1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * DTrace - Dynamic Tracing for Solaris 30 * 31 * This is the implementation of the Solaris Dynamic Tracing framework 32 * (DTrace). The user-visible interface to DTrace is described at length in 33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace 34 * library, the in-kernel DTrace framework, and the DTrace providers are 35 * described in the block comments in the <sys/dtrace.h> header file. The 36 * internal architecture of DTrace is described in the block comments in the 37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace 38 * implementation very much assume mastery of all of these sources; if one has 39 * an unanswered question about the implementation, one should consult them 40 * first. 41 * 42 * The functions here are ordered roughly as follows: 43 * 44 * - Probe context functions 45 * - Probe hashing functions 46 * - Non-probe context utility functions 47 * - Matching functions 48 * - Provider-to-Framework API functions 49 * - Probe management functions 50 * - DIF object functions 51 * - Format functions 52 * - Predicate functions 53 * - ECB functions 54 * - Buffer functions 55 * - Enabling functions 56 * - DOF functions 57 * - Anonymous enabling functions 58 * - Consumer state functions 59 * - Helper functions 60 * - Hook functions 61 * - Driver cookbook functions 62 * 63 * Each group of functions begins with a block comment labelled the "DTrace 64 * [Group] Functions", allowing one to find each block by searching forward 65 * on capital-f functions. 66 */ 67 #include <sys/errno.h> 68 #include <sys/stat.h> 69 #include <sys/modctl.h> 70 #include <sys/conf.h> 71 #include <sys/systm.h> 72 #include <sys/ddi.h> 73 #include <sys/sunddi.h> 74 #include <sys/cpuvar.h> 75 #include <sys/kmem.h> 76 #include <sys/strsubr.h> 77 #include <sys/sysmacros.h> 78 #include <sys/dtrace_impl.h> 79 #include <sys/atomic.h> 80 #include <sys/cmn_err.h> 81 #include <sys/mutex_impl.h> 82 #include <sys/rwlock_impl.h> 83 #include <sys/ctf_api.h> 84 #include <sys/panic.h> 85 #include <sys/priv_impl.h> 86 #include <sys/policy.h> 87 #include <sys/cred_impl.h> 88 #include <sys/procfs_isa.h> 89 #include <sys/taskq.h> 90 #include <sys/mkdev.h> 91 #include <sys/kdi.h> 92 #include <sys/zone.h> 93 #include <sys/socket.h> 94 #include <netinet/in.h> 95 #include "strtolctype.h" 96 97 /* 98 * DTrace Tunable Variables 99 * 100 * The following variables may be tuned by adding a line to /etc/system that 101 * includes both the name of the DTrace module ("dtrace") and the name of the 102 * variable. For example: 103 * 104 * set dtrace:dtrace_destructive_disallow = 1 105 * 106 * In general, the only variables that one should be tuning this way are those 107 * that affect system-wide DTrace behavior, and for which the default behavior 108 * is undesirable. Most of these variables are tunable on a per-consumer 109 * basis using DTrace options, and need not be tuned on a system-wide basis. 110 * When tuning these variables, avoid pathological values; while some attempt 111 * is made to verify the integrity of these variables, they are not considered 112 * part of the supported interface to DTrace, and they are therefore not 113 * checked comprehensively. Further, these variables should not be tuned 114 * dynamically via "mdb -kw" or other means; they should only be tuned via 115 * /etc/system. 116 */ 117 int dtrace_destructive_disallow = 0; 118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); 119 size_t dtrace_difo_maxsize = (256 * 1024); 120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024); 121 size_t dtrace_global_maxsize = (16 * 1024); 122 size_t dtrace_actions_max = (16 * 1024); 123 size_t dtrace_retain_max = 1024; 124 dtrace_optval_t dtrace_helper_actions_max = 1024; 125 dtrace_optval_t dtrace_helper_providers_max = 32; 126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); 127 size_t dtrace_strsize_default = 256; 128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */ 129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */ 130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ 131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ 132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ 133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ 134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ 135 dtrace_optval_t dtrace_nspec_default = 1; 136 dtrace_optval_t dtrace_specsize_default = 32 * 1024; 137 dtrace_optval_t dtrace_stackframes_default = 20; 138 dtrace_optval_t dtrace_ustackframes_default = 20; 139 dtrace_optval_t dtrace_jstackframes_default = 50; 140 dtrace_optval_t dtrace_jstackstrsize_default = 512; 141 int dtrace_msgdsize_max = 128; 142 hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ 143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ 144 int dtrace_devdepth_max = 32; 145 int dtrace_err_verbose; 146 hrtime_t dtrace_deadman_interval = NANOSEC; 147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; 148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; 149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC; 150 151 /* 152 * DTrace External Variables 153 * 154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously 155 * available to DTrace consumers via the backtick (`) syntax. One of these, 156 * dtrace_zero, is made deliberately so: it is provided as a source of 157 * well-known, zero-filled memory. While this variable is not documented, 158 * it is used by some translators as an implementation detail. 159 */ 160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ 161 162 /* 163 * DTrace Internal Variables 164 */ 165 static dev_info_t *dtrace_devi; /* device info */ 166 static vmem_t *dtrace_arena; /* probe ID arena */ 167 static vmem_t *dtrace_minor; /* minor number arena */ 168 static taskq_t *dtrace_taskq; /* task queue */ 169 static dtrace_probe_t **dtrace_probes; /* array of all probes */ 170 static int dtrace_nprobes; /* number of probes */ 171 static dtrace_provider_t *dtrace_provider; /* provider list */ 172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ 173 static int dtrace_opens; /* number of opens */ 174 static int dtrace_helpers; /* number of helpers */ 175 static int dtrace_getf; /* number of unpriv getf()s */ 176 static void *dtrace_softstate; /* softstate pointer */ 177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ 178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ 179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ 180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ 181 static int dtrace_toxranges; /* number of toxic ranges */ 182 static int dtrace_toxranges_max; /* size of toxic range array */ 183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */ 184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */ 185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ 186 static kthread_t *dtrace_panicked; /* panicking thread */ 187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ 188 static dtrace_genid_t dtrace_probegen; /* current probe generation */ 189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ 190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ 191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ 192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ 193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */ 194 195 /* 196 * DTrace Locking 197 * DTrace is protected by three (relatively coarse-grained) locks: 198 * 199 * (1) dtrace_lock is required to manipulate essentially any DTrace state, 200 * including enabling state, probes, ECBs, consumer state, helper state, 201 * etc. Importantly, dtrace_lock is _not_ required when in probe context; 202 * probe context is lock-free -- synchronization is handled via the 203 * dtrace_sync() cross call mechanism. 204 * 205 * (2) dtrace_provider_lock is required when manipulating provider state, or 206 * when provider state must be held constant. 207 * 208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or 209 * when meta provider state must be held constant. 210 * 211 * The lock ordering between these three locks is dtrace_meta_lock before 212 * dtrace_provider_lock before dtrace_lock. (In particular, there are 213 * several places where dtrace_provider_lock is held by the framework as it 214 * calls into the providers -- which then call back into the framework, 215 * grabbing dtrace_lock.) 216 * 217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect 218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical 219 * role as a coarse-grained lock; it is acquired before both of these locks. 220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must 221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks. 222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be 223 * acquired _between_ dtrace_provider_lock and dtrace_lock. 224 */ 225 static kmutex_t dtrace_lock; /* probe state lock */ 226 static kmutex_t dtrace_provider_lock; /* provider state lock */ 227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */ 228 229 /* 230 * DTrace Provider Variables 231 * 232 * These are the variables relating to DTrace as a provider (that is, the 233 * provider of the BEGIN, END, and ERROR probes). 234 */ 235 static dtrace_pattr_t dtrace_provider_attr = { 236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, 241 }; 242 243 static void 244 dtrace_nullop(void) 245 {} 246 247 static int 248 dtrace_enable_nullop(void) 249 { 250 return (0); 251 } 252 253 static dtrace_pops_t dtrace_provider_ops = { 254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop, 255 (void (*)(void *, struct modctl *))dtrace_nullop, 256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop, 257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop, 260 NULL, 261 NULL, 262 NULL, 263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop 264 }; 265 266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ 267 static dtrace_id_t dtrace_probeid_end; /* special END probe */ 268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ 269 270 /* 271 * DTrace Helper Tracing Variables 272 * 273 * These variables should be set dynamically to enable helper tracing. The 274 * only variables that should be set are dtrace_helptrace_enable (which should 275 * be set to a non-zero value to allocate helper tracing buffers on the next 276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a 277 * non-zero value to deallocate helper tracing buffers on the next close of 278 * /dev/dtrace). When (and only when) helper tracing is disabled, the 279 * buffer size may also be set via dtrace_helptrace_bufsize. 280 */ 281 int dtrace_helptrace_enable = 0; 282 int dtrace_helptrace_disable = 0; 283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024; 284 uint32_t dtrace_helptrace_nlocals; 285 static dtrace_helptrace_t *dtrace_helptrace_buffer; 286 static uint32_t dtrace_helptrace_next = 0; 287 static int dtrace_helptrace_wrapped = 0; 288 289 /* 290 * DTrace Error Hashing 291 * 292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash 293 * table. This is very useful for checking coverage of tests that are 294 * expected to induce DIF or DOF processing errors, and may be useful for 295 * debugging problems in the DIF code generator or in DOF generation . The 296 * error hash may be examined with the ::dtrace_errhash MDB dcmd. 297 */ 298 #ifdef DEBUG 299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; 300 static const char *dtrace_errlast; 301 static kthread_t *dtrace_errthread; 302 static kmutex_t dtrace_errlock; 303 #endif 304 305 /* 306 * DTrace Macros and Constants 307 * 308 * These are various macros that are useful in various spots in the 309 * implementation, along with a few random constants that have no meaning 310 * outside of the implementation. There is no real structure to this cpp 311 * mishmash -- but is there ever? 312 */ 313 #define DTRACE_HASHSTR(hash, probe) \ 314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs))) 315 316 #define DTRACE_HASHNEXT(hash, probe) \ 317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs) 318 319 #define DTRACE_HASHPREV(hash, probe) \ 320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs) 321 322 #define DTRACE_HASHEQ(hash, lhs, rhs) \ 323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \ 324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0) 325 326 #define DTRACE_AGGHASHSIZE_SLEW 17 327 328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) 329 330 /* 331 * The key for a thread-local variable consists of the lower 61 bits of the 332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL. 333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never 334 * equal to a variable identifier. This is necessary (but not sufficient) to 335 * assure that global associative arrays never collide with thread-local 336 * variables. To guarantee that they cannot collide, we must also define the 337 * order for keying dynamic variables. That order is: 338 * 339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] 340 * 341 * Because the variable-key and the tls-key are in orthogonal spaces, there is 342 * no way for a global variable key signature to match a thread-local key 343 * signature. 344 */ 345 #define DTRACE_TLS_THRKEY(where) { \ 346 uint_t intr = 0; \ 347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \ 348 for (; actv; actv >>= 1) \ 349 intr++; \ 350 ASSERT(intr < (1 << 3)); \ 351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \ 352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \ 353 } 354 355 #define DT_BSWAP_8(x) ((x) & 0xff) 356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) 357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) 358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) 359 360 #define DT_MASK_LO 0x00000000FFFFFFFFULL 361 362 #define DTRACE_STORE(type, tomax, offset, what) \ 363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); 364 365 #ifndef __x86 366 #define DTRACE_ALIGNCHECK(addr, size, flags) \ 367 if (addr & (size - 1)) { \ 368 *flags |= CPU_DTRACE_BADALIGN; \ 369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 370 return (0); \ 371 } 372 #else 373 #define DTRACE_ALIGNCHECK(addr, size, flags) 374 #endif 375 376 /* 377 * Test whether a range of memory starting at testaddr of size testsz falls 378 * within the range of memory described by addr, sz. We take care to avoid 379 * problems with overflow and underflow of the unsigned quantities, and 380 * disallow all negative sizes. Ranges of size 0 are allowed. 381 */ 382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ 383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \ 384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \ 385 (testaddr) + (testsz) >= (testaddr)) 386 387 /* 388 * Test whether alloc_sz bytes will fit in the scratch region. We isolate 389 * alloc_sz on the righthand side of the comparison in order to avoid overflow 390 * or underflow in the comparison with it. This is simpler than the INRANGE 391 * check above, because we know that the dtms_scratch_ptr is valid in the 392 * range. Allocations of size zero are allowed. 393 */ 394 #define DTRACE_INSCRATCH(mstate, alloc_sz) \ 395 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ 396 (mstate)->dtms_scratch_ptr >= (alloc_sz)) 397 398 #define DTRACE_LOADFUNC(bits) \ 399 /*CSTYLED*/ \ 400 uint##bits##_t \ 401 dtrace_load##bits(uintptr_t addr) \ 402 { \ 403 size_t size = bits / NBBY; \ 404 /*CSTYLED*/ \ 405 uint##bits##_t rval; \ 406 int i; \ 407 volatile uint16_t *flags = (volatile uint16_t *) \ 408 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ 409 \ 410 DTRACE_ALIGNCHECK(addr, size, flags); \ 411 \ 412 for (i = 0; i < dtrace_toxranges; i++) { \ 413 if (addr >= dtrace_toxrange[i].dtt_limit) \ 414 continue; \ 415 \ 416 if (addr + size <= dtrace_toxrange[i].dtt_base) \ 417 continue; \ 418 \ 419 /* \ 420 * This address falls within a toxic region; return 0. \ 421 */ \ 422 *flags |= CPU_DTRACE_BADADDR; \ 423 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ 424 return (0); \ 425 } \ 426 \ 427 *flags |= CPU_DTRACE_NOFAULT; \ 428 /*CSTYLED*/ \ 429 rval = *((volatile uint##bits##_t *)addr); \ 430 *flags &= ~CPU_DTRACE_NOFAULT; \ 431 \ 432 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \ 433 } 434 435 #ifdef _LP64 436 #define dtrace_loadptr dtrace_load64 437 #else 438 #define dtrace_loadptr dtrace_load32 439 #endif 440 441 #define DTRACE_DYNHASH_FREE 0 442 #define DTRACE_DYNHASH_SINK 1 443 #define DTRACE_DYNHASH_VALID 2 444 445 #define DTRACE_MATCH_FAIL -1 446 #define DTRACE_MATCH_NEXT 0 447 #define DTRACE_MATCH_DONE 1 448 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') 449 #define DTRACE_STATE_ALIGN 64 450 451 #define DTRACE_FLAGS2FLT(flags) \ 452 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ 453 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ 454 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ 455 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ 456 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ 457 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ 458 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ 459 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ 460 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ 461 DTRACEFLT_UNKNOWN) 462 463 #define DTRACEACT_ISSTRING(act) \ 464 ((act)->dta_kind == DTRACEACT_DIFEXPR && \ 465 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) 466 467 static size_t dtrace_strlen(const char *, size_t); 468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); 469 static void dtrace_enabling_provide(dtrace_provider_t *); 470 static int dtrace_enabling_match(dtrace_enabling_t *, int *); 471 static void dtrace_enabling_matchall(void); 472 static void dtrace_enabling_reap(void); 473 static dtrace_state_t *dtrace_anon_grab(void); 474 static uint64_t dtrace_helper(int, dtrace_mstate_t *, 475 dtrace_state_t *, uint64_t, uint64_t); 476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *); 477 static void dtrace_buffer_drop(dtrace_buffer_t *); 478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when); 479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, 480 dtrace_state_t *, dtrace_mstate_t *); 481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, 482 dtrace_optval_t); 483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *); 484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); 485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *); 486 static void dtrace_getf_barrier(void); 487 488 /* 489 * DTrace Probe Context Functions 490 * 491 * These functions are called from probe context. Because probe context is 492 * any context in which C may be called, arbitrarily locks may be held, 493 * interrupts may be disabled, we may be in arbitrary dispatched state, etc. 494 * As a result, functions called from probe context may only call other DTrace 495 * support functions -- they may not interact at all with the system at large. 496 * (Note that the ASSERT macro is made probe-context safe by redefining it in 497 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary 498 * loads are to be performed from probe context, they _must_ be in terms of 499 * the safe dtrace_load*() variants. 500 * 501 * Some functions in this block are not actually called from probe context; 502 * for these functions, there will be a comment above the function reading 503 * "Note: not called from probe context." 504 */ 505 void 506 dtrace_panic(const char *format, ...) 507 { 508 va_list alist; 509 510 va_start(alist, format); 511 dtrace_vpanic(format, alist); 512 va_end(alist); 513 } 514 515 int 516 dtrace_assfail(const char *a, const char *f, int l) 517 { 518 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l); 519 520 /* 521 * We just need something here that even the most clever compiler 522 * cannot optimize away. 523 */ 524 return (a[(uintptr_t)f]); 525 } 526 527 /* 528 * Atomically increment a specified error counter from probe context. 529 */ 530 static void 531 dtrace_error(uint32_t *counter) 532 { 533 /* 534 * Most counters stored to in probe context are per-CPU counters. 535 * However, there are some error conditions that are sufficiently 536 * arcane that they don't merit per-CPU storage. If these counters 537 * are incremented concurrently on different CPUs, scalability will be 538 * adversely affected -- but we don't expect them to be white-hot in a 539 * correctly constructed enabling... 540 */ 541 uint32_t oval, nval; 542 543 do { 544 oval = *counter; 545 546 if ((nval = oval + 1) == 0) { 547 /* 548 * If the counter would wrap, set it to 1 -- assuring 549 * that the counter is never zero when we have seen 550 * errors. (The counter must be 32-bits because we 551 * aren't guaranteed a 64-bit compare&swap operation.) 552 * To save this code both the infamy of being fingered 553 * by a priggish news story and the indignity of being 554 * the target of a neo-puritan witch trial, we're 555 * carefully avoiding any colorful description of the 556 * likelihood of this condition -- but suffice it to 557 * say that it is only slightly more likely than the 558 * overflow of predicate cache IDs, as discussed in 559 * dtrace_predicate_create(). 560 */ 561 nval = 1; 562 } 563 } while (dtrace_cas32(counter, oval, nval) != oval); 564 } 565 566 /* 567 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a 568 * uint8_t, a uint16_t, a uint32_t and a uint64_t. 569 */ 570 DTRACE_LOADFUNC(8) 571 DTRACE_LOADFUNC(16) 572 DTRACE_LOADFUNC(32) 573 DTRACE_LOADFUNC(64) 574 575 static int 576 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) 577 { 578 if (dest < mstate->dtms_scratch_base) 579 return (0); 580 581 if (dest + size < dest) 582 return (0); 583 584 if (dest + size > mstate->dtms_scratch_ptr) 585 return (0); 586 587 return (1); 588 } 589 590 static int 591 dtrace_canstore_statvar(uint64_t addr, size_t sz, 592 dtrace_statvar_t **svars, int nsvars) 593 { 594 int i; 595 596 for (i = 0; i < nsvars; i++) { 597 dtrace_statvar_t *svar = svars[i]; 598 599 if (svar == NULL || svar->dtsv_size == 0) 600 continue; 601 602 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) 603 return (1); 604 } 605 606 return (0); 607 } 608 609 /* 610 * Check to see if the address is within a memory region to which a store may 611 * be issued. This includes the DTrace scratch areas, and any DTrace variable 612 * region. The caller of dtrace_canstore() is responsible for performing any 613 * alignment checks that are needed before stores are actually executed. 614 */ 615 static int 616 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 617 dtrace_vstate_t *vstate) 618 { 619 /* 620 * First, check to see if the address is in scratch space... 621 */ 622 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, 623 mstate->dtms_scratch_size)) 624 return (1); 625 626 /* 627 * Now check to see if it's a dynamic variable. This check will pick 628 * up both thread-local variables and any global dynamically-allocated 629 * variables. 630 */ 631 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base, 632 vstate->dtvs_dynvars.dtds_size)) { 633 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 634 uintptr_t base = (uintptr_t)dstate->dtds_base + 635 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); 636 uintptr_t chunkoffs; 637 638 /* 639 * Before we assume that we can store here, we need to make 640 * sure that it isn't in our metadata -- storing to our 641 * dynamic variable metadata would corrupt our state. For 642 * the range to not include any dynamic variable metadata, 643 * it must: 644 * 645 * (1) Start above the hash table that is at the base of 646 * the dynamic variable space 647 * 648 * (2) Have a starting chunk offset that is beyond the 649 * dtrace_dynvar_t that is at the base of every chunk 650 * 651 * (3) Not span a chunk boundary 652 * 653 */ 654 if (addr < base) 655 return (0); 656 657 chunkoffs = (addr - base) % dstate->dtds_chunksize; 658 659 if (chunkoffs < sizeof (dtrace_dynvar_t)) 660 return (0); 661 662 if (chunkoffs + sz > dstate->dtds_chunksize) 663 return (0); 664 665 return (1); 666 } 667 668 /* 669 * Finally, check the static local and global variables. These checks 670 * take the longest, so we perform them last. 671 */ 672 if (dtrace_canstore_statvar(addr, sz, 673 vstate->dtvs_locals, vstate->dtvs_nlocals)) 674 return (1); 675 676 if (dtrace_canstore_statvar(addr, sz, 677 vstate->dtvs_globals, vstate->dtvs_nglobals)) 678 return (1); 679 680 return (0); 681 } 682 683 684 /* 685 * Convenience routine to check to see if the address is within a memory 686 * region in which a load may be issued given the user's privilege level; 687 * if not, it sets the appropriate error flags and loads 'addr' into the 688 * illegal value slot. 689 * 690 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement 691 * appropriate memory access protection. 692 */ 693 static int 694 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 695 dtrace_vstate_t *vstate) 696 { 697 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 698 file_t *fp; 699 700 /* 701 * If we hold the privilege to read from kernel memory, then 702 * everything is readable. 703 */ 704 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 705 return (1); 706 707 /* 708 * You can obviously read that which you can store. 709 */ 710 if (dtrace_canstore(addr, sz, mstate, vstate)) 711 return (1); 712 713 /* 714 * We're allowed to read from our own string table. 715 */ 716 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab, 717 mstate->dtms_difo->dtdo_strlen)) 718 return (1); 719 720 if (vstate->dtvs_state != NULL && 721 dtrace_priv_proc(vstate->dtvs_state, mstate)) { 722 proc_t *p; 723 724 /* 725 * When we have privileges to the current process, there are 726 * several context-related kernel structures that are safe to 727 * read, even absent the privilege to read from kernel memory. 728 * These reads are safe because these structures contain only 729 * state that (1) we're permitted to read, (2) is harmless or 730 * (3) contains pointers to additional kernel state that we're 731 * not permitted to read (and as such, do not present an 732 * opportunity for privilege escalation). Finally (and 733 * critically), because of the nature of their relation with 734 * the current thread context, the memory associated with these 735 * structures cannot change over the duration of probe context, 736 * and it is therefore impossible for this memory to be 737 * deallocated and reallocated as something else while it's 738 * being operated upon. 739 */ 740 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) 741 return (1); 742 743 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr, 744 sz, curthread->t_procp, sizeof (proc_t))) { 745 return (1); 746 } 747 748 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz, 749 curthread->t_cred, sizeof (cred_t))) { 750 return (1); 751 } 752 753 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz, 754 &(p->p_pidp->pid_id), sizeof (pid_t))) { 755 return (1); 756 } 757 758 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz, 759 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) { 760 return (1); 761 } 762 } 763 764 if ((fp = mstate->dtms_getf) != NULL) { 765 uintptr_t psz = sizeof (void *); 766 vnode_t *vp; 767 vnodeops_t *op; 768 769 /* 770 * When getf() returns a file_t, the enabling is implicitly 771 * granted the (transient) right to read the returned file_t 772 * as well as the v_path and v_op->vnop_name of the underlying 773 * vnode. These accesses are allowed after a successful 774 * getf() because the members that they refer to cannot change 775 * once set -- and the barrier logic in the kernel's closef() 776 * path assures that the file_t and its referenced vode_t 777 * cannot themselves be stale (that is, it impossible for 778 * either dtms_getf itself or its f_vnode member to reference 779 * freed memory). 780 */ 781 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) 782 return (1); 783 784 if ((vp = fp->f_vnode) != NULL) { 785 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) 786 return (1); 787 788 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz, 789 vp->v_path, strlen(vp->v_path) + 1)) { 790 return (1); 791 } 792 793 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) 794 return (1); 795 796 if ((op = vp->v_op) != NULL && 797 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) { 798 return (1); 799 } 800 801 if (op != NULL && op->vnop_name != NULL && 802 DTRACE_INRANGE(addr, sz, op->vnop_name, 803 strlen(op->vnop_name) + 1)) { 804 return (1); 805 } 806 } 807 } 808 809 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); 810 *illval = addr; 811 return (0); 812 } 813 814 /* 815 * Convenience routine to check to see if a given string is within a memory 816 * region in which a load may be issued given the user's privilege level; 817 * this exists so that we don't need to issue unnecessary dtrace_strlen() 818 * calls in the event that the user has all privileges. 819 */ 820 static int 821 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, 822 dtrace_vstate_t *vstate) 823 { 824 size_t strsz; 825 826 /* 827 * If we hold the privilege to read from kernel memory, then 828 * everything is readable. 829 */ 830 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 831 return (1); 832 833 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz); 834 if (dtrace_canload(addr, strsz, mstate, vstate)) 835 return (1); 836 837 return (0); 838 } 839 840 /* 841 * Convenience routine to check to see if a given variable is within a memory 842 * region in which a load may be issued given the user's privilege level. 843 */ 844 static int 845 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate, 846 dtrace_vstate_t *vstate) 847 { 848 size_t sz; 849 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 850 851 /* 852 * If we hold the privilege to read from kernel memory, then 853 * everything is readable. 854 */ 855 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 856 return (1); 857 858 if (type->dtdt_kind == DIF_TYPE_STRING) 859 sz = dtrace_strlen(src, 860 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1; 861 else 862 sz = type->dtdt_size; 863 864 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate)); 865 } 866 867 /* 868 * Convert a string to a signed integer using safe loads. 869 * 870 * NOTE: This function uses various macros from strtolctype.h to manipulate 871 * digit values, etc -- these have all been checked to ensure they make 872 * no additional function calls. 873 */ 874 static int64_t 875 dtrace_strtoll(char *input, int base, size_t limit) 876 { 877 uintptr_t pos = (uintptr_t)input; 878 int64_t val = 0; 879 int x; 880 boolean_t neg = B_FALSE; 881 char c, cc, ccc; 882 uintptr_t end = pos + limit; 883 884 /* 885 * Consume any whitespace preceding digits. 886 */ 887 while ((c = dtrace_load8(pos)) == ' ' || c == '\t') 888 pos++; 889 890 /* 891 * Handle an explicit sign if one is present. 892 */ 893 if (c == '-' || c == '+') { 894 if (c == '-') 895 neg = B_TRUE; 896 c = dtrace_load8(++pos); 897 } 898 899 /* 900 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it 901 * if present. 902 */ 903 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' || 904 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { 905 pos += 2; 906 c = ccc; 907 } 908 909 /* 910 * Read in contiguous digits until the first non-digit character. 911 */ 912 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; 913 c = dtrace_load8(++pos)) 914 val = val * base + x; 915 916 return (neg ? -val : val); 917 } 918 919 /* 920 * Compare two strings using safe loads. 921 */ 922 static int 923 dtrace_strncmp(char *s1, char *s2, size_t limit) 924 { 925 uint8_t c1, c2; 926 volatile uint16_t *flags; 927 928 if (s1 == s2 || limit == 0) 929 return (0); 930 931 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 932 933 do { 934 if (s1 == NULL) { 935 c1 = '\0'; 936 } else { 937 c1 = dtrace_load8((uintptr_t)s1++); 938 } 939 940 if (s2 == NULL) { 941 c2 = '\0'; 942 } else { 943 c2 = dtrace_load8((uintptr_t)s2++); 944 } 945 946 if (c1 != c2) 947 return (c1 - c2); 948 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); 949 950 return (0); 951 } 952 953 /* 954 * Compute strlen(s) for a string using safe memory accesses. The additional 955 * len parameter is used to specify a maximum length to ensure completion. 956 */ 957 static size_t 958 dtrace_strlen(const char *s, size_t lim) 959 { 960 uint_t len; 961 962 for (len = 0; len != lim; len++) { 963 if (dtrace_load8((uintptr_t)s++) == '\0') 964 break; 965 } 966 967 return (len); 968 } 969 970 /* 971 * Check if an address falls within a toxic region. 972 */ 973 static int 974 dtrace_istoxic(uintptr_t kaddr, size_t size) 975 { 976 uintptr_t taddr, tsize; 977 int i; 978 979 for (i = 0; i < dtrace_toxranges; i++) { 980 taddr = dtrace_toxrange[i].dtt_base; 981 tsize = dtrace_toxrange[i].dtt_limit - taddr; 982 983 if (kaddr - taddr < tsize) { 984 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 985 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; 986 return (1); 987 } 988 989 if (taddr - kaddr < size) { 990 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 991 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; 992 return (1); 993 } 994 } 995 996 return (0); 997 } 998 999 /* 1000 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe 1001 * memory specified by the DIF program. The dst is assumed to be safe memory 1002 * that we can store to directly because it is managed by DTrace. As with 1003 * standard bcopy, overlapping copies are handled properly. 1004 */ 1005 static void 1006 dtrace_bcopy(const void *src, void *dst, size_t len) 1007 { 1008 if (len != 0) { 1009 uint8_t *s1 = dst; 1010 const uint8_t *s2 = src; 1011 1012 if (s1 <= s2) { 1013 do { 1014 *s1++ = dtrace_load8((uintptr_t)s2++); 1015 } while (--len != 0); 1016 } else { 1017 s2 += len; 1018 s1 += len; 1019 1020 do { 1021 *--s1 = dtrace_load8((uintptr_t)--s2); 1022 } while (--len != 0); 1023 } 1024 } 1025 } 1026 1027 /* 1028 * Copy src to dst using safe memory accesses, up to either the specified 1029 * length, or the point that a nul byte is encountered. The src is assumed to 1030 * be unsafe memory specified by the DIF program. The dst is assumed to be 1031 * safe memory that we can store to directly because it is managed by DTrace. 1032 * Unlike dtrace_bcopy(), overlapping regions are not handled. 1033 */ 1034 static void 1035 dtrace_strcpy(const void *src, void *dst, size_t len) 1036 { 1037 if (len != 0) { 1038 uint8_t *s1 = dst, c; 1039 const uint8_t *s2 = src; 1040 1041 do { 1042 *s1++ = c = dtrace_load8((uintptr_t)s2++); 1043 } while (--len != 0 && c != '\0'); 1044 } 1045 } 1046 1047 /* 1048 * Copy src to dst, deriving the size and type from the specified (BYREF) 1049 * variable type. The src is assumed to be unsafe memory specified by the DIF 1050 * program. The dst is assumed to be DTrace variable memory that is of the 1051 * specified type; we assume that we can store to directly. 1052 */ 1053 static void 1054 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type) 1055 { 1056 ASSERT(type->dtdt_flags & DIF_TF_BYREF); 1057 1058 if (type->dtdt_kind == DIF_TYPE_STRING) { 1059 dtrace_strcpy(src, dst, type->dtdt_size); 1060 } else { 1061 dtrace_bcopy(src, dst, type->dtdt_size); 1062 } 1063 } 1064 1065 /* 1066 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be 1067 * unsafe memory specified by the DIF program. The s2 data is assumed to be 1068 * safe memory that we can access directly because it is managed by DTrace. 1069 */ 1070 static int 1071 dtrace_bcmp(const void *s1, const void *s2, size_t len) 1072 { 1073 volatile uint16_t *flags; 1074 1075 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 1076 1077 if (s1 == s2) 1078 return (0); 1079 1080 if (s1 == NULL || s2 == NULL) 1081 return (1); 1082 1083 if (s1 != s2 && len != 0) { 1084 const uint8_t *ps1 = s1; 1085 const uint8_t *ps2 = s2; 1086 1087 do { 1088 if (dtrace_load8((uintptr_t)ps1++) != *ps2++) 1089 return (1); 1090 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); 1091 } 1092 return (0); 1093 } 1094 1095 /* 1096 * Zero the specified region using a simple byte-by-byte loop. Note that this 1097 * is for safe DTrace-managed memory only. 1098 */ 1099 static void 1100 dtrace_bzero(void *dst, size_t len) 1101 { 1102 uchar_t *cp; 1103 1104 for (cp = dst; len != 0; len--) 1105 *cp++ = 0; 1106 } 1107 1108 static void 1109 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 1110 { 1111 uint64_t result[2]; 1112 1113 result[0] = addend1[0] + addend2[0]; 1114 result[1] = addend1[1] + addend2[1] + 1115 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 1116 1117 sum[0] = result[0]; 1118 sum[1] = result[1]; 1119 } 1120 1121 /* 1122 * Shift the 128-bit value in a by b. If b is positive, shift left. 1123 * If b is negative, shift right. 1124 */ 1125 static void 1126 dtrace_shift_128(uint64_t *a, int b) 1127 { 1128 uint64_t mask; 1129 1130 if (b == 0) 1131 return; 1132 1133 if (b < 0) { 1134 b = -b; 1135 if (b >= 64) { 1136 a[0] = a[1] >> (b - 64); 1137 a[1] = 0; 1138 } else { 1139 a[0] >>= b; 1140 mask = 1LL << (64 - b); 1141 mask -= 1; 1142 a[0] |= ((a[1] & mask) << (64 - b)); 1143 a[1] >>= b; 1144 } 1145 } else { 1146 if (b >= 64) { 1147 a[1] = a[0] << (b - 64); 1148 a[0] = 0; 1149 } else { 1150 a[1] <<= b; 1151 mask = a[0] >> (64 - b); 1152 a[1] |= mask; 1153 a[0] <<= b; 1154 } 1155 } 1156 } 1157 1158 /* 1159 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 1160 * use native multiplication on those, and then re-combine into the 1161 * resulting 128-bit value. 1162 * 1163 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 1164 * hi1 * hi2 << 64 + 1165 * hi1 * lo2 << 32 + 1166 * hi2 * lo1 << 32 + 1167 * lo1 * lo2 1168 */ 1169 static void 1170 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 1171 { 1172 uint64_t hi1, hi2, lo1, lo2; 1173 uint64_t tmp[2]; 1174 1175 hi1 = factor1 >> 32; 1176 hi2 = factor2 >> 32; 1177 1178 lo1 = factor1 & DT_MASK_LO; 1179 lo2 = factor2 & DT_MASK_LO; 1180 1181 product[0] = lo1 * lo2; 1182 product[1] = hi1 * hi2; 1183 1184 tmp[0] = hi1 * lo2; 1185 tmp[1] = 0; 1186 dtrace_shift_128(tmp, 32); 1187 dtrace_add_128(product, tmp, product); 1188 1189 tmp[0] = hi2 * lo1; 1190 tmp[1] = 0; 1191 dtrace_shift_128(tmp, 32); 1192 dtrace_add_128(product, tmp, product); 1193 } 1194 1195 /* 1196 * This privilege check should be used by actions and subroutines to 1197 * verify that the user credentials of the process that enabled the 1198 * invoking ECB match the target credentials 1199 */ 1200 static int 1201 dtrace_priv_proc_common_user(dtrace_state_t *state) 1202 { 1203 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1204 1205 /* 1206 * We should always have a non-NULL state cred here, since if cred 1207 * is null (anonymous tracing), we fast-path bypass this routine. 1208 */ 1209 ASSERT(s_cr != NULL); 1210 1211 if ((cr = CRED()) != NULL && 1212 s_cr->cr_uid == cr->cr_uid && 1213 s_cr->cr_uid == cr->cr_ruid && 1214 s_cr->cr_uid == cr->cr_suid && 1215 s_cr->cr_gid == cr->cr_gid && 1216 s_cr->cr_gid == cr->cr_rgid && 1217 s_cr->cr_gid == cr->cr_sgid) 1218 return (1); 1219 1220 return (0); 1221 } 1222 1223 /* 1224 * This privilege check should be used by actions and subroutines to 1225 * verify that the zone of the process that enabled the invoking ECB 1226 * matches the target credentials 1227 */ 1228 static int 1229 dtrace_priv_proc_common_zone(dtrace_state_t *state) 1230 { 1231 cred_t *cr, *s_cr = state->dts_cred.dcr_cred; 1232 1233 /* 1234 * We should always have a non-NULL state cred here, since if cred 1235 * is null (anonymous tracing), we fast-path bypass this routine. 1236 */ 1237 ASSERT(s_cr != NULL); 1238 1239 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone) 1240 return (1); 1241 1242 return (0); 1243 } 1244 1245 /* 1246 * This privilege check should be used by actions and subroutines to 1247 * verify that the process has not setuid or changed credentials. 1248 */ 1249 static int 1250 dtrace_priv_proc_common_nocd() 1251 { 1252 proc_t *proc; 1253 1254 if ((proc = ttoproc(curthread)) != NULL && 1255 !(proc->p_flag & SNOCD)) 1256 return (1); 1257 1258 return (0); 1259 } 1260 1261 static int 1262 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate) 1263 { 1264 int action = state->dts_cred.dcr_action; 1265 1266 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC)) 1267 goto bad; 1268 1269 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && 1270 dtrace_priv_proc_common_zone(state) == 0) 1271 goto bad; 1272 1273 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && 1274 dtrace_priv_proc_common_user(state) == 0) 1275 goto bad; 1276 1277 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && 1278 dtrace_priv_proc_common_nocd() == 0) 1279 goto bad; 1280 1281 return (1); 1282 1283 bad: 1284 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1285 1286 return (0); 1287 } 1288 1289 static int 1290 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate) 1291 { 1292 if (mstate->dtms_access & DTRACE_ACCESS_PROC) { 1293 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) 1294 return (1); 1295 1296 if (dtrace_priv_proc_common_zone(state) && 1297 dtrace_priv_proc_common_user(state) && 1298 dtrace_priv_proc_common_nocd()) 1299 return (1); 1300 } 1301 1302 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1303 1304 return (0); 1305 } 1306 1307 static int 1308 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate) 1309 { 1310 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) && 1311 (state->dts_cred.dcr_action & DTRACE_CRA_PROC)) 1312 return (1); 1313 1314 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; 1315 1316 return (0); 1317 } 1318 1319 static int 1320 dtrace_priv_kernel(dtrace_state_t *state) 1321 { 1322 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) 1323 return (1); 1324 1325 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1326 1327 return (0); 1328 } 1329 1330 static int 1331 dtrace_priv_kernel_destructive(dtrace_state_t *state) 1332 { 1333 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) 1334 return (1); 1335 1336 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; 1337 1338 return (0); 1339 } 1340 1341 /* 1342 * Determine if the dte_cond of the specified ECB allows for processing of 1343 * the current probe to continue. Note that this routine may allow continued 1344 * processing, but with access(es) stripped from the mstate's dtms_access 1345 * field. 1346 */ 1347 static int 1348 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate, 1349 dtrace_ecb_t *ecb) 1350 { 1351 dtrace_probe_t *probe = ecb->dte_probe; 1352 dtrace_provider_t *prov = probe->dtpr_provider; 1353 dtrace_pops_t *pops = &prov->dtpv_pops; 1354 int mode = DTRACE_MODE_NOPRIV_DROP; 1355 1356 ASSERT(ecb->dte_cond); 1357 1358 if (pops->dtps_mode != NULL) { 1359 mode = pops->dtps_mode(prov->dtpv_arg, 1360 probe->dtpr_id, probe->dtpr_arg); 1361 1362 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL)); 1363 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT | 1364 DTRACE_MODE_NOPRIV_DROP)); 1365 } 1366 1367 /* 1368 * If the dte_cond bits indicate that this consumer is only allowed to 1369 * see user-mode firings of this probe, check that the probe was fired 1370 * while in a user context. If that's not the case, use the policy 1371 * specified by the provider to determine if we drop the probe or 1372 * merely restrict operation. 1373 */ 1374 if (ecb->dte_cond & DTRACE_COND_USERMODE) { 1375 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP); 1376 1377 if (!(mode & DTRACE_MODE_USER)) { 1378 if (mode & DTRACE_MODE_NOPRIV_DROP) 1379 return (0); 1380 1381 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1382 } 1383 } 1384 1385 /* 1386 * This is more subtle than it looks. We have to be absolutely certain 1387 * that CRED() isn't going to change out from under us so it's only 1388 * legit to examine that structure if we're in constrained situations. 1389 * Currently, the only times we'll this check is if a non-super-user 1390 * has enabled the profile or syscall providers -- providers that 1391 * allow visibility of all processes. For the profile case, the check 1392 * above will ensure that we're examining a user context. 1393 */ 1394 if (ecb->dte_cond & DTRACE_COND_OWNER) { 1395 cred_t *cr; 1396 cred_t *s_cr = state->dts_cred.dcr_cred; 1397 proc_t *proc; 1398 1399 ASSERT(s_cr != NULL); 1400 1401 if ((cr = CRED()) == NULL || 1402 s_cr->cr_uid != cr->cr_uid || 1403 s_cr->cr_uid != cr->cr_ruid || 1404 s_cr->cr_uid != cr->cr_suid || 1405 s_cr->cr_gid != cr->cr_gid || 1406 s_cr->cr_gid != cr->cr_rgid || 1407 s_cr->cr_gid != cr->cr_sgid || 1408 (proc = ttoproc(curthread)) == NULL || 1409 (proc->p_flag & SNOCD)) { 1410 if (mode & DTRACE_MODE_NOPRIV_DROP) 1411 return (0); 1412 1413 mstate->dtms_access &= ~DTRACE_ACCESS_PROC; 1414 } 1415 } 1416 1417 /* 1418 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not 1419 * in our zone, check to see if our mode policy is to restrict rather 1420 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC 1421 * and DTRACE_ACCESS_ARGS 1422 */ 1423 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { 1424 cred_t *cr; 1425 cred_t *s_cr = state->dts_cred.dcr_cred; 1426 1427 ASSERT(s_cr != NULL); 1428 1429 if ((cr = CRED()) == NULL || 1430 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) { 1431 if (mode & DTRACE_MODE_NOPRIV_DROP) 1432 return (0); 1433 1434 mstate->dtms_access &= 1435 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS); 1436 } 1437 } 1438 1439 /* 1440 * By merits of being in this code path at all, we have limited 1441 * privileges. If the provider has indicated that limited privileges 1442 * are to denote restricted operation, strip off the ability to access 1443 * arguments. 1444 */ 1445 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT) 1446 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS; 1447 1448 return (1); 1449 } 1450 1451 /* 1452 * Note: not called from probe context. This function is called 1453 * asynchronously (and at a regular interval) from outside of probe context to 1454 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable 1455 * cleaning is explained in detail in <sys/dtrace_impl.h>. 1456 */ 1457 void 1458 dtrace_dynvar_clean(dtrace_dstate_t *dstate) 1459 { 1460 dtrace_dynvar_t *dirty; 1461 dtrace_dstate_percpu_t *dcpu; 1462 dtrace_dynvar_t **rinsep; 1463 int i, j, work = 0; 1464 1465 for (i = 0; i < NCPU; i++) { 1466 dcpu = &dstate->dtds_percpu[i]; 1467 rinsep = &dcpu->dtdsc_rinsing; 1468 1469 /* 1470 * If the dirty list is NULL, there is no dirty work to do. 1471 */ 1472 if (dcpu->dtdsc_dirty == NULL) 1473 continue; 1474 1475 if (dcpu->dtdsc_rinsing != NULL) { 1476 /* 1477 * If the rinsing list is non-NULL, then it is because 1478 * this CPU was selected to accept another CPU's 1479 * dirty list -- and since that time, dirty buffers 1480 * have accumulated. This is a highly unlikely 1481 * condition, but we choose to ignore the dirty 1482 * buffers -- they'll be picked up a future cleanse. 1483 */ 1484 continue; 1485 } 1486 1487 if (dcpu->dtdsc_clean != NULL) { 1488 /* 1489 * If the clean list is non-NULL, then we're in a 1490 * situation where a CPU has done deallocations (we 1491 * have a non-NULL dirty list) but no allocations (we 1492 * also have a non-NULL clean list). We can't simply 1493 * move the dirty list into the clean list on this 1494 * CPU, yet we also don't want to allow this condition 1495 * to persist, lest a short clean list prevent a 1496 * massive dirty list from being cleaned (which in 1497 * turn could lead to otherwise avoidable dynamic 1498 * drops). To deal with this, we look for some CPU 1499 * with a NULL clean list, NULL dirty list, and NULL 1500 * rinsing list -- and then we borrow this CPU to 1501 * rinse our dirty list. 1502 */ 1503 for (j = 0; j < NCPU; j++) { 1504 dtrace_dstate_percpu_t *rinser; 1505 1506 rinser = &dstate->dtds_percpu[j]; 1507 1508 if (rinser->dtdsc_rinsing != NULL) 1509 continue; 1510 1511 if (rinser->dtdsc_dirty != NULL) 1512 continue; 1513 1514 if (rinser->dtdsc_clean != NULL) 1515 continue; 1516 1517 rinsep = &rinser->dtdsc_rinsing; 1518 break; 1519 } 1520 1521 if (j == NCPU) { 1522 /* 1523 * We were unable to find another CPU that 1524 * could accept this dirty list -- we are 1525 * therefore unable to clean it now. 1526 */ 1527 dtrace_dynvar_failclean++; 1528 continue; 1529 } 1530 } 1531 1532 work = 1; 1533 1534 /* 1535 * Atomically move the dirty list aside. 1536 */ 1537 do { 1538 dirty = dcpu->dtdsc_dirty; 1539 1540 /* 1541 * Before we zap the dirty list, set the rinsing list. 1542 * (This allows for a potential assertion in 1543 * dtrace_dynvar(): if a free dynamic variable appears 1544 * on a hash chain, either the dirty list or the 1545 * rinsing list for some CPU must be non-NULL.) 1546 */ 1547 *rinsep = dirty; 1548 dtrace_membar_producer(); 1549 } while (dtrace_casptr(&dcpu->dtdsc_dirty, 1550 dirty, NULL) != dirty); 1551 } 1552 1553 if (!work) { 1554 /* 1555 * We have no work to do; we can simply return. 1556 */ 1557 return; 1558 } 1559 1560 dtrace_sync(); 1561 1562 for (i = 0; i < NCPU; i++) { 1563 dcpu = &dstate->dtds_percpu[i]; 1564 1565 if (dcpu->dtdsc_rinsing == NULL) 1566 continue; 1567 1568 /* 1569 * We are now guaranteed that no hash chain contains a pointer 1570 * into this dirty list; we can make it clean. 1571 */ 1572 ASSERT(dcpu->dtdsc_clean == NULL); 1573 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; 1574 dcpu->dtdsc_rinsing = NULL; 1575 } 1576 1577 /* 1578 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make 1579 * sure that all CPUs have seen all of the dtdsc_clean pointers. 1580 * This prevents a race whereby a CPU incorrectly decides that 1581 * the state should be something other than DTRACE_DSTATE_CLEAN 1582 * after dtrace_dynvar_clean() has completed. 1583 */ 1584 dtrace_sync(); 1585 1586 dstate->dtds_state = DTRACE_DSTATE_CLEAN; 1587 } 1588 1589 /* 1590 * Depending on the value of the op parameter, this function looks-up, 1591 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an 1592 * allocation is requested, this function will return a pointer to a 1593 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no 1594 * variable can be allocated. If NULL is returned, the appropriate counter 1595 * will be incremented. 1596 */ 1597 dtrace_dynvar_t * 1598 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, 1599 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, 1600 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) 1601 { 1602 uint64_t hashval = DTRACE_DYNHASH_VALID; 1603 dtrace_dynhash_t *hash = dstate->dtds_hash; 1604 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; 1605 processorid_t me = CPU->cpu_id, cpu = me; 1606 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me]; 1607 size_t bucket, ksize; 1608 size_t chunksize = dstate->dtds_chunksize; 1609 uintptr_t kdata, lock, nstate; 1610 uint_t i; 1611 1612 ASSERT(nkeys != 0); 1613 1614 /* 1615 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" 1616 * algorithm. For the by-value portions, we perform the algorithm in 1617 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a 1618 * bit, and seems to have only a minute effect on distribution. For 1619 * the by-reference data, we perform "One-at-a-time" iterating (safely) 1620 * over each referenced byte. It's painful to do this, but it's much 1621 * better than pathological hash distribution. The efficacy of the 1622 * hashing algorithm (and a comparison with other algorithms) may be 1623 * found by running the ::dtrace_dynstat MDB dcmd. 1624 */ 1625 for (i = 0; i < nkeys; i++) { 1626 if (key[i].dttk_size == 0) { 1627 uint64_t val = key[i].dttk_value; 1628 1629 hashval += (val >> 48) & 0xffff; 1630 hashval += (hashval << 10); 1631 hashval ^= (hashval >> 6); 1632 1633 hashval += (val >> 32) & 0xffff; 1634 hashval += (hashval << 10); 1635 hashval ^= (hashval >> 6); 1636 1637 hashval += (val >> 16) & 0xffff; 1638 hashval += (hashval << 10); 1639 hashval ^= (hashval >> 6); 1640 1641 hashval += val & 0xffff; 1642 hashval += (hashval << 10); 1643 hashval ^= (hashval >> 6); 1644 } else { 1645 /* 1646 * This is incredibly painful, but it beats the hell 1647 * out of the alternative. 1648 */ 1649 uint64_t j, size = key[i].dttk_size; 1650 uintptr_t base = (uintptr_t)key[i].dttk_value; 1651 1652 if (!dtrace_canload(base, size, mstate, vstate)) 1653 break; 1654 1655 for (j = 0; j < size; j++) { 1656 hashval += dtrace_load8(base + j); 1657 hashval += (hashval << 10); 1658 hashval ^= (hashval >> 6); 1659 } 1660 } 1661 } 1662 1663 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 1664 return (NULL); 1665 1666 hashval += (hashval << 3); 1667 hashval ^= (hashval >> 11); 1668 hashval += (hashval << 15); 1669 1670 /* 1671 * There is a remote chance (ideally, 1 in 2^31) that our hashval 1672 * comes out to be one of our two sentinel hash values. If this 1673 * actually happens, we set the hashval to be a value known to be a 1674 * non-sentinel value. 1675 */ 1676 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) 1677 hashval = DTRACE_DYNHASH_VALID; 1678 1679 /* 1680 * Yes, it's painful to do a divide here. If the cycle count becomes 1681 * important here, tricks can be pulled to reduce it. (However, it's 1682 * critical that hash collisions be kept to an absolute minimum; 1683 * they're much more painful than a divide.) It's better to have a 1684 * solution that generates few collisions and still keeps things 1685 * relatively simple. 1686 */ 1687 bucket = hashval % dstate->dtds_hashsize; 1688 1689 if (op == DTRACE_DYNVAR_DEALLOC) { 1690 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; 1691 1692 for (;;) { 1693 while ((lock = *lockp) & 1) 1694 continue; 1695 1696 if (dtrace_casptr((void *)lockp, 1697 (void *)lock, (void *)(lock + 1)) == (void *)lock) 1698 break; 1699 } 1700 1701 dtrace_membar_producer(); 1702 } 1703 1704 top: 1705 prev = NULL; 1706 lock = hash[bucket].dtdh_lock; 1707 1708 dtrace_membar_consumer(); 1709 1710 start = hash[bucket].dtdh_chain; 1711 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || 1712 start->dtdv_hashval != DTRACE_DYNHASH_FREE || 1713 op != DTRACE_DYNVAR_DEALLOC)); 1714 1715 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { 1716 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; 1717 dtrace_key_t *dkey = &dtuple->dtt_key[0]; 1718 1719 if (dvar->dtdv_hashval != hashval) { 1720 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { 1721 /* 1722 * We've reached the sink, and therefore the 1723 * end of the hash chain; we can kick out of 1724 * the loop knowing that we have seen a valid 1725 * snapshot of state. 1726 */ 1727 ASSERT(dvar->dtdv_next == NULL); 1728 ASSERT(dvar == &dtrace_dynhash_sink); 1729 break; 1730 } 1731 1732 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { 1733 /* 1734 * We've gone off the rails: somewhere along 1735 * the line, one of the members of this hash 1736 * chain was deleted. Note that we could also 1737 * detect this by simply letting this loop run 1738 * to completion, as we would eventually hit 1739 * the end of the dirty list. However, we 1740 * want to avoid running the length of the 1741 * dirty list unnecessarily (it might be quite 1742 * long), so we catch this as early as 1743 * possible by detecting the hash marker. In 1744 * this case, we simply set dvar to NULL and 1745 * break; the conditional after the loop will 1746 * send us back to top. 1747 */ 1748 dvar = NULL; 1749 break; 1750 } 1751 1752 goto next; 1753 } 1754 1755 if (dtuple->dtt_nkeys != nkeys) 1756 goto next; 1757 1758 for (i = 0; i < nkeys; i++, dkey++) { 1759 if (dkey->dttk_size != key[i].dttk_size) 1760 goto next; /* size or type mismatch */ 1761 1762 if (dkey->dttk_size != 0) { 1763 if (dtrace_bcmp( 1764 (void *)(uintptr_t)key[i].dttk_value, 1765 (void *)(uintptr_t)dkey->dttk_value, 1766 dkey->dttk_size)) 1767 goto next; 1768 } else { 1769 if (dkey->dttk_value != key[i].dttk_value) 1770 goto next; 1771 } 1772 } 1773 1774 if (op != DTRACE_DYNVAR_DEALLOC) 1775 return (dvar); 1776 1777 ASSERT(dvar->dtdv_next == NULL || 1778 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); 1779 1780 if (prev != NULL) { 1781 ASSERT(hash[bucket].dtdh_chain != dvar); 1782 ASSERT(start != dvar); 1783 ASSERT(prev->dtdv_next == dvar); 1784 prev->dtdv_next = dvar->dtdv_next; 1785 } else { 1786 if (dtrace_casptr(&hash[bucket].dtdh_chain, 1787 start, dvar->dtdv_next) != start) { 1788 /* 1789 * We have failed to atomically swing the 1790 * hash table head pointer, presumably because 1791 * of a conflicting allocation on another CPU. 1792 * We need to reread the hash chain and try 1793 * again. 