0 (or the value is 0) and the type is 9677 * a string, we'll use the system-wide default 9678 * string size. 9679 */ 9680 tupregs[ttop++].dttk_size = 9681 dtrace_strsize_default; 9682 } else { 9683 if (srd == 0) 9684 return; 9685 9686 tupregs[ttop++].dttk_size = sval; 9687 } 9688 9689 break; 9690 9691 case DIF_OP_PUSHTV: 9692 if (ttop == DIF_DTR_NREGS) 9693 return; 9694 9695 tupregs[ttop++].dttk_size = 0; 9696 break; 9697 9698 case DIF_OP_FLUSHTS: 9699 ttop = 0; 9700 break; 9701 9702 case DIF_OP_POPTS: 9703 if (ttop != 0) 9704 ttop--; 9705 break; 9706 } 9707 9708 sval = 0; 9709 srd = 0; 9710 9711 if (nkeys == 0) 9712 continue; 9713 9714 /* 9715 * We have a dynamic variable allocation; calculate its size. 9716 */ 9717 for (ksize = 0, i = 0; i < nkeys; i++) 9718 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9719 9720 size = sizeof (dtrace_dynvar_t); 9721 size += sizeof (dtrace_key_t) * (nkeys - 1); 9722 size += ksize; 9723 9724 /* 9725 * Now we need to determine the size of the stored data. 9726 */ 9727 id = DIF_INSTR_VAR(instr); 9728 9729 for (i = 0; i < dp->dtdo_varlen; i++) { 9730 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9731 9732 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9733 size += v->dtdv_type.dtdt_size; 9734 break; 9735 } 9736 } 9737 9738 if (i == dp->dtdo_varlen) 9739 return; 9740 9741 /* 9742 * We have the size. If this is larger than the chunk size 9743 * for our dynamic variable state, reset the chunk size. 9744 */ 9745 size = P2ROUNDUP(size, sizeof (uint64_t)); 9746 9747 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9748 vstate->dtvs_dynvars.dtds_chunksize = size; 9749 } 9750 } 9751 9752 static void 9753 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9754 { 9755 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9756 uint_t id; 9757 9758 ASSERT(MUTEX_HELD(&dtrace_lock)); 9759 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9760 9761 for (i = 0; i < dp->dtdo_varlen; i++) { 9762 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9763 dtrace_statvar_t *svar, ***svarp; 9764 size_t dsize = 0; 9765 uint8_t scope = v->dtdv_scope; 9766 int *np; 9767 9768 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9769 continue; 9770 9771 id -= DIF_VAR_OTHER_UBASE; 9772 9773 switch (scope) { 9774 case DIFV_SCOPE_THREAD: 9775 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9776 dtrace_difv_t *tlocals; 9777 9778 if ((ntlocals = (otlocals << 1)) == 0) 9779 ntlocals = 1; 9780 9781 osz = otlocals * sizeof (dtrace_difv_t); 9782 nsz = ntlocals * sizeof (dtrace_difv_t); 9783 9784 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9785 9786 if (osz != 0) { 9787 bcopy(vstate->dtvs_tlocals, 9788 tlocals, osz); 9789 kmem_free(vstate->dtvs_tlocals, osz); 9790 } 9791 9792 vstate->dtvs_tlocals = tlocals; 9793 vstate->dtvs_ntlocals = ntlocals; 9794 } 9795 9796 vstate->dtvs_tlocals[id] = *v; 9797 continue; 9798 9799 case DIFV_SCOPE_LOCAL: 9800 np = &vstate->dtvs_nlocals; 9801 svarp = &vstate->dtvs_locals; 9802 9803 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9804 dsize = NCPU * (v->dtdv_type.dtdt_size + 9805 sizeof (uint64_t)); 9806 else 9807 dsize = NCPU * sizeof (uint64_t); 9808 9809 break; 9810 9811 case DIFV_SCOPE_GLOBAL: 9812 np = &vstate->dtvs_nglobals; 9813 svarp = &vstate->dtvs_globals; 9814 9815 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9816 dsize = v->dtdv_type.dtdt_size + 9817 sizeof (uint64_t); 9818 9819 break; 9820 9821 default: 9822 ASSERT(0); 9823 } 9824 9825 while (id >= (oldsvars = *np)) { 9826 dtrace_statvar_t **statics; 9827 int newsvars, oldsize, newsize; 9828 9829 if ((newsvars = (oldsvars << 1)) == 0) 9830 newsvars = 1; 9831 9832 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9833 newsize = newsvars * sizeof (dtrace_statvar_t *); 9834 9835 statics = kmem_zalloc(newsize, KM_SLEEP); 9836 9837 if (oldsize != 0) { 9838 bcopy(*svarp, statics, oldsize); 9839 kmem_free(*svarp, oldsize); 9840 } 9841 9842 *svarp = statics; 9843 *np = newsvars; 9844 } 9845 9846 if ((svar = (*svarp)[id]) == NULL) { 9847 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9848 svar->dtsv_var = *v; 9849 9850 if ((svar->dtsv_size = dsize) != 0) { 9851 svar->dtsv_data = (uint64_t)(uintptr_t) 9852 kmem_zalloc(dsize, KM_SLEEP); 9853 } 9854 9855 (*svarp)[id] = svar; 9856 } 9857 9858 svar->dtsv_refcnt++; 9859 } 9860 9861 dtrace_difo_chunksize(dp, vstate); 9862 dtrace_difo_hold(dp); 9863 } 9864 9865 static dtrace_difo_t * 9866 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9867 { 9868 dtrace_difo_t *new; 9869 size_t sz; 9870 9871 ASSERT(dp->dtdo_buf != NULL); 9872 ASSERT(dp->dtdo_refcnt != 0); 9873 9874 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9875 9876 ASSERT(dp->dtdo_buf != NULL); 9877 sz = dp->dtdo_len * sizeof (dif_instr_t); 9878 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9879 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9880 new->dtdo_len = dp->dtdo_len; 9881 9882 if (dp->dtdo_strtab != NULL) { 9883 ASSERT(dp->dtdo_strlen != 0); 9884 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9885 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9886 new->dtdo_strlen = dp->dtdo_strlen; 9887 } 9888 9889 if (dp->dtdo_inttab != NULL) { 9890 ASSERT(dp->dtdo_intlen != 0); 9891 sz = dp->dtdo_intlen * sizeof (uint64_t); 9892 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9893 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9894 new->dtdo_intlen = dp->dtdo_intlen; 9895 } 9896 9897 if (dp->dtdo_vartab != NULL) { 9898 ASSERT(dp->dtdo_varlen != 0); 9899 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9900 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9901 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9902 new->dtdo_varlen = dp->dtdo_varlen; 9903 } 9904 9905 dtrace_difo_init(new, vstate); 9906 return (new); 9907 } 9908 9909 static void 9910 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9911 { 9912 int i; 9913 9914 ASSERT(dp->dtdo_refcnt == 0); 9915 9916 for (i = 0; i < dp->dtdo_varlen; i++) { 9917 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9918 dtrace_statvar_t *svar, **svarp; 9919 uint_t id; 9920 uint8_t scope = v->dtdv_scope; 9921 int *np; 9922 9923 switch (scope) { 9924 case DIFV_SCOPE_THREAD: 9925 continue; 9926 9927 case DIFV_SCOPE_LOCAL: 9928 np = &vstate->dtvs_nlocals; 9929 svarp = vstate->dtvs_locals; 9930 break; 9931 9932 case DIFV_SCOPE_GLOBAL: 9933 np = &vstate->dtvs_nglobals; 9934 svarp = vstate->dtvs_globals; 9935 break; 9936 9937 default: 9938 ASSERT(0); 9939 } 9940 9941 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9942 continue; 9943 9944 id -= DIF_VAR_OTHER_UBASE; 9945 ASSERT(id < *np); 9946 9947 svar = svarp[id]; 9948 ASSERT(svar != NULL); 9949 ASSERT(svar->dtsv_refcnt > 0); 9950 9951 if (--svar->dtsv_refcnt > 0) 9952 continue; 9953 9954 if (svar->dtsv_size != 0) { 9955 ASSERT(svar->dtsv_data != NULL); 9956 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9957 svar->dtsv_size); 9958 } 9959 9960 kmem_free(svar, sizeof (dtrace_statvar_t)); 9961 svarp[id] = NULL; 9962 } 9963 9964 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9965 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9966 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9967 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9968 9969 kmem_free(dp, sizeof (dtrace_difo_t)); 9970 } 9971 9972 static void 9973 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9974 { 9975 int i; 9976 9977 ASSERT(MUTEX_HELD(&dtrace_lock)); 9978 ASSERT(dp->dtdo_refcnt != 0); 9979 9980 for (i = 0; i < dp->dtdo_varlen; i++) { 9981 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9982 9983 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9984 continue; 9985 9986 ASSERT(dtrace_vtime_references > 0); 9987 if (--dtrace_vtime_references == 0) 9988 dtrace_vtime_disable(); 9989 } 9990 9991 if (--dp->dtdo_refcnt == 0) 9992 dtrace_difo_destroy(dp, vstate); 9993 } 9994 9995 /* 9996 * DTrace Format Functions 9997 */ 9998 static uint16_t 9999 dtrace_format_add(dtrace_state_t *state, char *str) 10000 { 10001 char *fmt, **new; 10002 uint16_t ndx, len = strlen(str) + 1; 10003 10004 fmt = kmem_zalloc(len, KM_SLEEP); 10005 bcopy(str, fmt, len); 10006 10007 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10008 if (state->dts_formats[ndx] == NULL) { 10009 state->dts_formats[ndx] = fmt; 10010 return (ndx + 1); 10011 } 10012 } 10013 10014 if (state->dts_nformats == USHRT_MAX) { 10015 /* 10016 * This is only likely if a denial-of-service attack is being 10017 * attempted. As such, it's okay to fail silently here. 10018 */ 10019 kmem_free(fmt, len); 10020 return (0); 10021 } 10022 10023 /* 10024 * For simplicity, we always resize the formats array to be exactly the 10025 * number of formats. 10026 */ 10027 ndx = state->dts_nformats++; 10028 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10029 10030 if (state->dts_formats != NULL) { 10031 ASSERT(ndx != 0); 10032 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10033 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10034 } 10035 10036 state->dts_formats = new; 10037 state->dts_formats[ndx] = fmt; 10038 10039 return (ndx + 1); 10040 } 10041 10042 static void 10043 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10044 { 10045 char *fmt; 10046 10047 ASSERT(state->dts_formats != NULL); 10048 ASSERT(format <= state->dts_nformats); 10049 ASSERT(state->dts_formats[format - 1] != NULL); 10050 10051 fmt = state->dts_formats[format - 1]; 10052 kmem_free(fmt, strlen(fmt) + 1); 10053 state->dts_formats[format - 1] = NULL; 10054 } 10055 10056 static void 10057 dtrace_format_destroy(dtrace_state_t *state) 10058 { 10059 int i; 10060 10061 if (state->dts_nformats == 0) { 10062 ASSERT(state->dts_formats == NULL); 10063 return; 10064 } 10065 10066 ASSERT(state->dts_formats != NULL); 10067 10068 for (i = 0; i < state->dts_nformats; i++) { 10069 char *fmt = state->dts_formats[i]; 10070 10071 if (fmt == NULL) 10072 continue; 10073 10074 kmem_free(fmt, strlen(fmt) + 1); 10075 } 10076 10077 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10078 state->dts_nformats = 0; 10079 state->dts_formats = NULL; 10080 } 10081 10082 /* 10083 * DTrace Predicate Functions 10084 */ 10085 static dtrace_predicate_t * 10086 dtrace_predicate_create(dtrace_difo_t *dp) 10087 { 10088 dtrace_predicate_t *pred; 10089 10090 ASSERT(MUTEX_HELD(&dtrace_lock)); 10091 ASSERT(dp->dtdo_refcnt != 0); 10092 10093 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10094 pred->dtp_difo = dp; 10095 pred->dtp_refcnt = 1; 10096 10097 if (!dtrace_difo_cacheable(dp)) 10098 return (pred); 10099 10100 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10101 /* 10102 * This is only theoretically possible -- we have had 2^32 10103 * cacheable predicates on this machine. We cannot allow any 10104 * more predicates to become cacheable: as unlikely as it is, 10105 * there may be a thread caching a (now stale) predicate cache 10106 * ID. (N.B.: the temptation is being successfully resisted to 10107 * have this cmn_err() "Holy shit -- we executed this code!") 10108 */ 10109 return (pred); 10110 } 10111 10112 pred->dtp_cacheid = dtrace_predcache_id++; 10113 10114 return (pred); 10115 } 10116 10117 static void 10118 dtrace_predicate_hold(dtrace_predicate_t *pred) 10119 { 10120 ASSERT(MUTEX_HELD(&dtrace_lock)); 10121 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10122 ASSERT(pred->dtp_refcnt > 0); 10123 10124 pred->dtp_refcnt++; 10125 } 10126 10127 static void 10128 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10129 { 10130 dtrace_difo_t *dp = pred->dtp_difo; 10131 10132 ASSERT(MUTEX_HELD(&dtrace_lock)); 10133 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10134 ASSERT(pred->dtp_refcnt > 0); 10135 10136 if (--pred->dtp_refcnt == 0) { 10137 dtrace_difo_release(pred->dtp_difo, vstate); 10138 kmem_free(pred, sizeof (dtrace_predicate_t)); 10139 } 10140 } 10141 10142 /* 10143 * DTrace Action Description Functions 10144 */ 10145 static dtrace_actdesc_t * 10146 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10147 uint64_t uarg, uint64_t arg) 10148 { 10149 dtrace_actdesc_t *act; 10150 10151 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10152 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10153 10154 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10155 act->dtad_kind = kind; 10156 act->dtad_ntuple = ntuple; 10157 act->dtad_uarg = uarg; 10158 act->dtad_arg = arg; 10159 act->dtad_refcnt = 1; 10160 10161 return (act); 10162 } 10163 10164 static void 10165 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10166 { 10167 ASSERT(act->dtad_refcnt >= 1); 10168 act->dtad_refcnt++; 10169 } 10170 10171 static void 10172 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10173 { 10174 dtrace_actkind_t kind = act->dtad_kind; 10175 dtrace_difo_t *dp; 10176 10177 ASSERT(act->dtad_refcnt >= 1); 10178 10179 if (--act->dtad_refcnt != 0) 10180 return; 10181 10182 if ((dp = act->dtad_difo) != NULL) 10183 dtrace_difo_release(dp, vstate); 10184 10185 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10186 char *str = (char *)(uintptr_t)act->dtad_arg; 10187 10188 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10189 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10190 10191 if (str != NULL) 10192 kmem_free(str, strlen(str) + 1); 10193 } 10194 10195 kmem_free(act, sizeof (dtrace_actdesc_t)); 10196 } 10197 10198 /* 10199 * DTrace ECB Functions 10200 */ 10201 static dtrace_ecb_t * 10202 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10203 { 10204 dtrace_ecb_t *ecb; 10205 dtrace_epid_t epid; 10206 10207 ASSERT(MUTEX_HELD(&dtrace_lock)); 10208 10209 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10210 ecb->dte_predicate = NULL; 10211 ecb->dte_probe = probe; 10212 10213 /* 10214 * The default size is the size of the default action: recording 10215 * the header. 10216 */ 10217 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10218 ecb->dte_alignment = sizeof (dtrace_epid_t); 10219 10220 epid = state->dts_epid++; 10221 10222 if (epid - 1 >= state->dts_necbs) { 10223 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10224 int necbs = state->dts_necbs << 1; 10225 10226 ASSERT(epid == state->dts_necbs + 1); 10227 10228 if (necbs == 0) { 10229 ASSERT(oecbs == NULL); 10230 necbs = 1; 10231 } 10232 10233 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10234 10235 if (oecbs != NULL) 10236 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10237 10238 dtrace_membar_producer(); 10239 state->dts_ecbs = ecbs; 10240 10241 if (oecbs != NULL) { 10242 /* 10243 * If this state is active, we must dtrace_sync() 10244 * before we can free the old dts_ecbs array: we're 10245 * coming in hot, and there may be active ring 10246 * buffer processing (which indexes into the dts_ecbs 10247 * array) on another CPU. 10248 */ 10249 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10250 dtrace_sync(); 10251 10252 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10253 } 10254 10255 dtrace_membar_producer(); 10256 state->dts_necbs = necbs; 10257 } 10258 10259 ecb->dte_state = state; 10260 10261 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10262 dtrace_membar_producer(); 10263 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10264 10265 return (ecb); 10266 } 10267 10268 static int 10269 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10270 { 10271 dtrace_probe_t *probe = ecb->dte_probe; 10272 10273 ASSERT(MUTEX_HELD(&cpu_lock)); 10274 ASSERT(MUTEX_HELD(&dtrace_lock)); 10275 ASSERT(ecb->dte_next == NULL); 10276 10277 if (probe == NULL) { 10278 /* 10279 * This is the NULL probe -- there's nothing to do. 10280 */ 10281 return (0); 10282 } 10283 10284 if (probe->dtpr_ecb == NULL) { 10285 dtrace_provider_t *prov = probe->dtpr_provider; 10286 10287 /* 10288 * We're the first ECB on this probe. 10289 */ 10290 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10291 10292 if (ecb->dte_predicate != NULL) 10293 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10294 10295 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10296 probe->dtpr_id, probe->dtpr_arg)); 10297 } else { 10298 /* 10299 * This probe is already active. Swing the last pointer to 10300 * point to the new ECB, and issue a dtrace_sync() to assure 10301 * that all CPUs have seen the change. 10302 */ 10303 ASSERT(probe->dtpr_ecb_last != NULL); 10304 probe->dtpr_ecb_last->dte_next = ecb; 10305 probe->dtpr_ecb_last = ecb; 10306 probe->dtpr_predcache = 0; 10307 10308 dtrace_sync(); 10309 return (0); 10310 } 10311 } 10312 10313 static void 10314 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10315 { 10316 dtrace_action_t *act; 10317 uint32_t curneeded = UINT32_MAX; 10318 uint32_t aggbase = UINT32_MAX; 10319 10320 /* 10321 * If we record anything, we always record the dtrace_rechdr_t. (And 10322 * we always record it first.) 10323 */ 10324 ecb->dte_size = sizeof (dtrace_rechdr_t); 10325 ecb->dte_alignment = sizeof (dtrace_epid_t); 10326 10327 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10328 dtrace_recdesc_t *rec = &act->dta_rec; 10329 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10330 10331 ecb->dte_alignment = MAX(ecb->dte_alignment, 10332 rec->dtrd_alignment); 10333 10334 if (DTRACEACT_ISAGG(act->dta_kind)) { 10335 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10336 10337 ASSERT(rec->dtrd_size != 0); 10338 ASSERT(agg->dtag_first != NULL); 10339 ASSERT(act->dta_prev->dta_intuple); 10340 ASSERT(aggbase != UINT32_MAX); 10341 ASSERT(curneeded != UINT32_MAX); 10342 10343 agg->dtag_base = aggbase; 10344 10345 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10346 rec->dtrd_offset = curneeded; 10347 curneeded += rec->dtrd_size; 10348 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10349 10350 aggbase = UINT32_MAX; 10351 curneeded = UINT32_MAX; 10352 } else if (act->dta_intuple) { 10353 if (curneeded == UINT32_MAX) { 10354 /* 10355 * This is the first record in a tuple. Align 10356 * curneeded to be at offset 4 in an 8-byte 10357 * aligned block. 10358 */ 10359 ASSERT(act->dta_prev == NULL || 10360 !act->dta_prev->dta_intuple); 10361 ASSERT3U(aggbase, ==, UINT32_MAX); 10362 curneeded = P2PHASEUP(ecb->dte_size, 10363 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10364 10365 aggbase = curneeded - sizeof (dtrace_aggid_t); 10366 ASSERT(IS_P2ALIGNED(aggbase, 10367 sizeof (uint64_t))); 10368 } 10369 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10370 rec->dtrd_offset = curneeded; 10371 curneeded += rec->dtrd_size; 10372 } else { 10373 /* tuples must be followed by an aggregation */ 10374 ASSERT(act->dta_prev == NULL || 10375 !act->dta_prev->dta_intuple); 10376 10377 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10378 rec->dtrd_alignment); 10379 rec->dtrd_offset = ecb->dte_size; 10380 ecb->dte_size += rec->dtrd_size; 10381 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10382 } 10383 } 10384 10385 if ((act = ecb->dte_action) != NULL && 10386 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10387 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10388 /* 10389 * If the size is still sizeof (dtrace_rechdr_t), then all 10390 * actions store no data; set the size to 0. 10391 */ 10392 ecb->dte_size = 0; 10393 } 10394 10395 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10396 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10397 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10398 ecb->dte_needed); 10399 } 10400 10401 static dtrace_action_t * 10402 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10403 { 10404 dtrace_aggregation_t *agg; 10405 size_t size = sizeof (uint64_t); 10406 int ntuple = desc->dtad_ntuple; 10407 dtrace_action_t *act; 10408 dtrace_recdesc_t *frec; 10409 dtrace_aggid_t aggid; 10410 dtrace_state_t *state = ecb->dte_state; 10411 10412 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10413 agg->dtag_ecb = ecb; 10414 10415 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10416 10417 switch (desc->dtad_kind) { 10418 case DTRACEAGG_MIN: 10419 agg->dtag_initial = INT64_MAX; 10420 agg->dtag_aggregate = dtrace_aggregate_min; 10421 break; 10422 10423 case DTRACEAGG_MAX: 10424 agg->dtag_initial = INT64_MIN; 10425 agg->dtag_aggregate = dtrace_aggregate_max; 10426 break; 10427 10428 case DTRACEAGG_COUNT: 10429 agg->dtag_aggregate = dtrace_aggregate_count; 10430 break; 10431 10432 case DTRACEAGG_QUANTIZE: 10433 agg->dtag_aggregate = dtrace_aggregate_quantize; 10434 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10435 sizeof (uint64_t); 10436 break; 10437 10438 case DTRACEAGG_LQUANTIZE: { 10439 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10440 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10441 10442 agg->dtag_initial = desc->dtad_arg; 10443 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10444 10445 if (step == 0 || levels == 0) 10446 goto err; 10447 10448 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10449 break; 10450 } 10451 10452 case DTRACEAGG_LLQUANTIZE: { 10453 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10454 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10455 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10456 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10457 int64_t v; 10458 10459 agg->dtag_initial = desc->dtad_arg; 10460 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10461 10462 if (factor < 2 || low >= high || nsteps < factor) 10463 goto err; 10464 10465 /* 10466 * Now check that the number of steps evenly divides a power 10467 * of the factor. (This assures both integer bucket size and 10468 * linearity within each magnitude.) 10469 */ 10470 for (v = factor; v < nsteps; v *= factor) 10471 continue; 10472 10473 if ((v % nsteps) || (nsteps % factor)) 10474 goto err; 10475 10476 size = (dtrace_aggregate_llquantize_bucket(factor, 10477 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10478 break; 10479 } 10480 10481 case DTRACEAGG_AVG: 10482 agg->dtag_aggregate = dtrace_aggregate_avg; 10483 size = sizeof (uint64_t) * 2; 10484 break; 10485 10486 case DTRACEAGG_STDDEV: 10487 agg->dtag_aggregate = dtrace_aggregate_stddev; 10488 size = sizeof (uint64_t) * 4; 10489 break; 10490 10491 case DTRACEAGG_SUM: 10492 agg->dtag_aggregate = dtrace_aggregate_sum; 10493 break; 10494 10495 default: 10496 goto err; 10497 } 10498 10499 agg->dtag_action.dta_rec.dtrd_size = size; 10500 10501 if (ntuple == 0) 10502 goto err; 10503 10504 /* 10505 * We must make sure that we have enough actions for the n-tuple. 10506 */ 10507 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10508 if (DTRACEACT_ISAGG(act->dta_kind)) 10509 break; 10510 10511 if (--ntuple == 0) { 10512 /* 10513 * This is the action with which our n-tuple begins. 10514 */ 10515 agg->dtag_first = act; 10516 goto success; 10517 } 10518 } 10519 10520 /* 10521 * This n-tuple is short by ntuple elements. Return failure. 10522 */ 10523 ASSERT(ntuple != 0); 10524 err: 10525 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10526 return (NULL); 10527 10528 success: 10529 /* 10530 * If the last action in the tuple has a size of zero, it's actually 10531 * an expression argument for the aggregating action. 10532 */ 10533 ASSERT(ecb->dte_action_last != NULL); 10534 act = ecb->dte_action_last; 10535 10536 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10537 ASSERT(act->dta_difo != NULL); 10538 10539 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10540 agg->dtag_hasarg = 1; 10541 } 10542 10543 /* 10544 * We need to allocate an id for this aggregation. 10545 */ 10546 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10547 VM_BESTFIT | VM_SLEEP); 10548 10549 if (aggid - 1 >= state->dts_naggregations) { 10550 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10551 dtrace_aggregation_t **aggs; 10552 int naggs = state->dts_naggregations << 1; 10553 int onaggs = state->dts_naggregations; 10554 10555 ASSERT(aggid == state->dts_naggregations + 1); 10556 10557 if (naggs == 0) { 10558 ASSERT(oaggs == NULL); 10559 naggs = 1; 10560 } 10561 10562 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10563 10564 if (oaggs != NULL) { 10565 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10566 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10567 } 10568 10569 state->dts_aggregations = aggs; 10570 state->dts_naggregations = naggs; 10571 } 10572 10573 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10574 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10575 10576 frec = &agg->dtag_first->dta_rec; 10577 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10578 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10579 10580 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10581 ASSERT(!act->dta_intuple); 10582 act->dta_intuple = 1; 10583 } 10584 10585 return (&agg->dtag_action); 10586 } 10587 10588 static void 10589 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10590 { 10591 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10592 dtrace_state_t *state = ecb->dte_state; 10593 dtrace_aggid_t aggid = agg->dtag_id; 10594 10595 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10596 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10597 10598 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10599 state->dts_aggregations[aggid - 1] = NULL; 10600 10601 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10602 } 10603 10604 static int 10605 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10606 { 10607 dtrace_action_t *action, *last; 10608 dtrace_difo_t *dp = desc->dtad_difo; 10609 uint32_t size = 0, align = sizeof (uint8_t), mask; 10610 uint16_t format = 0; 10611 dtrace_recdesc_t *rec; 10612 dtrace_state_t *state = ecb->dte_state; 10613 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10614 uint64_t arg = desc->dtad_arg; 10615 10616 ASSERT(MUTEX_HELD(&dtrace_lock)); 10617 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10618 10619 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10620 /* 10621 * If this is an aggregating action, there must be neither 10622 * a speculate nor a commit on the action chain. 10623 */ 10624 dtrace_action_t *act; 10625 10626 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10627 if (act->dta_kind == DTRACEACT_COMMIT) 10628 return (EINVAL); 10629 10630 if (act->dta_kind == DTRACEACT_SPECULATE) 10631 return (EINVAL); 10632 } 10633 10634 action = dtrace_ecb_aggregation_create(ecb, desc); 10635 10636 if (action == NULL) 10637 return (EINVAL); 10638 } else { 10639 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10640 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10641 dp != NULL && dp->dtdo_destructive)) { 10642 state->dts_destructive = 1; 10643 } 10644 10645 switch (desc->dtad_kind) { 10646 case DTRACEACT_PRINTF: 10647 case DTRACEACT_PRINTA: 10648 case DTRACEACT_SYSTEM: 10649 case DTRACEACT_FREOPEN: 10650 case DTRACEACT_DIFEXPR: 10651 /* 10652 * We know that our arg is a string -- turn it into a 10653 * format. 10654 */ 10655 if (arg == NULL) { 10656 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10657 desc->dtad_kind == DTRACEACT_DIFEXPR); 10658 format = 0; 10659 } else { 10660 ASSERT(arg != NULL); 10661 ASSERT(arg > KERNELBASE); 10662 format = dtrace_format_add(state, 10663 (char *)(uintptr_t)arg); 10664 } 10665 10666 /*FALLTHROUGH*/ 10667 case DTRACEACT_LIBACT: 10668 case DTRACEACT_TRACEMEM: 10669 case DTRACEACT_TRACEMEM_DYNSIZE: 10670 if (dp == NULL) 10671 return (EINVAL); 10672 10673 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10674 break; 10675 10676 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10677 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10678 return (EINVAL); 10679 10680 size = opt[DTRACEOPT_STRSIZE]; 10681 } 10682 10683 break; 10684 10685 case DTRACEACT_STACK: 10686 if ((nframes = arg) == 0) { 10687 nframes = opt[DTRACEOPT_STACKFRAMES]; 10688 ASSERT(nframes > 0); 10689 arg = nframes; 10690 } 10691 10692 size = nframes * sizeof (pc_t); 10693 break; 10694 10695 case DTRACEACT_JSTACK: 10696 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10697 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10698 10699 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10700 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10701 10702 arg = DTRACE_USTACK_ARG(nframes, strsize); 10703 10704 /*FALLTHROUGH*/ 10705 case DTRACEACT_USTACK: 10706 if (desc->dtad_kind != DTRACEACT_JSTACK && 10707 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10708 strsize = DTRACE_USTACK_STRSIZE(arg); 10709 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10710 ASSERT(nframes > 0); 10711 arg = DTRACE_USTACK_ARG(nframes, strsize); 10712 } 10713 10714 /* 10715 * Save a slot for the pid. 10716 */ 10717 size = (nframes + 1) * sizeof (uint64_t); 10718 size += DTRACE_USTACK_STRSIZE(arg); 10719 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10720 10721 break; 10722 10723 case DTRACEACT_SYM: 10724 case DTRACEACT_MOD: 10725 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10726 sizeof (uint64_t)) || 10727 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10728 return (EINVAL); 10729 break; 10730 10731 case DTRACEACT_USYM: 10732 case DTRACEACT_UMOD: 10733 case DTRACEACT_UADDR: 10734 if (dp == NULL || 10735 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10736 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10737 return (EINVAL); 10738 10739 /* 10740 * We have a slot for the pid, plus a slot for the 10741 * argument. To keep things simple (aligned with 10742 * bitness-neutral sizing), we store each as a 64-bit 10743 * quantity. 10744 */ 10745 size = 2 * sizeof (uint64_t); 10746 break; 10747 10748 case DTRACEACT_STOP: 10749 case DTRACEACT_BREAKPOINT: 10750 case DTRACEACT_PANIC: 10751 break; 10752 10753 case DTRACEACT_CHILL: 10754 case DTRACEACT_DISCARD: 10755 case DTRACEACT_RAISE: 10756 if (dp == NULL) 10757 return (EINVAL); 10758 break; 10759 10760 case DTRACEACT_EXIT: 10761 if (dp == NULL || 10762 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10763 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10764 return (EINVAL); 10765 break; 10766 10767 case DTRACEACT_SPECULATE: 10768 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10769 return (EINVAL); 10770 10771 if (dp == NULL) 10772 return (EINVAL); 10773 10774 state->dts_speculates = 1; 10775 break; 10776 10777 case DTRACEACT_COMMIT: { 10778 dtrace_action_t *act = ecb->dte_action; 10779 10780 for (; act != NULL; act = act->dta_next) { 10781 if (act->dta_kind == DTRACEACT_COMMIT) 10782 return (EINVAL); 10783 } 10784 10785 if (dp == NULL) 10786 return (EINVAL); 10787 break; 10788 } 10789 10790 default: 10791 return (EINVAL); 10792 } 10793 10794 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10795 /* 10796 * If this is a data-storing action or a speculate, 10797 * we must be sure that there isn't a commit on the 10798 * action chain. 10799 */ 10800 dtrace_action_t *act = ecb->dte_action; 10801 10802 for (; act != NULL; act = act->dta_next) { 10803 if (act->dta_kind == DTRACEACT_COMMIT) 10804 return (EINVAL); 10805 } 10806 } 10807 10808 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10809 action->dta_rec.dtrd_size = size; 10810 } 10811 10812 action->dta_refcnt = 1; 10813 rec = &action->dta_rec; 10814 size = rec->dtrd_size; 10815 10816 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10817 if (!(size & mask)) { 10818 align = mask + 1; 10819 break; 10820 } 10821 } 10822 10823 action->dta_kind = desc->dtad_kind; 10824 10825 if ((action->dta_difo = dp) != NULL) 10826 dtrace_difo_hold(dp); 10827 10828 rec->dtrd_action = action->dta_kind; 10829 rec->dtrd_arg = arg; 10830 rec->dtrd_uarg = desc->dtad_uarg; 10831 rec->dtrd_alignment = (uint16_t)align; 10832 rec->dtrd_format = format; 10833 10834 if ((last = ecb->dte_action_last) != NULL) { 10835 ASSERT(ecb->dte_action != NULL); 10836 action->dta_prev = last; 10837 last->dta_next = action; 10838 } else { 10839 ASSERT(ecb->dte_action == NULL); 10840 ecb->dte_action = action; 10841 } 10842 10843 ecb->dte_action_last = action; 10844 10845 return (0); 10846 } 10847 10848 static void 10849 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10850 { 10851 dtrace_action_t *act = ecb->dte_action, *next; 10852 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10853 dtrace_difo_t *dp; 10854 uint16_t format; 10855 10856 if (act != NULL && act->dta_refcnt > 1) { 10857 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10858 act->dta_refcnt--; 10859 } else { 10860 for (; act != NULL; act = next) { 10861 next = act->dta_next; 10862 ASSERT(next != NULL || act == ecb->dte_action_last); 10863 ASSERT(act->dta_refcnt == 1); 10864 10865 if ((format = act->dta_rec.dtrd_format) != 0) 10866 dtrace_format_remove(ecb->dte_state, format); 10867 10868 if ((dp = act->dta_difo) != NULL) 10869 dtrace_difo_release(dp, vstate); 10870 10871 if (DTRACEACT_ISAGG(act->dta_kind)) { 10872 dtrace_ecb_aggregation_destroy(ecb, act); 10873 } else { 10874 kmem_free(act, sizeof (dtrace_action_t)); 10875 } 10876 } 10877 } 10878 10879 ecb->dte_action = NULL; 10880 ecb->dte_action_last = NULL; 10881 ecb->dte_size = 0; 10882 } 10883 10884 static void 10885 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10886 { 10887 /* 10888 * We disable the ECB by removing it from its probe. 10889 */ 10890 dtrace_ecb_t *pecb, *prev = NULL; 10891 dtrace_probe_t *probe = ecb->dte_probe; 10892 10893 ASSERT(MUTEX_HELD(&dtrace_lock)); 10894 10895 if (probe == NULL) { 10896 /* 10897 * This is the NULL probe; there is nothing to disable. 10898 */ 10899 return; 10900 } 10901 10902 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10903 if (pecb == ecb) 10904 break; 10905 prev = pecb; 10906 } 10907 10908 ASSERT(pecb != NULL); 10909 10910 if (prev == NULL) { 10911 probe->dtpr_ecb = ecb->dte_next; 10912 } else { 10913 prev->dte_next = ecb->dte_next; 10914 } 10915 10916 if (ecb == probe->dtpr_ecb_last) { 10917 ASSERT(ecb->dte_next == NULL); 10918 probe->dtpr_ecb_last = prev; 10919 } 10920 10921 /* 10922 * The ECB has been disconnected from the probe; now sync to assure 10923 * that all CPUs have seen the change before returning. 10924 */ 10925 dtrace_sync(); 10926 10927 if (probe->dtpr_ecb == NULL) { 10928 /* 10929 * That was the last ECB on the probe; clear the predicate 10930 * cache ID for the probe, disable it and sync one more time 10931 * to assure that we'll never hit it again. 10932 */ 10933 dtrace_provider_t *prov = probe->dtpr_provider; 10934 10935 ASSERT(ecb->dte_next == NULL); 10936 ASSERT(probe->dtpr_ecb_last == NULL); 10937 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10938 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10939 probe->dtpr_id, probe->dtpr_arg); 10940 dtrace_sync(); 10941 } else { 10942 /* 10943 * There is at least one ECB remaining on the probe. If there 10944 * is _exactly_ one, set the probe's predicate cache ID to be 10945 * the predicate cache ID of the remaining ECB. 10946 */ 10947 ASSERT(probe->dtpr_ecb_last != NULL); 10948 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10949 10950 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10951 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10952 10953 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10954 10955 if (p != NULL) 10956 probe->dtpr_predcache = p->dtp_cacheid; 10957 } 10958 10959 ecb->dte_next = NULL; 10960 } 10961 } 10962 10963 static void 10964 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10965 { 10966 dtrace_state_t *state = ecb->dte_state; 10967 dtrace_vstate_t *vstate = &state->dts_vstate; 10968 dtrace_predicate_t *pred; 10969 dtrace_epid_t epid = ecb->dte_epid; 10970 10971 ASSERT(MUTEX_HELD(&dtrace_lock)); 10972 ASSERT(ecb->dte_next == NULL); 10973 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10974 10975 if ((pred = ecb->dte_predicate) != NULL) 10976 dtrace_predicate_release(pred, vstate); 10977 10978 dtrace_ecb_action_remove(ecb); 10979 10980 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10981 state->dts_ecbs[epid - 1] = NULL; 10982 10983 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10984 } 10985 10986 static dtrace_ecb_t * 10987 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10988 dtrace_enabling_t *enab) 10989 { 10990 dtrace_ecb_t *ecb; 10991 dtrace_predicate_t *pred; 10992 dtrace_actdesc_t *act; 10993 dtrace_provider_t *prov; 10994 dtrace_ecbdesc_t *desc = enab->dten_current; 10995 10996 ASSERT(MUTEX_HELD(&dtrace_lock)); 10997 ASSERT(state != NULL); 10998 10999 ecb = dtrace_ecb_add(state, probe); 11000 ecb->dte_uarg = desc->dted_uarg; 11001 11002 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11003 dtrace_predicate_hold(pred); 11004 ecb->dte_predicate = pred; 11005 } 11006 11007 if (probe != NULL) { 11008 /* 11009 * If the provider shows more leg than the consumer is old 11010 * enough to see, we need to enable the appropriate implicit 11011 * predicate bits to prevent the ecb from activating at 11012 * revealing times. 11013 * 11014 * Providers specifying DTRACE_PRIV_USER at register time 11015 * are stating that they need the /proc-style privilege 11016 * model to be enforced, and this is what DTRACE_COND_OWNER 11017 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11018 */ 11019 prov = probe->dtpr_provider; 11020 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11021 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11022 ecb->dte_cond |= DTRACE_COND_OWNER; 11023 11024 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11025 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11026 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11027 11028 /* 11029 * If the provider shows us kernel innards and the user 11030 * is lacking sufficient privilege, enable the 11031 * DTRACE_COND_USERMODE implicit predicate. 11032 */ 11033 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11034 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11035 ecb->dte_cond |= DTRACE_COND_USERMODE; 11036 } 11037 11038 if (dtrace_ecb_create_cache != NULL) { 11039 /* 11040 * If we have a cached ecb, we'll use its action list instead 11041 * of creating our own (saving both time and space). 11042 */ 11043 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11044 dtrace_action_t *act = cached->dte_action; 11045 11046 if (act != NULL) { 11047 ASSERT(act->dta_refcnt > 0); 11048 act->dta_refcnt++; 11049 ecb->dte_action = act; 11050 ecb->dte_action_last = cached->dte_action_last; 11051 ecb->dte_needed = cached->dte_needed; 11052 ecb->dte_size = cached->dte_size; 11053 ecb->dte_alignment = cached->dte_alignment; 11054 } 11055 11056 return (ecb); 11057 } 11058 11059 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11060 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11061 dtrace_ecb_destroy(ecb); 11062 return (NULL); 11063 } 11064 } 11065 11066 dtrace_ecb_resize(ecb); 11067 11068 return (dtrace_ecb_create_cache = ecb); 11069 } 11070 11071 static int 11072 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11073 { 11074 dtrace_ecb_t *ecb; 11075 dtrace_enabling_t *enab = arg; 11076 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11077 11078 ASSERT(state != NULL); 11079 11080 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11081 /* 11082 * This probe was created in a generation for which this 11083 * enabling has previously created ECBs; we don't want to 11084 * enable it again, so just kick out. 11085 */ 11086 return (DTRACE_MATCH_NEXT); 11087 } 11088 11089 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11090 return (DTRACE_MATCH_DONE); 11091 11092 if (dtrace_ecb_enable(ecb) < 0) 11093 return (DTRACE_MATCH_FAIL); 11094 11095 return (DTRACE_MATCH_NEXT); 11096 } 11097 11098 static dtrace_ecb_t * 11099 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11100 { 11101 dtrace_ecb_t *ecb; 11102 11103 ASSERT(MUTEX_HELD(&dtrace_lock)); 11104 11105 if (id == 0 || id > state->dts_necbs) 11106 return (NULL); 11107 11108 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11109 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11110 11111 return (state->dts_ecbs[id - 1]); 11112 } 11113 11114 static dtrace_aggregation_t * 11115 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11116 { 11117 dtrace_aggregation_t *agg; 11118 11119 ASSERT(MUTEX_HELD(&dtrace_lock)); 11120 11121 if (id == 0 || id > state->dts_naggregations) 11122 return (NULL); 11123 11124 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11125 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11126 agg->dtag_id == id); 11127 11128 return (state->dts_aggregations[id - 1]); 11129 } 11130 11131 /* 11132 * DTrace Buffer Functions 11133 * 11134 * The following functions manipulate DTrace buffers. Most of these functions 11135 * are called in the context of establishing or processing consumer state; 11136 * exceptions are explicitly noted. 11137 */ 11138 11139 /* 11140 * Note: called from cross call context. This function switches the two 11141 * buffers on a given CPU. The atomicity of this operation is assured by 11142 * disabling interrupts while the actual switch takes place; the disabling of 11143 * interrupts serializes the execution with any execution of dtrace_probe() on 11144 * the same CPU. 11145 */ 11146 static void 11147 dtrace_buffer_switch(dtrace_buffer_t *buf) 11148 { 11149 caddr_t tomax = buf->dtb_tomax; 11150 caddr_t xamot = buf->dtb_xamot; 11151 dtrace_icookie_t cookie; 11152 hrtime_t now; 11153 11154 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11155 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11156 11157 cookie = dtrace_interrupt_disable(); 11158 now = dtrace_gethrtime(); 11159 buf->dtb_tomax = xamot; 11160 buf->dtb_xamot = tomax; 11161 buf->dtb_xamot_drops = buf->dtb_drops; 11162 buf->dtb_xamot_offset = buf->dtb_offset; 11163 buf->dtb_xamot_errors = buf->dtb_errors; 11164 buf->dtb_xamot_flags = buf->dtb_flags; 11165 buf->dtb_offset = 0; 11166 buf->dtb_drops = 0; 11167 buf->dtb_errors = 0; 11168 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11169 buf->dtb_interval = now - buf->dtb_switched; 11170 buf->dtb_switched = now; 11171 dtrace_interrupt_enable(cookie); 11172 } 11173 11174 /* 11175 * Note: called from cross call context. This function activates a buffer 11176 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11177 * is guaranteed by the disabling of interrupts. 11178 */ 11179 static void 11180 dtrace_buffer_activate(dtrace_state_t *state) 11181 { 11182 dtrace_buffer_t *buf; 11183 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11184 11185 buf = &state->dts_buffer[CPU->cpu_id]; 11186 11187 if (buf->dtb_tomax != NULL) { 11188 /* 11189 * We might like to assert that the buffer is marked inactive, 11190 * but this isn't necessarily true: the buffer for the CPU 11191 * that processes the BEGIN probe has its buffer activated 11192 * manually. In this case, we take the (harmless) action 11193 * re-clearing the bit INACTIVE bit. 11194 */ 11195 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11196 } 11197 11198 dtrace_interrupt_enable(cookie); 11199 } 11200 11201 static int 11202 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11203 processorid_t cpu, int *factor) 11204 { 11205 cpu_t *cp; 11206 dtrace_buffer_t *buf; 11207 int allocated = 0, desired = 0; 11208 11209 ASSERT(MUTEX_HELD(&cpu_lock)); 11210 ASSERT(MUTEX_HELD(&dtrace_lock)); 11211 11212 *factor = 1; 11213 11214 if (size > dtrace_nonroot_maxsize && 11215 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11216 return (EFBIG); 11217 11218 cp = cpu_list; 11219 11220 do { 11221 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11222 continue; 11223 11224 buf = &bufs[cp->cpu_id]; 11225 11226 /* 11227 * If there is already a buffer allocated for this CPU, it 11228 * is only possible that this is a DR event. In this case, 11229 * the buffer size must match our specified size. 11230 */ 11231 if (buf->dtb_tomax != NULL) { 11232 ASSERT(buf->dtb_size == size); 11233 continue; 11234 } 11235 11236 ASSERT(buf->dtb_xamot == NULL); 11237 11238 if ((buf->dtb_tomax = kmem_zalloc(size, 11239 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11240 goto err; 11241 11242 buf->dtb_size = size; 11243 buf->dtb_flags = flags; 11244 buf->dtb_offset = 0; 11245 buf->dtb_drops = 0; 11246 11247 if (flags & DTRACEBUF_NOSWITCH) 11248 continue; 11249 11250 if ((buf->dtb_xamot = kmem_zalloc(size, 11251 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11252 goto err; 11253 } while ((cp = cp->cpu_next) != cpu_list); 11254 11255 return (0); 11256 11257 err: 11258 cp = cpu_list; 11259 11260 do { 11261 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11262 continue; 11263 11264 buf = &bufs[cp->cpu_id]; 11265 desired += 2; 11266 11267 if (buf->dtb_xamot != NULL) { 11268 ASSERT(buf->dtb_tomax != NULL); 11269 ASSERT(buf->dtb_size == size); 11270 kmem_free(buf->dtb_xamot, size); 11271 allocated++; 11272 } 11273 11274 if (buf->dtb_tomax != NULL) { 11275 ASSERT(buf->dtb_size == size); 11276 kmem_free(buf->dtb_tomax, size); 11277 allocated++; 11278 } 11279 11280 buf->dtb_tomax = NULL; 11281 buf->dtb_xamot = NULL; 11282 buf->dtb_size = 0; 11283 } while ((cp = cp->cpu_next) != cpu_list); 11284 11285 *factor = desired / (allocated > 0 ? allocated : 1); 11286 11287 return (ENOMEM); 11288 } 11289 11290 /* 11291 * Note: called from probe context. This function just increments the drop 11292 * count on a buffer. It has been made a function to allow for the 11293 * possibility of understanding the source of mysterious drop counts. (A 11294 * problem for which one may be particularly disappointed that DTrace cannot 11295 * be used to understand DTrace.) 11296 */ 11297 static void 11298 dtrace_buffer_drop(dtrace_buffer_t *buf) 11299 { 11300 buf->dtb_drops++; 11301 } 11302 11303 /* 11304 * Note: called from probe context. This function is called to reserve space 11305 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11306 * mstate. Returns the new offset in the buffer, or a negative value if an 11307 * error has occurred. 11308 */ 11309 static intptr_t 11310 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11311 dtrace_state_t *state, dtrace_mstate_t *mstate) 11312 { 11313 intptr_t offs = buf->dtb_offset, soffs; 11314 intptr_t woffs; 11315 caddr_t tomax; 11316 size_t total; 11317 11318 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11319 return (-1); 11320 11321 if ((tomax = buf->dtb_tomax) == NULL) { 11322 dtrace_buffer_drop(buf); 11323 return (-1); 11324 } 11325 11326 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11327 while (offs & (align - 1)) { 11328 /* 11329 * Assert that our alignment is off by a number which 11330 * is itself sizeof (uint32_t) aligned. 11331 */ 11332 ASSERT(!((align - (offs & (align - 1))) & 11333 (sizeof (uint32_t) - 1))); 11334 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11335 offs += sizeof (uint32_t); 11336 } 11337 11338 if ((soffs = offs + needed) > buf->dtb_size) { 11339 dtrace_buffer_drop(buf); 11340 return (-1); 11341 } 11342 11343 if (mstate == NULL) 11344 return (offs); 11345 11346 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11347 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11348 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11349 11350 return (offs); 11351 } 11352 11353 if (buf->dtb_flags & DTRACEBUF_FILL) { 11354 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11355 (buf->dtb_flags & DTRACEBUF_FULL)) 11356 return (-1); 11357 goto out; 11358 } 11359 11360 total = needed + (offs & (align - 1)); 11361 11362 /* 11363 * For a ring buffer, life is quite a bit more complicated. Before 11364 * we can store any padding, we need to adjust our wrapping offset. 11365 * (If we've never before wrapped or we're not about to, no adjustment 11366 * is required.) 11367 */ 11368 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11369 offs + total > buf->dtb_size) { 11370 woffs = buf->dtb_xamot_offset; 11371 11372 if (offs + total > buf->dtb_size) { 11373 /* 11374 * We can't fit in the end of the buffer. First, a 11375 * sanity check that we can fit in the buffer at all. 11376 */ 11377 if (total > buf->dtb_size) { 11378 dtrace_buffer_drop(buf); 11379 return (-1); 11380 } 11381 11382 /* 11383 * We're going to be storing at the top of the buffer, 11384 * so now we need to deal with the wrapped offset. We 11385 * only reset our wrapped offset to 0 if it is 11386 * currently greater than the current offset. If it 11387 * is less than the current offset, it is because a 11388 * previous allocation induced a wrap -- but the 11389 * allocation didn't subsequently take the space due 11390 * to an error or false predicate evaluation. In this 11391 * case, we'll just leave the wrapped offset alone: if 11392 * the wrapped offset hasn't been advanced far enough 11393 * for this allocation, it will be adjusted in the 11394 * lower loop. 11395 */ 11396 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11397 if (woffs >= offs) 11398 woffs = 0; 11399 } else { 11400 woffs = 0; 11401 } 11402 11403 /* 11404 * Now we know that we're going to be storing to the 11405 * top of the buffer and that there is room for us 11406 * there. We need to clear the buffer from the current 11407 * offset to the end (there may be old gunk there). 11408 */ 11409 while (offs < buf->dtb_size) 11410 tomax[offs++] = 0; 11411 11412 /* 11413 * We need to set our offset to zero. And because we 11414 * are wrapping, we need to set the bit indicating as 11415 * much. We can also adjust our needed space back 11416 * down to the space required by the ECB -- we know 11417 * that the top of the buffer is aligned. 11418 */ 11419 offs = 0; 11420 total = needed; 11421 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11422 } else { 11423 /* 11424 * There is room for us in the buffer, so we simply 11425 * need to check the wrapped offset. 11426 */ 11427 if (woffs < offs) { 11428 /* 11429 * The wrapped offset is less than the offset. 11430 * This can happen if we allocated buffer space 11431 * that induced a wrap, but then we didn't 11432 * subsequently take the space due to an error 11433 * or false predicate evaluation. This is 11434 * okay; we know that _this_ allocation isn't 11435 * going to induce a wrap. We still can't 11436 * reset the wrapped offset to be zero, 11437 * however: the space may have been trashed in 11438 * the previous failed probe attempt. But at 11439 * least the wrapped offset doesn't need to 11440 * be adjusted at all... 11441 */ 11442 goto out; 11443 } 11444 } 11445 11446 while (offs + total > woffs) { 11447 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11448 size_t size; 11449 11450 if (epid == DTRACE_EPIDNONE) { 11451 size = sizeof (uint32_t); 11452 } else { 11453 ASSERT3U(epid, <=, state->dts_necbs); 11454 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11455 11456 size = state->dts_ecbs[epid - 1]->dte_size; 11457 } 11458 11459 ASSERT(woffs + size <= buf->dtb_size); 11460 ASSERT(size != 0); 11461 11462 if (woffs + size == buf->dtb_size) { 11463 /* 11464 * We've reached the end of the buffer; we want 11465 * to set the wrapped offset to 0 and break 11466 * out. However, if the offs is 0, then we're 11467 * in a strange edge-condition: the amount of 11468 * space that we want to reserve plus the size 11469 * of the record that we're overwriting is 11470 * greater than the size of the buffer. This 11471 * is problematic because if we reserve the 11472 * space but subsequently don't consume it (due 11473 * to a failed predicate or error) the wrapped 11474 * offset will be 0 -- yet the EPID at offset 0 11475 * will not be committed. This situation is 11476 * relatively easy to deal with: if we're in 11477 * this case, the buffer is indistinguishable 11478 * from one that hasn't wrapped; we need only 11479 * finish the job by clearing the wrapped bit, 11480 * explicitly setting the offset to be 0, and 11481 * zero'ing out the old data in the buffer. 11482 */ 11483 if (offs == 0) { 11484 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11485 buf->dtb_offset = 0; 11486 woffs = total; 11487 11488 while (woffs < buf->dtb_size) 11489 tomax[woffs++] = 0; 11490 } 11491 11492 woffs = 0; 11493 break; 11494 } 11495 11496 woffs += size; 11497 } 11498 11499 /* 11500 * We have a wrapped offset. It may be that the wrapped offset 11501 * has become zero -- that's okay. 11502 */ 11503 buf->dtb_xamot_offset = woffs; 11504 } 11505 11506 out: 11507 /* 11508 * Now we can plow the buffer with any necessary padding. 11509 */ 11510 while (offs & (align - 1)) { 11511 /* 11512 * Assert that our alignment is off by a number which 11513 * is itself sizeof (uint32_t) aligned. 11514 */ 11515 ASSERT(!((align - (offs & (align - 1))) & 11516 (sizeof (uint32_t) - 1))); 11517 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11518 offs += sizeof (uint32_t); 11519 } 11520 11521 if (buf->dtb_flags & DTRACEBUF_FILL) { 11522 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11523 buf->dtb_flags |= DTRACEBUF_FULL; 11524 return (-1); 11525 } 11526 } 11527 11528 if (mstate == NULL) 11529 return (offs); 11530 11531 /* 11532 * For ring buffers and fill buffers, the scratch space is always 11533 * the inactive buffer. 