1794 */ 1795 goto top; 1796 } 1797 } 1798 1799 dtrace_membar_producer(); 1800 1801 /* 1802 * Now set the hash value to indicate that it's free. 1803 */ 1804 ASSERT(hash[bucket].dtdh_chain != dvar); 1805 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 1806 1807 dtrace_membar_producer(); 1808 1809 /* 1810 * Set the next pointer to point at the dirty list, and 1811 * atomically swing the dirty pointer to the newly freed dvar. 1812 */ 1813 do { 1814 next = dcpu->dtdsc_dirty; 1815 dvar->dtdv_next = next; 1816 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); 1817 1818 /* 1819 * Finally, unlock this hash bucket. 1820 */ 1821 ASSERT(hash[bucket].dtdh_lock == lock); 1822 ASSERT(lock & 1); 1823 hash[bucket].dtdh_lock++; 1824 1825 return (NULL); 1826 next: 1827 prev = dvar; 1828 continue; 1829 } 1830 1831 if (dvar == NULL) { 1832 /* 1833 * If dvar is NULL, it is because we went off the rails: 1834 * one of the elements that we traversed in the hash chain 1835 * was deleted while we were traversing it. In this case, 1836 * we assert that we aren't doing a dealloc (deallocs lock 1837 * the hash bucket to prevent themselves from racing with 1838 * one another), and retry the hash chain traversal. 1839 */ 1840 ASSERT(op != DTRACE_DYNVAR_DEALLOC); 1841 goto top; 1842 } 1843 1844 if (op != DTRACE_DYNVAR_ALLOC) { 1845 /* 1846 * If we are not to allocate a new variable, we want to 1847 * return NULL now. Before we return, check that the value 1848 * of the lock word hasn't changed. If it has, we may have 1849 * seen an inconsistent snapshot. 1850 */ 1851 if (op == DTRACE_DYNVAR_NOALLOC) { 1852 if (hash[bucket].dtdh_lock != lock) 1853 goto top; 1854 } else { 1855 ASSERT(op == DTRACE_DYNVAR_DEALLOC); 1856 ASSERT(hash[bucket].dtdh_lock == lock); 1857 ASSERT(lock & 1); 1858 hash[bucket].dtdh_lock++; 1859 } 1860 1861 return (NULL); 1862 } 1863 1864 /* 1865 * We need to allocate a new dynamic variable. The size we need is the 1866 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the 1867 * size of any auxiliary key data (rounded up to 8-byte alignment) plus 1868 * the size of any referred-to data (dsize). We then round the final 1869 * size up to the chunksize for allocation. 1870 */ 1871 for (ksize = 0, i = 0; i < nkeys; i++) 1872 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 1873 1874 /* 1875 * This should be pretty much impossible, but could happen if, say, 1876 * strange DIF specified the tuple. Ideally, this should be an 1877 * assertion and not an error condition -- but that requires that the 1878 * chunksize calculation in dtrace_difo_chunksize() be absolutely 1879 * bullet-proof. (That is, it must not be able to be fooled by 1880 * malicious DIF.) Given the lack of backwards branches in DIF, 1881 * solving this would presumably not amount to solving the Halting 1882 * Problem -- but it still seems awfully hard. 1883 */ 1884 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + 1885 ksize + dsize > chunksize) { 1886 dcpu->dtdsc_drops++; 1887 return (NULL); 1888 } 1889 1890 nstate = DTRACE_DSTATE_EMPTY; 1891 1892 do { 1893 retry: 1894 free = dcpu->dtdsc_free; 1895 1896 if (free == NULL) { 1897 dtrace_dynvar_t *clean = dcpu->dtdsc_clean; 1898 void *rval; 1899 1900 if (clean == NULL) { 1901 /* 1902 * We're out of dynamic variable space on 1903 * this CPU. Unless we have tried all CPUs, 1904 * we'll try to allocate from a different 1905 * CPU. 1906 */ 1907 switch (dstate->dtds_state) { 1908 case DTRACE_DSTATE_CLEAN: { 1909 void *sp = &dstate->dtds_state; 1910 1911 if (++cpu >= NCPU) 1912 cpu = 0; 1913 1914 if (dcpu->dtdsc_dirty != NULL && 1915 nstate == DTRACE_DSTATE_EMPTY) 1916 nstate = DTRACE_DSTATE_DIRTY; 1917 1918 if (dcpu->dtdsc_rinsing != NULL) 1919 nstate = DTRACE_DSTATE_RINSING; 1920 1921 dcpu = &dstate->dtds_percpu[cpu]; 1922 1923 if (cpu != me) 1924 goto retry; 1925 1926 (void) dtrace_cas32(sp, 1927 DTRACE_DSTATE_CLEAN, nstate); 1928 1929 /* 1930 * To increment the correct bean 1931 * counter, take another lap. 1932 */ 1933 goto retry; 1934 } 1935 1936 case DTRACE_DSTATE_DIRTY: 1937 dcpu->dtdsc_dirty_drops++; 1938 break; 1939 1940 case DTRACE_DSTATE_RINSING: 1941 dcpu->dtdsc_rinsing_drops++; 1942 break; 1943 1944 case DTRACE_DSTATE_EMPTY: 1945 dcpu->dtdsc_drops++; 1946 break; 1947 } 1948 1949 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); 1950 return (NULL); 1951 } 1952 1953 /* 1954 * The clean list appears to be non-empty. We want to 1955 * move the clean list to the free list; we start by 1956 * moving the clean pointer aside. 1957 */ 1958 if (dtrace_casptr(&dcpu->dtdsc_clean, 1959 clean, NULL) != clean) { 1960 /* 1961 * We are in one of two situations: 1962 * 1963 * (a) The clean list was switched to the 1964 * free list by another CPU. 1965 * 1966 * (b) The clean list was added to by the 1967 * cleansing cyclic. 1968 * 1969 * In either of these situations, we can 1970 * just reattempt the free list allocation. 1971 */ 1972 goto retry; 1973 } 1974 1975 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); 1976 1977 /* 1978 * Now we'll move the clean list to our free list. 1979 * It's impossible for this to fail: the only way 1980 * the free list can be updated is through this 1981 * code path, and only one CPU can own the clean list. 1982 * Thus, it would only be possible for this to fail if 1983 * this code were racing with dtrace_dynvar_clean(). 1984 * (That is, if dtrace_dynvar_clean() updated the clean 1985 * list, and we ended up racing to update the free 1986 * list.) This race is prevented by the dtrace_sync() 1987 * in dtrace_dynvar_clean() -- which flushes the 1988 * owners of the clean lists out before resetting 1989 * the clean lists. 1990 */ 1991 dcpu = &dstate->dtds_percpu[me]; 1992 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); 1993 ASSERT(rval == NULL); 1994 goto retry; 1995 } 1996 1997 dvar = free; 1998 new_free = dvar->dtdv_next; 1999 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); 2000 2001 /* 2002 * We have now allocated a new chunk. We copy the tuple keys into the 2003 * tuple array and copy any referenced key data into the data space 2004 * following the tuple array. As we do this, we relocate dttk_value 2005 * in the final tuple to point to the key data address in the chunk. 2006 */ 2007 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; 2008 dvar->dtdv_data = (void *)(kdata + ksize); 2009 dvar->dtdv_tuple.dtt_nkeys = nkeys; 2010 2011 for (i = 0; i < nkeys; i++) { 2012 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; 2013 size_t kesize = key[i].dttk_size; 2014 2015 if (kesize != 0) { 2016 dtrace_bcopy( 2017 (const void *)(uintptr_t)key[i].dttk_value, 2018 (void *)kdata, kesize); 2019 dkey->dttk_value = kdata; 2020 kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); 2021 } else { 2022 dkey->dttk_value = key[i].dttk_value; 2023 } 2024 2025 dkey->dttk_size = kesize; 2026 } 2027 2028 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); 2029 dvar->dtdv_hashval = hashval; 2030 dvar->dtdv_next = start; 2031 2032 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) 2033 return (dvar); 2034 2035 /* 2036 * The cas has failed. Either another CPU is adding an element to 2037 * this hash chain, or another CPU is deleting an element from this 2038 * hash chain. The simplest way to deal with both of these cases 2039 * (though not necessarily the most efficient) is to free our 2040 * allocated block and tail-call ourselves. Note that the free is 2041 * to the dirty list and _not_ to the free list. This is to prevent 2042 * races with allocators, above. 2043 */ 2044 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; 2045 2046 dtrace_membar_producer(); 2047 2048 do { 2049 free = dcpu->dtdsc_dirty; 2050 dvar->dtdv_next = free; 2051 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); 2052 2053 return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); 2054 } 2055 2056 /*ARGSUSED*/ 2057 static void 2058 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) 2059 { 2060 if ((int64_t)nval < (int64_t)*oval) 2061 *oval = nval; 2062 } 2063 2064 /*ARGSUSED*/ 2065 static void 2066 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) 2067 { 2068 if ((int64_t)nval > (int64_t)*oval) 2069 *oval = nval; 2070 } 2071 2072 static void 2073 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) 2074 { 2075 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; 2076 int64_t val = (int64_t)nval; 2077 2078 if (val < 0) { 2079 for (i = 0; i < zero; i++) { 2080 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { 2081 quanta[i] += incr; 2082 return; 2083 } 2084 } 2085 } else { 2086 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { 2087 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { 2088 quanta[i - 1] += incr; 2089 return; 2090 } 2091 } 2092 2093 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; 2094 return; 2095 } 2096 2097 ASSERT(0); 2098 } 2099 2100 static void 2101 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) 2102 { 2103 uint64_t arg = *lquanta++; 2104 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 2105 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 2106 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 2107 int32_t val = (int32_t)nval, level; 2108 2109 ASSERT(step != 0); 2110 ASSERT(levels != 0); 2111 2112 if (val < base) { 2113 /* 2114 * This is an underflow. 2115 */ 2116 lquanta[0] += incr; 2117 return; 2118 } 2119 2120 level = (val - base) / step; 2121 2122 if (level < levels) { 2123 lquanta[level + 1] += incr; 2124 return; 2125 } 2126 2127 /* 2128 * This is an overflow. 2129 */ 2130 lquanta[levels + 1] += incr; 2131 } 2132 2133 static int 2134 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low, 2135 uint16_t high, uint16_t nsteps, int64_t value) 2136 { 2137 int64_t this = 1, last, next; 2138 int base = 1, order; 2139 2140 ASSERT(factor <= nsteps); 2141 ASSERT(nsteps % factor == 0); 2142 2143 for (order = 0; order < low; order++) 2144 this *= factor; 2145 2146 /* 2147 * If our value is less than our factor taken to the power of the 2148 * low order of magnitude, it goes into the zeroth bucket. 2149 */ 2150 if (value < (last = this)) 2151 return (0); 2152 2153 for (this *= factor; order <= high; order++) { 2154 int nbuckets = this > nsteps ? nsteps : this; 2155 2156 if ((next = this * factor) < this) { 2157 /* 2158 * We should not generally get log/linear quantizations 2159 * with a high magnitude that allows 64-bits to 2160 * overflow, but we nonetheless protect against this 2161 * by explicitly checking for overflow, and clamping 2162 * our value accordingly. 2163 */ 2164 value = this - 1; 2165 } 2166 2167 if (value < this) { 2168 /* 2169 * If our value lies within this order of magnitude, 2170 * determine its position by taking the offset within 2171 * the order of magnitude, dividing by the bucket 2172 * width, and adding to our (accumulated) base. 2173 */ 2174 return (base + (value - last) / (this / nbuckets)); 2175 } 2176 2177 base += nbuckets - (nbuckets / factor); 2178 last = this; 2179 this = next; 2180 } 2181 2182 /* 2183 * Our value is greater than or equal to our factor taken to the 2184 * power of one plus the high magnitude -- return the top bucket. 2185 */ 2186 return (base); 2187 } 2188 2189 static void 2190 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) 2191 { 2192 uint64_t arg = *llquanta++; 2193 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); 2194 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); 2195 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); 2196 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 2197 2198 llquanta[dtrace_aggregate_llquantize_bucket(factor, 2199 low, high, nsteps, nval)] += incr; 2200 } 2201 2202 /*ARGSUSED*/ 2203 static void 2204 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) 2205 { 2206 data[0]++; 2207 data[1] += nval; 2208 } 2209 2210 /*ARGSUSED*/ 2211 static void 2212 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) 2213 { 2214 int64_t snval = (int64_t)nval; 2215 uint64_t tmp[2]; 2216 2217 data[0]++; 2218 data[1] += nval; 2219 2220 /* 2221 * What we want to say here is: 2222 * 2223 * data[2] += nval * nval; 2224 * 2225 * But given that nval is 64-bit, we could easily overflow, so 2226 * we do this as 128-bit arithmetic. 2227 */ 2228 if (snval < 0) 2229 snval = -snval; 2230 2231 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp); 2232 dtrace_add_128(data + 2, tmp, data + 2); 2233 } 2234 2235 /*ARGSUSED*/ 2236 static void 2237 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) 2238 { 2239 *oval = *oval + 1; 2240 } 2241 2242 /*ARGSUSED*/ 2243 static void 2244 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) 2245 { 2246 *oval += nval; 2247 } 2248 2249 /* 2250 * Aggregate given the tuple in the principal data buffer, and the aggregating 2251 * action denoted by the specified dtrace_aggregation_t. The aggregation 2252 * buffer is specified as the buf parameter. This routine does not return 2253 * failure; if there is no space in the aggregation buffer, the data will be 2254 * dropped, and a corresponding counter incremented. 2255 */ 2256 static void 2257 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, 2258 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) 2259 { 2260 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; 2261 uint32_t i, ndx, size, fsize; 2262 uint32_t align = sizeof (uint64_t) - 1; 2263 dtrace_aggbuffer_t *agb; 2264 dtrace_aggkey_t *key; 2265 uint32_t hashval = 0, limit, isstr; 2266 caddr_t tomax, data, kdata; 2267 dtrace_actkind_t action; 2268 dtrace_action_t *act; 2269 uintptr_t offs; 2270 2271 if (buf == NULL) 2272 return; 2273 2274 if (!agg->dtag_hasarg) { 2275 /* 2276 * Currently, only quantize() and lquantize() take additional 2277 * arguments, and they have the same semantics: an increment 2278 * value that defaults to 1 when not present. If additional 2279 * aggregating actions take arguments, the setting of the 2280 * default argument value will presumably have to become more 2281 * sophisticated... 2282 */ 2283 arg = 1; 2284 } 2285 2286 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; 2287 size = rec->dtrd_offset - agg->dtag_base; 2288 fsize = size + rec->dtrd_size; 2289 2290 ASSERT(dbuf->dtb_tomax != NULL); 2291 data = dbuf->dtb_tomax + offset + agg->dtag_base; 2292 2293 if ((tomax = buf->dtb_tomax) == NULL) { 2294 dtrace_buffer_drop(buf); 2295 return; 2296 } 2297 2298 /* 2299 * The metastructure is always at the bottom of the buffer. 2300 */ 2301 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - 2302 sizeof (dtrace_aggbuffer_t)); 2303 2304 if (buf->dtb_offset == 0) { 2305 /* 2306 * We just kludge up approximately 1/8th of the size to be 2307 * buckets. If this guess ends up being routinely 2308 * off-the-mark, we may need to dynamically readjust this 2309 * based on past performance. 2310 */ 2311 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); 2312 2313 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < 2314 (uintptr_t)tomax || hashsize == 0) { 2315 /* 2316 * We've been given a ludicrously small buffer; 2317 * increment our drop count and leave. 2318 */ 2319 dtrace_buffer_drop(buf); 2320 return; 2321 } 2322 2323 /* 2324 * And now, a pathetic attempt to try to get a an odd (or 2325 * perchance, a prime) hash size for better hash distribution. 2326 */ 2327 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) 2328 hashsize -= DTRACE_AGGHASHSIZE_SLEW; 2329 2330 agb->dtagb_hashsize = hashsize; 2331 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - 2332 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); 2333 agb->dtagb_free = (uintptr_t)agb->dtagb_hash; 2334 2335 for (i = 0; i < agb->dtagb_hashsize; i++) 2336 agb->dtagb_hash[i] = NULL; 2337 } 2338 2339 ASSERT(agg->dtag_first != NULL); 2340 ASSERT(agg->dtag_first->dta_intuple); 2341 2342 /* 2343 * Calculate the hash value based on the key. Note that we _don't_ 2344 * include the aggid in the hashing (but we will store it as part of 2345 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" 2346 * algorithm: a simple, quick algorithm that has no known funnels, and 2347 * gets good distribution in practice. The efficacy of the hashing 2348 * algorithm (and a comparison with other algorithms) may be found by 2349 * running the ::dtrace_aggstat MDB dcmd. 2350 */ 2351 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2352 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2353 limit = i + act->dta_rec.dtrd_size; 2354 ASSERT(limit <= size); 2355 isstr = DTRACEACT_ISSTRING(act); 2356 2357 for (; i < limit; i++) { 2358 hashval += data[i]; 2359 hashval += (hashval << 10); 2360 hashval ^= (hashval >> 6); 2361 2362 if (isstr && data[i] == '\0') 2363 break; 2364 } 2365 } 2366 2367 hashval += (hashval << 3); 2368 hashval ^= (hashval >> 11); 2369 hashval += (hashval << 15); 2370 2371 /* 2372 * Yes, the divide here is expensive -- but it's generally the least 2373 * of the performance issues given the amount of data that we iterate 2374 * over to compute hash values, compare data, etc. 2375 */ 2376 ndx = hashval % agb->dtagb_hashsize; 2377 2378 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { 2379 ASSERT((caddr_t)key >= tomax); 2380 ASSERT((caddr_t)key < tomax + buf->dtb_size); 2381 2382 if (hashval != key->dtak_hashval || key->dtak_size != size) 2383 continue; 2384 2385 kdata = key->dtak_data; 2386 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); 2387 2388 for (act = agg->dtag_first; act->dta_intuple; 2389 act = act->dta_next) { 2390 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2391 limit = i + act->dta_rec.dtrd_size; 2392 ASSERT(limit <= size); 2393 isstr = DTRACEACT_ISSTRING(act); 2394 2395 for (; i < limit; i++) { 2396 if (kdata[i] != data[i]) 2397 goto next; 2398 2399 if (isstr && data[i] == '\0') 2400 break; 2401 } 2402 } 2403 2404 if (action != key->dtak_action) { 2405 /* 2406 * We are aggregating on the same value in the same 2407 * aggregation with two different aggregating actions. 2408 * (This should have been picked up in the compiler, 2409 * so we may be dealing with errant or devious DIF.) 2410 * This is an error condition; we indicate as much, 2411 * and return. 2412 */ 2413 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 2414 return; 2415 } 2416 2417 /* 2418 * This is a hit: we need to apply the aggregator to 2419 * the value at this key. 2420 */ 2421 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); 2422 return; 2423 next: 2424 continue; 2425 } 2426 2427 /* 2428 * We didn't find it. We need to allocate some zero-filled space, 2429 * link it into the hash table appropriately, and apply the aggregator 2430 * to the (zero-filled) value. 2431 */ 2432 offs = buf->dtb_offset; 2433 while (offs & (align - 1)) 2434 offs += sizeof (uint32_t); 2435 2436 /* 2437 * If we don't have enough room to both allocate a new key _and_ 2438 * its associated data, increment the drop count and return. 2439 */ 2440 if ((uintptr_t)tomax + offs + fsize > 2441 agb->dtagb_free - sizeof (dtrace_aggkey_t)) { 2442 dtrace_buffer_drop(buf); 2443 return; 2444 } 2445 2446 /*CONSTCOND*/ 2447 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); 2448 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); 2449 agb->dtagb_free -= sizeof (dtrace_aggkey_t); 2450 2451 key->dtak_data = kdata = tomax + offs; 2452 buf->dtb_offset = offs + fsize; 2453 2454 /* 2455 * Now copy the data across. 2456 */ 2457 *((dtrace_aggid_t *)kdata) = agg->dtag_id; 2458 2459 for (i = sizeof (dtrace_aggid_t); i < size; i++) 2460 kdata[i] = data[i]; 2461 2462 /* 2463 * Because strings are not zeroed out by default, we need to iterate 2464 * looking for actions that store strings, and we need to explicitly 2465 * pad these strings out with zeroes. 2466 */ 2467 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { 2468 int nul; 2469 2470 if (!DTRACEACT_ISSTRING(act)) 2471 continue; 2472 2473 i = act->dta_rec.dtrd_offset - agg->dtag_base; 2474 limit = i + act->dta_rec.dtrd_size; 2475 ASSERT(limit <= size); 2476 2477 for (nul = 0; i < limit; i++) { 2478 if (nul) { 2479 kdata[i] = '\0'; 2480 continue; 2481 } 2482 2483 if (data[i] != '\0') 2484 continue; 2485 2486 nul = 1; 2487 } 2488 } 2489 2490 for (i = size; i < fsize; i++) 2491 kdata[i] = 0; 2492 2493 key->dtak_hashval = hashval; 2494 key->dtak_size = size; 2495 key->dtak_action = action; 2496 key->dtak_next = agb->dtagb_hash[ndx]; 2497 agb->dtagb_hash[ndx] = key; 2498 2499 /* 2500 * Finally, apply the aggregator. 2501 */ 2502 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; 2503 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); 2504 } 2505 2506 /* 2507 * Given consumer state, this routine finds a speculation in the INACTIVE 2508 * state and transitions it into the ACTIVE state. If there is no speculation 2509 * in the INACTIVE state, 0 is returned. In this case, no error counter is 2510 * incremented -- it is up to the caller to take appropriate action. 2511 */ 2512 static int 2513 dtrace_speculation(dtrace_state_t *state) 2514 { 2515 int i = 0; 2516 dtrace_speculation_state_t current; 2517 uint32_t *stat = &state->dts_speculations_unavail, count; 2518 2519 while (i < state->dts_nspeculations) { 2520 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2521 2522 current = spec->dtsp_state; 2523 2524 if (current != DTRACESPEC_INACTIVE) { 2525 if (current == DTRACESPEC_COMMITTINGMANY || 2526 current == DTRACESPEC_COMMITTING || 2527 current == DTRACESPEC_DISCARDING) 2528 stat = &state->dts_speculations_busy; 2529 i++; 2530 continue; 2531 } 2532 2533 if (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2534 current, DTRACESPEC_ACTIVE) == current) 2535 return (i + 1); 2536 } 2537 2538 /* 2539 * We couldn't find a speculation. If we found as much as a single 2540 * busy speculation buffer, we'll attribute this failure as "busy" 2541 * instead of "unavail". 2542 */ 2543 do { 2544 count = *stat; 2545 } while (dtrace_cas32(stat, count, count + 1) != count); 2546 2547 return (0); 2548 } 2549 2550 /* 2551 * This routine commits an active speculation. If the specified speculation 2552 * is not in a valid state to perform a commit(), this routine will silently do 2553 * nothing. The state of the specified speculation is transitioned according 2554 * to the state transition diagram outlined in <sys/dtrace_impl.h> 2555 */ 2556 static void 2557 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, 2558 dtrace_specid_t which) 2559 { 2560 dtrace_speculation_t *spec; 2561 dtrace_buffer_t *src, *dest; 2562 uintptr_t daddr, saddr, dlimit, slimit; 2563 dtrace_speculation_state_t current, new; 2564 intptr_t offs; 2565 uint64_t timestamp; 2566 2567 if (which == 0) 2568 return; 2569 2570 if (which > state->dts_nspeculations) { 2571 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2572 return; 2573 } 2574 2575 spec = &state->dts_speculations[which - 1]; 2576 src = &spec->dtsp_buffer[cpu]; 2577 dest = &state->dts_buffer[cpu]; 2578 2579 do { 2580 current = spec->dtsp_state; 2581 2582 if (current == DTRACESPEC_COMMITTINGMANY) 2583 break; 2584 2585 switch (current) { 2586 case DTRACESPEC_INACTIVE: 2587 case DTRACESPEC_DISCARDING: 2588 return; 2589 2590 case DTRACESPEC_COMMITTING: 2591 /* 2592 * This is only possible if we are (a) commit()'ing 2593 * without having done a prior speculate() on this CPU 2594 * and (b) racing with another commit() on a different 2595 * CPU. There's nothing to do -- we just assert that 2596 * our offset is 0. 2597 */ 2598 ASSERT(src->dtb_offset == 0); 2599 return; 2600 2601 case DTRACESPEC_ACTIVE: 2602 new = DTRACESPEC_COMMITTING; 2603 break; 2604 2605 case DTRACESPEC_ACTIVEONE: 2606 /* 2607 * This speculation is active on one CPU. If our 2608 * buffer offset is non-zero, we know that the one CPU 2609 * must be us. Otherwise, we are committing on a 2610 * different CPU from the speculate(), and we must 2611 * rely on being asynchronously cleaned. 2612 */ 2613 if (src->dtb_offset != 0) { 2614 new = DTRACESPEC_COMMITTING; 2615 break; 2616 } 2617 /*FALLTHROUGH*/ 2618 2619 case DTRACESPEC_ACTIVEMANY: 2620 new = DTRACESPEC_COMMITTINGMANY; 2621 break; 2622 2623 default: 2624 ASSERT(0); 2625 } 2626 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2627 current, new) != current); 2628 2629 /* 2630 * We have set the state to indicate that we are committing this 2631 * speculation. Now reserve the necessary space in the destination 2632 * buffer. 2633 */ 2634 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, 2635 sizeof (uint64_t), state, NULL)) < 0) { 2636 dtrace_buffer_drop(dest); 2637 goto out; 2638 } 2639 2640 /* 2641 * We have sufficient space to copy the speculative buffer into the 2642 * primary buffer. First, modify the speculative buffer, filling 2643 * in the timestamp of all entries with the current time. The data 2644 * must have the commit() time rather than the time it was traced, 2645 * so that all entries in the primary buffer are in timestamp order. 2646 */ 2647 timestamp = dtrace_gethrtime(); 2648 saddr = (uintptr_t)src->dtb_tomax; 2649 slimit = saddr + src->dtb_offset; 2650 while (saddr < slimit) { 2651 size_t size; 2652 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; 2653 2654 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2655 saddr += sizeof (dtrace_epid_t); 2656 continue; 2657 } 2658 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs); 2659 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; 2660 2661 ASSERT3U(saddr + size, <=, slimit); 2662 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t)); 2663 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX); 2664 2665 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); 2666 2667 saddr += size; 2668 } 2669 2670 /* 2671 * Copy the buffer across. (Note that this is a 2672 * highly subobtimal bcopy(); in the unlikely event that this becomes 2673 * a serious performance issue, a high-performance DTrace-specific 2674 * bcopy() should obviously be invented.) 2675 */ 2676 daddr = (uintptr_t)dest->dtb_tomax + offs; 2677 dlimit = daddr + src->dtb_offset; 2678 saddr = (uintptr_t)src->dtb_tomax; 2679 2680 /* 2681 * First, the aligned portion. 2682 */ 2683 while (dlimit - daddr >= sizeof (uint64_t)) { 2684 *((uint64_t *)daddr) = *((uint64_t *)saddr); 2685 2686 daddr += sizeof (uint64_t); 2687 saddr += sizeof (uint64_t); 2688 } 2689 2690 /* 2691 * Now any left-over bit... 2692 */ 2693 while (dlimit - daddr) 2694 *((uint8_t *)daddr++) = *((uint8_t *)saddr++); 2695 2696 /* 2697 * Finally, commit the reserved space in the destination buffer. 2698 */ 2699 dest->dtb_offset = offs + src->dtb_offset; 2700 2701 out: 2702 /* 2703 * If we're lucky enough to be the only active CPU on this speculation 2704 * buffer, we can just set the state back to DTRACESPEC_INACTIVE. 2705 */ 2706 if (current == DTRACESPEC_ACTIVE || 2707 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { 2708 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, 2709 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); 2710 2711 ASSERT(rval == DTRACESPEC_COMMITTING); 2712 } 2713 2714 src->dtb_offset = 0; 2715 src->dtb_xamot_drops += src->dtb_drops; 2716 src->dtb_drops = 0; 2717 } 2718 2719 /* 2720 * This routine discards an active speculation. If the specified speculation 2721 * is not in a valid state to perform a discard(), this routine will silently 2722 * do nothing. The state of the specified speculation is transitioned 2723 * according to the state transition diagram outlined in <sys/dtrace_impl.h> 2724 */ 2725 static void 2726 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, 2727 dtrace_specid_t which) 2728 { 2729 dtrace_speculation_t *spec; 2730 dtrace_speculation_state_t current, new; 2731 dtrace_buffer_t *buf; 2732 2733 if (which == 0) 2734 return; 2735 2736 if (which > state->dts_nspeculations) { 2737 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2738 return; 2739 } 2740 2741 spec = &state->dts_speculations[which - 1]; 2742 buf = &spec->dtsp_buffer[cpu]; 2743 2744 do { 2745 current = spec->dtsp_state; 2746 2747 switch (current) { 2748 case DTRACESPEC_INACTIVE: 2749 case DTRACESPEC_COMMITTINGMANY: 2750 case DTRACESPEC_COMMITTING: 2751 case DTRACESPEC_DISCARDING: 2752 return; 2753 2754 case DTRACESPEC_ACTIVE: 2755 case DTRACESPEC_ACTIVEMANY: 2756 new = DTRACESPEC_DISCARDING; 2757 break; 2758 2759 case DTRACESPEC_ACTIVEONE: 2760 if (buf->dtb_offset != 0) { 2761 new = DTRACESPEC_INACTIVE; 2762 } else { 2763 new = DTRACESPEC_DISCARDING; 2764 } 2765 break; 2766 2767 default: 2768 ASSERT(0); 2769 } 2770 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2771 current, new) != current); 2772 2773 buf->dtb_offset = 0; 2774 buf->dtb_drops = 0; 2775 } 2776 2777 /* 2778 * Note: not called from probe context. This function is called 2779 * asynchronously from cross call context to clean any speculations that are 2780 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be 2781 * transitioned back to the INACTIVE state until all CPUs have cleaned the 2782 * speculation. 2783 */ 2784 static void 2785 dtrace_speculation_clean_here(dtrace_state_t *state) 2786 { 2787 dtrace_icookie_t cookie; 2788 processorid_t cpu = CPU->cpu_id; 2789 dtrace_buffer_t *dest = &state->dts_buffer[cpu]; 2790 dtrace_specid_t i; 2791 2792 cookie = dtrace_interrupt_disable(); 2793 2794 if (dest->dtb_tomax == NULL) { 2795 dtrace_interrupt_enable(cookie); 2796 return; 2797 } 2798 2799 for (i = 0; i < state->dts_nspeculations; i++) { 2800 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2801 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; 2802 2803 if (src->dtb_tomax == NULL) 2804 continue; 2805 2806 if (spec->dtsp_state == DTRACESPEC_DISCARDING) { 2807 src->dtb_offset = 0; 2808 continue; 2809 } 2810 2811 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2812 continue; 2813 2814 if (src->dtb_offset == 0) 2815 continue; 2816 2817 dtrace_speculation_commit(state, cpu, i + 1); 2818 } 2819 2820 dtrace_interrupt_enable(cookie); 2821 } 2822 2823 /* 2824 * Note: not called from probe context. This function is called 2825 * asynchronously (and at a regular interval) to clean any speculations that 2826 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there 2827 * is work to be done, it cross calls all CPUs to perform that work; 2828 * COMMITMANY and DISCARDING speculations may not be transitioned back to the 2829 * INACTIVE state until they have been cleaned by all CPUs. 2830 */ 2831 static void 2832 dtrace_speculation_clean(dtrace_state_t *state) 2833 { 2834 int work = 0, rv; 2835 dtrace_specid_t i; 2836 2837 for (i = 0; i < state->dts_nspeculations; i++) { 2838 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2839 2840 ASSERT(!spec->dtsp_cleaning); 2841 2842 if (spec->dtsp_state != DTRACESPEC_DISCARDING && 2843 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) 2844 continue; 2845 2846 work++; 2847 spec->dtsp_cleaning = 1; 2848 } 2849 2850 if (!work) 2851 return; 2852 2853 dtrace_xcall(DTRACE_CPUALL, 2854 (dtrace_xcall_t)dtrace_speculation_clean_here, state); 2855 2856 /* 2857 * We now know that all CPUs have committed or discarded their 2858 * speculation buffers, as appropriate. We can now set the state 2859 * to inactive. 2860 */ 2861 for (i = 0; i < state->dts_nspeculations; i++) { 2862 dtrace_speculation_t *spec = &state->dts_speculations[i]; 2863 dtrace_speculation_state_t current, new; 2864 2865 if (!spec->dtsp_cleaning) 2866 continue; 2867 2868 current = spec->dtsp_state; 2869 ASSERT(current == DTRACESPEC_DISCARDING || 2870 current == DTRACESPEC_COMMITTINGMANY); 2871 2872 new = DTRACESPEC_INACTIVE; 2873 2874 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); 2875 ASSERT(rv == current); 2876 spec->dtsp_cleaning = 0; 2877 } 2878 } 2879 2880 /* 2881 * Called as part of a speculate() to get the speculative buffer associated 2882 * with a given speculation. Returns NULL if the specified speculation is not 2883 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and 2884 * the active CPU is not the specified CPU -- the speculation will be 2885 * atomically transitioned into the ACTIVEMANY state. 2886 */ 2887 static dtrace_buffer_t * 2888 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, 2889 dtrace_specid_t which) 2890 { 2891 dtrace_speculation_t *spec; 2892 dtrace_speculation_state_t current, new; 2893 dtrace_buffer_t *buf; 2894 2895 if (which == 0) 2896 return (NULL); 2897 2898 if (which > state->dts_nspeculations) { 2899 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; 2900 return (NULL); 2901 } 2902 2903 spec = &state->dts_speculations[which - 1]; 2904 buf = &spec->dtsp_buffer[cpuid]; 2905 2906 do { 2907 current = spec->dtsp_state; 2908 2909 switch (current) { 2910 case DTRACESPEC_INACTIVE: 2911 case DTRACESPEC_COMMITTINGMANY: 2912 case DTRACESPEC_DISCARDING: 2913 return (NULL); 2914 2915 case DTRACESPEC_COMMITTING: 2916 ASSERT(buf->dtb_offset == 0); 2917 return (NULL); 2918 2919 case DTRACESPEC_ACTIVEONE: 2920 /* 2921 * This speculation is currently active on one CPU. 2922 * Check the offset in the buffer; if it's non-zero, 2923 * that CPU must be us (and we leave the state alone). 2924 * If it's zero, assume that we're starting on a new 2925 * CPU -- and change the state to indicate that the 2926 * speculation is active on more than one CPU. 2927 */ 2928 if (buf->dtb_offset != 0) 2929 return (buf); 2930 2931 new = DTRACESPEC_ACTIVEMANY; 2932 break; 2933 2934 case DTRACESPEC_ACTIVEMANY: 2935 return (buf); 2936 2937 case DTRACESPEC_ACTIVE: 2938 new = DTRACESPEC_ACTIVEONE; 2939 break; 2940 2941 default: 2942 ASSERT(0); 2943 } 2944 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, 2945 current, new) != current); 2946 2947 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); 2948 return (buf); 2949 } 2950 2951 /* 2952 * Return a string. In the event that the user lacks the privilege to access 2953 * arbitrary kernel memory, we copy the string out to scratch memory so that we 2954 * don't fail access checking. 2955 * 2956 * dtrace_dif_variable() uses this routine as a helper for various 2957 * builtin values such as 'execname' and 'probefunc.' 2958 */ 2959 uintptr_t 2960 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, 2961 dtrace_mstate_t *mstate) 2962 { 2963 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 2964 uintptr_t ret; 2965 size_t strsz; 2966 2967 /* 2968 * The easy case: this probe is allowed to read all of memory, so 2969 * we can just return this as a vanilla pointer. 2970 */ 2971 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) 2972 return (addr); 2973 2974 /* 2975 * This is the tougher case: we copy the string in question from 2976 * kernel memory into scratch memory and return it that way: this 2977 * ensures that we won't trip up when access checking tests the 2978 * BYREF return value. 2979 */ 2980 strsz = dtrace_strlen((char *)addr, size) + 1; 2981 2982 if (mstate->dtms_scratch_ptr + strsz > 2983 mstate->dtms_scratch_base + mstate->dtms_scratch_size) { 2984 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 2985 return (NULL); 2986 } 2987 2988 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr, 2989 strsz); 2990 ret = mstate->dtms_scratch_ptr; 2991 mstate->dtms_scratch_ptr += strsz; 2992 return (ret); 2993 } 2994 2995 /* 2996 * This function implements the DIF emulator's variable lookups. The emulator 2997 * passes a reserved variable identifier and optional built-in array index. 2998 */ 2999 static uint64_t 3000 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, 3001 uint64_t ndx) 3002 { 3003 /* 3004 * If we're accessing one of the uncached arguments, we'll turn this 3005 * into a reference in the args array. 3006 */ 3007 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { 3008 ndx = v - DIF_VAR_ARG0; 3009 v = DIF_VAR_ARGS; 3010 } 3011 3012 switch (v) { 3013 case DIF_VAR_ARGS: 3014 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) { 3015 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= 3016 CPU_DTRACE_KPRIV; 3017 return (0); 3018 } 3019 3020 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); 3021 if (ndx >= sizeof (mstate->dtms_arg) / 3022 sizeof (mstate->dtms_arg[0])) { 3023 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3024 dtrace_provider_t *pv; 3025 uint64_t val; 3026 3027 pv = mstate->dtms_probe->dtpr_provider; 3028 if (pv->dtpv_pops.dtps_getargval != NULL) 3029 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, 3030 mstate->dtms_probe->dtpr_id, 3031 mstate->dtms_probe->dtpr_arg, ndx, aframes); 3032 else 3033 val = dtrace_getarg(ndx, aframes); 3034 3035 /* 3036 * This is regrettably required to keep the compiler 3037 * from tail-optimizing the call to dtrace_getarg(). 3038 * The condition always evaluates to true, but the 3039 * compiler has no way of figuring that out a priori. 3040 * (None of this would be necessary if the compiler 3041 * could be relied upon to _always_ tail-optimize 3042 * the call to dtrace_getarg() -- but it can't.) 3043 */ 3044 if (mstate->dtms_probe != NULL) 3045 return (val); 3046 3047 ASSERT(0); 3048 } 3049 3050 return (mstate->dtms_arg[ndx]); 3051 3052 case DIF_VAR_UREGS: { 3053 klwp_t *lwp; 3054 3055 if (!dtrace_priv_proc(state, mstate)) 3056 return (0); 3057 3058 if ((lwp = curthread->t_lwp) == NULL) { 3059 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 3060 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL; 3061 return (0); 3062 } 3063 3064 return (dtrace_getreg(lwp->lwp_regs, ndx)); 3065 } 3066 3067 case DIF_VAR_VMREGS: { 3068 uint64_t rval; 3069 3070 if (!dtrace_priv_kernel(state)) 3071 return (0); 3072 3073 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3074 3075 rval = dtrace_getvmreg(ndx, 3076 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags); 3077 3078 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3079 3080 return (rval); 3081 } 3082 3083 case DIF_VAR_CURTHREAD: 3084 if (!dtrace_priv_proc(state, mstate)) 3085 return (0); 3086 return ((uint64_t)(uintptr_t)curthread); 3087 3088 case DIF_VAR_TIMESTAMP: 3089 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 3090 mstate->dtms_timestamp = dtrace_gethrtime(); 3091 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; 3092 } 3093 return (mstate->dtms_timestamp); 3094 3095 case DIF_VAR_VTIMESTAMP: 3096 ASSERT(dtrace_vtime_references != 0); 3097 return (curthread->t_dtrace_vtime); 3098 3099 case DIF_VAR_WALLTIMESTAMP: 3100 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { 3101 mstate->dtms_walltimestamp = dtrace_gethrestime(); 3102 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; 3103 } 3104 return (mstate->dtms_walltimestamp); 3105 3106 case DIF_VAR_IPL: 3107 if (!dtrace_priv_kernel(state)) 3108 return (0); 3109 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { 3110 mstate->dtms_ipl = dtrace_getipl(); 3111 mstate->dtms_present |= DTRACE_MSTATE_IPL; 3112 } 3113 return (mstate->dtms_ipl); 3114 3115 case DIF_VAR_EPID: 3116 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); 3117 return (mstate->dtms_epid); 3118 3119 case DIF_VAR_ID: 3120 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3121 return (mstate->dtms_probe->dtpr_id); 3122 3123 case DIF_VAR_STACKDEPTH: 3124 if (!dtrace_priv_kernel(state)) 3125 return (0); 3126 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { 3127 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3128 3129 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); 3130 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; 3131 } 3132 return (mstate->dtms_stackdepth); 3133 3134 case DIF_VAR_USTACKDEPTH: 3135 if (!dtrace_priv_proc(state, mstate)) 3136 return (0); 3137 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { 3138 /* 3139 * See comment in DIF_VAR_PID. 3140 */ 3141 if (DTRACE_ANCHORED(mstate->dtms_probe) && 3142 CPU_ON_INTR(CPU)) { 3143 mstate->dtms_ustackdepth = 0; 3144 } else { 3145 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3146 mstate->dtms_ustackdepth = 3147 dtrace_getustackdepth(); 3148 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3149 } 3150 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; 3151 } 3152 return (mstate->dtms_ustackdepth); 3153 3154 case DIF_VAR_CALLER: 3155 if (!dtrace_priv_kernel(state)) 3156 return (0); 3157 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { 3158 int aframes = mstate->dtms_probe->dtpr_aframes + 2; 3159 3160 if (!DTRACE_ANCHORED(mstate->dtms_probe)) { 3161 /* 3162 * If this is an unanchored probe, we are 3163 * required to go through the slow path: 3164 * dtrace_caller() only guarantees correct 3165 * results for anchored probes. 3166 */ 3167 pc_t caller[2]; 3168 3169 dtrace_getpcstack(caller, 2, aframes, 3170 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); 3171 mstate->dtms_caller = caller[1]; 3172 } else if ((mstate->dtms_caller = 3173 dtrace_caller(aframes)) == -1) { 3174 /* 3175 * We have failed to do this the quick way; 3176 * we must resort to the slower approach of 3177 * calling dtrace_getpcstack(). 3178 */ 3179 pc_t caller; 3180 3181 dtrace_getpcstack(&caller, 1, aframes, NULL); 3182 mstate->dtms_caller = caller; 3183 } 3184 3185 mstate->dtms_present |= DTRACE_MSTATE_CALLER; 3186 } 3187 return (mstate->dtms_caller); 3188 3189 case DIF_VAR_UCALLER: 3190 if (!dtrace_priv_proc(state, mstate)) 3191 return (0); 3192 3193 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { 3194 uint64_t ustack[3]; 3195 3196 /* 3197 * dtrace_getupcstack() fills in the first uint64_t 3198 * with the current PID. The second uint64_t will 3199 * be the program counter at user-level. The third 3200 * uint64_t will contain the caller, which is what 3201 * we're after. 3202 */ 3203 ustack[2] = NULL; 3204 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 3205 dtrace_getupcstack(ustack, 3); 3206 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 3207 mstate->dtms_ucaller = ustack[2]; 3208 mstate->dtms_present |= DTRACE_MSTATE_UCALLER; 3209 } 3210 3211 return (mstate->dtms_ucaller); 3212 3213 case DIF_VAR_PROBEPROV: 3214 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3215 return (dtrace_dif_varstr( 3216 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, 3217 state, mstate)); 3218 3219 case DIF_VAR_PROBEMOD: 3220 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3221 return (dtrace_dif_varstr( 3222 (uintptr_t)mstate->dtms_probe->dtpr_mod, 3223 state, mstate)); 3224 3225 case DIF_VAR_PROBEFUNC: 3226 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3227 return (dtrace_dif_varstr( 3228 (uintptr_t)mstate->dtms_probe->dtpr_func, 3229 state, mstate)); 3230 3231 case DIF_VAR_PROBENAME: 3232 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); 3233 return (dtrace_dif_varstr( 3234 (uintptr_t)mstate->dtms_probe->dtpr_name, 3235 state, mstate)); 3236 3237 case DIF_VAR_PID: 3238 if (!dtrace_priv_proc(state, mstate)) 3239 return (0); 3240 3241 /* 3242 * Note that we are assuming that an unanchored probe is 3243 * always due to a high-level interrupt. (And we're assuming 3244 * that there is only a single high level interrupt.) 3245 */ 3246 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3247 return (pid0.pid_id); 3248 3249 /* 3250 * It is always safe to dereference one's own t_procp pointer: 3251 * it always points to a valid, allocated proc structure. 3252 * Further, it is always safe to dereference the p_pidp member 3253 * of one's own proc structure. (These are truisms becuase 3254 * threads and processes don't clean up their own state -- 3255 * they leave that task to whomever reaps them.) 3256 */ 3257 return ((uint64_t)curthread->t_procp->p_pidp->pid_id); 3258 3259 case DIF_VAR_PPID: 3260 if (!dtrace_priv_proc(state, mstate)) 3261 return (0); 3262 3263 /* 3264 * See comment in DIF_VAR_PID. 3265 */ 3266 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3267 return (pid0.pid_id); 3268 3269 /* 3270 * It is always safe to dereference one's own t_procp pointer: 3271 * it always points to a valid, allocated proc structure. 3272 * (This is true because threads don't clean up their own 3273 * state -- they leave that task to whomever reaps them.) 3274 */ 3275 return ((uint64_t)curthread->t_procp->p_ppid); 3276 3277 case DIF_VAR_TID: 3278 /* 3279 * See comment in DIF_VAR_PID. 3280 */ 3281 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3282 return (0); 3283 3284 return ((uint64_t)curthread->t_tid); 3285 3286 case DIF_VAR_EXECNAME: 3287 if (!dtrace_priv_proc(state, mstate)) 3288 return (0); 3289 3290 /* 3291 * See comment in DIF_VAR_PID. 3292 */ 3293 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3294 return ((uint64_t)(uintptr_t)p0.p_user.u_comm); 3295 3296 /* 3297 * It is always safe to dereference one's own t_procp pointer: 3298 * it always points to a valid, allocated proc structure. 3299 * (This is true because threads don't clean up their own 3300 * state -- they leave that task to whomever reaps them.) 3301 */ 3302 return (dtrace_dif_varstr( 3303 (uintptr_t)curthread->t_procp->p_user.u_comm, 3304 state, mstate)); 3305 3306 case DIF_VAR_ZONENAME: 3307 if (!dtrace_priv_proc(state, mstate)) 3308 return (0); 3309 3310 /* 3311 * See comment in DIF_VAR_PID. 3312 */ 3313 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3314 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name); 3315 3316 /* 3317 * It is always safe to dereference one's own t_procp pointer: 3318 * it always points to a valid, allocated proc structure. 3319 * (This is true because threads don't clean up their own 3320 * state -- they leave that task to whomever reaps them.) 3321 */ 3322 return (dtrace_dif_varstr( 3323 (uintptr_t)curthread->t_procp->p_zone->zone_name, 3324 state, mstate)); 3325 3326 case DIF_VAR_UID: 3327 if (!dtrace_priv_proc(state, mstate)) 3328 return (0); 3329 3330 /* 3331 * See comment in DIF_VAR_PID. 3332 */ 3333 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3334 return ((uint64_t)p0.p_cred->cr_uid); 3335 3336 /* 3337 * It is always safe to dereference one's own t_procp pointer: 3338 * it always points to a valid, allocated proc structure. 3339 * (This is true because threads don't clean up their own 3340 * state -- they leave that task to whomever reaps them.) 3341 * 3342 * Additionally, it is safe to dereference one's own process 3343 * credential, since this is never NULL after process birth. 3344 */ 3345 return ((uint64_t)curthread->t_procp->p_cred->cr_uid); 3346 3347 case DIF_VAR_GID: 3348 if (!dtrace_priv_proc(state, mstate)) 3349 return (0); 3350 3351 /* 3352 * See comment in DIF_VAR_PID. 3353 */ 3354 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3355 return ((uint64_t)p0.p_cred->cr_gid); 3356 3357 /* 3358 * It is always safe to dereference one's own t_procp pointer: 3359 * it always points to a valid, allocated proc structure. 3360 * (This is true because threads don't clean up their own 3361 * state -- they leave that task to whomever reaps them.) 3362 * 3363 * Additionally, it is safe to dereference one's own process 3364 * credential, since this is never NULL after process birth. 3365 */ 3366 return ((uint64_t)curthread->t_procp->p_cred->cr_gid); 3367 3368 case DIF_VAR_ERRNO: { 3369 klwp_t *lwp; 3370 if (!dtrace_priv_proc(state, mstate)) 3371 return (0); 3372 3373 /* 3374 * See comment in DIF_VAR_PID. 3375 */ 3376 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) 3377 return (0); 3378 3379 /* 3380 * It is always safe to dereference one's own t_lwp pointer in 3381 * the event that this pointer is non-NULL. (This is true 3382 * because threads and lwps don't clean up their own state -- 3383 * they leave that task to whomever reaps them.) 3384 */ 3385 if ((lwp = curthread->t_lwp) == NULL) 3386 return (0); 3387 3388 return ((uint64_t)lwp->lwp_errno); 3389 } 3390 default: 3391 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 3392 return (0); 3393 } 3394 } 3395 3396 3397 typedef enum dtrace_json_state { 3398 DTRACE_JSON_REST = 1, 3399 DTRACE_JSON_OBJECT, 3400 DTRACE_JSON_STRING, 3401 DTRACE_JSON_STRING_ESCAPE, 3402 DTRACE_JSON_STRING_ESCAPE_UNICODE, 3403 DTRACE_JSON_COLON, 3404 DTRACE_JSON_COMMA, 3405 DTRACE_JSON_VALUE, 3406 DTRACE_JSON_IDENTIFIER, 3407 DTRACE_JSON_NUMBER, 3408 DTRACE_JSON_NUMBER_FRAC, 3409 DTRACE_JSON_NUMBER_EXP, 3410 DTRACE_JSON_COLLECT_OBJECT 3411 } dtrace_json_state_t; 3412 3413 /* 3414 * This function possesses just enough knowledge about JSON to extract a single 3415 * value from a JSON string and store it in the scratch buffer. It is able 3416 * to extract nested object values, and members of arrays by index. 3417 * 3418 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to 3419 * be looked up as we descend into the object tree. e.g. 3420 * 3421 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL 3422 * with nelems = 5. 3423 * 3424 * The run time of this function must be bounded above by strsize to limit the 3425 * amount of work done in probe context. As such, it is implemented as a 3426 * simple state machine, reading one character at a time using safe loads 3427 * until we find the requested element, hit a parsing error or run off the 3428 * end of the object or string. 3429 * 3430 * As there is no way for a subroutine to return an error without interrupting 3431 * clause execution, we simply return NULL in the event of a missing key or any 3432 * other error condition. Each NULL return in this function is commented with 3433 * the error condition it represents -- parsing or otherwise. 3434 * 3435 * The set of states for the state machine closely matches the JSON 3436 * specification (http://json.org/). Briefly: 3437 * 3438 * DTRACE_JSON_REST: 3439 * Skip whitespace until we find either a top-level Object, moving 3440 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. 3441 * 3442 * DTRACE_JSON_OBJECT: 3443 * Locate the next key String in an Object. Sets a flag to denote 3444 * the next String as a key string and moves to DTRACE_JSON_STRING. 3445 * 3446 * DTRACE_JSON_COLON: 3447 * Skip whitespace until we find the colon that separates key Strings 3448 * from their values. Once found, move to DTRACE_JSON_VALUE. 3449 * 3450 * DTRACE_JSON_VALUE: 3451 * Detects the type of the next value (String, Number, Identifier, Object 3452 * or Array) and routes to the states that process that type. Here we also 3453 * deal with the element selector list if we are requested to traverse down 3454 * into the object tree. 3455 * 3456 * DTRACE_JSON_COMMA: 3457 * Skip whitespace until we find the comma that separates key-value pairs 3458 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays 3459 * (similarly DTRACE_JSON_VALUE). All following literal value processing 3460 * states return to this state at the end of their value, unless otherwise 3461 * noted. 3462 * 3463 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: 3464 * Processes a Number literal from the JSON, including any exponent 3465 * component that may be present. Numbers are returned as strings, which 3466 * may be passed to strtoll() if an integer is required. 3467 * 3468 * DTRACE_JSON_IDENTIFIER: 3469 * Processes a "true", "false" or "null" literal in the JSON. 3470 * 3471 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, 3472 * DTRACE_JSON_STRING_ESCAPE_UNICODE: 3473 * Processes a String literal from the JSON, whether the String denotes 3474 * a key, a value or part of a larger Object. Handles all escape sequences 3475 * present in the specification, including four-digit unicode characters, 3476 * but merely includes the escape sequence without converting it to the 3477 * actual escaped character. If the String is flagged as a key, we 3478 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. 3479 * 3480 * DTRACE_JSON_COLLECT_OBJECT: 3481 * This state collects an entire Object (or Array), correctly handling 3482 * embedded strings. If the full element selector list matches this nested 3483 * object, we return the Object in full as a string. If not, we use this 3484 * state to skip to the next value at this level and continue processing. 3485 * 3486 * NOTE: This function uses various macros from strtolctype.h to manipulate 3487 * digit values, etc -- these have all been checked to ensure they make 3488 * no additional function calls. 3489 */ 3490 static char * 3491 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, 3492 char *dest) 3493 { 3494 dtrace_json_state_t state = DTRACE_JSON_REST; 3495 int64_t array_elem = INT64_MIN; 3496 int64_t array_pos = 0; 3497 uint8_t escape_unicount = 0; 3498 boolean_t string_is_key = B_FALSE; 3499 boolean_t collect_object = B_FALSE; 3500 boolean_t found_key = B_FALSE; 3501 boolean_t in_array = B_FALSE; 3502 uint32_t braces = 0, brackets = 0; 3503 char *elem = elemlist; 3504 char *dd = dest; 3505 uintptr_t cur; 3506 3507 for (cur = json; cur < json + size; cur++) { 3508 char cc = dtrace_load8(cur); 3509 if (cc == '\0') 3510 return (NULL); 3511 3512 switch (state) { 3513 case DTRACE_JSON_REST: 3514 if (isspace(cc)) 3515 break; 3516 3517 if (cc == '{') { 3518 state = DTRACE_JSON_OBJECT; 3519 break; 3520 } 3521 3522 if (cc == '[') { 3523 in_array = B_TRUE; 3524 array_pos = 0; 3525 array_elem = dtrace_strtoll(elem, 10, size); 3526 found_key = array_elem == 0 ? B_TRUE : B_FALSE; 3527 state = DTRACE_JSON_VALUE; 3528 break; 3529 } 3530 3531 /* 3532 * ERROR: expected to find a top-level object or array. 3533 */ 3534 return (NULL); 3535 case DTRACE_JSON_OBJECT: 3536 if (isspace(cc)) 3537 break; 3538 3539 if (cc == '"') { 3540 state = DTRACE_JSON_STRING; 3541 string_is_key = B_TRUE; 3542 break; 3543 } 3544 3545 /* 3546 * ERROR: either the object did not start with a key 3547 * string, or we've run off the end of the object 3548 * without finding the requested key. 3549 */ 3550 return (NULL); 3551 case DTRACE_JSON_STRING: 3552 if (cc == '\\') { 3553 *dd++ = '\\'; 3554 state = DTRACE_JSON_STRING_ESCAPE; 3555 break; 3556 } 3557 3558 if (cc == '"') { 3559 if (collect_object) { 3560 /* 3561 * We don't reset the dest here, as 3562 * the string is part of a larger 3563 * object being collected. 3564 */ 3565 *dd++ = cc; 3566 collect_object = B_FALSE; 3567 state = DTRACE_JSON_COLLECT_OBJECT; 3568 break; 3569 } 3570 *dd = '\0'; 3571 dd = dest; /* reset string buffer */ 3572 if (string_is_key) { 3573 if (dtrace_strncmp(dest, elem, 3574 size) == 0) 3575 found_key = B_TRUE; 3576 } else if (found_key) { 3577 if (nelems > 1) { 3578 /* 3579 * We expected an object, not 3580 * this string. 3581 */ 3582 return (NULL); 3583 } 3584 return (dest); 3585 } 3586 state = string_is_key ? DTRACE_JSON_COLON : 3587 DTRACE_JSON_COMMA; 3588 string_is_key = B_FALSE; 3589 break; 3590 } 3591 3592 *dd++ = cc; 3593 break; 3594 case DTRACE_JSON_STRING_ESCAPE: 3595 *dd++ = cc; 3596 if (cc == 'u') { 3597 escape_unicount = 0; 3598 state = DTRACE_JSON_STRING_ESCAPE_UNICODE; 3599 } else { 3600 state = DTRACE_JSON_STRING; 3601 } 3602 break; 3603 case DTRACE_JSON_STRING_ESCAPE_UNICODE: 3604 if (!isxdigit(cc)) { 3605 /* 3606 * ERROR: invalid unicode escape, expected 3607 * four valid hexidecimal digits. 3608 */ 3609 return (NULL); 3610 } 3611 3612 *dd++ = cc; 3613 if (++escape_unicount == 4) 3614 state = DTRACE_JSON_STRING; 3615 break; 3616 case DTRACE_JSON_COLON: 3617 if (isspace(cc)) 3618 break; 3619 3620 if (cc == ':') { 3621 state = DTRACE_JSON_VALUE; 3622 break; 3623 } 3624 3625 /* 3626 * ERROR: expected a colon. 3627 */ 3628 return (NULL); 3629 case DTRACE_JSON_COMMA: 3630 if (isspace(cc)) 3631 break; 3632 3633 if (cc == ',') { 3634 if (in_array) { 3635 state = DTRACE_JSON_VALUE; 3636 if (++array_pos == array_elem) 3637 found_key = B_TRUE; 3638 } else { 3639 state = DTRACE_JSON_OBJECT; 3640 } 3641 break; 3642 } 3643 3644 /* 3645 * ERROR: either we hit an unexpected character, or 3646 * we reached the end of the object or array without 3647 * finding the requested key. 3648 */ 3649 return (NULL); 3650 case DTRACE_JSON_IDENTIFIER: 3651 if (islower(cc)) { 3652 *dd++ = cc; 3653 break; 3654 } 3655 3656 *dd = '\0'; 3657 dd = dest; /* reset string buffer */ 3658 3659 if (dtrace_strncmp(dest, "true", 5) == 0 || 3660 dtrace_strncmp(dest, "false", 6) == 0 || 3661 dtrace_strncmp(dest, "null", 5) == 0) { 3662 if (found_key) { 3663 if (nelems > 1) { 3664 /* 3665 * ERROR: We expected an object, 3666 * not this identifier. 