11534 */ 11535 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11536 mstate->dtms_scratch_size = buf->dtb_size; 11537 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11538 11539 return (offs); 11540 } 11541 11542 static void 11543 dtrace_buffer_polish(dtrace_buffer_t *buf) 11544 { 11545 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11546 ASSERT(MUTEX_HELD(&dtrace_lock)); 11547 11548 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11549 return; 11550 11551 /* 11552 * We need to polish the ring buffer. There are three cases: 11553 * 11554 * - The first (and presumably most common) is that there is no gap 11555 * between the buffer offset and the wrapped offset. In this case, 11556 * there is nothing in the buffer that isn't valid data; we can 11557 * mark the buffer as polished and return. 11558 * 11559 * - The second (less common than the first but still more common 11560 * than the third) is that there is a gap between the buffer offset 11561 * and the wrapped offset, and the wrapped offset is larger than the 11562 * buffer offset. This can happen because of an alignment issue, or 11563 * can happen because of a call to dtrace_buffer_reserve() that 11564 * didn't subsequently consume the buffer space. In this case, 11565 * we need to zero the data from the buffer offset to the wrapped 11566 * offset. 11567 * 11568 * - The third (and least common) is that there is a gap between the 11569 * buffer offset and the wrapped offset, but the wrapped offset is 11570 * _less_ than the buffer offset. This can only happen because a 11571 * call to dtrace_buffer_reserve() induced a wrap, but the space 11572 * was not subsequently consumed. In this case, we need to zero the 11573 * space from the offset to the end of the buffer _and_ from the 11574 * top of the buffer to the wrapped offset. 11575 */ 11576 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11577 bzero(buf->dtb_tomax + buf->dtb_offset, 11578 buf->dtb_xamot_offset - buf->dtb_offset); 11579 } 11580 11581 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11582 bzero(buf->dtb_tomax + buf->dtb_offset, 11583 buf->dtb_size - buf->dtb_offset); 11584 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11585 } 11586 } 11587 11588 /* 11589 * This routine determines if data generated at the specified time has likely 11590 * been entirely consumed at user-level. This routine is called to determine 11591 * if an ECB on a defunct probe (but for an active enabling) can be safely 11592 * disabled and destroyed. 11593 */ 11594 static int 11595 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11596 { 11597 int i; 11598 11599 for (i = 0; i < NCPU; i++) { 11600 dtrace_buffer_t *buf = &bufs[i]; 11601 11602 if (buf->dtb_size == 0) 11603 continue; 11604 11605 if (buf->dtb_flags & DTRACEBUF_RING) 11606 return (0); 11607 11608 if (!buf->dtb_switched && buf->dtb_offset != 0) 11609 return (0); 11610 11611 if (buf->dtb_switched - buf->dtb_interval < when) 11612 return (0); 11613 } 11614 11615 return (1); 11616 } 11617 11618 static void 11619 dtrace_buffer_free(dtrace_buffer_t *bufs) 11620 { 11621 int i; 11622 11623 for (i = 0; i < NCPU; i++) { 11624 dtrace_buffer_t *buf = &bufs[i]; 11625 11626 if (buf->dtb_tomax == NULL) { 11627 ASSERT(buf->dtb_xamot == NULL); 11628 ASSERT(buf->dtb_size == 0); 11629 continue; 11630 } 11631 11632 if (buf->dtb_xamot != NULL) { 11633 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11634 kmem_free(buf->dtb_xamot, buf->dtb_size); 11635 } 11636 11637 kmem_free(buf->dtb_tomax, buf->dtb_size); 11638 buf->dtb_size = 0; 11639 buf->dtb_tomax = NULL; 11640 buf->dtb_xamot = NULL; 11641 } 11642 } 11643 11644 /* 11645 * DTrace Enabling Functions 11646 */ 11647 static dtrace_enabling_t * 11648 dtrace_enabling_create(dtrace_vstate_t *vstate) 11649 { 11650 dtrace_enabling_t *enab; 11651 11652 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11653 enab->dten_vstate = vstate; 11654 11655 return (enab); 11656 } 11657 11658 static void 11659 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11660 { 11661 dtrace_ecbdesc_t **ndesc; 11662 size_t osize, nsize; 11663 11664 /* 11665 * We can't add to enablings after we've enabled them, or after we've 11666 * retained them. 11667 */ 11668 ASSERT(enab->dten_probegen == 0); 11669 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11670 11671 if (enab->dten_ndesc < enab->dten_maxdesc) { 11672 enab->dten_desc[enab->dten_ndesc++] = ecb; 11673 return; 11674 } 11675 11676 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11677 11678 if (enab->dten_maxdesc == 0) { 11679 enab->dten_maxdesc = 1; 11680 } else { 11681 enab->dten_maxdesc <<= 1; 11682 } 11683 11684 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11685 11686 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11687 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11688 bcopy(enab->dten_desc, ndesc, osize); 11689 kmem_free(enab->dten_desc, osize); 11690 11691 enab->dten_desc = ndesc; 11692 enab->dten_desc[enab->dten_ndesc++] = ecb; 11693 } 11694 11695 static void 11696 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11697 dtrace_probedesc_t *pd) 11698 { 11699 dtrace_ecbdesc_t *new; 11700 dtrace_predicate_t *pred; 11701 dtrace_actdesc_t *act; 11702 11703 /* 11704 * We're going to create a new ECB description that matches the 11705 * specified ECB in every way, but has the specified probe description. 11706 */ 11707 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11708 11709 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11710 dtrace_predicate_hold(pred); 11711 11712 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11713 dtrace_actdesc_hold(act); 11714 11715 new->dted_action = ecb->dted_action; 11716 new->dted_pred = ecb->dted_pred; 11717 new->dted_probe = *pd; 11718 new->dted_uarg = ecb->dted_uarg; 11719 11720 dtrace_enabling_add(enab, new); 11721 } 11722 11723 static void 11724 dtrace_enabling_dump(dtrace_enabling_t *enab) 11725 { 11726 int i; 11727 11728 for (i = 0; i < enab->dten_ndesc; i++) { 11729 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11730 11731 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11732 desc->dtpd_provider, desc->dtpd_mod, 11733 desc->dtpd_func, desc->dtpd_name); 11734 } 11735 } 11736 11737 static void 11738 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11739 { 11740 int i; 11741 dtrace_ecbdesc_t *ep; 11742 dtrace_vstate_t *vstate = enab->dten_vstate; 11743 11744 ASSERT(MUTEX_HELD(&dtrace_lock)); 11745 11746 for (i = 0; i < enab->dten_ndesc; i++) { 11747 dtrace_actdesc_t *act, *next; 11748 dtrace_predicate_t *pred; 11749 11750 ep = enab->dten_desc[i]; 11751 11752 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11753 dtrace_predicate_release(pred, vstate); 11754 11755 for (act = ep->dted_action; act != NULL; act = next) { 11756 next = act->dtad_next; 11757 dtrace_actdesc_release(act, vstate); 11758 } 11759 11760 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11761 } 11762 11763 kmem_free(enab->dten_desc, 11764 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11765 11766 /* 11767 * If this was a retained enabling, decrement the dts_nretained count 11768 * and take it off of the dtrace_retained list. 11769 */ 11770 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11771 dtrace_retained == enab) { 11772 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11773 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11774 enab->dten_vstate->dtvs_state->dts_nretained--; 11775 dtrace_retained_gen++; 11776 } 11777 11778 if (enab->dten_prev == NULL) { 11779 if (dtrace_retained == enab) { 11780 dtrace_retained = enab->dten_next; 11781 11782 if (dtrace_retained != NULL) 11783 dtrace_retained->dten_prev = NULL; 11784 } 11785 } else { 11786 ASSERT(enab != dtrace_retained); 11787 ASSERT(dtrace_retained != NULL); 11788 enab->dten_prev->dten_next = enab->dten_next; 11789 } 11790 11791 if (enab->dten_next != NULL) { 11792 ASSERT(dtrace_retained != NULL); 11793 enab->dten_next->dten_prev = enab->dten_prev; 11794 } 11795 11796 kmem_free(enab, sizeof (dtrace_enabling_t)); 11797 } 11798 11799 static int 11800 dtrace_enabling_retain(dtrace_enabling_t *enab) 11801 { 11802 dtrace_state_t *state; 11803 11804 ASSERT(MUTEX_HELD(&dtrace_lock)); 11805 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11806 ASSERT(enab->dten_vstate != NULL); 11807 11808 state = enab->dten_vstate->dtvs_state; 11809 ASSERT(state != NULL); 11810 11811 /* 11812 * We only allow each state to retain dtrace_retain_max enablings. 11813 */ 11814 if (state->dts_nretained >= dtrace_retain_max) 11815 return (ENOSPC); 11816 11817 state->dts_nretained++; 11818 dtrace_retained_gen++; 11819 11820 if (dtrace_retained == NULL) { 11821 dtrace_retained = enab; 11822 return (0); 11823 } 11824 11825 enab->dten_next = dtrace_retained; 11826 dtrace_retained->dten_prev = enab; 11827 dtrace_retained = enab; 11828 11829 return (0); 11830 } 11831 11832 static int 11833 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11834 dtrace_probedesc_t *create) 11835 { 11836 dtrace_enabling_t *new, *enab; 11837 int found = 0, err = ENOENT; 11838 11839 ASSERT(MUTEX_HELD(&dtrace_lock)); 11840 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11841 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11842 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11843 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11844 11845 new = dtrace_enabling_create(&state->dts_vstate); 11846 11847 /* 11848 * Iterate over all retained enablings, looking for enablings that 11849 * match the specified state. 11850 */ 11851 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11852 int i; 11853 11854 /* 11855 * dtvs_state can only be NULL for helper enablings -- and 11856 * helper enablings can't be retained. 11857 */ 11858 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11859 11860 if (enab->dten_vstate->dtvs_state != state) 11861 continue; 11862 11863 /* 11864 * Now iterate over each probe description; we're looking for 11865 * an exact match to the specified probe description. 11866 */ 11867 for (i = 0; i < enab->dten_ndesc; i++) { 11868 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11869 dtrace_probedesc_t *pd = &ep->dted_probe; 11870 11871 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11872 continue; 11873 11874 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11875 continue; 11876 11877 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11878 continue; 11879 11880 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11881 continue; 11882 11883 /* 11884 * We have a winning probe! Add it to our growing 11885 * enabling. 11886 */ 11887 found = 1; 11888 dtrace_enabling_addlike(new, ep, create); 11889 } 11890 } 11891 11892 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11893 dtrace_enabling_destroy(new); 11894 return (err); 11895 } 11896 11897 return (0); 11898 } 11899 11900 static void 11901 dtrace_enabling_retract(dtrace_state_t *state) 11902 { 11903 dtrace_enabling_t *enab, *next; 11904 11905 ASSERT(MUTEX_HELD(&dtrace_lock)); 11906 11907 /* 11908 * Iterate over all retained enablings, destroy the enablings retained 11909 * for the specified state. 11910 */ 11911 for (enab = dtrace_retained; enab != NULL; enab = next) { 11912 next = enab->dten_next; 11913 11914 /* 11915 * dtvs_state can only be NULL for helper enablings -- and 11916 * helper enablings can't be retained. 11917 */ 11918 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11919 11920 if (enab->dten_vstate->dtvs_state == state) { 11921 ASSERT(state->dts_nretained > 0); 11922 dtrace_enabling_destroy(enab); 11923 } 11924 } 11925 11926 ASSERT(state->dts_nretained == 0); 11927 } 11928 11929 static int 11930 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11931 { 11932 int i = 0; 11933 int total_matched = 0, matched = 0; 11934 11935 ASSERT(MUTEX_HELD(&cpu_lock)); 11936 ASSERT(MUTEX_HELD(&dtrace_lock)); 11937 11938 for (i = 0; i < enab->dten_ndesc; i++) { 11939 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11940 11941 enab->dten_current = ep; 11942 enab->dten_error = 0; 11943 11944 /* 11945 * If a provider failed to enable a probe then get out and 11946 * let the consumer know we failed. 11947 */ 11948 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11949 return (EBUSY); 11950 11951 total_matched += matched; 11952 11953 if (enab->dten_error != 0) { 11954 /* 11955 * If we get an error half-way through enabling the 11956 * probes, we kick out -- perhaps with some number of 11957 * them enabled. Leaving enabled probes enabled may 11958 * be slightly confusing for user-level, but we expect 11959 * that no one will attempt to actually drive on in 11960 * the face of such errors. If this is an anonymous 11961 * enabling (indicated with a NULL nmatched pointer), 11962 * we cmn_err() a message. We aren't expecting to 11963 * get such an error -- such as it can exist at all, 11964 * it would be a result of corrupted DOF in the driver 11965 * properties. 11966 */ 11967 if (nmatched == NULL) { 11968 cmn_err(CE_WARN, "dtrace_enabling_match() " 11969 "error on %p: %d", (void *)ep, 11970 enab->dten_error); 11971 } 11972 11973 return (enab->dten_error); 11974 } 11975 } 11976 11977 enab->dten_probegen = dtrace_probegen; 11978 if (nmatched != NULL) 11979 *nmatched = total_matched; 11980 11981 return (0); 11982 } 11983 11984 static void 11985 dtrace_enabling_matchall(void) 11986 { 11987 dtrace_enabling_t *enab; 11988 11989 mutex_enter(&cpu_lock); 11990 mutex_enter(&dtrace_lock); 11991 11992 /* 11993 * Iterate over all retained enablings to see if any probes match 11994 * against them. We only perform this operation on enablings for which 11995 * we have sufficient permissions by virtue of being in the global zone 11996 * or in the same zone as the DTrace client. Because we can be called 11997 * after dtrace_detach() has been called, we cannot assert that there 11998 * are retained enablings. We can safely load from dtrace_retained, 11999 * however: the taskq_destroy() at the end of dtrace_detach() will 12000 * block pending our completion. 12001 */ 12002 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12003 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12004 cred_t *cr = dcr->dcr_cred; 12005 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12006 12007 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12008 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12009 (void) dtrace_enabling_match(enab, NULL); 12010 } 12011 12012 mutex_exit(&dtrace_lock); 12013 mutex_exit(&cpu_lock); 12014 } 12015 12016 /* 12017 * If an enabling is to be enabled without having matched probes (that is, if 12018 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12019 * enabling must be _primed_ by creating an ECB for every ECB description. 12020 * This must be done to assure that we know the number of speculations, the 12021 * number of aggregations, the minimum buffer size needed, etc. before we 12022 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12023 * enabling any probes, we create ECBs for every ECB decription, but with a 12024 * NULL probe -- which is exactly what this function does. 12025 */ 12026 static void 12027 dtrace_enabling_prime(dtrace_state_t *state) 12028 { 12029 dtrace_enabling_t *enab; 12030 int i; 12031 12032 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12033 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12034 12035 if (enab->dten_vstate->dtvs_state != state) 12036 continue; 12037 12038 /* 12039 * We don't want to prime an enabling more than once, lest 12040 * we allow a malicious user to induce resource exhaustion. 12041 * (The ECBs that result from priming an enabling aren't 12042 * leaked -- but they also aren't deallocated until the 12043 * consumer state is destroyed.) 12044 */ 12045 if (enab->dten_primed) 12046 continue; 12047 12048 for (i = 0; i < enab->dten_ndesc; i++) { 12049 enab->dten_current = enab->dten_desc[i]; 12050 (void) dtrace_probe_enable(NULL, enab); 12051 } 12052 12053 enab->dten_primed = 1; 12054 } 12055 } 12056 12057 /* 12058 * Called to indicate that probes should be provided due to retained 12059 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12060 * must take an initial lap through the enabling calling the dtps_provide() 12061 * entry point explicitly to allow for autocreated probes. 12062 */ 12063 static void 12064 dtrace_enabling_provide(dtrace_provider_t *prv) 12065 { 12066 int i, all = 0; 12067 dtrace_probedesc_t desc; 12068 dtrace_genid_t gen; 12069 12070 ASSERT(MUTEX_HELD(&dtrace_lock)); 12071 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12072 12073 if (prv == NULL) { 12074 all = 1; 12075 prv = dtrace_provider; 12076 } 12077 12078 do { 12079 dtrace_enabling_t *enab; 12080 void *parg = prv->dtpv_arg; 12081 12082 retry: 12083 gen = dtrace_retained_gen; 12084 for (enab = dtrace_retained; enab != NULL; 12085 enab = enab->dten_next) { 12086 for (i = 0; i < enab->dten_ndesc; i++) { 12087 desc = enab->dten_desc[i]->dted_probe; 12088 mutex_exit(&dtrace_lock); 12089 prv->dtpv_pops.dtps_provide(parg, &desc); 12090 mutex_enter(&dtrace_lock); 12091 /* 12092 * Process the retained enablings again if 12093 * they have changed while we weren't holding 12094 * dtrace_lock. 12095 */ 12096 if (gen != dtrace_retained_gen) 12097 goto retry; 12098 } 12099 } 12100 } while (all && (prv = prv->dtpv_next) != NULL); 12101 12102 mutex_exit(&dtrace_lock); 12103 dtrace_probe_provide(NULL, all ? NULL : prv); 12104 mutex_enter(&dtrace_lock); 12105 } 12106 12107 /* 12108 * Called to reap ECBs that are attached to probes from defunct providers. 12109 */ 12110 static void 12111 dtrace_enabling_reap(void) 12112 { 12113 dtrace_provider_t *prov; 12114 dtrace_probe_t *probe; 12115 dtrace_ecb_t *ecb; 12116 hrtime_t when; 12117 int i; 12118 12119 mutex_enter(&cpu_lock); 12120 mutex_enter(&dtrace_lock); 12121 12122 for (i = 0; i < dtrace_nprobes; i++) { 12123 if ((probe = dtrace_probes[i]) == NULL) 12124 continue; 12125 12126 if (probe->dtpr_ecb == NULL) 12127 continue; 12128 12129 prov = probe->dtpr_provider; 12130 12131 if ((when = prov->dtpv_defunct) == 0) 12132 continue; 12133 12134 /* 12135 * We have ECBs on a defunct provider: we want to reap these 12136 * ECBs to allow the provider to unregister. The destruction 12137 * of these ECBs must be done carefully: if we destroy the ECB 12138 * and the consumer later wishes to consume an EPID that 12139 * corresponds to the destroyed ECB (and if the EPID metadata 12140 * has not been previously consumed), the consumer will abort 12141 * processing on the unknown EPID. To reduce (but not, sadly, 12142 * eliminate) the possibility of this, we will only destroy an 12143 * ECB for a defunct provider if, for the state that 12144 * corresponds to the ECB: 12145 * 12146 * (a) There is no speculative tracing (which can effectively 12147 * cache an EPID for an arbitrary amount of time). 12148 * 12149 * (b) The principal buffers have been switched twice since the 12150 * provider became defunct. 12151 * 12152 * (c) The aggregation buffers are of zero size or have been 12153 * switched twice since the provider became defunct. 12154 * 12155 * We use dts_speculates to determine (a) and call a function 12156 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12157 * that as soon as we've been unable to destroy one of the ECBs 12158 * associated with the probe, we quit trying -- reaping is only 12159 * fruitful in as much as we can destroy all ECBs associated 12160 * with the defunct provider's probes. 12161 */ 12162 while ((ecb = probe->dtpr_ecb) != NULL) { 12163 dtrace_state_t *state = ecb->dte_state; 12164 dtrace_buffer_t *buf = state->dts_buffer; 12165 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12166 12167 if (state->dts_speculates) 12168 break; 12169 12170 if (!dtrace_buffer_consumed(buf, when)) 12171 break; 12172 12173 if (!dtrace_buffer_consumed(aggbuf, when)) 12174 break; 12175 12176 dtrace_ecb_disable(ecb); 12177 ASSERT(probe->dtpr_ecb != ecb); 12178 dtrace_ecb_destroy(ecb); 12179 } 12180 } 12181 12182 mutex_exit(&dtrace_lock); 12183 mutex_exit(&cpu_lock); 12184 } 12185 12186 /* 12187 * DTrace DOF Functions 12188 */ 12189 /*ARGSUSED*/ 12190 static void 12191 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12192 { 12193 if (dtrace_err_verbose) 12194 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12195 12196 #ifdef DTRACE_ERRDEBUG 12197 dtrace_errdebug(str); 12198 #endif 12199 } 12200 12201 /* 12202 * Create DOF out of a currently enabled state. Right now, we only create 12203 * DOF containing the run-time options -- but this could be expanded to create 12204 * complete DOF representing the enabled state. 12205 */ 12206 static dof_hdr_t * 12207 dtrace_dof_create(dtrace_state_t *state) 12208 { 12209 dof_hdr_t *dof; 12210 dof_sec_t *sec; 12211 dof_optdesc_t *opt; 12212 int i, len = sizeof (dof_hdr_t) + 12213 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12214 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12215 12216 ASSERT(MUTEX_HELD(&dtrace_lock)); 12217 12218 dof = kmem_zalloc(len, KM_SLEEP); 12219 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12220 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12221 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12222 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12223 12224 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12225 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12226 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12227 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12228 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12229 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12230 12231 dof->dofh_flags = 0; 12232 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12233 dof->dofh_secsize = sizeof (dof_sec_t); 12234 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12235 dof->dofh_secoff = sizeof (dof_hdr_t); 12236 dof->dofh_loadsz = len; 12237 dof->dofh_filesz = len; 12238 dof->dofh_pad = 0; 12239 12240 /* 12241 * Fill in the option section header... 12242 */ 12243 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12244 sec->dofs_type = DOF_SECT_OPTDESC; 12245 sec->dofs_align = sizeof (uint64_t); 12246 sec->dofs_flags = DOF_SECF_LOAD; 12247 sec->dofs_entsize = sizeof (dof_optdesc_t); 12248 12249 opt = (dof_optdesc_t *)((uintptr_t)sec + 12250 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12251 12252 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12253 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12254 12255 for (i = 0; i < DTRACEOPT_MAX; i++) { 12256 opt[i].dofo_option = i; 12257 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12258 opt[i].dofo_value = state->dts_options[i]; 12259 } 12260 12261 return (dof); 12262 } 12263 12264 static dof_hdr_t * 12265 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12266 { 12267 dof_hdr_t hdr, *dof; 12268 12269 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12270 12271 /* 12272 * First, we're going to copyin() the sizeof (dof_hdr_t). 12273 */ 12274 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12275 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12276 *errp = EFAULT; 12277 return (NULL); 12278 } 12279 12280 /* 12281 * Now we'll allocate the entire DOF and copy it in -- provided 12282 * that the length isn't outrageous. 12283 */ 12284 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12285 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12286 *errp = E2BIG; 12287 return (NULL); 12288 } 12289 12290 if (hdr.dofh_loadsz < sizeof (hdr)) { 12291 dtrace_dof_error(&hdr, "invalid load size"); 12292 *errp = EINVAL; 12293 return (NULL); 12294 } 12295 12296 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12297 12298 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12299 dof->dofh_loadsz != hdr.dofh_loadsz) { 12300 kmem_free(dof, hdr.dofh_loadsz); 12301 *errp = EFAULT; 12302 return (NULL); 12303 } 12304 12305 return (dof); 12306 } 12307 12308 static dof_hdr_t * 12309 dtrace_dof_property(const char *name) 12310 { 12311 uchar_t *buf; 12312 uint64_t loadsz; 12313 unsigned int len, i; 12314 dof_hdr_t *dof; 12315 12316 /* 12317 * Unfortunately, array of values in .conf files are always (and 12318 * only) interpreted to be integer arrays. We must read our DOF 12319 * as an integer array, and then squeeze it into a byte array. 12320 */ 12321 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12322 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12323 return (NULL); 12324 12325 for (i = 0; i < len; i++) 12326 buf[i] = (uchar_t)(((int *)buf)[i]); 12327 12328 if (len < sizeof (dof_hdr_t)) { 12329 ddi_prop_free(buf); 12330 dtrace_dof_error(NULL, "truncated header"); 12331 return (NULL); 12332 } 12333 12334 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12335 ddi_prop_free(buf); 12336 dtrace_dof_error(NULL, "truncated DOF"); 12337 return (NULL); 12338 } 12339 12340 if (loadsz >= dtrace_dof_maxsize) { 12341 ddi_prop_free(buf); 12342 dtrace_dof_error(NULL, "oversized DOF"); 12343 return (NULL); 12344 } 12345 12346 dof = kmem_alloc(loadsz, KM_SLEEP); 12347 bcopy(buf, dof, loadsz); 12348 ddi_prop_free(buf); 12349 12350 return (dof); 12351 } 12352 12353 static void 12354 dtrace_dof_destroy(dof_hdr_t *dof) 12355 { 12356 kmem_free(dof, dof->dofh_loadsz); 12357 } 12358 12359 /* 12360 * Return the dof_sec_t pointer corresponding to a given section index. If the 12361 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12362 * a type other than DOF_SECT_NONE is specified, the header is checked against 12363 * this type and NULL is returned if the types do not match. 12364 */ 12365 static dof_sec_t * 12366 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12367 { 12368 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12369 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12370 12371 if (i >= dof->dofh_secnum) { 12372 dtrace_dof_error(dof, "referenced section index is invalid"); 12373 return (NULL); 12374 } 12375 12376 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12377 dtrace_dof_error(dof, "referenced section is not loadable"); 12378 return (NULL); 12379 } 12380 12381 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12382 dtrace_dof_error(dof, "referenced section is the wrong type"); 12383 return (NULL); 12384 } 12385 12386 return (sec); 12387 } 12388 12389 static dtrace_probedesc_t * 12390 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12391 { 12392 dof_probedesc_t *probe; 12393 dof_sec_t *strtab; 12394 uintptr_t daddr = (uintptr_t)dof; 12395 uintptr_t str; 12396 size_t size; 12397 12398 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12399 dtrace_dof_error(dof, "invalid probe section"); 12400 return (NULL); 12401 } 12402 12403 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12404 dtrace_dof_error(dof, "bad alignment in probe description"); 12405 return (NULL); 12406 } 12407 12408 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12409 dtrace_dof_error(dof, "truncated probe description"); 12410 return (NULL); 12411 } 12412 12413 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12414 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12415 12416 if (strtab == NULL) 12417 return (NULL); 12418 12419 str = daddr + strtab->dofs_offset; 12420 size = strtab->dofs_size; 12421 12422 if (probe->dofp_provider >= strtab->dofs_size) { 12423 dtrace_dof_error(dof, "corrupt probe provider"); 12424 return (NULL); 12425 } 12426 12427 (void) strncpy(desc->dtpd_provider, 12428 (char *)(str + probe->dofp_provider), 12429 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12430 12431 if (probe->dofp_mod >= strtab->dofs_size) { 12432 dtrace_dof_error(dof, "corrupt probe module"); 12433 return (NULL); 12434 } 12435 12436 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12437 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12438 12439 if (probe->dofp_func >= strtab->dofs_size) { 12440 dtrace_dof_error(dof, "corrupt probe function"); 12441 return (NULL); 12442 } 12443 12444 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12445 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12446 12447 if (probe->dofp_name >= strtab->dofs_size) { 12448 dtrace_dof_error(dof, "corrupt probe name"); 12449 return (NULL); 12450 } 12451 12452 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12453 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12454 12455 return (desc); 12456 } 12457 12458 static dtrace_difo_t * 12459 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12460 cred_t *cr) 12461 { 12462 dtrace_difo_t *dp; 12463 size_t ttl = 0; 12464 dof_difohdr_t *dofd; 12465 uintptr_t daddr = (uintptr_t)dof; 12466 size_t max = dtrace_difo_maxsize; 12467 int i, l, n; 12468 12469 static const struct { 12470 int section; 12471 int bufoffs; 12472 int lenoffs; 12473 int entsize; 12474 int align; 12475 const char *msg; 12476 } difo[] = { 12477 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12478 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12479 sizeof (dif_instr_t), "multiple DIF sections" }, 12480 12481 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12482 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12483 sizeof (uint64_t), "multiple integer tables" }, 12484 12485 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12486 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12487 sizeof (char), "multiple string tables" }, 12488 12489 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12490 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12491 sizeof (uint_t), "multiple variable tables" }, 12492 12493 { DOF_SECT_NONE, 0, 0, 0, NULL } 12494 }; 12495 12496 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12497 dtrace_dof_error(dof, "invalid DIFO header section"); 12498 return (NULL); 12499 } 12500 12501 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12502 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12503 return (NULL); 12504 } 12505 12506 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12507 sec->dofs_size % sizeof (dof_secidx_t)) { 12508 dtrace_dof_error(dof, "bad size in DIFO header"); 12509 return (NULL); 12510 } 12511 12512 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12513 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12514 12515 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12516 dp->dtdo_rtype = dofd->dofd_rtype; 12517 12518 for (l = 0; l < n; l++) { 12519 dof_sec_t *subsec; 12520 void **bufp; 12521 uint32_t *lenp; 12522 12523 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12524 dofd->dofd_links[l])) == NULL) 12525 goto err; /* invalid section link */ 12526 12527 if (ttl + subsec->dofs_size > max) { 12528 dtrace_dof_error(dof, "exceeds maximum size"); 12529 goto err; 12530 } 12531 12532 ttl += subsec->dofs_size; 12533 12534 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12535 if (subsec->dofs_type != difo[i].section) 12536 continue; 12537 12538 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12539 dtrace_dof_error(dof, "section not loaded"); 12540 goto err; 12541 } 12542 12543 if (subsec->dofs_align != difo[i].align) { 12544 dtrace_dof_error(dof, "bad alignment"); 12545 goto err; 12546 } 12547 12548 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12549 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12550 12551 if (*bufp != NULL) { 12552 dtrace_dof_error(dof, difo[i].msg); 12553 goto err; 12554 } 12555 12556 if (difo[i].entsize != subsec->dofs_entsize) { 12557 dtrace_dof_error(dof, "entry size mismatch"); 12558 goto err; 12559 } 12560 12561 if (subsec->dofs_entsize != 0 && 12562 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12563 dtrace_dof_error(dof, "corrupt entry size"); 12564 goto err; 12565 } 12566 12567 *lenp = subsec->dofs_size; 12568 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12569 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12570 *bufp, subsec->dofs_size); 12571 12572 if (subsec->dofs_entsize != 0) 12573 *lenp /= subsec->dofs_entsize; 12574 12575 break; 12576 } 12577 12578 /* 12579 * If we encounter a loadable DIFO sub-section that is not 12580 * known to us, assume this is a broken program and fail. 12581 */ 12582 if (difo[i].section == DOF_SECT_NONE && 12583 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12584 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12585 goto err; 12586 } 12587 } 12588 12589 if (dp->dtdo_buf == NULL) { 12590 /* 12591 * We can't have a DIF object without DIF text. 12592 */ 12593 dtrace_dof_error(dof, "missing DIF text"); 12594 goto err; 12595 } 12596 12597 /* 12598 * Before we validate the DIF object, run through the variable table 12599 * looking for the strings -- if any of their size are under, we'll set 12600 * their size to be the system-wide default string size. Note that 12601 * this should _not_ happen if the "strsize" option has been set -- 12602 * in this case, the compiler should have set the size to reflect the 12603 * setting of the option. 12604 */ 12605 for (i = 0; i < dp->dtdo_varlen; i++) { 12606 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12607 dtrace_diftype_t *t = &v->dtdv_type; 12608 12609 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12610 continue; 12611 12612 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12613 t->dtdt_size = dtrace_strsize_default; 12614 } 12615 12616 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12617 goto err; 12618 12619 dtrace_difo_init(dp, vstate); 12620 return (dp); 12621 12622 err: 12623 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12624 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12625 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12626 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12627 12628 kmem_free(dp, sizeof (dtrace_difo_t)); 12629 return (NULL); 12630 } 12631 12632 static dtrace_predicate_t * 12633 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12634 cred_t *cr) 12635 { 12636 dtrace_difo_t *dp; 12637 12638 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12639 return (NULL); 12640 12641 return (dtrace_predicate_create(dp)); 12642 } 12643 12644 static dtrace_actdesc_t * 12645 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12646 cred_t *cr) 12647 { 12648 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12649 dof_actdesc_t *desc; 12650 dof_sec_t *difosec; 12651 size_t offs; 12652 uintptr_t daddr = (uintptr_t)dof; 12653 uint64_t arg; 12654 dtrace_actkind_t kind; 12655 12656 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12657 dtrace_dof_error(dof, "invalid action section"); 12658 return (NULL); 12659 } 12660 12661 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12662 dtrace_dof_error(dof, "truncated action description"); 12663 return (NULL); 12664 } 12665 12666 if (sec->dofs_align != sizeof (uint64_t)) { 12667 dtrace_dof_error(dof, "bad alignment in action description"); 12668 return (NULL); 12669 } 12670 12671 if (sec->dofs_size < sec->dofs_entsize) { 12672 dtrace_dof_error(dof, "section entry size exceeds total size"); 12673 return (NULL); 12674 } 12675 12676 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12677 dtrace_dof_error(dof, "bad entry size in action description"); 12678 return (NULL); 12679 } 12680 12681 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12682 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12683 return (NULL); 12684 } 12685 12686 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12687 desc = (dof_actdesc_t *)(daddr + 12688 (uintptr_t)sec->dofs_offset + offs); 12689 kind = (dtrace_actkind_t)desc->dofa_kind; 12690 12691 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12692 (kind != DTRACEACT_PRINTA || 12693 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12694 (kind == DTRACEACT_DIFEXPR && 12695 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12696 dof_sec_t *strtab; 12697 char *str, *fmt; 12698 uint64_t i; 12699 12700 /* 12701 * The argument to these actions is an index into the 12702 * DOF string table. For printf()-like actions, this 12703 * is the format string. For print(), this is the 12704 * CTF type of the expression result. 12705 */ 12706 if ((strtab = dtrace_dof_sect(dof, 12707 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12708 goto err; 12709 12710 str = (char *)((uintptr_t)dof + 12711 (uintptr_t)strtab->dofs_offset); 12712 12713 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12714 if (str[i] == '\0') 12715 break; 12716 } 12717 12718 if (i >= strtab->dofs_size) { 12719 dtrace_dof_error(dof, "bogus format string"); 12720 goto err; 12721 } 12722 12723 if (i == desc->dofa_arg) { 12724 dtrace_dof_error(dof, "empty format string"); 12725 goto err; 12726 } 12727 12728 i -= desc->dofa_arg; 12729 fmt = kmem_alloc(i + 1, KM_SLEEP); 12730 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12731 arg = (uint64_t)(uintptr_t)fmt; 12732 } else { 12733 if (kind == DTRACEACT_PRINTA) { 12734 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12735 arg = 0; 12736 } else { 12737 arg = desc->dofa_arg; 12738 } 12739 } 12740 12741 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12742 desc->dofa_uarg, arg); 12743 12744 if (last != NULL) { 12745 last->dtad_next = act; 12746 } else { 12747 first = act; 12748 } 12749 12750 last = act; 12751 12752 if (desc->dofa_difo == DOF_SECIDX_NONE) 12753 continue; 12754 12755 if ((difosec = dtrace_dof_sect(dof, 12756 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12757 goto err; 12758 12759 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12760 12761 if (act->dtad_difo == NULL) 12762 goto err; 12763 } 12764 12765 ASSERT(first != NULL); 12766 return (first); 12767 12768 err: 12769 for (act = first; act != NULL; act = next) { 12770 next = act->dtad_next; 12771 dtrace_actdesc_release(act, vstate); 12772 } 12773 12774 return (NULL); 12775 } 12776 12777 static dtrace_ecbdesc_t * 12778 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12779 cred_t *cr) 12780 { 12781 dtrace_ecbdesc_t *ep; 12782 dof_ecbdesc_t *ecb; 12783 dtrace_probedesc_t *desc; 12784 dtrace_predicate_t *pred = NULL; 12785 12786 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12787 dtrace_dof_error(dof, "truncated ECB description"); 12788 return (NULL); 12789 } 12790 12791 if (sec->dofs_align != sizeof (uint64_t)) { 12792 dtrace_dof_error(dof, "bad alignment in ECB description"); 12793 return (NULL); 12794 } 12795 12796 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12797 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12798 12799 if (sec == NULL) 12800 return (NULL); 12801 12802 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12803 ep->dted_uarg = ecb->dofe_uarg; 12804 desc = &ep->dted_probe; 12805 12806 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12807 goto err; 12808 12809 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12810 if ((sec = dtrace_dof_sect(dof, 12811 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12812 goto err; 12813 12814 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12815 goto err; 12816 12817 ep->dted_pred.dtpdd_predicate = pred; 12818 } 12819 12820 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12821 if ((sec = dtrace_dof_sect(dof, 12822 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12823 goto err; 12824 12825 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12826 12827 if (ep->dted_action == NULL) 12828 goto err; 12829 } 12830 12831 return (ep); 12832 12833 err: 12834 if (pred != NULL) 12835 dtrace_predicate_release(pred, vstate); 12836 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12837 return (NULL); 12838 } 12839 12840 /* 12841 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12842 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12843 * site of any user SETX relocations to account for load object base address. 12844 * In the future, if we need other relocations, this function can be extended. 12845 */ 12846 static int 12847 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12848 { 12849 uintptr_t daddr = (uintptr_t)dof; 12850 dof_relohdr_t *dofr = 12851 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12852 dof_sec_t *ss, *rs, *ts; 12853 dof_relodesc_t *r; 12854 uint_t i, n; 12855 12856 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12857 sec->dofs_align != sizeof (dof_secidx_t)) { 12858 dtrace_dof_error(dof, "invalid relocation header"); 12859 return (-1); 12860 } 12861 12862 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12863 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12864 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12865 12866 if (ss == NULL || rs == NULL || ts == NULL) 12867 return (-1); /* dtrace_dof_error() has been called already */ 12868 12869 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12870 rs->dofs_align != sizeof (uint64_t)) { 12871 dtrace_dof_error(dof, "invalid relocation section"); 12872 return (-1); 12873 } 12874 12875 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12876 n = rs->dofs_size / rs->dofs_entsize; 12877 12878 for (i = 0; i < n; i++) { 12879 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12880 12881 switch (r->dofr_type) { 12882 case DOF_RELO_NONE: 12883 break; 12884 case DOF_RELO_SETX: 12885 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12886 sizeof (uint64_t) > ts->dofs_size) { 12887 dtrace_dof_error(dof, "bad relocation offset"); 12888 return (-1); 12889 } 12890 12891 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12892 dtrace_dof_error(dof, "misaligned setx relo"); 12893 return (-1); 12894 } 12895 12896 *(uint64_t *)taddr += ubase; 12897 break; 12898 default: 12899 dtrace_dof_error(dof, "invalid relocation type"); 12900 return (-1); 12901 } 12902 12903 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12904 } 12905 12906 return (0); 12907 } 12908 12909 /* 12910 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12911 * header: it should be at the front of a memory region that is at least 12912 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12913 * size. It need not be validated in any other way. 12914 */ 12915 static int 12916 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12917 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12918 { 12919 uint64_t len = dof->dofh_loadsz, seclen; 12920 uintptr_t daddr = (uintptr_t)dof; 12921 dtrace_ecbdesc_t *ep; 12922 dtrace_enabling_t *enab; 12923 uint_t i; 12924 12925 ASSERT(MUTEX_HELD(&dtrace_lock)); 12926 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12927 12928 /* 12929 * Check the DOF header identification bytes. In addition to checking 12930 * valid settings, we also verify that unused bits/bytes are zeroed so 12931 * we can use them later without fear of regressing existing binaries. 12932 */ 12933 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12934 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12935 dtrace_dof_error(dof, "DOF magic string mismatch"); 12936 return (-1); 12937 } 12938 12939 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12940 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12941 dtrace_dof_error(dof, "DOF has invalid data model"); 12942 return (-1); 12943 } 12944 12945 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12946 dtrace_dof_error(dof, "DOF encoding mismatch"); 12947 return (-1); 12948 } 12949 12950 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12951 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12952 dtrace_dof_error(dof, "DOF version mismatch"); 12953 return (-1); 12954 } 12955 12956 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12957 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12958 return (-1); 12959 } 12960 12961 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12962 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12963 return (-1); 12964 } 12965 12966 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12967 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12968 return (-1); 12969 } 12970 12971 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12972 if (dof->dofh_ident[i] != 0) { 12973 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12974 return (-1); 12975 } 12976 } 12977 12978 if (dof->dofh_flags & ~DOF_FL_VALID) { 12979 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12980 return (-1); 12981 } 12982 12983 if (dof->dofh_secsize == 0) { 12984 dtrace_dof_error(dof, "zero section header size"); 12985 return (-1); 12986 } 12987 12988 /* 12989 * Check that the section headers don't exceed the amount of DOF 12990 * data. Note that we cast the section size and number of sections 12991 * to uint64_t's to prevent possible overflow in the multiplication. 12992 */ 12993 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12994 12995 if (dof->dofh_secoff > len || seclen > len || 12996 dof->dofh_secoff + seclen > len) { 12997 dtrace_dof_error(dof, "truncated section headers"); 12998 return (-1); 12999 } 13000 13001 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13002 dtrace_dof_error(dof, "misaligned section headers"); 13003 return (-1); 13004 } 13005 13006 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13007 dtrace_dof_error(dof, "misaligned section size"); 13008 return (-1); 13009 } 13010 13011 /* 13012 * Take an initial pass through the section headers to be sure that 13013 * the headers don't have stray offsets. If the 'noprobes' flag is 13014 * set, do not permit sections relating to providers, probes, or args. 13015 */ 13016 for (i = 0; i < dof->dofh_secnum; i++) { 13017 dof_sec_t *sec = (dof_sec_t *)(daddr + 13018 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13019 13020 if (noprobes) { 13021 switch (sec->dofs_type) { 13022 case DOF_SECT_PROVIDER: 13023 case DOF_SECT_PROBES: 13024 case DOF_SECT_PRARGS: 13025 case DOF_SECT_PROFFS: 13026 dtrace_dof_error(dof, "illegal sections " 13027 "for enabling"); 13028 return (-1); 13029 } 13030 } 13031 13032 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13033 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13034 dtrace_dof_error(dof, "loadable section with load " 13035 "flag unset"); 13036 return (-1); 13037 } 13038 13039 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13040 continue; /* just ignore non-loadable sections */ 13041 13042 if (sec->dofs_align & (sec->dofs_align - 1)) { 13043 dtrace_dof_error(dof, "bad section alignment"); 13044 return (-1); 13045 } 13046 13047 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13048 dtrace_dof_error(dof, "misaligned section"); 13049 return (-1); 13050 } 13051 13052 if (sec->dofs_offset > len || sec->dofs_size > len || 13053 sec->dofs_offset + sec->dofs_size > len) { 13054 dtrace_dof_error(dof, "corrupt section header"); 13055 return (-1); 13056 } 13057 13058 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13059 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13060 dtrace_dof_error(dof, "non-terminating string table"); 13061 return (-1); 13062 } 13063 } 13064 13065 /* 13066 * Take a second pass through the sections and locate and perform any 13067 * relocations that are present. We do this after the first pass to 13068 * be sure that all sections have had their headers validated. 13069 */ 13070 for (i = 0; i < dof->dofh_secnum; i++) { 13071 dof_sec_t *sec = (dof_sec_t *)(daddr + 13072 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13073 13074 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13075 continue; /* skip sections that are not loadable */ 13076 13077 switch (sec->dofs_type) { 13078 case DOF_SECT_URELHDR: 13079 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13080 return (-1); 13081 break; 13082 } 13083 } 13084 13085 if ((enab = *enabp) == NULL) 13086 enab = *enabp = dtrace_enabling_create(vstate); 13087 13088 for (i = 0; i < dof->dofh_secnum; i++) { 13089 dof_sec_t *sec = (dof_sec_t *)(daddr + 13090 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13091 13092 if (sec->dofs_type != DOF_SECT_ECBDESC) 13093 continue; 13094 13095 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13096 dtrace_enabling_destroy(enab); 13097 *enabp = NULL; 13098 return (-1); 13099 } 13100 13101 dtrace_enabling_add(enab, ep); 13102 } 13103 13104 return (0); 13105 } 13106 13107 /* 13108 * Process DOF for any options. This routine assumes that the DOF has been 13109 * at least processed by dtrace_dof_slurp(). 13110 */ 13111 static int 13112 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13113 { 13114 int i, rval; 13115 uint32_t entsize; 13116 size_t offs; 13117 dof_optdesc_t *desc; 13118 13119 for (i = 0; i < dof->dofh_secnum; i++) { 13120 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13121 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13122 13123 if (sec->dofs_type != DOF_SECT_OPTDESC) 13124 continue; 13125 13126 if (sec->dofs_align != sizeof (uint64_t)) { 13127 dtrace_dof_error(dof, "bad alignment in " 13128 "option description"); 13129 return (EINVAL); 13130 } 13131 13132 if ((entsize = sec->dofs_entsize) == 0) { 13133 dtrace_dof_error(dof, "zeroed option entry size"); 13134 return (EINVAL); 13135 } 13136 13137 if (entsize < sizeof (dof_optdesc_t)) { 13138 dtrace_dof_error(dof, "bad option entry size"); 13139 return (EINVAL); 13140 } 13141 13142 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13143 desc = (dof_optdesc_t *)((uintptr_t)dof + 13144 (uintptr_t)sec->dofs_offset + offs); 13145 13146 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13147 dtrace_dof_error(dof, "non-zero option string"); 13148 return (EINVAL); 13149 } 13150 13151 if (desc->dofo_value == DTRACEOPT_UNSET) { 13152 dtrace_dof_error(dof, "unset option"); 13153 return (EINVAL); 13154 } 13155 13156 if ((rval = dtrace_state_option(state, 13157 desc->dofo_option, desc->dofo_value)) != 0) { 13158 dtrace_dof_error(dof, "rejected option"); 13159 return (rval); 13160 } 13161 } 13162 } 13163 13164 return (0); 13165 } 13166 13167 /* 13168 * DTrace Consumer State Functions 13169 */ 13170 int 13171 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13172 { 13173 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13174 void *base; 13175 uintptr_t limit; 13176 dtrace_dynvar_t *dvar, *next, *start; 13177 int i; 13178 13179 ASSERT(MUTEX_HELD(&dtrace_lock)); 13180 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13181 13182 bzero(dstate, sizeof (dtrace_dstate_t)); 13183 13184 if ((dstate->dtds_chunksize = chunksize) == 0) 13185 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13186 13187 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13188 size = min; 13189 13190 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13191 return (ENOMEM); 13192 13193 dstate->dtds_size = size; 13194 dstate->dtds_base = base; 13195 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13196 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13197 13198 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13199 13200 if (hashsize != 1 && (hashsize & 1)) 13201 hashsize--; 13202 13203 dstate->dtds_hashsize = hashsize; 13204 dstate->dtds_hash = dstate->dtds_base; 13205 13206 /* 13207 * Set all of our hash buckets to point to the single sink, and (if 13208 * it hasn't already been set), set the sink's hash value to be the 13209 * sink sentinel value. The sink is needed for dynamic variable 13210 * lookups to know that they have iterated over an entire, valid hash 13211 * chain. 13212 */ 13213 for (i = 0; i < hashsize; i++) 13214 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13215 13216 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13217 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13218 13219 /* 13220 * Determine number of active CPUs. Divide free list evenly among 13221 * active CPUs. 13222 */ 13223 start = (dtrace_dynvar_t *) 13224 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13225 limit = (uintptr_t)base + size; 13226 13227 maxper = (limit - (uintptr_t)start) / NCPU; 13228 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13229 13230 for (i = 0; i < NCPU; i++) { 13231 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13232 13233 /* 13234 * If we don't even have enough chunks to make it once through 13235 * NCPUs, we're just going to allocate everything to the first 13236 * CPU. And if we're on the last CPU, we're going to allocate 13237 * whatever is left over. In either case, we set the limit to 13238 * be the limit of the dynamic variable space. 