3667 */ 3668 return (NULL); 3669 } 3670 return (dest); 3671 } else { 3672 cur--; 3673 state = DTRACE_JSON_COMMA; 3674 break; 3675 } 3676 } 3677 3678 /* 3679 * ERROR: we did not recognise the identifier as one 3680 * of those in the JSON specification. 3681 */ 3682 return (NULL); 3683 case DTRACE_JSON_NUMBER: 3684 if (cc == '.') { 3685 *dd++ = cc; 3686 state = DTRACE_JSON_NUMBER_FRAC; 3687 break; 3688 } 3689 3690 if (cc == 'x' || cc == 'X') { 3691 /* 3692 * ERROR: specification explicitly excludes 3693 * hexidecimal or octal numbers. 3694 */ 3695 return (NULL); 3696 } 3697 3698 /* FALLTHRU */ 3699 case DTRACE_JSON_NUMBER_FRAC: 3700 if (cc == 'e' || cc == 'E') { 3701 *dd++ = cc; 3702 state = DTRACE_JSON_NUMBER_EXP; 3703 break; 3704 } 3705 3706 if (cc == '+' || cc == '-') { 3707 /* 3708 * ERROR: expect sign as part of exponent only. 3709 */ 3710 return (NULL); 3711 } 3712 /* FALLTHRU */ 3713 case DTRACE_JSON_NUMBER_EXP: 3714 if (isdigit(cc) || cc == '+' || cc == '-') { 3715 *dd++ = cc; 3716 break; 3717 } 3718 3719 *dd = '\0'; 3720 dd = dest; /* reset string buffer */ 3721 if (found_key) { 3722 if (nelems > 1) { 3723 /* 3724 * ERROR: We expected an object, not 3725 * this number. 3726 */ 3727 return (NULL); 3728 } 3729 return (dest); 3730 } 3731 3732 cur--; 3733 state = DTRACE_JSON_COMMA; 3734 break; 3735 case DTRACE_JSON_VALUE: 3736 if (isspace(cc)) 3737 break; 3738 3739 if (cc == '{' || cc == '[') { 3740 if (nelems > 1 && found_key) { 3741 in_array = cc == '[' ? B_TRUE : B_FALSE; 3742 /* 3743 * If our element selector directs us 3744 * to descend into this nested object, 3745 * then move to the next selector 3746 * element in the list and restart the 3747 * state machine. 3748 */ 3749 while (*elem != '\0') 3750 elem++; 3751 elem++; /* skip the inter-element NUL */ 3752 nelems--; 3753 dd = dest; 3754 if (in_array) { 3755 state = DTRACE_JSON_VALUE; 3756 array_pos = 0; 3757 array_elem = dtrace_strtoll( 3758 elem, 10, size); 3759 found_key = array_elem == 0 ? 3760 B_TRUE : B_FALSE; 3761 } else { 3762 found_key = B_FALSE; 3763 state = DTRACE_JSON_OBJECT; 3764 } 3765 break; 3766 } 3767 3768 /* 3769 * Otherwise, we wish to either skip this 3770 * nested object or return it in full. 3771 */ 3772 if (cc == '[') 3773 brackets = 1; 3774 else 3775 braces = 1; 3776 *dd++ = cc; 3777 state = DTRACE_JSON_COLLECT_OBJECT; 3778 break; 3779 } 3780 3781 if (cc == '"') { 3782 state = DTRACE_JSON_STRING; 3783 break; 3784 } 3785 3786 if (islower(cc)) { 3787 /* 3788 * Here we deal with true, false and null. 3789 */ 3790 *dd++ = cc; 3791 state = DTRACE_JSON_IDENTIFIER; 3792 break; 3793 } 3794 3795 if (cc == '-' || isdigit(cc)) { 3796 *dd++ = cc; 3797 state = DTRACE_JSON_NUMBER; 3798 break; 3799 } 3800 3801 /* 3802 * ERROR: unexpected character at start of value. 3803 */ 3804 return (NULL); 3805 case DTRACE_JSON_COLLECT_OBJECT: 3806 if (cc == '\0') 3807 /* 3808 * ERROR: unexpected end of input. 3809 */ 3810 return (NULL); 3811 3812 *dd++ = cc; 3813 if (cc == '"') { 3814 collect_object = B_TRUE; 3815 state = DTRACE_JSON_STRING; 3816 break; 3817 } 3818 3819 if (cc == ']') { 3820 if (brackets-- == 0) { 3821 /* 3822 * ERROR: unbalanced brackets. 3823 */ 3824 return (NULL); 3825 } 3826 } else if (cc == '}') { 3827 if (braces-- == 0) { 3828 /* 3829 * ERROR: unbalanced braces. 3830 */ 3831 return (NULL); 3832 } 3833 } else if (cc == '{') { 3834 braces++; 3835 } else if (cc == '[') { 3836 brackets++; 3837 } 3838 3839 if (brackets == 0 && braces == 0) { 3840 if (found_key) { 3841 *dd = '\0'; 3842 return (dest); 3843 } 3844 dd = dest; /* reset string buffer */ 3845 state = DTRACE_JSON_COMMA; 3846 } 3847 break; 3848 } 3849 } 3850 return (NULL); 3851 } 3852 3853 /* 3854 * Emulate the execution of DTrace ID subroutines invoked by the call opcode. 3855 * Notice that we don't bother validating the proper number of arguments or 3856 * their types in the tuple stack. This isn't needed because all argument 3857 * interpretation is safe because of our load safety -- the worst that can 3858 * happen is that a bogus program can obtain bogus results. 3859 */ 3860 static void 3861 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, 3862 dtrace_key_t *tupregs, int nargs, 3863 dtrace_mstate_t *mstate, dtrace_state_t *state) 3864 { 3865 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 3866 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 3867 dtrace_vstate_t *vstate = &state->dts_vstate; 3868 3869 union { 3870 mutex_impl_t mi; 3871 uint64_t mx; 3872 } m; 3873 3874 union { 3875 krwlock_t ri; 3876 uintptr_t rw; 3877 } r; 3878 3879 switch (subr) { 3880 case DIF_SUBR_RAND: 3881 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875; 3882 break; 3883 3884 case DIF_SUBR_MUTEX_OWNED: 3885 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3886 mstate, vstate)) { 3887 regs[rd] = NULL; 3888 break; 3889 } 3890 3891 m.mx = dtrace_load64(tupregs[0].dttk_value); 3892 if (MUTEX_TYPE_ADAPTIVE(&m.mi)) 3893 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; 3894 else 3895 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); 3896 break; 3897 3898 case DIF_SUBR_MUTEX_OWNER: 3899 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3900 mstate, vstate)) { 3901 regs[rd] = NULL; 3902 break; 3903 } 3904 3905 m.mx = dtrace_load64(tupregs[0].dttk_value); 3906 if (MUTEX_TYPE_ADAPTIVE(&m.mi) && 3907 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) 3908 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); 3909 else 3910 regs[rd] = 0; 3911 break; 3912 3913 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: 3914 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3915 mstate, vstate)) { 3916 regs[rd] = NULL; 3917 break; 3918 } 3919 3920 m.mx = dtrace_load64(tupregs[0].dttk_value); 3921 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); 3922 break; 3923 3924 case DIF_SUBR_MUTEX_TYPE_SPIN: 3925 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), 3926 mstate, vstate)) { 3927 regs[rd] = NULL; 3928 break; 3929 } 3930 3931 m.mx = dtrace_load64(tupregs[0].dttk_value); 3932 regs[rd] = MUTEX_TYPE_SPIN(&m.mi); 3933 break; 3934 3935 case DIF_SUBR_RW_READ_HELD: { 3936 uintptr_t tmp; 3937 3938 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), 3939 mstate, vstate)) { 3940 regs[rd] = NULL; 3941 break; 3942 } 3943 3944 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3945 regs[rd] = _RW_READ_HELD(&r.ri, tmp); 3946 break; 3947 } 3948 3949 case DIF_SUBR_RW_WRITE_HELD: 3950 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3951 mstate, vstate)) { 3952 regs[rd] = NULL; 3953 break; 3954 } 3955 3956 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3957 regs[rd] = _RW_WRITE_HELD(&r.ri); 3958 break; 3959 3960 case DIF_SUBR_RW_ISWRITER: 3961 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), 3962 mstate, vstate)) { 3963 regs[rd] = NULL; 3964 break; 3965 } 3966 3967 r.rw = dtrace_loadptr(tupregs[0].dttk_value); 3968 regs[rd] = _RW_ISWRITER(&r.ri); 3969 break; 3970 3971 case DIF_SUBR_BCOPY: { 3972 /* 3973 * We need to be sure that the destination is in the scratch 3974 * region -- no other region is allowed. 3975 */ 3976 uintptr_t src = tupregs[0].dttk_value; 3977 uintptr_t dest = tupregs[1].dttk_value; 3978 size_t size = tupregs[2].dttk_value; 3979 3980 if (!dtrace_inscratch(dest, size, mstate)) { 3981 *flags |= CPU_DTRACE_BADADDR; 3982 *illval = regs[rd]; 3983 break; 3984 } 3985 3986 if (!dtrace_canload(src, size, mstate, vstate)) { 3987 regs[rd] = NULL; 3988 break; 3989 } 3990 3991 dtrace_bcopy((void *)src, (void *)dest, size); 3992 break; 3993 } 3994 3995 case DIF_SUBR_ALLOCA: 3996 case DIF_SUBR_COPYIN: { 3997 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 3998 uint64_t size = 3999 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; 4000 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; 4001 4002 /* 4003 * This action doesn't require any credential checks since 4004 * probes will not activate in user contexts to which the 4005 * enabling user does not have permissions. 4006 */ 4007 4008 /* 4009 * Rounding up the user allocation size could have overflowed 4010 * a large, bogus allocation (like -1ULL) to 0. 4011 */ 4012 if (scratch_size < size || 4013 !DTRACE_INSCRATCH(mstate, scratch_size)) { 4014 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4015 regs[rd] = NULL; 4016 break; 4017 } 4018 4019 if (subr == DIF_SUBR_COPYIN) { 4020 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4021 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4022 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4023 } 4024 4025 mstate->dtms_scratch_ptr += scratch_size; 4026 regs[rd] = dest; 4027 break; 4028 } 4029 4030 case DIF_SUBR_COPYINTO: { 4031 uint64_t size = tupregs[1].dttk_value; 4032 uintptr_t dest = tupregs[2].dttk_value; 4033 4034 /* 4035 * This action doesn't require any credential checks since 4036 * probes will not activate in user contexts to which the 4037 * enabling user does not have permissions. 4038 */ 4039 if (!dtrace_inscratch(dest, size, mstate)) { 4040 *flags |= CPU_DTRACE_BADADDR; 4041 *illval = regs[rd]; 4042 break; 4043 } 4044 4045 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4046 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); 4047 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4048 break; 4049 } 4050 4051 case DIF_SUBR_COPYINSTR: { 4052 uintptr_t dest = mstate->dtms_scratch_ptr; 4053 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4054 4055 if (nargs > 1 && tupregs[1].dttk_value < size) 4056 size = tupregs[1].dttk_value + 1; 4057 4058 /* 4059 * This action doesn't require any credential checks since 4060 * probes will not activate in user contexts to which the 4061 * enabling user does not have permissions. 4062 */ 4063 if (!DTRACE_INSCRATCH(mstate, size)) { 4064 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4065 regs[rd] = NULL; 4066 break; 4067 } 4068 4069 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4070 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); 4071 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4072 4073 ((char *)dest)[size - 1] = '\0'; 4074 mstate->dtms_scratch_ptr += size; 4075 regs[rd] = dest; 4076 break; 4077 } 4078 4079 case DIF_SUBR_MSGSIZE: 4080 case DIF_SUBR_MSGDSIZE: { 4081 uintptr_t baddr = tupregs[0].dttk_value, daddr; 4082 uintptr_t wptr, rptr; 4083 size_t count = 0; 4084 int cont = 0; 4085 4086 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4087 4088 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate, 4089 vstate)) { 4090 regs[rd] = NULL; 4091 break; 4092 } 4093 4094 wptr = dtrace_loadptr(baddr + 4095 offsetof(mblk_t, b_wptr)); 4096 4097 rptr = dtrace_loadptr(baddr + 4098 offsetof(mblk_t, b_rptr)); 4099 4100 if (wptr < rptr) { 4101 *flags |= CPU_DTRACE_BADADDR; 4102 *illval = tupregs[0].dttk_value; 4103 break; 4104 } 4105 4106 daddr = dtrace_loadptr(baddr + 4107 offsetof(mblk_t, b_datap)); 4108 4109 baddr = dtrace_loadptr(baddr + 4110 offsetof(mblk_t, b_cont)); 4111 4112 /* 4113 * We want to prevent against denial-of-service here, 4114 * so we're only going to search the list for 4115 * dtrace_msgdsize_max mblks. 4116 */ 4117 if (cont++ > dtrace_msgdsize_max) { 4118 *flags |= CPU_DTRACE_ILLOP; 4119 break; 4120 } 4121 4122 if (subr == DIF_SUBR_MSGDSIZE) { 4123 if (dtrace_load8(daddr + 4124 offsetof(dblk_t, db_type)) != M_DATA) 4125 continue; 4126 } 4127 4128 count += wptr - rptr; 4129 } 4130 4131 if (!(*flags & CPU_DTRACE_FAULT)) 4132 regs[rd] = count; 4133 4134 break; 4135 } 4136 4137 case DIF_SUBR_PROGENYOF: { 4138 pid_t pid = tupregs[0].dttk_value; 4139 proc_t *p; 4140 int rval = 0; 4141 4142 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4143 4144 for (p = curthread->t_procp; p != NULL; p = p->p_parent) { 4145 if (p->p_pidp->pid_id == pid) { 4146 rval = 1; 4147 break; 4148 } 4149 } 4150 4151 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4152 4153 regs[rd] = rval; 4154 break; 4155 } 4156 4157 case DIF_SUBR_SPECULATION: 4158 regs[rd] = dtrace_speculation(state); 4159 break; 4160 4161 case DIF_SUBR_COPYOUT: { 4162 uintptr_t kaddr = tupregs[0].dttk_value; 4163 uintptr_t uaddr = tupregs[1].dttk_value; 4164 uint64_t size = tupregs[2].dttk_value; 4165 4166 if (!dtrace_destructive_disallow && 4167 dtrace_priv_proc_control(state, mstate) && 4168 !dtrace_istoxic(kaddr, size)) { 4169 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4170 dtrace_copyout(kaddr, uaddr, size, flags); 4171 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4172 } 4173 break; 4174 } 4175 4176 case DIF_SUBR_COPYOUTSTR: { 4177 uintptr_t kaddr = tupregs[0].dttk_value; 4178 uintptr_t uaddr = tupregs[1].dttk_value; 4179 uint64_t size = tupregs[2].dttk_value; 4180 4181 if (!dtrace_destructive_disallow && 4182 dtrace_priv_proc_control(state, mstate) && 4183 !dtrace_istoxic(kaddr, size)) { 4184 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 4185 dtrace_copyoutstr(kaddr, uaddr, size, flags); 4186 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 4187 } 4188 break; 4189 } 4190 4191 case DIF_SUBR_STRLEN: { 4192 size_t sz; 4193 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; 4194 sz = dtrace_strlen((char *)addr, 4195 state->dts_options[DTRACEOPT_STRSIZE]); 4196 4197 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) { 4198 regs[rd] = NULL; 4199 break; 4200 } 4201 4202 regs[rd] = sz; 4203 4204 break; 4205 } 4206 4207 case DIF_SUBR_STRCHR: 4208 case DIF_SUBR_STRRCHR: { 4209 /* 4210 * We're going to iterate over the string looking for the 4211 * specified character. We will iterate until we have reached 4212 * the string length or we have found the character. If this 4213 * is DIF_SUBR_STRRCHR, we will look for the last occurrence 4214 * of the specified character instead of the first. 4215 */ 4216 uintptr_t saddr = tupregs[0].dttk_value; 4217 uintptr_t addr = tupregs[0].dttk_value; 4218 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE]; 4219 char c, target = (char)tupregs[1].dttk_value; 4220 4221 for (regs[rd] = NULL; addr < limit; addr++) { 4222 if ((c = dtrace_load8(addr)) == target) { 4223 regs[rd] = addr; 4224 4225 if (subr == DIF_SUBR_STRCHR) 4226 break; 4227 } 4228 4229 if (c == '\0') 4230 break; 4231 } 4232 4233 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) { 4234 regs[rd] = NULL; 4235 break; 4236 } 4237 4238 break; 4239 } 4240 4241 case DIF_SUBR_STRSTR: 4242 case DIF_SUBR_INDEX: 4243 case DIF_SUBR_RINDEX: { 4244 /* 4245 * We're going to iterate over the string looking for the 4246 * specified string. We will iterate until we have reached 4247 * the string length or we have found the string. (Yes, this 4248 * is done in the most naive way possible -- but considering 4249 * that the string we're searching for is likely to be 4250 * relatively short, the complexity of Rabin-Karp or similar 4251 * hardly seems merited.) 4252 */ 4253 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; 4254 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; 4255 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4256 size_t len = dtrace_strlen(addr, size); 4257 size_t sublen = dtrace_strlen(substr, size); 4258 char *limit = addr + len, *orig = addr; 4259 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; 4260 int inc = 1; 4261 4262 regs[rd] = notfound; 4263 4264 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) { 4265 regs[rd] = NULL; 4266 break; 4267 } 4268 4269 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate, 4270 vstate)) { 4271 regs[rd] = NULL; 4272 break; 4273 } 4274 4275 /* 4276 * strstr() and index()/rindex() have similar semantics if 4277 * both strings are the empty string: strstr() returns a 4278 * pointer to the (empty) string, and index() and rindex() 4279 * both return index 0 (regardless of any position argument). 4280 */ 4281 if (sublen == 0 && len == 0) { 4282 if (subr == DIF_SUBR_STRSTR) 4283 regs[rd] = (uintptr_t)addr; 4284 else 4285 regs[rd] = 0; 4286 break; 4287 } 4288 4289 if (subr != DIF_SUBR_STRSTR) { 4290 if (subr == DIF_SUBR_RINDEX) { 4291 limit = orig - 1; 4292 addr += len; 4293 inc = -1; 4294 } 4295 4296 /* 4297 * Both index() and rindex() take an optional position 4298 * argument that denotes the starting position. 4299 */ 4300 if (nargs == 3) { 4301 int64_t pos = (int64_t)tupregs[2].dttk_value; 4302 4303 /* 4304 * If the position argument to index() is 4305 * negative, Perl implicitly clamps it at 4306 * zero. This semantic is a little surprising 4307 * given the special meaning of negative 4308 * positions to similar Perl functions like 4309 * substr(), but it appears to reflect a 4310 * notion that index() can start from a 4311 * negative index and increment its way up to 4312 * the string. Given this notion, Perl's 4313 * rindex() is at least self-consistent in 4314 * that it implicitly clamps positions greater 4315 * than the string length to be the string 4316 * length. Where Perl completely loses 4317 * coherence, however, is when the specified 4318 * substring is the empty string (""). In 4319 * this case, even if the position is 4320 * negative, rindex() returns 0 -- and even if 4321 * the position is greater than the length, 4322 * index() returns the string length. These 4323 * semantics violate the notion that index() 4324 * should never return a value less than the 4325 * specified position and that rindex() should 4326 * never return a value greater than the 4327 * specified position. (One assumes that 4328 * these semantics are artifacts of Perl's 4329 * implementation and not the results of 4330 * deliberate design -- it beggars belief that 4331 * even Larry Wall could desire such oddness.) 4332 * While in the abstract one would wish for 4333 * consistent position semantics across 4334 * substr(), index() and rindex() -- or at the 4335 * very least self-consistent position 4336 * semantics for index() and rindex() -- we 4337 * instead opt to keep with the extant Perl 4338 * semantics, in all their broken glory. (Do 4339 * we have more desire to maintain Perl's 4340 * semantics than Perl does? Probably.) 4341 */ 4342 if (subr == DIF_SUBR_RINDEX) { 4343 if (pos < 0) { 4344 if (sublen == 0) 4345 regs[rd] = 0; 4346 break; 4347 } 4348 4349 if (pos > len) 4350 pos = len; 4351 } else { 4352 if (pos < 0) 4353 pos = 0; 4354 4355 if (pos >= len) { 4356 if (sublen == 0) 4357 regs[rd] = len; 4358 break; 4359 } 4360 } 4361 4362 addr = orig + pos; 4363 } 4364 } 4365 4366 for (regs[rd] = notfound; addr != limit; addr += inc) { 4367 if (dtrace_strncmp(addr, substr, sublen) == 0) { 4368 if (subr != DIF_SUBR_STRSTR) { 4369 /* 4370 * As D index() and rindex() are 4371 * modeled on Perl (and not on awk), 4372 * we return a zero-based (and not a 4373 * one-based) index. (For you Perl 4374 * weenies: no, we're not going to add 4375 * $[ -- and shouldn't you be at a con 4376 * or something?) 4377 */ 4378 regs[rd] = (uintptr_t)(addr - orig); 4379 break; 4380 } 4381 4382 ASSERT(subr == DIF_SUBR_STRSTR); 4383 regs[rd] = (uintptr_t)addr; 4384 break; 4385 } 4386 } 4387 4388 break; 4389 } 4390 4391 case DIF_SUBR_STRTOK: { 4392 uintptr_t addr = tupregs[0].dttk_value; 4393 uintptr_t tokaddr = tupregs[1].dttk_value; 4394 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4395 uintptr_t limit, toklimit = tokaddr + size; 4396 uint8_t c, tokmap[32]; /* 256 / 8 */ 4397 char *dest = (char *)mstate->dtms_scratch_ptr; 4398 int i; 4399 4400 /* 4401 * Check both the token buffer and (later) the input buffer, 4402 * since both could be non-scratch addresses. 4403 */ 4404 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) { 4405 regs[rd] = NULL; 4406 break; 4407 } 4408 4409 if (!DTRACE_INSCRATCH(mstate, size)) { 4410 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4411 regs[rd] = NULL; 4412 break; 4413 } 4414 4415 if (addr == NULL) { 4416 /* 4417 * If the address specified is NULL, we use our saved 4418 * strtok pointer from the mstate. Note that this 4419 * means that the saved strtok pointer is _only_ 4420 * valid within multiple enablings of the same probe -- 4421 * it behaves like an implicit clause-local variable. 4422 */ 4423 addr = mstate->dtms_strtok; 4424 } else { 4425 /* 4426 * If the user-specified address is non-NULL we must 4427 * access check it. This is the only time we have 4428 * a chance to do so, since this address may reside 4429 * in the string table of this clause-- future calls 4430 * (when we fetch addr from mstate->dtms_strtok) 4431 * would fail this access check. 4432 */ 4433 if (!dtrace_strcanload(addr, size, mstate, vstate)) { 4434 regs[rd] = NULL; 4435 break; 4436 } 4437 } 4438 4439 /* 4440 * First, zero the token map, and then process the token 4441 * string -- setting a bit in the map for every character 4442 * found in the token string. 4443 */ 4444 for (i = 0; i < sizeof (tokmap); i++) 4445 tokmap[i] = 0; 4446 4447 for (; tokaddr < toklimit; tokaddr++) { 4448 if ((c = dtrace_load8(tokaddr)) == '\0') 4449 break; 4450 4451 ASSERT((c >> 3) < sizeof (tokmap)); 4452 tokmap[c >> 3] |= (1 << (c & 0x7)); 4453 } 4454 4455 for (limit = addr + size; addr < limit; addr++) { 4456 /* 4457 * We're looking for a character that is _not_ contained 4458 * in the token string. 4459 */ 4460 if ((c = dtrace_load8(addr)) == '\0') 4461 break; 4462 4463 if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) 4464 break; 4465 } 4466 4467 if (c == '\0') { 4468 /* 4469 * We reached the end of the string without finding 4470 * any character that was not in the token string. 4471 * We return NULL in this case, and we set the saved 4472 * address to NULL as well. 4473 */ 4474 regs[rd] = NULL; 4475 mstate->dtms_strtok = NULL; 4476 break; 4477 } 4478 4479 /* 4480 * From here on, we're copying into the destination string. 4481 */ 4482 for (i = 0; addr < limit && i < size - 1; addr++) { 4483 if ((c = dtrace_load8(addr)) == '\0') 4484 break; 4485 4486 if (tokmap[c >> 3] & (1 << (c & 0x7))) 4487 break; 4488 4489 ASSERT(i < size); 4490 dest[i++] = c; 4491 } 4492 4493 ASSERT(i < size); 4494 dest[i] = '\0'; 4495 regs[rd] = (uintptr_t)dest; 4496 mstate->dtms_scratch_ptr += size; 4497 mstate->dtms_strtok = addr; 4498 break; 4499 } 4500 4501 case DIF_SUBR_SUBSTR: { 4502 uintptr_t s = tupregs[0].dttk_value; 4503 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4504 char *d = (char *)mstate->dtms_scratch_ptr; 4505 int64_t index = (int64_t)tupregs[1].dttk_value; 4506 int64_t remaining = (int64_t)tupregs[2].dttk_value; 4507 size_t len = dtrace_strlen((char *)s, size); 4508 int64_t i; 4509 4510 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4511 regs[rd] = NULL; 4512 break; 4513 } 4514 4515 if (!DTRACE_INSCRATCH(mstate, size)) { 4516 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4517 regs[rd] = NULL; 4518 break; 4519 } 4520 4521 if (nargs <= 2) 4522 remaining = (int64_t)size; 4523 4524 if (index < 0) { 4525 index += len; 4526 4527 if (index < 0 && index + remaining > 0) { 4528 remaining += index; 4529 index = 0; 4530 } 4531 } 4532 4533 if (index >= len || index < 0) { 4534 remaining = 0; 4535 } else if (remaining < 0) { 4536 remaining += len - index; 4537 } else if (index + remaining > size) { 4538 remaining = size - index; 4539 } 4540 4541 for (i = 0; i < remaining; i++) { 4542 if ((d[i] = dtrace_load8(s + index + i)) == '\0') 4543 break; 4544 } 4545 4546 d[i] = '\0'; 4547 4548 mstate->dtms_scratch_ptr += size; 4549 regs[rd] = (uintptr_t)d; 4550 break; 4551 } 4552 4553 case DIF_SUBR_JSON: { 4554 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4555 uintptr_t json = tupregs[0].dttk_value; 4556 size_t jsonlen = dtrace_strlen((char *)json, size); 4557 uintptr_t elem = tupregs[1].dttk_value; 4558 size_t elemlen = dtrace_strlen((char *)elem, size); 4559 4560 char *dest = (char *)mstate->dtms_scratch_ptr; 4561 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; 4562 char *ee = elemlist; 4563 int nelems = 1; 4564 uintptr_t cur; 4565 4566 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) || 4567 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) { 4568 regs[rd] = NULL; 4569 break; 4570 } 4571 4572 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { 4573 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4574 regs[rd] = NULL; 4575 break; 4576 } 4577 4578 /* 4579 * Read the element selector and split it up into a packed list 4580 * of strings. 4581 */ 4582 for (cur = elem; cur < elem + elemlen; cur++) { 4583 char cc = dtrace_load8(cur); 4584 4585 if (cur == elem && cc == '[') { 4586 /* 4587 * If the first element selector key is 4588 * actually an array index then ignore the 4589 * bracket. 4590 */ 4591 continue; 4592 } 4593 4594 if (cc == ']') 4595 continue; 4596 4597 if (cc == '.' || cc == '[') { 4598 nelems++; 4599 cc = '\0'; 4600 } 4601 4602 *ee++ = cc; 4603 } 4604 *ee++ = '\0'; 4605 4606 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, 4607 nelems, dest)) != NULL) 4608 mstate->dtms_scratch_ptr += jsonlen + 1; 4609 break; 4610 } 4611 4612 case DIF_SUBR_TOUPPER: 4613 case DIF_SUBR_TOLOWER: { 4614 uintptr_t s = tupregs[0].dttk_value; 4615 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4616 char *dest = (char *)mstate->dtms_scratch_ptr, c; 4617 size_t len = dtrace_strlen((char *)s, size); 4618 char lower, upper, convert; 4619 int64_t i; 4620 4621 if (subr == DIF_SUBR_TOUPPER) { 4622 lower = 'a'; 4623 upper = 'z'; 4624 convert = 'A'; 4625 } else { 4626 lower = 'A'; 4627 upper = 'Z'; 4628 convert = 'a'; 4629 } 4630 4631 if (!dtrace_canload(s, len + 1, mstate, vstate)) { 4632 regs[rd] = NULL; 4633 break; 4634 } 4635 4636 if (!DTRACE_INSCRATCH(mstate, size)) { 4637 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4638 regs[rd] = NULL; 4639 break; 4640 } 4641 4642 for (i = 0; i < size - 1; i++) { 4643 if ((c = dtrace_load8(s + i)) == '\0') 4644 break; 4645 4646 if (c >= lower && c <= upper) 4647 c = convert + (c - lower); 4648 4649 dest[i] = c; 4650 } 4651 4652 ASSERT(i < size); 4653 dest[i] = '\0'; 4654 regs[rd] = (uintptr_t)dest; 4655 mstate->dtms_scratch_ptr += size; 4656 break; 4657 } 4658 4659 case DIF_SUBR_GETMAJOR: 4660 #ifdef _LP64 4661 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64; 4662 #else 4663 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ; 4664 #endif 4665 break; 4666 4667 case DIF_SUBR_GETMINOR: 4668 #ifdef _LP64 4669 regs[rd] = tupregs[0].dttk_value & MAXMIN64; 4670 #else 4671 regs[rd] = tupregs[0].dttk_value & MAXMIN; 4672 #endif 4673 break; 4674 4675 case DIF_SUBR_DDI_PATHNAME: { 4676 /* 4677 * This one is a galactic mess. We are going to roughly 4678 * emulate ddi_pathname(), but it's made more complicated 4679 * by the fact that we (a) want to include the minor name and 4680 * (b) must proceed iteratively instead of recursively. 4681 */ 4682 uintptr_t dest = mstate->dtms_scratch_ptr; 4683 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4684 char *start = (char *)dest, *end = start + size - 1; 4685 uintptr_t daddr = tupregs[0].dttk_value; 4686 int64_t minor = (int64_t)tupregs[1].dttk_value; 4687 char *s; 4688 int i, len, depth = 0; 4689 4690 /* 4691 * Due to all the pointer jumping we do and context we must 4692 * rely upon, we just mandate that the user must have kernel 4693 * read privileges to use this routine. 4694 */ 4695 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) { 4696 *flags |= CPU_DTRACE_KPRIV; 4697 *illval = daddr; 4698 regs[rd] = NULL; 4699 } 4700 4701 if (!DTRACE_INSCRATCH(mstate, size)) { 4702 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4703 regs[rd] = NULL; 4704 break; 4705 } 4706 4707 *end = '\0'; 4708 4709 /* 4710 * We want to have a name for the minor. In order to do this, 4711 * we need to walk the minor list from the devinfo. We want 4712 * to be sure that we don't infinitely walk a circular list, 4713 * so we check for circularity by sending a scout pointer 4714 * ahead two elements for every element that we iterate over; 4715 * if the list is circular, these will ultimately point to the 4716 * same element. You may recognize this little trick as the 4717 * answer to a stupid interview question -- one that always 4718 * seems to be asked by those who had to have it laboriously 4719 * explained to them, and who can't even concisely describe 4720 * the conditions under which one would be forced to resort to 4721 * this technique. Needless to say, those conditions are 4722 * found here -- and probably only here. Is this the only use 4723 * of this infamous trick in shipping, production code? If it 4724 * isn't, it probably should be... 4725 */ 4726 if (minor != -1) { 4727 uintptr_t maddr = dtrace_loadptr(daddr + 4728 offsetof(struct dev_info, devi_minor)); 4729 4730 uintptr_t next = offsetof(struct ddi_minor_data, next); 4731 uintptr_t name = offsetof(struct ddi_minor_data, 4732 d_minor) + offsetof(struct ddi_minor, name); 4733 uintptr_t dev = offsetof(struct ddi_minor_data, 4734 d_minor) + offsetof(struct ddi_minor, dev); 4735 uintptr_t scout; 4736 4737 if (maddr != NULL) 4738 scout = dtrace_loadptr(maddr + next); 4739 4740 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4741 uint64_t m; 4742 #ifdef _LP64 4743 m = dtrace_load64(maddr + dev) & MAXMIN64; 4744 #else 4745 m = dtrace_load32(maddr + dev) & MAXMIN; 4746 #endif 4747 if (m != minor) { 4748 maddr = dtrace_loadptr(maddr + next); 4749 4750 if (scout == NULL) 4751 continue; 4752 4753 scout = dtrace_loadptr(scout + next); 4754 4755 if (scout == NULL) 4756 continue; 4757 4758 scout = dtrace_loadptr(scout + next); 4759 4760 if (scout == NULL) 4761 continue; 4762 4763 if (scout == maddr) { 4764 *flags |= CPU_DTRACE_ILLOP; 4765 break; 4766 } 4767 4768 continue; 4769 } 4770 4771 /* 4772 * We have the minor data. Now we need to 4773 * copy the minor's name into the end of the 4774 * pathname. 4775 */ 4776 s = (char *)dtrace_loadptr(maddr + name); 4777 len = dtrace_strlen(s, size); 4778 4779 if (*flags & CPU_DTRACE_FAULT) 4780 break; 4781 4782 if (len != 0) { 4783 if ((end -= (len + 1)) < start) 4784 break; 4785 4786 *end = ':'; 4787 } 4788 4789 for (i = 1; i <= len; i++) 4790 end[i] = dtrace_load8((uintptr_t)s++); 4791 break; 4792 } 4793 } 4794 4795 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) { 4796 ddi_node_state_t devi_state; 4797 4798 devi_state = dtrace_load32(daddr + 4799 offsetof(struct dev_info, devi_node_state)); 4800 4801 if (*flags & CPU_DTRACE_FAULT) 4802 break; 4803 4804 if (devi_state >= DS_INITIALIZED) { 4805 s = (char *)dtrace_loadptr(daddr + 4806 offsetof(struct dev_info, devi_addr)); 4807 len = dtrace_strlen(s, size); 4808 4809 if (*flags & CPU_DTRACE_FAULT) 4810 break; 4811 4812 if (len != 0) { 4813 if ((end -= (len + 1)) < start) 4814 break; 4815 4816 *end = '@'; 4817 } 4818 4819 for (i = 1; i <= len; i++) 4820 end[i] = dtrace_load8((uintptr_t)s++); 4821 } 4822 4823 /* 4824 * Now for the node name... 4825 */ 4826 s = (char *)dtrace_loadptr(daddr + 4827 offsetof(struct dev_info, devi_node_name)); 4828 4829 daddr = dtrace_loadptr(daddr + 4830 offsetof(struct dev_info, devi_parent)); 4831 4832 /* 4833 * If our parent is NULL (that is, if we're the root 4834 * node), we're going to use the special path 4835 * "devices". 4836 */ 4837 if (daddr == NULL) 4838 s = "devices"; 4839 4840 len = dtrace_strlen(s, size); 4841 if (*flags & CPU_DTRACE_FAULT) 4842 break; 4843 4844 if ((end -= (len + 1)) < start) 4845 break; 4846 4847 for (i = 1; i <= len; i++) 4848 end[i] = dtrace_load8((uintptr_t)s++); 4849 *end = '/'; 4850 4851 if (depth++ > dtrace_devdepth_max) { 4852 *flags |= CPU_DTRACE_ILLOP; 4853 break; 4854 } 4855 } 4856 4857 if (end < start) 4858 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4859 4860 if (daddr == NULL) { 4861 regs[rd] = (uintptr_t)end; 4862 mstate->dtms_scratch_ptr += size; 4863 } 4864 4865 break; 4866 } 4867 4868 case DIF_SUBR_STRJOIN: { 4869 char *d = (char *)mstate->dtms_scratch_ptr; 4870 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4871 uintptr_t s1 = tupregs[0].dttk_value; 4872 uintptr_t s2 = tupregs[1].dttk_value; 4873 int i = 0; 4874 4875 if (!dtrace_strcanload(s1, size, mstate, vstate) || 4876 !dtrace_strcanload(s2, size, mstate, vstate)) { 4877 regs[rd] = NULL; 4878 break; 4879 } 4880 4881 if (!DTRACE_INSCRATCH(mstate, size)) { 4882 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4883 regs[rd] = NULL; 4884 break; 4885 } 4886 4887 for (;;) { 4888 if (i >= size) { 4889 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4890 regs[rd] = NULL; 4891 break; 4892 } 4893 4894 if ((d[i++] = dtrace_load8(s1++)) == '\0') { 4895 i--; 4896 break; 4897 } 4898 } 4899 4900 for (;;) { 4901 if (i >= size) { 4902 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4903 regs[rd] = NULL; 4904 break; 4905 } 4906 4907 if ((d[i++] = dtrace_load8(s2++)) == '\0') 4908 break; 4909 } 4910 4911 if (i < size) { 4912 mstate->dtms_scratch_ptr += i; 4913 regs[rd] = (uintptr_t)d; 4914 } 4915 4916 break; 4917 } 4918 4919 case DIF_SUBR_STRTOLL: { 4920 uintptr_t s = tupregs[0].dttk_value; 4921 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 4922 int base = 10; 4923 4924 if (nargs > 1) { 4925 if ((base = tupregs[1].dttk_value) <= 1 || 4926 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4927 *flags |= CPU_DTRACE_ILLOP; 4928 break; 4929 } 4930 } 4931 4932 if (!dtrace_strcanload(s, size, mstate, vstate)) { 4933 regs[rd] = INT64_MIN; 4934 break; 4935 } 4936 4937 regs[rd] = dtrace_strtoll((char *)s, base, size); 4938 break; 4939 } 4940 4941 case DIF_SUBR_LLTOSTR: { 4942 int64_t i = (int64_t)tupregs[0].dttk_value; 4943 uint64_t val, digit; 4944 uint64_t size = 65; /* enough room for 2^64 in binary */ 4945 char *end = (char *)mstate->dtms_scratch_ptr + size - 1; 4946 int base = 10; 4947 4948 if (nargs > 1) { 4949 if ((base = tupregs[1].dttk_value) <= 1 || 4950 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { 4951 *flags |= CPU_DTRACE_ILLOP; 4952 break; 4953 } 4954 } 4955 4956 val = (base == 10 && i < 0) ? i * -1 : i; 4957 4958 if (!DTRACE_INSCRATCH(mstate, size)) { 4959 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 4960 regs[rd] = NULL; 4961 break; 4962 } 4963 4964 for (*end-- = '\0'; val; val /= base) { 4965 if ((digit = val % base) <= '9' - '0') { 4966 *end-- = '0' + digit; 4967 } else { 4968 *end-- = 'a' + (digit - ('9' - '0') - 1); 4969 } 4970 } 4971 4972 if (i == 0 && base == 16) 4973 *end-- = '0'; 4974 4975 if (base == 16) 4976 *end-- = 'x'; 4977 4978 if (i == 0 || base == 8 || base == 16) 4979 *end-- = '0'; 4980 4981 if (i < 0 && base == 10) 4982 *end-- = '-'; 4983 4984 regs[rd] = (uintptr_t)end + 1; 4985 mstate->dtms_scratch_ptr += size; 4986 break; 4987 } 4988 4989 case DIF_SUBR_HTONS: 4990 case DIF_SUBR_NTOHS: 4991 #ifdef _BIG_ENDIAN 4992 regs[rd] = (uint16_t)tupregs[0].dttk_value; 4993 #else 4994 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); 4995 #endif 4996 break; 4997 4998 4999 case DIF_SUBR_HTONL: 5000 case DIF_SUBR_NTOHL: 5001 #ifdef _BIG_ENDIAN 5002 regs[rd] = (uint32_t)tupregs[0].dttk_value; 5003 #else 5004 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); 5005 #endif 5006 break; 5007 5008 5009 case DIF_SUBR_HTONLL: 5010 case DIF_SUBR_NTOHLL: 5011 #ifdef _BIG_ENDIAN 5012 regs[rd] = (uint64_t)tupregs[0].dttk_value; 5013 #else 5014 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); 5015 #endif 5016 break; 5017 5018 5019 case DIF_SUBR_DIRNAME: 5020 case DIF_SUBR_BASENAME: { 5021 char *dest = (char *)mstate->dtms_scratch_ptr; 5022 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5023 uintptr_t src = tupregs[0].dttk_value; 5024 int i, j, len = dtrace_strlen((char *)src, size); 5025 int lastbase = -1, firstbase = -1, lastdir = -1; 5026 int start, end; 5027 5028 if (!dtrace_canload(src, len + 1, mstate, vstate)) { 5029 regs[rd] = NULL; 5030 break; 5031 } 5032 5033 if (!DTRACE_INSCRATCH(mstate, size)) { 5034 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5035 regs[rd] = NULL; 5036 break; 5037 } 5038 5039 /* 5040 * The basename and dirname for a zero-length string is 5041 * defined to be "." 5042 */ 5043 if (len == 0) { 5044 len = 1; 5045 src = (uintptr_t)"."; 5046 } 5047 5048 /* 5049 * Start from the back of the string, moving back toward the 5050 * front until we see a character that isn't a slash. That 5051 * character is the last character in the basename. 5052 */ 5053 for (i = len - 1; i >= 0; i--) { 5054 if (dtrace_load8(src + i) != '/') 5055 break; 5056 } 5057 5058 if (i >= 0) 5059 lastbase = i; 5060 5061 /* 5062 * Starting from the last character in the basename, move 5063 * towards the front until we find a slash. The character 5064 * that we processed immediately before that is the first 5065 * character in the basename. 5066 */ 5067 for (; i >= 0; i--) { 5068 if (dtrace_load8(src + i) == '/') 5069 break; 5070 } 5071 5072 if (i >= 0) 5073 firstbase = i + 1; 5074 5075 /* 5076 * Now keep going until we find a non-slash character. That 5077 * character is the last character in the dirname. 5078 */ 5079 for (; i >= 0; i--) { 5080 if (dtrace_load8(src + i) != '/') 5081 break; 5082 } 5083 5084 if (i >= 0) 5085 lastdir = i; 5086 5087 ASSERT(!(lastbase == -1 && firstbase != -1)); 5088 ASSERT(!(firstbase == -1 && lastdir != -1)); 5089 5090 if (lastbase == -1) { 5091 /* 5092 * We didn't find a non-slash character. We know that 5093 * the length is non-zero, so the whole string must be 5094 * slashes. In either the dirname or the basename 5095 * case, we return '/'. 5096 */ 5097 ASSERT(firstbase == -1); 5098 firstbase = lastbase = lastdir = 0; 5099 } 5100 5101 if (firstbase == -1) { 5102 /* 5103 * The entire string consists only of a basename 5104 * component. If we're looking for dirname, we need 5105 * to change our string to be just "."; if we're 5106 * looking for a basename, we'll just set the first 5107 * character of the basename to be 0. 5108 */ 5109 if (subr == DIF_SUBR_DIRNAME) { 5110 ASSERT(lastdir == -1); 5111 src = (uintptr_t)"."; 5112 lastdir = 0; 5113 } else { 5114 firstbase = 0; 5115 } 5116 } 5117 5118 if (subr == DIF_SUBR_DIRNAME) { 5119 if (lastdir == -1) { 5120 /* 5121 * We know that we have a slash in the name -- 5122 * or lastdir would be set to 0, above. And 5123 * because lastdir is -1, we know that this 5124 * slash must be the first character. (That 5125 * is, the full string must be of the form 5126 * "/basename".) In this case, the last 5127 * character of the directory name is 0. 5128 */ 5129 lastdir = 0; 5130 } 5131 5132 start = 0; 5133 end = lastdir; 5134 } else { 5135 ASSERT(subr == DIF_SUBR_BASENAME); 5136 ASSERT(firstbase != -1 && lastbase != -1); 5137 start = firstbase; 5138 end = lastbase; 5139 } 5140 5141 for (i = start, j = 0; i <= end && j < size - 1; i++, j++) 5142 dest[j] = dtrace_load8(src + i); 5143 5144 dest[j] = '\0'; 5145 regs[rd] = (uintptr_t)dest; 5146 mstate->dtms_scratch_ptr += size; 5147 break; 5148 } 5149 5150 case DIF_SUBR_GETF: { 5151 uintptr_t fd = tupregs[0].dttk_value; 5152 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo; 5153 file_t *fp; 5154 5155 if (!dtrace_priv_proc(state, mstate)) { 5156 regs[rd] = NULL; 5157 break; 5158 } 5159 5160 /* 5161 * This is safe because fi_nfiles only increases, and the 5162 * fi_list array is not freed when the array size doubles. 5163 * (See the comment in flist_grow() for details on the 5164 * management of the u_finfo structure.) 5165 */ 5166 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL; 5167 5168 mstate->dtms_getf = fp; 5169 regs[rd] = (uintptr_t)fp; 5170 break; 5171 } 5172 5173 case DIF_SUBR_CLEANPATH: { 5174 char *dest = (char *)mstate->dtms_scratch_ptr, c; 5175 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; 5176 uintptr_t src = tupregs[0].dttk_value; 5177 int i = 0, j = 0; 5178 zone_t *z; 5179 5180 if (!dtrace_strcanload(src, size, mstate, vstate)) { 5181 regs[rd] = NULL; 5182 break; 5183 } 5184 5185 if (!DTRACE_INSCRATCH(mstate, size)) { 5186 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5187 regs[rd] = NULL; 5188 break; 5189 } 5190 5191 /* 5192 * Move forward, loading each character. 5193 */ 5194 do { 5195 c = dtrace_load8(src + i++); 5196 next: 5197 if (j + 5 >= size) /* 5 = strlen("/..c\0") */ 5198 break; 5199 5200 if (c != '/') { 5201 dest[j++] = c; 5202 continue; 5203 } 5204 5205 c = dtrace_load8(src + i++); 5206 5207 if (c == '/') { 5208 /* 5209 * We have two slashes -- we can just advance 5210 * to the next character. 5211 */ 5212 goto next; 5213 } 5214 5215 if (c != '.') { 5216 /* 5217 * This is not "." and it's not ".." -- we can 5218 * just store the "/" and this character and 5219 * drive on. 5220 */ 5221 dest[j++] = '/'; 5222 dest[j++] = c; 5223 continue; 5224 } 5225 5226 c = dtrace_load8(src + i++); 5227 5228 if (c == '/') { 5229 /* 5230 * This is a "/./" component. We're not going 5231 * to store anything in the destination buffer; 5232 * we're just going to go to the next component. 5233 */ 5234 goto next; 5235 } 5236 5237 if (c != '.') { 5238 /* 5239 * This is not ".." -- we can just store the 5240 * "/." and this character and continue 5241 * processing. 5242 */ 5243 dest[j++] = '/'; 5244 dest[j++] = '.'; 5245 dest[j++] = c; 5246 continue; 5247 } 5248 5249 c = dtrace_load8(src + i++); 5250 5251 if (c != '/' && c != '\0') { 5252 /* 5253 * This is not ".." -- it's "..[mumble]". 5254 * We'll store the "/.." and this character 5255 * and continue processing. 5256 */ 5257 dest[j++] = '/'; 5258 dest[j++] = '.'; 5259 dest[j++] = '.'; 5260 dest[j++] = c; 5261 continue; 5262 } 5263 5264 /* 5265 * This is "/../" or "/..\0". We need to back up 5266 * our destination pointer until we find a "/". 5267 */ 5268 i--; 5269 while (j != 0 && dest[--j] != '/') 5270 continue; 5271 5272 if (c == '\0') 5273 dest[++j] = '/'; 5274 } while (c != '\0'); 5275 5276 dest[j] = '\0'; 5277 5278 if (mstate->dtms_getf != NULL && 5279 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) && 5280 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) { 5281 /* 5282 * If we've done a getf() as a part of this ECB and we 5283 * don't have kernel access (and we're not in the global 5284 * zone), check if the path we cleaned up begins with 5285 * the zone's root path, and trim it off if so. Note 5286 * that this is an output cleanliness issue, not a 5287 * security issue: knowing one's zone root path does 5288 * not enable privilege escalation. 5289 */ 5290 if (strstr(dest, z->zone_rootpath) == dest) 5291 dest += strlen(z->zone_rootpath) - 1; 5292 } 5293 5294 regs[rd] = (uintptr_t)dest; 5295 mstate->dtms_scratch_ptr += size; 5296 break; 5297 } 5298 5299 case DIF_SUBR_INET_NTOA: 5300 case DIF_SUBR_INET_NTOA6: 5301 case DIF_SUBR_INET_NTOP: { 5302 size_t size; 5303 int af, argi, i; 5304 char *base, *end; 5305 5306 if (subr == DIF_SUBR_INET_NTOP) { 5307 af = (int)tupregs[0].dttk_value; 5308 argi = 1; 5309 } else { 5310 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; 5311 argi = 0; 5312 } 5313 5314 if (af == AF_INET) { 5315 ipaddr_t ip4; 5316 uint8_t *ptr8, val; 5317 5318 /* 5319 * Safely load the IPv4 address. 5320 */ 5321 ip4 = dtrace_load32(tupregs[argi].dttk_value); 5322 5323 /* 5324 * Check an IPv4 string will fit in scratch. 5325 */ 5326 size = INET_ADDRSTRLEN; 5327 if (!DTRACE_INSCRATCH(mstate, size)) { 5328 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5329 regs[rd] = NULL; 5330 break; 5331 } 5332 base = (char *)mstate->dtms_scratch_ptr; 5333 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5334 5335 /* 5336 * Stringify as a dotted decimal quad. 5337 */ 5338 *end-- = '\0'; 5339 ptr8 = (uint8_t *)&ip4; 5340 for (i = 3; i >= 0; i--) { 5341 val = ptr8[i]; 5342 5343 if (val == 0) { 5344 *end-- = '0'; 5345 } else { 5346 for (; val; val /= 10) { 5347 *end-- = '0' + (val % 10); 5348 } 5349 } 5350 5351 if (i > 0) 5352 *end-- = '.'; 5353 } 5354 ASSERT(end + 1 >= base); 5355 5356 } else if (af == AF_INET6) { 5357 struct in6_addr ip6; 5358 int firstzero, tryzero, numzero, v6end; 5359 uint16_t val; 5360 const char digits[] = "0123456789abcdef"; 5361 5362 /* 5363 * Stringify using RFC 1884 convention 2 - 16 bit 5364 * hexadecimal values with a zero-run compression. 5365 * Lower case hexadecimal digits are used. 5366 * eg, fe80::214:4fff:fe0b:76c8. 5367 * The IPv4 embedded form is returned for inet_ntop, 5368 * just the IPv4 string is returned for inet_ntoa6. 5369 */ 5370 5371 /* 5372 * Safely load the IPv6 address. 5373 */ 5374 dtrace_bcopy( 5375 (void *)(uintptr_t)tupregs[argi].dttk_value, 5376 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr)); 5377 5378 /* 5379 * Check an IPv6 string will fit in scratch. 5380 */ 5381 size = INET6_ADDRSTRLEN; 5382 if (!DTRACE_INSCRATCH(mstate, size)) { 5383 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 5384 regs[rd] = NULL; 5385 break; 5386 } 5387 base = (char *)mstate->dtms_scratch_ptr; 5388 end = (char *)mstate->dtms_scratch_ptr + size - 1; 5389 *end-- = '\0'; 5390 5391 /* 5392 * Find the longest run of 16 bit zero values 5393 * for the single allowed zero compression - "::". 5394 */ 5395 firstzero = -1; 5396 tryzero = -1; 5397 numzero = 1; 5398 for (i = 0; i < sizeof (struct in6_addr); i++) { 5399 if (ip6._S6_un._S6_u8[i] == 0 && 5400 tryzero == -1 && i % 2 == 0) { 5401 tryzero = i; 5402 continue; 5403 } 5404 5405 if (tryzero != -1 && 5406 (ip6._S6_un._S6_u8[i] != 0 || 5407 i == sizeof (struct in6_addr) - 1)) { 5408 5409 if (i - tryzero <= numzero) { 5410 tryzero = -1; 5411 continue; 5412 } 5413 5414 firstzero = tryzero; 5415 numzero = i - i % 2 - tryzero; 5416 tryzero = -1; 5417 5418 if (ip6._S6_un._S6_u8[i] == 0 && 5419 i == sizeof (struct in6_addr) - 1) 5420 numzero += 2; 5421 } 5422 } 5423 ASSERT(firstzero + numzero <= sizeof (struct in6_addr)); 5424 5425 /* 5426 * Check for an IPv4 embedded address. 5427 */ 5428 v6end = sizeof (struct in6_addr) - 2; 5429 if (IN6_IS_ADDR_V4MAPPED(&ip6) || 5430 IN6_IS_ADDR_V4COMPAT(&ip6)) { 5431 for (i = sizeof (struct in6_addr) - 1; 5432 i >= DTRACE_V4MAPPED_OFFSET; i--) { 5433 ASSERT(end >= base); 5434 5435 val = ip6._S6_un._S6_u8[i]; 5436 5437 if (val == 0) { 5438 *end-- = '0'; 5439 } else { 5440 for (; val; val /= 10) { 5441 *end-- = '0' + val % 10; 5442 } 5443 } 5444 5445 if (i > DTRACE_V4MAPPED_OFFSET) 5446 *end-- = '.'; 5447 } 5448 5449 if (subr == DIF_SUBR_INET_NTOA6) 5450 goto inetout; 5451 5452 /* 5453 * Set v6end to skip the IPv4 address that 5454 * we have already stringified. 5455 */ 5456 v6end = 10; 5457 } 5458 5459 /* 5460 * Build the IPv6 string by working through the 5461 * address in reverse. 5462 */ 5463 for (i = v6end; i >= 0; i -= 2) { 5464 ASSERT(end >= base); 5465 5466 if (i == firstzero + numzero - 2) { 5467 *end-- = ':'; 5468 *end-- = ':'; 5469 i -= numzero - 2; 5470 continue; 5471 } 5472 5473 if (i < 14 && i != firstzero - 2) 5474 *end-- = ':'; 5475 5476 val = (ip6._S6_un._S6_u8[i] << 8) + 5477 ip6._S6_un._S6_u8[i + 1]; 5478 5479 if (val == 0) { 5480 *end-- = '0'; 5481 } else { 5482 for (; val; val /= 16) { 5483 *end-- = digits[val % 16]; 5484 } 5485 } 5486 } 5487 ASSERT(end + 1 >= base); 5488 5489 } else { 5490 /* 5491 * The user didn't use AH_INET or AH_INET6. 5492 */ 5493 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 5494 regs[rd] = NULL; 5495 break; 5496 } 5497 5498 inetout: regs[rd] = (uintptr_t)end + 1; 5499 mstate->dtms_scratch_ptr += size; 5500 break; 5501 } 5502 5503 } 5504 } 5505 5506 /* 5507 * Emulate the execution of DTrace IR instructions specified by the given 5508 * DIF object. This function is deliberately void of assertions as all of 5509 * the necessary checks are handled by a call to dtrace_difo_validate(). 5510 */ 5511 static uint64_t 5512 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, 5513 dtrace_vstate_t *vstate, dtrace_state_t *state) 5514 { 5515 const dif_instr_t *text = difo->dtdo_buf; 5516 const uint_t textlen = difo->dtdo_len; 5517 const char *strtab = difo->dtdo_strtab; 5518 const uint64_t *inttab = difo->dtdo_inttab; 5519 5520 uint64_t rval = 0; 5521 dtrace_statvar_t *svar; 5522 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; 5523 dtrace_difv_t *v; 5524 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 5525 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 5526 5527 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 5528 uint64_t regs[DIF_DIR_NREGS]; 5529 uint64_t *tmp; 5530 5531 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; 5532 int64_t cc_r; 5533 uint_t pc = 0, id, opc; 5534 uint8_t ttop = 0; 5535 dif_instr_t instr; 5536 uint_t r1, r2, rd; 5537 5538 /* 5539 * We stash the current DIF object into the machine state: we need it 5540 * for subsequent access checking. 5541 */ 5542 mstate->dtms_difo = difo; 5543 5544 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ 5545 5546 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { 5547 opc = pc; 5548 5549 instr = text[pc++]; 5550 r1 = DIF_INSTR_R1(instr); 5551 r2 = DIF_INSTR_R2(instr); 5552 rd = DIF_INSTR_RD(instr); 5553 5554 switch (DIF_INSTR_OP(instr)) { 5555 case DIF_OP_OR: 5556 regs[rd] = regs[r1] | regs[r2]; 5557 break; 5558 case DIF_OP_XOR: 5559 regs[rd] = regs[r1] ^ regs[r2]; 5560 break; 5561 case DIF_OP_AND: 5562 regs[rd] = regs[r1] & regs[r2]; 5563 break; 5564 case DIF_OP_SLL: 5565 regs[rd] = regs[r1] << regs[r2]; 5566 break; 5567 case DIF_OP_SRL: 5568 regs[rd] = regs[r1] >> regs[r2]; 5569 break; 5570 case DIF_OP_SUB: 5571 regs[rd] = regs[r1] - regs[r2]; 5572 break; 5573 case DIF_OP_ADD: 5574 regs[rd] = regs[r1] + regs[r2]; 5575 break; 5576 case DIF_OP_MUL: 5577 regs[rd] = regs[r1] * regs[r2]; 5578 break; 5579 case DIF_OP_SDIV: 5580 if (regs[r2] == 0) { 5581 regs[rd] = 0; 5582 *flags |= CPU_DTRACE_DIVZERO; 5583 } else { 5584 regs[rd] = (int64_t)regs[r1] / 5585 (int64_t)regs[r2]; 5586 } 5587 break; 5588 5589 case DIF_OP_UDIV: 5590 if (regs[r2] == 0) { 5591 regs[rd] = 0; 5592 *flags |= CPU_DTRACE_DIVZERO; 5593 } else { 5594 regs[rd] = regs[r1] / regs[r2]; 5595 } 5596 break; 5597 5598 case DIF_OP_SREM: 5599 if (regs[r2] == 0) { 5600 regs[rd] = 0; 5601 *flags |= CPU_DTRACE_DIVZERO; 5602 } else { 5603 regs[rd] = (int64_t)regs[r1] % 5604 (int64_t)regs[r2]; 5605 } 5606 break; 5607 5608 case DIF_OP_UREM: 5609 if (regs[r2] == 0) { 5610 regs[rd] = 0; 5611 *flags |= CPU_DTRACE_DIVZERO; 5612 } else { 5613 regs[rd] = regs[r1] % regs[r2]; 5614 } 5615 break; 5616 5617 case DIF_OP_NOT: 5618 regs[rd] = ~regs[r1]; 5619 break; 5620 case DIF_OP_MOV: 5621 regs[rd] = regs[r1]; 5622 break; 5623 case DIF_OP_CMP: 5624 cc_r = regs[r1] - regs[r2]; 5625 cc_n = cc_r < 0; 5626 cc_z = cc_r == 0; 5627 cc_v = 0; 5628 cc_c = regs[r1] < regs[r2]; 5629 break; 5630 case DIF_OP_TST: 5631 cc_n = cc_v = cc_c = 0; 5632 cc_z = regs[r1] == 0; 5633 break; 5634 case DIF_OP_BA: 5635 pc = DIF_INSTR_LABEL(instr); 5636 break; 5637 case DIF_OP_BE: 5638 if (cc_z) 5639 pc = DIF_INSTR_LABEL(instr); 5640 break; 5641 case DIF_OP_BNE: 5642 if (cc_z == 0) 5643 pc = DIF_INSTR_LABEL(instr); 5644 break; 5645 case DIF_OP_BG: 5646 if ((cc_z | (cc_n ^ cc_v)) == 0) 5647 pc = DIF_INSTR_LABEL(instr); 5648 break; 5649 case DIF_OP_BGU: 5650 if ((cc_c | cc_z) == 0) 5651 pc = DIF_INSTR_LABEL(instr); 5652 break; 5653 case DIF_OP_BGE: 5654 if ((cc_n ^ cc_v) == 0) 5655 pc = DIF_INSTR_LABEL(instr); 5656 break; 5657 case DIF_OP_BGEU: 5658 if (cc_c == 0) 5659 pc = DIF_INSTR_LABEL(instr); 5660 break; 5661 case DIF_OP_BL: 5662 if (cc_n ^ cc_v) 5663 pc = DIF_INSTR_LABEL(instr); 5664 break; 5665 case DIF_OP_BLU: 5666 if (cc_c) 5667 pc = DIF_INSTR_LABEL(instr); 5668 break; 5669 case DIF_OP_BLE: 5670 if (cc_z | (cc_n ^ cc_v)) 5671 pc = DIF_INSTR_LABEL(instr); 5672 break; 5673 case DIF_OP_BLEU: 5674 if (cc_c | cc_z) 5675 pc = DIF_INSTR_LABEL(instr); 5676 break; 5677 case DIF_OP_RLDSB: 5678 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5679 break; 5680 /*FALLTHROUGH*/ 5681 case DIF_OP_LDSB: 5682 regs[rd] = (int8_t)dtrace_load8(regs[r1]); 5683 break; 5684 case DIF_OP_RLDSH: 5685 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5686 break; 5687 /*FALLTHROUGH*/ 5688 case DIF_OP_LDSH: 5689 regs[rd] = (int16_t)dtrace_load16(regs[r1]); 5690 break; 5691 case DIF_OP_RLDSW: 5692 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5693 break; 5694 /*FALLTHROUGH*/ 5695 case DIF_OP_LDSW: 5696 regs[rd] = (int32_t)dtrace_load32(regs[r1]); 5697 break; 5698 case DIF_OP_RLDUB: 5699 if (!dtrace_canload(regs[r1], 1, mstate, vstate)) 5700 break; 5701 /*FALLTHROUGH*/ 5702 case DIF_OP_LDUB: 5703 regs[rd] = dtrace_load8(regs[r1]); 5704 break; 5705 case DIF_OP_RLDUH: 5706 if (!dtrace_canload(regs[r1], 2, mstate, vstate)) 5707 break; 5708 /*FALLTHROUGH*/ 5709 case DIF_OP_LDUH: 5710 regs[rd] = dtrace_load16(regs[r1]); 5711 break; 5712 case DIF_OP_RLDUW: 5713 if (!dtrace_canload(regs[r1], 4, mstate, vstate)) 5714 break; 5715 /*FALLTHROUGH*/ 5716 case DIF_OP_LDUW: 5717 regs[rd] = dtrace_load32(regs[r1]); 5718 break; 5719 case DIF_OP_RLDX: 5720 if (!dtrace_canload(regs[r1], 8, mstate, vstate)) 5721 break; 5722 /*FALLTHROUGH*/ 5723 case DIF_OP_LDX: 5724 regs[rd] = dtrace_load64(regs[r1]); 5725 break; 5726 case DIF_OP_ULDSB: 5727 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5728 regs[rd] = (int8_t) 5729 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5730 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5731 break; 5732 case DIF_OP_ULDSH: 5733 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5734 regs[rd] = (int16_t) 5735 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5736 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5737 break; 5738 case DIF_OP_ULDSW: 5739 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5740 regs[rd] = (int32_t) 5741 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5742 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5743 break; 5744 case DIF_OP_ULDUB: 5745 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5746 regs[rd] = 5747 dtrace_fuword8((void *)(uintptr_t)regs[r1]); 5748 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5749 break; 5750 case DIF_OP_ULDUH: 5751 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5752 regs[rd] = 5753 dtrace_fuword16((void *)(uintptr_t)regs[r1]); 5754 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5755 break; 5756 case DIF_OP_ULDUW: 5757 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5758 regs[rd] = 5759 dtrace_fuword32((void *)(uintptr_t)regs[r1]); 5760 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5761 break; 5762 case DIF_OP_ULDX: 5763 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 5764 regs[rd] = 5765 dtrace_fuword64((void *)(uintptr_t)regs[r1]); 5766 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 5767 break; 5768 case DIF_OP_RET: 5769 rval = regs[rd]; 5770 pc = textlen; 5771 break; 5772 case DIF_OP_NOP: 5773 break; 5774 case DIF_OP_SETX: 5775 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; 5776 break; 5777 case DIF_OP_SETS: 5778 regs[rd] = (uint64_t)(uintptr_t) 5779 (strtab + DIF_INSTR_STRING(instr)); 5780 break; 5781 case DIF_OP_SCMP: { 5782 size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; 5783 uintptr_t s1 = regs[r1]; 5784 uintptr_t s2 = regs[r2]; 5785 5786 if (s1 != NULL && 5787 !dtrace_strcanload(s1, sz, mstate, vstate)) 5788 break; 5789 if (s2 != NULL && 5790 !dtrace_strcanload(s2, sz, mstate, vstate)) 5791 break; 5792 5793 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz); 5794 5795 cc_n = cc_r < 0; 5796 cc_z = cc_r == 0; 5797 cc_v = cc_c = 0; 5798 break; 5799 } 5800 case DIF_OP_LDGA: 5801 regs[rd] = dtrace_dif_variable(mstate, state, 5802 r1, regs[r2]); 5803 break; 5804 case DIF_OP_LDGS: 5805 id = DIF_INSTR_VAR(instr); 5806 5807 if (id >= DIF_VAR_OTHER_UBASE) { 5808 uintptr_t a; 5809 5810 id -= DIF_VAR_OTHER_UBASE; 5811 svar = vstate->dtvs_globals[id]; 5812 ASSERT(svar != NULL); 5813 v = &svar->dtsv_var; 5814 5815 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { 5816 regs[rd] = svar->dtsv_data; 5817 break; 5818 } 5819 5820 a = (uintptr_t)svar->dtsv_data; 5821 5822 if (*(uint8_t *)a == UINT8_MAX) { 5823 /* 5824 * If the 0th byte is set to UINT8_MAX 5825 * then this is to be treated as a 5826 * reference to a NULL variable. 5827 */ 5828 regs[rd] = NULL; 5829 } else { 5830 regs[rd] = a + sizeof (uint64_t); 5831 } 5832 5833 break; 5834 } 5835 5836 regs[rd] = dtrace_dif_variable(mstate, state, id, 0); 5837 break; 5838 5839 case DIF_OP_STGS: 5840 id = DIF_INSTR_VAR(instr); 5841 5842 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5843 id -= DIF_VAR_OTHER_UBASE; 5844 5845 svar = vstate->dtvs_globals[id]; 5846 ASSERT(svar != NULL); 5847 v = &svar->dtsv_var; 5848 5849 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5850 uintptr_t a = (uintptr_t)svar->dtsv_data; 5851 5852 ASSERT(a != NULL); 5853 ASSERT(svar->dtsv_size != 0); 5854 5855 if (regs[rd] == NULL) { 5856 *(uint8_t *)a = UINT8_MAX; 5857 break; 5858 } else { 5859 *(uint8_t *)a = 0; 5860 a += sizeof (uint64_t); 5861 } 5862 if (!dtrace_vcanload( 5863 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5864 mstate, vstate)) 5865 break; 5866 5867 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5868 (void *)a, &v->dtdv_type); 5869 break; 5870 } 5871 5872 svar->dtsv_data = regs[rd]; 5873 break; 5874 5875 case DIF_OP_LDTA: 5876 /* 5877 * There are no DTrace built-in thread-local arrays at 5878 * present. This opcode is saved for future work. 5879 */ 5880 *flags |= CPU_DTRACE_ILLOP; 5881 regs[rd] = 0; 5882 break; 5883 5884 case DIF_OP_LDLS: 5885 id = DIF_INSTR_VAR(instr); 5886 5887 if (id < DIF_VAR_OTHER_UBASE) { 5888 /* 5889 * For now, this has no meaning. 5890 */ 5891 regs[rd] = 0; 5892 break; 5893 } 5894 5895 id -= DIF_VAR_OTHER_UBASE; 5896 5897 ASSERT(id < vstate->dtvs_nlocals); 5898 ASSERT(vstate->dtvs_locals != NULL); 5899 5900 svar = vstate->dtvs_locals[id]; 5901 ASSERT(svar != NULL); 5902 v = &svar->dtsv_var; 5903 5904 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5905 uintptr_t a = (uintptr_t)svar->dtsv_data; 5906 size_t sz = v->dtdv_type.dtdt_size; 5907 5908 sz += sizeof (uint64_t); 5909 ASSERT(svar->dtsv_size == NCPU * sz); 5910 a += CPU->cpu_id * sz; 5911 5912 if (*(uint8_t *)a == UINT8_MAX) { 5913 /* 5914 * If the 0th byte is set to UINT8_MAX 5915 * then this is to be treated as a 5916 * reference to a NULL variable. 5917 */ 5918 regs[rd] = NULL; 5919 } else { 5920 regs[rd] = a + sizeof (uint64_t); 5921 } 5922 5923 break; 5924 } 5925 5926 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5927 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5928 regs[rd] = tmp[CPU->cpu_id]; 5929 break; 5930 5931 case DIF_OP_STLS: 5932 id = DIF_INSTR_VAR(instr); 5933 5934 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5935 id -= DIF_VAR_OTHER_UBASE; 5936 ASSERT(id < vstate->dtvs_nlocals); 5937 5938 ASSERT(vstate->dtvs_locals != NULL); 5939 svar = vstate->dtvs_locals[id]; 5940 ASSERT(svar != NULL); 5941 v = &svar->dtsv_var; 5942 5943 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5944 uintptr_t a = (uintptr_t)svar->dtsv_data; 5945 size_t sz = v->dtdv_type.dtdt_size; 5946 5947 sz += sizeof (uint64_t); 5948 ASSERT(svar->dtsv_size == NCPU * sz); 5949 a += CPU->cpu_id * sz; 5950 5951 if (regs[rd] == NULL) { 5952 *(uint8_t *)a = UINT8_MAX; 5953 break; 5954 } else { 5955 *(uint8_t *)a = 0; 5956 a += sizeof (uint64_t); 5957 } 5958 5959 if (!dtrace_vcanload( 5960 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 5961 mstate, vstate)) 5962 break; 5963 5964 dtrace_vcopy((void *)(uintptr_t)regs[rd], 5965 (void *)a, &v->dtdv_type); 5966 break; 5967 } 5968 5969 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t)); 5970 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; 5971 tmp[CPU->cpu_id] = regs[rd]; 5972 break; 5973 5974 case DIF_OP_LDTS: { 5975 dtrace_dynvar_t *dvar; 5976 dtrace_key_t *key; 5977 5978 id = DIF_INSTR_VAR(instr); 5979 ASSERT(id >= DIF_VAR_OTHER_UBASE); 5980 id -= DIF_VAR_OTHER_UBASE; 5981 v = &vstate->dtvs_tlocals[id]; 5982 5983 key = &tupregs[DIF_DTR_NREGS]; 5984 key[0].dttk_value = (uint64_t)id; 5985 key[0].dttk_size = 0; 5986 DTRACE_TLS_THRKEY(key[1].dttk_value); 5987 key[1].dttk_size = 0; 5988 5989 dvar = dtrace_dynvar(dstate, 2, key, 5990 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC, 5991 mstate, vstate); 5992 5993 if (dvar == NULL) { 5994 regs[rd] = 0; 5995 break; 5996 } 5997 5998 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 5999 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6000 } else { 6001 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6002 } 6003 6004 break; 6005 } 6006 6007 case DIF_OP_STTS: { 6008 dtrace_dynvar_t *dvar; 6009 dtrace_key_t *key; 6010 6011 id = DIF_INSTR_VAR(instr); 6012 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6013 id -= DIF_VAR_OTHER_UBASE; 6014 6015 key = &tupregs[DIF_DTR_NREGS]; 6016 key[0].dttk_value = (uint64_t)id; 6017 key[0].dttk_size = 0; 6018 DTRACE_TLS_THRKEY(key[1].dttk_value); 6019 key[1].dttk_size = 0; 6020 v = &vstate->dtvs_tlocals[id]; 6021 6022 dvar = dtrace_dynvar(dstate, 2, key, 6023 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6024 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6025 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6026 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6027 6028 /* 6029 * Given that we're storing to thread-local data, 6030 * we need to flush our predicate cache. 6031 */ 6032 curthread->t_predcache = NULL; 6033 6034 if (dvar == NULL) 6035 break; 6036 6037 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6038 if (!dtrace_vcanload( 6039 (void *)(uintptr_t)regs[rd], 6040 &v->dtdv_type, mstate, vstate)) 6041 break; 6042 6043 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6044 dvar->dtdv_data, &v->dtdv_type); 6045 } else { 6046 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6047 } 6048 6049 break; 6050 } 6051 6052 case DIF_OP_SRA: 6053 regs[rd] = (int64_t)regs[r1] >> regs[r2]; 6054 break; 6055 6056 case DIF_OP_CALL: 6057 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, 6058 regs, tupregs, ttop, mstate, state); 6059 break; 6060 6061 case DIF_OP_PUSHTR: 6062 if (ttop == DIF_DTR_NREGS) { 6063 *flags |= CPU_DTRACE_TUPOFLOW; 6064 break; 6065 } 6066 6067 if (r1 == DIF_TYPE_STRING) { 6068 /* 6069 * If this is a string type and the size is 0, 6070 * we'll use the system-wide default string 6071 * size. Note that we are _not_ looking at 6072 * the value of the DTRACEOPT_STRSIZE option; 6073 * had this been set, we would expect to have 6074 * a non-zero size value in the "pushtr". 6075 */ 6076 tupregs[ttop].dttk_size = 6077 dtrace_strlen((char *)(uintptr_t)regs[rd], 6078 regs[r2] ? regs[r2] : 6079 dtrace_strsize_default) + 1; 6080 } else { 6081 tupregs[ttop].dttk_size = regs[r2]; 6082 } 6083 6084 tupregs[ttop++].dttk_value = regs[rd]; 6085 break; 6086 6087 case DIF_OP_PUSHTV: 6088 if (ttop == DIF_DTR_NREGS) { 6089 *flags |= CPU_DTRACE_TUPOFLOW; 6090 break; 6091 } 6092 6093 tupregs[ttop].dttk_value = regs[rd]; 6094 tupregs[ttop++].dttk_size = 0; 6095 break; 6096 6097 case DIF_OP_POPTS: 6098 if (ttop != 0) 6099 ttop--; 6100 break; 6101 6102 case DIF_OP_FLUSHTS: 6103 ttop = 0; 6104 break; 6105 6106 case DIF_OP_LDGAA: 6107 case DIF_OP_LDTAA: { 6108 dtrace_dynvar_t *dvar; 6109 dtrace_key_t *key = tupregs; 6110 uint_t nkeys = ttop; 6111 6112 id = DIF_INSTR_VAR(instr); 6113 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6114 id -= DIF_VAR_OTHER_UBASE; 6115 6116 key[nkeys].dttk_value = (uint64_t)id; 6117 key[nkeys++].dttk_size = 0; 6118 6119 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { 6120 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6121 key[nkeys++].dttk_size = 0; 6122 v = &vstate->dtvs_tlocals[id]; 6123 } else { 6124 v = &vstate->dtvs_globals[id]->dtsv_var; 6125 } 6126 6127 dvar = dtrace_dynvar(dstate, nkeys, key, 6128 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6129 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6130 DTRACE_DYNVAR_NOALLOC, mstate, vstate); 6131 6132 if (dvar == NULL) { 6133 regs[rd] = 0; 6134 break; 6135 } 6136 6137 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6138 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; 6139 } else { 6140 regs[rd] = *((uint64_t *)dvar->dtdv_data); 6141 } 6142 6143 break; 6144 } 6145 6146 case DIF_OP_STGAA: 6147 case DIF_OP_STTAA: { 6148 dtrace_dynvar_t *dvar; 6149 dtrace_key_t *key = tupregs; 6150 uint_t nkeys = ttop; 6151 6152 id = DIF_INSTR_VAR(instr); 6153 ASSERT(id >= DIF_VAR_OTHER_UBASE); 6154 id -= DIF_VAR_OTHER_UBASE; 6155 6156 key[nkeys].dttk_value = (uint64_t)id; 6157 key[nkeys++].dttk_size = 0; 6158 6159 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { 6160 DTRACE_TLS_THRKEY(key[nkeys].dttk_value); 6161 key[nkeys++].dttk_size = 0; 6162 v = &vstate->dtvs_tlocals[id]; 6163 } else { 6164 v = &vstate->dtvs_globals[id]->dtsv_var; 6165 } 6166 6167 dvar = dtrace_dynvar(dstate, nkeys, key, 6168 v->dtdv_type.dtdt_size > sizeof (uint64_t) ? 6169 v->dtdv_type.dtdt_size : sizeof (uint64_t), 6170 regs[rd] ? DTRACE_DYNVAR_ALLOC : 6171 DTRACE_DYNVAR_DEALLOC, mstate, vstate); 6172 6173 if (dvar == NULL) 6174 break; 6175 6176 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { 6177 if (!dtrace_vcanload( 6178 (void *)(uintptr_t)regs[rd], &v->dtdv_type, 6179 mstate, vstate)) 6180 break; 6181 6182 dtrace_vcopy((void *)(uintptr_t)regs[rd], 6183 dvar->dtdv_data, &v->dtdv_type); 6184 } else { 6185 *((uint64_t *)dvar->dtdv_data) = regs[rd]; 6186 } 6187 6188 break; 6189 } 6190 6191 case DIF_OP_ALLOCS: { 6192 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6193 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; 6194 6195 /* 6196 * Rounding up the user allocation size could have 6197 * overflowed large, bogus allocations (like -1ULL) to 6198 * 0. 6199 */ 6200 if (size < regs[r1] || 6201 !DTRACE_INSCRATCH(mstate, size)) { 6202 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6203 regs[rd] = NULL; 6204 break; 6205 } 6206 6207 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size); 6208 mstate->dtms_scratch_ptr += size; 6209 regs[rd] = ptr; 6210 break; 6211 } 6212 6213 case DIF_OP_COPYS: 6214 if (!dtrace_canstore(regs[rd], regs[r2], 6215 mstate, vstate)) { 6216 *flags |= CPU_DTRACE_BADADDR; 6217 *illval = regs[rd]; 6218 break; 6219 } 6220 6221 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) 6222 break; 6223 6224 dtrace_bcopy((void *)(uintptr_t)regs[r1], 6225 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]); 6226 break; 6227 6228 case DIF_OP_STB: 6229 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) { 6230 *flags |= CPU_DTRACE_BADADDR; 6231 *illval = regs[rd]; 6232 break; 6233 } 6234 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; 6235 break; 6236 6237 case DIF_OP_STH: 6238 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) { 6239 *flags |= CPU_DTRACE_BADADDR; 6240 *illval = regs[rd]; 6241 break; 6242 } 6243 if (regs[rd] & 1) { 6244 *flags |= CPU_DTRACE_BADALIGN; 6245 *illval = regs[rd]; 6246 break; 6247 } 6248 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; 6249 break; 6250 6251 case DIF_OP_STW: 6252 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) { 6253 *flags |= CPU_DTRACE_BADADDR; 6254 *illval = regs[rd]; 6255 break; 6256 } 6257 if (regs[rd] & 3) { 6258 *flags |= CPU_DTRACE_BADALIGN; 6259 *illval = regs[rd]; 6260 break; 6261 } 6262 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; 6263 break; 6264 6265 case DIF_OP_STX: 6266 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) { 6267 *flags |= CPU_DTRACE_BADADDR; 6268 *illval = regs[rd]; 6269 break; 6270 } 6271 if (regs[rd] & 7) { 6272 *flags |= CPU_DTRACE_BADALIGN; 6273 *illval = regs[rd]; 6274 break; 6275 } 6276 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; 6277 break; 6278 } 6279 } 6280 6281 if (!(*flags & CPU_DTRACE_FAULT)) 6282 return (rval); 6283 6284 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); 6285 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; 6286 6287 return (0); 6288 } 6289 6290 static void 6291 dtrace_action_breakpoint(dtrace_ecb_t *ecb) 6292 { 6293 dtrace_probe_t *probe = ecb->dte_probe; 6294 dtrace_provider_t *prov = probe->dtpr_provider; 6295 char c[DTRACE_FULLNAMELEN + 80], *str; 6296 char *msg = "dtrace: breakpoint action at probe "; 6297 char *ecbmsg = " (ecb "; 6298 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); 6299 uintptr_t val = (uintptr_t)ecb; 6300 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; 6301 6302 if (dtrace_destructive_disallow) 6303 return; 6304 6305 /* 6306 * It's impossible to be taking action on the NULL probe. 6307 */ 6308 ASSERT(probe != NULL); 6309 6310 /* 6311 * This is a poor man's (destitute man's?) sprintf(): we want to 6312 * print the provider name, module name, function name and name of 6313 * the probe, along with the hex address of the ECB with the breakpoint 6314 * action -- all of which we must place in the character buffer by 6315 * hand. 6316 */ 6317 while (*msg != '\0') 6318 c[i++] = *msg++; 6319 6320 for (str = prov->dtpv_name; *str != '\0'; str++) 6321 c[i++] = *str; 6322 c[i++] = ':'; 6323 6324 for (str = probe->dtpr_mod; *str != '\0'; str++) 6325 c[i++] = *str; 6326 c[i++] = ':'; 6327 6328 for (str = probe->dtpr_func; *str != '\0'; str++) 6329 c[i++] = *str; 6330 c[i++] = ':'; 6331 6332 for (str = probe->dtpr_name; *str != '\0'; str++) 6333 c[i++] = *str; 6334 6335 while (*ecbmsg != '\0') 6336 c[i++] = *ecbmsg++; 6337 6338 while (shift >= 0) { 6339 mask = (uintptr_t)0xf << shift; 6340 6341 if (val >= ((uintptr_t)1 << shift)) 6342 c[i++] = "0123456789abcdef"[(val & mask) >> shift]; 6343 shift -= 4; 6344 } 6345 6346 c[i++] = ')'; 6347 c[i] = '\0'; 6348 6349 debug_enter(c); 6350 } 6351 6352 static void 6353 dtrace_action_panic(dtrace_ecb_t *ecb) 6354 { 6355 dtrace_probe_t *probe = ecb->dte_probe; 6356 6357 /* 6358 * It's impossible to be taking action on the NULL probe. 6359 */ 6360 ASSERT(probe != NULL); 6361 6362 if (dtrace_destructive_disallow) 6363 return; 6364 6365 if (dtrace_panicked != NULL) 6366 return; 6367 6368 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL) 6369 return; 6370 6371 /* 6372 * We won the right to panic. (We want to be sure that only one 6373 * thread calls panic() from dtrace_probe(), and that panic() is 6374 * called exactly once.) 6375 */ 6376 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)", 6377 probe->dtpr_provider->dtpv_name, probe->dtpr_mod, 6378 probe->dtpr_func, probe->dtpr_name, (void *)ecb); 6379 } 6380 6381 static void 6382 dtrace_action_raise(uint64_t sig) 6383 { 6384 if (dtrace_destructive_disallow) 6385 return; 6386 6387 if (sig >= NSIG) { 6388 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 6389 return; 6390 } 6391 6392 /* 6393 * raise() has a queue depth of 1 -- we ignore all subsequent 6394 * invocations of the raise() action. 6395 */ 6396 if (curthread->t_dtrace_sig == 0) 6397 curthread->t_dtrace_sig = (uint8_t)sig; 6398 6399 curthread->t_sig_check = 1; 6400 aston(curthread); 6401 } 6402 6403 static void 6404 dtrace_action_stop(void) 6405 { 6406 if (dtrace_destructive_disallow) 6407 return; 6408 6409 if (!curthread->t_dtrace_stop) { 6410 curthread->t_dtrace_stop = 1; 6411 curthread->t_sig_check = 1; 6412 aston(curthread); 6413 } 6414 } 6415 6416 static void 6417 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) 6418 { 6419 hrtime_t now; 6420 volatile uint16_t *flags; 6421 cpu_t *cpu = CPU; 6422 6423 if (dtrace_destructive_disallow) 6424 return; 6425 6426 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; 6427 6428 now = dtrace_gethrtime(); 6429 6430 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { 6431 /* 6432 * We need to advance the mark to the current time. 6433 */ 6434 cpu->cpu_dtrace_chillmark = now; 6435 cpu->cpu_dtrace_chilled = 0; 6436 } 6437 6438 /* 6439 * Now check to see if the requested chill time would take us over 6440 * the maximum amount of time allowed in the chill interval. (Or 6441 * worse, if the calculation itself induces overflow.) 6442 */ 6443 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || 6444 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { 6445 *flags |= CPU_DTRACE_ILLOP; 6446 return; 6447 } 6448 6449 while (dtrace_gethrtime() - now < val) 6450 continue; 6451 6452 /* 6453 * Normally, we assure that the value of the variable "timestamp" does 6454 * not change within an ECB. The presence of chill() represents an 6455 * exception to this rule, however. 6456 */ 6457 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; 6458 cpu->cpu_dtrace_chilled += val; 6459 } 6460 6461 static void 6462 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, 6463 uint64_t *buf, uint64_t arg) 6464 { 6465 int nframes = DTRACE_USTACK_NFRAMES(arg); 6466 int strsize = DTRACE_USTACK_STRSIZE(arg); 6467 uint64_t *pcs = &buf[1], *fps; 6468 char *str = (char *)&pcs[nframes]; 6469 int size, offs = 0, i, j; 6470 uintptr_t old = mstate->dtms_scratch_ptr, saved; 6471 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6472 char *sym; 6473 6474 /* 6475 * Should be taking a faster path if string space has not been 6476 * allocated. 6477 */ 6478 ASSERT(strsize != 0); 6479 6480 /* 6481 * We will first allocate some temporary space for the frame pointers. 6482 */ 6483 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); 6484 size = (uintptr_t)fps - mstate->dtms_scratch_ptr + 6485 (nframes * sizeof (uint64_t)); 6486 6487 if (!DTRACE_INSCRATCH(mstate, size)) { 6488 /* 6489 * Not enough room for our frame pointers -- need to indicate 6490 * that we ran out of scratch space. 6491 */ 6492 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); 6493 return; 6494 } 6495 6496 mstate->dtms_scratch_ptr += size; 6497 saved = mstate->dtms_scratch_ptr; 6498 6499 /* 6500 * Now get a stack with both program counters and frame pointers. 6501 */ 6502 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6503 dtrace_getufpstack(buf, fps, nframes + 1); 6504 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6505 6506 /* 6507 * If that faulted, we're cooked. 6508 */ 6509 if (*flags & CPU_DTRACE_FAULT) 6510 goto out; 6511 6512 /* 6513 * Now we want to walk up the stack, calling the USTACK helper. For 6514 * each iteration, we restore the scratch pointer. 6515 */ 6516 for (i = 0; i < nframes; i++) { 6517 mstate->dtms_scratch_ptr = saved; 6518 6519 if (offs >= strsize) 6520 break; 6521 6522 sym = (char *)(uintptr_t)dtrace_helper( 6523 DTRACE_HELPER_ACTION_USTACK, 6524 mstate, state, pcs[i], fps[i]); 6525 6526 /* 6527 * If we faulted while running the helper, we're going to 6528 * clear the fault and null out the corresponding string. 6529 */ 6530 if (*flags & CPU_DTRACE_FAULT) { 6531 *flags &= ~CPU_DTRACE_FAULT; 6532 str[offs++] = '\0'; 6533 continue; 6534 } 6535 6536 if (sym == NULL) { 6537 str[offs++] = '\0'; 6538 continue; 6539 } 6540 6541 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6542 6543 /* 6544 * Now copy in the string that the helper returned to us. 6545 */ 6546 for (j = 0; offs + j < strsize; j++) { 6547 if ((str[offs + j] = sym[j]) == '\0') 6548 break; 6549 } 6550 6551 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6552 6553 offs += j + 1; 6554 } 6555 6556 if (offs >= strsize) { 6557 /* 6558 * If we didn't have room for all of the strings, we don't 6559 * abort processing -- this needn't be a fatal error -- but we 6560 * still want to increment a counter (dts_stkstroverflows) to 6561 * allow this condition to be warned about. (If this is from 6562 * a jstack() action, it is easily tuned via jstackstrsize.) 6563 */ 6564 dtrace_error(&state->dts_stkstroverflows); 6565 } 6566 6567 while (offs < strsize) 6568 str[offs++] = '\0'; 6569 6570 out: 6571 mstate->dtms_scratch_ptr = old; 6572 } 6573 6574 static void 6575 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, 6576 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) 6577 { 6578 volatile uint16_t *flags; 6579 uint64_t val = *valp; 6580 size_t valoffs = *valoffsp; 6581 6582 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 6583 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); 6584 6585 /* 6586 * If this is a string, we're going to only load until we find the zero 6587 * byte -- after which we'll store zero bytes. 6588 */ 6589 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 6590 char c = '\0' + 1; 6591 size_t s; 6592 6593 for (s = 0; s < size; s++) { 6594 if (c != '\0' && dtkind == DIF_TF_BYREF) { 6595 c = dtrace_load8(val++); 6596 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { 6597 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6598 c = dtrace_fuword8((void *)(uintptr_t)val++); 6599 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6600 if (*flags & CPU_DTRACE_FAULT) 6601 break; 6602 } 6603 6604 DTRACE_STORE(uint8_t, tomax, valoffs++, c); 6605 6606 if (c == '\0' && intuple) 6607 break; 6608 } 6609 } else { 6610 uint8_t c; 6611 while (valoffs < end) { 6612 if (dtkind == DIF_TF_BYREF) { 6613 c = dtrace_load8(val++); 6614 } else if (dtkind == DIF_TF_BYUREF) { 6615 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6616 c = dtrace_fuword8((void *)(uintptr_t)val++); 6617 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6618 if (*flags & CPU_DTRACE_FAULT) 6619 break; 6620 } 6621 6622 DTRACE_STORE(uint8_t, tomax, 6623 valoffs++, c); 6624 } 6625 } 6626 6627 *valp = val; 6628 *valoffsp = valoffs; 6629 } 6630 6631 /* 6632 * If you're looking for the epicenter of DTrace, you just found it. This 6633 * is the function called by the provider to fire a probe -- from which all 6634 * subsequent probe-context DTrace activity emanates. 6635 */ 6636 void 6637 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1, 6638 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 6639 { 6640 processorid_t cpuid; 6641 dtrace_icookie_t cookie; 6642 dtrace_probe_t *probe; 6643 dtrace_mstate_t mstate; 6644 dtrace_ecb_t *ecb; 6645 dtrace_action_t *act; 6646 intptr_t offs; 6647 size_t size; 6648 int vtime, onintr; 6649 volatile uint16_t *flags; 6650 hrtime_t now, end; 6651 6652 /* 6653 * Kick out immediately if this CPU is still being born (in which case 6654 * curthread will be set to -1) or the current thread can't allow 6655 * probes in its current context. 6656 */ 6657 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE)) 6658 return; 6659 6660 cookie = dtrace_interrupt_disable(); 6661 probe = dtrace_probes[id - 1]; 6662 cpuid = CPU->cpu_id; 6663 onintr = CPU_ON_INTR(CPU); 6664 6665 CPU->cpu_dtrace_probes++; 6666 6667 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && 6668 probe->dtpr_predcache == curthread->t_predcache) { 6669 /* 6670 * We have hit in the predicate cache; we know that 6671 * this predicate would evaluate to be false. 6672 */ 6673 dtrace_interrupt_enable(cookie); 6674 return; 6675 } 6676 6677 if (panic_quiesce) { 6678 /* 6679 * We don't trace anything if we're panicking. 6680 */ 6681 dtrace_interrupt_enable(cookie); 6682 return; 6683 } 6684 6685 now = dtrace_gethrtime(); 6686 vtime = dtrace_vtime_references != 0; 6687 6688 if (vtime && curthread->t_dtrace_start) 6689 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; 6690 6691 mstate.dtms_difo = NULL; 6692 mstate.dtms_probe = probe; 6693 mstate.dtms_strtok = NULL; 6694 mstate.dtms_arg[0] = arg0; 6695 mstate.dtms_arg[1] = arg1; 6696 mstate.dtms_arg[2] = arg2; 6697 mstate.dtms_arg[3] = arg3; 6698 mstate.dtms_arg[4] = arg4; 6699 6700 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; 6701 6702 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 6703 dtrace_predicate_t *pred = ecb->dte_predicate; 6704 dtrace_state_t *state = ecb->dte_state; 6705 dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; 6706 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; 6707 dtrace_vstate_t *vstate = &state->dts_vstate; 6708 dtrace_provider_t *prov = probe->dtpr_provider; 6709 uint64_t tracememsize = 0; 6710 int committed = 0; 6711 caddr_t tomax; 6712 6713 /* 6714 * A little subtlety with the following (seemingly innocuous) 6715 * declaration of the automatic 'val': by looking at the 6716 * code, you might think that it could be declared in the 6717 * action processing loop, below. (That is, it's only used in 6718 * the action processing loop.) However, it must be declared 6719 * out of that scope because in the case of DIF expression 6720 * arguments to aggregating actions, one iteration of the 6721 * action loop will use the last iteration's value. 6722 */ 6723 #ifdef lint 6724 uint64_t val = 0; 6725 #else 6726 uint64_t val; 6727 #endif 6728 6729 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; 6730 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC; 6731 mstate.dtms_getf = NULL; 6732 6733 *flags &= ~CPU_DTRACE_ERROR; 6734 6735 if (prov == dtrace_provider) { 6736 /* 6737 * If dtrace itself is the provider of this probe, 6738 * we're only going to continue processing the ECB if 6739 * arg0 (the dtrace_state_t) is equal to the ECB's 6740 * creating state. (This prevents disjoint consumers 6741 * from seeing one another's metaprobes.) 6742 */ 6743 if (arg0 != (uint64_t)(uintptr_t)state) 6744 continue; 6745 } 6746 6747 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { 6748 /* 6749 * We're not currently active. If our provider isn't 6750 * the dtrace pseudo provider, we're not interested. 6751 */ 6752 if (prov != dtrace_provider) 6753 continue; 6754 6755 /* 6756 * Now we must further check if we are in the BEGIN 6757 * probe. If we are, we will only continue processing 6758 * if we're still in WARMUP -- if one BEGIN enabling 6759 * has invoked the exit() action, we don't want to 6760 * evaluate subsequent BEGIN enablings. 6761 */ 6762 if (probe->dtpr_id == dtrace_probeid_begin && 6763 state->dts_activity != DTRACE_ACTIVITY_WARMUP) { 6764 ASSERT(state->dts_activity == 6765 DTRACE_ACTIVITY_DRAINING); 6766 continue; 6767 } 6768 } 6769 6770 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb)) 6771 continue; 6772 6773 if (now - state->dts_alive > dtrace_deadman_timeout) { 6774 /* 6775 * We seem to be dead. Unless we (a) have kernel 6776 * destructive permissions (b) have explicitly enabled 6777 * destructive actions and (c) destructive actions have 6778 * not been disabled, we're going to transition into 6779 * the KILLED state, from which no further processing 6780 * on this state will be performed. 6781 */ 6782 if (!dtrace_priv_kernel_destructive(state) || 6783 !state->dts_cred.dcr_destructive || 6784 dtrace_destructive_disallow) { 6785 void *activity = &state->dts_activity; 6786 dtrace_activity_t current; 6787 6788 do { 6789 current = state->dts_activity; 6790 } while (dtrace_cas32(activity, current, 6791 DTRACE_ACTIVITY_KILLED) != current); 6792 6793 continue; 6794 } 6795 } 6796 6797 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, 6798 ecb->dte_alignment, state, &mstate)) < 0) 6799 continue; 6800 6801 tomax = buf->dtb_tomax; 6802 ASSERT(tomax != NULL); 6803 6804 if (ecb->dte_size != 0) { 6805 dtrace_rechdr_t dtrh; 6806 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { 6807 mstate.dtms_timestamp = dtrace_gethrtime(); 6808 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; 6809 } 6810 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t)); 6811 dtrh.dtrh_epid = ecb->dte_epid; 6812 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, 6813 mstate.dtms_timestamp); 6814 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh; 6815 } 6816 6817 mstate.dtms_epid = ecb->dte_epid; 6818 mstate.dtms_present |= DTRACE_MSTATE_EPID; 6819 6820 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) 6821 mstate.dtms_access |= DTRACE_ACCESS_KERNEL; 6822 6823 if (pred != NULL) { 6824 dtrace_difo_t *dp = pred->dtp_difo; 6825 int rval; 6826 6827 rval = dtrace_dif_emulate(dp, &mstate, vstate, state); 6828 6829 if (!(*flags & CPU_DTRACE_ERROR) && !rval) { 6830 dtrace_cacheid_t cid = probe->dtpr_predcache; 6831 6832 if (cid != DTRACE_CACHEIDNONE && !onintr) { 6833 /* 6834 * Update the predicate cache... 6835 */ 6836 ASSERT(cid == pred->dtp_cacheid); 6837 curthread->t_predcache = cid; 6838 } 6839 6840 continue; 6841 } 6842 } 6843 6844 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && 6845 act != NULL; act = act->dta_next) { 6846 size_t valoffs; 6847 dtrace_difo_t *dp; 6848 dtrace_recdesc_t *rec = &act->dta_rec; 6849 6850 size = rec->dtrd_size; 6851 valoffs = offs + rec->dtrd_offset; 6852 6853 if (DTRACEACT_ISAGG(act->dta_kind)) { 6854 uint64_t v = 0xbad; 6855 dtrace_aggregation_t *agg; 6856 6857 agg = (dtrace_aggregation_t *)act; 6858 6859 if ((dp = act->dta_difo) != NULL) 6860 v = dtrace_dif_emulate(dp, 6861 &mstate, vstate, state); 6862 6863 if (*flags & CPU_DTRACE_ERROR) 6864 continue; 6865 6866 /* 6867 * Note that we always pass the expression 6868 * value from the previous iteration of the 6869 * action loop. This value will only be used 6870 * if there is an expression argument to the 6871 * aggregating action, denoted by the 6872 * dtag_hasarg field. 6873 */ 6874 dtrace_aggregate(agg, buf, 6875 offs, aggbuf, v, val); 6876 continue; 6877 } 6878 6879 switch (act->dta_kind) { 6880 case DTRACEACT_STOP: 6881 if (dtrace_priv_proc_destructive(state, 6882 &mstate)) 6883 dtrace_action_stop(); 6884 continue; 6885 6886 case DTRACEACT_BREAKPOINT: 6887 if (dtrace_priv_kernel_destructive(state)) 6888 dtrace_action_breakpoint(ecb); 6889 continue; 6890 6891 case DTRACEACT_PANIC: 6892 if (dtrace_priv_kernel_destructive(state)) 6893 dtrace_action_panic(ecb); 6894 continue; 6895 6896 case DTRACEACT_STACK: 6897 if (!dtrace_priv_kernel(state)) 6898 continue; 6899 6900 dtrace_getpcstack((pc_t *)(tomax + valoffs), 6901 size / sizeof (pc_t), probe->dtpr_aframes, 6902 DTRACE_ANCHORED(probe) ? NULL : 6903 (uint32_t *)arg0); 6904 6905 continue; 6906 6907 case DTRACEACT_JSTACK: 6908 case DTRACEACT_USTACK: 6909 if (!dtrace_priv_proc(state, &mstate)) 6910 continue; 6911 6912 /* 6913 * See comment in DIF_VAR_PID. 6914 */ 6915 if (DTRACE_ANCHORED(mstate.dtms_probe) && 6916 CPU_ON_INTR(CPU)) { 6917 int depth = DTRACE_USTACK_NFRAMES( 6918 rec->dtrd_arg) + 1; 6919 6920 dtrace_bzero((void *)(tomax + valoffs), 6921 DTRACE_USTACK_STRSIZE(rec->dtrd_arg) 6922 + depth * sizeof (uint64_t)); 6923 6924 continue; 6925 } 6926 6927 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && 6928 curproc->p_dtrace_helpers != NULL) { 6929 /* 6930 * This is the slow path -- we have 6931 * allocated string space, and we're 6932 * getting the stack of a process that 6933 * has helpers. Call into a separate 6934 * routine to perform this processing. 6935 */ 6936 dtrace_action_ustack(&mstate, state, 6937 (uint64_t *)(tomax + valoffs), 6938 rec->dtrd_arg); 6939 continue; 6940 } 6941 6942 /* 6943 * Clear the string space, since there's no 6944 * helper to do it for us. 6945 */ 6946 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) { 6947 int depth = DTRACE_USTACK_NFRAMES( 6948 rec->dtrd_arg); 6949 size_t strsize = DTRACE_USTACK_STRSIZE( 6950 rec->dtrd_arg); 6951 uint64_t *buf = (uint64_t *)(tomax + 6952 valoffs); 6953 void *strspace = &buf[depth + 1]; 6954 6955 dtrace_bzero(strspace, 6956 MIN(depth, strsize)); 6957 } 6958 6959 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 6960 dtrace_getupcstack((uint64_t *) 6961 (tomax + valoffs), 6962 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); 6963 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 6964 continue; 6965 6966 default: 6967 break; 6968 } 6969 6970 dp = act->dta_difo; 6971 ASSERT(dp != NULL); 6972 6973 val = dtrace_dif_emulate(dp, &mstate, vstate, state); 6974 6975 if (*flags & CPU_DTRACE_ERROR) 6976 continue; 6977 6978 switch (act->dta_kind) { 6979 case DTRACEACT_SPECULATE: { 6980 dtrace_rechdr_t *dtrh; 6981 6982 ASSERT(buf == &state->dts_buffer[cpuid]); 6983 buf = dtrace_speculation_buffer(state, 6984 cpuid, val); 6985 6986 if (buf == NULL) { 6987 *flags |= CPU_DTRACE_DROP; 6988 continue; 6989 } 6990 6991 offs = dtrace_buffer_reserve(buf, 6992 ecb->dte_needed, ecb->dte_alignment, 6993 state, NULL); 6994 6995 if (offs < 0) { 6996 *flags |= CPU_DTRACE_DROP; 6997 continue; 6998 } 6999 7000 tomax = buf->dtb_tomax; 7001 ASSERT(tomax != NULL); 7002 7003 if (ecb->dte_size == 0) 7004 continue; 7005 7006 ASSERT3U(ecb->dte_size, >=, 7007 sizeof (dtrace_rechdr_t)); 7008 dtrh = ((void *)(tomax + offs)); 7009 dtrh->dtrh_epid = ecb->dte_epid; 7010 /* 7011 * When the speculation is committed, all of 7012 * the records in the speculative buffer will 7013 * have their timestamps set to the commit 7014 * time. Until then, it is set to a sentinel 7015 * value, for debugability. 7016 */ 7017 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); 7018 continue; 7019 } 7020 7021 case DTRACEACT_CHILL: 7022 if (dtrace_priv_kernel_destructive(state)) 7023 dtrace_action_chill(&mstate, val); 7024 continue; 7025 7026 case DTRACEACT_RAISE: 7027 if (dtrace_priv_proc_destructive(state, 7028 &mstate)) 7029 dtrace_action_raise(val); 7030 continue; 7031 7032 case DTRACEACT_COMMIT: 7033 ASSERT(!committed); 7034 7035 /* 7036 * We need to commit our buffer state. 7037 */ 7038 if (ecb->dte_size) 7039 buf->dtb_offset = offs + ecb->dte_size; 7040 buf = &state->dts_buffer[cpuid]; 7041 dtrace_speculation_commit(state, cpuid, val); 7042 committed = 1; 7043 continue; 7044 7045 case DTRACEACT_DISCARD: 7046 dtrace_speculation_discard(state, cpuid, val); 7047 continue; 7048 7049 case DTRACEACT_DIFEXPR: 7050 case DTRACEACT_LIBACT: 7051 case DTRACEACT_PRINTF: 7052 case DTRACEACT_PRINTA: 7053 case DTRACEACT_SYSTEM: 7054 case DTRACEACT_FREOPEN: 7055 case DTRACEACT_TRACEMEM: 7056 break; 7057 7058 case DTRACEACT_TRACEMEM_DYNSIZE: 7059 tracememsize = val; 7060 break; 7061 7062 case DTRACEACT_SYM: 7063 case DTRACEACT_MOD: 7064 if (!dtrace_priv_kernel(state)) 7065 continue; 7066 break; 7067 7068 case DTRACEACT_USYM: 7069 case DTRACEACT_UMOD: 7070 case DTRACEACT_UADDR: { 7071 struct pid *pid = curthread->t_procp->p_pidp; 7072 7073 if (!dtrace_priv_proc(state, &mstate)) 7074 continue; 7075 7076 DTRACE_STORE(uint64_t, tomax, 7077 valoffs, (uint64_t)pid->pid_id); 7078 DTRACE_STORE(uint64_t, tomax, 7079 valoffs + sizeof (uint64_t), val); 7080 7081 continue; 7082 } 7083 7084 case DTRACEACT_EXIT: { 7085 /* 7086 * For the exit action, we are going to attempt 7087 * to atomically set our activity to be 7088 * draining. If this fails (either because 7089 * another CPU has beat us to the exit action, 7090 * or because our current activity is something 7091 * other than ACTIVE or WARMUP), we will 7092 * continue. This assures that the exit action 7093 * can be successfully recorded at most once 7094 * when we're in the ACTIVE state. If we're 7095 * encountering the exit() action while in 7096 * COOLDOWN, however, we want to honor the new 7097 * status code. (We know that we're the only 7098 * thread in COOLDOWN, so there is no race.) 7099 */ 7100 void *activity = &state->dts_activity; 7101 dtrace_activity_t current = state->dts_activity; 7102 7103 if (current == DTRACE_ACTIVITY_COOLDOWN) 7104 break; 7105 7106 if (current != DTRACE_ACTIVITY_WARMUP) 7107 current = DTRACE_ACTIVITY_ACTIVE; 7108 7109 if (dtrace_cas32(activity, current, 7110 DTRACE_ACTIVITY_DRAINING) != current) { 7111 *flags |= CPU_DTRACE_DROP; 7112 continue; 7113 } 7114 7115 break; 7116 } 7117 7118 default: 7119 ASSERT(0); 7120 } 7121 7122 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF || 7123 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) { 7124 uintptr_t end = valoffs + size; 7125 7126 if (tracememsize != 0 && 7127 valoffs + tracememsize < end) { 7128 end = valoffs + tracememsize; 7129 tracememsize = 0; 7130 } 7131 7132 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && 7133 !dtrace_vcanload((void *)(uintptr_t)val, 7134 &dp->dtdo_rtype, &mstate, vstate)) 7135 continue; 7136 7137 dtrace_store_by_ref(dp, tomax, size, &valoffs, 7138 &val, end, act->dta_intuple, 7139 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? 7140 DIF_TF_BYREF: DIF_TF_BYUREF); 7141 continue; 7142 } 7143 7144 switch (size) { 7145 case 0: 7146 break; 7147 7148 case sizeof (uint8_t): 7149 DTRACE_STORE(uint8_t, tomax, valoffs, val); 7150 break; 7151 case sizeof (uint16_t): 7152 DTRACE_STORE(uint16_t, tomax, valoffs, val); 7153 break; 7154 case sizeof (uint32_t): 7155 DTRACE_STORE(uint32_t, tomax, valoffs, val); 7156 break; 7157 case sizeof (uint64_t): 7158 DTRACE_STORE(uint64_t, tomax, valoffs, val); 7159 break; 7160 default: 7161 /* 7162 * Any other size should have been returned by 7163 * reference, not by value. 7164 */ 7165 ASSERT(0); 7166 break; 7167 } 7168 } 7169 7170 if (*flags & CPU_DTRACE_DROP) 7171 continue; 7172 7173 if (*flags & CPU_DTRACE_FAULT) { 7174 int ndx; 7175 dtrace_action_t *err; 7176 7177 buf->dtb_errors++; 7178 7179 if (probe->dtpr_id == dtrace_probeid_error) { 7180 /* 7181 * There's nothing we can do -- we had an 7182 * error on the error probe. We bump an 7183 * error counter to at least indicate that 7184 * this condition happened. 7185 */ 7186 dtrace_error(&state->dts_dblerrors); 7187 continue; 7188 } 7189 7190 if (vtime) { 7191 /* 7192 * Before recursing on dtrace_probe(), we 7193 * need to explicitly clear out our start 7194 * time to prevent it from being accumulated 7195 * into t_dtrace_vtime. 7196 */ 7197 curthread->t_dtrace_start = 0; 7198 } 7199 7200 /* 7201 * Iterate over the actions to figure out which action 7202 * we were processing when we experienced the error. 7203 * Note that act points _past_ the faulting action; if 7204 * act is ecb->dte_action, the fault was in the 7205 * predicate, if it's ecb->dte_action->dta_next it's 7206 * in action #1, and so on. 7207 */ 7208 for (err = ecb->dte_action, ndx = 0; 7209 err != act; err = err->dta_next, ndx++) 7210 continue; 7211 7212 dtrace_probe_error(state, ecb->dte_epid, ndx, 7213 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? 7214 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), 7215 cpu_core[cpuid].cpuc_dtrace_illval); 7216 7217 continue; 7218 } 7219 7220 if (!committed) 7221 buf->dtb_offset = offs + ecb->dte_size; 7222 } 7223 7224 end = dtrace_gethrtime(); 7225 if (vtime) 7226 curthread->t_dtrace_start = end; 7227 7228 CPU->cpu_dtrace_nsec += end - now; 7229 7230 dtrace_interrupt_enable(cookie); 7231 } 7232 7233 /* 7234 * DTrace Probe Hashing Functions 7235 * 7236 * The functions in this section (and indeed, the functions in remaining 7237 * sections) are not _called_ from probe context. (Any exceptions to this are 7238 * marked with a "Note:".) Rather, they are called from elsewhere in the 7239 * DTrace framework to look-up probes in, add probes to and remove probes from 7240 * the DTrace probe hashes. (Each probe is hashed by each element of the 7241 * probe tuple -- allowing for fast lookups, regardless of what was 7242 * specified.) 7243 */ 7244 static uint_t 7245 dtrace_hash_str(char *p) 7246 { 7247 unsigned int g; 7248 uint_t hval = 0; 7249 7250 while (*p) { 7251 hval = (hval << 4) + *p++; 7252 if ((g = (hval & 0xf0000000)) != 0) 7253 hval ^= g >> 24; 7254 hval &= ~g; 7255 } 7256 return (hval); 7257 } 7258 7259 static dtrace_hash_t * 7260 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs) 7261 { 7262 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); 7263 7264 hash->dth_stroffs = stroffs; 7265 hash->dth_nextoffs = nextoffs; 7266 hash->dth_prevoffs = prevoffs; 7267 7268 hash->dth_size = 1; 7269 hash->dth_mask = hash->dth_size - 1; 7270 7271 hash->dth_tab = kmem_zalloc(hash->dth_size * 7272 sizeof (dtrace_hashbucket_t *), KM_SLEEP); 7273 7274 return (hash); 7275 } 7276 7277 static void 7278 dtrace_hash_destroy(dtrace_hash_t *hash) 7279 { 7280 #ifdef DEBUG 7281 int i; 7282 7283 for (i = 0; i < hash->dth_size; i++) 7284 ASSERT(hash->dth_tab[i] == NULL); 7285 #endif 7286 7287 kmem_free(hash->dth_tab, 7288 hash->dth_size * sizeof (dtrace_hashbucket_t *)); 7289 kmem_free(hash, sizeof (dtrace_hash_t)); 7290 } 7291 7292 static void 7293 dtrace_hash_resize(dtrace_hash_t *hash) 7294 { 7295 int size = hash->dth_size, i, ndx; 7296 int new_size = hash->dth_size << 1; 7297 int new_mask = new_size - 1; 7298 dtrace_hashbucket_t **new_tab, *bucket, *next; 7299 7300 ASSERT((new_size & new_mask) == 0); 7301 7302 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); 7303 7304 for (i = 0; i < size; i++) { 7305 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { 7306 dtrace_probe_t *probe = bucket->dthb_chain; 7307 7308 ASSERT(probe != NULL); 7309 ndx = DTRACE_HASHSTR(hash, probe) & new_mask; 7310 7311 next = bucket->dthb_next; 7312 bucket->dthb_next = new_tab[ndx]; 7313 new_tab[ndx] = bucket; 7314 } 7315 } 7316 7317 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); 7318 hash->dth_tab = new_tab; 7319 hash->dth_size = new_size; 7320 hash->dth_mask = new_mask; 7321 } 7322 7323 static void 7324 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new) 7325 { 7326 int hashval = DTRACE_HASHSTR(hash, new); 7327 int ndx = hashval & hash->dth_mask; 7328 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7329 dtrace_probe_t **nextp, **prevp; 7330 7331 for (; bucket != NULL; bucket = bucket->dthb_next) { 7332 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) 7333 goto add; 7334 } 7335 7336 if ((hash->dth_nbuckets >> 1) > hash->dth_size) { 7337 dtrace_hash_resize(hash); 7338 dtrace_hash_add(hash, new); 7339 return; 7340 } 7341 7342 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); 7343 bucket->dthb_next = hash->dth_tab[ndx]; 7344 hash->dth_tab[ndx] = bucket; 7345 hash->dth_nbuckets++; 7346 7347 add: 7348 nextp = DTRACE_HASHNEXT(hash, new); 7349 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); 7350 *nextp = bucket->dthb_chain; 7351 7352 if (bucket->dthb_chain != NULL) { 7353 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); 7354 ASSERT(*prevp == NULL); 7355 *prevp = new; 7356 } 7357 7358 bucket->dthb_chain = new; 7359 bucket->dthb_len++; 7360 } 7361 7362 static dtrace_probe_t * 7363 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template) 7364 { 7365 int hashval = DTRACE_HASHSTR(hash, template); 7366 int ndx = hashval & hash->dth_mask; 7367 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7368 7369 for (; bucket != NULL; bucket = bucket->dthb_next) { 7370 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7371 return (bucket->dthb_chain); 7372 } 7373 7374 return (NULL); 7375 } 7376 7377 static int 7378 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template) 7379 { 7380 int hashval = DTRACE_HASHSTR(hash, template); 7381 int ndx = hashval & hash->dth_mask; 7382 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7383 7384 for (; bucket != NULL; bucket = bucket->dthb_next) { 7385 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) 7386 return (bucket->dthb_len); 7387 } 7388 7389 return (NULL); 7390 } 7391 7392 static void 7393 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe) 7394 { 7395 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask; 7396 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; 7397 7398 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe); 7399 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe); 7400 7401 /* 7402 * Find the bucket that we're removing this probe from. 7403 */ 7404 for (; bucket != NULL; bucket = bucket->dthb_next) { 7405 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe)) 7406 break; 7407 } 7408 7409 ASSERT(bucket != NULL); 7410 7411 if (*prevp == NULL) { 7412 if (*nextp == NULL) { 7413 /* 7414 * The removed probe was the only probe on this 7415 * bucket; we need to remove the bucket. 7416 */ 7417 dtrace_hashbucket_t *b = hash->dth_tab[ndx]; 7418 7419 ASSERT(bucket->dthb_chain == probe); 7420 ASSERT(b != NULL); 7421 7422 if (b == bucket) { 7423 hash->dth_tab[ndx] = bucket->dthb_next; 7424 } else { 7425 while (b->dthb_next != bucket) 7426 b = b->dthb_next; 7427 b->dthb_next = bucket->dthb_next; 7428 } 7429 7430 ASSERT(hash->dth_nbuckets > 0); 7431 hash->dth_nbuckets--; 7432 kmem_free(bucket, sizeof (dtrace_hashbucket_t)); 7433 return; 7434 } 7435 7436 bucket->dthb_chain = *nextp; 7437 } else { 7438 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; 7439 } 7440 7441 if (*nextp != NULL) 7442 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; 7443 } 7444 7445 /* 7446 * DTrace Utility Functions 7447 * 7448 * These are random utility functions that are _not_ called from probe context. 7449 */ 7450 static int 7451 dtrace_badattr(const dtrace_attribute_t *a) 7452 { 7453 return (a->dtat_name > DTRACE_STABILITY_MAX || 7454 a->dtat_data > DTRACE_STABILITY_MAX || 7455 a->dtat_class > DTRACE_CLASS_MAX); 7456 } 7457 7458 /* 7459 * Return a duplicate copy of a string. If the specified string is NULL, 7460 * this function returns a zero-length string. 7461 */ 7462 static char * 7463 dtrace_strdup(const char *str) 7464 { 7465 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP); 7466 7467 if (str != NULL) 7468 (void) strcpy(new, str); 7469 7470 return (new); 7471 } 7472 7473 #define DTRACE_ISALPHA(c) \ 7474 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) 7475 7476 static int 7477 dtrace_badname(const char *s) 7478 { 7479 char c; 7480 7481 if (s == NULL || (c = *s++) == '\0') 7482 return (0); 7483 7484 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') 7485 return (1); 7486 7487 while ((c = *s++) != '\0') { 7488 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && 7489 c != '-' && c != '_' && c != '.' && c != '`') 7490 return (1); 7491 } 7492 7493 return (0); 7494 } 7495 7496 static void 7497 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) 7498 { 7499 uint32_t priv; 7500 7501 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 7502 /* 7503 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter. 7504 */ 7505 priv = DTRACE_PRIV_ALL; 7506 } else { 7507 *uidp = crgetuid(cr); 7508 *zoneidp = crgetzoneid(cr); 7509 7510 priv = 0; 7511 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) 7512 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; 7513 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) 7514 priv |= DTRACE_PRIV_USER; 7515 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) 7516 priv |= DTRACE_PRIV_PROC; 7517 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 7518 priv |= DTRACE_PRIV_OWNER; 7519 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 7520 priv |= DTRACE_PRIV_ZONEOWNER; 7521 } 7522 7523 *privp = priv; 7524 } 7525 7526 #ifdef DTRACE_ERRDEBUG 7527 static void 7528 dtrace_errdebug(const char *str) 7529 { 7530 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ; 7531 int occupied = 0; 7532 7533 mutex_enter(&dtrace_errlock); 7534 dtrace_errlast = str; 7535 dtrace_errthread = curthread; 7536 7537 while (occupied++ < DTRACE_ERRHASHSZ) { 7538 if (dtrace_errhash[hval].dter_msg == str) { 7539 dtrace_errhash[hval].dter_count++; 7540 goto out; 7541 } 7542 7543 if (dtrace_errhash[hval].dter_msg != NULL) { 7544 hval = (hval + 1) % DTRACE_ERRHASHSZ; 7545 continue; 7546 } 7547 7548 dtrace_errhash[hval].dter_msg = str; 7549 dtrace_errhash[hval].dter_count = 1; 7550 goto out; 7551 } 7552 7553 panic("dtrace: undersized error hash"); 7554 out: 7555 mutex_exit(&dtrace_errlock); 7556 } 7557 #endif 7558 7559 /* 7560 * DTrace Matching Functions 7561 * 7562 * These functions are used to match groups of probes, given some elements of 7563 * a probe tuple, or some globbed expressions for elements of a probe tuple. 7564 */ 7565 static int 7566 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, 7567 zoneid_t zoneid) 7568 { 7569 if (priv != DTRACE_PRIV_ALL) { 7570 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; 7571 uint32_t match = priv & ppriv; 7572 7573 /* 7574 * No PRIV_DTRACE_* privileges... 7575 */ 7576 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | 7577 DTRACE_PRIV_KERNEL)) == 0) 7578 return (0); 7579 7580 /* 7581 * No matching bits, but there were bits to match... 7582 */ 7583 if (match == 0 && ppriv != 0) 7584 return (0); 7585 7586 /* 7587 * Need to have permissions to the process, but don't... 7588 */ 7589 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && 7590 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { 7591 return (0); 7592 } 7593 7594 /* 7595 * Need to be in the same zone unless we possess the 7596 * privilege to examine all zones. 7597 */ 7598 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && 7599 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { 7600 return (0); 7601 } 7602 } 7603 7604 return (1); 7605 } 7606 7607 /* 7608 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which 7609 * consists of input pattern strings and an ops-vector to evaluate them. 7610 * This function returns >0 for match, 0 for no match, and <0 for error. 7611 */ 7612 static int 7613 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, 7614 uint32_t priv, uid_t uid, zoneid_t zoneid) 7615 { 7616 dtrace_provider_t *pvp = prp->dtpr_provider; 7617 int rv; 7618 7619 if (pvp->dtpv_defunct) 7620 return (0); 7621 7622 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) 7623 return (rv); 7624 7625 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) 7626 return (rv); 7627 7628 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) 7629 return (rv); 7630 7631 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) 7632 return (rv); 7633 7634 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) 7635 return (0); 7636 7637 return (rv); 7638 } 7639 7640 /* 7641 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) 7642 * interface for matching a glob pattern 'p' to an input string 's'. Unlike 7643 * libc's version, the kernel version only applies to 8-bit ASCII strings. 7644 * In addition, all of the recursion cases except for '*' matching have been 7645 * unwound. For '*', we still implement recursive evaluation, but a depth 7646 * counter is maintained and matching is aborted if we recurse too deep. 7647 * The function returns 0 if no match, >0 if match, and <0 if recursion error. 7648 */ 7649 static int 7650 dtrace_match_glob(const char *s, const char *p, int depth) 7651 { 7652 const char *olds; 7653 char s1, c; 7654 int gs; 7655 7656 if (depth > DTRACE_PROBEKEY_MAXDEPTH) 7657 return (-1); 7658 7659 if (s == NULL) 7660 s = ""; /* treat NULL as empty string */ 7661 7662 top: 7663 olds = s; 7664 s1 = *s++; 7665 7666 if (p == NULL) 7667 return (0); 7668 7669 if ((c = *p++) == '\0') 7670 return (s1 == '\0'); 7671 7672 switch (c) { 7673 case '[': { 7674 int ok = 0, notflag = 0; 7675 char lc = '\0'; 7676 7677 if (s1 == '\0') 7678 return (0); 7679 7680 if (*p == '!') { 7681 notflag = 1; 7682 p++; 7683 } 7684 7685 if ((c = *p++) == '\0') 7686 return (0); 7687 7688 do { 7689 if (c == '-' && lc != '\0' && *p != ']') { 7690 if ((c = *p++) == '\0') 7691 return (0); 7692 if (c == '\\' && (c = *p++) == '\0') 7693 return (0); 7694 7695 if (notflag) { 7696 if (s1 < lc || s1 > c) 7697 ok++; 7698 else 7699 return (0); 7700 } else if (lc <= s1 && s1 <= c) 7701 ok++; 7702 7703 } else if (c == '\\' && (c = *p++) == '\0') 7704 return (0); 7705 7706 lc = c; /* save left-hand 'c' for next iteration */ 7707 7708 if (notflag) { 7709 if (s1 != c) 7710 ok++; 7711 else 7712 return (0); 7713 } else if (s1 == c) 7714 ok++; 7715 7716 if ((c = *p++) == '\0') 7717 return (0); 7718 7719 } while (c != ']'); 7720 7721 if (ok) 7722 goto top; 7723 7724 return (0); 7725 } 7726 7727 case '\\': 7728 if ((c = *p++) == '\0') 7729 return (0); 7730 /*FALLTHRU*/ 7731 7732 default: 7733 if (c != s1) 7734 return (0); 7735 /*FALLTHRU*/ 7736 7737 case '?': 7738 if (s1 != '\0') 7739 goto top; 7740 return (0); 7741 7742 case '*': 7743 while (*p == '*') 7744 p++; /* consecutive *'s are identical to a single one */ 7745 7746 if (*p == '\0') 7747 return (1); 7748 7749 for (s = olds; *s != '\0'; s++) { 7750 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0) 7751 return (gs); 7752 } 7753 7754 return (0); 7755 } 7756 } 7757 7758 /*ARGSUSED*/ 7759 static int 7760 dtrace_match_string(const char *s, const char *p, int depth) 7761 { 7762 return (s != NULL && strcmp(s, p) == 0); 7763 } 7764 7765 /*ARGSUSED*/ 7766 static int 7767 dtrace_match_nul(const char *s, const char *p, int depth) 7768 { 7769 return (1); /* always match the empty pattern */ 7770 } 7771 7772 /*ARGSUSED*/ 7773 static int 7774 dtrace_match_nonzero(const char *s, const char *p, int depth) 7775 { 7776 return (s != NULL && s[0] != '\0'); 7777 } 7778 7779 static int 7780 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, 7781 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg) 7782 { 7783 dtrace_probe_t template, *probe; 7784 dtrace_hash_t *hash = NULL; 7785 int len, rc, best = INT_MAX, nmatched = 0; 7786 dtrace_id_t i; 7787 7788 ASSERT(MUTEX_HELD(&dtrace_lock)); 7789 7790 /* 7791 * If the probe ID is specified in the key, just lookup by ID and 7792 * invoke the match callback once if a matching probe is found. 7793 */ 7794 if (pkp->dtpk_id != DTRACE_IDNONE) { 7795 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL && 7796 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) { 7797 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL) 7798 return (DTRACE_MATCH_FAIL); 7799 nmatched++; 7800 } 7801 return (nmatched); 7802 } 7803 7804 template.dtpr_mod = (char *)pkp->dtpk_mod; 7805 template.dtpr_func = (char *)pkp->dtpk_func; 7806 template.dtpr_name = (char *)pkp->dtpk_name; 7807 7808 /* 7809 * We want to find the most distinct of the module name, function 7810 * name, and name. So for each one that is not a glob pattern or 7811 * empty string, we perform a lookup in the corresponding hash and 7812 * use the hash table with the fewest collisions to do our search. 7813 */ 7814 if (pkp->dtpk_mmatch == &dtrace_match_string && 7815 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) { 7816 best = len; 7817 hash = dtrace_bymod; 7818 } 7819 7820 if (pkp->dtpk_fmatch == &dtrace_match_string && 7821 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) { 7822 best = len; 7823 hash = dtrace_byfunc; 7824 } 7825 7826 if (pkp->dtpk_nmatch == &dtrace_match_string && 7827 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) { 7828 best = len; 7829 hash = dtrace_byname; 7830 } 7831 7832 /* 7833 * If we did not select a hash table, iterate over every probe and 7834 * invoke our callback for each one that matches our input probe key. 7835 */ 7836 if (hash == NULL) { 7837 for (i = 0; i < dtrace_nprobes; i++) { 7838 if ((probe = dtrace_probes[i]) == NULL || 7839 dtrace_match_probe(probe, pkp, priv, uid, 7840 zoneid) <= 0) 7841 continue; 7842 7843 nmatched++; 7844 7845 if ((rc = (*matched)(probe, arg)) != 7846 DTRACE_MATCH_NEXT) { 7847 if (rc == DTRACE_MATCH_FAIL) 7848 return (DTRACE_MATCH_FAIL); 7849 break; 7850 } 7851 } 7852 7853 return (nmatched); 7854 } 7855 7856 /* 7857 * If we selected a hash table, iterate over each probe of the same key 7858 * name and invoke the callback for every probe that matches the other 7859 * attributes of our input probe key. 7860 */ 7861 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL; 7862 probe = *(DTRACE_HASHNEXT(hash, probe))) { 7863 7864 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0) 7865 continue; 7866 7867 nmatched++; 7868 7869 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) { 7870 if (rc == DTRACE_MATCH_FAIL) 7871 return (DTRACE_MATCH_FAIL); 7872 break; 7873 } 7874 } 7875 7876 return (nmatched); 7877 } 7878 7879 /* 7880 * Return the function pointer dtrace_probecmp() should use to compare the 7881 * specified pattern with a string. For NULL or empty patterns, we select 7882 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). 7883 * For non-empty non-glob strings, we use dtrace_match_string(). 7884 */ 7885 static dtrace_probekey_f * 7886 dtrace_probekey_func(const char *p) 7887 { 7888 char c; 7889 7890 if (p == NULL || *p == '\0') 7891 return (&dtrace_match_nul); 7892 7893 while ((c = *p++) != '\0') { 7894 if (c == '[' || c == '?' || c == '*' || c == '\\') 7895 return (&dtrace_match_glob); 7896 } 7897 7898 return (&dtrace_match_string); 7899 } 7900 7901 /* 7902 * Build a probe comparison key for use with dtrace_match_probe() from the 7903 * given probe description. By convention, a null key only matches anchored 7904 * probes: if each field is the empty string, reset dtpk_fmatch to 7905 * dtrace_match_nonzero(). 7906 */ 7907 static void 7908 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) 7909 { 7910 pkp->dtpk_prov = pdp->dtpd_provider; 7911 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider); 7912 7913 pkp->dtpk_mod = pdp->dtpd_mod; 7914 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod); 7915 7916 pkp->dtpk_func = pdp->dtpd_func; 7917 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func); 7918 7919 pkp->dtpk_name = pdp->dtpd_name; 7920 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name); 7921 7922 pkp->dtpk_id = pdp->dtpd_id; 7923 7924 if (pkp->dtpk_id == DTRACE_IDNONE && 7925 pkp->dtpk_pmatch == &dtrace_match_nul && 7926 pkp->dtpk_mmatch == &dtrace_match_nul && 7927 pkp->dtpk_fmatch == &dtrace_match_nul && 7928 pkp->dtpk_nmatch == &dtrace_match_nul) 7929 pkp->dtpk_fmatch = &dtrace_match_nonzero; 7930 } 7931 7932 /* 7933 * DTrace Provider-to-Framework API Functions 7934 * 7935 * These functions implement much of the Provider-to-Framework API, as 7936 * described in <sys/dtrace.h>. The parts of the API not in this section are 7937 * the functions in the API for probe management (found below), and 7938 * dtrace_probe() itself (found above). 