13239 */ 13240 if (maxper == 0 || i == NCPU - 1) { 13241 limit = (uintptr_t)base + size; 13242 start = NULL; 13243 } else { 13244 limit = (uintptr_t)start + maxper; 13245 start = (dtrace_dynvar_t *)limit; 13246 } 13247 13248 ASSERT(limit <= (uintptr_t)base + size); 13249 13250 for (;;) { 13251 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13252 dstate->dtds_chunksize); 13253 13254 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13255 break; 13256 13257 dvar->dtdv_next = next; 13258 dvar = next; 13259 } 13260 13261 if (maxper == 0) 13262 break; 13263 } 13264 13265 return (0); 13266 } 13267 13268 void 13269 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13270 { 13271 ASSERT(MUTEX_HELD(&cpu_lock)); 13272 13273 if (dstate->dtds_base == NULL) 13274 return; 13275 13276 kmem_free(dstate->dtds_base, dstate->dtds_size); 13277 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13278 } 13279 13280 static void 13281 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13282 { 13283 /* 13284 * Logical XOR, where are you? 13285 */ 13286 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13287 13288 if (vstate->dtvs_nglobals > 0) { 13289 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13290 sizeof (dtrace_statvar_t *)); 13291 } 13292 13293 if (vstate->dtvs_ntlocals > 0) { 13294 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13295 sizeof (dtrace_difv_t)); 13296 } 13297 13298 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13299 13300 if (vstate->dtvs_nlocals > 0) { 13301 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13302 sizeof (dtrace_statvar_t *)); 13303 } 13304 } 13305 13306 static void 13307 dtrace_state_clean(dtrace_state_t *state) 13308 { 13309 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13310 return; 13311 13312 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13313 dtrace_speculation_clean(state); 13314 } 13315 13316 static void 13317 dtrace_state_deadman(dtrace_state_t *state) 13318 { 13319 hrtime_t now; 13320 13321 dtrace_sync(); 13322 13323 now = dtrace_gethrtime(); 13324 13325 if (state != dtrace_anon.dta_state && 13326 now - state->dts_laststatus >= dtrace_deadman_user) 13327 return; 13328 13329 /* 13330 * We must be sure that dts_alive never appears to be less than the 13331 * value upon entry to dtrace_state_deadman(), and because we lack a 13332 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13333 * store INT64_MAX to it, followed by a memory barrier, followed by 13334 * the new value. This assures that dts_alive never appears to be 13335 * less than its true value, regardless of the order in which the 13336 * stores to the underlying storage are issued. 13337 */ 13338 state->dts_alive = INT64_MAX; 13339 dtrace_membar_producer(); 13340 state->dts_alive = now; 13341 } 13342 13343 dtrace_state_t * 13344 dtrace_state_create(dev_t *devp, cred_t *cr) 13345 { 13346 minor_t minor; 13347 major_t major; 13348 char c[30]; 13349 dtrace_state_t *state; 13350 dtrace_optval_t *opt; 13351 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13352 13353 ASSERT(MUTEX_HELD(&dtrace_lock)); 13354 ASSERT(MUTEX_HELD(&cpu_lock)); 13355 13356 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13357 VM_BESTFIT | VM_SLEEP); 13358 13359 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13360 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13361 return (NULL); 13362 } 13363 13364 state = ddi_get_soft_state(dtrace_softstate, minor); 13365 state->dts_epid = DTRACE_EPIDNONE + 1; 13366 13367 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13368 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13369 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13370 13371 if (devp != NULL) { 13372 major = getemajor(*devp); 13373 } else { 13374 major = ddi_driver_major(dtrace_devi); 13375 } 13376 13377 state->dts_dev = makedevice(major, minor); 13378 13379 if (devp != NULL) 13380 *devp = state->dts_dev; 13381 13382 /* 13383 * We allocate NCPU buffers. On the one hand, this can be quite 13384 * a bit of memory per instance (nearly 36K on a Starcat). On the 13385 * other hand, it saves an additional memory reference in the probe 13386 * path. 13387 */ 13388 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13389 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13390 state->dts_cleaner = CYCLIC_NONE; 13391 state->dts_deadman = CYCLIC_NONE; 13392 state->dts_vstate.dtvs_state = state; 13393 13394 for (i = 0; i < DTRACEOPT_MAX; i++) 13395 state->dts_options[i] = DTRACEOPT_UNSET; 13396 13397 /* 13398 * Set the default options. 13399 */ 13400 opt = state->dts_options; 13401 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13402 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13403 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13404 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13405 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13406 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13407 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13408 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13409 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13410 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13411 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13412 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13413 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13414 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13415 13416 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13417 13418 /* 13419 * Depending on the user credentials, we set flag bits which alter probe 13420 * visibility or the amount of destructiveness allowed. In the case of 13421 * actual anonymous tracing, or the possession of all privileges, all of 13422 * the normal checks are bypassed. 13423 */ 13424 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13425 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13426 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13427 } else { 13428 /* 13429 * Set up the credentials for this instantiation. We take a 13430 * hold on the credential to prevent it from disappearing on 13431 * us; this in turn prevents the zone_t referenced by this 13432 * credential from disappearing. This means that we can 13433 * examine the credential and the zone from probe context. 13434 */ 13435 crhold(cr); 13436 state->dts_cred.dcr_cred = cr; 13437 13438 /* 13439 * CRA_PROC means "we have *some* privilege for dtrace" and 13440 * unlocks the use of variables like pid, zonename, etc. 13441 */ 13442 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13443 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13444 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13445 } 13446 13447 /* 13448 * dtrace_user allows use of syscall and profile providers. 13449 * If the user also has proc_owner and/or proc_zone, we 13450 * extend the scope to include additional visibility and 13451 * destructive power. 13452 */ 13453 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13454 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13455 state->dts_cred.dcr_visible |= 13456 DTRACE_CRV_ALLPROC; 13457 13458 state->dts_cred.dcr_action |= 13459 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13460 } 13461 13462 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13463 state->dts_cred.dcr_visible |= 13464 DTRACE_CRV_ALLZONE; 13465 13466 state->dts_cred.dcr_action |= 13467 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13468 } 13469 13470 /* 13471 * If we have all privs in whatever zone this is, 13472 * we can do destructive things to processes which 13473 * have altered credentials. 13474 */ 13475 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13476 cr->cr_zone->zone_privset)) { 13477 state->dts_cred.dcr_action |= 13478 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13479 } 13480 } 13481 13482 /* 13483 * Holding the dtrace_kernel privilege also implies that 13484 * the user has the dtrace_user privilege from a visibility 13485 * perspective. But without further privileges, some 13486 * destructive actions are not available. 13487 */ 13488 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13489 /* 13490 * Make all probes in all zones visible. However, 13491 * this doesn't mean that all actions become available 13492 * to all zones. 13493 */ 13494 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13495 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13496 13497 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13498 DTRACE_CRA_PROC; 13499 /* 13500 * Holding proc_owner means that destructive actions 13501 * for *this* zone are allowed. 13502 */ 13503 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13504 state->dts_cred.dcr_action |= 13505 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13506 13507 /* 13508 * Holding proc_zone means that destructive actions 13509 * for this user/group ID in all zones is allowed. 13510 */ 13511 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13512 state->dts_cred.dcr_action |= 13513 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13514 13515 /* 13516 * If we have all privs in whatever zone this is, 13517 * we can do destructive things to processes which 13518 * have altered credentials. 13519 */ 13520 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13521 cr->cr_zone->zone_privset)) { 13522 state->dts_cred.dcr_action |= 13523 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13524 } 13525 } 13526 13527 /* 13528 * Holding the dtrace_proc privilege gives control over fasttrap 13529 * and pid providers. We need to grant wider destructive 13530 * privileges in the event that the user has proc_owner and/or 13531 * proc_zone. 13532 */ 13533 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13534 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13535 state->dts_cred.dcr_action |= 13536 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13537 13538 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13539 state->dts_cred.dcr_action |= 13540 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13541 } 13542 } 13543 13544 return (state); 13545 } 13546 13547 static int 13548 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13549 { 13550 dtrace_optval_t *opt = state->dts_options, size; 13551 processorid_t cpu; 13552 int flags = 0, rval, factor, divisor = 1; 13553 13554 ASSERT(MUTEX_HELD(&dtrace_lock)); 13555 ASSERT(MUTEX_HELD(&cpu_lock)); 13556 ASSERT(which < DTRACEOPT_MAX); 13557 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13558 (state == dtrace_anon.dta_state && 13559 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13560 13561 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13562 return (0); 13563 13564 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13565 cpu = opt[DTRACEOPT_CPU]; 13566 13567 if (which == DTRACEOPT_SPECSIZE) 13568 flags |= DTRACEBUF_NOSWITCH; 13569 13570 if (which == DTRACEOPT_BUFSIZE) { 13571 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13572 flags |= DTRACEBUF_RING; 13573 13574 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13575 flags |= DTRACEBUF_FILL; 13576 13577 if (state != dtrace_anon.dta_state || 13578 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13579 flags |= DTRACEBUF_INACTIVE; 13580 } 13581 13582 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13583 /* 13584 * The size must be 8-byte aligned. If the size is not 8-byte 13585 * aligned, drop it down by the difference. 13586 */ 13587 if (size & (sizeof (uint64_t) - 1)) 13588 size -= size & (sizeof (uint64_t) - 1); 13589 13590 if (size < state->dts_reserve) { 13591 /* 13592 * Buffers always must be large enough to accommodate 13593 * their prereserved space. We return E2BIG instead 13594 * of ENOMEM in this case to allow for user-level 13595 * software to differentiate the cases. 13596 */ 13597 return (E2BIG); 13598 } 13599 13600 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13601 13602 if (rval != ENOMEM) { 13603 opt[which] = size; 13604 return (rval); 13605 } 13606 13607 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13608 return (rval); 13609 13610 for (divisor = 2; divisor < factor; divisor <<= 1) 13611 continue; 13612 } 13613 13614 return (ENOMEM); 13615 } 13616 13617 static int 13618 dtrace_state_buffers(dtrace_state_t *state) 13619 { 13620 dtrace_speculation_t *spec = state->dts_speculations; 13621 int rval, i; 13622 13623 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13624 DTRACEOPT_BUFSIZE)) != 0) 13625 return (rval); 13626 13627 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13628 DTRACEOPT_AGGSIZE)) != 0) 13629 return (rval); 13630 13631 for (i = 0; i < state->dts_nspeculations; i++) { 13632 if ((rval = dtrace_state_buffer(state, 13633 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13634 return (rval); 13635 } 13636 13637 return (0); 13638 } 13639 13640 static void 13641 dtrace_state_prereserve(dtrace_state_t *state) 13642 { 13643 dtrace_ecb_t *ecb; 13644 dtrace_probe_t *probe; 13645 13646 state->dts_reserve = 0; 13647 13648 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13649 return; 13650 13651 /* 13652 * If our buffer policy is a "fill" buffer policy, we need to set the 13653 * prereserved space to be the space required by the END probes. 13654 */ 13655 probe = dtrace_probes[dtrace_probeid_end - 1]; 13656 ASSERT(probe != NULL); 13657 13658 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13659 if (ecb->dte_state != state) 13660 continue; 13661 13662 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13663 } 13664 } 13665 13666 static int 13667 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13668 { 13669 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13670 dtrace_speculation_t *spec; 13671 dtrace_buffer_t *buf; 13672 cyc_handler_t hdlr; 13673 cyc_time_t when; 13674 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13675 dtrace_icookie_t cookie; 13676 13677 mutex_enter(&cpu_lock); 13678 mutex_enter(&dtrace_lock); 13679 13680 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13681 rval = EBUSY; 13682 goto out; 13683 } 13684 13685 /* 13686 * Before we can perform any checks, we must prime all of the 13687 * retained enablings that correspond to this state. 13688 */ 13689 dtrace_enabling_prime(state); 13690 13691 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13692 rval = EACCES; 13693 goto out; 13694 } 13695 13696 dtrace_state_prereserve(state); 13697 13698 /* 13699 * Now we want to do is try to allocate our speculations. 13700 * We do not automatically resize the number of speculations; if 13701 * this fails, we will fail the operation. 13702 */ 13703 nspec = opt[DTRACEOPT_NSPEC]; 13704 ASSERT(nspec != DTRACEOPT_UNSET); 13705 13706 if (nspec > INT_MAX) { 13707 rval = ENOMEM; 13708 goto out; 13709 } 13710 13711 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13712 KM_NOSLEEP | KM_NORMALPRI); 13713 13714 if (spec == NULL) { 13715 rval = ENOMEM; 13716 goto out; 13717 } 13718 13719 state->dts_speculations = spec; 13720 state->dts_nspeculations = (int)nspec; 13721 13722 for (i = 0; i < nspec; i++) { 13723 if ((buf = kmem_zalloc(bufsize, 13724 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13725 rval = ENOMEM; 13726 goto err; 13727 } 13728 13729 spec[i].dtsp_buffer = buf; 13730 } 13731 13732 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13733 if (dtrace_anon.dta_state == NULL) { 13734 rval = ENOENT; 13735 goto out; 13736 } 13737 13738 if (state->dts_necbs != 0) { 13739 rval = EALREADY; 13740 goto out; 13741 } 13742 13743 state->dts_anon = dtrace_anon_grab(); 13744 ASSERT(state->dts_anon != NULL); 13745 state = state->dts_anon; 13746 13747 /* 13748 * We want "grabanon" to be set in the grabbed state, so we'll 13749 * copy that option value from the grabbing state into the 13750 * grabbed state. 13751 */ 13752 state->dts_options[DTRACEOPT_GRABANON] = 13753 opt[DTRACEOPT_GRABANON]; 13754 13755 *cpu = dtrace_anon.dta_beganon; 13756 13757 /* 13758 * If the anonymous state is active (as it almost certainly 13759 * is if the anonymous enabling ultimately matched anything), 13760 * we don't allow any further option processing -- but we 13761 * don't return failure. 13762 */ 13763 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13764 goto out; 13765 } 13766 13767 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13768 opt[DTRACEOPT_AGGSIZE] != 0) { 13769 if (state->dts_aggregations == NULL) { 13770 /* 13771 * We're not going to create an aggregation buffer 13772 * because we don't have any ECBs that contain 13773 * aggregations -- set this option to 0. 13774 */ 13775 opt[DTRACEOPT_AGGSIZE] = 0; 13776 } else { 13777 /* 13778 * If we have an aggregation buffer, we must also have 13779 * a buffer to use as scratch. 13780 */ 13781 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13782 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13783 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13784 } 13785 } 13786 } 13787 13788 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13789 opt[DTRACEOPT_SPECSIZE] != 0) { 13790 if (!state->dts_speculates) { 13791 /* 13792 * We're not going to create speculation buffers 13793 * because we don't have any ECBs that actually 13794 * speculate -- set the speculation size to 0. 13795 */ 13796 opt[DTRACEOPT_SPECSIZE] = 0; 13797 } 13798 } 13799 13800 /* 13801 * The bare minimum size for any buffer that we're actually going to 13802 * do anything to is sizeof (uint64_t). 13803 */ 13804 sz = sizeof (uint64_t); 13805 13806 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13807 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13808 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13809 /* 13810 * A buffer size has been explicitly set to 0 (or to a size 13811 * that will be adjusted to 0) and we need the space -- we 13812 * need to return failure. We return ENOSPC to differentiate 13813 * it from failing to allocate a buffer due to failure to meet 13814 * the reserve (for which we return E2BIG). 13815 */ 13816 rval = ENOSPC; 13817 goto out; 13818 } 13819 13820 if ((rval = dtrace_state_buffers(state)) != 0) 13821 goto err; 13822 13823 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13824 sz = dtrace_dstate_defsize; 13825 13826 do { 13827 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13828 13829 if (rval == 0) 13830 break; 13831 13832 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13833 goto err; 13834 } while (sz >>= 1); 13835 13836 opt[DTRACEOPT_DYNVARSIZE] = sz; 13837 13838 if (rval != 0) 13839 goto err; 13840 13841 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13842 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13843 13844 if (opt[DTRACEOPT_CLEANRATE] == 0) 13845 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13846 13847 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13848 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13849 13850 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13851 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13852 13853 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13854 hdlr.cyh_arg = state; 13855 hdlr.cyh_level = CY_LOW_LEVEL; 13856 13857 when.cyt_when = 0; 13858 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13859 13860 state->dts_cleaner = cyclic_add(&hdlr, &when); 13861 13862 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13863 hdlr.cyh_arg = state; 13864 hdlr.cyh_level = CY_LOW_LEVEL; 13865 13866 when.cyt_when = 0; 13867 when.cyt_interval = dtrace_deadman_interval; 13868 13869 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13870 state->dts_deadman = cyclic_add(&hdlr, &when); 13871 13872 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13873 13874 if (state->dts_getf != 0 && 13875 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13876 /* 13877 * We don't have kernel privs but we have at least one call 13878 * to getf(); we need to bump our zone's count, and (if 13879 * this is the first enabling to have an unprivileged call 13880 * to getf()) we need to hook into closef(). 13881 */ 13882 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 13883 13884 if (dtrace_getf++ == 0) { 13885 ASSERT(dtrace_closef == NULL); 13886 dtrace_closef = dtrace_getf_barrier; 13887 } 13888 } 13889 13890 /* 13891 * Now it's time to actually fire the BEGIN probe. We need to disable 13892 * interrupts here both to record the CPU on which we fired the BEGIN 13893 * probe (the data from this CPU will be processed first at user 13894 * level) and to manually activate the buffer for this CPU. 13895 */ 13896 cookie = dtrace_interrupt_disable(); 13897 *cpu = CPU->cpu_id; 13898 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13899 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13900 13901 dtrace_probe(dtrace_probeid_begin, 13902 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13903 dtrace_interrupt_enable(cookie); 13904 /* 13905 * We may have had an exit action from a BEGIN probe; only change our 13906 * state to ACTIVE if we're still in WARMUP. 13907 */ 13908 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13909 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13910 13911 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13912 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13913 13914 /* 13915 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13916 * want each CPU to transition its principal buffer out of the 13917 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13918 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13919 * atomically transition from processing none of a state's ECBs to 13920 * processing all of them. 13921 */ 13922 dtrace_xcall(DTRACE_CPUALL, 13923 (dtrace_xcall_t)dtrace_buffer_activate, state); 13924 goto out; 13925 13926 err: 13927 dtrace_buffer_free(state->dts_buffer); 13928 dtrace_buffer_free(state->dts_aggbuffer); 13929 13930 if ((nspec = state->dts_nspeculations) == 0) { 13931 ASSERT(state->dts_speculations == NULL); 13932 goto out; 13933 } 13934 13935 spec = state->dts_speculations; 13936 ASSERT(spec != NULL); 13937 13938 for (i = 0; i < state->dts_nspeculations; i++) { 13939 if ((buf = spec[i].dtsp_buffer) == NULL) 13940 break; 13941 13942 dtrace_buffer_free(buf); 13943 kmem_free(buf, bufsize); 13944 } 13945 13946 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13947 state->dts_nspeculations = 0; 13948 state->dts_speculations = NULL; 13949 13950 out: 13951 mutex_exit(&dtrace_lock); 13952 mutex_exit(&cpu_lock); 13953 13954 return (rval); 13955 } 13956 13957 static int 13958 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13959 { 13960 dtrace_icookie_t cookie; 13961 13962 ASSERT(MUTEX_HELD(&dtrace_lock)); 13963 13964 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13965 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13966 return (EINVAL); 13967 13968 /* 13969 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13970 * to be sure that every CPU has seen it. See below for the details 13971 * on why this is done. 13972 */ 13973 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13974 dtrace_sync(); 13975 13976 /* 13977 * By this point, it is impossible for any CPU to be still processing 13978 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13979 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13980 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13981 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13982 * iff we're in the END probe. 13983 */ 13984 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13985 dtrace_sync(); 13986 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13987 13988 /* 13989 * Finally, we can release the reserve and call the END probe. We 13990 * disable interrupts across calling the END probe to allow us to 13991 * return the CPU on which we actually called the END probe. This 13992 * allows user-land to be sure that this CPU's principal buffer is 13993 * processed last. 13994 */ 13995 state->dts_reserve = 0; 13996 13997 cookie = dtrace_interrupt_disable(); 13998 *cpu = CPU->cpu_id; 13999 dtrace_probe(dtrace_probeid_end, 14000 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14001 dtrace_interrupt_enable(cookie); 14002 14003 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14004 dtrace_sync(); 14005 14006 if (state->dts_getf != 0 && 14007 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14008 /* 14009 * We don't have kernel privs but we have at least one call 14010 * to getf(); we need to lower our zone's count, and (if 14011 * this is the last enabling to have an unprivileged call 14012 * to getf()) we need to clear the closef() hook. 14013 */ 14014 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14015 ASSERT(dtrace_closef == dtrace_getf_barrier); 14016 ASSERT(dtrace_getf > 0); 14017 14018 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14019 14020 if (--dtrace_getf == 0) 14021 dtrace_closef = NULL; 14022 } 14023 14024 return (0); 14025 } 14026 14027 static int 14028 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14029 dtrace_optval_t val) 14030 { 14031 ASSERT(MUTEX_HELD(&dtrace_lock)); 14032 14033 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14034 return (EBUSY); 14035 14036 if (option >= DTRACEOPT_MAX) 14037 return (EINVAL); 14038 14039 if (option != DTRACEOPT_CPU && val < 0) 14040 return (EINVAL); 14041 14042 switch (option) { 14043 case DTRACEOPT_DESTRUCTIVE: 14044 if (dtrace_destructive_disallow) 14045 return (EACCES); 14046 14047 state->dts_cred.dcr_destructive = 1; 14048 break; 14049 14050 case DTRACEOPT_BUFSIZE: 14051 case DTRACEOPT_DYNVARSIZE: 14052 case DTRACEOPT_AGGSIZE: 14053 case DTRACEOPT_SPECSIZE: 14054 case DTRACEOPT_STRSIZE: 14055 if (val < 0) 14056 return (EINVAL); 14057 14058 if (val >= LONG_MAX) { 14059 /* 14060 * If this is an otherwise negative value, set it to 14061 * the highest multiple of 128m less than LONG_MAX. 14062 * Technically, we're adjusting the size without 14063 * regard to the buffer resizing policy, but in fact, 14064 * this has no effect -- if we set the buffer size to 14065 * ~LONG_MAX and the buffer policy is ultimately set to 14066 * be "manual", the buffer allocation is guaranteed to 14067 * fail, if only because the allocation requires two 14068 * buffers. (We set the the size to the highest 14069 * multiple of 128m because it ensures that the size 14070 * will remain a multiple of a megabyte when 14071 * repeatedly halved -- all the way down to 15m.) 14072 */ 14073 val = LONG_MAX - (1 << 27) + 1; 14074 } 14075 } 14076 14077 state->dts_options[option] = val; 14078 14079 return (0); 14080 } 14081 14082 static void 14083 dtrace_state_destroy(dtrace_state_t *state) 14084 { 14085 dtrace_ecb_t *ecb; 14086 dtrace_vstate_t *vstate = &state->dts_vstate; 14087 minor_t minor = getminor(state->dts_dev); 14088 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14089 dtrace_speculation_t *spec = state->dts_speculations; 14090 int nspec = state->dts_nspeculations; 14091 uint32_t match; 14092 14093 ASSERT(MUTEX_HELD(&dtrace_lock)); 14094 ASSERT(MUTEX_HELD(&cpu_lock)); 14095 14096 /* 14097 * First, retract any retained enablings for this state. 14098 */ 14099 dtrace_enabling_retract(state); 14100 ASSERT(state->dts_nretained == 0); 14101 14102 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14103 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14104 /* 14105 * We have managed to come into dtrace_state_destroy() on a 14106 * hot enabling -- almost certainly because of a disorderly 14107 * shutdown of a consumer. (That is, a consumer that is 14108 * exiting without having called dtrace_stop().) In this case, 14109 * we're going to set our activity to be KILLED, and then 14110 * issue a sync to be sure that everyone is out of probe 14111 * context before we start blowing away ECBs. 14112 */ 14113 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14114 dtrace_sync(); 14115 } 14116 14117 /* 14118 * Release the credential hold we took in dtrace_state_create(). 