7939 */ 7940 7941 /* 7942 * Register the calling provider with the DTrace framework. This should 7943 * generally be called by DTrace providers in their attach(9E) entry point. 7944 */ 7945 int 7946 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, 7947 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) 7948 { 7949 dtrace_provider_t *provider; 7950 7951 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { 7952 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7953 "arguments", name ? name : "<NULL>"); 7954 return (EINVAL); 7955 } 7956 7957 if (name[0] == '\0' || dtrace_badname(name)) { 7958 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7959 "provider name", name); 7960 return (EINVAL); 7961 } 7962 7963 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || 7964 pops->dtps_enable == NULL || pops->dtps_disable == NULL || 7965 pops->dtps_destroy == NULL || 7966 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { 7967 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7968 "provider ops", name); 7969 return (EINVAL); 7970 } 7971 7972 if (dtrace_badattr(&pap->dtpa_provider) || 7973 dtrace_badattr(&pap->dtpa_mod) || 7974 dtrace_badattr(&pap->dtpa_func) || 7975 dtrace_badattr(&pap->dtpa_name) || 7976 dtrace_badattr(&pap->dtpa_args)) { 7977 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7978 "provider attributes", name); 7979 return (EINVAL); 7980 } 7981 7982 if (priv & ~DTRACE_PRIV_ALL) { 7983 cmn_err(CE_WARN, "failed to register provider '%s': invalid " 7984 "privilege attributes", name); 7985 return (EINVAL); 7986 } 7987 7988 if ((priv & DTRACE_PRIV_KERNEL) && 7989 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && 7990 pops->dtps_mode == NULL) { 7991 cmn_err(CE_WARN, "failed to register provider '%s': need " 7992 "dtps_mode() op for given privilege attributes", name); 7993 return (EINVAL); 7994 } 7995 7996 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); 7997 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 7998 (void) strcpy(provider->dtpv_name, name); 7999 8000 provider->dtpv_attr = *pap; 8001 provider->dtpv_priv.dtpp_flags = priv; 8002 if (cr != NULL) { 8003 provider->dtpv_priv.dtpp_uid = crgetuid(cr); 8004 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); 8005 } 8006 provider->dtpv_pops = *pops; 8007 8008 if (pops->dtps_provide == NULL) { 8009 ASSERT(pops->dtps_provide_module != NULL); 8010 provider->dtpv_pops.dtps_provide = 8011 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop; 8012 } 8013 8014 if (pops->dtps_provide_module == NULL) { 8015 ASSERT(pops->dtps_provide != NULL); 8016 provider->dtpv_pops.dtps_provide_module = 8017 (void (*)(void *, struct modctl *))dtrace_nullop; 8018 } 8019 8020 if (pops->dtps_suspend == NULL) { 8021 ASSERT(pops->dtps_resume == NULL); 8022 provider->dtpv_pops.dtps_suspend = 8023 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8024 provider->dtpv_pops.dtps_resume = 8025 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop; 8026 } 8027 8028 provider->dtpv_arg = arg; 8029 *idp = (dtrace_provider_id_t)provider; 8030 8031 if (pops == &dtrace_provider_ops) { 8032 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8033 ASSERT(MUTEX_HELD(&dtrace_lock)); 8034 ASSERT(dtrace_anon.dta_enabling == NULL); 8035 8036 /* 8037 * We make sure that the DTrace provider is at the head of 8038 * the provider chain. 8039 */ 8040 provider->dtpv_next = dtrace_provider; 8041 dtrace_provider = provider; 8042 return (0); 8043 } 8044 8045 mutex_enter(&dtrace_provider_lock); 8046 mutex_enter(&dtrace_lock); 8047 8048 /* 8049 * If there is at least one provider registered, we'll add this 8050 * provider after the first provider. 8051 */ 8052 if (dtrace_provider != NULL) { 8053 provider->dtpv_next = dtrace_provider->dtpv_next; 8054 dtrace_provider->dtpv_next = provider; 8055 } else { 8056 dtrace_provider = provider; 8057 } 8058 8059 if (dtrace_retained != NULL) { 8060 dtrace_enabling_provide(provider); 8061 8062 /* 8063 * Now we need to call dtrace_enabling_matchall() -- which 8064 * will acquire cpu_lock and dtrace_lock. We therefore need 8065 * to drop all of our locks before calling into it... 8066 */ 8067 mutex_exit(&dtrace_lock); 8068 mutex_exit(&dtrace_provider_lock); 8069 dtrace_enabling_matchall(); 8070 8071 return (0); 8072 } 8073 8074 mutex_exit(&dtrace_lock); 8075 mutex_exit(&dtrace_provider_lock); 8076 8077 return (0); 8078 } 8079 8080 /* 8081 * Unregister the specified provider from the DTrace framework. This should 8082 * generally be called by DTrace providers in their detach(9E) entry point. 8083 */ 8084 int 8085 dtrace_unregister(dtrace_provider_id_t id) 8086 { 8087 dtrace_provider_t *old = (dtrace_provider_t *)id; 8088 dtrace_provider_t *prev = NULL; 8089 int i, self = 0, noreap = 0; 8090 dtrace_probe_t *probe, *first = NULL; 8091 8092 if (old->dtpv_pops.dtps_enable == 8093 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { 8094 /* 8095 * If DTrace itself is the provider, we're called with locks 8096 * already held. 8097 */ 8098 ASSERT(old == dtrace_provider); 8099 ASSERT(dtrace_devi != NULL); 8100 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8101 ASSERT(MUTEX_HELD(&dtrace_lock)); 8102 self = 1; 8103 8104 if (dtrace_provider->dtpv_next != NULL) { 8105 /* 8106 * There's another provider here; return failure. 8107 */ 8108 return (EBUSY); 8109 } 8110 } else { 8111 mutex_enter(&dtrace_provider_lock); 8112 mutex_enter(&mod_lock); 8113 mutex_enter(&dtrace_lock); 8114 } 8115 8116 /* 8117 * If anyone has /dev/dtrace open, or if there are anonymous enabled 8118 * probes, we refuse to let providers slither away, unless this 8119 * provider has already been explicitly invalidated. 8120 */ 8121 if (!old->dtpv_defunct && 8122 (dtrace_opens || (dtrace_anon.dta_state != NULL && 8123 dtrace_anon.dta_state->dts_necbs > 0))) { 8124 if (!self) { 8125 mutex_exit(&dtrace_lock); 8126 mutex_exit(&mod_lock); 8127 mutex_exit(&dtrace_provider_lock); 8128 } 8129 return (EBUSY); 8130 } 8131 8132 /* 8133 * Attempt to destroy the probes associated with this provider. 8134 */ 8135 for (i = 0; i < dtrace_nprobes; i++) { 8136 if ((probe = dtrace_probes[i]) == NULL) 8137 continue; 8138 8139 if (probe->dtpr_provider != old) 8140 continue; 8141 8142 if (probe->dtpr_ecb == NULL) 8143 continue; 8144 8145 /* 8146 * If we are trying to unregister a defunct provider, and the 8147 * provider was made defunct within the interval dictated by 8148 * dtrace_unregister_defunct_reap, we'll (asynchronously) 8149 * attempt to reap our enablings. To denote that the provider 8150 * should reattempt to unregister itself at some point in the 8151 * future, we will return a differentiable error code (EAGAIN 8152 * instead of EBUSY) in this case. 8153 */ 8154 if (dtrace_gethrtime() - old->dtpv_defunct > 8155 dtrace_unregister_defunct_reap) 8156 noreap = 1; 8157 8158 if (!self) { 8159 mutex_exit(&dtrace_lock); 8160 mutex_exit(&mod_lock); 8161 mutex_exit(&dtrace_provider_lock); 8162 } 8163 8164 if (noreap) 8165 return (EBUSY); 8166 8167 (void) taskq_dispatch(dtrace_taskq, 8168 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP); 8169 8170 return (EAGAIN); 8171 } 8172 8173 /* 8174 * All of the probes for this provider are disabled; we can safely 8175 * remove all of them from their hash chains and from the probe array. 8176 */ 8177 for (i = 0; i < dtrace_nprobes; i++) { 8178 if ((probe = dtrace_probes[i]) == NULL) 8179 continue; 8180 8181 if (probe->dtpr_provider != old) 8182 continue; 8183 8184 dtrace_probes[i] = NULL; 8185 8186 dtrace_hash_remove(dtrace_bymod, probe); 8187 dtrace_hash_remove(dtrace_byfunc, probe); 8188 dtrace_hash_remove(dtrace_byname, probe); 8189 8190 if (first == NULL) { 8191 first = probe; 8192 probe->dtpr_nextmod = NULL; 8193 } else { 8194 probe->dtpr_nextmod = first; 8195 first = probe; 8196 } 8197 } 8198 8199 /* 8200 * The provider's probes have been removed from the hash chains and 8201 * from the probe array. Now issue a dtrace_sync() to be sure that 8202 * everyone has cleared out from any probe array processing. 8203 */ 8204 dtrace_sync(); 8205 8206 for (probe = first; probe != NULL; probe = first) { 8207 first = probe->dtpr_nextmod; 8208 8209 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, 8210 probe->dtpr_arg); 8211 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8212 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8213 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8214 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1); 8215 kmem_free(probe, sizeof (dtrace_probe_t)); 8216 } 8217 8218 if ((prev = dtrace_provider) == old) { 8219 ASSERT(self || dtrace_devi == NULL); 8220 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); 8221 dtrace_provider = old->dtpv_next; 8222 } else { 8223 while (prev != NULL && prev->dtpv_next != old) 8224 prev = prev->dtpv_next; 8225 8226 if (prev == NULL) { 8227 panic("attempt to unregister non-existent " 8228 "dtrace provider %p\n", (void *)id); 8229 } 8230 8231 prev->dtpv_next = old->dtpv_next; 8232 } 8233 8234 if (!self) { 8235 mutex_exit(&dtrace_lock); 8236 mutex_exit(&mod_lock); 8237 mutex_exit(&dtrace_provider_lock); 8238 } 8239 8240 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1); 8241 kmem_free(old, sizeof (dtrace_provider_t)); 8242 8243 return (0); 8244 } 8245 8246 /* 8247 * Invalidate the specified provider. All subsequent probe lookups for the 8248 * specified provider will fail, but its probes will not be removed. 8249 */ 8250 void 8251 dtrace_invalidate(dtrace_provider_id_t id) 8252 { 8253 dtrace_provider_t *pvp = (dtrace_provider_t *)id; 8254 8255 ASSERT(pvp->dtpv_pops.dtps_enable != 8256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8257 8258 mutex_enter(&dtrace_provider_lock); 8259 mutex_enter(&dtrace_lock); 8260 8261 pvp->dtpv_defunct = dtrace_gethrtime(); 8262 8263 mutex_exit(&dtrace_lock); 8264 mutex_exit(&dtrace_provider_lock); 8265 } 8266 8267 /* 8268 * Indicate whether or not DTrace has attached. 8269 */ 8270 int 8271 dtrace_attached(void) 8272 { 8273 /* 8274 * dtrace_provider will be non-NULL iff the DTrace driver has 8275 * attached. (It's non-NULL because DTrace is always itself a 8276 * provider.) 8277 */ 8278 return (dtrace_provider != NULL); 8279 } 8280 8281 /* 8282 * Remove all the unenabled probes for the given provider. This function is 8283 * not unlike dtrace_unregister(), except that it doesn't remove the provider 8284 * -- just as many of its associated probes as it can. 8285 */ 8286 int 8287 dtrace_condense(dtrace_provider_id_t id) 8288 { 8289 dtrace_provider_t *prov = (dtrace_provider_t *)id; 8290 int i; 8291 dtrace_probe_t *probe; 8292 8293 /* 8294 * Make sure this isn't the dtrace provider itself. 8295 */ 8296 ASSERT(prov->dtpv_pops.dtps_enable != 8297 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); 8298 8299 mutex_enter(&dtrace_provider_lock); 8300 mutex_enter(&dtrace_lock); 8301 8302 /* 8303 * Attempt to destroy the probes associated with this provider. 8304 */ 8305 for (i = 0; i < dtrace_nprobes; i++) { 8306 if ((probe = dtrace_probes[i]) == NULL) 8307 continue; 8308 8309 if (probe->dtpr_provider != prov) 8310 continue; 8311 8312 if (probe->dtpr_ecb != NULL) 8313 continue; 8314 8315 dtrace_probes[i] = NULL; 8316 8317 dtrace_hash_remove(dtrace_bymod, probe); 8318 dtrace_hash_remove(dtrace_byfunc, probe); 8319 dtrace_hash_remove(dtrace_byname, probe); 8320 8321 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1, 8322 probe->dtpr_arg); 8323 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 8324 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 8325 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 8326 kmem_free(probe, sizeof (dtrace_probe_t)); 8327 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1); 8328 } 8329 8330 mutex_exit(&dtrace_lock); 8331 mutex_exit(&dtrace_provider_lock); 8332 8333 return (0); 8334 } 8335 8336 /* 8337 * DTrace Probe Management Functions 8338 * 8339 * The functions in this section perform the DTrace probe management, 8340 * including functions to create probes, look-up probes, and call into the 8341 * providers to request that probes be provided. Some of these functions are 8342 * in the Provider-to-Framework API; these functions can be identified by the 8343 * fact that they are not declared "static". 8344 */ 8345 8346 /* 8347 * Create a probe with the specified module name, function name, and name. 8348 */ 8349 dtrace_id_t 8350 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, 8351 const char *func, const char *name, int aframes, void *arg) 8352 { 8353 dtrace_probe_t *probe, **probes; 8354 dtrace_provider_t *provider = (dtrace_provider_t *)prov; 8355 dtrace_id_t id; 8356 8357 if (provider == dtrace_provider) { 8358 ASSERT(MUTEX_HELD(&dtrace_lock)); 8359 } else { 8360 mutex_enter(&dtrace_lock); 8361 } 8362 8363 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, 8364 VM_BESTFIT | VM_SLEEP); 8365 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP); 8366 8367 probe->dtpr_id = id; 8368 probe->dtpr_gen = dtrace_probegen++; 8369 probe->dtpr_mod = dtrace_strdup(mod); 8370 probe->dtpr_func = dtrace_strdup(func); 8371 probe->dtpr_name = dtrace_strdup(name); 8372 probe->dtpr_arg = arg; 8373 probe->dtpr_aframes = aframes; 8374 probe->dtpr_provider = provider; 8375 8376 dtrace_hash_add(dtrace_bymod, probe); 8377 dtrace_hash_add(dtrace_byfunc, probe); 8378 dtrace_hash_add(dtrace_byname, probe); 8379 8380 if (id - 1 >= dtrace_nprobes) { 8381 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); 8382 size_t nsize = osize << 1; 8383 8384 if (nsize == 0) { 8385 ASSERT(osize == 0); 8386 ASSERT(dtrace_probes == NULL); 8387 nsize = sizeof (dtrace_probe_t *); 8388 } 8389 8390 probes = kmem_zalloc(nsize, KM_SLEEP); 8391 8392 if (dtrace_probes == NULL) { 8393 ASSERT(osize == 0); 8394 dtrace_probes = probes; 8395 dtrace_nprobes = 1; 8396 } else { 8397 dtrace_probe_t **oprobes = dtrace_probes; 8398 8399 bcopy(oprobes, probes, osize); 8400 dtrace_membar_producer(); 8401 dtrace_probes = probes; 8402 8403 dtrace_sync(); 8404 8405 /* 8406 * All CPUs are now seeing the new probes array; we can 8407 * safely free the old array. 8408 */ 8409 kmem_free(oprobes, osize); 8410 dtrace_nprobes <<= 1; 8411 } 8412 8413 ASSERT(id - 1 < dtrace_nprobes); 8414 } 8415 8416 ASSERT(dtrace_probes[id - 1] == NULL); 8417 dtrace_probes[id - 1] = probe; 8418 8419 if (provider != dtrace_provider) 8420 mutex_exit(&dtrace_lock); 8421 8422 return (id); 8423 } 8424 8425 static dtrace_probe_t * 8426 dtrace_probe_lookup_id(dtrace_id_t id) 8427 { 8428 ASSERT(MUTEX_HELD(&dtrace_lock)); 8429 8430 if (id == 0 || id > dtrace_nprobes) 8431 return (NULL); 8432 8433 return (dtrace_probes[id - 1]); 8434 } 8435 8436 static int 8437 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg) 8438 { 8439 *((dtrace_id_t *)arg) = probe->dtpr_id; 8440 8441 return (DTRACE_MATCH_DONE); 8442 } 8443 8444 /* 8445 * Look up a probe based on provider and one or more of module name, function 8446 * name and probe name. 8447 */ 8448 dtrace_id_t 8449 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, 8450 const char *func, const char *name) 8451 { 8452 dtrace_probekey_t pkey; 8453 dtrace_id_t id; 8454 int match; 8455 8456 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name; 8457 pkey.dtpk_pmatch = &dtrace_match_string; 8458 pkey.dtpk_mod = mod; 8459 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; 8460 pkey.dtpk_func = func; 8461 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; 8462 pkey.dtpk_name = name; 8463 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; 8464 pkey.dtpk_id = DTRACE_IDNONE; 8465 8466 mutex_enter(&dtrace_lock); 8467 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0, 8468 dtrace_probe_lookup_match, &id); 8469 mutex_exit(&dtrace_lock); 8470 8471 ASSERT(match == 1 || match == 0); 8472 return (match ? id : 0); 8473 } 8474 8475 /* 8476 * Returns the probe argument associated with the specified probe. 8477 */ 8478 void * 8479 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) 8480 { 8481 dtrace_probe_t *probe; 8482 void *rval = NULL; 8483 8484 mutex_enter(&dtrace_lock); 8485 8486 if ((probe = dtrace_probe_lookup_id(pid)) != NULL && 8487 probe->dtpr_provider == (dtrace_provider_t *)id) 8488 rval = probe->dtpr_arg; 8489 8490 mutex_exit(&dtrace_lock); 8491 8492 return (rval); 8493 } 8494 8495 /* 8496 * Copy a probe into a probe description. 8497 */ 8498 static void 8499 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) 8500 { 8501 bzero(pdp, sizeof (dtrace_probedesc_t)); 8502 pdp->dtpd_id = prp->dtpr_id; 8503 8504 (void) strncpy(pdp->dtpd_provider, 8505 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1); 8506 8507 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1); 8508 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1); 8509 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1); 8510 } 8511 8512 /* 8513 * Called to indicate that a probe -- or probes -- should be provided by a 8514 * specfied provider. If the specified description is NULL, the provider will 8515 * be told to provide all of its probes. (This is done whenever a new 8516 * consumer comes along, or whenever a retained enabling is to be matched.) If 8517 * the specified description is non-NULL, the provider is given the 8518 * opportunity to dynamically provide the specified probe, allowing providers 8519 * to support the creation of probes on-the-fly. (So-called _autocreated_ 8520 * probes.) If the provider is NULL, the operations will be applied to all 8521 * providers; if the provider is non-NULL the operations will only be applied 8522 * to the specified provider. The dtrace_provider_lock must be held, and the 8523 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation 8524 * will need to grab the dtrace_lock when it reenters the framework through 8525 * dtrace_probe_lookup(), dtrace_probe_create(), etc. 8526 */ 8527 static void 8528 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) 8529 { 8530 struct modctl *ctl; 8531 int all = 0; 8532 8533 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 8534 8535 if (prv == NULL) { 8536 all = 1; 8537 prv = dtrace_provider; 8538 } 8539 8540 do { 8541 /* 8542 * First, call the blanket provide operation. 8543 */ 8544 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); 8545 8546 /* 8547 * Now call the per-module provide operation. We will grab 8548 * mod_lock to prevent the list from being modified. Note 8549 * that this also prevents the mod_busy bits from changing. 8550 * (mod_busy can only be changed with mod_lock held.) 8551 */ 8552 mutex_enter(&mod_lock); 8553 8554 ctl = &modules; 8555 do { 8556 if (ctl->mod_busy || ctl->mod_mp == NULL) 8557 continue; 8558 8559 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 8560 8561 } while ((ctl = ctl->mod_next) != &modules); 8562 8563 mutex_exit(&mod_lock); 8564 } while (all && (prv = prv->dtpv_next) != NULL); 8565 } 8566 8567 /* 8568 * Iterate over each probe, and call the Framework-to-Provider API function 8569 * denoted by offs. 8570 */ 8571 static void 8572 dtrace_probe_foreach(uintptr_t offs) 8573 { 8574 dtrace_provider_t *prov; 8575 void (*func)(void *, dtrace_id_t, void *); 8576 dtrace_probe_t *probe; 8577 dtrace_icookie_t cookie; 8578 int i; 8579 8580 /* 8581 * We disable interrupts to walk through the probe array. This is 8582 * safe -- the dtrace_sync() in dtrace_unregister() assures that we 8583 * won't see stale data. 8584 */ 8585 cookie = dtrace_interrupt_disable(); 8586 8587 for (i = 0; i < dtrace_nprobes; i++) { 8588 if ((probe = dtrace_probes[i]) == NULL) 8589 continue; 8590 8591 if (probe->dtpr_ecb == NULL) { 8592 /* 8593 * This probe isn't enabled -- don't call the function. 8594 */ 8595 continue; 8596 } 8597 8598 prov = probe->dtpr_provider; 8599 func = *((void(**)(void *, dtrace_id_t, void *)) 8600 ((uintptr_t)&prov->dtpv_pops + offs)); 8601 8602 func(prov->dtpv_arg, i + 1, probe->dtpr_arg); 8603 } 8604 8605 dtrace_interrupt_enable(cookie); 8606 } 8607 8608 static int 8609 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab) 8610 { 8611 dtrace_probekey_t pkey; 8612 uint32_t priv; 8613 uid_t uid; 8614 zoneid_t zoneid; 8615 8616 ASSERT(MUTEX_HELD(&dtrace_lock)); 8617 dtrace_ecb_create_cache = NULL; 8618 8619 if (desc == NULL) { 8620 /* 8621 * If we're passed a NULL description, we're being asked to 8622 * create an ECB with a NULL probe. 8623 */ 8624 (void) dtrace_ecb_create_enable(NULL, enab); 8625 return (0); 8626 } 8627 8628 dtrace_probekey(desc, &pkey); 8629 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, 8630 &priv, &uid, &zoneid); 8631 8632 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable, 8633 enab)); 8634 } 8635 8636 /* 8637 * DTrace Helper Provider Functions 8638 */ 8639 static void 8640 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) 8641 { 8642 attr->dtat_name = DOF_ATTR_NAME(dofattr); 8643 attr->dtat_data = DOF_ATTR_DATA(dofattr); 8644 attr->dtat_class = DOF_ATTR_CLASS(dofattr); 8645 } 8646 8647 static void 8648 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, 8649 const dof_provider_t *dofprov, char *strtab) 8650 { 8651 hprov->dthpv_provname = strtab + dofprov->dofpv_name; 8652 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider, 8653 dofprov->dofpv_provattr); 8654 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod, 8655 dofprov->dofpv_modattr); 8656 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func, 8657 dofprov->dofpv_funcattr); 8658 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name, 8659 dofprov->dofpv_nameattr); 8660 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args, 8661 dofprov->dofpv_argsattr); 8662 } 8663 8664 static void 8665 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8666 { 8667 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8668 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8669 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 8670 dof_provider_t *provider; 8671 dof_probe_t *probe; 8672 uint32_t *off, *enoff; 8673 uint8_t *arg; 8674 char *strtab; 8675 uint_t i, nprobes; 8676 dtrace_helper_provdesc_t dhpv; 8677 dtrace_helper_probedesc_t dhpb; 8678 dtrace_meta_t *meta = dtrace_meta_pid; 8679 dtrace_mops_t *mops = &meta->dtm_mops; 8680 void *parg; 8681 8682 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8683 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8684 provider->dofpv_strtab * dof->dofh_secsize); 8685 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8686 provider->dofpv_probes * dof->dofh_secsize); 8687 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8688 provider->dofpv_prargs * dof->dofh_secsize); 8689 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8690 provider->dofpv_proffs * dof->dofh_secsize); 8691 8692 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8693 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); 8694 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 8695 enoff = NULL; 8696 8697 /* 8698 * See dtrace_helper_provider_validate(). 8699 */ 8700 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 8701 provider->dofpv_prenoffs != DOF_SECT_NONE) { 8702 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8703 provider->dofpv_prenoffs * dof->dofh_secsize); 8704 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); 8705 } 8706 8707 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 8708 8709 /* 8710 * Create the provider. 8711 */ 8712 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8713 8714 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL) 8715 return; 8716 8717 meta->dtm_count++; 8718 8719 /* 8720 * Create the probes. 8721 */ 8722 for (i = 0; i < nprobes; i++) { 8723 probe = (dof_probe_t *)(uintptr_t)(daddr + 8724 prb_sec->dofs_offset + i * prb_sec->dofs_entsize); 8725 8726 dhpb.dthpb_mod = dhp->dofhp_mod; 8727 dhpb.dthpb_func = strtab + probe->dofpr_func; 8728 dhpb.dthpb_name = strtab + probe->dofpr_name; 8729 dhpb.dthpb_base = probe->dofpr_addr; 8730 dhpb.dthpb_offs = off + probe->dofpr_offidx; 8731 dhpb.dthpb_noffs = probe->dofpr_noffs; 8732 if (enoff != NULL) { 8733 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx; 8734 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; 8735 } else { 8736 dhpb.dthpb_enoffs = NULL; 8737 dhpb.dthpb_nenoffs = 0; 8738 } 8739 dhpb.dthpb_args = arg + probe->dofpr_argidx; 8740 dhpb.dthpb_nargc = probe->dofpr_nargc; 8741 dhpb.dthpb_xargc = probe->dofpr_xargc; 8742 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; 8743 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; 8744 8745 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); 8746 } 8747 } 8748 8749 static void 8750 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid) 8751 { 8752 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8753 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8754 int i; 8755 8756 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8757 8758 for (i = 0; i < dof->dofh_secnum; i++) { 8759 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8760 dof->dofh_secoff + i * dof->dofh_secsize); 8761 8762 if (sec->dofs_type != DOF_SECT_PROVIDER) 8763 continue; 8764 8765 dtrace_helper_provide_one(dhp, sec, pid); 8766 } 8767 8768 /* 8769 * We may have just created probes, so we must now rematch against 8770 * any retained enablings. Note that this call will acquire both 8771 * cpu_lock and dtrace_lock; the fact that we are holding 8772 * dtrace_meta_lock now is what defines the ordering with respect to 8773 * these three locks. 8774 */ 8775 dtrace_enabling_matchall(); 8776 } 8777 8778 static void 8779 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid) 8780 { 8781 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8782 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8783 dof_sec_t *str_sec; 8784 dof_provider_t *provider; 8785 char *strtab; 8786 dtrace_helper_provdesc_t dhpv; 8787 dtrace_meta_t *meta = dtrace_meta_pid; 8788 dtrace_mops_t *mops = &meta->dtm_mops; 8789 8790 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 8791 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + 8792 provider->dofpv_strtab * dof->dofh_secsize); 8793 8794 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 8795 8796 /* 8797 * Create the provider. 8798 */ 8799 dtrace_dofprov2hprov(&dhpv, provider, strtab); 8800 8801 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid); 8802 8803 meta->dtm_count--; 8804 } 8805 8806 static void 8807 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid) 8808 { 8809 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; 8810 dof_hdr_t *dof = (dof_hdr_t *)daddr; 8811 int i; 8812 8813 ASSERT(MUTEX_HELD(&dtrace_meta_lock)); 8814 8815 for (i = 0; i < dof->dofh_secnum; i++) { 8816 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 8817 dof->dofh_secoff + i * dof->dofh_secsize); 8818 8819 if (sec->dofs_type != DOF_SECT_PROVIDER) 8820 continue; 8821 8822 dtrace_helper_provider_remove_one(dhp, sec, pid); 8823 } 8824 } 8825 8826 /* 8827 * DTrace Meta Provider-to-Framework API Functions 8828 * 8829 * These functions implement the Meta Provider-to-Framework API, as described 8830 * in <sys/dtrace.h>. 8831 */ 8832 int 8833 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, 8834 dtrace_meta_provider_id_t *idp) 8835 { 8836 dtrace_meta_t *meta; 8837 dtrace_helpers_t *help, *next; 8838 int i; 8839 8840 *idp = DTRACE_METAPROVNONE; 8841 8842 /* 8843 * We strictly don't need the name, but we hold onto it for 8844 * debuggability. All hail error queues! 8845 */ 8846 if (name == NULL) { 8847 cmn_err(CE_WARN, "failed to register meta-provider: " 8848 "invalid name"); 8849 return (EINVAL); 8850 } 8851 8852 if (mops == NULL || 8853 mops->dtms_create_probe == NULL || 8854 mops->dtms_provide_pid == NULL || 8855 mops->dtms_remove_pid == NULL) { 8856 cmn_err(CE_WARN, "failed to register meta-register %s: " 8857 "invalid ops", name); 8858 return (EINVAL); 8859 } 8860 8861 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); 8862 meta->dtm_mops = *mops; 8863 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP); 8864 (void) strcpy(meta->dtm_name, name); 8865 meta->dtm_arg = arg; 8866 8867 mutex_enter(&dtrace_meta_lock); 8868 mutex_enter(&dtrace_lock); 8869 8870 if (dtrace_meta_pid != NULL) { 8871 mutex_exit(&dtrace_lock); 8872 mutex_exit(&dtrace_meta_lock); 8873 cmn_err(CE_WARN, "failed to register meta-register %s: " 8874 "user-land meta-provider exists", name); 8875 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1); 8876 kmem_free(meta, sizeof (dtrace_meta_t)); 8877 return (EINVAL); 8878 } 8879 8880 dtrace_meta_pid = meta; 8881 *idp = (dtrace_meta_provider_id_t)meta; 8882 8883 /* 8884 * If there are providers and probes ready to go, pass them 8885 * off to the new meta provider now. 8886 */ 8887 8888 help = dtrace_deferred_pid; 8889 dtrace_deferred_pid = NULL; 8890 8891 mutex_exit(&dtrace_lock); 8892 8893 while (help != NULL) { 8894 for (i = 0; i < help->dthps_nprovs; i++) { 8895 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 8896 help->dthps_pid); 8897 } 8898 8899 next = help->dthps_next; 8900 help->dthps_next = NULL; 8901 help->dthps_prev = NULL; 8902 help->dthps_deferred = 0; 8903 help = next; 8904 } 8905 8906 mutex_exit(&dtrace_meta_lock); 8907 8908 return (0); 8909 } 8910 8911 int 8912 dtrace_meta_unregister(dtrace_meta_provider_id_t id) 8913 { 8914 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; 8915 8916 mutex_enter(&dtrace_meta_lock); 8917 mutex_enter(&dtrace_lock); 8918 8919 if (old == dtrace_meta_pid) { 8920 pp = &dtrace_meta_pid; 8921 } else { 8922 panic("attempt to unregister non-existent " 8923 "dtrace meta-provider %p\n", (void *)old); 8924 } 8925 8926 if (old->dtm_count != 0) { 8927 mutex_exit(&dtrace_lock); 8928 mutex_exit(&dtrace_meta_lock); 8929 return (EBUSY); 8930 } 8931 8932 *pp = NULL; 8933 8934 mutex_exit(&dtrace_lock); 8935 mutex_exit(&dtrace_meta_lock); 8936 8937 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1); 8938 kmem_free(old, sizeof (dtrace_meta_t)); 8939 8940 return (0); 8941 } 8942 8943 8944 /* 8945 * DTrace DIF Object Functions 8946 */ 8947 static int 8948 dtrace_difo_err(uint_t pc, const char *format, ...) 8949 { 8950 if (dtrace_err_verbose) { 8951 va_list alist; 8952 8953 (void) uprintf("dtrace DIF object error: [%u]: ", pc); 8954 va_start(alist, format); 8955 (void) vuprintf(format, alist); 8956 va_end(alist); 8957 } 8958 8959 #ifdef DTRACE_ERRDEBUG 8960 dtrace_errdebug(format); 8961 #endif 8962 return (1); 8963 } 8964 8965 /* 8966 * Validate a DTrace DIF object by checking the IR instructions. The following 8967 * rules are currently enforced by dtrace_difo_validate(): 8968 * 8969 * 1. Each instruction must have a valid opcode 8970 * 2. Each register, string, variable, or subroutine reference must be valid 8971 * 3. No instruction can modify register %r0 (must be zero) 8972 * 4. All instruction reserved bits must be set to zero 8973 * 5. The last instruction must be a "ret" instruction 8974 * 6. All branch targets must reference a valid instruction _after_ the branch 8975 */ 8976 static int 8977 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, 8978 cred_t *cr) 8979 { 8980 int err = 0, i; 8981 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 8982 int kcheckload; 8983 uint_t pc; 8984 8985 kcheckload = cr == NULL || 8986 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; 8987 8988 dp->dtdo_destructive = 0; 8989 8990 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { 8991 dif_instr_t instr = dp->dtdo_buf[pc]; 8992 8993 uint_t r1 = DIF_INSTR_R1(instr); 8994 uint_t r2 = DIF_INSTR_R2(instr); 8995 uint_t rd = DIF_INSTR_RD(instr); 8996 uint_t rs = DIF_INSTR_RS(instr); 8997 uint_t label = DIF_INSTR_LABEL(instr); 8998 uint_t v = DIF_INSTR_VAR(instr); 8999 uint_t subr = DIF_INSTR_SUBR(instr); 9000 uint_t type = DIF_INSTR_TYPE(instr); 9001 uint_t op = DIF_INSTR_OP(instr); 9002 9003 switch (op) { 9004 case DIF_OP_OR: 9005 case DIF_OP_XOR: 9006 case DIF_OP_AND: 9007 case DIF_OP_SLL: 9008 case DIF_OP_SRL: 9009 case DIF_OP_SRA: 9010 case DIF_OP_SUB: 9011 case DIF_OP_ADD: 9012 case DIF_OP_MUL: 9013 case DIF_OP_SDIV: 9014 case DIF_OP_UDIV: 9015 case DIF_OP_SREM: 9016 case DIF_OP_UREM: 9017 case DIF_OP_COPYS: 9018 if (r1 >= nregs) 9019 err += efunc(pc, "invalid register %u\n", r1); 9020 if (r2 >= nregs) 9021 err += efunc(pc, "invalid register %u\n", r2); 9022 if (rd >= nregs) 9023 err += efunc(pc, "invalid register %u\n", rd); 9024 if (rd == 0) 9025 err += efunc(pc, "cannot write to %r0\n"); 9026 break; 9027 case DIF_OP_NOT: 9028 case DIF_OP_MOV: 9029 case DIF_OP_ALLOCS: 9030 if (r1 >= nregs) 9031 err += efunc(pc, "invalid register %u\n", r1); 9032 if (r2 != 0) 9033 err += efunc(pc, "non-zero reserved bits\n"); 9034 if (rd >= nregs) 9035 err += efunc(pc, "invalid register %u\n", rd); 9036 if (rd == 0) 9037 err += efunc(pc, "cannot write to %r0\n"); 9038 break; 9039 case DIF_OP_LDSB: 9040 case DIF_OP_LDSH: 9041 case DIF_OP_LDSW: 9042 case DIF_OP_LDUB: 9043 case DIF_OP_LDUH: 9044 case DIF_OP_LDUW: 9045 case DIF_OP_LDX: 9046 if (r1 >= nregs) 9047 err += efunc(pc, "invalid register %u\n", r1); 9048 if (r2 != 0) 9049 err += efunc(pc, "non-zero reserved bits\n"); 9050 if (rd >= nregs) 9051 err += efunc(pc, "invalid register %u\n", rd); 9052 if (rd == 0) 9053 err += efunc(pc, "cannot write to %r0\n"); 9054 if (kcheckload) 9055 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + 9056 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); 9057 break; 9058 case DIF_OP_RLDSB: 9059 case DIF_OP_RLDSH: 9060 case DIF_OP_RLDSW: 9061 case DIF_OP_RLDUB: 9062 case DIF_OP_RLDUH: 9063 case DIF_OP_RLDUW: 9064 case DIF_OP_RLDX: 9065 if (r1 >= nregs) 9066 err += efunc(pc, "invalid register %u\n", r1); 9067 if (r2 != 0) 9068 err += efunc(pc, "non-zero reserved bits\n"); 9069 if (rd >= nregs) 9070 err += efunc(pc, "invalid register %u\n", rd); 9071 if (rd == 0) 9072 err += efunc(pc, "cannot write to %r0\n"); 9073 break; 9074 case DIF_OP_ULDSB: 9075 case DIF_OP_ULDSH: 9076 case DIF_OP_ULDSW: 9077 case DIF_OP_ULDUB: 9078 case DIF_OP_ULDUH: 9079 case DIF_OP_ULDUW: 9080 case DIF_OP_ULDX: 9081 if (r1 >= nregs) 9082 err += efunc(pc, "invalid register %u\n", r1); 9083 if (r2 != 0) 9084 err += efunc(pc, "non-zero reserved bits\n"); 9085 if (rd >= nregs) 9086 err += efunc(pc, "invalid register %u\n", rd); 9087 if (rd == 0) 9088 err += efunc(pc, "cannot write to %r0\n"); 9089 break; 9090 case DIF_OP_STB: 9091 case DIF_OP_STH: 9092 case DIF_OP_STW: 9093 case DIF_OP_STX: 9094 if (r1 >= nregs) 9095 err += efunc(pc, "invalid register %u\n", r1); 9096 if (r2 != 0) 9097 err += efunc(pc, "non-zero reserved bits\n"); 9098 if (rd >= nregs) 9099 err += efunc(pc, "invalid register %u\n", rd); 9100 if (rd == 0) 9101 err += efunc(pc, "cannot write to 0 address\n"); 9102 break; 9103 case DIF_OP_CMP: 9104 case DIF_OP_SCMP: 9105 if (r1 >= nregs) 9106 err += efunc(pc, "invalid register %u\n", r1); 9107 if (r2 >= nregs) 9108 err += efunc(pc, "invalid register %u\n", r2); 9109 if (rd != 0) 9110 err += efunc(pc, "non-zero reserved bits\n"); 9111 break; 9112 case DIF_OP_TST: 9113 if (r1 >= nregs) 9114 err += efunc(pc, "invalid register %u\n", r1); 9115 if (r2 != 0 || rd != 0) 9116 err += efunc(pc, "non-zero reserved bits\n"); 9117 break; 9118 case DIF_OP_BA: 9119 case DIF_OP_BE: 9120 case DIF_OP_BNE: 9121 case DIF_OP_BG: 9122 case DIF_OP_BGU: 9123 case DIF_OP_BGE: 9124 case DIF_OP_BGEU: 9125 case DIF_OP_BL: 9126 case DIF_OP_BLU: 9127 case DIF_OP_BLE: 9128 case DIF_OP_BLEU: 9129 if (label >= dp->dtdo_len) { 9130 err += efunc(pc, "invalid branch target %u\n", 9131 label); 9132 } 9133 if (label <= pc) { 9134 err += efunc(pc, "backward branch to %u\n", 9135 label); 9136 } 9137 break; 9138 case DIF_OP_RET: 9139 if (r1 != 0 || r2 != 0) 9140 err += efunc(pc, "non-zero reserved bits\n"); 9141 if (rd >= nregs) 9142 err += efunc(pc, "invalid register %u\n", rd); 9143 break; 9144 case DIF_OP_NOP: 9145 case DIF_OP_POPTS: 9146 case DIF_OP_FLUSHTS: 9147 if (r1 != 0 || r2 != 0 || rd != 0) 9148 err += efunc(pc, "non-zero reserved bits\n"); 9149 break; 9150 case DIF_OP_SETX: 9151 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { 9152 err += efunc(pc, "invalid integer ref %u\n", 9153 DIF_INSTR_INTEGER(instr)); 9154 } 9155 if (rd >= nregs) 9156 err += efunc(pc, "invalid register %u\n", rd); 9157 if (rd == 0) 9158 err += efunc(pc, "cannot write to %r0\n"); 9159 break; 9160 case DIF_OP_SETS: 9161 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { 9162 err += efunc(pc, "invalid string ref %u\n", 9163 DIF_INSTR_STRING(instr)); 9164 } 9165 if (rd >= nregs) 9166 err += efunc(pc, "invalid register %u\n", rd); 9167 if (rd == 0) 9168 err += efunc(pc, "cannot write to %r0\n"); 9169 break; 9170 case DIF_OP_LDGA: 9171 case DIF_OP_LDTA: 9172 if (r1 > DIF_VAR_ARRAY_MAX) 9173 err += efunc(pc, "invalid array %u\n", r1); 9174 if (r2 >= nregs) 9175 err += efunc(pc, "invalid register %u\n", r2); 9176 if (rd >= nregs) 9177 err += efunc(pc, "invalid register %u\n", rd); 9178 if (rd == 0) 9179 err += efunc(pc, "cannot write to %r0\n"); 9180 break; 9181 case DIF_OP_LDGS: 9182 case DIF_OP_LDTS: 9183 case DIF_OP_LDLS: 9184 case DIF_OP_LDGAA: 9185 case DIF_OP_LDTAA: 9186 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) 9187 err += efunc(pc, "invalid variable %u\n", v); 9188 if (rd >= nregs) 9189 err += efunc(pc, "invalid register %u\n", rd); 9190 if (rd == 0) 9191 err += efunc(pc, "cannot write to %r0\n"); 9192 break; 9193 case DIF_OP_STGS: 9194 case DIF_OP_STTS: 9195 case DIF_OP_STLS: 9196 case DIF_OP_STGAA: 9197 case DIF_OP_STTAA: 9198 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) 9199 err += efunc(pc, "invalid variable %u\n", v); 9200 if (rs >= nregs) 9201 err += efunc(pc, "invalid register %u\n", rd); 9202 break; 9203 case DIF_OP_CALL: 9204 if (subr > DIF_SUBR_MAX) 9205 err += efunc(pc, "invalid subr %u\n", subr); 9206 if (rd >= nregs) 9207 err += efunc(pc, "invalid register %u\n", rd); 9208 if (rd == 0) 9209 err += efunc(pc, "cannot write to %r0\n"); 9210 9211 if (subr == DIF_SUBR_COPYOUT || 9212 subr == DIF_SUBR_COPYOUTSTR) { 9213 dp->dtdo_destructive = 1; 9214 } 9215 9216 if (subr == DIF_SUBR_GETF) { 9217 /* 9218 * If we have a getf() we need to record that 9219 * in our state. Note that our state can be 9220 * NULL if this is a helper -- but in that 9221 * case, the call to getf() is itself illegal, 9222 * and will be caught (slightly later) when 9223 * the helper is validated. 9224 */ 9225 if (vstate->dtvs_state != NULL) 9226 vstate->dtvs_state->dts_getf++; 9227 } 9228 9229 break; 9230 case DIF_OP_PUSHTR: 9231 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) 9232 err += efunc(pc, "invalid ref type %u\n", type); 9233 if (r2 >= nregs) 9234 err += efunc(pc, "invalid register %u\n", r2); 9235 if (rs >= nregs) 9236 err += efunc(pc, "invalid register %u\n", rs); 9237 break; 9238 case DIF_OP_PUSHTV: 9239 if (type != DIF_TYPE_CTF) 9240 err += efunc(pc, "invalid val type %u\n", type); 9241 if (r2 >= nregs) 9242 err += efunc(pc, "invalid register %u\n", r2); 9243 if (rs >= nregs) 9244 err += efunc(pc, "invalid register %u\n", rs); 9245 break; 9246 default: 9247 err += efunc(pc, "invalid opcode %u\n", 9248 DIF_INSTR_OP(instr)); 9249 } 9250 } 9251 9252 if (dp->dtdo_len != 0 && 9253 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { 9254 err += efunc(dp->dtdo_len - 1, 9255 "expected 'ret' as last DIF instruction\n"); 9256 } 9257 9258 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { 9259 /* 9260 * If we're not returning by reference, the size must be either 9261 * 0 or the size of one of the base types. 9262 */ 9263 switch (dp->dtdo_rtype.dtdt_size) { 9264 case 0: 9265 case sizeof (uint8_t): 9266 case sizeof (uint16_t): 9267 case sizeof (uint32_t): 9268 case sizeof (uint64_t): 9269 break; 9270 9271 default: 9272 err += efunc(dp->dtdo_len - 1, "bad return size\n"); 9273 } 9274 } 9275 9276 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { 9277 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; 9278 dtrace_diftype_t *vt, *et; 9279 uint_t id, ndx; 9280 9281 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && 9282 v->dtdv_scope != DIFV_SCOPE_THREAD && 9283 v->dtdv_scope != DIFV_SCOPE_LOCAL) { 9284 err += efunc(i, "unrecognized variable scope %d\n", 9285 v->dtdv_scope); 9286 break; 9287 } 9288 9289 if (v->dtdv_kind != DIFV_KIND_ARRAY && 9290 v->dtdv_kind != DIFV_KIND_SCALAR) { 9291 err += efunc(i, "unrecognized variable type %d\n", 9292 v->dtdv_kind); 9293 break; 9294 } 9295 9296 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { 9297 err += efunc(i, "%d exceeds variable id limit\n", id); 9298 break; 9299 } 9300 9301 if (id < DIF_VAR_OTHER_UBASE) 9302 continue; 9303 9304 /* 9305 * For user-defined variables, we need to check that this 9306 * definition is identical to any previous definition that we 9307 * encountered. 9308 */ 9309 ndx = id - DIF_VAR_OTHER_UBASE; 9310 9311 switch (v->dtdv_scope) { 9312 case DIFV_SCOPE_GLOBAL: 9313 if (ndx < vstate->dtvs_nglobals) { 9314 dtrace_statvar_t *svar; 9315 9316 if ((svar = vstate->dtvs_globals[ndx]) != NULL) 9317 existing = &svar->dtsv_var; 9318 } 9319 9320 break; 9321 9322 case DIFV_SCOPE_THREAD: 9323 if (ndx < vstate->dtvs_ntlocals) 9324 existing = &vstate->dtvs_tlocals[ndx]; 9325 break; 9326 9327 case DIFV_SCOPE_LOCAL: 9328 if (ndx < vstate->dtvs_nlocals) { 9329 dtrace_statvar_t *svar; 9330 9331 if ((svar = vstate->dtvs_locals[ndx]) != NULL) 9332 existing = &svar->dtsv_var; 9333 } 9334 9335 break; 9336 } 9337 9338 vt = &v->dtdv_type; 9339 9340 if (vt->dtdt_flags & DIF_TF_BYREF) { 9341 if (vt->dtdt_size == 0) { 9342 err += efunc(i, "zero-sized variable\n"); 9343 break; 9344 } 9345 9346 if (v->dtdv_scope == DIFV_SCOPE_GLOBAL && 9347 vt->dtdt_size > dtrace_global_maxsize) { 9348 err += efunc(i, "oversized by-ref global\n"); 9349 break; 9350 } 9351 } 9352 9353 if (existing == NULL || existing->dtdv_id == 0) 9354 continue; 9355 9356 ASSERT(existing->dtdv_id == v->dtdv_id); 9357 ASSERT(existing->dtdv_scope == v->dtdv_scope); 9358 9359 if (existing->dtdv_kind != v->dtdv_kind) 9360 err += efunc(i, "%d changed variable kind\n", id); 9361 9362 et = &existing->dtdv_type; 9363 9364 if (vt->dtdt_flags != et->dtdt_flags) { 9365 err += efunc(i, "%d changed variable type flags\n", id); 9366 break; 9367 } 9368 9369 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { 9370 err += efunc(i, "%d changed variable type size\n", id); 9371 break; 9372 } 9373 } 9374 9375 return (err); 9376 } 9377 9378 /* 9379 * Validate a DTrace DIF object that it is to be used as a helper. Helpers 9380 * are much more constrained than normal DIFOs. Specifically, they may 9381 * not: 9382 * 9383 * 1. Make calls to subroutines other than copyin(), copyinstr() or 9384 * miscellaneous string routines 9385 * 2. Access DTrace variables other than the args[] array, and the 9386 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. 9387 * 3. Have thread-local variables. 9388 * 4. Have dynamic variables. 9389 */ 9390 static int 9391 dtrace_difo_validate_helper(dtrace_difo_t *dp) 9392 { 9393 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; 9394 int err = 0; 9395 uint_t pc; 9396 9397 for (pc = 0; pc < dp->dtdo_len; pc++) { 9398 dif_instr_t instr = dp->dtdo_buf[pc]; 9399 9400 uint_t v = DIF_INSTR_VAR(instr); 9401 uint_t subr = DIF_INSTR_SUBR(instr); 9402 uint_t op = DIF_INSTR_OP(instr); 9403 9404 switch (op) { 9405 case DIF_OP_OR: 9406 case DIF_OP_XOR: 9407 case DIF_OP_AND: 9408 case DIF_OP_SLL: 9409 case DIF_OP_SRL: 9410 case DIF_OP_SRA: 9411 case DIF_OP_SUB: 9412 case DIF_OP_ADD: 9413 case DIF_OP_MUL: 9414 case DIF_OP_SDIV: 9415 case DIF_OP_UDIV: 9416 case DIF_OP_SREM: 9417 case DIF_OP_UREM: 9418 case DIF_OP_COPYS: 9419 case DIF_OP_NOT: 9420 case DIF_OP_MOV: 9421 case DIF_OP_RLDSB: 9422 case DIF_OP_RLDSH: 9423 case DIF_OP_RLDSW: 9424 case DIF_OP_RLDUB: 9425 case DIF_OP_RLDUH: 9426 case DIF_OP_RLDUW: 9427 case DIF_OP_RLDX: 9428 case DIF_OP_ULDSB: 9429 case DIF_OP_ULDSH: 9430 case DIF_OP_ULDSW: 9431 case DIF_OP_ULDUB: 9432 case DIF_OP_ULDUH: 9433 case DIF_OP_ULDUW: 9434 case DIF_OP_ULDX: 9435 case DIF_OP_STB: 9436 case DIF_OP_STH: 9437 case DIF_OP_STW: 9438 case DIF_OP_STX: 9439 case DIF_OP_ALLOCS: 9440 case DIF_OP_CMP: 9441 case DIF_OP_SCMP: 9442 case DIF_OP_TST: 9443 case DIF_OP_BA: 9444 case DIF_OP_BE: 9445 case DIF_OP_BNE: 9446 case DIF_OP_BG: 9447 case DIF_OP_BGU: 9448 case DIF_OP_BGE: 9449 case DIF_OP_BGEU: 9450 case DIF_OP_BL: 9451 case DIF_OP_BLU: 9452 case DIF_OP_BLE: 9453 case DIF_OP_BLEU: 9454 case DIF_OP_RET: 9455 case DIF_OP_NOP: 9456 case DIF_OP_POPTS: 9457 case DIF_OP_FLUSHTS: 9458 case DIF_OP_SETX: 9459 case DIF_OP_SETS: 9460 case DIF_OP_LDGA: 9461 case DIF_OP_LDLS: 9462 case DIF_OP_STGS: 9463 case DIF_OP_STLS: 9464 case DIF_OP_PUSHTR: 9465 case DIF_OP_PUSHTV: 9466 break; 9467 9468 case DIF_OP_LDGS: 9469 if (v >= DIF_VAR_OTHER_UBASE) 9470 break; 9471 9472 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) 9473 break; 9474 9475 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || 9476 v == DIF_VAR_PPID || v == DIF_VAR_TID || 9477 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || 9478 v == DIF_VAR_UID || v == DIF_VAR_GID) 9479 break; 9480 9481 err += efunc(pc, "illegal variable %u\n", v); 9482 break; 9483 9484 case DIF_OP_LDTA: 9485 case DIF_OP_LDTS: 9486 case DIF_OP_LDGAA: 9487 case DIF_OP_LDTAA: 9488 err += efunc(pc, "illegal dynamic variable load\n"); 9489 break; 9490 9491 case DIF_OP_STTS: 9492 case DIF_OP_STGAA: 9493 case DIF_OP_STTAA: 9494 err += efunc(pc, "illegal dynamic variable store\n"); 9495 break; 9496 9497 case DIF_OP_CALL: 9498 if (subr == DIF_SUBR_ALLOCA || 9499 subr == DIF_SUBR_BCOPY || 9500 subr == DIF_SUBR_COPYIN || 9501 subr == DIF_SUBR_COPYINTO || 9502 subr == DIF_SUBR_COPYINSTR || 9503 subr == DIF_SUBR_INDEX || 9504 subr == DIF_SUBR_INET_NTOA || 9505 subr == DIF_SUBR_INET_NTOA6 || 9506 subr == DIF_SUBR_INET_NTOP || 9507 subr == DIF_SUBR_JSON || 9508 subr == DIF_SUBR_LLTOSTR || 9509 subr == DIF_SUBR_STRTOLL || 9510 subr == DIF_SUBR_RINDEX || 9511 subr == DIF_SUBR_STRCHR || 9512 subr == DIF_SUBR_STRJOIN || 9513 subr == DIF_SUBR_STRRCHR || 9514 subr == DIF_SUBR_STRSTR || 9515 subr == DIF_SUBR_HTONS || 9516 subr == DIF_SUBR_HTONL || 9517 subr == DIF_SUBR_HTONLL || 9518 subr == DIF_SUBR_NTOHS || 9519 subr == DIF_SUBR_NTOHL || 9520 subr == DIF_SUBR_NTOHLL) 9521 break; 9522 9523 err += efunc(pc, "invalid subr %u\n", subr); 9524 break; 9525 9526 default: 9527 err += efunc(pc, "invalid opcode %u\n", 9528 DIF_INSTR_OP(instr)); 9529 } 9530 } 9531 9532 return (err); 9533 } 9534 9535 /* 9536 * Returns 1 if the expression in the DIF object can be cached on a per-thread 9537 * basis; 0 if not. 9538 */ 9539 static int 9540 dtrace_difo_cacheable(dtrace_difo_t *dp) 9541 { 9542 int i; 9543 9544 if (dp == NULL) 9545 return (0); 9546 9547 for (i = 0; i < dp->dtdo_varlen; i++) { 9548 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9549 9550 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) 9551 continue; 9552 9553 switch (v->dtdv_id) { 9554 case DIF_VAR_CURTHREAD: 9555 case DIF_VAR_PID: 9556 case DIF_VAR_TID: 9557 case DIF_VAR_EXECNAME: 9558 case DIF_VAR_ZONENAME: 9559 break; 9560 9561 default: 9562 return (0); 9563 } 9564 } 9565 9566 /* 9567 * This DIF object may be cacheable. Now we need to look for any 9568 * array loading instructions, any memory loading instructions, or 9569 * any stores to thread-local variables. 9570 */ 9571 for (i = 0; i < dp->dtdo_len; i++) { 9572 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); 9573 9574 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || 9575 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || 9576 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || 9577 op == DIF_OP_LDGA || op == DIF_OP_STTS) 9578 return (0); 9579 } 9580 9581 return (1); 9582 } 9583 9584 static void 9585 dtrace_difo_hold(dtrace_difo_t *dp) 9586 { 9587 int i; 9588 9589 ASSERT(MUTEX_HELD(&dtrace_lock)); 9590 9591 dp->dtdo_refcnt++; 9592 ASSERT(dp->dtdo_refcnt != 0); 9593 9594 /* 9595 * We need to check this DIF object for references to the variable 9596 * DIF_VAR_VTIMESTAMP. 9597 */ 9598 for (i = 0; i < dp->dtdo_varlen; i++) { 9599 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9600 9601 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9602 continue; 9603 9604 if (dtrace_vtime_references++ == 0) 9605 dtrace_vtime_enable(); 9606 } 9607 } 9608 9609 /* 9610 * This routine calculates the dynamic variable chunksize for a given DIF 9611 * object. The calculation is not fool-proof, and can probably be tricked by 9612 * malicious DIF -- but it works for all compiler-generated DIF. Because this 9613 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail 9614 * if a dynamic variable size exceeds the chunksize. 9615 */ 9616 static void 9617 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9618 { 9619 uint64_t sval; 9620 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ 9621 const dif_instr_t *text = dp->dtdo_buf; 9622 uint_t pc, srd = 0; 9623 uint_t ttop = 0; 9624 size_t size, ksize; 9625 uint_t id, i; 9626 9627 for (pc = 0; pc < dp->dtdo_len; pc++) { 9628 dif_instr_t instr = text[pc]; 9629 uint_t op = DIF_INSTR_OP(instr); 9630 uint_t rd = DIF_INSTR_RD(instr); 9631 uint_t r1 = DIF_INSTR_R1(instr); 9632 uint_t nkeys = 0; 9633 uchar_t scope; 9634 9635 dtrace_key_t *key = tupregs; 9636 9637 switch (op) { 9638 case DIF_OP_SETX: 9639 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; 9640 srd = rd; 9641 continue; 9642 9643 case DIF_OP_STTS: 9644 key = &tupregs[DIF_DTR_NREGS]; 9645 key[0].dttk_size = 0; 9646 key[1].dttk_size = 0; 9647 nkeys = 2; 9648 scope = DIFV_SCOPE_THREAD; 9649 break; 9650 9651 case DIF_OP_STGAA: 9652 case DIF_OP_STTAA: 9653 nkeys = ttop; 9654 9655 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) 9656 key[nkeys++].dttk_size = 0; 9657 9658 key[nkeys++].dttk_size = 0; 9659 9660 if (op == DIF_OP_STTAA) { 9661 scope = DIFV_SCOPE_THREAD; 9662 } else { 9663 scope = DIFV_SCOPE_GLOBAL; 9664 } 9665 9666 break; 9667 9668 case DIF_OP_PUSHTR: 9669 if (ttop == DIF_DTR_NREGS) 9670 return; 9671 9672 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { 9673 /* 9674 * If the register for the size of the "pushtr" 9675 * is %r0 (or the value is 0) and the type is 9676 * a string, we'll use the system-wide default 9677 * string size. 9678 */ 9679 tupregs[ttop++].dttk_size = 9680 dtrace_strsize_default; 9681 } else { 9682 if (srd == 0) 9683 return; 9684 9685 tupregs[ttop++].dttk_size = sval; 9686 } 9687 9688 break; 9689 9690 case DIF_OP_PUSHTV: 9691 if (ttop == DIF_DTR_NREGS) 9692 return; 9693 9694 tupregs[ttop++].dttk_size = 0; 9695 break; 9696 9697 case DIF_OP_FLUSHTS: 9698 ttop = 0; 9699 break; 9700 9701 case DIF_OP_POPTS: 9702 if (ttop != 0) 9703 ttop--; 9704 break; 9705 } 9706 9707 sval = 0; 9708 srd = 0; 9709 9710 if (nkeys == 0) 9711 continue; 9712 9713 /* 9714 * We have a dynamic variable allocation; calculate its size. 9715 */ 9716 for (ksize = 0, i = 0; i < nkeys; i++) 9717 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); 9718 9719 size = sizeof (dtrace_dynvar_t); 9720 size += sizeof (dtrace_key_t) * (nkeys - 1); 9721 size += ksize; 9722 9723 /* 9724 * Now we need to determine the size of the stored data. 9725 */ 9726 id = DIF_INSTR_VAR(instr); 9727 9728 for (i = 0; i < dp->dtdo_varlen; i++) { 9729 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9730 9731 if (v->dtdv_id == id && v->dtdv_scope == scope) { 9732 size += v->dtdv_type.dtdt_size; 9733 break; 9734 } 9735 } 9736 9737 if (i == dp->dtdo_varlen) 9738 return; 9739 9740 /* 9741 * We have the size. If this is larger than the chunk size 9742 * for our dynamic variable state, reset the chunk size. 9743 */ 9744 size = P2ROUNDUP(size, sizeof (uint64_t)); 9745 9746 if (size > vstate->dtvs_dynvars.dtds_chunksize) 9747 vstate->dtvs_dynvars.dtds_chunksize = size; 9748 } 9749 } 9750 9751 static void 9752 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9753 { 9754 int i, oldsvars, osz, nsz, otlocals, ntlocals; 9755 uint_t id; 9756 9757 ASSERT(MUTEX_HELD(&dtrace_lock)); 9758 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); 9759 9760 for (i = 0; i < dp->dtdo_varlen; i++) { 9761 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9762 dtrace_statvar_t *svar, ***svarp; 9763 size_t dsize = 0; 9764 uint8_t scope = v->dtdv_scope; 9765 int *np; 9766 9767 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9768 continue; 9769 9770 id -= DIF_VAR_OTHER_UBASE; 9771 9772 switch (scope) { 9773 case DIFV_SCOPE_THREAD: 9774 while (id >= (otlocals = vstate->dtvs_ntlocals)) { 9775 dtrace_difv_t *tlocals; 9776 9777 if ((ntlocals = (otlocals << 1)) == 0) 9778 ntlocals = 1; 9779 9780 osz = otlocals * sizeof (dtrace_difv_t); 9781 nsz = ntlocals * sizeof (dtrace_difv_t); 9782 9783 tlocals = kmem_zalloc(nsz, KM_SLEEP); 9784 9785 if (osz != 0) { 9786 bcopy(vstate->dtvs_tlocals, 9787 tlocals, osz); 9788 kmem_free(vstate->dtvs_tlocals, osz); 9789 } 9790 9791 vstate->dtvs_tlocals = tlocals; 9792 vstate->dtvs_ntlocals = ntlocals; 9793 } 9794 9795 vstate->dtvs_tlocals[id] = *v; 9796 continue; 9797 9798 case DIFV_SCOPE_LOCAL: 9799 np = &vstate->dtvs_nlocals; 9800 svarp = &vstate->dtvs_locals; 9801 9802 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9803 dsize = NCPU * (v->dtdv_type.dtdt_size + 9804 sizeof (uint64_t)); 9805 else 9806 dsize = NCPU * sizeof (uint64_t); 9807 9808 break; 9809 9810 case DIFV_SCOPE_GLOBAL: 9811 np = &vstate->dtvs_nglobals; 9812 svarp = &vstate->dtvs_globals; 9813 9814 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) 9815 dsize = v->dtdv_type.dtdt_size + 9816 sizeof (uint64_t); 9817 9818 break; 9819 9820 default: 9821 ASSERT(0); 9822 } 9823 9824 while (id >= (oldsvars = *np)) { 9825 dtrace_statvar_t **statics; 9826 int newsvars, oldsize, newsize; 9827 9828 if ((newsvars = (oldsvars << 1)) == 0) 9829 newsvars = 1; 9830 9831 oldsize = oldsvars * sizeof (dtrace_statvar_t *); 9832 newsize = newsvars * sizeof (dtrace_statvar_t *); 9833 9834 statics = kmem_zalloc(newsize, KM_SLEEP); 9835 9836 if (oldsize != 0) { 9837 bcopy(*svarp, statics, oldsize); 9838 kmem_free(*svarp, oldsize); 9839 } 9840 9841 *svarp = statics; 9842 *np = newsvars; 9843 } 9844 9845 if ((svar = (*svarp)[id]) == NULL) { 9846 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); 9847 svar->dtsv_var = *v; 9848 9849 if ((svar->dtsv_size = dsize) != 0) { 9850 svar->dtsv_data = (uint64_t)(uintptr_t) 9851 kmem_zalloc(dsize, KM_SLEEP); 9852 } 9853 9854 (*svarp)[id] = svar; 9855 } 9856 9857 svar->dtsv_refcnt++; 9858 } 9859 9860 dtrace_difo_chunksize(dp, vstate); 9861 dtrace_difo_hold(dp); 9862 } 9863 9864 static dtrace_difo_t * 9865 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9866 { 9867 dtrace_difo_t *new; 9868 size_t sz; 9869 9870 ASSERT(dp->dtdo_buf != NULL); 9871 ASSERT(dp->dtdo_refcnt != 0); 9872 9873 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 9874 9875 ASSERT(dp->dtdo_buf != NULL); 9876 sz = dp->dtdo_len * sizeof (dif_instr_t); 9877 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); 9878 bcopy(dp->dtdo_buf, new->dtdo_buf, sz); 9879 new->dtdo_len = dp->dtdo_len; 9880 9881 if (dp->dtdo_strtab != NULL) { 9882 ASSERT(dp->dtdo_strlen != 0); 9883 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); 9884 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen); 9885 new->dtdo_strlen = dp->dtdo_strlen; 9886 } 9887 9888 if (dp->dtdo_inttab != NULL) { 9889 ASSERT(dp->dtdo_intlen != 0); 9890 sz = dp->dtdo_intlen * sizeof (uint64_t); 9891 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); 9892 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz); 9893 new->dtdo_intlen = dp->dtdo_intlen; 9894 } 9895 9896 if (dp->dtdo_vartab != NULL) { 9897 ASSERT(dp->dtdo_varlen != 0); 9898 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); 9899 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); 9900 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz); 9901 new->dtdo_varlen = dp->dtdo_varlen; 9902 } 9903 9904 dtrace_difo_init(new, vstate); 9905 return (new); 9906 } 9907 9908 static void 9909 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9910 { 9911 int i; 9912 9913 ASSERT(dp->dtdo_refcnt == 0); 9914 9915 for (i = 0; i < dp->dtdo_varlen; i++) { 9916 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9917 dtrace_statvar_t *svar, **svarp; 9918 uint_t id; 9919 uint8_t scope = v->dtdv_scope; 9920 int *np; 9921 9922 switch (scope) { 9923 case DIFV_SCOPE_THREAD: 9924 continue; 9925 9926 case DIFV_SCOPE_LOCAL: 9927 np = &vstate->dtvs_nlocals; 9928 svarp = vstate->dtvs_locals; 9929 break; 9930 9931 case DIFV_SCOPE_GLOBAL: 9932 np = &vstate->dtvs_nglobals; 9933 svarp = vstate->dtvs_globals; 9934 break; 9935 9936 default: 9937 ASSERT(0); 9938 } 9939 9940 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) 9941 continue; 9942 9943 id -= DIF_VAR_OTHER_UBASE; 9944 ASSERT(id < *np); 9945 9946 svar = svarp[id]; 9947 ASSERT(svar != NULL); 9948 ASSERT(svar->dtsv_refcnt > 0); 9949 9950 if (--svar->dtsv_refcnt > 0) 9951 continue; 9952 9953 if (svar->dtsv_size != 0) { 9954 ASSERT(svar->dtsv_data != NULL); 9955 kmem_free((void *)(uintptr_t)svar->dtsv_data, 9956 svar->dtsv_size); 9957 } 9958 9959 kmem_free(svar, sizeof (dtrace_statvar_t)); 9960 svarp[id] = NULL; 9961 } 9962 9963 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 9964 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 9965 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 9966 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 9967 9968 kmem_free(dp, sizeof (dtrace_difo_t)); 9969 } 9970 9971 static void 9972 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) 9973 { 9974 int i; 9975 9976 ASSERT(MUTEX_HELD(&dtrace_lock)); 9977 ASSERT(dp->dtdo_refcnt != 0); 9978 9979 for (i = 0; i < dp->dtdo_varlen; i++) { 9980 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 9981 9982 if (v->dtdv_id != DIF_VAR_VTIMESTAMP) 9983 continue; 9984 9985 ASSERT(dtrace_vtime_references > 0); 9986 if (--dtrace_vtime_references == 0) 9987 dtrace_vtime_disable(); 9988 } 9989 9990 if (--dp->dtdo_refcnt == 0) 9991 dtrace_difo_destroy(dp, vstate); 9992 } 9993 9994 /* 9995 * DTrace Format Functions 9996 */ 9997 static uint16_t 9998 dtrace_format_add(dtrace_state_t *state, char *str) 9999 { 10000 char *fmt, **new; 10001 uint16_t ndx, len = strlen(str) + 1; 10002 10003 fmt = kmem_zalloc(len, KM_SLEEP); 10004 bcopy(str, fmt, len); 10005 10006 for (ndx = 0; ndx < state->dts_nformats; ndx++) { 10007 if (state->dts_formats[ndx] == NULL) { 10008 state->dts_formats[ndx] = fmt; 10009 return (ndx + 1); 10010 } 10011 } 10012 10013 if (state->dts_nformats == USHRT_MAX) { 10014 /* 10015 * This is only likely if a denial-of-service attack is being 10016 * attempted. As such, it's okay to fail silently here. 10017 */ 10018 kmem_free(fmt, len); 10019 return (0); 10020 } 10021 10022 /* 10023 * For simplicity, we always resize the formats array to be exactly the 10024 * number of formats. 10025 */ 10026 ndx = state->dts_nformats++; 10027 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP); 10028 10029 if (state->dts_formats != NULL) { 10030 ASSERT(ndx != 0); 10031 bcopy(state->dts_formats, new, ndx * sizeof (char *)); 10032 kmem_free(state->dts_formats, ndx * sizeof (char *)); 10033 } 10034 10035 state->dts_formats = new; 10036 state->dts_formats[ndx] = fmt; 10037 10038 return (ndx + 1); 10039 } 10040 10041 static void 10042 dtrace_format_remove(dtrace_state_t *state, uint16_t format) 10043 { 10044 char *fmt; 10045 10046 ASSERT(state->dts_formats != NULL); 10047 ASSERT(format <= state->dts_nformats); 10048 ASSERT(state->dts_formats[format - 1] != NULL); 10049 10050 fmt = state->dts_formats[format - 1]; 10051 kmem_free(fmt, strlen(fmt) + 1); 10052 state->dts_formats[format - 1] = NULL; 10053 } 10054 10055 static void 10056 dtrace_format_destroy(dtrace_state_t *state) 10057 { 10058 int i; 10059 10060 if (state->dts_nformats == 0) { 10061 ASSERT(state->dts_formats == NULL); 10062 return; 10063 } 10064 10065 ASSERT(state->dts_formats != NULL); 10066 10067 for (i = 0; i < state->dts_nformats; i++) { 10068 char *fmt = state->dts_formats[i]; 10069 10070 if (fmt == NULL) 10071 continue; 10072 10073 kmem_free(fmt, strlen(fmt) + 1); 10074 } 10075 10076 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *)); 10077 state->dts_nformats = 0; 10078 state->dts_formats = NULL; 10079 } 10080 10081 /* 10082 * DTrace Predicate Functions 10083 */ 10084 static dtrace_predicate_t * 10085 dtrace_predicate_create(dtrace_difo_t *dp) 10086 { 10087 dtrace_predicate_t *pred; 10088 10089 ASSERT(MUTEX_HELD(&dtrace_lock)); 10090 ASSERT(dp->dtdo_refcnt != 0); 10091 10092 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); 10093 pred->dtp_difo = dp; 10094 pred->dtp_refcnt = 1; 10095 10096 if (!dtrace_difo_cacheable(dp)) 10097 return (pred); 10098 10099 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { 10100 /* 10101 * This is only theoretically possible -- we have had 2^32 10102 * cacheable predicates on this machine. We cannot allow any 10103 * more predicates to become cacheable: as unlikely as it is, 10104 * there may be a thread caching a (now stale) predicate cache 10105 * ID. (N.B.: the temptation is being successfully resisted to 10106 * have this cmn_err() "Holy shit -- we executed this code!") 10107 */ 10108 return (pred); 10109 } 10110 10111 pred->dtp_cacheid = dtrace_predcache_id++; 10112 10113 return (pred); 10114 } 10115 10116 static void 10117 dtrace_predicate_hold(dtrace_predicate_t *pred) 10118 { 10119 ASSERT(MUTEX_HELD(&dtrace_lock)); 10120 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); 10121 ASSERT(pred->dtp_refcnt > 0); 10122 10123 pred->dtp_refcnt++; 10124 } 10125 10126 static void 10127 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) 10128 { 10129 dtrace_difo_t *dp = pred->dtp_difo; 10130 10131 ASSERT(MUTEX_HELD(&dtrace_lock)); 10132 ASSERT(dp != NULL && dp->dtdo_refcnt != 0); 10133 ASSERT(pred->dtp_refcnt > 0); 10134 10135 if (--pred->dtp_refcnt == 0) { 10136 dtrace_difo_release(pred->dtp_difo, vstate); 10137 kmem_free(pred, sizeof (dtrace_predicate_t)); 10138 } 10139 } 10140 10141 /* 10142 * DTrace Action Description Functions 10143 */ 10144 static dtrace_actdesc_t * 10145 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, 10146 uint64_t uarg, uint64_t arg) 10147 { 10148 dtrace_actdesc_t *act; 10149 10150 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL && 10151 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA)); 10152 10153 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); 10154 act->dtad_kind = kind; 10155 act->dtad_ntuple = ntuple; 10156 act->dtad_uarg = uarg; 10157 act->dtad_arg = arg; 10158 act->dtad_refcnt = 1; 10159 10160 return (act); 10161 } 10162 10163 static void 10164 dtrace_actdesc_hold(dtrace_actdesc_t *act) 10165 { 10166 ASSERT(act->dtad_refcnt >= 1); 10167 act->dtad_refcnt++; 10168 } 10169 10170 static void 10171 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) 10172 { 10173 dtrace_actkind_t kind = act->dtad_kind; 10174 dtrace_difo_t *dp; 10175 10176 ASSERT(act->dtad_refcnt >= 1); 10177 10178 if (--act->dtad_refcnt != 0) 10179 return; 10180 10181 if ((dp = act->dtad_difo) != NULL) 10182 dtrace_difo_release(dp, vstate); 10183 10184 if (DTRACEACT_ISPRINTFLIKE(kind)) { 10185 char *str = (char *)(uintptr_t)act->dtad_arg; 10186 10187 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || 10188 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); 10189 10190 if (str != NULL) 10191 kmem_free(str, strlen(str) + 1); 10192 } 10193 10194 kmem_free(act, sizeof (dtrace_actdesc_t)); 10195 } 10196 10197 /* 10198 * DTrace ECB Functions 10199 */ 10200 static dtrace_ecb_t * 10201 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) 10202 { 10203 dtrace_ecb_t *ecb; 10204 dtrace_epid_t epid; 10205 10206 ASSERT(MUTEX_HELD(&dtrace_lock)); 10207 10208 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); 10209 ecb->dte_predicate = NULL; 10210 ecb->dte_probe = probe; 10211 10212 /* 10213 * The default size is the size of the default action: recording 10214 * the header. 10215 */ 10216 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); 10217 ecb->dte_alignment = sizeof (dtrace_epid_t); 10218 10219 epid = state->dts_epid++; 10220 10221 if (epid - 1 >= state->dts_necbs) { 10222 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; 10223 int necbs = state->dts_necbs << 1; 10224 10225 ASSERT(epid == state->dts_necbs + 1); 10226 10227 if (necbs == 0) { 10228 ASSERT(oecbs == NULL); 10229 necbs = 1; 10230 } 10231 10232 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); 10233 10234 if (oecbs != NULL) 10235 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs)); 10236 10237 dtrace_membar_producer(); 10238 state->dts_ecbs = ecbs; 10239 10240 if (oecbs != NULL) { 10241 /* 10242 * If this state is active, we must dtrace_sync() 10243 * before we can free the old dts_ecbs array: we're 10244 * coming in hot, and there may be active ring 10245 * buffer processing (which indexes into the dts_ecbs 10246 * array) on another CPU. 10247 */ 10248 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 10249 dtrace_sync(); 10250 10251 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); 10252 } 10253 10254 dtrace_membar_producer(); 10255 state->dts_necbs = necbs; 10256 } 10257 10258 ecb->dte_state = state; 10259 10260 ASSERT(state->dts_ecbs[epid - 1] == NULL); 10261 dtrace_membar_producer(); 10262 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; 10263 10264 return (ecb); 10265 } 10266 10267 static int 10268 dtrace_ecb_enable(dtrace_ecb_t *ecb) 10269 { 10270 dtrace_probe_t *probe = ecb->dte_probe; 10271 10272 ASSERT(MUTEX_HELD(&cpu_lock)); 10273 ASSERT(MUTEX_HELD(&dtrace_lock)); 10274 ASSERT(ecb->dte_next == NULL); 10275 10276 if (probe == NULL) { 10277 /* 10278 * This is the NULL probe -- there's nothing to do. 10279 */ 10280 return (0); 10281 } 10282 10283 if (probe->dtpr_ecb == NULL) { 10284 dtrace_provider_t *prov = probe->dtpr_provider; 10285 10286 /* 10287 * We're the first ECB on this probe. 10288 */ 10289 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; 10290 10291 if (ecb->dte_predicate != NULL) 10292 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; 10293 10294 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, 10295 probe->dtpr_id, probe->dtpr_arg)); 10296 } else { 10297 /* 10298 * This probe is already active. Swing the last pointer to 10299 * point to the new ECB, and issue a dtrace_sync() to assure 10300 * that all CPUs have seen the change. 10301 */ 10302 ASSERT(probe->dtpr_ecb_last != NULL); 10303 probe->dtpr_ecb_last->dte_next = ecb; 10304 probe->dtpr_ecb_last = ecb; 10305 probe->dtpr_predcache = 0; 10306 10307 dtrace_sync(); 10308 return (0); 10309 } 10310 } 10311 10312 static void 10313 dtrace_ecb_resize(dtrace_ecb_t *ecb) 10314 { 10315 dtrace_action_t *act; 10316 uint32_t curneeded = UINT32_MAX; 10317 uint32_t aggbase = UINT32_MAX; 10318 10319 /* 10320 * If we record anything, we always record the dtrace_rechdr_t. (And 10321 * we always record it first.) 10322 */ 10323 ecb->dte_size = sizeof (dtrace_rechdr_t); 10324 ecb->dte_alignment = sizeof (dtrace_epid_t); 10325 10326 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10327 dtrace_recdesc_t *rec = &act->dta_rec; 10328 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); 10329 10330 ecb->dte_alignment = MAX(ecb->dte_alignment, 10331 rec->dtrd_alignment); 10332 10333 if (DTRACEACT_ISAGG(act->dta_kind)) { 10334 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10335 10336 ASSERT(rec->dtrd_size != 0); 10337 ASSERT(agg->dtag_first != NULL); 10338 ASSERT(act->dta_prev->dta_intuple); 10339 ASSERT(aggbase != UINT32_MAX); 10340 ASSERT(curneeded != UINT32_MAX); 10341 10342 agg->dtag_base = aggbase; 10343 10344 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10345 rec->dtrd_offset = curneeded; 10346 curneeded += rec->dtrd_size; 10347 ecb->dte_needed = MAX(ecb->dte_needed, curneeded); 10348 10349 aggbase = UINT32_MAX; 10350 curneeded = UINT32_MAX; 10351 } else if (act->dta_intuple) { 10352 if (curneeded == UINT32_MAX) { 10353 /* 10354 * This is the first record in a tuple. Align 10355 * curneeded to be at offset 4 in an 8-byte 10356 * aligned block. 10357 */ 10358 ASSERT(act->dta_prev == NULL || 10359 !act->dta_prev->dta_intuple); 10360 ASSERT3U(aggbase, ==, UINT32_MAX); 10361 curneeded = P2PHASEUP(ecb->dte_size, 10362 sizeof (uint64_t), sizeof (dtrace_aggid_t)); 10363 10364 aggbase = curneeded - sizeof (dtrace_aggid_t); 10365 ASSERT(IS_P2ALIGNED(aggbase, 10366 sizeof (uint64_t))); 10367 } 10368 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); 10369 rec->dtrd_offset = curneeded; 10370 curneeded += rec->dtrd_size; 10371 } else { 10372 /* tuples must be followed by an aggregation */ 10373 ASSERT(act->dta_prev == NULL || 10374 !act->dta_prev->dta_intuple); 10375 10376 ecb->dte_size = P2ROUNDUP(ecb->dte_size, 10377 rec->dtrd_alignment); 10378 rec->dtrd_offset = ecb->dte_size; 10379 ecb->dte_size += rec->dtrd_size; 10380 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); 10381 } 10382 } 10383 10384 if ((act = ecb->dte_action) != NULL && 10385 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && 10386 ecb->dte_size == sizeof (dtrace_rechdr_t)) { 10387 /* 10388 * If the size is still sizeof (dtrace_rechdr_t), then all 10389 * actions store no data; set the size to 0. 10390 */ 10391 ecb->dte_size = 0; 10392 } 10393 10394 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); 10395 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); 10396 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, 10397 ecb->dte_needed); 10398 } 10399 10400 static dtrace_action_t * 10401 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10402 { 10403 dtrace_aggregation_t *agg; 10404 size_t size = sizeof (uint64_t); 10405 int ntuple = desc->dtad_ntuple; 10406 dtrace_action_t *act; 10407 dtrace_recdesc_t *frec; 10408 dtrace_aggid_t aggid; 10409 dtrace_state_t *state = ecb->dte_state; 10410 10411 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); 10412 agg->dtag_ecb = ecb; 10413 10414 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); 10415 10416 switch (desc->dtad_kind) { 10417 case DTRACEAGG_MIN: 10418 agg->dtag_initial = INT64_MAX; 10419 agg->dtag_aggregate = dtrace_aggregate_min; 10420 break; 10421 10422 case DTRACEAGG_MAX: 10423 agg->dtag_initial = INT64_MIN; 10424 agg->dtag_aggregate = dtrace_aggregate_max; 10425 break; 10426 10427 case DTRACEAGG_COUNT: 10428 agg->dtag_aggregate = dtrace_aggregate_count; 10429 break; 10430 10431 case DTRACEAGG_QUANTIZE: 10432 agg->dtag_aggregate = dtrace_aggregate_quantize; 10433 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * 10434 sizeof (uint64_t); 10435 break; 10436 10437 case DTRACEAGG_LQUANTIZE: { 10438 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); 10439 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); 10440 10441 agg->dtag_initial = desc->dtad_arg; 10442 agg->dtag_aggregate = dtrace_aggregate_lquantize; 10443 10444 if (step == 0 || levels == 0) 10445 goto err; 10446 10447 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); 10448 break; 10449 } 10450 10451 case DTRACEAGG_LLQUANTIZE: { 10452 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); 10453 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); 10454 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); 10455 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); 10456 int64_t v; 10457 10458 agg->dtag_initial = desc->dtad_arg; 10459 agg->dtag_aggregate = dtrace_aggregate_llquantize; 10460 10461 if (factor < 2 || low >= high || nsteps < factor) 10462 goto err; 10463 10464 /* 10465 * Now check that the number of steps evenly divides a power 10466 * of the factor. (This assures both integer bucket size and 10467 * linearity within each magnitude.) 10468 */ 10469 for (v = factor; v < nsteps; v *= factor) 10470 continue; 10471 10472 if ((v % nsteps) || (nsteps % factor)) 10473 goto err; 10474 10475 size = (dtrace_aggregate_llquantize_bucket(factor, 10476 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); 10477 break; 10478 } 10479 10480 case DTRACEAGG_AVG: 10481 agg->dtag_aggregate = dtrace_aggregate_avg; 10482 size = sizeof (uint64_t) * 2; 10483 break; 10484 10485 case DTRACEAGG_STDDEV: 10486 agg->dtag_aggregate = dtrace_aggregate_stddev; 10487 size = sizeof (uint64_t) * 4; 10488 break; 10489 10490 case DTRACEAGG_SUM: 10491 agg->dtag_aggregate = dtrace_aggregate_sum; 10492 break; 10493 10494 default: 10495 goto err; 10496 } 10497 10498 agg->dtag_action.dta_rec.dtrd_size = size; 10499 10500 if (ntuple == 0) 10501 goto err; 10502 10503 /* 10504 * We must make sure that we have enough actions for the n-tuple. 10505 */ 10506 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { 10507 if (DTRACEACT_ISAGG(act->dta_kind)) 10508 break; 10509 10510 if (--ntuple == 0) { 10511 /* 10512 * This is the action with which our n-tuple begins. 10513 */ 10514 agg->dtag_first = act; 10515 goto success; 10516 } 10517 } 10518 10519 /* 10520 * This n-tuple is short by ntuple elements. Return failure. 10521 */ 10522 ASSERT(ntuple != 0); 10523 err: 10524 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10525 return (NULL); 10526 10527 success: 10528 /* 10529 * If the last action in the tuple has a size of zero, it's actually 10530 * an expression argument for the aggregating action. 10531 */ 10532 ASSERT(ecb->dte_action_last != NULL); 10533 act = ecb->dte_action_last; 10534 10535 if (act->dta_kind == DTRACEACT_DIFEXPR) { 10536 ASSERT(act->dta_difo != NULL); 10537 10538 if (act->dta_difo->dtdo_rtype.dtdt_size == 0) 10539 agg->dtag_hasarg = 1; 10540 } 10541 10542 /* 10543 * We need to allocate an id for this aggregation. 10544 */ 10545 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, 10546 VM_BESTFIT | VM_SLEEP); 10547 10548 if (aggid - 1 >= state->dts_naggregations) { 10549 dtrace_aggregation_t **oaggs = state->dts_aggregations; 10550 dtrace_aggregation_t **aggs; 10551 int naggs = state->dts_naggregations << 1; 10552 int onaggs = state->dts_naggregations; 10553 10554 ASSERT(aggid == state->dts_naggregations + 1); 10555 10556 if (naggs == 0) { 10557 ASSERT(oaggs == NULL); 10558 naggs = 1; 10559 } 10560 10561 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); 10562 10563 if (oaggs != NULL) { 10564 bcopy(oaggs, aggs, onaggs * sizeof (*aggs)); 10565 kmem_free(oaggs, onaggs * sizeof (*aggs)); 10566 } 10567 10568 state->dts_aggregations = aggs; 10569 state->dts_naggregations = naggs; 10570 } 10571 10572 ASSERT(state->dts_aggregations[aggid - 1] == NULL); 10573 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; 10574 10575 frec = &agg->dtag_first->dta_rec; 10576 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) 10577 frec->dtrd_alignment = sizeof (dtrace_aggid_t); 10578 10579 for (act = agg->dtag_first; act != NULL; act = act->dta_next) { 10580 ASSERT(!act->dta_intuple); 10581 act->dta_intuple = 1; 10582 } 10583 10584 return (&agg->dtag_action); 10585 } 10586 10587 static void 10588 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) 10589 { 10590 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; 10591 dtrace_state_t *state = ecb->dte_state; 10592 dtrace_aggid_t aggid = agg->dtag_id; 10593 10594 ASSERT(DTRACEACT_ISAGG(act->dta_kind)); 10595 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1); 10596 10597 ASSERT(state->dts_aggregations[aggid - 1] == agg); 10598 state->dts_aggregations[aggid - 1] = NULL; 10599 10600 kmem_free(agg, sizeof (dtrace_aggregation_t)); 10601 } 10602 10603 static int 10604 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) 10605 { 10606 dtrace_action_t *action, *last; 10607 dtrace_difo_t *dp = desc->dtad_difo; 10608 uint32_t size = 0, align = sizeof (uint8_t), mask; 10609 uint16_t format = 0; 10610 dtrace_recdesc_t *rec; 10611 dtrace_state_t *state = ecb->dte_state; 10612 dtrace_optval_t *opt = state->dts_options, nframes, strsize; 10613 uint64_t arg = desc->dtad_arg; 10614 10615 ASSERT(MUTEX_HELD(&dtrace_lock)); 10616 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); 10617 10618 if (DTRACEACT_ISAGG(desc->dtad_kind)) { 10619 /* 10620 * If this is an aggregating action, there must be neither 10621 * a speculate nor a commit on the action chain. 10622 */ 10623 dtrace_action_t *act; 10624 10625 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 10626 if (act->dta_kind == DTRACEACT_COMMIT) 10627 return (EINVAL); 10628 10629 if (act->dta_kind == DTRACEACT_SPECULATE) 10630 return (EINVAL); 10631 } 10632 10633 action = dtrace_ecb_aggregation_create(ecb, desc); 10634 10635 if (action == NULL) 10636 return (EINVAL); 10637 } else { 10638 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || 10639 (desc->dtad_kind == DTRACEACT_DIFEXPR && 10640 dp != NULL && dp->dtdo_destructive)) { 10641 state->dts_destructive = 1; 10642 } 10643 10644 switch (desc->dtad_kind) { 10645 case DTRACEACT_PRINTF: 10646 case DTRACEACT_PRINTA: 10647 case DTRACEACT_SYSTEM: 10648 case DTRACEACT_FREOPEN: 10649 case DTRACEACT_DIFEXPR: 10650 /* 10651 * We know that our arg is a string -- turn it into a 10652 * format. 10653 */ 10654 if (arg == NULL) { 10655 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || 10656 desc->dtad_kind == DTRACEACT_DIFEXPR); 10657 format = 0; 10658 } else { 10659 ASSERT(arg != NULL); 10660 ASSERT(arg > KERNELBASE); 10661 format = dtrace_format_add(state, 10662 (char *)(uintptr_t)arg); 10663 } 10664 10665 /*FALLTHROUGH*/ 10666 case DTRACEACT_LIBACT: 10667 case DTRACEACT_TRACEMEM: 10668 case DTRACEACT_TRACEMEM_DYNSIZE: 10669 if (dp == NULL) 10670 return (EINVAL); 10671 10672 if ((size = dp->dtdo_rtype.dtdt_size) != 0) 10673 break; 10674 10675 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { 10676 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10677 return (EINVAL); 10678 10679 size = opt[DTRACEOPT_STRSIZE]; 10680 } 10681 10682 break; 10683 10684 case DTRACEACT_STACK: 10685 if ((nframes = arg) == 0) { 10686 nframes = opt[DTRACEOPT_STACKFRAMES]; 10687 ASSERT(nframes > 0); 10688 arg = nframes; 10689 } 10690 10691 size = nframes * sizeof (pc_t); 10692 break; 10693 10694 case DTRACEACT_JSTACK: 10695 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) 10696 strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; 10697 10698 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) 10699 nframes = opt[DTRACEOPT_JSTACKFRAMES]; 10700 10701 arg = DTRACE_USTACK_ARG(nframes, strsize); 10702 10703 /*FALLTHROUGH*/ 10704 case DTRACEACT_USTACK: 10705 if (desc->dtad_kind != DTRACEACT_JSTACK && 10706 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { 10707 strsize = DTRACE_USTACK_STRSIZE(arg); 10708 nframes = opt[DTRACEOPT_USTACKFRAMES]; 10709 ASSERT(nframes > 0); 10710 arg = DTRACE_USTACK_ARG(nframes, strsize); 10711 } 10712 10713 /* 10714 * Save a slot for the pid. 10715 */ 10716 size = (nframes + 1) * sizeof (uint64_t); 10717 size += DTRACE_USTACK_STRSIZE(arg); 10718 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); 10719 10720 break; 10721 10722 case DTRACEACT_SYM: 10723 case DTRACEACT_MOD: 10724 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != 10725 sizeof (uint64_t)) || 10726 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10727 return (EINVAL); 10728 break; 10729 10730 case DTRACEACT_USYM: 10731 case DTRACEACT_UMOD: 10732 case DTRACEACT_UADDR: 10733 if (dp == NULL || 10734 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || 10735 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10736 return (EINVAL); 10737 10738 /* 10739 * We have a slot for the pid, plus a slot for the 10740 * argument. To keep things simple (aligned with 10741 * bitness-neutral sizing), we store each as a 64-bit 10742 * quantity. 10743 */ 10744 size = 2 * sizeof (uint64_t); 10745 break; 10746 10747 case DTRACEACT_STOP: 10748 case DTRACEACT_BREAKPOINT: 10749 case DTRACEACT_PANIC: 10750 break; 10751 10752 case DTRACEACT_CHILL: 10753 case DTRACEACT_DISCARD: 10754 case DTRACEACT_RAISE: 10755 if (dp == NULL) 10756 return (EINVAL); 10757 break; 10758 10759 case DTRACEACT_EXIT: 10760 if (dp == NULL || 10761 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || 10762 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) 10763 return (EINVAL); 10764 break; 10765 10766 case DTRACEACT_SPECULATE: 10767 if (ecb->dte_size > sizeof (dtrace_rechdr_t)) 10768 return (EINVAL); 10769 10770 if (dp == NULL) 10771 return (EINVAL); 10772 10773 state->dts_speculates = 1; 10774 break; 10775 10776 case DTRACEACT_COMMIT: { 10777 dtrace_action_t *act = ecb->dte_action; 10778 10779 for (; act != NULL; act = act->dta_next) { 10780 if (act->dta_kind == DTRACEACT_COMMIT) 10781 return (EINVAL); 10782 } 10783 10784 if (dp == NULL) 10785 return (EINVAL); 10786 break; 10787 } 10788 10789 default: 10790 return (EINVAL); 10791 } 10792 10793 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { 10794 /* 10795 * If this is a data-storing action or a speculate, 10796 * we must be sure that there isn't a commit on the 10797 * action chain. 10798 */ 10799 dtrace_action_t *act = ecb->dte_action; 10800 10801 for (; act != NULL; act = act->dta_next) { 10802 if (act->dta_kind == DTRACEACT_COMMIT) 10803 return (EINVAL); 10804 } 10805 } 10806 10807 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); 10808 action->dta_rec.dtrd_size = size; 10809 } 10810 10811 action->dta_refcnt = 1; 10812 rec = &action->dta_rec; 10813 size = rec->dtrd_size; 10814 10815 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { 10816 if (!(size & mask)) { 10817 align = mask + 1; 10818 break; 10819 } 10820 } 10821 10822 action->dta_kind = desc->dtad_kind; 10823 10824 if ((action->dta_difo = dp) != NULL) 10825 dtrace_difo_hold(dp); 10826 10827 rec->dtrd_action = action->dta_kind; 10828 rec->dtrd_arg = arg; 10829 rec->dtrd_uarg = desc->dtad_uarg; 10830 rec->dtrd_alignment = (uint16_t)align; 10831 rec->dtrd_format = format; 10832 10833 if ((last = ecb->dte_action_last) != NULL) { 10834 ASSERT(ecb->dte_action != NULL); 10835 action->dta_prev = last; 10836 last->dta_next = action; 10837 } else { 10838 ASSERT(ecb->dte_action == NULL); 10839 ecb->dte_action = action; 10840 } 10841 10842 ecb->dte_action_last = action; 10843 10844 return (0); 10845 } 10846 10847 static void 10848 dtrace_ecb_action_remove(dtrace_ecb_t *ecb) 10849 { 10850 dtrace_action_t *act = ecb->dte_action, *next; 10851 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; 10852 dtrace_difo_t *dp; 10853 uint16_t format; 10854 10855 if (act != NULL && act->dta_refcnt > 1) { 10856 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); 10857 act->dta_refcnt--; 10858 } else { 10859 for (; act != NULL; act = next) { 10860 next = act->dta_next; 10861 ASSERT(next != NULL || act == ecb->dte_action_last); 10862 ASSERT(act->dta_refcnt == 1); 10863 10864 if ((format = act->dta_rec.dtrd_format) != 0) 10865 dtrace_format_remove(ecb->dte_state, format); 10866 10867 if ((dp = act->dta_difo) != NULL) 10868 dtrace_difo_release(dp, vstate); 10869 10870 if (DTRACEACT_ISAGG(act->dta_kind)) { 10871 dtrace_ecb_aggregation_destroy(ecb, act); 10872 } else { 10873 kmem_free(act, sizeof (dtrace_action_t)); 10874 } 10875 } 10876 } 10877 10878 ecb->dte_action = NULL; 10879 ecb->dte_action_last = NULL; 10880 ecb->dte_size = 0; 10881 } 10882 10883 static void 10884 dtrace_ecb_disable(dtrace_ecb_t *ecb) 10885 { 10886 /* 10887 * We disable the ECB by removing it from its probe. 10888 */ 10889 dtrace_ecb_t *pecb, *prev = NULL; 10890 dtrace_probe_t *probe = ecb->dte_probe; 10891 10892 ASSERT(MUTEX_HELD(&dtrace_lock)); 10893 10894 if (probe == NULL) { 10895 /* 10896 * This is the NULL probe; there is nothing to disable. 10897 */ 10898 return; 10899 } 10900 10901 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { 10902 if (pecb == ecb) 10903 break; 10904 prev = pecb; 10905 } 10906 10907 ASSERT(pecb != NULL); 10908 10909 if (prev == NULL) { 10910 probe->dtpr_ecb = ecb->dte_next; 10911 } else { 10912 prev->dte_next = ecb->dte_next; 10913 } 10914 10915 if (ecb == probe->dtpr_ecb_last) { 10916 ASSERT(ecb->dte_next == NULL); 10917 probe->dtpr_ecb_last = prev; 10918 } 10919 10920 /* 10921 * The ECB has been disconnected from the probe; now sync to assure 10922 * that all CPUs have seen the change before returning. 10923 */ 10924 dtrace_sync(); 10925 10926 if (probe->dtpr_ecb == NULL) { 10927 /* 10928 * That was the last ECB on the probe; clear the predicate 10929 * cache ID for the probe, disable it and sync one more time 10930 * to assure that we'll never hit it again. 10931 */ 10932 dtrace_provider_t *prov = probe->dtpr_provider; 10933 10934 ASSERT(ecb->dte_next == NULL); 10935 ASSERT(probe->dtpr_ecb_last == NULL); 10936 probe->dtpr_predcache = DTRACE_CACHEIDNONE; 10937 prov->dtpv_pops.dtps_disable(prov->dtpv_arg, 10938 probe->dtpr_id, probe->dtpr_arg); 10939 dtrace_sync(); 10940 } else { 10941 /* 10942 * There is at least one ECB remaining on the probe. If there 10943 * is _exactly_ one, set the probe's predicate cache ID to be 10944 * the predicate cache ID of the remaining ECB. 10945 */ 10946 ASSERT(probe->dtpr_ecb_last != NULL); 10947 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); 10948 10949 if (probe->dtpr_ecb == probe->dtpr_ecb_last) { 10950 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; 10951 10952 ASSERT(probe->dtpr_ecb->dte_next == NULL); 10953 10954 if (p != NULL) 10955 probe->dtpr_predcache = p->dtp_cacheid; 10956 } 10957 10958 ecb->dte_next = NULL; 10959 } 10960 } 10961 10962 static void 10963 dtrace_ecb_destroy(dtrace_ecb_t *ecb) 10964 { 10965 dtrace_state_t *state = ecb->dte_state; 10966 dtrace_vstate_t *vstate = &state->dts_vstate; 10967 dtrace_predicate_t *pred; 10968 dtrace_epid_t epid = ecb->dte_epid; 10969 10970 ASSERT(MUTEX_HELD(&dtrace_lock)); 10971 ASSERT(ecb->dte_next == NULL); 10972 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); 10973 10974 if ((pred = ecb->dte_predicate) != NULL) 10975 dtrace_predicate_release(pred, vstate); 10976 10977 dtrace_ecb_action_remove(ecb); 10978 10979 ASSERT(state->dts_ecbs[epid - 1] == ecb); 10980 state->dts_ecbs[epid - 1] = NULL; 10981 10982 kmem_free(ecb, sizeof (dtrace_ecb_t)); 10983 } 10984 10985 static dtrace_ecb_t * 10986 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, 10987 dtrace_enabling_t *enab) 10988 { 10989 dtrace_ecb_t *ecb; 10990 dtrace_predicate_t *pred; 10991 dtrace_actdesc_t *act; 10992 dtrace_provider_t *prov; 10993 dtrace_ecbdesc_t *desc = enab->dten_current; 10994 10995 ASSERT(MUTEX_HELD(&dtrace_lock)); 10996 ASSERT(state != NULL); 10997 10998 ecb = dtrace_ecb_add(state, probe); 10999 ecb->dte_uarg = desc->dted_uarg; 11000 11001 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { 11002 dtrace_predicate_hold(pred); 11003 ecb->dte_predicate = pred; 11004 } 11005 11006 if (probe != NULL) { 11007 /* 11008 * If the provider shows more leg than the consumer is old 11009 * enough to see, we need to enable the appropriate implicit 11010 * predicate bits to prevent the ecb from activating at 11011 * revealing times. 11012 * 11013 * Providers specifying DTRACE_PRIV_USER at register time 11014 * are stating that they need the /proc-style privilege 11015 * model to be enforced, and this is what DTRACE_COND_OWNER 11016 * and DTRACE_COND_ZONEOWNER will then do at probe time. 11017 */ 11018 prov = probe->dtpr_provider; 11019 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && 11020 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11021 ecb->dte_cond |= DTRACE_COND_OWNER; 11022 11023 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && 11024 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) 11025 ecb->dte_cond |= DTRACE_COND_ZONEOWNER; 11026 11027 /* 11028 * If the provider shows us kernel innards and the user 11029 * is lacking sufficient privilege, enable the 11030 * DTRACE_COND_USERMODE implicit predicate. 11031 */ 11032 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && 11033 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) 11034 ecb->dte_cond |= DTRACE_COND_USERMODE; 11035 } 11036 11037 if (dtrace_ecb_create_cache != NULL) { 11038 /* 11039 * If we have a cached ecb, we'll use its action list instead 11040 * of creating our own (saving both time and space). 11041 */ 11042 dtrace_ecb_t *cached = dtrace_ecb_create_cache; 11043 dtrace_action_t *act = cached->dte_action; 11044 11045 if (act != NULL) { 11046 ASSERT(act->dta_refcnt > 0); 11047 act->dta_refcnt++; 11048 ecb->dte_action = act; 11049 ecb->dte_action_last = cached->dte_action_last; 11050 ecb->dte_needed = cached->dte_needed; 11051 ecb->dte_size = cached->dte_size; 11052 ecb->dte_alignment = cached->dte_alignment; 11053 } 11054 11055 return (ecb); 11056 } 11057 11058 for (act = desc->dted_action; act != NULL; act = act->dtad_next) { 11059 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) { 11060 dtrace_ecb_destroy(ecb); 11061 return (NULL); 11062 } 11063 } 11064 11065 dtrace_ecb_resize(ecb); 11066 11067 return (dtrace_ecb_create_cache = ecb); 11068 } 11069 11070 static int 11071 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg) 11072 { 11073 dtrace_ecb_t *ecb; 11074 dtrace_enabling_t *enab = arg; 11075 dtrace_state_t *state = enab->dten_vstate->dtvs_state; 11076 11077 ASSERT(state != NULL); 11078 11079 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) { 11080 /* 11081 * This probe was created in a generation for which this 11082 * enabling has previously created ECBs; we don't want to 11083 * enable it again, so just kick out. 11084 */ 11085 return (DTRACE_MATCH_NEXT); 11086 } 11087 11088 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) 11089 return (DTRACE_MATCH_DONE); 11090 11091 if (dtrace_ecb_enable(ecb) < 0) 11092 return (DTRACE_MATCH_FAIL); 11093 11094 return (DTRACE_MATCH_NEXT); 11095 } 11096 11097 static dtrace_ecb_t * 11098 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) 11099 { 11100 dtrace_ecb_t *ecb; 11101 11102 ASSERT(MUTEX_HELD(&dtrace_lock)); 11103 11104 if (id == 0 || id > state->dts_necbs) 11105 return (NULL); 11106 11107 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); 11108 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); 11109 11110 return (state->dts_ecbs[id - 1]); 11111 } 11112 11113 static dtrace_aggregation_t * 11114 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) 11115 { 11116 dtrace_aggregation_t *agg; 11117 11118 ASSERT(MUTEX_HELD(&dtrace_lock)); 11119 11120 if (id == 0 || id > state->dts_naggregations) 11121 return (NULL); 11122 11123 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); 11124 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || 11125 agg->dtag_id == id); 11126 11127 return (state->dts_aggregations[id - 1]); 11128 } 11129 11130 /* 11131 * DTrace Buffer Functions 11132 * 11133 * The following functions manipulate DTrace buffers. Most of these functions 11134 * are called in the context of establishing or processing consumer state; 11135 * exceptions are explicitly noted. 11136 */ 11137 11138 /* 11139 * Note: called from cross call context. This function switches the two 11140 * buffers on a given CPU. The atomicity of this operation is assured by 11141 * disabling interrupts while the actual switch takes place; the disabling of 11142 * interrupts serializes the execution with any execution of dtrace_probe() on 11143 * the same CPU. 11144 */ 11145 static void 11146 dtrace_buffer_switch(dtrace_buffer_t *buf) 11147 { 11148 caddr_t tomax = buf->dtb_tomax; 11149 caddr_t xamot = buf->dtb_xamot; 11150 dtrace_icookie_t cookie; 11151 hrtime_t now; 11152 11153 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11154 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); 11155 11156 cookie = dtrace_interrupt_disable(); 11157 now = dtrace_gethrtime(); 11158 buf->dtb_tomax = xamot; 11159 buf->dtb_xamot = tomax; 11160 buf->dtb_xamot_drops = buf->dtb_drops; 11161 buf->dtb_xamot_offset = buf->dtb_offset; 11162 buf->dtb_xamot_errors = buf->dtb_errors; 11163 buf->dtb_xamot_flags = buf->dtb_flags; 11164 buf->dtb_offset = 0; 11165 buf->dtb_drops = 0; 11166 buf->dtb_errors = 0; 11167 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); 11168 buf->dtb_interval = now - buf->dtb_switched; 11169 buf->dtb_switched = now; 11170 dtrace_interrupt_enable(cookie); 11171 } 11172 11173 /* 11174 * Note: called from cross call context. This function activates a buffer 11175 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation 11176 * is guaranteed by the disabling of interrupts. 11177 */ 11178 static void 11179 dtrace_buffer_activate(dtrace_state_t *state) 11180 { 11181 dtrace_buffer_t *buf; 11182 dtrace_icookie_t cookie = dtrace_interrupt_disable(); 11183 11184 buf = &state->dts_buffer[CPU->cpu_id]; 11185 11186 if (buf->dtb_tomax != NULL) { 11187 /* 11188 * We might like to assert that the buffer is marked inactive, 11189 * but this isn't necessarily true: the buffer for the CPU 11190 * that processes the BEGIN probe has its buffer activated 11191 * manually. In this case, we take the (harmless) action 11192 * re-clearing the bit INACTIVE bit. 11193 */ 11194 buf->dtb_flags &= ~DTRACEBUF_INACTIVE; 11195 } 11196 11197 dtrace_interrupt_enable(cookie); 11198 } 11199 11200 static int 11201 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags, 11202 processorid_t cpu, int *factor) 11203 { 11204 cpu_t *cp; 11205 dtrace_buffer_t *buf; 11206 int allocated = 0, desired = 0; 11207 11208 ASSERT(MUTEX_HELD(&cpu_lock)); 11209 ASSERT(MUTEX_HELD(&dtrace_lock)); 11210 11211 *factor = 1; 11212 11213 if (size > dtrace_nonroot_maxsize && 11214 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) 11215 return (EFBIG); 11216 11217 cp = cpu_list; 11218 11219 do { 11220 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11221 continue; 11222 11223 buf = &bufs[cp->cpu_id]; 11224 11225 /* 11226 * If there is already a buffer allocated for this CPU, it 11227 * is only possible that this is a DR event. In this case, 11228 * the buffer size must match our specified size. 11229 */ 11230 if (buf->dtb_tomax != NULL) { 11231 ASSERT(buf->dtb_size == size); 11232 continue; 11233 } 11234 11235 ASSERT(buf->dtb_xamot == NULL); 11236 11237 if ((buf->dtb_tomax = kmem_zalloc(size, 11238 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11239 goto err; 11240 11241 buf->dtb_size = size; 11242 buf->dtb_flags = flags; 11243 buf->dtb_offset = 0; 11244 buf->dtb_drops = 0; 11245 11246 if (flags & DTRACEBUF_NOSWITCH) 11247 continue; 11248 11249 if ((buf->dtb_xamot = kmem_zalloc(size, 11250 KM_NOSLEEP | KM_NORMALPRI)) == NULL) 11251 goto err; 11252 } while ((cp = cp->cpu_next) != cpu_list); 11253 11254 return (0); 11255 11256 err: 11257 cp = cpu_list; 11258 11259 do { 11260 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) 11261 continue; 11262 11263 buf = &bufs[cp->cpu_id]; 11264 desired += 2; 11265 11266 if (buf->dtb_xamot != NULL) { 11267 ASSERT(buf->dtb_tomax != NULL); 11268 ASSERT(buf->dtb_size == size); 11269 kmem_free(buf->dtb_xamot, size); 11270 allocated++; 11271 } 11272 11273 if (buf->dtb_tomax != NULL) { 11274 ASSERT(buf->dtb_size == size); 11275 kmem_free(buf->dtb_tomax, size); 11276 allocated++; 11277 } 11278 11279 buf->dtb_tomax = NULL; 11280 buf->dtb_xamot = NULL; 11281 buf->dtb_size = 0; 11282 } while ((cp = cp->cpu_next) != cpu_list); 11283 11284 *factor = desired / (allocated > 0 ? allocated : 1); 11285 11286 return (ENOMEM); 11287 } 11288 11289 /* 11290 * Note: called from probe context. This function just increments the drop 11291 * count on a buffer. It has been made a function to allow for the 11292 * possibility of understanding the source of mysterious drop counts. (A 11293 * problem for which one may be particularly disappointed that DTrace cannot 11294 * be used to understand DTrace.) 11295 */ 11296 static void 11297 dtrace_buffer_drop(dtrace_buffer_t *buf) 11298 { 11299 buf->dtb_drops++; 11300 } 11301 11302 /* 11303 * Note: called from probe context. This function is called to reserve space 11304 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the 11305 * mstate. Returns the new offset in the buffer, or a negative value if an 11306 * error has occurred. 11307 */ 11308 static intptr_t 11309 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, 11310 dtrace_state_t *state, dtrace_mstate_t *mstate) 11311 { 11312 intptr_t offs = buf->dtb_offset, soffs; 11313 intptr_t woffs; 11314 caddr_t tomax; 11315 size_t total; 11316 11317 if (buf->dtb_flags & DTRACEBUF_INACTIVE) 11318 return (-1); 11319 11320 if ((tomax = buf->dtb_tomax) == NULL) { 11321 dtrace_buffer_drop(buf); 11322 return (-1); 11323 } 11324 11325 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { 11326 while (offs & (align - 1)) { 11327 /* 11328 * Assert that our alignment is off by a number which 11329 * is itself sizeof (uint32_t) aligned. 11330 */ 11331 ASSERT(!((align - (offs & (align - 1))) & 11332 (sizeof (uint32_t) - 1))); 11333 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11334 offs += sizeof (uint32_t); 11335 } 11336 11337 if ((soffs = offs + needed) > buf->dtb_size) { 11338 dtrace_buffer_drop(buf); 11339 return (-1); 11340 } 11341 11342 if (mstate == NULL) 11343 return (offs); 11344 11345 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; 11346 mstate->dtms_scratch_size = buf->dtb_size - soffs; 11347 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11348 11349 return (offs); 11350 } 11351 11352 if (buf->dtb_flags & DTRACEBUF_FILL) { 11353 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && 11354 (buf->dtb_flags & DTRACEBUF_FULL)) 11355 return (-1); 11356 goto out; 11357 } 11358 11359 total = needed + (offs & (align - 1)); 11360 11361 /* 11362 * For a ring buffer, life is quite a bit more complicated. Before 11363 * we can store any padding, we need to adjust our wrapping offset. 11364 * (If we've never before wrapped or we're not about to, no adjustment 11365 * is required.) 11366 */ 11367 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || 11368 offs + total > buf->dtb_size) { 11369 woffs = buf->dtb_xamot_offset; 11370 11371 if (offs + total > buf->dtb_size) { 11372 /* 11373 * We can't fit in the end of the buffer. First, a 11374 * sanity check that we can fit in the buffer at all. 11375 */ 11376 if (total > buf->dtb_size) { 11377 dtrace_buffer_drop(buf); 11378 return (-1); 11379 } 11380 11381 /* 11382 * We're going to be storing at the top of the buffer, 11383 * so now we need to deal with the wrapped offset. We 11384 * only reset our wrapped offset to 0 if it is 11385 * currently greater than the current offset. If it 11386 * is less than the current offset, it is because a 11387 * previous allocation induced a wrap -- but the 11388 * allocation didn't subsequently take the space due 11389 * to an error or false predicate evaluation. In this 11390 * case, we'll just leave the wrapped offset alone: if 11391 * the wrapped offset hasn't been advanced far enough 11392 * for this allocation, it will be adjusted in the 11393 * lower loop. 11394 */ 11395 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 11396 if (woffs >= offs) 11397 woffs = 0; 11398 } else { 11399 woffs = 0; 11400 } 11401 11402 /* 11403 * Now we know that we're going to be storing to the 11404 * top of the buffer and that there is room for us 11405 * there. We need to clear the buffer from the current 11406 * offset to the end (there may be old gunk there). 11407 */ 11408 while (offs < buf->dtb_size) 11409 tomax[offs++] = 0; 11410 11411 /* 11412 * We need to set our offset to zero. And because we 11413 * are wrapping, we need to set the bit indicating as 11414 * much. We can also adjust our needed space back 11415 * down to the space required by the ECB -- we know 11416 * that the top of the buffer is aligned. 11417 */ 11418 offs = 0; 11419 total = needed; 11420 buf->dtb_flags |= DTRACEBUF_WRAPPED; 11421 } else { 11422 /* 11423 * There is room for us in the buffer, so we simply 11424 * need to check the wrapped offset. 11425 */ 11426 if (woffs < offs) { 11427 /* 11428 * The wrapped offset is less than the offset. 11429 * This can happen if we allocated buffer space 11430 * that induced a wrap, but then we didn't 11431 * subsequently take the space due to an error 11432 * or false predicate evaluation. This is 11433 * okay; we know that _this_ allocation isn't 11434 * going to induce a wrap. We still can't 11435 * reset the wrapped offset to be zero, 11436 * however: the space may have been trashed in 11437 * the previous failed probe attempt. But at 11438 * least the wrapped offset doesn't need to 11439 * be adjusted at all... 11440 */ 11441 goto out; 11442 } 11443 } 11444 11445 while (offs + total > woffs) { 11446 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); 11447 size_t size; 11448 11449 if (epid == DTRACE_EPIDNONE) { 11450 size = sizeof (uint32_t); 11451 } else { 11452 ASSERT3U(epid, <=, state->dts_necbs); 11453 ASSERT(state->dts_ecbs[epid - 1] != NULL); 11454 11455 size = state->dts_ecbs[epid - 1]->dte_size; 11456 } 11457 11458 ASSERT(woffs + size <= buf->dtb_size); 11459 ASSERT(size != 0); 11460 11461 if (woffs + size == buf->dtb_size) { 11462 /* 11463 * We've reached the end of the buffer; we want 11464 * to set the wrapped offset to 0 and break 11465 * out. However, if the offs is 0, then we're 11466 * in a strange edge-condition: the amount of 11467 * space that we want to reserve plus the size 11468 * of the record that we're overwriting is 11469 * greater than the size of the buffer. This 11470 * is problematic because if we reserve the 11471 * space but subsequently don't consume it (due 11472 * to a failed predicate or error) the wrapped 11473 * offset will be 0 -- yet the EPID at offset 0 11474 * will not be committed. This situation is 11475 * relatively easy to deal with: if we're in 11476 * this case, the buffer is indistinguishable 11477 * from one that hasn't wrapped; we need only 11478 * finish the job by clearing the wrapped bit, 11479 * explicitly setting the offset to be 0, and 11480 * zero'ing out the old data in the buffer. 11481 */ 11482 if (offs == 0) { 11483 buf->dtb_flags &= ~DTRACEBUF_WRAPPED; 11484 buf->dtb_offset = 0; 11485 woffs = total; 11486 11487 while (woffs < buf->dtb_size) 11488 tomax[woffs++] = 0; 11489 } 11490 11491 woffs = 0; 11492 break; 11493 } 11494 11495 woffs += size; 11496 } 11497 11498 /* 11499 * We have a wrapped offset. It may be that the wrapped offset 11500 * has become zero -- that's okay. 11501 */ 11502 buf->dtb_xamot_offset = woffs; 11503 } 11504 11505 out: 11506 /* 11507 * Now we can plow the buffer with any necessary padding. 11508 */ 11509 while (offs & (align - 1)) { 11510 /* 11511 * Assert that our alignment is off by a number which 11512 * is itself sizeof (uint32_t) aligned. 11513 */ 11514 ASSERT(!((align - (offs & (align - 1))) & 11515 (sizeof (uint32_t) - 1))); 11516 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); 11517 offs += sizeof (uint32_t); 11518 } 11519 11520 if (buf->dtb_flags & DTRACEBUF_FILL) { 11521 if (offs + needed > buf->dtb_size - state->dts_reserve) { 11522 buf->dtb_flags |= DTRACEBUF_FULL; 11523 return (-1); 11524 } 11525 } 11526 11527 if (mstate == NULL) 11528 return (offs); 11529 11530 /* 11531 * For ring buffers and fill buffers, the scratch space is always 11532 * the inactive buffer. 11533 */ 11534 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; 11535 mstate->dtms_scratch_size = buf->dtb_size; 11536 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; 11537 11538 return (offs); 11539 } 11540 11541 static void 11542 dtrace_buffer_polish(dtrace_buffer_t *buf) 11543 { 11544 ASSERT(buf->dtb_flags & DTRACEBUF_RING); 11545 ASSERT(MUTEX_HELD(&dtrace_lock)); 11546 11547 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) 11548 return; 11549 11550 /* 11551 * We need to polish the ring buffer. There are three cases: 11552 * 11553 * - The first (and presumably most common) is that there is no gap 11554 * between the buffer offset and the wrapped offset. In this case, 11555 * there is nothing in the buffer that isn't valid data; we can 11556 * mark the buffer as polished and return. 11557 * 11558 * - The second (less common than the first but still more common 11559 * than the third) is that there is a gap between the buffer offset 11560 * and the wrapped offset, and the wrapped offset is larger than the 11561 * buffer offset. This can happen because of an alignment issue, or 11562 * can happen because of a call to dtrace_buffer_reserve() that 11563 * didn't subsequently consume the buffer space. In this case, 11564 * we need to zero the data from the buffer offset to the wrapped 11565 * offset. 11566 * 11567 * - The third (and least common) is that there is a gap between the 11568 * buffer offset and the wrapped offset, but the wrapped offset is 11569 * _less_ than the buffer offset. This can only happen because a 11570 * call to dtrace_buffer_reserve() induced a wrap, but the space 11571 * was not subsequently consumed. In this case, we need to zero the 11572 * space from the offset to the end of the buffer _and_ from the 11573 * top of the buffer to the wrapped offset. 11574 */ 11575 if (buf->dtb_offset < buf->dtb_xamot_offset) { 11576 bzero(buf->dtb_tomax + buf->dtb_offset, 11577 buf->dtb_xamot_offset - buf->dtb_offset); 11578 } 11579 11580 if (buf->dtb_offset > buf->dtb_xamot_offset) { 11581 bzero(buf->dtb_tomax + buf->dtb_offset, 11582 buf->dtb_size - buf->dtb_offset); 11583 bzero(buf->dtb_tomax, buf->dtb_xamot_offset); 11584 } 11585 } 11586 11587 /* 11588 * This routine determines if data generated at the specified time has likely 11589 * been entirely consumed at user-level. This routine is called to determine 11590 * if an ECB on a defunct probe (but for an active enabling) can be safely 11591 * disabled and destroyed. 11592 */ 11593 static int 11594 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when) 11595 { 11596 int i; 11597 11598 for (i = 0; i < NCPU; i++) { 11599 dtrace_buffer_t *buf = &bufs[i]; 11600 11601 if (buf->dtb_size == 0) 11602 continue; 11603 11604 if (buf->dtb_flags & DTRACEBUF_RING) 11605 return (0); 11606 11607 if (!buf->dtb_switched && buf->dtb_offset != 0) 11608 return (0); 11609 11610 if (buf->dtb_switched - buf->dtb_interval < when) 11611 return (0); 11612 } 11613 11614 return (1); 11615 } 11616 11617 static void 11618 dtrace_buffer_free(dtrace_buffer_t *bufs) 11619 { 11620 int i; 11621 11622 for (i = 0; i < NCPU; i++) { 11623 dtrace_buffer_t *buf = &bufs[i]; 11624 11625 if (buf->dtb_tomax == NULL) { 11626 ASSERT(buf->dtb_xamot == NULL); 11627 ASSERT(buf->dtb_size == 0); 11628 continue; 11629 } 11630 11631 if (buf->dtb_xamot != NULL) { 11632 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 11633 kmem_free(buf->dtb_xamot, buf->dtb_size); 11634 } 11635 11636 kmem_free(buf->dtb_tomax, buf->dtb_size); 11637 buf->dtb_size = 0; 11638 buf->dtb_tomax = NULL; 11639 buf->dtb_xamot = NULL; 11640 } 11641 } 11642 11643 /* 11644 * DTrace Enabling Functions 11645 */ 11646 static dtrace_enabling_t * 11647 dtrace_enabling_create(dtrace_vstate_t *vstate) 11648 { 11649 dtrace_enabling_t *enab; 11650 11651 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); 11652 enab->dten_vstate = vstate; 11653 11654 return (enab); 11655 } 11656 11657 static void 11658 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) 11659 { 11660 dtrace_ecbdesc_t **ndesc; 11661 size_t osize, nsize; 11662 11663 /* 11664 * We can't add to enablings after we've enabled them, or after we've 11665 * retained them. 11666 */ 11667 ASSERT(enab->dten_probegen == 0); 11668 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11669 11670 if (enab->dten_ndesc < enab->dten_maxdesc) { 11671 enab->dten_desc[enab->dten_ndesc++] = ecb; 11672 return; 11673 } 11674 11675 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11676 11677 if (enab->dten_maxdesc == 0) { 11678 enab->dten_maxdesc = 1; 11679 } else { 11680 enab->dten_maxdesc <<= 1; 11681 } 11682 11683 ASSERT(enab->dten_ndesc < enab->dten_maxdesc); 11684 11685 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); 11686 ndesc = kmem_zalloc(nsize, KM_SLEEP); 11687 bcopy(enab->dten_desc, ndesc, osize); 11688 kmem_free(enab->dten_desc, osize); 11689 11690 enab->dten_desc = ndesc; 11691 enab->dten_desc[enab->dten_ndesc++] = ecb; 11692 } 11693 11694 static void 11695 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, 11696 dtrace_probedesc_t *pd) 11697 { 11698 dtrace_ecbdesc_t *new; 11699 dtrace_predicate_t *pred; 11700 dtrace_actdesc_t *act; 11701 11702 /* 11703 * We're going to create a new ECB description that matches the 11704 * specified ECB in every way, but has the specified probe description. 11705 */ 11706 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 11707 11708 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) 11709 dtrace_predicate_hold(pred); 11710 11711 for (act = ecb->dted_action; act != NULL; act = act->dtad_next) 11712 dtrace_actdesc_hold(act); 11713 11714 new->dted_action = ecb->dted_action; 11715 new->dted_pred = ecb->dted_pred; 11716 new->dted_probe = *pd; 11717 new->dted_uarg = ecb->dted_uarg; 11718 11719 dtrace_enabling_add(enab, new); 11720 } 11721 11722 static void 11723 dtrace_enabling_dump(dtrace_enabling_t *enab) 11724 { 11725 int i; 11726 11727 for (i = 0; i < enab->dten_ndesc; i++) { 11728 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; 11729 11730 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i, 11731 desc->dtpd_provider, desc->dtpd_mod, 11732 desc->dtpd_func, desc->dtpd_name); 11733 } 11734 } 11735 11736 static void 11737 dtrace_enabling_destroy(dtrace_enabling_t *enab) 11738 { 11739 int i; 11740 dtrace_ecbdesc_t *ep; 11741 dtrace_vstate_t *vstate = enab->dten_vstate; 11742 11743 ASSERT(MUTEX_HELD(&dtrace_lock)); 11744 11745 for (i = 0; i < enab->dten_ndesc; i++) { 11746 dtrace_actdesc_t *act, *next; 11747 dtrace_predicate_t *pred; 11748 11749 ep = enab->dten_desc[i]; 11750 11751 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) 11752 dtrace_predicate_release(pred, vstate); 11753 11754 for (act = ep->dted_action; act != NULL; act = next) { 11755 next = act->dtad_next; 11756 dtrace_actdesc_release(act, vstate); 11757 } 11758 11759 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 11760 } 11761 11762 kmem_free(enab->dten_desc, 11763 enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); 11764 11765 /* 11766 * If this was a retained enabling, decrement the dts_nretained count 11767 * and take it off of the dtrace_retained list. 11768 */ 11769 if (enab->dten_prev != NULL || enab->dten_next != NULL || 11770 dtrace_retained == enab) { 11771 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11772 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); 11773 enab->dten_vstate->dtvs_state->dts_nretained--; 11774 dtrace_retained_gen++; 11775 } 11776 11777 if (enab->dten_prev == NULL) { 11778 if (dtrace_retained == enab) { 11779 dtrace_retained = enab->dten_next; 11780 11781 if (dtrace_retained != NULL) 11782 dtrace_retained->dten_prev = NULL; 11783 } 11784 } else { 11785 ASSERT(enab != dtrace_retained); 11786 ASSERT(dtrace_retained != NULL); 11787 enab->dten_prev->dten_next = enab->dten_next; 11788 } 11789 11790 if (enab->dten_next != NULL) { 11791 ASSERT(dtrace_retained != NULL); 11792 enab->dten_next->dten_prev = enab->dten_prev; 11793 } 11794 11795 kmem_free(enab, sizeof (dtrace_enabling_t)); 11796 } 11797 11798 static int 11799 dtrace_enabling_retain(dtrace_enabling_t *enab) 11800 { 11801 dtrace_state_t *state; 11802 11803 ASSERT(MUTEX_HELD(&dtrace_lock)); 11804 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); 11805 ASSERT(enab->dten_vstate != NULL); 11806 11807 state = enab->dten_vstate->dtvs_state; 11808 ASSERT(state != NULL); 11809 11810 /* 11811 * We only allow each state to retain dtrace_retain_max enablings. 11812 */ 11813 if (state->dts_nretained >= dtrace_retain_max) 11814 return (ENOSPC); 11815 11816 state->dts_nretained++; 11817 dtrace_retained_gen++; 11818 11819 if (dtrace_retained == NULL) { 11820 dtrace_retained = enab; 11821 return (0); 11822 } 11823 11824 enab->dten_next = dtrace_retained; 11825 dtrace_retained->dten_prev = enab; 11826 dtrace_retained = enab; 11827 11828 return (0); 11829 } 11830 11831 static int 11832 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, 11833 dtrace_probedesc_t *create) 11834 { 11835 dtrace_enabling_t *new, *enab; 11836 int found = 0, err = ENOENT; 11837 11838 ASSERT(MUTEX_HELD(&dtrace_lock)); 11839 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); 11840 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); 11841 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); 11842 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); 11843 11844 new = dtrace_enabling_create(&state->dts_vstate); 11845 11846 /* 11847 * Iterate over all retained enablings, looking for enablings that 11848 * match the specified state. 