14119 */ 14120 if (state->dts_cred.dcr_cred != NULL) 14121 crfree(state->dts_cred.dcr_cred); 14122 14123 /* 14124 * Now we can safely disable and destroy any enabled probes. Because 14125 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14126 * (especially if they're all enabled), we take two passes through the 14127 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14128 * in the second we disable whatever is left over. 14129 */ 14130 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14131 for (i = 0; i < state->dts_necbs; i++) { 14132 if ((ecb = state->dts_ecbs[i]) == NULL) 14133 continue; 14134 14135 if (match && ecb->dte_probe != NULL) { 14136 dtrace_probe_t *probe = ecb->dte_probe; 14137 dtrace_provider_t *prov = probe->dtpr_provider; 14138 14139 if (!(prov->dtpv_priv.dtpp_flags & match)) 14140 continue; 14141 } 14142 14143 dtrace_ecb_disable(ecb); 14144 dtrace_ecb_destroy(ecb); 14145 } 14146 14147 if (!match) 14148 break; 14149 } 14150 14151 /* 14152 * Before we free the buffers, perform one more sync to assure that 14153 * every CPU is out of probe context. 14154 */ 14155 dtrace_sync(); 14156 14157 dtrace_buffer_free(state->dts_buffer); 14158 dtrace_buffer_free(state->dts_aggbuffer); 14159 14160 for (i = 0; i < nspec; i++) 14161 dtrace_buffer_free(spec[i].dtsp_buffer); 14162 14163 if (state->dts_cleaner != CYCLIC_NONE) 14164 cyclic_remove(state->dts_cleaner); 14165 14166 if (state->dts_deadman != CYCLIC_NONE) 14167 cyclic_remove(state->dts_deadman); 14168 14169 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14170 dtrace_vstate_fini(vstate); 14171 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14172 14173 if (state->dts_aggregations != NULL) { 14174 #ifdef DEBUG 14175 for (i = 0; i < state->dts_naggregations; i++) 14176 ASSERT(state->dts_aggregations[i] == NULL); 14177 #endif 14178 ASSERT(state->dts_naggregations > 0); 14179 kmem_free(state->dts_aggregations, 14180 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14181 } 14182 14183 kmem_free(state->dts_buffer, bufsize); 14184 kmem_free(state->dts_aggbuffer, bufsize); 14185 14186 for (i = 0; i < nspec; i++) 14187 kmem_free(spec[i].dtsp_buffer, bufsize); 14188 14189 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14190 14191 dtrace_format_destroy(state); 14192 14193 vmem_destroy(state->dts_aggid_arena); 14194 ddi_soft_state_free(dtrace_softstate, minor); 14195 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14196 } 14197 14198 /* 14199 * DTrace Anonymous Enabling Functions 14200 */ 14201 static dtrace_state_t * 14202 dtrace_anon_grab(void) 14203 { 14204 dtrace_state_t *state; 14205 14206 ASSERT(MUTEX_HELD(&dtrace_lock)); 14207 14208 if ((state = dtrace_anon.dta_state) == NULL) { 14209 ASSERT(dtrace_anon.dta_enabling == NULL); 14210 return (NULL); 14211 } 14212 14213 ASSERT(dtrace_anon.dta_enabling != NULL); 14214 ASSERT(dtrace_retained != NULL); 14215 14216 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14217 dtrace_anon.dta_enabling = NULL; 14218 dtrace_anon.dta_state = NULL; 14219 14220 return (state); 14221 } 14222 14223 static void 14224 dtrace_anon_property(void) 14225 { 14226 int i, rv; 14227 dtrace_state_t *state; 14228 dof_hdr_t *dof; 14229 char c[32]; /* enough for "dof-data-" + digits */ 14230 14231 ASSERT(MUTEX_HELD(&dtrace_lock)); 14232 ASSERT(MUTEX_HELD(&cpu_lock)); 14233 14234 for (i = 0; ; i++) { 14235 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14236 14237 dtrace_err_verbose = 1; 14238 14239 if ((dof = dtrace_dof_property(c)) == NULL) { 14240 dtrace_err_verbose = 0; 14241 break; 14242 } 14243 14244 /* 14245 * We want to create anonymous state, so we need to transition 14246 * the kernel debugger to indicate that DTrace is active. If 14247 * this fails (e.g. because the debugger has modified text in 14248 * some way), we won't continue with the processing. 14249 */ 14250 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14251 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14252 "enabling ignored."); 14253 dtrace_dof_destroy(dof); 14254 break; 14255 } 14256 14257 /* 14258 * If we haven't allocated an anonymous state, we'll do so now. 14259 */ 14260 if ((state = dtrace_anon.dta_state) == NULL) { 14261 state = dtrace_state_create(NULL, NULL); 14262 dtrace_anon.dta_state = state; 14263 14264 if (state == NULL) { 14265 /* 14266 * This basically shouldn't happen: the only 14267 * failure mode from dtrace_state_create() is a 14268 * failure of ddi_soft_state_zalloc() that 14269 * itself should never happen. Still, the 14270 * interface allows for a failure mode, and 14271 * we want to fail as gracefully as possible: 14272 * we'll emit an error message and cease 14273 * processing anonymous state in this case. 14274 */ 14275 cmn_err(CE_WARN, "failed to create " 14276 "anonymous state"); 14277 dtrace_dof_destroy(dof); 14278 break; 14279 } 14280 } 14281 14282 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14283 &dtrace_anon.dta_enabling, 0, B_TRUE); 14284 14285 if (rv == 0) 14286 rv = dtrace_dof_options(dof, state); 14287 14288 dtrace_err_verbose = 0; 14289 dtrace_dof_destroy(dof); 14290 14291 if (rv != 0) { 14292 /* 14293 * This is malformed DOF; chuck any anonymous state 14294 * that we created. 14295 */ 14296 ASSERT(dtrace_anon.dta_enabling == NULL); 14297 dtrace_state_destroy(state); 14298 dtrace_anon.dta_state = NULL; 14299 break; 14300 } 14301 14302 ASSERT(dtrace_anon.dta_enabling != NULL); 14303 } 14304 14305 if (dtrace_anon.dta_enabling != NULL) { 14306 int rval; 14307 14308 /* 14309 * dtrace_enabling_retain() can only fail because we are 14310 * trying to retain more enablings than are allowed -- but 14311 * we only have one anonymous enabling, and we are guaranteed 14312 * to be allowed at least one retained enabling; we assert 14313 * that dtrace_enabling_retain() returns success. 14314 */ 14315 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14316 ASSERT(rval == 0); 14317 14318 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14319 } 14320 } 14321 14322 /* 14323 * DTrace Helper Functions 14324 */ 14325 static void 14326 dtrace_helper_trace(dtrace_helper_action_t *helper, 14327 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14328 { 14329 uint32_t size, next, nnext, i; 14330 dtrace_helptrace_t *ent, *buffer; 14331 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14332 14333 if ((buffer = dtrace_helptrace_buffer) == NULL) 14334 return; 14335 14336 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14337 14338 /* 14339 * What would a tracing framework be without its own tracing 14340 * framework? (Well, a hell of a lot simpler, for starters...) 14341 */ 14342 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14343 sizeof (uint64_t) - sizeof (uint64_t); 14344 14345 /* 14346 * Iterate until we can allocate a slot in the trace buffer. 14347 */ 14348 do { 14349 next = dtrace_helptrace_next; 14350 14351 if (next + size < dtrace_helptrace_bufsize) { 14352 nnext = next + size; 14353 } else { 14354 nnext = size; 14355 } 14356 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14357 14358 /* 14359 * We have our slot; fill it in. 14360 */ 14361 if (nnext == size) { 14362 dtrace_helptrace_wrapped++; 14363 next = 0; 14364 } 14365 14366 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14367 ent->dtht_helper = helper; 14368 ent->dtht_where = where; 14369 ent->dtht_nlocals = vstate->dtvs_nlocals; 14370 14371 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14372 mstate->dtms_fltoffs : -1; 14373 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14374 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14375 14376 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14377 dtrace_statvar_t *svar; 14378 14379 if ((svar = vstate->dtvs_locals[i]) == NULL) 14380 continue; 14381 14382 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14383 ent->dtht_locals[i] = 14384 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14385 } 14386 } 14387 14388 static uint64_t 14389 dtrace_helper(int which, dtrace_mstate_t *mstate, 14390 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14391 { 14392 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14393 uint64_t sarg0 = mstate->dtms_arg[0]; 14394 uint64_t sarg1 = mstate->dtms_arg[1]; 14395 uint64_t rval; 14396 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14397 dtrace_helper_action_t *helper; 14398 dtrace_vstate_t *vstate; 14399 dtrace_difo_t *pred; 14400 int i, trace = dtrace_helptrace_buffer != NULL; 14401 14402 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14403 14404 if (helpers == NULL) 14405 return (0); 14406 14407 if ((helper = helpers->dthps_actions[which]) == NULL) 14408 return (0); 14409 14410 vstate = &helpers->dthps_vstate; 14411 mstate->dtms_arg[0] = arg0; 14412 mstate->dtms_arg[1] = arg1; 14413 14414 /* 14415 * Now iterate over each helper. If its predicate evaluates to 'true', 14416 * we'll call the corresponding actions. Note that the below calls 14417 * to dtrace_dif_emulate() may set faults in machine state. This is 14418 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14419 * the stored DIF offset with its own (which is the desired behavior). 14420 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14421 * from machine state; this is okay, too. 14422 */ 14423 for (; helper != NULL; helper = helper->dtha_next) { 14424 if ((pred = helper->dtha_predicate) != NULL) { 14425 if (trace) 14426 dtrace_helper_trace(helper, mstate, vstate, 0); 14427 14428 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14429 goto next; 14430 14431 if (*flags & CPU_DTRACE_FAULT) 14432 goto err; 14433 } 14434 14435 for (i = 0; i < helper->dtha_nactions; i++) { 14436 if (trace) 14437 dtrace_helper_trace(helper, 14438 mstate, vstate, i + 1); 14439 14440 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14441 mstate, vstate, state); 14442 14443 if (*flags & CPU_DTRACE_FAULT) 14444 goto err; 14445 } 14446 14447 next: 14448 if (trace) 14449 dtrace_helper_trace(helper, mstate, vstate, 14450 DTRACE_HELPTRACE_NEXT); 14451 } 14452 14453 if (trace) 14454 dtrace_helper_trace(helper, mstate, vstate, 14455 DTRACE_HELPTRACE_DONE); 14456 14457 /* 14458 * Restore the arg0 that we saved upon entry. 14459 */ 14460 mstate->dtms_arg[0] = sarg0; 14461 mstate->dtms_arg[1] = sarg1; 14462 14463 return (rval); 14464 14465 err: 14466 if (trace) 14467 dtrace_helper_trace(helper, mstate, vstate, 14468 DTRACE_HELPTRACE_ERR); 14469 14470 /* 14471 * Restore the arg0 that we saved upon entry. 14472 */ 14473 mstate->dtms_arg[0] = sarg0; 14474 mstate->dtms_arg[1] = sarg1; 14475 14476 return (NULL); 14477 } 14478 14479 static void 14480 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14481 dtrace_vstate_t *vstate) 14482 { 14483 int i; 14484 14485 if (helper->dtha_predicate != NULL) 14486 dtrace_difo_release(helper->dtha_predicate, vstate); 14487 14488 for (i = 0; i < helper->dtha_nactions; i++) { 14489 ASSERT(helper->dtha_actions[i] != NULL); 14490 dtrace_difo_release(helper->dtha_actions[i], vstate); 14491 } 14492 14493 kmem_free(helper->dtha_actions, 14494 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14495 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14496 } 14497 14498 static int 14499 dtrace_helper_destroygen(int gen) 14500 { 14501 proc_t *p = curproc; 14502 dtrace_helpers_t *help = p->p_dtrace_helpers; 14503 dtrace_vstate_t *vstate; 14504 int i; 14505 14506 ASSERT(MUTEX_HELD(&dtrace_lock)); 14507 14508 if (help == NULL || gen > help->dthps_generation) 14509 return (EINVAL); 14510 14511 vstate = &help->dthps_vstate; 14512 14513 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14514 dtrace_helper_action_t *last = NULL, *h, *next; 14515 14516 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14517 next = h->dtha_next; 14518 14519 if (h->dtha_generation == gen) { 14520 if (last != NULL) { 14521 last->dtha_next = next; 14522 } else { 14523 help->dthps_actions[i] = next; 14524 } 14525 14526 dtrace_helper_action_destroy(h, vstate); 14527 } else { 14528 last = h; 14529 } 14530 } 14531 } 14532 14533 /* 14534 * Interate until we've cleared out all helper providers with the 14535 * given generation number. 14536 */ 14537 for (;;) { 14538 dtrace_helper_provider_t *prov; 14539 14540 /* 14541 * Look for a helper provider with the right generation. We 14542 * have to start back at the beginning of the list each time 14543 * because we drop dtrace_lock. It's unlikely that we'll make 14544 * more than two passes. 14545 */ 14546 for (i = 0; i < help->dthps_nprovs; i++) { 14547 prov = help->dthps_provs[i]; 14548 14549 if (prov->dthp_generation == gen) 14550 break; 14551 } 14552 14553 /* 14554 * If there were no matches, we're done. 14555 */ 14556 if (i == help->dthps_nprovs) 14557 break; 14558 14559 /* 14560 * Move the last helper provider into this slot. 14561 */ 14562 help->dthps_nprovs--; 14563 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14564 help->dthps_provs[help->dthps_nprovs] = NULL; 14565 14566 mutex_exit(&dtrace_lock); 14567 14568 /* 14569 * If we have a meta provider, remove this helper provider. 14570 */ 14571 mutex_enter(&dtrace_meta_lock); 14572 if (dtrace_meta_pid != NULL) { 14573 ASSERT(dtrace_deferred_pid == NULL); 14574 dtrace_helper_provider_remove(&prov->dthp_prov, 14575 p->p_pid); 14576 } 14577 mutex_exit(&dtrace_meta_lock); 14578 14579 dtrace_helper_provider_destroy(prov); 14580 14581 mutex_enter(&dtrace_lock); 14582 } 14583 14584 return (0); 14585 } 14586 14587 static int 14588 dtrace_helper_validate(dtrace_helper_action_t *helper) 14589 { 14590 int err = 0, i; 14591 dtrace_difo_t *dp; 14592 14593 if ((dp = helper->dtha_predicate) != NULL) 14594 err += dtrace_difo_validate_helper(dp); 14595 14596 for (i = 0; i < helper->dtha_nactions; i++) 14597 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14598 14599 return (err == 0); 14600 } 14601 14602 static int 14603 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14604 { 14605 dtrace_helpers_t *help; 14606 dtrace_helper_action_t *helper, *last; 14607 dtrace_actdesc_t *act; 14608 dtrace_vstate_t *vstate; 14609 dtrace_predicate_t *pred; 14610 int count = 0, nactions = 0, i; 14611 14612 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14613 return (EINVAL); 14614 14615 help = curproc->p_dtrace_helpers; 14616 last = help->dthps_actions[which]; 14617 vstate = &help->dthps_vstate; 14618 14619 for (count = 0; last != NULL; last = last->dtha_next) { 14620 count++; 14621 if (last->dtha_next == NULL) 14622 break; 14623 } 14624 14625 /* 14626 * If we already have dtrace_helper_actions_max helper actions for this 14627 * helper action type, we'll refuse to add a new one. 14628 */ 14629 if (count >= dtrace_helper_actions_max) 14630 return (ENOSPC); 14631 14632 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14633 helper->dtha_generation = help->dthps_generation; 14634 14635 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14636 ASSERT(pred->dtp_difo != NULL); 14637 dtrace_difo_hold(pred->dtp_difo); 14638 helper->dtha_predicate = pred->dtp_difo; 14639 } 14640 14641 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14642 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14643 goto err; 14644 14645 if (act->dtad_difo == NULL) 14646 goto err; 14647 14648 nactions++; 14649 } 14650 14651 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14652 (helper->dtha_nactions = nactions), KM_SLEEP); 14653 14654 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14655 dtrace_difo_hold(act->dtad_difo); 14656 helper->dtha_actions[i++] = act->dtad_difo; 14657 } 14658 14659 if (!dtrace_helper_validate(helper)) 14660 goto err; 14661 14662 if (last == NULL) { 14663 help->dthps_actions[which] = helper; 14664 } else { 14665 last->dtha_next = helper; 14666 } 14667 14668 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14669 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14670 dtrace_helptrace_next = 0; 14671 } 14672 14673 return (0); 14674 err: 14675 dtrace_helper_action_destroy(helper, vstate); 14676 return (EINVAL); 14677 } 14678 14679 static void 14680 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14681 dof_helper_t *dofhp) 14682 { 14683 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14684 14685 mutex_enter(&dtrace_meta_lock); 14686 mutex_enter(&dtrace_lock); 14687 14688 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14689 /* 14690 * If the dtrace module is loaded but not attached, or if 14691 * there aren't isn't a meta provider registered to deal with 14692 * these provider descriptions, we need to postpone creating 14693 * the actual providers until later. 14694 */ 14695 14696 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14697 dtrace_deferred_pid != help) { 14698 help->dthps_deferred = 1; 14699 help->dthps_pid = p->p_pid; 14700 help->dthps_next = dtrace_deferred_pid; 14701 help->dthps_prev = NULL; 14702 if (dtrace_deferred_pid != NULL) 14703 dtrace_deferred_pid->dthps_prev = help; 14704 dtrace_deferred_pid = help; 14705 } 14706 14707 mutex_exit(&dtrace_lock); 14708 14709 } else if (dofhp != NULL) { 14710 /* 14711 * If the dtrace module is loaded and we have a particular 14712 * helper provider description, pass that off to the 14713 * meta provider. 14714 */ 14715 14716 mutex_exit(&dtrace_lock); 14717 14718 dtrace_helper_provide(dofhp, p->p_pid); 14719 14720 } else { 14721 /* 14722 * Otherwise, just pass all the helper provider descriptions 14723 * off to the meta provider. 14724 */ 14725 14726 int i; 14727 mutex_exit(&dtrace_lock); 14728 14729 for (i = 0; i < help->dthps_nprovs; i++) { 14730 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14731 p->p_pid); 14732 } 14733 } 14734 14735 mutex_exit(&dtrace_meta_lock); 14736 } 14737 14738 static int 14739 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14740 { 14741 dtrace_helpers_t *help; 14742 dtrace_helper_provider_t *hprov, **tmp_provs; 14743 uint_t tmp_maxprovs, i; 14744 14745 ASSERT(MUTEX_HELD(&dtrace_lock)); 14746 14747 help = curproc->p_dtrace_helpers; 14748 ASSERT(help != NULL); 14749 14750 /* 14751 * If we already have dtrace_helper_providers_max helper providers, 14752 * we're refuse to add a new one. 14753 */ 14754 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14755 return (ENOSPC); 14756 14757 /* 14758 * Check to make sure this isn't a duplicate. 14759 */ 14760 for (i = 0; i < help->dthps_nprovs; i++) { 14761 if (dofhp->dofhp_dof == 14762 help->dthps_provs[i]->dthp_prov.dofhp_dof) 14763 return (EALREADY); 14764 } 14765 14766 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14767 hprov->dthp_prov = *dofhp; 14768 hprov->dthp_ref = 1; 14769 hprov->dthp_generation = gen; 14770 14771 /* 14772 * Allocate a bigger table for helper providers if it's already full. 14773 */ 14774 if (help->dthps_maxprovs == help->dthps_nprovs) { 14775 tmp_maxprovs = help->dthps_maxprovs; 14776 tmp_provs = help->dthps_provs; 14777 14778 if (help->dthps_maxprovs == 0) 14779 help->dthps_maxprovs = 2; 14780 else 14781 help->dthps_maxprovs *= 2; 14782 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14783 help->dthps_maxprovs = dtrace_helper_providers_max; 14784 14785 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14786 14787 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14788 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14789 14790 if (tmp_provs != NULL) { 14791 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14792 sizeof (dtrace_helper_provider_t *)); 14793 kmem_free(tmp_provs, tmp_maxprovs * 14794 sizeof (dtrace_helper_provider_t *)); 14795 } 14796 } 14797 14798 help->dthps_provs[help->dthps_nprovs] = hprov; 14799 help->dthps_nprovs++; 14800 14801 return (0); 14802 } 14803 14804 static void 14805 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14806 { 14807 mutex_enter(&dtrace_lock); 14808 14809 if (--hprov->dthp_ref == 0) { 14810 dof_hdr_t *dof; 14811 mutex_exit(&dtrace_lock); 14812 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14813 dtrace_dof_destroy(dof); 14814 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14815 } else { 14816 mutex_exit(&dtrace_lock); 14817 } 14818 } 14819 14820 static int 14821 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14822 { 14823 uintptr_t daddr = (uintptr_t)dof; 14824 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14825 dof_provider_t *provider; 14826 dof_probe_t *probe; 14827 uint8_t *arg; 14828 char *strtab, *typestr; 14829 dof_stridx_t typeidx; 14830 size_t typesz; 14831 uint_t nprobes, j, k; 14832 14833 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14834 14835 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14836 dtrace_dof_error(dof, "misaligned section offset"); 14837 return (-1); 14838 } 14839 14840 /* 14841 * The section needs to be large enough to contain the DOF provider 14842 * structure appropriate for the given version. 14843 */ 14844 if (sec->dofs_size < 14845 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14846 offsetof(dof_provider_t, dofpv_prenoffs) : 14847 sizeof (dof_provider_t))) { 14848 dtrace_dof_error(dof, "provider section too small"); 14849 return (-1); 14850 } 14851 14852 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14853 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14854 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14855 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14856 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14857 14858 if (str_sec == NULL || prb_sec == NULL || 14859 arg_sec == NULL || off_sec == NULL) 14860 return (-1); 14861 14862 enoff_sec = NULL; 14863 14864 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14865 provider->dofpv_prenoffs != DOF_SECT_NONE && 14866 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14867 provider->dofpv_prenoffs)) == NULL) 14868 return (-1); 14869 14870 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14871 14872 if (provider->dofpv_name >= str_sec->dofs_size || 14873 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14874 dtrace_dof_error(dof, "invalid provider name"); 14875 return (-1); 14876 } 14877 14878 if (prb_sec->dofs_entsize == 0 || 14879 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14880 dtrace_dof_error(dof, "invalid entry size"); 14881 return (-1); 14882 } 14883 14884 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14885 dtrace_dof_error(dof, "misaligned entry size"); 14886 return (-1); 14887 } 14888 14889 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14890 dtrace_dof_error(dof, "invalid entry size"); 14891 return (-1); 14892 } 14893 14894 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14895 dtrace_dof_error(dof, "misaligned section offset"); 14896 return (-1); 14897 } 14898 14899 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14900 dtrace_dof_error(dof, "invalid entry size"); 14901 return (-1); 14902 } 14903 14904 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14905 14906 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14907 14908 /* 14909 * Take a pass through the probes to check for errors. 14910 */ 14911 for (j = 0; j < nprobes; j++) { 14912 probe = (dof_probe_t *)(uintptr_t)(daddr + 14913 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14914 14915 if (probe->dofpr_func >= str_sec->dofs_size) { 14916 dtrace_dof_error(dof, "invalid function name"); 14917 return (-1); 14918 } 14919 14920 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14921 dtrace_dof_error(dof, "function name too long"); 14922 return (-1); 14923 } 14924 14925 if (probe->dofpr_name >= str_sec->dofs_size || 14926 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14927 dtrace_dof_error(dof, "invalid probe name"); 14928 return (-1); 14929 } 14930 14931 /* 14932 * The offset count must not wrap the index, and the offsets 14933 * must also not overflow the section's data. 14934 */ 14935 if (probe->dofpr_offidx + probe->dofpr_noffs < 14936 probe->dofpr_offidx || 14937 (probe->dofpr_offidx + probe->dofpr_noffs) * 14938 off_sec->dofs_entsize > off_sec->dofs_size) { 14939 dtrace_dof_error(dof, "invalid probe offset"); 14940 return (-1); 14941 } 14942 14943 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14944 /* 14945 * If there's no is-enabled offset section, make sure 14946 * there aren't any is-enabled offsets. Otherwise 14947 * perform the same checks as for probe offsets 14948 * (immediately above). 14949 */ 14950 if (enoff_sec == NULL) { 14951 if (probe->dofpr_enoffidx != 0 || 14952 probe->dofpr_nenoffs != 0) { 14953 dtrace_dof_error(dof, "is-enabled " 14954 "offsets with null section"); 14955 return (-1); 14956 } 14957 } else if (probe->dofpr_enoffidx + 14958 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14959 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14960 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14961 dtrace_dof_error(dof, "invalid is-enabled " 14962 "offset"); 14963 return (-1); 14964 } 14965 14966 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14967 dtrace_dof_error(dof, "zero probe and " 14968 "is-enabled offsets"); 14969 return (-1); 14970 } 14971 } else if (probe->dofpr_noffs == 0) { 14972 dtrace_dof_error(dof, "zero probe offsets"); 14973 return (-1); 14974 } 14975 14976 if (probe->dofpr_argidx + probe->dofpr_xargc < 14977 probe->dofpr_argidx || 14978 (probe->dofpr_argidx + probe->dofpr_xargc) * 14979 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14980 dtrace_dof_error(dof, "invalid args"); 14981 return (-1); 14982 } 14983 14984 typeidx = probe->dofpr_nargv; 14985 typestr = strtab + probe->dofpr_nargv; 14986 for (k = 0; k < probe->dofpr_nargc; k++) { 14987 if (typeidx >= str_sec->dofs_size) { 14988 dtrace_dof_error(dof, "bad " 14989 "native argument type"); 14990 return (-1); 14991 } 14992 14993 typesz = strlen(typestr) + 1; 14994 if (typesz > DTRACE_ARGTYPELEN) { 14995 dtrace_dof_error(dof, "native " 14996 "argument type too long"); 14997 return (-1); 14998 } 14999 typeidx += typesz; 15000 typestr += typesz; 15001 } 15002 15003 typeidx = probe->dofpr_xargv; 15004 typestr = strtab + probe->dofpr_xargv; 15005 for (k = 0; k < probe->dofpr_xargc; k++) { 15006 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15007 dtrace_dof_error(dof, "bad " 15008 "native argument index"); 15009 return (-1); 15010 } 15011 15012 if (typeidx >= str_sec->dofs_size) { 15013 dtrace_dof_error(dof, "bad " 15014 "translated argument type"); 15015 return (-1); 15016 } 15017 15018 typesz = strlen(typestr) + 1; 15019 if (typesz > DTRACE_ARGTYPELEN) { 15020 dtrace_dof_error(dof, "translated argument " 15021 "type too long"); 15022 return (-1); 15023 } 15024 15025 typeidx += typesz; 15026 typestr += typesz; 15027 } 15028 } 15029 15030 return (0); 15031 } 15032 15033 static int 15034 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15035 { 15036 dtrace_helpers_t *help; 15037 dtrace_vstate_t *vstate; 15038 dtrace_enabling_t *enab = NULL; 15039 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15040 uintptr_t daddr = (uintptr_t)dof; 15041 15042 ASSERT(MUTEX_HELD(&dtrace_lock)); 15043 15044 if ((help = curproc->p_dtrace_helpers) == NULL) 15045 help = dtrace_helpers_create(curproc); 15046 15047 vstate = &help->dthps_vstate; 15048 15049 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15050 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15051 dtrace_dof_destroy(dof); 15052 return (rv); 15053 } 15054 15055 /* 15056 * Look for helper providers and validate their descriptions. 