11849 */ 11850 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 11851 int i; 11852 11853 /* 11854 * dtvs_state can only be NULL for helper enablings -- and 11855 * helper enablings can't be retained. 11856 */ 11857 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11858 11859 if (enab->dten_vstate->dtvs_state != state) 11860 continue; 11861 11862 /* 11863 * Now iterate over each probe description; we're looking for 11864 * an exact match to the specified probe description. 11865 */ 11866 for (i = 0; i < enab->dten_ndesc; i++) { 11867 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11868 dtrace_probedesc_t *pd = &ep->dted_probe; 11869 11870 if (strcmp(pd->dtpd_provider, match->dtpd_provider)) 11871 continue; 11872 11873 if (strcmp(pd->dtpd_mod, match->dtpd_mod)) 11874 continue; 11875 11876 if (strcmp(pd->dtpd_func, match->dtpd_func)) 11877 continue; 11878 11879 if (strcmp(pd->dtpd_name, match->dtpd_name)) 11880 continue; 11881 11882 /* 11883 * We have a winning probe! Add it to our growing 11884 * enabling. 11885 */ 11886 found = 1; 11887 dtrace_enabling_addlike(new, ep, create); 11888 } 11889 } 11890 11891 if (!found || (err = dtrace_enabling_retain(new)) != 0) { 11892 dtrace_enabling_destroy(new); 11893 return (err); 11894 } 11895 11896 return (0); 11897 } 11898 11899 static void 11900 dtrace_enabling_retract(dtrace_state_t *state) 11901 { 11902 dtrace_enabling_t *enab, *next; 11903 11904 ASSERT(MUTEX_HELD(&dtrace_lock)); 11905 11906 /* 11907 * Iterate over all retained enablings, destroy the enablings retained 11908 * for the specified state. 11909 */ 11910 for (enab = dtrace_retained; enab != NULL; enab = next) { 11911 next = enab->dten_next; 11912 11913 /* 11914 * dtvs_state can only be NULL for helper enablings -- and 11915 * helper enablings can't be retained. 11916 */ 11917 ASSERT(enab->dten_vstate->dtvs_state != NULL); 11918 11919 if (enab->dten_vstate->dtvs_state == state) { 11920 ASSERT(state->dts_nretained > 0); 11921 dtrace_enabling_destroy(enab); 11922 } 11923 } 11924 11925 ASSERT(state->dts_nretained == 0); 11926 } 11927 11928 static int 11929 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched) 11930 { 11931 int i = 0; 11932 int total_matched = 0, matched = 0; 11933 11934 ASSERT(MUTEX_HELD(&cpu_lock)); 11935 ASSERT(MUTEX_HELD(&dtrace_lock)); 11936 11937 for (i = 0; i < enab->dten_ndesc; i++) { 11938 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 11939 11940 enab->dten_current = ep; 11941 enab->dten_error = 0; 11942 11943 /* 11944 * If a provider failed to enable a probe then get out and 11945 * let the consumer know we failed. 11946 */ 11947 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0) 11948 return (EBUSY); 11949 11950 total_matched += matched; 11951 11952 if (enab->dten_error != 0) { 11953 /* 11954 * If we get an error half-way through enabling the 11955 * probes, we kick out -- perhaps with some number of 11956 * them enabled. Leaving enabled probes enabled may 11957 * be slightly confusing for user-level, but we expect 11958 * that no one will attempt to actually drive on in 11959 * the face of such errors. If this is an anonymous 11960 * enabling (indicated with a NULL nmatched pointer), 11961 * we cmn_err() a message. We aren't expecting to 11962 * get such an error -- such as it can exist at all, 11963 * it would be a result of corrupted DOF in the driver 11964 * properties. 11965 */ 11966 if (nmatched == NULL) { 11967 cmn_err(CE_WARN, "dtrace_enabling_match() " 11968 "error on %p: %d", (void *)ep, 11969 enab->dten_error); 11970 } 11971 11972 return (enab->dten_error); 11973 } 11974 } 11975 11976 enab->dten_probegen = dtrace_probegen; 11977 if (nmatched != NULL) 11978 *nmatched = total_matched; 11979 11980 return (0); 11981 } 11982 11983 static void 11984 dtrace_enabling_matchall(void) 11985 { 11986 dtrace_enabling_t *enab; 11987 11988 mutex_enter(&cpu_lock); 11989 mutex_enter(&dtrace_lock); 11990 11991 /* 11992 * Iterate over all retained enablings to see if any probes match 11993 * against them. We only perform this operation on enablings for which 11994 * we have sufficient permissions by virtue of being in the global zone 11995 * or in the same zone as the DTrace client. Because we can be called 11996 * after dtrace_detach() has been called, we cannot assert that there 11997 * are retained enablings. We can safely load from dtrace_retained, 11998 * however: the taskq_destroy() at the end of dtrace_detach() will 11999 * block pending our completion. 12000 */ 12001 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12002 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred; 12003 cred_t *cr = dcr->dcr_cred; 12004 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0; 12005 12006 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL && 12007 (zone == GLOBAL_ZONEID || getzoneid() == zone))) 12008 (void) dtrace_enabling_match(enab, NULL); 12009 } 12010 12011 mutex_exit(&dtrace_lock); 12012 mutex_exit(&cpu_lock); 12013 } 12014 12015 /* 12016 * If an enabling is to be enabled without having matched probes (that is, if 12017 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the 12018 * enabling must be _primed_ by creating an ECB for every ECB description. 12019 * This must be done to assure that we know the number of speculations, the 12020 * number of aggregations, the minimum buffer size needed, etc. before we 12021 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually 12022 * enabling any probes, we create ECBs for every ECB decription, but with a 12023 * NULL probe -- which is exactly what this function does. 12024 */ 12025 static void 12026 dtrace_enabling_prime(dtrace_state_t *state) 12027 { 12028 dtrace_enabling_t *enab; 12029 int i; 12030 12031 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { 12032 ASSERT(enab->dten_vstate->dtvs_state != NULL); 12033 12034 if (enab->dten_vstate->dtvs_state != state) 12035 continue; 12036 12037 /* 12038 * We don't want to prime an enabling more than once, lest 12039 * we allow a malicious user to induce resource exhaustion. 12040 * (The ECBs that result from priming an enabling aren't 12041 * leaked -- but they also aren't deallocated until the 12042 * consumer state is destroyed.) 12043 */ 12044 if (enab->dten_primed) 12045 continue; 12046 12047 for (i = 0; i < enab->dten_ndesc; i++) { 12048 enab->dten_current = enab->dten_desc[i]; 12049 (void) dtrace_probe_enable(NULL, enab); 12050 } 12051 12052 enab->dten_primed = 1; 12053 } 12054 } 12055 12056 /* 12057 * Called to indicate that probes should be provided due to retained 12058 * enablings. This is implemented in terms of dtrace_probe_provide(), but it 12059 * must take an initial lap through the enabling calling the dtps_provide() 12060 * entry point explicitly to allow for autocreated probes. 12061 */ 12062 static void 12063 dtrace_enabling_provide(dtrace_provider_t *prv) 12064 { 12065 int i, all = 0; 12066 dtrace_probedesc_t desc; 12067 dtrace_genid_t gen; 12068 12069 ASSERT(MUTEX_HELD(&dtrace_lock)); 12070 ASSERT(MUTEX_HELD(&dtrace_provider_lock)); 12071 12072 if (prv == NULL) { 12073 all = 1; 12074 prv = dtrace_provider; 12075 } 12076 12077 do { 12078 dtrace_enabling_t *enab; 12079 void *parg = prv->dtpv_arg; 12080 12081 retry: 12082 gen = dtrace_retained_gen; 12083 for (enab = dtrace_retained; enab != NULL; 12084 enab = enab->dten_next) { 12085 for (i = 0; i < enab->dten_ndesc; i++) { 12086 desc = enab->dten_desc[i]->dted_probe; 12087 mutex_exit(&dtrace_lock); 12088 prv->dtpv_pops.dtps_provide(parg, &desc); 12089 mutex_enter(&dtrace_lock); 12090 /* 12091 * Process the retained enablings again if 12092 * they have changed while we weren't holding 12093 * dtrace_lock. 12094 */ 12095 if (gen != dtrace_retained_gen) 12096 goto retry; 12097 } 12098 } 12099 } while (all && (prv = prv->dtpv_next) != NULL); 12100 12101 mutex_exit(&dtrace_lock); 12102 dtrace_probe_provide(NULL, all ? NULL : prv); 12103 mutex_enter(&dtrace_lock); 12104 } 12105 12106 /* 12107 * Called to reap ECBs that are attached to probes from defunct providers. 12108 */ 12109 static void 12110 dtrace_enabling_reap(void) 12111 { 12112 dtrace_provider_t *prov; 12113 dtrace_probe_t *probe; 12114 dtrace_ecb_t *ecb; 12115 hrtime_t when; 12116 int i; 12117 12118 mutex_enter(&cpu_lock); 12119 mutex_enter(&dtrace_lock); 12120 12121 for (i = 0; i < dtrace_nprobes; i++) { 12122 if ((probe = dtrace_probes[i]) == NULL) 12123 continue; 12124 12125 if (probe->dtpr_ecb == NULL) 12126 continue; 12127 12128 prov = probe->dtpr_provider; 12129 12130 if ((when = prov->dtpv_defunct) == 0) 12131 continue; 12132 12133 /* 12134 * We have ECBs on a defunct provider: we want to reap these 12135 * ECBs to allow the provider to unregister. The destruction 12136 * of these ECBs must be done carefully: if we destroy the ECB 12137 * and the consumer later wishes to consume an EPID that 12138 * corresponds to the destroyed ECB (and if the EPID metadata 12139 * has not been previously consumed), the consumer will abort 12140 * processing on the unknown EPID. To reduce (but not, sadly, 12141 * eliminate) the possibility of this, we will only destroy an 12142 * ECB for a defunct provider if, for the state that 12143 * corresponds to the ECB: 12144 * 12145 * (a) There is no speculative tracing (which can effectively 12146 * cache an EPID for an arbitrary amount of time). 12147 * 12148 * (b) The principal buffers have been switched twice since the 12149 * provider became defunct. 12150 * 12151 * (c) The aggregation buffers are of zero size or have been 12152 * switched twice since the provider became defunct. 12153 * 12154 * We use dts_speculates to determine (a) and call a function 12155 * (dtrace_buffer_consumed()) to determine (b) and (c). Note 12156 * that as soon as we've been unable to destroy one of the ECBs 12157 * associated with the probe, we quit trying -- reaping is only 12158 * fruitful in as much as we can destroy all ECBs associated 12159 * with the defunct provider's probes. 12160 */ 12161 while ((ecb = probe->dtpr_ecb) != NULL) { 12162 dtrace_state_t *state = ecb->dte_state; 12163 dtrace_buffer_t *buf = state->dts_buffer; 12164 dtrace_buffer_t *aggbuf = state->dts_aggbuffer; 12165 12166 if (state->dts_speculates) 12167 break; 12168 12169 if (!dtrace_buffer_consumed(buf, when)) 12170 break; 12171 12172 if (!dtrace_buffer_consumed(aggbuf, when)) 12173 break; 12174 12175 dtrace_ecb_disable(ecb); 12176 ASSERT(probe->dtpr_ecb != ecb); 12177 dtrace_ecb_destroy(ecb); 12178 } 12179 } 12180 12181 mutex_exit(&dtrace_lock); 12182 mutex_exit(&cpu_lock); 12183 } 12184 12185 /* 12186 * DTrace DOF Functions 12187 */ 12188 /*ARGSUSED*/ 12189 static void 12190 dtrace_dof_error(dof_hdr_t *dof, const char *str) 12191 { 12192 if (dtrace_err_verbose) 12193 cmn_err(CE_WARN, "failed to process DOF: %s", str); 12194 12195 #ifdef DTRACE_ERRDEBUG 12196 dtrace_errdebug(str); 12197 #endif 12198 } 12199 12200 /* 12201 * Create DOF out of a currently enabled state. Right now, we only create 12202 * DOF containing the run-time options -- but this could be expanded to create 12203 * complete DOF representing the enabled state. 12204 */ 12205 static dof_hdr_t * 12206 dtrace_dof_create(dtrace_state_t *state) 12207 { 12208 dof_hdr_t *dof; 12209 dof_sec_t *sec; 12210 dof_optdesc_t *opt; 12211 int i, len = sizeof (dof_hdr_t) + 12212 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + 12213 sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12214 12215 ASSERT(MUTEX_HELD(&dtrace_lock)); 12216 12217 dof = kmem_zalloc(len, KM_SLEEP); 12218 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; 12219 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; 12220 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; 12221 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; 12222 12223 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; 12224 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; 12225 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; 12226 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; 12227 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; 12228 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; 12229 12230 dof->dofh_flags = 0; 12231 dof->dofh_hdrsize = sizeof (dof_hdr_t); 12232 dof->dofh_secsize = sizeof (dof_sec_t); 12233 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ 12234 dof->dofh_secoff = sizeof (dof_hdr_t); 12235 dof->dofh_loadsz = len; 12236 dof->dofh_filesz = len; 12237 dof->dofh_pad = 0; 12238 12239 /* 12240 * Fill in the option section header... 12241 */ 12242 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); 12243 sec->dofs_type = DOF_SECT_OPTDESC; 12244 sec->dofs_align = sizeof (uint64_t); 12245 sec->dofs_flags = DOF_SECF_LOAD; 12246 sec->dofs_entsize = sizeof (dof_optdesc_t); 12247 12248 opt = (dof_optdesc_t *)((uintptr_t)sec + 12249 roundup(sizeof (dof_sec_t), sizeof (uint64_t))); 12250 12251 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; 12252 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; 12253 12254 for (i = 0; i < DTRACEOPT_MAX; i++) { 12255 opt[i].dofo_option = i; 12256 opt[i].dofo_strtab = DOF_SECIDX_NONE; 12257 opt[i].dofo_value = state->dts_options[i]; 12258 } 12259 12260 return (dof); 12261 } 12262 12263 static dof_hdr_t * 12264 dtrace_dof_copyin(uintptr_t uarg, int *errp) 12265 { 12266 dof_hdr_t hdr, *dof; 12267 12268 ASSERT(!MUTEX_HELD(&dtrace_lock)); 12269 12270 /* 12271 * First, we're going to copyin() the sizeof (dof_hdr_t). 12272 */ 12273 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) { 12274 dtrace_dof_error(NULL, "failed to copyin DOF header"); 12275 *errp = EFAULT; 12276 return (NULL); 12277 } 12278 12279 /* 12280 * Now we'll allocate the entire DOF and copy it in -- provided 12281 * that the length isn't outrageous. 12282 */ 12283 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) { 12284 dtrace_dof_error(&hdr, "load size exceeds maximum"); 12285 *errp = E2BIG; 12286 return (NULL); 12287 } 12288 12289 if (hdr.dofh_loadsz < sizeof (hdr)) { 12290 dtrace_dof_error(&hdr, "invalid load size"); 12291 *errp = EINVAL; 12292 return (NULL); 12293 } 12294 12295 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP); 12296 12297 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 || 12298 dof->dofh_loadsz != hdr.dofh_loadsz) { 12299 kmem_free(dof, hdr.dofh_loadsz); 12300 *errp = EFAULT; 12301 return (NULL); 12302 } 12303 12304 return (dof); 12305 } 12306 12307 static dof_hdr_t * 12308 dtrace_dof_property(const char *name) 12309 { 12310 uchar_t *buf; 12311 uint64_t loadsz; 12312 unsigned int len, i; 12313 dof_hdr_t *dof; 12314 12315 /* 12316 * Unfortunately, array of values in .conf files are always (and 12317 * only) interpreted to be integer arrays. We must read our DOF 12318 * as an integer array, and then squeeze it into a byte array. 12319 */ 12320 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0, 12321 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS) 12322 return (NULL); 12323 12324 for (i = 0; i < len; i++) 12325 buf[i] = (uchar_t)(((int *)buf)[i]); 12326 12327 if (len < sizeof (dof_hdr_t)) { 12328 ddi_prop_free(buf); 12329 dtrace_dof_error(NULL, "truncated header"); 12330 return (NULL); 12331 } 12332 12333 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) { 12334 ddi_prop_free(buf); 12335 dtrace_dof_error(NULL, "truncated DOF"); 12336 return (NULL); 12337 } 12338 12339 if (loadsz >= dtrace_dof_maxsize) { 12340 ddi_prop_free(buf); 12341 dtrace_dof_error(NULL, "oversized DOF"); 12342 return (NULL); 12343 } 12344 12345 dof = kmem_alloc(loadsz, KM_SLEEP); 12346 bcopy(buf, dof, loadsz); 12347 ddi_prop_free(buf); 12348 12349 return (dof); 12350 } 12351 12352 static void 12353 dtrace_dof_destroy(dof_hdr_t *dof) 12354 { 12355 kmem_free(dof, dof->dofh_loadsz); 12356 } 12357 12358 /* 12359 * Return the dof_sec_t pointer corresponding to a given section index. If the 12360 * index is not valid, dtrace_dof_error() is called and NULL is returned. If 12361 * a type other than DOF_SECT_NONE is specified, the header is checked against 12362 * this type and NULL is returned if the types do not match. 12363 */ 12364 static dof_sec_t * 12365 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) 12366 { 12367 dof_sec_t *sec = (dof_sec_t *)(uintptr_t) 12368 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); 12369 12370 if (i >= dof->dofh_secnum) { 12371 dtrace_dof_error(dof, "referenced section index is invalid"); 12372 return (NULL); 12373 } 12374 12375 if (!(sec->dofs_flags & DOF_SECF_LOAD)) { 12376 dtrace_dof_error(dof, "referenced section is not loadable"); 12377 return (NULL); 12378 } 12379 12380 if (type != DOF_SECT_NONE && type != sec->dofs_type) { 12381 dtrace_dof_error(dof, "referenced section is the wrong type"); 12382 return (NULL); 12383 } 12384 12385 return (sec); 12386 } 12387 12388 static dtrace_probedesc_t * 12389 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) 12390 { 12391 dof_probedesc_t *probe; 12392 dof_sec_t *strtab; 12393 uintptr_t daddr = (uintptr_t)dof; 12394 uintptr_t str; 12395 size_t size; 12396 12397 if (sec->dofs_type != DOF_SECT_PROBEDESC) { 12398 dtrace_dof_error(dof, "invalid probe section"); 12399 return (NULL); 12400 } 12401 12402 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12403 dtrace_dof_error(dof, "bad alignment in probe description"); 12404 return (NULL); 12405 } 12406 12407 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { 12408 dtrace_dof_error(dof, "truncated probe description"); 12409 return (NULL); 12410 } 12411 12412 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); 12413 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab); 12414 12415 if (strtab == NULL) 12416 return (NULL); 12417 12418 str = daddr + strtab->dofs_offset; 12419 size = strtab->dofs_size; 12420 12421 if (probe->dofp_provider >= strtab->dofs_size) { 12422 dtrace_dof_error(dof, "corrupt probe provider"); 12423 return (NULL); 12424 } 12425 12426 (void) strncpy(desc->dtpd_provider, 12427 (char *)(str + probe->dofp_provider), 12428 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); 12429 12430 if (probe->dofp_mod >= strtab->dofs_size) { 12431 dtrace_dof_error(dof, "corrupt probe module"); 12432 return (NULL); 12433 } 12434 12435 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), 12436 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); 12437 12438 if (probe->dofp_func >= strtab->dofs_size) { 12439 dtrace_dof_error(dof, "corrupt probe function"); 12440 return (NULL); 12441 } 12442 12443 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), 12444 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); 12445 12446 if (probe->dofp_name >= strtab->dofs_size) { 12447 dtrace_dof_error(dof, "corrupt probe name"); 12448 return (NULL); 12449 } 12450 12451 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), 12452 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); 12453 12454 return (desc); 12455 } 12456 12457 static dtrace_difo_t * 12458 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12459 cred_t *cr) 12460 { 12461 dtrace_difo_t *dp; 12462 size_t ttl = 0; 12463 dof_difohdr_t *dofd; 12464 uintptr_t daddr = (uintptr_t)dof; 12465 size_t max = dtrace_difo_maxsize; 12466 int i, l, n; 12467 12468 static const struct { 12469 int section; 12470 int bufoffs; 12471 int lenoffs; 12472 int entsize; 12473 int align; 12474 const char *msg; 12475 } difo[] = { 12476 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), 12477 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t), 12478 sizeof (dif_instr_t), "multiple DIF sections" }, 12479 12480 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), 12481 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t), 12482 sizeof (uint64_t), "multiple integer tables" }, 12483 12484 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), 12485 offsetof(dtrace_difo_t, dtdo_strlen), 0, 12486 sizeof (char), "multiple string tables" }, 12487 12488 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), 12489 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t), 12490 sizeof (uint_t), "multiple variable tables" }, 12491 12492 { DOF_SECT_NONE, 0, 0, 0, NULL } 12493 }; 12494 12495 if (sec->dofs_type != DOF_SECT_DIFOHDR) { 12496 dtrace_dof_error(dof, "invalid DIFO header section"); 12497 return (NULL); 12498 } 12499 12500 if (sec->dofs_align != sizeof (dof_secidx_t)) { 12501 dtrace_dof_error(dof, "bad alignment in DIFO header"); 12502 return (NULL); 12503 } 12504 12505 if (sec->dofs_size < sizeof (dof_difohdr_t) || 12506 sec->dofs_size % sizeof (dof_secidx_t)) { 12507 dtrace_dof_error(dof, "bad size in DIFO header"); 12508 return (NULL); 12509 } 12510 12511 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12512 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; 12513 12514 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); 12515 dp->dtdo_rtype = dofd->dofd_rtype; 12516 12517 for (l = 0; l < n; l++) { 12518 dof_sec_t *subsec; 12519 void **bufp; 12520 uint32_t *lenp; 12521 12522 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, 12523 dofd->dofd_links[l])) == NULL) 12524 goto err; /* invalid section link */ 12525 12526 if (ttl + subsec->dofs_size > max) { 12527 dtrace_dof_error(dof, "exceeds maximum size"); 12528 goto err; 12529 } 12530 12531 ttl += subsec->dofs_size; 12532 12533 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { 12534 if (subsec->dofs_type != difo[i].section) 12535 continue; 12536 12537 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { 12538 dtrace_dof_error(dof, "section not loaded"); 12539 goto err; 12540 } 12541 12542 if (subsec->dofs_align != difo[i].align) { 12543 dtrace_dof_error(dof, "bad alignment"); 12544 goto err; 12545 } 12546 12547 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); 12548 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); 12549 12550 if (*bufp != NULL) { 12551 dtrace_dof_error(dof, difo[i].msg); 12552 goto err; 12553 } 12554 12555 if (difo[i].entsize != subsec->dofs_entsize) { 12556 dtrace_dof_error(dof, "entry size mismatch"); 12557 goto err; 12558 } 12559 12560 if (subsec->dofs_entsize != 0 && 12561 (subsec->dofs_size % subsec->dofs_entsize) != 0) { 12562 dtrace_dof_error(dof, "corrupt entry size"); 12563 goto err; 12564 } 12565 12566 *lenp = subsec->dofs_size; 12567 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); 12568 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset), 12569 *bufp, subsec->dofs_size); 12570 12571 if (subsec->dofs_entsize != 0) 12572 *lenp /= subsec->dofs_entsize; 12573 12574 break; 12575 } 12576 12577 /* 12578 * If we encounter a loadable DIFO sub-section that is not 12579 * known to us, assume this is a broken program and fail. 12580 */ 12581 if (difo[i].section == DOF_SECT_NONE && 12582 (subsec->dofs_flags & DOF_SECF_LOAD)) { 12583 dtrace_dof_error(dof, "unrecognized DIFO subsection"); 12584 goto err; 12585 } 12586 } 12587 12588 if (dp->dtdo_buf == NULL) { 12589 /* 12590 * We can't have a DIF object without DIF text. 12591 */ 12592 dtrace_dof_error(dof, "missing DIF text"); 12593 goto err; 12594 } 12595 12596 /* 12597 * Before we validate the DIF object, run through the variable table 12598 * looking for the strings -- if any of their size are under, we'll set 12599 * their size to be the system-wide default string size. Note that 12600 * this should _not_ happen if the "strsize" option has been set -- 12601 * in this case, the compiler should have set the size to reflect the 12602 * setting of the option. 12603 */ 12604 for (i = 0; i < dp->dtdo_varlen; i++) { 12605 dtrace_difv_t *v = &dp->dtdo_vartab[i]; 12606 dtrace_diftype_t *t = &v->dtdv_type; 12607 12608 if (v->dtdv_id < DIF_VAR_OTHER_UBASE) 12609 continue; 12610 12611 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) 12612 t->dtdt_size = dtrace_strsize_default; 12613 } 12614 12615 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) 12616 goto err; 12617 12618 dtrace_difo_init(dp, vstate); 12619 return (dp); 12620 12621 err: 12622 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); 12623 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); 12624 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); 12625 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); 12626 12627 kmem_free(dp, sizeof (dtrace_difo_t)); 12628 return (NULL); 12629 } 12630 12631 static dtrace_predicate_t * 12632 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12633 cred_t *cr) 12634 { 12635 dtrace_difo_t *dp; 12636 12637 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) 12638 return (NULL); 12639 12640 return (dtrace_predicate_create(dp)); 12641 } 12642 12643 static dtrace_actdesc_t * 12644 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12645 cred_t *cr) 12646 { 12647 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; 12648 dof_actdesc_t *desc; 12649 dof_sec_t *difosec; 12650 size_t offs; 12651 uintptr_t daddr = (uintptr_t)dof; 12652 uint64_t arg; 12653 dtrace_actkind_t kind; 12654 12655 if (sec->dofs_type != DOF_SECT_ACTDESC) { 12656 dtrace_dof_error(dof, "invalid action section"); 12657 return (NULL); 12658 } 12659 12660 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { 12661 dtrace_dof_error(dof, "truncated action description"); 12662 return (NULL); 12663 } 12664 12665 if (sec->dofs_align != sizeof (uint64_t)) { 12666 dtrace_dof_error(dof, "bad alignment in action description"); 12667 return (NULL); 12668 } 12669 12670 if (sec->dofs_size < sec->dofs_entsize) { 12671 dtrace_dof_error(dof, "section entry size exceeds total size"); 12672 return (NULL); 12673 } 12674 12675 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { 12676 dtrace_dof_error(dof, "bad entry size in action description"); 12677 return (NULL); 12678 } 12679 12680 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { 12681 dtrace_dof_error(dof, "actions exceed dtrace_actions_max"); 12682 return (NULL); 12683 } 12684 12685 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { 12686 desc = (dof_actdesc_t *)(daddr + 12687 (uintptr_t)sec->dofs_offset + offs); 12688 kind = (dtrace_actkind_t)desc->dofa_kind; 12689 12690 if ((DTRACEACT_ISPRINTFLIKE(kind) && 12691 (kind != DTRACEACT_PRINTA || 12692 desc->dofa_strtab != DOF_SECIDX_NONE)) || 12693 (kind == DTRACEACT_DIFEXPR && 12694 desc->dofa_strtab != DOF_SECIDX_NONE)) { 12695 dof_sec_t *strtab; 12696 char *str, *fmt; 12697 uint64_t i; 12698 12699 /* 12700 * The argument to these actions is an index into the 12701 * DOF string table. For printf()-like actions, this 12702 * is the format string. For print(), this is the 12703 * CTF type of the expression result. 12704 */ 12705 if ((strtab = dtrace_dof_sect(dof, 12706 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL) 12707 goto err; 12708 12709 str = (char *)((uintptr_t)dof + 12710 (uintptr_t)strtab->dofs_offset); 12711 12712 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { 12713 if (str[i] == '\0') 12714 break; 12715 } 12716 12717 if (i >= strtab->dofs_size) { 12718 dtrace_dof_error(dof, "bogus format string"); 12719 goto err; 12720 } 12721 12722 if (i == desc->dofa_arg) { 12723 dtrace_dof_error(dof, "empty format string"); 12724 goto err; 12725 } 12726 12727 i -= desc->dofa_arg; 12728 fmt = kmem_alloc(i + 1, KM_SLEEP); 12729 bcopy(&str[desc->dofa_arg], fmt, i + 1); 12730 arg = (uint64_t)(uintptr_t)fmt; 12731 } else { 12732 if (kind == DTRACEACT_PRINTA) { 12733 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); 12734 arg = 0; 12735 } else { 12736 arg = desc->dofa_arg; 12737 } 12738 } 12739 12740 act = dtrace_actdesc_create(kind, desc->dofa_ntuple, 12741 desc->dofa_uarg, arg); 12742 12743 if (last != NULL) { 12744 last->dtad_next = act; 12745 } else { 12746 first = act; 12747 } 12748 12749 last = act; 12750 12751 if (desc->dofa_difo == DOF_SECIDX_NONE) 12752 continue; 12753 12754 if ((difosec = dtrace_dof_sect(dof, 12755 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL) 12756 goto err; 12757 12758 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr); 12759 12760 if (act->dtad_difo == NULL) 12761 goto err; 12762 } 12763 12764 ASSERT(first != NULL); 12765 return (first); 12766 12767 err: 12768 for (act = first; act != NULL; act = next) { 12769 next = act->dtad_next; 12770 dtrace_actdesc_release(act, vstate); 12771 } 12772 12773 return (NULL); 12774 } 12775 12776 static dtrace_ecbdesc_t * 12777 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, 12778 cred_t *cr) 12779 { 12780 dtrace_ecbdesc_t *ep; 12781 dof_ecbdesc_t *ecb; 12782 dtrace_probedesc_t *desc; 12783 dtrace_predicate_t *pred = NULL; 12784 12785 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { 12786 dtrace_dof_error(dof, "truncated ECB description"); 12787 return (NULL); 12788 } 12789 12790 if (sec->dofs_align != sizeof (uint64_t)) { 12791 dtrace_dof_error(dof, "bad alignment in ECB description"); 12792 return (NULL); 12793 } 12794 12795 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); 12796 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes); 12797 12798 if (sec == NULL) 12799 return (NULL); 12800 12801 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); 12802 ep->dted_uarg = ecb->dofe_uarg; 12803 desc = &ep->dted_probe; 12804 12805 if (dtrace_dof_probedesc(dof, sec, desc) == NULL) 12806 goto err; 12807 12808 if (ecb->dofe_pred != DOF_SECIDX_NONE) { 12809 if ((sec = dtrace_dof_sect(dof, 12810 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL) 12811 goto err; 12812 12813 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) 12814 goto err; 12815 12816 ep->dted_pred.dtpdd_predicate = pred; 12817 } 12818 12819 if (ecb->dofe_actions != DOF_SECIDX_NONE) { 12820 if ((sec = dtrace_dof_sect(dof, 12821 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL) 12822 goto err; 12823 12824 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); 12825 12826 if (ep->dted_action == NULL) 12827 goto err; 12828 } 12829 12830 return (ep); 12831 12832 err: 12833 if (pred != NULL) 12834 dtrace_predicate_release(pred, vstate); 12835 kmem_free(ep, sizeof (dtrace_ecbdesc_t)); 12836 return (NULL); 12837 } 12838 12839 /* 12840 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the 12841 * specified DOF. At present, this amounts to simply adding 'ubase' to the 12842 * site of any user SETX relocations to account for load object base address. 12843 * In the future, if we need other relocations, this function can be extended. 12844 */ 12845 static int 12846 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase) 12847 { 12848 uintptr_t daddr = (uintptr_t)dof; 12849 dof_relohdr_t *dofr = 12850 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); 12851 dof_sec_t *ss, *rs, *ts; 12852 dof_relodesc_t *r; 12853 uint_t i, n; 12854 12855 if (sec->dofs_size < sizeof (dof_relohdr_t) || 12856 sec->dofs_align != sizeof (dof_secidx_t)) { 12857 dtrace_dof_error(dof, "invalid relocation header"); 12858 return (-1); 12859 } 12860 12861 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab); 12862 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec); 12863 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec); 12864 12865 if (ss == NULL || rs == NULL || ts == NULL) 12866 return (-1); /* dtrace_dof_error() has been called already */ 12867 12868 if (rs->dofs_entsize < sizeof (dof_relodesc_t) || 12869 rs->dofs_align != sizeof (uint64_t)) { 12870 dtrace_dof_error(dof, "invalid relocation section"); 12871 return (-1); 12872 } 12873 12874 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset); 12875 n = rs->dofs_size / rs->dofs_entsize; 12876 12877 for (i = 0; i < n; i++) { 12878 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset; 12879 12880 switch (r->dofr_type) { 12881 case DOF_RELO_NONE: 12882 break; 12883 case DOF_RELO_SETX: 12884 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset + 12885 sizeof (uint64_t) > ts->dofs_size) { 12886 dtrace_dof_error(dof, "bad relocation offset"); 12887 return (-1); 12888 } 12889 12890 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) { 12891 dtrace_dof_error(dof, "misaligned setx relo"); 12892 return (-1); 12893 } 12894 12895 *(uint64_t *)taddr += ubase; 12896 break; 12897 default: 12898 dtrace_dof_error(dof, "invalid relocation type"); 12899 return (-1); 12900 } 12901 12902 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize); 12903 } 12904 12905 return (0); 12906 } 12907 12908 /* 12909 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated 12910 * header: it should be at the front of a memory region that is at least 12911 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in 12912 * size. It need not be validated in any other way. 12913 */ 12914 static int 12915 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, 12916 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) 12917 { 12918 uint64_t len = dof->dofh_loadsz, seclen; 12919 uintptr_t daddr = (uintptr_t)dof; 12920 dtrace_ecbdesc_t *ep; 12921 dtrace_enabling_t *enab; 12922 uint_t i; 12923 12924 ASSERT(MUTEX_HELD(&dtrace_lock)); 12925 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); 12926 12927 /* 12928 * Check the DOF header identification bytes. In addition to checking 12929 * valid settings, we also verify that unused bits/bytes are zeroed so 12930 * we can use them later without fear of regressing existing binaries. 12931 */ 12932 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0], 12933 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { 12934 dtrace_dof_error(dof, "DOF magic string mismatch"); 12935 return (-1); 12936 } 12937 12938 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && 12939 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { 12940 dtrace_dof_error(dof, "DOF has invalid data model"); 12941 return (-1); 12942 } 12943 12944 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { 12945 dtrace_dof_error(dof, "DOF encoding mismatch"); 12946 return (-1); 12947 } 12948 12949 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 12950 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) { 12951 dtrace_dof_error(dof, "DOF version mismatch"); 12952 return (-1); 12953 } 12954 12955 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { 12956 dtrace_dof_error(dof, "DOF uses unsupported instruction set"); 12957 return (-1); 12958 } 12959 12960 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { 12961 dtrace_dof_error(dof, "DOF uses too many integer registers"); 12962 return (-1); 12963 } 12964 12965 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { 12966 dtrace_dof_error(dof, "DOF uses too many tuple registers"); 12967 return (-1); 12968 } 12969 12970 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { 12971 if (dof->dofh_ident[i] != 0) { 12972 dtrace_dof_error(dof, "DOF has invalid ident byte set"); 12973 return (-1); 12974 } 12975 } 12976 12977 if (dof->dofh_flags & ~DOF_FL_VALID) { 12978 dtrace_dof_error(dof, "DOF has invalid flag bits set"); 12979 return (-1); 12980 } 12981 12982 if (dof->dofh_secsize == 0) { 12983 dtrace_dof_error(dof, "zero section header size"); 12984 return (-1); 12985 } 12986 12987 /* 12988 * Check that the section headers don't exceed the amount of DOF 12989 * data. Note that we cast the section size and number of sections 12990 * to uint64_t's to prevent possible overflow in the multiplication. 12991 */ 12992 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; 12993 12994 if (dof->dofh_secoff > len || seclen > len || 12995 dof->dofh_secoff + seclen > len) { 12996 dtrace_dof_error(dof, "truncated section headers"); 12997 return (-1); 12998 } 12999 13000 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { 13001 dtrace_dof_error(dof, "misaligned section headers"); 13002 return (-1); 13003 } 13004 13005 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { 13006 dtrace_dof_error(dof, "misaligned section size"); 13007 return (-1); 13008 } 13009 13010 /* 13011 * Take an initial pass through the section headers to be sure that 13012 * the headers don't have stray offsets. If the 'noprobes' flag is 13013 * set, do not permit sections relating to providers, probes, or args. 13014 */ 13015 for (i = 0; i < dof->dofh_secnum; i++) { 13016 dof_sec_t *sec = (dof_sec_t *)(daddr + 13017 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13018 13019 if (noprobes) { 13020 switch (sec->dofs_type) { 13021 case DOF_SECT_PROVIDER: 13022 case DOF_SECT_PROBES: 13023 case DOF_SECT_PRARGS: 13024 case DOF_SECT_PROFFS: 13025 dtrace_dof_error(dof, "illegal sections " 13026 "for enabling"); 13027 return (-1); 13028 } 13029 } 13030 13031 if (DOF_SEC_ISLOADABLE(sec->dofs_type) && 13032 !(sec->dofs_flags & DOF_SECF_LOAD)) { 13033 dtrace_dof_error(dof, "loadable section with load " 13034 "flag unset"); 13035 return (-1); 13036 } 13037 13038 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13039 continue; /* just ignore non-loadable sections */ 13040 13041 if (sec->dofs_align & (sec->dofs_align - 1)) { 13042 dtrace_dof_error(dof, "bad section alignment"); 13043 return (-1); 13044 } 13045 13046 if (sec->dofs_offset & (sec->dofs_align - 1)) { 13047 dtrace_dof_error(dof, "misaligned section"); 13048 return (-1); 13049 } 13050 13051 if (sec->dofs_offset > len || sec->dofs_size > len || 13052 sec->dofs_offset + sec->dofs_size > len) { 13053 dtrace_dof_error(dof, "corrupt section header"); 13054 return (-1); 13055 } 13056 13057 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + 13058 sec->dofs_offset + sec->dofs_size - 1) != '\0') { 13059 dtrace_dof_error(dof, "non-terminating string table"); 13060 return (-1); 13061 } 13062 } 13063 13064 /* 13065 * Take a second pass through the sections and locate and perform any 13066 * relocations that are present. We do this after the first pass to 13067 * be sure that all sections have had their headers validated. 13068 */ 13069 for (i = 0; i < dof->dofh_secnum; i++) { 13070 dof_sec_t *sec = (dof_sec_t *)(daddr + 13071 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13072 13073 if (!(sec->dofs_flags & DOF_SECF_LOAD)) 13074 continue; /* skip sections that are not loadable */ 13075 13076 switch (sec->dofs_type) { 13077 case DOF_SECT_URELHDR: 13078 if (dtrace_dof_relocate(dof, sec, ubase) != 0) 13079 return (-1); 13080 break; 13081 } 13082 } 13083 13084 if ((enab = *enabp) == NULL) 13085 enab = *enabp = dtrace_enabling_create(vstate); 13086 13087 for (i = 0; i < dof->dofh_secnum; i++) { 13088 dof_sec_t *sec = (dof_sec_t *)(daddr + 13089 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13090 13091 if (sec->dofs_type != DOF_SECT_ECBDESC) 13092 continue; 13093 13094 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) { 13095 dtrace_enabling_destroy(enab); 13096 *enabp = NULL; 13097 return (-1); 13098 } 13099 13100 dtrace_enabling_add(enab, ep); 13101 } 13102 13103 return (0); 13104 } 13105 13106 /* 13107 * Process DOF for any options. This routine assumes that the DOF has been 13108 * at least processed by dtrace_dof_slurp(). 13109 */ 13110 static int 13111 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) 13112 { 13113 int i, rval; 13114 uint32_t entsize; 13115 size_t offs; 13116 dof_optdesc_t *desc; 13117 13118 for (i = 0; i < dof->dofh_secnum; i++) { 13119 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + 13120 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); 13121 13122 if (sec->dofs_type != DOF_SECT_OPTDESC) 13123 continue; 13124 13125 if (sec->dofs_align != sizeof (uint64_t)) { 13126 dtrace_dof_error(dof, "bad alignment in " 13127 "option description"); 13128 return (EINVAL); 13129 } 13130 13131 if ((entsize = sec->dofs_entsize) == 0) { 13132 dtrace_dof_error(dof, "zeroed option entry size"); 13133 return (EINVAL); 13134 } 13135 13136 if (entsize < sizeof (dof_optdesc_t)) { 13137 dtrace_dof_error(dof, "bad option entry size"); 13138 return (EINVAL); 13139 } 13140 13141 for (offs = 0; offs < sec->dofs_size; offs += entsize) { 13142 desc = (dof_optdesc_t *)((uintptr_t)dof + 13143 (uintptr_t)sec->dofs_offset + offs); 13144 13145 if (desc->dofo_strtab != DOF_SECIDX_NONE) { 13146 dtrace_dof_error(dof, "non-zero option string"); 13147 return (EINVAL); 13148 } 13149 13150 if (desc->dofo_value == DTRACEOPT_UNSET) { 13151 dtrace_dof_error(dof, "unset option"); 13152 return (EINVAL); 13153 } 13154 13155 if ((rval = dtrace_state_option(state, 13156 desc->dofo_option, desc->dofo_value)) != 0) { 13157 dtrace_dof_error(dof, "rejected option"); 13158 return (rval); 13159 } 13160 } 13161 } 13162 13163 return (0); 13164 } 13165 13166 /* 13167 * DTrace Consumer State Functions 13168 */ 13169 int 13170 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) 13171 { 13172 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize; 13173 void *base; 13174 uintptr_t limit; 13175 dtrace_dynvar_t *dvar, *next, *start; 13176 int i; 13177 13178 ASSERT(MUTEX_HELD(&dtrace_lock)); 13179 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); 13180 13181 bzero(dstate, sizeof (dtrace_dstate_t)); 13182 13183 if ((dstate->dtds_chunksize = chunksize) == 0) 13184 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; 13185 13186 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) 13187 size = min; 13188 13189 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL) 13190 return (ENOMEM); 13191 13192 dstate->dtds_size = size; 13193 dstate->dtds_base = base; 13194 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP); 13195 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t)); 13196 13197 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); 13198 13199 if (hashsize != 1 && (hashsize & 1)) 13200 hashsize--; 13201 13202 dstate->dtds_hashsize = hashsize; 13203 dstate->dtds_hash = dstate->dtds_base; 13204 13205 /* 13206 * Set all of our hash buckets to point to the single sink, and (if 13207 * it hasn't already been set), set the sink's hash value to be the 13208 * sink sentinel value. The sink is needed for dynamic variable 13209 * lookups to know that they have iterated over an entire, valid hash 13210 * chain. 13211 */ 13212 for (i = 0; i < hashsize; i++) 13213 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; 13214 13215 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) 13216 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; 13217 13218 /* 13219 * Determine number of active CPUs. Divide free list evenly among 13220 * active CPUs. 13221 */ 13222 start = (dtrace_dynvar_t *) 13223 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); 13224 limit = (uintptr_t)base + size; 13225 13226 maxper = (limit - (uintptr_t)start) / NCPU; 13227 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; 13228 13229 for (i = 0; i < NCPU; i++) { 13230 dstate->dtds_percpu[i].dtdsc_free = dvar = start; 13231 13232 /* 13233 * If we don't even have enough chunks to make it once through 13234 * NCPUs, we're just going to allocate everything to the first 13235 * CPU. And if we're on the last CPU, we're going to allocate 13236 * whatever is left over. In either case, we set the limit to 13237 * be the limit of the dynamic variable space. 13238 */ 13239 if (maxper == 0 || i == NCPU - 1) { 13240 limit = (uintptr_t)base + size; 13241 start = NULL; 13242 } else { 13243 limit = (uintptr_t)start + maxper; 13244 start = (dtrace_dynvar_t *)limit; 13245 } 13246 13247 ASSERT(limit <= (uintptr_t)base + size); 13248 13249 for (;;) { 13250 next = (dtrace_dynvar_t *)((uintptr_t)dvar + 13251 dstate->dtds_chunksize); 13252 13253 if ((uintptr_t)next + dstate->dtds_chunksize >= limit) 13254 break; 13255 13256 dvar->dtdv_next = next; 13257 dvar = next; 13258 } 13259 13260 if (maxper == 0) 13261 break; 13262 } 13263 13264 return (0); 13265 } 13266 13267 void 13268 dtrace_dstate_fini(dtrace_dstate_t *dstate) 13269 { 13270 ASSERT(MUTEX_HELD(&cpu_lock)); 13271 13272 if (dstate->dtds_base == NULL) 13273 return; 13274 13275 kmem_free(dstate->dtds_base, dstate->dtds_size); 13276 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu); 13277 } 13278 13279 static void 13280 dtrace_vstate_fini(dtrace_vstate_t *vstate) 13281 { 13282 /* 13283 * Logical XOR, where are you? 13284 */ 13285 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); 13286 13287 if (vstate->dtvs_nglobals > 0) { 13288 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * 13289 sizeof (dtrace_statvar_t *)); 13290 } 13291 13292 if (vstate->dtvs_ntlocals > 0) { 13293 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * 13294 sizeof (dtrace_difv_t)); 13295 } 13296 13297 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); 13298 13299 if (vstate->dtvs_nlocals > 0) { 13300 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * 13301 sizeof (dtrace_statvar_t *)); 13302 } 13303 } 13304 13305 static void 13306 dtrace_state_clean(dtrace_state_t *state) 13307 { 13308 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) 13309 return; 13310 13311 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars); 13312 dtrace_speculation_clean(state); 13313 } 13314 13315 static void 13316 dtrace_state_deadman(dtrace_state_t *state) 13317 { 13318 hrtime_t now; 13319 13320 dtrace_sync(); 13321 13322 now = dtrace_gethrtime(); 13323 13324 if (state != dtrace_anon.dta_state && 13325 now - state->dts_laststatus >= dtrace_deadman_user) 13326 return; 13327 13328 /* 13329 * We must be sure that dts_alive never appears to be less than the 13330 * value upon entry to dtrace_state_deadman(), and because we lack a 13331 * dtrace_cas64(), we cannot store to it atomically. We thus instead 13332 * store INT64_MAX to it, followed by a memory barrier, followed by 13333 * the new value. This assures that dts_alive never appears to be 13334 * less than its true value, regardless of the order in which the 13335 * stores to the underlying storage are issued. 13336 */ 13337 state->dts_alive = INT64_MAX; 13338 dtrace_membar_producer(); 13339 state->dts_alive = now; 13340 } 13341 13342 dtrace_state_t * 13343 dtrace_state_create(dev_t *devp, cred_t *cr) 13344 { 13345 minor_t minor; 13346 major_t major; 13347 char c[30]; 13348 dtrace_state_t *state; 13349 dtrace_optval_t *opt; 13350 int bufsize = NCPU * sizeof (dtrace_buffer_t), i; 13351 13352 ASSERT(MUTEX_HELD(&dtrace_lock)); 13353 ASSERT(MUTEX_HELD(&cpu_lock)); 13354 13355 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1, 13356 VM_BESTFIT | VM_SLEEP); 13357 13358 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) { 13359 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 13360 return (NULL); 13361 } 13362 13363 state = ddi_get_soft_state(dtrace_softstate, minor); 13364 state->dts_epid = DTRACE_EPIDNONE + 1; 13365 13366 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor); 13367 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1, 13368 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 13369 13370 if (devp != NULL) { 13371 major = getemajor(*devp); 13372 } else { 13373 major = ddi_driver_major(dtrace_devi); 13374 } 13375 13376 state->dts_dev = makedevice(major, minor); 13377 13378 if (devp != NULL) 13379 *devp = state->dts_dev; 13380 13381 /* 13382 * We allocate NCPU buffers. On the one hand, this can be quite 13383 * a bit of memory per instance (nearly 36K on a Starcat). On the 13384 * other hand, it saves an additional memory reference in the probe 13385 * path. 13386 */ 13387 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); 13388 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); 13389 state->dts_cleaner = CYCLIC_NONE; 13390 state->dts_deadman = CYCLIC_NONE; 13391 state->dts_vstate.dtvs_state = state; 13392 13393 for (i = 0; i < DTRACEOPT_MAX; i++) 13394 state->dts_options[i] = DTRACEOPT_UNSET; 13395 13396 /* 13397 * Set the default options. 13398 */ 13399 opt = state->dts_options; 13400 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; 13401 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; 13402 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; 13403 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; 13404 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; 13405 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; 13406 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; 13407 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; 13408 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; 13409 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; 13410 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; 13411 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; 13412 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; 13413 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; 13414 13415 state->dts_activity = DTRACE_ACTIVITY_INACTIVE; 13416 13417 /* 13418 * Depending on the user credentials, we set flag bits which alter probe 13419 * visibility or the amount of destructiveness allowed. In the case of 13420 * actual anonymous tracing, or the possession of all privileges, all of 13421 * the normal checks are bypassed. 13422 */ 13423 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { 13424 state->dts_cred.dcr_visible = DTRACE_CRV_ALL; 13425 state->dts_cred.dcr_action = DTRACE_CRA_ALL; 13426 } else { 13427 /* 13428 * Set up the credentials for this instantiation. We take a 13429 * hold on the credential to prevent it from disappearing on 13430 * us; this in turn prevents the zone_t referenced by this 13431 * credential from disappearing. This means that we can 13432 * examine the credential and the zone from probe context. 13433 */ 13434 crhold(cr); 13435 state->dts_cred.dcr_cred = cr; 13436 13437 /* 13438 * CRA_PROC means "we have *some* privilege for dtrace" and 13439 * unlocks the use of variables like pid, zonename, etc. 13440 */ 13441 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || 13442 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13443 state->dts_cred.dcr_action |= DTRACE_CRA_PROC; 13444 } 13445 13446 /* 13447 * dtrace_user allows use of syscall and profile providers. 13448 * If the user also has proc_owner and/or proc_zone, we 13449 * extend the scope to include additional visibility and 13450 * destructive power. 13451 */ 13452 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { 13453 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { 13454 state->dts_cred.dcr_visible |= 13455 DTRACE_CRV_ALLPROC; 13456 13457 state->dts_cred.dcr_action |= 13458 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13459 } 13460 13461 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { 13462 state->dts_cred.dcr_visible |= 13463 DTRACE_CRV_ALLZONE; 13464 13465 state->dts_cred.dcr_action |= 13466 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13467 } 13468 13469 /* 13470 * If we have all privs in whatever zone this is, 13471 * we can do destructive things to processes which 13472 * have altered credentials. 13473 */ 13474 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13475 cr->cr_zone->zone_privset)) { 13476 state->dts_cred.dcr_action |= 13477 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13478 } 13479 } 13480 13481 /* 13482 * Holding the dtrace_kernel privilege also implies that 13483 * the user has the dtrace_user privilege from a visibility 13484 * perspective. But without further privileges, some 13485 * destructive actions are not available. 13486 */ 13487 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { 13488 /* 13489 * Make all probes in all zones visible. However, 13490 * this doesn't mean that all actions become available 13491 * to all zones. 13492 */ 13493 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | 13494 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; 13495 13496 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | 13497 DTRACE_CRA_PROC; 13498 /* 13499 * Holding proc_owner means that destructive actions 13500 * for *this* zone are allowed. 13501 */ 13502 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13503 state->dts_cred.dcr_action |= 13504 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13505 13506 /* 13507 * Holding proc_zone means that destructive actions 13508 * for this user/group ID in all zones is allowed. 13509 */ 13510 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13511 state->dts_cred.dcr_action |= 13512 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13513 13514 /* 13515 * If we have all privs in whatever zone this is, 13516 * we can do destructive things to processes which 13517 * have altered credentials. 13518 */ 13519 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE), 13520 cr->cr_zone->zone_privset)) { 13521 state->dts_cred.dcr_action |= 13522 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; 13523 } 13524 } 13525 13526 /* 13527 * Holding the dtrace_proc privilege gives control over fasttrap 13528 * and pid providers. We need to grant wider destructive 13529 * privileges in the event that the user has proc_owner and/or 13530 * proc_zone. 13531 */ 13532 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { 13533 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) 13534 state->dts_cred.dcr_action |= 13535 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; 13536 13537 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) 13538 state->dts_cred.dcr_action |= 13539 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; 13540 } 13541 } 13542 13543 return (state); 13544 } 13545 13546 static int 13547 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) 13548 { 13549 dtrace_optval_t *opt = state->dts_options, size; 13550 processorid_t cpu; 13551 int flags = 0, rval, factor, divisor = 1; 13552 13553 ASSERT(MUTEX_HELD(&dtrace_lock)); 13554 ASSERT(MUTEX_HELD(&cpu_lock)); 13555 ASSERT(which < DTRACEOPT_MAX); 13556 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || 13557 (state == dtrace_anon.dta_state && 13558 state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); 13559 13560 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) 13561 return (0); 13562 13563 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) 13564 cpu = opt[DTRACEOPT_CPU]; 13565 13566 if (which == DTRACEOPT_SPECSIZE) 13567 flags |= DTRACEBUF_NOSWITCH; 13568 13569 if (which == DTRACEOPT_BUFSIZE) { 13570 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) 13571 flags |= DTRACEBUF_RING; 13572 13573 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) 13574 flags |= DTRACEBUF_FILL; 13575 13576 if (state != dtrace_anon.dta_state || 13577 state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 13578 flags |= DTRACEBUF_INACTIVE; 13579 } 13580 13581 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) { 13582 /* 13583 * The size must be 8-byte aligned. If the size is not 8-byte 13584 * aligned, drop it down by the difference. 13585 */ 13586 if (size & (sizeof (uint64_t) - 1)) 13587 size -= size & (sizeof (uint64_t) - 1); 13588 13589 if (size < state->dts_reserve) { 13590 /* 13591 * Buffers always must be large enough to accommodate 13592 * their prereserved space. We return E2BIG instead 13593 * of ENOMEM in this case to allow for user-level 13594 * software to differentiate the cases. 13595 */ 13596 return (E2BIG); 13597 } 13598 13599 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor); 13600 13601 if (rval != ENOMEM) { 13602 opt[which] = size; 13603 return (rval); 13604 } 13605 13606 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13607 return (rval); 13608 13609 for (divisor = 2; divisor < factor; divisor <<= 1) 13610 continue; 13611 } 13612 13613 return (ENOMEM); 13614 } 13615 13616 static int 13617 dtrace_state_buffers(dtrace_state_t *state) 13618 { 13619 dtrace_speculation_t *spec = state->dts_speculations; 13620 int rval, i; 13621 13622 if ((rval = dtrace_state_buffer(state, state->dts_buffer, 13623 DTRACEOPT_BUFSIZE)) != 0) 13624 return (rval); 13625 13626 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer, 13627 DTRACEOPT_AGGSIZE)) != 0) 13628 return (rval); 13629 13630 for (i = 0; i < state->dts_nspeculations; i++) { 13631 if ((rval = dtrace_state_buffer(state, 13632 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) 13633 return (rval); 13634 } 13635 13636 return (0); 13637 } 13638 13639 static void 13640 dtrace_state_prereserve(dtrace_state_t *state) 13641 { 13642 dtrace_ecb_t *ecb; 13643 dtrace_probe_t *probe; 13644 13645 state->dts_reserve = 0; 13646 13647 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) 13648 return; 13649 13650 /* 13651 * If our buffer policy is a "fill" buffer policy, we need to set the 13652 * prereserved space to be the space required by the END probes. 