15057 */ 15058 if (dhp != NULL) { 15059 for (i = 0; i < dof->dofh_secnum; i++) { 15060 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15061 dof->dofh_secoff + i * dof->dofh_secsize); 15062 15063 if (sec->dofs_type != DOF_SECT_PROVIDER) 15064 continue; 15065 15066 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15067 dtrace_enabling_destroy(enab); 15068 dtrace_dof_destroy(dof); 15069 return (-1); 15070 } 15071 15072 nprovs++; 15073 } 15074 } 15075 15076 /* 15077 * Now we need to walk through the ECB descriptions in the enabling. 15078 */ 15079 for (i = 0; i < enab->dten_ndesc; i++) { 15080 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15081 dtrace_probedesc_t *desc = &ep->dted_probe; 15082 15083 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15084 continue; 15085 15086 if (strcmp(desc->dtpd_mod, "helper") != 0) 15087 continue; 15088 15089 if (strcmp(desc->dtpd_func, "ustack") != 0) 15090 continue; 15091 15092 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15093 ep)) != 0) { 15094 /* 15095 * Adding this helper action failed -- we are now going 15096 * to rip out the entire generation and return failure. 15097 */ 15098 (void) dtrace_helper_destroygen(help->dthps_generation); 15099 dtrace_enabling_destroy(enab); 15100 dtrace_dof_destroy(dof); 15101 return (-1); 15102 } 15103 15104 nhelpers++; 15105 } 15106 15107 if (nhelpers < enab->dten_ndesc) 15108 dtrace_dof_error(dof, "unmatched helpers"); 15109 15110 gen = help->dthps_generation++; 15111 dtrace_enabling_destroy(enab); 15112 15113 if (dhp != NULL && nprovs > 0) { 15114 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15115 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15116 mutex_exit(&dtrace_lock); 15117 dtrace_helper_provider_register(curproc, help, dhp); 15118 mutex_enter(&dtrace_lock); 15119 15120 destroy = 0; 15121 } 15122 } 15123 15124 if (destroy) 15125 dtrace_dof_destroy(dof); 15126 15127 return (gen); 15128 } 15129 15130 static dtrace_helpers_t * 15131 dtrace_helpers_create(proc_t *p) 15132 { 15133 dtrace_helpers_t *help; 15134 15135 ASSERT(MUTEX_HELD(&dtrace_lock)); 15136 ASSERT(p->p_dtrace_helpers == NULL); 15137 15138 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15139 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15140 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15141 15142 p->p_dtrace_helpers = help; 15143 dtrace_helpers++; 15144 15145 return (help); 15146 } 15147 15148 static void 15149 dtrace_helpers_destroy(void) 15150 { 15151 dtrace_helpers_t *help; 15152 dtrace_vstate_t *vstate; 15153 proc_t *p = curproc; 15154 int i; 15155 15156 mutex_enter(&dtrace_lock); 15157 15158 ASSERT(p->p_dtrace_helpers != NULL); 15159 ASSERT(dtrace_helpers > 0); 15160 15161 help = p->p_dtrace_helpers; 15162 vstate = &help->dthps_vstate; 15163 15164 /* 15165 * We're now going to lose the help from this process. 15166 */ 15167 p->p_dtrace_helpers = NULL; 15168 dtrace_sync(); 15169 15170 /* 15171 * Destory the helper actions. 15172 */ 15173 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15174 dtrace_helper_action_t *h, *next; 15175 15176 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15177 next = h->dtha_next; 15178 dtrace_helper_action_destroy(h, vstate); 15179 h = next; 15180 } 15181 } 15182 15183 mutex_exit(&dtrace_lock); 15184 15185 /* 15186 * Destroy the helper providers. 15187 */ 15188 if (help->dthps_maxprovs > 0) { 15189 mutex_enter(&dtrace_meta_lock); 15190 if (dtrace_meta_pid != NULL) { 15191 ASSERT(dtrace_deferred_pid == NULL); 15192 15193 for (i = 0; i < help->dthps_nprovs; i++) { 15194 dtrace_helper_provider_remove( 15195 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15196 } 15197 } else { 15198 mutex_enter(&dtrace_lock); 15199 ASSERT(help->dthps_deferred == 0 || 15200 help->dthps_next != NULL || 15201 help->dthps_prev != NULL || 15202 help == dtrace_deferred_pid); 15203 15204 /* 15205 * Remove the helper from the deferred list. 15206 */ 15207 if (help->dthps_next != NULL) 15208 help->dthps_next->dthps_prev = help->dthps_prev; 15209 if (help->dthps_prev != NULL) 15210 help->dthps_prev->dthps_next = help->dthps_next; 15211 if (dtrace_deferred_pid == help) { 15212 dtrace_deferred_pid = help->dthps_next; 15213 ASSERT(help->dthps_prev == NULL); 15214 } 15215 15216 mutex_exit(&dtrace_lock); 15217 } 15218 15219 mutex_exit(&dtrace_meta_lock); 15220 15221 for (i = 0; i < help->dthps_nprovs; i++) { 15222 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15223 } 15224 15225 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15226 sizeof (dtrace_helper_provider_t *)); 15227 } 15228 15229 mutex_enter(&dtrace_lock); 15230 15231 dtrace_vstate_fini(&help->dthps_vstate); 15232 kmem_free(help->dthps_actions, 15233 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15234 kmem_free(help, sizeof (dtrace_helpers_t)); 15235 15236 --dtrace_helpers; 15237 mutex_exit(&dtrace_lock); 15238 } 15239 15240 static void 15241 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15242 { 15243 dtrace_helpers_t *help, *newhelp; 15244 dtrace_helper_action_t *helper, *new, *last; 15245 dtrace_difo_t *dp; 15246 dtrace_vstate_t *vstate; 15247 int i, j, sz, hasprovs = 0; 15248 15249 mutex_enter(&dtrace_lock); 15250 ASSERT(from->p_dtrace_helpers != NULL); 15251 ASSERT(dtrace_helpers > 0); 15252 15253 help = from->p_dtrace_helpers; 15254 newhelp = dtrace_helpers_create(to); 15255 ASSERT(to->p_dtrace_helpers != NULL); 15256 15257 newhelp->dthps_generation = help->dthps_generation; 15258 vstate = &newhelp->dthps_vstate; 15259 15260 /* 15261 * Duplicate the helper actions. 15262 */ 15263 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15264 if ((helper = help->dthps_actions[i]) == NULL) 15265 continue; 15266 15267 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15268 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15269 KM_SLEEP); 15270 new->dtha_generation = helper->dtha_generation; 15271 15272 if ((dp = helper->dtha_predicate) != NULL) { 15273 dp = dtrace_difo_duplicate(dp, vstate); 15274 new->dtha_predicate = dp; 15275 } 15276 15277 new->dtha_nactions = helper->dtha_nactions; 15278 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15279 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15280 15281 for (j = 0; j < new->dtha_nactions; j++) { 15282 dtrace_difo_t *dp = helper->dtha_actions[j]; 15283 15284 ASSERT(dp != NULL); 15285 dp = dtrace_difo_duplicate(dp, vstate); 15286 new->dtha_actions[j] = dp; 15287 } 15288 15289 if (last != NULL) { 15290 last->dtha_next = new; 15291 } else { 15292 newhelp->dthps_actions[i] = new; 15293 } 15294 15295 last = new; 15296 } 15297 } 15298 15299 /* 15300 * Duplicate the helper providers and register them with the 15301 * DTrace framework. 15302 */ 15303 if (help->dthps_nprovs > 0) { 15304 newhelp->dthps_nprovs = help->dthps_nprovs; 15305 newhelp->dthps_maxprovs = help->dthps_nprovs; 15306 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15307 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15308 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15309 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15310 newhelp->dthps_provs[i]->dthp_ref++; 15311 } 15312 15313 hasprovs = 1; 15314 } 15315 15316 mutex_exit(&dtrace_lock); 15317 15318 if (hasprovs) 15319 dtrace_helper_provider_register(to, newhelp, NULL); 15320 } 15321 15322 /* 15323 * DTrace Hook Functions 15324 */ 15325 static void 15326 dtrace_module_loaded(struct modctl *ctl) 15327 { 15328 dtrace_provider_t *prv; 15329 15330 mutex_enter(&dtrace_provider_lock); 15331 mutex_enter(&mod_lock); 15332 15333 ASSERT(ctl->mod_busy); 15334 15335 /* 15336 * We're going to call each providers per-module provide operation 15337 * specifying only this module. 15338 */ 15339 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15340 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15341 15342 mutex_exit(&mod_lock); 15343 mutex_exit(&dtrace_provider_lock); 15344 15345 /* 15346 * If we have any retained enablings, we need to match against them. 15347 * Enabling probes requires that cpu_lock be held, and we cannot hold 15348 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15349 * module. (In particular, this happens when loading scheduling 15350 * classes.) So if we have any retained enablings, we need to dispatch 15351 * our task queue to do the match for us. 15352 */ 15353 mutex_enter(&dtrace_lock); 15354 15355 if (dtrace_retained == NULL) { 15356 mutex_exit(&dtrace_lock); 15357 return; 15358 } 15359 15360 (void) taskq_dispatch(dtrace_taskq, 15361 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15362 15363 mutex_exit(&dtrace_lock); 15364 15365 /* 15366 * And now, for a little heuristic sleaze: in general, we want to 15367 * match modules as soon as they load. However, we cannot guarantee 15368 * this, because it would lead us to the lock ordering violation 15369 * outlined above. The common case, of course, is that cpu_lock is 15370 * _not_ held -- so we delay here for a clock tick, hoping that that's 15371 * long enough for the task queue to do its work. If it's not, it's 15372 * not a serious problem -- it just means that the module that we 15373 * just loaded may not be immediately instrumentable. 15374 */ 15375 delay(1); 15376 } 15377 15378 static void 15379 dtrace_module_unloaded(struct modctl *ctl) 15380 { 15381 dtrace_probe_t template, *probe, *first, *next; 15382 dtrace_provider_t *prov; 15383 15384 template.dtpr_mod = ctl->mod_modname; 15385 15386 mutex_enter(&dtrace_provider_lock); 15387 mutex_enter(&mod_lock); 15388 mutex_enter(&dtrace_lock); 15389 15390 if (dtrace_bymod == NULL) { 15391 /* 15392 * The DTrace module is loaded (obviously) but not attached; 15393 * we don't have any work to do. 15394 */ 15395 mutex_exit(&dtrace_provider_lock); 15396 mutex_exit(&mod_lock); 15397 mutex_exit(&dtrace_lock); 15398 return; 15399 } 15400 15401 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15402 probe != NULL; probe = probe->dtpr_nextmod) { 15403 if (probe->dtpr_ecb != NULL) { 15404 mutex_exit(&dtrace_provider_lock); 15405 mutex_exit(&mod_lock); 15406 mutex_exit(&dtrace_lock); 15407 15408 /* 15409 * This shouldn't _actually_ be possible -- we're 15410 * unloading a module that has an enabled probe in it. 15411 * (It's normally up to the provider to make sure that 15412 * this can't happen.) However, because dtps_enable() 15413 * doesn't have a failure mode, there can be an 15414 * enable/unload race. Upshot: we don't want to 15415 * assert, but we're not going to disable the 15416 * probe, either. 15417 */ 15418 if (dtrace_err_verbose) { 15419 cmn_err(CE_WARN, "unloaded module '%s' had " 15420 "enabled probes", ctl->mod_modname); 15421 } 15422 15423 return; 15424 } 15425 } 15426 15427 probe = first; 15428 15429 for (first = NULL; probe != NULL; probe = next) { 15430 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15431 15432 dtrace_probes[probe->dtpr_id - 1] = NULL; 15433 15434 next = probe->dtpr_nextmod; 15435 dtrace_hash_remove(dtrace_bymod, probe); 15436 dtrace_hash_remove(dtrace_byfunc, probe); 15437 dtrace_hash_remove(dtrace_byname, probe); 15438 15439 if (first == NULL) { 15440 first = probe; 15441 probe->dtpr_nextmod = NULL; 15442 } else { 15443 probe->dtpr_nextmod = first; 15444 first = probe; 15445 } 15446 } 15447 15448 /* 15449 * We've removed all of the module's probes from the hash chains and 15450 * from the probe array. Now issue a dtrace_sync() to be sure that 15451 * everyone has cleared out from any probe array processing. 15452 */ 15453 dtrace_sync(); 15454 15455 for (probe = first; probe != NULL; probe = first) { 15456 first = probe->dtpr_nextmod; 15457 prov = probe->dtpr_provider; 15458 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15459 probe->dtpr_arg); 15460 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15461 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15462 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15463 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15464 kmem_free(probe, sizeof (dtrace_probe_t)); 15465 } 15466 15467 mutex_exit(&dtrace_lock); 15468 mutex_exit(&mod_lock); 15469 mutex_exit(&dtrace_provider_lock); 15470 } 15471 15472 void 15473 dtrace_suspend(void) 15474 { 15475 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15476 } 15477 15478 void 15479 dtrace_resume(void) 15480 { 15481 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15482 } 15483 15484 static int 15485 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15486 { 15487 ASSERT(MUTEX_HELD(&cpu_lock)); 15488 mutex_enter(&dtrace_lock); 15489 15490 switch (what) { 15491 case CPU_CONFIG: { 15492 dtrace_state_t *state; 15493 dtrace_optval_t *opt, rs, c; 15494 15495 /* 15496 * For now, we only allocate a new buffer for anonymous state. 15497 */ 15498 if ((state = dtrace_anon.dta_state) == NULL) 15499 break; 15500 15501 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15502 break; 15503 15504 opt = state->dts_options; 15505 c = opt[DTRACEOPT_CPU]; 15506 15507 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15508 break; 15509 15510 /* 15511 * Regardless of what the actual policy is, we're going to 15512 * temporarily set our resize policy to be manual. We're 15513 * also going to temporarily set our CPU option to denote 15514 * the newly configured CPU. 15515 */ 15516 rs = opt[DTRACEOPT_BUFRESIZE]; 15517 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15518 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15519 15520 (void) dtrace_state_buffers(state); 15521 15522 opt[DTRACEOPT_BUFRESIZE] = rs; 15523 opt[DTRACEOPT_CPU] = c; 15524 15525 break; 15526 } 15527 15528 case CPU_UNCONFIG: 15529 /* 15530 * We don't free the buffer in the CPU_UNCONFIG case. (The 15531 * buffer will be freed when the consumer exits.) 15532 */ 15533 break; 15534 15535 default: 15536 break; 15537 } 15538 15539 mutex_exit(&dtrace_lock); 15540 return (0); 15541 } 15542 15543 static void 15544 dtrace_cpu_setup_initial(processorid_t cpu) 15545 { 15546 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15547 } 15548 15549 static void 15550 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15551 { 15552 if (dtrace_toxranges >= dtrace_toxranges_max) { 15553 int osize, nsize; 15554 dtrace_toxrange_t *range; 15555 15556 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15557 15558 if (osize == 0) { 15559 ASSERT(dtrace_toxrange == NULL); 15560 ASSERT(dtrace_toxranges_max == 0); 15561 dtrace_toxranges_max = 1; 15562 } else { 15563 dtrace_toxranges_max <<= 1; 15564 } 15565 15566 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15567 range = kmem_zalloc(nsize, KM_SLEEP); 15568 15569 if (dtrace_toxrange != NULL) { 15570 ASSERT(osize != 0); 15571 bcopy(dtrace_toxrange, range, osize); 15572 kmem_free(dtrace_toxrange, osize); 15573 } 15574 15575 dtrace_toxrange = range; 15576 } 15577 15578 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15579 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15580 15581 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15582 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15583 dtrace_toxranges++; 15584 } 15585 15586 static void 15587 dtrace_getf_barrier() 15588 { 15589 /* 15590 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15591 * that contain calls to getf(), this routine will be called on every 15592 * closef() before either the underlying vnode is released or the 15593 * file_t itself is freed. By the time we are here, it is essential 15594 * that the file_t can no longer be accessed from a call to getf() 15595 * in probe context -- that assures that a dtrace_sync() can be used 15596 * to clear out any enablings referring to the old structures. 15597 */ 15598 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15599 kcred->cr_zone->zone_dtrace_getf != 0) 15600 dtrace_sync(); 15601 } 15602 15603 /* 15604 * DTrace Driver Cookbook Functions 15605 */ 15606 /*ARGSUSED*/ 15607 static int 15608 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15609 { 15610 dtrace_provider_id_t id; 15611 dtrace_state_t *state = NULL; 15612 dtrace_enabling_t *enab; 15613 15614 mutex_enter(&cpu_lock); 15615 mutex_enter(&dtrace_provider_lock); 15616 mutex_enter(&dtrace_lock); 15617 15618 if (ddi_soft_state_init(&dtrace_softstate, 15619 sizeof (dtrace_state_t), 0) != 0) { 15620 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15621 mutex_exit(&cpu_lock); 15622 mutex_exit(&dtrace_provider_lock); 15623 mutex_exit(&dtrace_lock); 15624 return (DDI_FAILURE); 15625 } 15626 15627 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15628 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15629 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15630 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15631 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15632 ddi_remove_minor_node(devi, NULL); 15633 ddi_soft_state_fini(&dtrace_softstate); 15634 mutex_exit(&cpu_lock); 15635 mutex_exit(&dtrace_provider_lock); 15636 mutex_exit(&dtrace_lock); 15637 return (DDI_FAILURE); 15638 } 15639 15640 ddi_report_dev(devi); 15641 dtrace_devi = devi; 15642 15643 dtrace_modload = dtrace_module_loaded; 15644 dtrace_modunload = dtrace_module_unloaded; 15645 dtrace_cpu_init = dtrace_cpu_setup_initial; 15646 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15647 dtrace_helpers_fork = dtrace_helpers_duplicate; 15648 dtrace_cpustart_init = dtrace_suspend; 15649 dtrace_cpustart_fini = dtrace_resume; 15650 dtrace_debugger_init = dtrace_suspend; 15651 dtrace_debugger_fini = dtrace_resume; 15652 15653 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15654 15655 ASSERT(MUTEX_HELD(&cpu_lock)); 15656 15657 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15658 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15659 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15660 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15661 VM_SLEEP | VMC_IDENTIFIER); 15662 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15663 1, INT_MAX, 0); 15664 15665 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15666 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15667 NULL, NULL, NULL, NULL, NULL, 0); 15668 15669 ASSERT(MUTEX_HELD(&cpu_lock)); 15670 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15671 offsetof(dtrace_probe_t, dtpr_nextmod), 15672 offsetof(dtrace_probe_t, dtpr_prevmod)); 15673 15674 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15675 offsetof(dtrace_probe_t, dtpr_nextfunc), 15676 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15677 15678 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15679 offsetof(dtrace_probe_t, dtpr_nextname), 15680 offsetof(dtrace_probe_t, dtpr_prevname)); 15681 15682 if (dtrace_retain_max < 1) { 15683 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15684 "setting to 1", dtrace_retain_max); 15685 dtrace_retain_max = 1; 15686 } 15687 15688 /* 15689 * Now discover our toxic ranges. 15690 */ 15691 dtrace_toxic_ranges(dtrace_toxrange_add); 15692 15693 /* 15694 * Before we register ourselves as a provider to our own framework, 15695 * we would like to assert that dtrace_provider is NULL -- but that's 15696 * not true if we were loaded as a dependency of a DTrace provider. 15697 * Once we've registered, we can assert that dtrace_provider is our 15698 * pseudo provider. 15699 */ 15700 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15701 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15702 15703 ASSERT(dtrace_provider != NULL); 15704 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15705 15706 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15707 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15708 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15709 dtrace_provider, NULL, NULL, "END", 0, NULL); 15710 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15711 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15712 15713 dtrace_anon_property(); 15714 mutex_exit(&cpu_lock); 15715 15716 /* 15717 * If there are already providers, we must ask them to provide their 15718 * probes, and then match any anonymous enabling against them. Note 15719 * that there should be no other retained enablings at this time: 15720 * the only retained enablings at this time should be the anonymous 15721 * enabling. 15722 */ 15723 if (dtrace_anon.dta_enabling != NULL) { 15724 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15725 15726 dtrace_enabling_provide(NULL); 15727 state = dtrace_anon.dta_state; 15728 15729 /* 15730 * We couldn't hold cpu_lock across the above call to 15731 * dtrace_enabling_provide(), but we must hold it to actually 15732 * enable the probes. We have to drop all of our locks, pick 15733 * up cpu_lock, and regain our locks before matching the 15734 * retained anonymous enabling. 15735 */ 15736 mutex_exit(&dtrace_lock); 15737 mutex_exit(&dtrace_provider_lock); 15738 15739 mutex_enter(&cpu_lock); 15740 mutex_enter(&dtrace_provider_lock); 15741 mutex_enter(&dtrace_lock); 15742 15743 if ((enab = dtrace_anon.dta_enabling) != NULL) 15744 (void) dtrace_enabling_match(enab, NULL); 15745 15746 mutex_exit(&cpu_lock); 15747 } 15748 15749 mutex_exit(&dtrace_lock); 15750 mutex_exit(&dtrace_provider_lock); 15751 15752 if (state != NULL) { 15753 /* 15754 * If we created any anonymous state, set it going now. 15755 */ 15756 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15757 } 15758 15759 return (DDI_SUCCESS); 15760 } 15761 15762 /*ARGSUSED*/ 15763 static int 15764 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15765 { 15766 dtrace_state_t *state; 15767 uint32_t priv; 15768 uid_t uid; 15769 zoneid_t zoneid; 15770 15771 if (getminor(*devp) == DTRACEMNRN_HELPER) 15772 return (0); 15773 15774 /* 15775 * If this wasn't an open with the "helper" minor, then it must be 15776 * the "dtrace" minor. 15777 */ 15778 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15779 return (ENXIO); 15780 15781 /* 15782 * If no DTRACE_PRIV_* bits are set in the credential, then the 15783 * caller lacks sufficient permission to do anything with DTrace. 15784 */ 15785 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15786 if (priv == DTRACE_PRIV_NONE) 15787 return (EACCES); 15788 15789 /* 15790 * Ask all providers to provide all their probes. 15791 */ 15792 mutex_enter(&dtrace_provider_lock); 15793 dtrace_probe_provide(NULL, NULL); 15794 mutex_exit(&dtrace_provider_lock); 15795 15796 mutex_enter(&cpu_lock); 15797 mutex_enter(&dtrace_lock); 15798 dtrace_opens++; 15799 dtrace_membar_producer(); 15800 15801 /* 15802 * If the kernel debugger is active (that is, if the kernel debugger 15803 * modified text in some way), we won't allow the open. 15804 */ 15805 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15806 dtrace_opens--; 15807 mutex_exit(&cpu_lock); 15808 mutex_exit(&dtrace_lock); 15809 return (EBUSY); 15810 } 15811 15812 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 15813 /* 15814 * If DTrace helper tracing is enabled, we need to allocate the 15815 * trace buffer and initialize the values. 15816 */ 15817 dtrace_helptrace_buffer = 15818 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15819 dtrace_helptrace_next = 0; 15820 dtrace_helptrace_wrapped = 0; 15821 dtrace_helptrace_enable = 0; 15822 } 15823 15824 state = dtrace_state_create(devp, cred_p); 15825 mutex_exit(&cpu_lock); 15826 15827 if (state == NULL) { 15828 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15829 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15830 mutex_exit(&dtrace_lock); 15831 return (EAGAIN); 15832 } 15833 15834 mutex_exit(&dtrace_lock); 15835 15836 return (0); 15837 } 15838 15839 /*ARGSUSED*/ 15840 static int 15841 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15842 { 15843 minor_t minor = getminor(dev); 15844 dtrace_state_t *state; 15845 dtrace_helptrace_t *buf = NULL; 15846 15847 if (minor == DTRACEMNRN_HELPER) 15848 return (0); 15849 15850 state = ddi_get_soft_state(dtrace_softstate, minor); 15851 15852 mutex_enter(&cpu_lock); 15853 mutex_enter(&dtrace_lock); 15854 15855 if (state->dts_anon) { 15856 /* 15857 * There is anonymous state. Destroy that first. 15858 */ 15859 ASSERT(dtrace_anon.dta_state == NULL); 15860 dtrace_state_destroy(state->dts_anon); 15861 } 15862 15863 if (dtrace_helptrace_disable) { 15864 /* 15865 * If we have been told to disable helper tracing, set the 15866 * buffer to NULL before calling into dtrace_state_destroy(); 15867 * we take advantage of its dtrace_sync() to know that no 15868 * CPU is in probe context with enabled helper tracing 15869 * after it returns. 15870 */ 15871 buf = dtrace_helptrace_buffer; 15872 dtrace_helptrace_buffer = NULL; 15873 } 15874 15875 dtrace_state_destroy(state); 15876 ASSERT(dtrace_opens > 0); 15877 15878 /* 15879 * Only relinquish control of the kernel debugger interface when there 15880 * are no consumers and no anonymous enablings. 15881 */ 15882 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15883 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15884 15885 if (buf != NULL) { 15886 kmem_free(buf, dtrace_helptrace_bufsize); 15887 dtrace_helptrace_disable = 0; 15888 } 15889 15890 mutex_exit(&dtrace_lock); 15891 mutex_exit(&cpu_lock); 15892 15893 return (0); 15894 } 15895 15896 /*ARGSUSED*/ 15897 static int 15898 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15899 { 15900 int rval; 15901 dof_helper_t help, *dhp = NULL; 15902 15903 switch (cmd) { 15904 case DTRACEHIOC_ADDDOF: 15905 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15906 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15907 return (EFAULT); 15908 } 15909 15910 dhp = &help; 15911 arg = (intptr_t)help.dofhp_dof; 15912 /*FALLTHROUGH*/ 15913 15914 case DTRACEHIOC_ADD: { 15915 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15916 15917 if (dof == NULL) 15918 return (rval); 15919 15920 mutex_enter(&dtrace_lock); 15921 15922 /* 15923 * dtrace_helper_slurp() takes responsibility for the dof -- 15924 * it may free it now or it may save it and free it later. 15925 */ 15926 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15927 *rv = rval; 15928 rval = 0; 15929 } else { 15930 rval = EINVAL; 15931 } 15932 15933 mutex_exit(&dtrace_lock); 15934 return (rval); 15935 } 15936 15937 case DTRACEHIOC_REMOVE: { 15938 mutex_enter(&dtrace_lock); 15939 rval = dtrace_helper_destroygen(arg); 15940 mutex_exit(&dtrace_lock); 15941 15942 return (rval); 15943 } 15944 15945 default: 15946 break; 15947 } 15948 15949 return (ENOTTY); 15950 } 15951 15952 /*ARGSUSED*/ 15953 static int 15954 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15955 { 15956 minor_t minor = getminor(dev); 15957 dtrace_state_t *state; 15958 int rval; 15959 15960 if (minor == DTRACEMNRN_HELPER) 15961 return (dtrace_ioctl_helper(cmd, arg, rv)); 15962 15963 state = ddi_get_soft_state(dtrace_softstate, minor); 15964 15965 if (state->dts_anon) { 15966 ASSERT(dtrace_anon.dta_state == NULL); 15967 state = state->dts_anon; 15968 } 15969 15970 switch (cmd) { 15971 case DTRACEIOC_PROVIDER: { 15972 dtrace_providerdesc_t pvd; 15973 dtrace_provider_t *pvp; 15974 15975 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15976 return (EFAULT); 15977 15978 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15979 mutex_enter(&dtrace_provider_lock); 15980 15981 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15982 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15983 break; 15984 } 15985 15986 mutex_exit(&dtrace_provider_lock); 15987 15988 if (pvp == NULL) 15989 return (ESRCH); 15990 15991 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15992 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15993 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15994 return (EFAULT); 15995 15996 return (0); 15997 } 15998 15999 case DTRACEIOC_EPROBE: { 16000 dtrace_eprobedesc_t epdesc; 16001 dtrace_ecb_t *ecb; 16002 dtrace_action_t *act; 16003 void *buf; 16004 size_t size; 16005 uintptr_t dest; 16006 int nrecs; 16007 16008 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16009 return (EFAULT); 16010 16011 mutex_enter(&dtrace_lock); 16012 16013 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16014 mutex_exit(&dtrace_lock); 16015 return (EINVAL); 16016 } 16017 16018 if (ecb->dte_probe == NULL) { 16019 mutex_exit(&dtrace_lock); 16020 return (EINVAL); 16021 } 16022 16023 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16024 epdesc.dtepd_uarg = ecb->dte_uarg; 16025 epdesc.dtepd_size = ecb->dte_size; 16026 16027 nrecs = epdesc.dtepd_nrecs; 16028 epdesc.dtepd_nrecs = 0; 16029 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16030 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16031 continue; 16032 16033 epdesc.dtepd_nrecs++; 16034 } 16035 16036 /* 16037 * Now that we have the size, we need to allocate a temporary 16038 * buffer in which to store the complete description. We need 16039 * the temporary buffer to be able to drop dtrace_lock() 16040 * across the copyout(), below. 16041 */ 16042 size = sizeof (dtrace_eprobedesc_t) + 16043 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16044 16045 buf = kmem_alloc(size, KM_SLEEP); 16046 dest = (uintptr_t)buf; 16047 16048 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16049 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16050 16051 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16052 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16053 continue; 16054 16055 if (nrecs-- == 0) 16056 break; 16057 16058 bcopy(&act->dta_rec, (void *)dest, 16059 sizeof (dtrace_recdesc_t)); 16060 dest += sizeof (dtrace_recdesc_t); 16061 } 16062 16063 mutex_exit(&dtrace_lock); 16064 16065 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16066 kmem_free(buf, size); 16067 return (EFAULT); 16068 } 16069 16070 kmem_free(buf, size); 16071 return (0); 16072 } 16073 16074 case DTRACEIOC_AGGDESC: { 16075 dtrace_aggdesc_t aggdesc; 16076 dtrace_action_t *act; 16077 dtrace_aggregation_t *agg; 16078 int nrecs; 16079 uint32_t offs; 16080 dtrace_recdesc_t *lrec; 16081 void *buf; 16082 size_t size; 16083 uintptr_t dest; 16084 16085 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16086 return (EFAULT); 16087 16088 mutex_enter(&dtrace_lock); 16089 16090 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16091 mutex_exit(&dtrace_lock); 16092 return (EINVAL); 16093 } 16094 16095 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16096 16097 nrecs = aggdesc.dtagd_nrecs; 16098 aggdesc.dtagd_nrecs = 0; 16099 16100 offs = agg->dtag_base; 16101 lrec = &agg->dtag_action.dta_rec; 16102 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16103 16104 for (act = agg->dtag_first; ; act = act->dta_next) { 16105 ASSERT(act->dta_intuple || 16106 DTRACEACT_ISAGG(act->dta_kind)); 16107 16108 /* 16109 * If this action has a record size of zero, it 16110 * denotes an argument to the aggregating action. 16111 * Because the presence of this record doesn't (or 16112 * shouldn't) affect the way the data is interpreted, 16113 * we don't copy it out to save user-level the 16114 * confusion of dealing with a zero-length record. 16115 */ 16116 if (act->dta_rec.dtrd_size == 0) { 16117 ASSERT(agg->dtag_hasarg); 16118 continue; 16119 } 16120 16121 aggdesc.dtagd_nrecs++; 16122 16123 if (act == &agg->dtag_action) 16124 break; 16125 } 16126 16127 /* 16128 * Now that we have the size, we need to allocate a temporary 16129 * buffer in which to store the complete description. We need 16130 * the temporary buffer to be able to drop dtrace_lock() 16131 * across the copyout(), below. 16132 */ 16133 size = sizeof (dtrace_aggdesc_t) + 16134 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16135 16136 buf = kmem_alloc(size, KM_SLEEP); 16137 dest = (uintptr_t)buf; 16138 16139 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16140 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16141 16142 for (act = agg->dtag_first; ; act = act->dta_next) { 16143 dtrace_recdesc_t rec = act->dta_rec; 16144 16145 /* 16146 * See the comment in the above loop for why we pass 16147 * over zero-length records. 16148 */ 16149 if (rec.dtrd_size == 0) { 16150 ASSERT(agg->dtag_hasarg); 16151 continue; 16152 } 16153 16154 if (nrecs-- == 0) 16155 break; 16156 16157 rec.dtrd_offset -= offs; 16158 bcopy(&rec, (void *)dest, sizeof (rec)); 16159 dest += sizeof (dtrace_recdesc_t); 16160 16161 if (act == &agg->dtag_action) 16162 break; 16163 } 16164 16165 mutex_exit(&dtrace_lock); 16166 16167 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16168 kmem_free(buf, size); 16169 return (EFAULT); 16170 } 16171 16172 kmem_free(buf, size); 16173 return (0); 16174 } 16175 16176 case DTRACEIOC_ENABLE: { 16177 dof_hdr_t *dof; 16178 dtrace_enabling_t *enab = NULL; 16179 dtrace_vstate_t *vstate; 16180 int err = 0; 16181 16182 *rv = 0; 16183 16184 /* 16185 * If a NULL argument has been passed, we take this as our 16186 * cue to reevaluate our enablings. 16187 */ 16188 if (arg == NULL) { 16189 dtrace_enabling_matchall(); 16190 16191 return (0); 16192 } 16193 16194 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16195 return (rval); 16196 16197 mutex_enter(&cpu_lock); 16198 mutex_enter(&dtrace_lock); 16199 vstate = &state->dts_vstate; 16200 16201 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16202 mutex_exit(&dtrace_lock); 16203 mutex_exit(&cpu_lock); 16204 dtrace_dof_destroy(dof); 16205 return (EBUSY); 16206 } 16207 16208 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16209 mutex_exit(&dtrace_lock); 16210 mutex_exit(&cpu_lock); 16211 dtrace_dof_destroy(dof); 16212 return (EINVAL); 16213 } 16214 16215 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16216 dtrace_enabling_destroy(enab); 16217 mutex_exit(&dtrace_lock); 16218 mutex_exit(&cpu_lock); 16219 dtrace_dof_destroy(dof); 16220 return (rval); 16221 } 16222 16223 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16224 err = dtrace_enabling_retain(enab); 16225 } else { 16226 dtrace_enabling_destroy(enab); 16227 } 16228 16229 mutex_exit(&cpu_lock); 16230 mutex_exit(&dtrace_lock); 16231 dtrace_dof_destroy(dof); 16232 16233 return (err); 16234 } 16235 16236 case DTRACEIOC_REPLICATE: { 16237 dtrace_repldesc_t desc; 16238 dtrace_probedesc_t *match = &desc.dtrpd_match; 16239 dtrace_probedesc_t *create = &desc.dtrpd_create; 16240 int err; 16241 16242 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16243 return (EFAULT); 16244 16245 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16246 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16247 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16248 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16249 16250 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16251 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16252 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16253 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16254 16255 mutex_enter(&dtrace_lock); 16256 err = dtrace_enabling_replicate(state, match, create); 16257 mutex_exit(&dtrace_lock); 16258 16259 return (err); 16260 } 16261 16262 case DTRACEIOC_PROBEMATCH: 16263 case DTRACEIOC_PROBES: { 16264 dtrace_probe_t *probe = NULL; 16265 dtrace_probedesc_t desc; 16266 dtrace_probekey_t pkey; 16267 dtrace_id_t i; 16268 int m = 0; 16269 uint32_t priv; 16270 uid_t uid; 16271 zoneid_t zoneid; 16272 16273 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16274 return (EFAULT); 16275 16276 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16277 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16278 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16279 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16280 16281 /* 16282 * Before we attempt to match this probe, we want to give 16283 * all providers the opportunity to provide it. 16284 */ 16285 if (desc.dtpd_id == DTRACE_IDNONE) { 16286 mutex_enter(&dtrace_provider_lock); 16287 dtrace_probe_provide(&desc, NULL); 16288 mutex_exit(&dtrace_provider_lock); 16289 desc.dtpd_id++; 16290 } 16291 16292 if (cmd == DTRACEIOC_PROBEMATCH) { 16293 dtrace_probekey(&desc, &pkey); 16294 pkey.dtpk_id = DTRACE_IDNONE; 16295 } 16296 16297 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16298 16299 mutex_enter(&dtrace_lock); 16300 16301 if (cmd == DTRACEIOC_PROBEMATCH) { 16302 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16303 if ((probe = dtrace_probes[i - 1]) != NULL && 16304 (m = dtrace_match_probe(probe, &pkey, 16305 priv, uid, zoneid)) != 0) 16306 break; 16307 } 16308 16309 if (m < 0) { 16310 mutex_exit(&dtrace_lock); 16311 return (EINVAL); 16312 } 16313 16314 } else { 16315 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16316 if ((probe = dtrace_probes[i - 1]) != NULL && 16317 dtrace_match_priv(probe, priv, uid, zoneid)) 16318 break; 16319 } 16320 } 16321 16322 if (probe == NULL) { 16323 mutex_exit(&dtrace_lock); 16324 return (ESRCH); 16325 } 16326 16327 dtrace_probe_description(probe, &desc); 16328 mutex_exit(&dtrace_lock); 16329 16330 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16331 return (EFAULT); 16332 16333 return (0); 16334 } 16335 16336 case DTRACEIOC_PROBEARG: { 16337 dtrace_argdesc_t desc; 16338 dtrace_probe_t *probe; 16339 dtrace_provider_t *prov; 16340 16341 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16342 return (EFAULT); 16343 16344 if (desc.dtargd_id == DTRACE_IDNONE) 16345 return (EINVAL); 16346 16347 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16348 return (EINVAL); 16349 16350 mutex_enter(&dtrace_provider_lock); 16351 mutex_enter(&mod_lock); 16352 mutex_enter(&dtrace_lock); 16353 16354 if (desc.dtargd_id > dtrace_nprobes) { 16355 mutex_exit(&dtrace_lock); 16356 mutex_exit(&mod_lock); 16357 mutex_exit(&dtrace_provider_lock); 16358 return (EINVAL); 16359 } 16360 16361 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16362 mutex_exit(&dtrace_lock); 16363 mutex_exit(&mod_lock); 16364 mutex_exit(&dtrace_provider_lock); 16365 return (EINVAL); 16366 } 16367 16368 mutex_exit(&dtrace_lock); 16369 16370 prov = probe->dtpr_provider; 16371 16372 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16373 /* 16374 * There isn't any typed information for this probe. 16375 * Set the argument number to DTRACE_ARGNONE. 16376 */ 16377 desc.dtargd_ndx = DTRACE_ARGNONE; 16378 } else { 16379 desc.dtargd_native[0] = '\0'; 16380 desc.dtargd_xlate[0] = '\0'; 16381 desc.dtargd_mapping = desc.dtargd_ndx; 16382 16383 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16384 probe->dtpr_id, probe->dtpr_arg, &desc); 16385 } 16386 16387 mutex_exit(&mod_lock); 16388 mutex_exit(&dtrace_provider_lock); 16389 16390 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16391 return (EFAULT); 16392 16393 return (0); 16394 } 16395 16396 case DTRACEIOC_GO: { 16397 processorid_t cpuid; 16398 rval = dtrace_state_go(state, &cpuid); 16399 16400 if (rval != 0) 16401 return (rval); 16402 16403 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16404 return (EFAULT); 16405 16406 return (0); 16407 } 16408 16409 case DTRACEIOC_STOP: { 16410 processorid_t cpuid; 16411 16412 mutex_enter(&dtrace_lock); 16413 rval = dtrace_state_stop(state, &cpuid); 16414 mutex_exit(&dtrace_lock); 16415 16416 if (rval != 0) 16417 return (rval); 16418 16419 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16420 return (EFAULT); 16421 16422 return (0); 16423 } 16424 16425 case DTRACEIOC_DOFGET: { 16426 dof_hdr_t hdr, *dof; 16427 uint64_t len; 16428 16429 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16430 return (EFAULT); 16431 16432 mutex_enter(&dtrace_lock); 16433 dof = dtrace_dof_create(state); 16434 mutex_exit(&dtrace_lock); 16435 16436 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16437 rval = copyout(dof, (void *)arg, len); 16438 dtrace_dof_destroy(dof); 16439 16440 return (rval == 0 ? 0 : EFAULT); 16441 } 16442 16443 case DTRACEIOC_AGGSNAP: 16444 case DTRACEIOC_BUFSNAP: { 16445 dtrace_bufdesc_t desc; 16446 caddr_t cached; 16447 dtrace_buffer_t *buf; 16448 16449 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16450 return (EFAULT); 16451 16452 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16453 return (EINVAL); 16454 16455 mutex_enter(&dtrace_lock); 16456 16457 if (cmd == DTRACEIOC_BUFSNAP) { 16458 buf = &state->dts_buffer[desc.dtbd_cpu]; 16459 } else { 16460 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16461 } 16462 16463 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16464 size_t sz = buf->dtb_offset; 16465 16466 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16467 mutex_exit(&dtrace_lock); 16468 return (EBUSY); 16469 } 16470 16471 /* 16472 * If this buffer has already been consumed, we're 16473 * going to indicate that there's nothing left here 16474 * to consume. 16475 */ 16476 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16477 mutex_exit(&dtrace_lock); 16478 16479 desc.dtbd_size = 0; 16480 desc.dtbd_drops = 0; 16481 desc.dtbd_errors = 0; 16482 desc.dtbd_oldest = 0; 16483 sz = sizeof (desc); 16484 16485 if (copyout(&desc, (void *)arg, sz) != 0) 16486 return (EFAULT); 16487 16488 return (0); 16489 } 16490 16491 /* 16492 * If this is a ring buffer that has wrapped, we want 16493 * to copy the whole thing out. 16494 */ 16495 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16496 dtrace_buffer_polish(buf); 16497 sz = buf->dtb_size; 16498 } 16499 16500 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16501 mutex_exit(&dtrace_lock); 16502 return (EFAULT); 16503 } 16504 16505 desc.dtbd_size = sz; 16506 desc.dtbd_drops = buf->dtb_drops; 16507 desc.dtbd_errors = buf->dtb_errors; 16508 desc.dtbd_oldest = buf->dtb_xamot_offset; 16509 desc.dtbd_timestamp = dtrace_gethrtime(); 16510 16511 mutex_exit(&dtrace_lock); 16512 16513 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16514 return (EFAULT); 16515 16516 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16517 16518 return (0); 16519 } 16520 16521 if (buf->dtb_tomax == NULL) { 16522 ASSERT(buf->dtb_xamot == NULL); 16523 mutex_exit(&dtrace_lock); 16524 return (ENOENT); 16525 } 16526 16527 cached = buf->dtb_tomax; 16528 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16529 16530 dtrace_xcall(desc.dtbd_cpu, 16531 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16532 16533 state->dts_errors += buf->dtb_xamot_errors; 16534 16535 /* 16536 * If the buffers did not actually switch, then the cross call 16537 * did not take place -- presumably because the given CPU is 16538 * not in the ready set. If this is the case, we'll return 16539 * ENOENT. 16540 */ 16541 if (buf->dtb_tomax == cached) { 16542 ASSERT(buf->dtb_xamot != cached); 16543 mutex_exit(&dtrace_lock); 16544 return (ENOENT); 16545 } 16546 16547 ASSERT(cached == buf->dtb_xamot); 16548 16549 /* 16550 * We have our snapshot; now copy it out. 16551 */ 16552 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16553 buf->dtb_xamot_offset) != 0) { 16554 mutex_exit(&dtrace_lock); 16555 return (EFAULT); 16556 } 16557 16558 desc.dtbd_size = buf->dtb_xamot_offset; 16559 desc.dtbd_drops = buf->dtb_xamot_drops; 16560 desc.dtbd_errors = buf->dtb_xamot_errors; 16561 desc.dtbd_oldest = 0; 16562 desc.dtbd_timestamp = buf->dtb_switched; 16563 16564 mutex_exit(&dtrace_lock); 16565 16566 /* 16567 * Finally, copy out the buffer description. 16568 */ 16569 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16570 return (EFAULT); 16571 16572 return (0); 16573 } 16574 16575 case DTRACEIOC_CONF: { 16576 dtrace_conf_t conf; 16577 16578 bzero(&conf, sizeof (conf)); 16579 conf.dtc_difversion = DIF_VERSION; 16580 conf.dtc_difintregs = DIF_DIR_NREGS; 16581 conf.dtc_diftupregs = DIF_DTR_NREGS; 16582 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16583 16584 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16585 return (EFAULT); 16586 16587 return (0); 16588 } 16589 16590 case DTRACEIOC_STATUS: { 16591 dtrace_status_t stat; 16592 dtrace_dstate_t *dstate; 16593 int i, j; 16594 uint64_t nerrs; 16595 16596 /* 16597 * See the comment in dtrace_state_deadman() for the reason 16598 * for setting dts_laststatus to INT64_MAX before setting 16599 * it to the correct value. 16600 */ 16601 state->dts_laststatus = INT64_MAX; 16602 dtrace_membar_producer(); 16603 state->dts_laststatus = dtrace_gethrtime(); 16604 16605 bzero(&stat, sizeof (stat)); 16606 16607 mutex_enter(&dtrace_lock); 16608 16609 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16610 mutex_exit(&dtrace_lock); 16611 return (ENOENT); 16612 } 16613 16614 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16615 stat.dtst_exiting = 1; 16616 16617 nerrs = state->dts_errors; 16618 dstate = &state->dts_vstate.dtvs_dynvars; 16619 16620 for (i = 0; i < NCPU; i++) { 16621 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16622 16623 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16624 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16625 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16626 16627 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16628 stat.dtst_filled++; 16629 16630 nerrs += state->dts_buffer[i].dtb_errors; 16631 16632 for (j = 0; j < state->dts_nspeculations; j++) { 16633 dtrace_speculation_t *spec; 16634 dtrace_buffer_t *buf; 16635 16636 spec = &state->dts_speculations[j]; 16637 buf = &spec->dtsp_buffer[i]; 16638 stat.dtst_specdrops += buf->dtb_xamot_drops; 16639 } 16640 } 16641 16642 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16643 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16644 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16645 stat.dtst_dblerrors = state->dts_dblerrors; 16646 stat.dtst_killed = 16647 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16648 stat.dtst_errors = nerrs; 16649 16650 mutex_exit(&dtrace_lock); 16651 16652 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16653 return (EFAULT); 16654 16655 return (0); 16656 } 16657 16658 case DTRACEIOC_FORMAT: { 16659 dtrace_fmtdesc_t fmt; 16660 char *str; 16661 int len; 16662 16663 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16664 return (EFAULT); 16665 16666 mutex_enter(&dtrace_lock); 16667 16668 if (fmt.dtfd_format == 0 || 16669 fmt.dtfd_format > state->dts_nformats) { 16670 mutex_exit(&dtrace_lock); 16671 return (EINVAL); 16672 } 16673 16674 /* 16675 * Format strings are allocated contiguously and they are 16676 * never freed; if a format index is less than the number 16677 * of formats, we can assert that the format map is non-NULL 16678 * and that the format for the specified index is non-NULL. 16679 */ 16680 ASSERT(state->dts_formats != NULL); 16681 str = state->dts_formats[fmt.dtfd_format - 1]; 16682 ASSERT(str != NULL); 16683 16684 len = strlen(str) + 1; 16685 16686 if (len > fmt.dtfd_length) { 16687 fmt.dtfd_length = len; 16688 16689 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16690 mutex_exit(&dtrace_lock); 16691 return (EINVAL); 16692 } 16693 } else { 16694 if (copyout(str, fmt.dtfd_string, len) != 0) { 16695 mutex_exit(&dtrace_lock); 16696 return (EINVAL); 16697 } 16698 } 16699 16700 mutex_exit(&dtrace_lock); 16701 return (0); 16702 } 16703 16704 default: 16705 break; 16706 } 16707 16708 return (ENOTTY); 16709 } 16710 16711 /*ARGSUSED*/ 16712 static int 16713 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16714 { 16715 dtrace_state_t *state; 16716 16717 switch (cmd) { 16718 case DDI_DETACH: 16719 break; 16720 16721 case DDI_SUSPEND: 16722 return (DDI_SUCCESS); 16723 16724 default: 16725 return (DDI_FAILURE); 16726 } 16727 16728 mutex_enter(&cpu_lock); 16729 mutex_enter(&dtrace_provider_lock); 16730 mutex_enter(&dtrace_lock); 16731 16732 ASSERT(dtrace_opens == 0); 16733 16734 if (dtrace_helpers > 0) { 16735 mutex_exit(&dtrace_provider_lock); 16736 mutex_exit(&dtrace_lock); 16737 mutex_exit(&cpu_lock); 16738 return (DDI_FAILURE); 16739 } 16740 16741 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16742 mutex_exit(&dtrace_provider_lock); 16743 mutex_exit(&dtrace_lock); 16744 mutex_exit(&cpu_lock); 16745 return (DDI_FAILURE); 16746 } 16747 16748 dtrace_provider = NULL; 16749 16750 if ((state = dtrace_anon_grab()) != NULL) { 16751 /* 16752 * If there were ECBs on this state, the provider should 16753 * have not been allowed to detach; assert that there is 16754 * none. 16755 */ 16756 ASSERT(state->dts_necbs == 0); 16757 dtrace_state_destroy(state); 16758 16759 /* 16760 * If we're being detached with anonymous state, we need to 16761 * indicate to the kernel debugger that DTrace is now inactive. 16762 */ 16763 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16764 } 16765 16766 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16767 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16768 dtrace_cpu_init = NULL; 16769 dtrace_helpers_cleanup = NULL; 16770 dtrace_helpers_fork = NULL; 16771 dtrace_cpustart_init = NULL; 16772 dtrace_cpustart_fini = NULL; 16773 dtrace_debugger_init = NULL; 16774 dtrace_debugger_fini = NULL; 16775 dtrace_modload = NULL; 16776 dtrace_modunload = NULL; 16777 16778 ASSERT(dtrace_getf == 0); 16779 ASSERT(dtrace_closef == NULL); 16780 16781 mutex_exit(&cpu_lock); 16782 16783 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16784 dtrace_probes = NULL; 16785 dtrace_nprobes = 0; 16786 16787 dtrace_hash_destroy(dtrace_bymod); 16788 dtrace_hash_destroy(dtrace_byfunc); 16789 dtrace_hash_destroy(dtrace_byname); 16790 dtrace_bymod = NULL; 16791 dtrace_byfunc = NULL; 16792 dtrace_byname = NULL; 16793 16794 kmem_cache_destroy(dtrace_state_cache); 16795 vmem_destroy(dtrace_minor); 16796 vmem_destroy(dtrace_arena); 16797 16798 if (dtrace_toxrange != NULL) { 16799 kmem_free(dtrace_toxrange, 16800 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16801 dtrace_toxrange = NULL; 16802 dtrace_toxranges = 0; 16803 dtrace_toxranges_max = 0; 16804 } 16805 16806 ddi_remove_minor_node(dtrace_devi, NULL); 16807 dtrace_devi = NULL; 16808 16809 ddi_soft_state_fini(&dtrace_softstate); 16810 16811 ASSERT(dtrace_vtime_references == 0); 16812 ASSERT(dtrace_opens == 0); 16813 ASSERT(dtrace_retained == NULL); 16814 16815 mutex_exit(&dtrace_lock); 16816 mutex_exit(&dtrace_provider_lock); 16817 16818 /* 16819 * We don't destroy the task queue until after we have dropped our 16820 * locks (taskq_destroy() may block on running tasks). To prevent 16821 * attempting to do work after we have effectively detached but before 16822 * the task queue has been destroyed, all tasks dispatched via the 16823 * task queue must check that DTrace is still attached before 16824 * performing any operation. 16825 */ 16826 taskq_destroy(dtrace_taskq); 16827 dtrace_taskq = NULL; 16828 16829 return (DDI_SUCCESS); 16830 } 16831 16832 /*ARGSUSED*/ 16833 static int 16834 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16835 { 16836 int error; 16837 16838 switch (infocmd) { 16839 case DDI_INFO_DEVT2DEVINFO: 16840 *result = (void *)dtrace_devi; 16841 error = DDI_SUCCESS; 16842 break; 16843 case DDI_INFO_DEVT2INSTANCE: 16844 *result = (void *)0; 16845 error = DDI_SUCCESS; 16846 break; 16847 default: 16848 error = DDI_FAILURE; 16849 } 16850 return (error); 16851 } 16852 16853 static struct cb_ops dtrace_cb_ops = { 16854 dtrace_open, /* open */ 16855 dtrace_close, /* close */ 16856 nulldev, /* strategy */ 16857 nulldev, /* print */ 16858 nodev, /* dump */ 16859 nodev, /* read */ 16860 nodev, /* write */ 16861 dtrace_ioctl, /* ioctl */ 16862 nodev, /* devmap */ 16863 nodev, /* mmap */ 16864 nodev, /* segmap */ 16865 nochpoll, /* poll */ 16866 ddi_prop_op, /* cb_prop_op */ 16867 0, /* streamtab */ 16868 D_NEW | D_MP /* Driver compatibility flag */ 16869 }; 16870 16871 static struct dev_ops dtrace_ops = { 16872 DEVO_REV, /* devo_rev */ 16873 0, /* refcnt */ 16874 dtrace_info, /* get_dev_info */ 16875 nulldev, /* identify */ 16876 nulldev, /* probe */ 16877 dtrace_attach, /* attach */ 16878 dtrace_detach, /* detach */ 16879 nodev, /* reset */ 16880 &dtrace_cb_ops, /* driver operations */ 16881 NULL, /* bus operations */ 16882 nodev, /* dev power */ 16883 ddi_quiesce_not_needed, /* quiesce */ 16884 }; 16885 16886 static struct modldrv modldrv = { 16887 &mod_driverops, /* module type (this is a pseudo driver) */ 16888 "Dynamic Tracing", /* name of module */ 16889 &dtrace_ops, /* driver ops */ 16890 }; 16891 16892 static struct modlinkage modlinkage = { 16893 MODREV_1, 16894 (void *)&modldrv, 16895 NULL 16896 }; 16897 16898 int 16899 _init(void) 16900 { 16901 return (mod_install(&modlinkage)); 16902 } 16903 16904 int 16905 _info(struct modinfo *modinfop) 16906 { 16907 return (mod_info(&modlinkage, modinfop)); 16908 } 16909 16910 int 16911 _fini(void) 16912 { 16913 return (mod_remove(&modlinkage)); 16914 } 16915