13653 */ 13654 probe = dtrace_probes[dtrace_probeid_end - 1]; 13655 ASSERT(probe != NULL); 13656 13657 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { 13658 if (ecb->dte_state != state) 13659 continue; 13660 13661 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; 13662 } 13663 } 13664 13665 static int 13666 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) 13667 { 13668 dtrace_optval_t *opt = state->dts_options, sz, nspec; 13669 dtrace_speculation_t *spec; 13670 dtrace_buffer_t *buf; 13671 cyc_handler_t hdlr; 13672 cyc_time_t when; 13673 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t); 13674 dtrace_icookie_t cookie; 13675 13676 mutex_enter(&cpu_lock); 13677 mutex_enter(&dtrace_lock); 13678 13679 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 13680 rval = EBUSY; 13681 goto out; 13682 } 13683 13684 /* 13685 * Before we can perform any checks, we must prime all of the 13686 * retained enablings that correspond to this state. 13687 */ 13688 dtrace_enabling_prime(state); 13689 13690 if (state->dts_destructive && !state->dts_cred.dcr_destructive) { 13691 rval = EACCES; 13692 goto out; 13693 } 13694 13695 dtrace_state_prereserve(state); 13696 13697 /* 13698 * Now we want to do is try to allocate our speculations. 13699 * We do not automatically resize the number of speculations; if 13700 * this fails, we will fail the operation. 13701 */ 13702 nspec = opt[DTRACEOPT_NSPEC]; 13703 ASSERT(nspec != DTRACEOPT_UNSET); 13704 13705 if (nspec > INT_MAX) { 13706 rval = ENOMEM; 13707 goto out; 13708 } 13709 13710 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), 13711 KM_NOSLEEP | KM_NORMALPRI); 13712 13713 if (spec == NULL) { 13714 rval = ENOMEM; 13715 goto out; 13716 } 13717 13718 state->dts_speculations = spec; 13719 state->dts_nspeculations = (int)nspec; 13720 13721 for (i = 0; i < nspec; i++) { 13722 if ((buf = kmem_zalloc(bufsize, 13723 KM_NOSLEEP | KM_NORMALPRI)) == NULL) { 13724 rval = ENOMEM; 13725 goto err; 13726 } 13727 13728 spec[i].dtsp_buffer = buf; 13729 } 13730 13731 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { 13732 if (dtrace_anon.dta_state == NULL) { 13733 rval = ENOENT; 13734 goto out; 13735 } 13736 13737 if (state->dts_necbs != 0) { 13738 rval = EALREADY; 13739 goto out; 13740 } 13741 13742 state->dts_anon = dtrace_anon_grab(); 13743 ASSERT(state->dts_anon != NULL); 13744 state = state->dts_anon; 13745 13746 /* 13747 * We want "grabanon" to be set in the grabbed state, so we'll 13748 * copy that option value from the grabbing state into the 13749 * grabbed state. 13750 */ 13751 state->dts_options[DTRACEOPT_GRABANON] = 13752 opt[DTRACEOPT_GRABANON]; 13753 13754 *cpu = dtrace_anon.dta_beganon; 13755 13756 /* 13757 * If the anonymous state is active (as it almost certainly 13758 * is if the anonymous enabling ultimately matched anything), 13759 * we don't allow any further option processing -- but we 13760 * don't return failure. 13761 */ 13762 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 13763 goto out; 13764 } 13765 13766 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && 13767 opt[DTRACEOPT_AGGSIZE] != 0) { 13768 if (state->dts_aggregations == NULL) { 13769 /* 13770 * We're not going to create an aggregation buffer 13771 * because we don't have any ECBs that contain 13772 * aggregations -- set this option to 0. 13773 */ 13774 opt[DTRACEOPT_AGGSIZE] = 0; 13775 } else { 13776 /* 13777 * If we have an aggregation buffer, we must also have 13778 * a buffer to use as scratch. 13779 */ 13780 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || 13781 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { 13782 opt[DTRACEOPT_BUFSIZE] = state->dts_needed; 13783 } 13784 } 13785 } 13786 13787 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && 13788 opt[DTRACEOPT_SPECSIZE] != 0) { 13789 if (!state->dts_speculates) { 13790 /* 13791 * We're not going to create speculation buffers 13792 * because we don't have any ECBs that actually 13793 * speculate -- set the speculation size to 0. 13794 */ 13795 opt[DTRACEOPT_SPECSIZE] = 0; 13796 } 13797 } 13798 13799 /* 13800 * The bare minimum size for any buffer that we're actually going to 13801 * do anything to is sizeof (uint64_t). 13802 */ 13803 sz = sizeof (uint64_t); 13804 13805 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || 13806 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || 13807 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { 13808 /* 13809 * A buffer size has been explicitly set to 0 (or to a size 13810 * that will be adjusted to 0) and we need the space -- we 13811 * need to return failure. We return ENOSPC to differentiate 13812 * it from failing to allocate a buffer due to failure to meet 13813 * the reserve (for which we return E2BIG). 13814 */ 13815 rval = ENOSPC; 13816 goto out; 13817 } 13818 13819 if ((rval = dtrace_state_buffers(state)) != 0) 13820 goto err; 13821 13822 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) 13823 sz = dtrace_dstate_defsize; 13824 13825 do { 13826 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz); 13827 13828 if (rval == 0) 13829 break; 13830 13831 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) 13832 goto err; 13833 } while (sz >>= 1); 13834 13835 opt[DTRACEOPT_DYNVARSIZE] = sz; 13836 13837 if (rval != 0) 13838 goto err; 13839 13840 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) 13841 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; 13842 13843 if (opt[DTRACEOPT_CLEANRATE] == 0) 13844 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13845 13846 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) 13847 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; 13848 13849 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) 13850 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; 13851 13852 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; 13853 hdlr.cyh_arg = state; 13854 hdlr.cyh_level = CY_LOW_LEVEL; 13855 13856 when.cyt_when = 0; 13857 when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; 13858 13859 state->dts_cleaner = cyclic_add(&hdlr, &when); 13860 13861 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; 13862 hdlr.cyh_arg = state; 13863 hdlr.cyh_level = CY_LOW_LEVEL; 13864 13865 when.cyt_when = 0; 13866 when.cyt_interval = dtrace_deadman_interval; 13867 13868 state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); 13869 state->dts_deadman = cyclic_add(&hdlr, &when); 13870 13871 state->dts_activity = DTRACE_ACTIVITY_WARMUP; 13872 13873 if (state->dts_getf != 0 && 13874 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 13875 /* 13876 * We don't have kernel privs but we have at least one call 13877 * to getf(); we need to bump our zone's count, and (if 13878 * this is the first enabling to have an unprivileged call 13879 * to getf()) we need to hook into closef(). 13880 */ 13881 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++; 13882 13883 if (dtrace_getf++ == 0) { 13884 ASSERT(dtrace_closef == NULL); 13885 dtrace_closef = dtrace_getf_barrier; 13886 } 13887 } 13888 13889 /* 13890 * Now it's time to actually fire the BEGIN probe. We need to disable 13891 * interrupts here both to record the CPU on which we fired the BEGIN 13892 * probe (the data from this CPU will be processed first at user 13893 * level) and to manually activate the buffer for this CPU. 13894 */ 13895 cookie = dtrace_interrupt_disable(); 13896 *cpu = CPU->cpu_id; 13897 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); 13898 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; 13899 13900 dtrace_probe(dtrace_probeid_begin, 13901 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 13902 dtrace_interrupt_enable(cookie); 13903 /* 13904 * We may have had an exit action from a BEGIN probe; only change our 13905 * state to ACTIVE if we're still in WARMUP. 13906 */ 13907 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || 13908 state->dts_activity == DTRACE_ACTIVITY_DRAINING); 13909 13910 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) 13911 state->dts_activity = DTRACE_ACTIVITY_ACTIVE; 13912 13913 /* 13914 * Regardless of whether or not now we're in ACTIVE or DRAINING, we 13915 * want each CPU to transition its principal buffer out of the 13916 * INACTIVE state. Doing this assures that no CPU will suddenly begin 13917 * processing an ECB halfway down a probe's ECB chain; all CPUs will 13918 * atomically transition from processing none of a state's ECBs to 13919 * processing all of them. 13920 */ 13921 dtrace_xcall(DTRACE_CPUALL, 13922 (dtrace_xcall_t)dtrace_buffer_activate, state); 13923 goto out; 13924 13925 err: 13926 dtrace_buffer_free(state->dts_buffer); 13927 dtrace_buffer_free(state->dts_aggbuffer); 13928 13929 if ((nspec = state->dts_nspeculations) == 0) { 13930 ASSERT(state->dts_speculations == NULL); 13931 goto out; 13932 } 13933 13934 spec = state->dts_speculations; 13935 ASSERT(spec != NULL); 13936 13937 for (i = 0; i < state->dts_nspeculations; i++) { 13938 if ((buf = spec[i].dtsp_buffer) == NULL) 13939 break; 13940 13941 dtrace_buffer_free(buf); 13942 kmem_free(buf, bufsize); 13943 } 13944 13945 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 13946 state->dts_nspeculations = 0; 13947 state->dts_speculations = NULL; 13948 13949 out: 13950 mutex_exit(&dtrace_lock); 13951 mutex_exit(&cpu_lock); 13952 13953 return (rval); 13954 } 13955 13956 static int 13957 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) 13958 { 13959 dtrace_icookie_t cookie; 13960 13961 ASSERT(MUTEX_HELD(&dtrace_lock)); 13962 13963 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && 13964 state->dts_activity != DTRACE_ACTIVITY_DRAINING) 13965 return (EINVAL); 13966 13967 /* 13968 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync 13969 * to be sure that every CPU has seen it. See below for the details 13970 * on why this is done. 13971 */ 13972 state->dts_activity = DTRACE_ACTIVITY_DRAINING; 13973 dtrace_sync(); 13974 13975 /* 13976 * By this point, it is impossible for any CPU to be still processing 13977 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to 13978 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any 13979 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() 13980 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN 13981 * iff we're in the END probe. 13982 */ 13983 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; 13984 dtrace_sync(); 13985 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); 13986 13987 /* 13988 * Finally, we can release the reserve and call the END probe. We 13989 * disable interrupts across calling the END probe to allow us to 13990 * return the CPU on which we actually called the END probe. This 13991 * allows user-land to be sure that this CPU's principal buffer is 13992 * processed last. 13993 */ 13994 state->dts_reserve = 0; 13995 13996 cookie = dtrace_interrupt_disable(); 13997 *cpu = CPU->cpu_id; 13998 dtrace_probe(dtrace_probeid_end, 13999 (uint64_t)(uintptr_t)state, 0, 0, 0, 0); 14000 dtrace_interrupt_enable(cookie); 14001 14002 state->dts_activity = DTRACE_ACTIVITY_STOPPED; 14003 dtrace_sync(); 14004 14005 if (state->dts_getf != 0 && 14006 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) { 14007 /* 14008 * We don't have kernel privs but we have at least one call 14009 * to getf(); we need to lower our zone's count, and (if 14010 * this is the last enabling to have an unprivileged call 14011 * to getf()) we need to clear the closef() hook. 14012 */ 14013 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0); 14014 ASSERT(dtrace_closef == dtrace_getf_barrier); 14015 ASSERT(dtrace_getf > 0); 14016 14017 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--; 14018 14019 if (--dtrace_getf == 0) 14020 dtrace_closef = NULL; 14021 } 14022 14023 return (0); 14024 } 14025 14026 static int 14027 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, 14028 dtrace_optval_t val) 14029 { 14030 ASSERT(MUTEX_HELD(&dtrace_lock)); 14031 14032 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) 14033 return (EBUSY); 14034 14035 if (option >= DTRACEOPT_MAX) 14036 return (EINVAL); 14037 14038 if (option != DTRACEOPT_CPU && val < 0) 14039 return (EINVAL); 14040 14041 switch (option) { 14042 case DTRACEOPT_DESTRUCTIVE: 14043 if (dtrace_destructive_disallow) 14044 return (EACCES); 14045 14046 state->dts_cred.dcr_destructive = 1; 14047 break; 14048 14049 case DTRACEOPT_BUFSIZE: 14050 case DTRACEOPT_DYNVARSIZE: 14051 case DTRACEOPT_AGGSIZE: 14052 case DTRACEOPT_SPECSIZE: 14053 case DTRACEOPT_STRSIZE: 14054 if (val < 0) 14055 return (EINVAL); 14056 14057 if (val >= LONG_MAX) { 14058 /* 14059 * If this is an otherwise negative value, set it to 14060 * the highest multiple of 128m less than LONG_MAX. 14061 * Technically, we're adjusting the size without 14062 * regard to the buffer resizing policy, but in fact, 14063 * this has no effect -- if we set the buffer size to 14064 * ~LONG_MAX and the buffer policy is ultimately set to 14065 * be "manual", the buffer allocation is guaranteed to 14066 * fail, if only because the allocation requires two 14067 * buffers. (We set the the size to the highest 14068 * multiple of 128m because it ensures that the size 14069 * will remain a multiple of a megabyte when 14070 * repeatedly halved -- all the way down to 15m.) 14071 */ 14072 val = LONG_MAX - (1 << 27) + 1; 14073 } 14074 } 14075 14076 state->dts_options[option] = val; 14077 14078 return (0); 14079 } 14080 14081 static void 14082 dtrace_state_destroy(dtrace_state_t *state) 14083 { 14084 dtrace_ecb_t *ecb; 14085 dtrace_vstate_t *vstate = &state->dts_vstate; 14086 minor_t minor = getminor(state->dts_dev); 14087 int i, bufsize = NCPU * sizeof (dtrace_buffer_t); 14088 dtrace_speculation_t *spec = state->dts_speculations; 14089 int nspec = state->dts_nspeculations; 14090 uint32_t match; 14091 14092 ASSERT(MUTEX_HELD(&dtrace_lock)); 14093 ASSERT(MUTEX_HELD(&cpu_lock)); 14094 14095 /* 14096 * First, retract any retained enablings for this state. 14097 */ 14098 dtrace_enabling_retract(state); 14099 ASSERT(state->dts_nretained == 0); 14100 14101 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || 14102 state->dts_activity == DTRACE_ACTIVITY_DRAINING) { 14103 /* 14104 * We have managed to come into dtrace_state_destroy() on a 14105 * hot enabling -- almost certainly because of a disorderly 14106 * shutdown of a consumer. (That is, a consumer that is 14107 * exiting without having called dtrace_stop().) In this case, 14108 * we're going to set our activity to be KILLED, and then 14109 * issue a sync to be sure that everyone is out of probe 14110 * context before we start blowing away ECBs. 14111 */ 14112 state->dts_activity = DTRACE_ACTIVITY_KILLED; 14113 dtrace_sync(); 14114 } 14115 14116 /* 14117 * Release the credential hold we took in dtrace_state_create(). 14118 */ 14119 if (state->dts_cred.dcr_cred != NULL) 14120 crfree(state->dts_cred.dcr_cred); 14121 14122 /* 14123 * Now we can safely disable and destroy any enabled probes. Because 14124 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress 14125 * (especially if they're all enabled), we take two passes through the 14126 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and 14127 * in the second we disable whatever is left over. 14128 */ 14129 for (match = DTRACE_PRIV_KERNEL; ; match = 0) { 14130 for (i = 0; i < state->dts_necbs; i++) { 14131 if ((ecb = state->dts_ecbs[i]) == NULL) 14132 continue; 14133 14134 if (match && ecb->dte_probe != NULL) { 14135 dtrace_probe_t *probe = ecb->dte_probe; 14136 dtrace_provider_t *prov = probe->dtpr_provider; 14137 14138 if (!(prov->dtpv_priv.dtpp_flags & match)) 14139 continue; 14140 } 14141 14142 dtrace_ecb_disable(ecb); 14143 dtrace_ecb_destroy(ecb); 14144 } 14145 14146 if (!match) 14147 break; 14148 } 14149 14150 /* 14151 * Before we free the buffers, perform one more sync to assure that 14152 * every CPU is out of probe context. 14153 */ 14154 dtrace_sync(); 14155 14156 dtrace_buffer_free(state->dts_buffer); 14157 dtrace_buffer_free(state->dts_aggbuffer); 14158 14159 for (i = 0; i < nspec; i++) 14160 dtrace_buffer_free(spec[i].dtsp_buffer); 14161 14162 if (state->dts_cleaner != CYCLIC_NONE) 14163 cyclic_remove(state->dts_cleaner); 14164 14165 if (state->dts_deadman != CYCLIC_NONE) 14166 cyclic_remove(state->dts_deadman); 14167 14168 dtrace_dstate_fini(&vstate->dtvs_dynvars); 14169 dtrace_vstate_fini(vstate); 14170 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); 14171 14172 if (state->dts_aggregations != NULL) { 14173 #ifdef DEBUG 14174 for (i = 0; i < state->dts_naggregations; i++) 14175 ASSERT(state->dts_aggregations[i] == NULL); 14176 #endif 14177 ASSERT(state->dts_naggregations > 0); 14178 kmem_free(state->dts_aggregations, 14179 state->dts_naggregations * sizeof (dtrace_aggregation_t *)); 14180 } 14181 14182 kmem_free(state->dts_buffer, bufsize); 14183 kmem_free(state->dts_aggbuffer, bufsize); 14184 14185 for (i = 0; i < nspec; i++) 14186 kmem_free(spec[i].dtsp_buffer, bufsize); 14187 14188 kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); 14189 14190 dtrace_format_destroy(state); 14191 14192 vmem_destroy(state->dts_aggid_arena); 14193 ddi_soft_state_free(dtrace_softstate, minor); 14194 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1); 14195 } 14196 14197 /* 14198 * DTrace Anonymous Enabling Functions 14199 */ 14200 static dtrace_state_t * 14201 dtrace_anon_grab(void) 14202 { 14203 dtrace_state_t *state; 14204 14205 ASSERT(MUTEX_HELD(&dtrace_lock)); 14206 14207 if ((state = dtrace_anon.dta_state) == NULL) { 14208 ASSERT(dtrace_anon.dta_enabling == NULL); 14209 return (NULL); 14210 } 14211 14212 ASSERT(dtrace_anon.dta_enabling != NULL); 14213 ASSERT(dtrace_retained != NULL); 14214 14215 dtrace_enabling_destroy(dtrace_anon.dta_enabling); 14216 dtrace_anon.dta_enabling = NULL; 14217 dtrace_anon.dta_state = NULL; 14218 14219 return (state); 14220 } 14221 14222 static void 14223 dtrace_anon_property(void) 14224 { 14225 int i, rv; 14226 dtrace_state_t *state; 14227 dof_hdr_t *dof; 14228 char c[32]; /* enough for "dof-data-" + digits */ 14229 14230 ASSERT(MUTEX_HELD(&dtrace_lock)); 14231 ASSERT(MUTEX_HELD(&cpu_lock)); 14232 14233 for (i = 0; ; i++) { 14234 (void) snprintf(c, sizeof (c), "dof-data-%d", i); 14235 14236 dtrace_err_verbose = 1; 14237 14238 if ((dof = dtrace_dof_property(c)) == NULL) { 14239 dtrace_err_verbose = 0; 14240 break; 14241 } 14242 14243 /* 14244 * We want to create anonymous state, so we need to transition 14245 * the kernel debugger to indicate that DTrace is active. If 14246 * this fails (e.g. because the debugger has modified text in 14247 * some way), we won't continue with the processing. 14248 */ 14249 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 14250 cmn_err(CE_NOTE, "kernel debugger active; anonymous " 14251 "enabling ignored."); 14252 dtrace_dof_destroy(dof); 14253 break; 14254 } 14255 14256 /* 14257 * If we haven't allocated an anonymous state, we'll do so now. 14258 */ 14259 if ((state = dtrace_anon.dta_state) == NULL) { 14260 state = dtrace_state_create(NULL, NULL); 14261 dtrace_anon.dta_state = state; 14262 14263 if (state == NULL) { 14264 /* 14265 * This basically shouldn't happen: the only 14266 * failure mode from dtrace_state_create() is a 14267 * failure of ddi_soft_state_zalloc() that 14268 * itself should never happen. Still, the 14269 * interface allows for a failure mode, and 14270 * we want to fail as gracefully as possible: 14271 * we'll emit an error message and cease 14272 * processing anonymous state in this case. 14273 */ 14274 cmn_err(CE_WARN, "failed to create " 14275 "anonymous state"); 14276 dtrace_dof_destroy(dof); 14277 break; 14278 } 14279 } 14280 14281 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(), 14282 &dtrace_anon.dta_enabling, 0, B_TRUE); 14283 14284 if (rv == 0) 14285 rv = dtrace_dof_options(dof, state); 14286 14287 dtrace_err_verbose = 0; 14288 dtrace_dof_destroy(dof); 14289 14290 if (rv != 0) { 14291 /* 14292 * This is malformed DOF; chuck any anonymous state 14293 * that we created. 14294 */ 14295 ASSERT(dtrace_anon.dta_enabling == NULL); 14296 dtrace_state_destroy(state); 14297 dtrace_anon.dta_state = NULL; 14298 break; 14299 } 14300 14301 ASSERT(dtrace_anon.dta_enabling != NULL); 14302 } 14303 14304 if (dtrace_anon.dta_enabling != NULL) { 14305 int rval; 14306 14307 /* 14308 * dtrace_enabling_retain() can only fail because we are 14309 * trying to retain more enablings than are allowed -- but 14310 * we only have one anonymous enabling, and we are guaranteed 14311 * to be allowed at least one retained enabling; we assert 14312 * that dtrace_enabling_retain() returns success. 14313 */ 14314 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling); 14315 ASSERT(rval == 0); 14316 14317 dtrace_enabling_dump(dtrace_anon.dta_enabling); 14318 } 14319 } 14320 14321 /* 14322 * DTrace Helper Functions 14323 */ 14324 static void 14325 dtrace_helper_trace(dtrace_helper_action_t *helper, 14326 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) 14327 { 14328 uint32_t size, next, nnext, i; 14329 dtrace_helptrace_t *ent, *buffer; 14330 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14331 14332 if ((buffer = dtrace_helptrace_buffer) == NULL) 14333 return; 14334 14335 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); 14336 14337 /* 14338 * What would a tracing framework be without its own tracing 14339 * framework? (Well, a hell of a lot simpler, for starters...) 14340 */ 14341 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * 14342 sizeof (uint64_t) - sizeof (uint64_t); 14343 14344 /* 14345 * Iterate until we can allocate a slot in the trace buffer. 14346 */ 14347 do { 14348 next = dtrace_helptrace_next; 14349 14350 if (next + size < dtrace_helptrace_bufsize) { 14351 nnext = next + size; 14352 } else { 14353 nnext = size; 14354 } 14355 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); 14356 14357 /* 14358 * We have our slot; fill it in. 14359 */ 14360 if (nnext == size) { 14361 dtrace_helptrace_wrapped++; 14362 next = 0; 14363 } 14364 14365 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next); 14366 ent->dtht_helper = helper; 14367 ent->dtht_where = where; 14368 ent->dtht_nlocals = vstate->dtvs_nlocals; 14369 14370 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? 14371 mstate->dtms_fltoffs : -1; 14372 ent->dtht_fault = DTRACE_FLAGS2FLT(flags); 14373 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; 14374 14375 for (i = 0; i < vstate->dtvs_nlocals; i++) { 14376 dtrace_statvar_t *svar; 14377 14378 if ((svar = vstate->dtvs_locals[i]) == NULL) 14379 continue; 14380 14381 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t)); 14382 ent->dtht_locals[i] = 14383 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; 14384 } 14385 } 14386 14387 static uint64_t 14388 dtrace_helper(int which, dtrace_mstate_t *mstate, 14389 dtrace_state_t *state, uint64_t arg0, uint64_t arg1) 14390 { 14391 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 14392 uint64_t sarg0 = mstate->dtms_arg[0]; 14393 uint64_t sarg1 = mstate->dtms_arg[1]; 14394 uint64_t rval; 14395 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; 14396 dtrace_helper_action_t *helper; 14397 dtrace_vstate_t *vstate; 14398 dtrace_difo_t *pred; 14399 int i, trace = dtrace_helptrace_buffer != NULL; 14400 14401 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); 14402 14403 if (helpers == NULL) 14404 return (0); 14405 14406 if ((helper = helpers->dthps_actions[which]) == NULL) 14407 return (0); 14408 14409 vstate = &helpers->dthps_vstate; 14410 mstate->dtms_arg[0] = arg0; 14411 mstate->dtms_arg[1] = arg1; 14412 14413 /* 14414 * Now iterate over each helper. If its predicate evaluates to 'true', 14415 * we'll call the corresponding actions. Note that the below calls 14416 * to dtrace_dif_emulate() may set faults in machine state. This is 14417 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow 14418 * the stored DIF offset with its own (which is the desired behavior). 14419 * Also, note the calls to dtrace_dif_emulate() may allocate scratch 14420 * from machine state; this is okay, too. 14421 */ 14422 for (; helper != NULL; helper = helper->dtha_next) { 14423 if ((pred = helper->dtha_predicate) != NULL) { 14424 if (trace) 14425 dtrace_helper_trace(helper, mstate, vstate, 0); 14426 14427 if (!dtrace_dif_emulate(pred, mstate, vstate, state)) 14428 goto next; 14429 14430 if (*flags & CPU_DTRACE_FAULT) 14431 goto err; 14432 } 14433 14434 for (i = 0; i < helper->dtha_nactions; i++) { 14435 if (trace) 14436 dtrace_helper_trace(helper, 14437 mstate, vstate, i + 1); 14438 14439 rval = dtrace_dif_emulate(helper->dtha_actions[i], 14440 mstate, vstate, state); 14441 14442 if (*flags & CPU_DTRACE_FAULT) 14443 goto err; 14444 } 14445 14446 next: 14447 if (trace) 14448 dtrace_helper_trace(helper, mstate, vstate, 14449 DTRACE_HELPTRACE_NEXT); 14450 } 14451 14452 if (trace) 14453 dtrace_helper_trace(helper, mstate, vstate, 14454 DTRACE_HELPTRACE_DONE); 14455 14456 /* 14457 * Restore the arg0 that we saved upon entry. 14458 */ 14459 mstate->dtms_arg[0] = sarg0; 14460 mstate->dtms_arg[1] = sarg1; 14461 14462 return (rval); 14463 14464 err: 14465 if (trace) 14466 dtrace_helper_trace(helper, mstate, vstate, 14467 DTRACE_HELPTRACE_ERR); 14468 14469 /* 14470 * Restore the arg0 that we saved upon entry. 14471 */ 14472 mstate->dtms_arg[0] = sarg0; 14473 mstate->dtms_arg[1] = sarg1; 14474 14475 return (NULL); 14476 } 14477 14478 static void 14479 dtrace_helper_action_destroy(dtrace_helper_action_t *helper, 14480 dtrace_vstate_t *vstate) 14481 { 14482 int i; 14483 14484 if (helper->dtha_predicate != NULL) 14485 dtrace_difo_release(helper->dtha_predicate, vstate); 14486 14487 for (i = 0; i < helper->dtha_nactions; i++) { 14488 ASSERT(helper->dtha_actions[i] != NULL); 14489 dtrace_difo_release(helper->dtha_actions[i], vstate); 14490 } 14491 14492 kmem_free(helper->dtha_actions, 14493 helper->dtha_nactions * sizeof (dtrace_difo_t *)); 14494 kmem_free(helper, sizeof (dtrace_helper_action_t)); 14495 } 14496 14497 static int 14498 dtrace_helper_destroygen(int gen) 14499 { 14500 proc_t *p = curproc; 14501 dtrace_helpers_t *help = p->p_dtrace_helpers; 14502 dtrace_vstate_t *vstate; 14503 int i; 14504 14505 ASSERT(MUTEX_HELD(&dtrace_lock)); 14506 14507 if (help == NULL || gen > help->dthps_generation) 14508 return (EINVAL); 14509 14510 vstate = &help->dthps_vstate; 14511 14512 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 14513 dtrace_helper_action_t *last = NULL, *h, *next; 14514 14515 for (h = help->dthps_actions[i]; h != NULL; h = next) { 14516 next = h->dtha_next; 14517 14518 if (h->dtha_generation == gen) { 14519 if (last != NULL) { 14520 last->dtha_next = next; 14521 } else { 14522 help->dthps_actions[i] = next; 14523 } 14524 14525 dtrace_helper_action_destroy(h, vstate); 14526 } else { 14527 last = h; 14528 } 14529 } 14530 } 14531 14532 /* 14533 * Interate until we've cleared out all helper providers with the 14534 * given generation number. 14535 */ 14536 for (;;) { 14537 dtrace_helper_provider_t *prov; 14538 14539 /* 14540 * Look for a helper provider with the right generation. We 14541 * have to start back at the beginning of the list each time 14542 * because we drop dtrace_lock. It's unlikely that we'll make 14543 * more than two passes. 14544 */ 14545 for (i = 0; i < help->dthps_nprovs; i++) { 14546 prov = help->dthps_provs[i]; 14547 14548 if (prov->dthp_generation == gen) 14549 break; 14550 } 14551 14552 /* 14553 * If there were no matches, we're done. 14554 */ 14555 if (i == help->dthps_nprovs) 14556 break; 14557 14558 /* 14559 * Move the last helper provider into this slot. 14560 */ 14561 help->dthps_nprovs--; 14562 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; 14563 help->dthps_provs[help->dthps_nprovs] = NULL; 14564 14565 mutex_exit(&dtrace_lock); 14566 14567 /* 14568 * If we have a meta provider, remove this helper provider. 14569 */ 14570 mutex_enter(&dtrace_meta_lock); 14571 if (dtrace_meta_pid != NULL) { 14572 ASSERT(dtrace_deferred_pid == NULL); 14573 dtrace_helper_provider_remove(&prov->dthp_prov, 14574 p->p_pid); 14575 } 14576 mutex_exit(&dtrace_meta_lock); 14577 14578 dtrace_helper_provider_destroy(prov); 14579 14580 mutex_enter(&dtrace_lock); 14581 } 14582 14583 return (0); 14584 } 14585 14586 static int 14587 dtrace_helper_validate(dtrace_helper_action_t *helper) 14588 { 14589 int err = 0, i; 14590 dtrace_difo_t *dp; 14591 14592 if ((dp = helper->dtha_predicate) != NULL) 14593 err += dtrace_difo_validate_helper(dp); 14594 14595 for (i = 0; i < helper->dtha_nactions; i++) 14596 err += dtrace_difo_validate_helper(helper->dtha_actions[i]); 14597 14598 return (err == 0); 14599 } 14600 14601 static int 14602 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep) 14603 { 14604 dtrace_helpers_t *help; 14605 dtrace_helper_action_t *helper, *last; 14606 dtrace_actdesc_t *act; 14607 dtrace_vstate_t *vstate; 14608 dtrace_predicate_t *pred; 14609 int count = 0, nactions = 0, i; 14610 14611 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) 14612 return (EINVAL); 14613 14614 help = curproc->p_dtrace_helpers; 14615 last = help->dthps_actions[which]; 14616 vstate = &help->dthps_vstate; 14617 14618 for (count = 0; last != NULL; last = last->dtha_next) { 14619 count++; 14620 if (last->dtha_next == NULL) 14621 break; 14622 } 14623 14624 /* 14625 * If we already have dtrace_helper_actions_max helper actions for this 14626 * helper action type, we'll refuse to add a new one. 14627 */ 14628 if (count >= dtrace_helper_actions_max) 14629 return (ENOSPC); 14630 14631 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); 14632 helper->dtha_generation = help->dthps_generation; 14633 14634 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { 14635 ASSERT(pred->dtp_difo != NULL); 14636 dtrace_difo_hold(pred->dtp_difo); 14637 helper->dtha_predicate = pred->dtp_difo; 14638 } 14639 14640 for (act = ep->dted_action; act != NULL; act = act->dtad_next) { 14641 if (act->dtad_kind != DTRACEACT_DIFEXPR) 14642 goto err; 14643 14644 if (act->dtad_difo == NULL) 14645 goto err; 14646 14647 nactions++; 14648 } 14649 14650 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * 14651 (helper->dtha_nactions = nactions), KM_SLEEP); 14652 14653 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { 14654 dtrace_difo_hold(act->dtad_difo); 14655 helper->dtha_actions[i++] = act->dtad_difo; 14656 } 14657 14658 if (!dtrace_helper_validate(helper)) 14659 goto err; 14660 14661 if (last == NULL) { 14662 help->dthps_actions[which] = helper; 14663 } else { 14664 last->dtha_next = helper; 14665 } 14666 14667 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { 14668 dtrace_helptrace_nlocals = vstate->dtvs_nlocals; 14669 dtrace_helptrace_next = 0; 14670 } 14671 14672 return (0); 14673 err: 14674 dtrace_helper_action_destroy(helper, vstate); 14675 return (EINVAL); 14676 } 14677 14678 static void 14679 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, 14680 dof_helper_t *dofhp) 14681 { 14682 ASSERT(MUTEX_NOT_HELD(&dtrace_lock)); 14683 14684 mutex_enter(&dtrace_meta_lock); 14685 mutex_enter(&dtrace_lock); 14686 14687 if (!dtrace_attached() || dtrace_meta_pid == NULL) { 14688 /* 14689 * If the dtrace module is loaded but not attached, or if 14690 * there aren't isn't a meta provider registered to deal with 14691 * these provider descriptions, we need to postpone creating 14692 * the actual providers until later. 14693 */ 14694 14695 if (help->dthps_next == NULL && help->dthps_prev == NULL && 14696 dtrace_deferred_pid != help) { 14697 help->dthps_deferred = 1; 14698 help->dthps_pid = p->p_pid; 14699 help->dthps_next = dtrace_deferred_pid; 14700 help->dthps_prev = NULL; 14701 if (dtrace_deferred_pid != NULL) 14702 dtrace_deferred_pid->dthps_prev = help; 14703 dtrace_deferred_pid = help; 14704 } 14705 14706 mutex_exit(&dtrace_lock); 14707 14708 } else if (dofhp != NULL) { 14709 /* 14710 * If the dtrace module is loaded and we have a particular 14711 * helper provider description, pass that off to the 14712 * meta provider. 14713 */ 14714 14715 mutex_exit(&dtrace_lock); 14716 14717 dtrace_helper_provide(dofhp, p->p_pid); 14718 14719 } else { 14720 /* 14721 * Otherwise, just pass all the helper provider descriptions 14722 * off to the meta provider. 14723 */ 14724 14725 int i; 14726 mutex_exit(&dtrace_lock); 14727 14728 for (i = 0; i < help->dthps_nprovs; i++) { 14729 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov, 14730 p->p_pid); 14731 } 14732 } 14733 14734 mutex_exit(&dtrace_meta_lock); 14735 } 14736 14737 static int 14738 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen) 14739 { 14740 dtrace_helpers_t *help; 14741 dtrace_helper_provider_t *hprov, **tmp_provs; 14742 uint_t tmp_maxprovs, i; 14743 14744 ASSERT(MUTEX_HELD(&dtrace_lock)); 14745 14746 help = curproc->p_dtrace_helpers; 14747 ASSERT(help != NULL); 14748 14749 /* 14750 * If we already have dtrace_helper_providers_max helper providers, 14751 * we're refuse to add a new one. 14752 */ 14753 if (help->dthps_nprovs >= dtrace_helper_providers_max) 14754 return (ENOSPC); 14755 14756 /* 14757 * Check to make sure this isn't a duplicate. 14758 */ 14759 for (i = 0; i < help->dthps_nprovs; i++) { 14760 if (dofhp->dofhp_dof == 14761 help->dthps_provs[i]->dthp_prov.dofhp_dof) 14762 return (EALREADY); 14763 } 14764 14765 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); 14766 hprov->dthp_prov = *dofhp; 14767 hprov->dthp_ref = 1; 14768 hprov->dthp_generation = gen; 14769 14770 /* 14771 * Allocate a bigger table for helper providers if it's already full. 14772 */ 14773 if (help->dthps_maxprovs == help->dthps_nprovs) { 14774 tmp_maxprovs = help->dthps_maxprovs; 14775 tmp_provs = help->dthps_provs; 14776 14777 if (help->dthps_maxprovs == 0) 14778 help->dthps_maxprovs = 2; 14779 else 14780 help->dthps_maxprovs *= 2; 14781 if (help->dthps_maxprovs > dtrace_helper_providers_max) 14782 help->dthps_maxprovs = dtrace_helper_providers_max; 14783 14784 ASSERT(tmp_maxprovs < help->dthps_maxprovs); 14785 14786 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * 14787 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 14788 14789 if (tmp_provs != NULL) { 14790 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs * 14791 sizeof (dtrace_helper_provider_t *)); 14792 kmem_free(tmp_provs, tmp_maxprovs * 14793 sizeof (dtrace_helper_provider_t *)); 14794 } 14795 } 14796 14797 help->dthps_provs[help->dthps_nprovs] = hprov; 14798 help->dthps_nprovs++; 14799 14800 return (0); 14801 } 14802 14803 static void 14804 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) 14805 { 14806 mutex_enter(&dtrace_lock); 14807 14808 if (--hprov->dthp_ref == 0) { 14809 dof_hdr_t *dof; 14810 mutex_exit(&dtrace_lock); 14811 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; 14812 dtrace_dof_destroy(dof); 14813 kmem_free(hprov, sizeof (dtrace_helper_provider_t)); 14814 } else { 14815 mutex_exit(&dtrace_lock); 14816 } 14817 } 14818 14819 static int 14820 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) 14821 { 14822 uintptr_t daddr = (uintptr_t)dof; 14823 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; 14824 dof_provider_t *provider; 14825 dof_probe_t *probe; 14826 uint8_t *arg; 14827 char *strtab, *typestr; 14828 dof_stridx_t typeidx; 14829 size_t typesz; 14830 uint_t nprobes, j, k; 14831 14832 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); 14833 14834 if (sec->dofs_offset & (sizeof (uint_t) - 1)) { 14835 dtrace_dof_error(dof, "misaligned section offset"); 14836 return (-1); 14837 } 14838 14839 /* 14840 * The section needs to be large enough to contain the DOF provider 14841 * structure appropriate for the given version. 14842 */ 14843 if (sec->dofs_size < 14844 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? 14845 offsetof(dof_provider_t, dofpv_prenoffs) : 14846 sizeof (dof_provider_t))) { 14847 dtrace_dof_error(dof, "provider section too small"); 14848 return (-1); 14849 } 14850 14851 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); 14852 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab); 14853 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes); 14854 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs); 14855 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs); 14856 14857 if (str_sec == NULL || prb_sec == NULL || 14858 arg_sec == NULL || off_sec == NULL) 14859 return (-1); 14860 14861 enoff_sec = NULL; 14862 14863 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && 14864 provider->dofpv_prenoffs != DOF_SECT_NONE && 14865 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, 14866 provider->dofpv_prenoffs)) == NULL) 14867 return (-1); 14868 14869 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); 14870 14871 if (provider->dofpv_name >= str_sec->dofs_size || 14872 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { 14873 dtrace_dof_error(dof, "invalid provider name"); 14874 return (-1); 14875 } 14876 14877 if (prb_sec->dofs_entsize == 0 || 14878 prb_sec->dofs_entsize > prb_sec->dofs_size) { 14879 dtrace_dof_error(dof, "invalid entry size"); 14880 return (-1); 14881 } 14882 14883 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { 14884 dtrace_dof_error(dof, "misaligned entry size"); 14885 return (-1); 14886 } 14887 14888 if (off_sec->dofs_entsize != sizeof (uint32_t)) { 14889 dtrace_dof_error(dof, "invalid entry size"); 14890 return (-1); 14891 } 14892 14893 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { 14894 dtrace_dof_error(dof, "misaligned section offset"); 14895 return (-1); 14896 } 14897 14898 if (arg_sec->dofs_entsize != sizeof (uint8_t)) { 14899 dtrace_dof_error(dof, "invalid entry size"); 14900 return (-1); 14901 } 14902 14903 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); 14904 14905 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; 14906 14907 /* 14908 * Take a pass through the probes to check for errors. 14909 */ 14910 for (j = 0; j < nprobes; j++) { 14911 probe = (dof_probe_t *)(uintptr_t)(daddr + 14912 prb_sec->dofs_offset + j * prb_sec->dofs_entsize); 14913 14914 if (probe->dofpr_func >= str_sec->dofs_size) { 14915 dtrace_dof_error(dof, "invalid function name"); 14916 return (-1); 14917 } 14918 14919 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { 14920 dtrace_dof_error(dof, "function name too long"); 14921 return (-1); 14922 } 14923 14924 if (probe->dofpr_name >= str_sec->dofs_size || 14925 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { 14926 dtrace_dof_error(dof, "invalid probe name"); 14927 return (-1); 14928 } 14929 14930 /* 14931 * The offset count must not wrap the index, and the offsets 14932 * must also not overflow the section's data. 14933 */ 14934 if (probe->dofpr_offidx + probe->dofpr_noffs < 14935 probe->dofpr_offidx || 14936 (probe->dofpr_offidx + probe->dofpr_noffs) * 14937 off_sec->dofs_entsize > off_sec->dofs_size) { 14938 dtrace_dof_error(dof, "invalid probe offset"); 14939 return (-1); 14940 } 14941 14942 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { 14943 /* 14944 * If there's no is-enabled offset section, make sure 14945 * there aren't any is-enabled offsets. Otherwise 14946 * perform the same checks as for probe offsets 14947 * (immediately above). 14948 */ 14949 if (enoff_sec == NULL) { 14950 if (probe->dofpr_enoffidx != 0 || 14951 probe->dofpr_nenoffs != 0) { 14952 dtrace_dof_error(dof, "is-enabled " 14953 "offsets with null section"); 14954 return (-1); 14955 } 14956 } else if (probe->dofpr_enoffidx + 14957 probe->dofpr_nenoffs < probe->dofpr_enoffidx || 14958 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * 14959 enoff_sec->dofs_entsize > enoff_sec->dofs_size) { 14960 dtrace_dof_error(dof, "invalid is-enabled " 14961 "offset"); 14962 return (-1); 14963 } 14964 14965 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { 14966 dtrace_dof_error(dof, "zero probe and " 14967 "is-enabled offsets"); 14968 return (-1); 14969 } 14970 } else if (probe->dofpr_noffs == 0) { 14971 dtrace_dof_error(dof, "zero probe offsets"); 14972 return (-1); 14973 } 14974 14975 if (probe->dofpr_argidx + probe->dofpr_xargc < 14976 probe->dofpr_argidx || 14977 (probe->dofpr_argidx + probe->dofpr_xargc) * 14978 arg_sec->dofs_entsize > arg_sec->dofs_size) { 14979 dtrace_dof_error(dof, "invalid args"); 14980 return (-1); 14981 } 14982 14983 typeidx = probe->dofpr_nargv; 14984 typestr = strtab + probe->dofpr_nargv; 14985 for (k = 0; k < probe->dofpr_nargc; k++) { 14986 if (typeidx >= str_sec->dofs_size) { 14987 dtrace_dof_error(dof, "bad " 14988 "native argument type"); 14989 return (-1); 14990 } 14991 14992 typesz = strlen(typestr) + 1; 14993 if (typesz > DTRACE_ARGTYPELEN) { 14994 dtrace_dof_error(dof, "native " 14995 "argument type too long"); 14996 return (-1); 14997 } 14998 typeidx += typesz; 14999 typestr += typesz; 15000 } 15001 15002 typeidx = probe->dofpr_xargv; 15003 typestr = strtab + probe->dofpr_xargv; 15004 for (k = 0; k < probe->dofpr_xargc; k++) { 15005 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { 15006 dtrace_dof_error(dof, "bad " 15007 "native argument index"); 15008 return (-1); 15009 } 15010 15011 if (typeidx >= str_sec->dofs_size) { 15012 dtrace_dof_error(dof, "bad " 15013 "translated argument type"); 15014 return (-1); 15015 } 15016 15017 typesz = strlen(typestr) + 1; 15018 if (typesz > DTRACE_ARGTYPELEN) { 15019 dtrace_dof_error(dof, "translated argument " 15020 "type too long"); 15021 return (-1); 15022 } 15023 15024 typeidx += typesz; 15025 typestr += typesz; 15026 } 15027 } 15028 15029 return (0); 15030 } 15031 15032 static int 15033 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp) 15034 { 15035 dtrace_helpers_t *help; 15036 dtrace_vstate_t *vstate; 15037 dtrace_enabling_t *enab = NULL; 15038 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; 15039 uintptr_t daddr = (uintptr_t)dof; 15040 15041 ASSERT(MUTEX_HELD(&dtrace_lock)); 15042 15043 if ((help = curproc->p_dtrace_helpers) == NULL) 15044 help = dtrace_helpers_create(curproc); 15045 15046 vstate = &help->dthps_vstate; 15047 15048 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, 15049 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) { 15050 dtrace_dof_destroy(dof); 15051 return (rv); 15052 } 15053 15054 /* 15055 * Look for helper providers and validate their descriptions. 15056 */ 15057 if (dhp != NULL) { 15058 for (i = 0; i < dof->dofh_secnum; i++) { 15059 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + 15060 dof->dofh_secoff + i * dof->dofh_secsize); 15061 15062 if (sec->dofs_type != DOF_SECT_PROVIDER) 15063 continue; 15064 15065 if (dtrace_helper_provider_validate(dof, sec) != 0) { 15066 dtrace_enabling_destroy(enab); 15067 dtrace_dof_destroy(dof); 15068 return (-1); 15069 } 15070 15071 nprovs++; 15072 } 15073 } 15074 15075 /* 15076 * Now we need to walk through the ECB descriptions in the enabling. 15077 */ 15078 for (i = 0; i < enab->dten_ndesc; i++) { 15079 dtrace_ecbdesc_t *ep = enab->dten_desc[i]; 15080 dtrace_probedesc_t *desc = &ep->dted_probe; 15081 15082 if (strcmp(desc->dtpd_provider, "dtrace") != 0) 15083 continue; 15084 15085 if (strcmp(desc->dtpd_mod, "helper") != 0) 15086 continue; 15087 15088 if (strcmp(desc->dtpd_func, "ustack") != 0) 15089 continue; 15090 15091 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK, 15092 ep)) != 0) { 15093 /* 15094 * Adding this helper action failed -- we are now going 15095 * to rip out the entire generation and return failure. 15096 */ 15097 (void) dtrace_helper_destroygen(help->dthps_generation); 15098 dtrace_enabling_destroy(enab); 15099 dtrace_dof_destroy(dof); 15100 return (-1); 15101 } 15102 15103 nhelpers++; 15104 } 15105 15106 if (nhelpers < enab->dten_ndesc) 15107 dtrace_dof_error(dof, "unmatched helpers"); 15108 15109 gen = help->dthps_generation++; 15110 dtrace_enabling_destroy(enab); 15111 15112 if (dhp != NULL && nprovs > 0) { 15113 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; 15114 if (dtrace_helper_provider_add(dhp, gen) == 0) { 15115 mutex_exit(&dtrace_lock); 15116 dtrace_helper_provider_register(curproc, help, dhp); 15117 mutex_enter(&dtrace_lock); 15118 15119 destroy = 0; 15120 } 15121 } 15122 15123 if (destroy) 15124 dtrace_dof_destroy(dof); 15125 15126 return (gen); 15127 } 15128 15129 static dtrace_helpers_t * 15130 dtrace_helpers_create(proc_t *p) 15131 { 15132 dtrace_helpers_t *help; 15133 15134 ASSERT(MUTEX_HELD(&dtrace_lock)); 15135 ASSERT(p->p_dtrace_helpers == NULL); 15136 15137 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); 15138 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * 15139 DTRACE_NHELPER_ACTIONS, KM_SLEEP); 15140 15141 p->p_dtrace_helpers = help; 15142 dtrace_helpers++; 15143 15144 return (help); 15145 } 15146 15147 static void 15148 dtrace_helpers_destroy(void) 15149 { 15150 dtrace_helpers_t *help; 15151 dtrace_vstate_t *vstate; 15152 proc_t *p = curproc; 15153 int i; 15154 15155 mutex_enter(&dtrace_lock); 15156 15157 ASSERT(p->p_dtrace_helpers != NULL); 15158 ASSERT(dtrace_helpers > 0); 15159 15160 help = p->p_dtrace_helpers; 15161 vstate = &help->dthps_vstate; 15162 15163 /* 15164 * We're now going to lose the help from this process. 15165 */ 15166 p->p_dtrace_helpers = NULL; 15167 dtrace_sync(); 15168 15169 /* 15170 * Destory the helper actions. 15171 */ 15172 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15173 dtrace_helper_action_t *h, *next; 15174 15175 for (h = help->dthps_actions[i]; h != NULL; h = next) { 15176 next = h->dtha_next; 15177 dtrace_helper_action_destroy(h, vstate); 15178 h = next; 15179 } 15180 } 15181 15182 mutex_exit(&dtrace_lock); 15183 15184 /* 15185 * Destroy the helper providers. 15186 */ 15187 if (help->dthps_maxprovs > 0) { 15188 mutex_enter(&dtrace_meta_lock); 15189 if (dtrace_meta_pid != NULL) { 15190 ASSERT(dtrace_deferred_pid == NULL); 15191 15192 for (i = 0; i < help->dthps_nprovs; i++) { 15193 dtrace_helper_provider_remove( 15194 &help->dthps_provs[i]->dthp_prov, p->p_pid); 15195 } 15196 } else { 15197 mutex_enter(&dtrace_lock); 15198 ASSERT(help->dthps_deferred == 0 || 15199 help->dthps_next != NULL || 15200 help->dthps_prev != NULL || 15201 help == dtrace_deferred_pid); 15202 15203 /* 15204 * Remove the helper from the deferred list. 15205 */ 15206 if (help->dthps_next != NULL) 15207 help->dthps_next->dthps_prev = help->dthps_prev; 15208 if (help->dthps_prev != NULL) 15209 help->dthps_prev->dthps_next = help->dthps_next; 15210 if (dtrace_deferred_pid == help) { 15211 dtrace_deferred_pid = help->dthps_next; 15212 ASSERT(help->dthps_prev == NULL); 15213 } 15214 15215 mutex_exit(&dtrace_lock); 15216 } 15217 15218 mutex_exit(&dtrace_meta_lock); 15219 15220 for (i = 0; i < help->dthps_nprovs; i++) { 15221 dtrace_helper_provider_destroy(help->dthps_provs[i]); 15222 } 15223 15224 kmem_free(help->dthps_provs, help->dthps_maxprovs * 15225 sizeof (dtrace_helper_provider_t *)); 15226 } 15227 15228 mutex_enter(&dtrace_lock); 15229 15230 dtrace_vstate_fini(&help->dthps_vstate); 15231 kmem_free(help->dthps_actions, 15232 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); 15233 kmem_free(help, sizeof (dtrace_helpers_t)); 15234 15235 --dtrace_helpers; 15236 mutex_exit(&dtrace_lock); 15237 } 15238 15239 static void 15240 dtrace_helpers_duplicate(proc_t *from, proc_t *to) 15241 { 15242 dtrace_helpers_t *help, *newhelp; 15243 dtrace_helper_action_t *helper, *new, *last; 15244 dtrace_difo_t *dp; 15245 dtrace_vstate_t *vstate; 15246 int i, j, sz, hasprovs = 0; 15247 15248 mutex_enter(&dtrace_lock); 15249 ASSERT(from->p_dtrace_helpers != NULL); 15250 ASSERT(dtrace_helpers > 0); 15251 15252 help = from->p_dtrace_helpers; 15253 newhelp = dtrace_helpers_create(to); 15254 ASSERT(to->p_dtrace_helpers != NULL); 15255 15256 newhelp->dthps_generation = help->dthps_generation; 15257 vstate = &newhelp->dthps_vstate; 15258 15259 /* 15260 * Duplicate the helper actions. 15261 */ 15262 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { 15263 if ((helper = help->dthps_actions[i]) == NULL) 15264 continue; 15265 15266 for (last = NULL; helper != NULL; helper = helper->dtha_next) { 15267 new = kmem_zalloc(sizeof (dtrace_helper_action_t), 15268 KM_SLEEP); 15269 new->dtha_generation = helper->dtha_generation; 15270 15271 if ((dp = helper->dtha_predicate) != NULL) { 15272 dp = dtrace_difo_duplicate(dp, vstate); 15273 new->dtha_predicate = dp; 15274 } 15275 15276 new->dtha_nactions = helper->dtha_nactions; 15277 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; 15278 new->dtha_actions = kmem_alloc(sz, KM_SLEEP); 15279 15280 for (j = 0; j < new->dtha_nactions; j++) { 15281 dtrace_difo_t *dp = helper->dtha_actions[j]; 15282 15283 ASSERT(dp != NULL); 15284 dp = dtrace_difo_duplicate(dp, vstate); 15285 new->dtha_actions[j] = dp; 15286 } 15287 15288 if (last != NULL) { 15289 last->dtha_next = new; 15290 } else { 15291 newhelp->dthps_actions[i] = new; 15292 } 15293 15294 last = new; 15295 } 15296 } 15297 15298 /* 15299 * Duplicate the helper providers and register them with the 15300 * DTrace framework. 15301 */ 15302 if (help->dthps_nprovs > 0) { 15303 newhelp->dthps_nprovs = help->dthps_nprovs; 15304 newhelp->dthps_maxprovs = help->dthps_nprovs; 15305 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * 15306 sizeof (dtrace_helper_provider_t *), KM_SLEEP); 15307 for (i = 0; i < newhelp->dthps_nprovs; i++) { 15308 newhelp->dthps_provs[i] = help->dthps_provs[i]; 15309 newhelp->dthps_provs[i]->dthp_ref++; 15310 } 15311 15312 hasprovs = 1; 15313 } 15314 15315 mutex_exit(&dtrace_lock); 15316 15317 if (hasprovs) 15318 dtrace_helper_provider_register(to, newhelp, NULL); 15319 } 15320 15321 /* 15322 * DTrace Hook Functions 15323 */ 15324 static void 15325 dtrace_module_loaded(struct modctl *ctl) 15326 { 15327 dtrace_provider_t *prv; 15328 15329 mutex_enter(&dtrace_provider_lock); 15330 mutex_enter(&mod_lock); 15331 15332 ASSERT(ctl->mod_busy); 15333 15334 /* 15335 * We're going to call each providers per-module provide operation 15336 * specifying only this module. 15337 */ 15338 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) 15339 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); 15340 15341 mutex_exit(&mod_lock); 15342 mutex_exit(&dtrace_provider_lock); 15343 15344 /* 15345 * If we have any retained enablings, we need to match against them. 15346 * Enabling probes requires that cpu_lock be held, and we cannot hold 15347 * cpu_lock here -- it is legal for cpu_lock to be held when loading a 15348 * module. (In particular, this happens when loading scheduling 15349 * classes.) So if we have any retained enablings, we need to dispatch 15350 * our task queue to do the match for us. 15351 */ 15352 mutex_enter(&dtrace_lock); 15353 15354 if (dtrace_retained == NULL) { 15355 mutex_exit(&dtrace_lock); 15356 return; 15357 } 15358 15359 (void) taskq_dispatch(dtrace_taskq, 15360 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP); 15361 15362 mutex_exit(&dtrace_lock); 15363 15364 /* 15365 * And now, for a little heuristic sleaze: in general, we want to 15366 * match modules as soon as they load. However, we cannot guarantee 15367 * this, because it would lead us to the lock ordering violation 15368 * outlined above. The common case, of course, is that cpu_lock is 15369 * _not_ held -- so we delay here for a clock tick, hoping that that's 15370 * long enough for the task queue to do its work. If it's not, it's 15371 * not a serious problem -- it just means that the module that we 15372 * just loaded may not be immediately instrumentable. 15373 */ 15374 delay(1); 15375 } 15376 15377 static void 15378 dtrace_module_unloaded(struct modctl *ctl) 15379 { 15380 dtrace_probe_t template, *probe, *first, *next; 15381 dtrace_provider_t *prov; 15382 15383 template.dtpr_mod = ctl->mod_modname; 15384 15385 mutex_enter(&dtrace_provider_lock); 15386 mutex_enter(&mod_lock); 15387 mutex_enter(&dtrace_lock); 15388 15389 if (dtrace_bymod == NULL) { 15390 /* 15391 * The DTrace module is loaded (obviously) but not attached; 15392 * we don't have any work to do. 15393 */ 15394 mutex_exit(&dtrace_provider_lock); 15395 mutex_exit(&mod_lock); 15396 mutex_exit(&dtrace_lock); 15397 return; 15398 } 15399 15400 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template); 15401 probe != NULL; probe = probe->dtpr_nextmod) { 15402 if (probe->dtpr_ecb != NULL) { 15403 mutex_exit(&dtrace_provider_lock); 15404 mutex_exit(&mod_lock); 15405 mutex_exit(&dtrace_lock); 15406 15407 /* 15408 * This shouldn't _actually_ be possible -- we're 15409 * unloading a module that has an enabled probe in it. 15410 * (It's normally up to the provider to make sure that 15411 * this can't happen.) However, because dtps_enable() 15412 * doesn't have a failure mode, there can be an 15413 * enable/unload race. Upshot: we don't want to 15414 * assert, but we're not going to disable the 15415 * probe, either. 15416 */ 15417 if (dtrace_err_verbose) { 15418 cmn_err(CE_WARN, "unloaded module '%s' had " 15419 "enabled probes", ctl->mod_modname); 15420 } 15421 15422 return; 15423 } 15424 } 15425 15426 probe = first; 15427 15428 for (first = NULL; probe != NULL; probe = next) { 15429 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); 15430 15431 dtrace_probes[probe->dtpr_id - 1] = NULL; 15432 15433 next = probe->dtpr_nextmod; 15434 dtrace_hash_remove(dtrace_bymod, probe); 15435 dtrace_hash_remove(dtrace_byfunc, probe); 15436 dtrace_hash_remove(dtrace_byname, probe); 15437 15438 if (first == NULL) { 15439 first = probe; 15440 probe->dtpr_nextmod = NULL; 15441 } else { 15442 probe->dtpr_nextmod = first; 15443 first = probe; 15444 } 15445 } 15446 15447 /* 15448 * We've removed all of the module's probes from the hash chains and 15449 * from the probe array. Now issue a dtrace_sync() to be sure that 15450 * everyone has cleared out from any probe array processing. 15451 */ 15452 dtrace_sync(); 15453 15454 for (probe = first; probe != NULL; probe = first) { 15455 first = probe->dtpr_nextmod; 15456 prov = probe->dtpr_provider; 15457 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, 15458 probe->dtpr_arg); 15459 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1); 15460 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1); 15461 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1); 15462 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1); 15463 kmem_free(probe, sizeof (dtrace_probe_t)); 15464 } 15465 15466 mutex_exit(&dtrace_lock); 15467 mutex_exit(&mod_lock); 15468 mutex_exit(&dtrace_provider_lock); 15469 } 15470 15471 void 15472 dtrace_suspend(void) 15473 { 15474 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); 15475 } 15476 15477 void 15478 dtrace_resume(void) 15479 { 15480 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); 15481 } 15482 15483 static int 15484 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) 15485 { 15486 ASSERT(MUTEX_HELD(&cpu_lock)); 15487 mutex_enter(&dtrace_lock); 15488 15489 switch (what) { 15490 case CPU_CONFIG: { 15491 dtrace_state_t *state; 15492 dtrace_optval_t *opt, rs, c; 15493 15494 /* 15495 * For now, we only allocate a new buffer for anonymous state. 15496 */ 15497 if ((state = dtrace_anon.dta_state) == NULL) 15498 break; 15499 15500 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) 15501 break; 15502 15503 opt = state->dts_options; 15504 c = opt[DTRACEOPT_CPU]; 15505 15506 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) 15507 break; 15508 15509 /* 15510 * Regardless of what the actual policy is, we're going to 15511 * temporarily set our resize policy to be manual. We're 15512 * also going to temporarily set our CPU option to denote 15513 * the newly configured CPU. 15514 */ 15515 rs = opt[DTRACEOPT_BUFRESIZE]; 15516 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; 15517 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; 15518 15519 (void) dtrace_state_buffers(state); 15520 15521 opt[DTRACEOPT_BUFRESIZE] = rs; 15522 opt[DTRACEOPT_CPU] = c; 15523 15524 break; 15525 } 15526 15527 case CPU_UNCONFIG: 15528 /* 15529 * We don't free the buffer in the CPU_UNCONFIG case. (The 15530 * buffer will be freed when the consumer exits.) 15531 */ 15532 break; 15533 15534 default: 15535 break; 15536 } 15537 15538 mutex_exit(&dtrace_lock); 15539 return (0); 15540 } 15541 15542 static void 15543 dtrace_cpu_setup_initial(processorid_t cpu) 15544 { 15545 (void) dtrace_cpu_setup(CPU_CONFIG, cpu); 15546 } 15547 15548 static void 15549 dtrace_toxrange_add(uintptr_t base, uintptr_t limit) 15550 { 15551 if (dtrace_toxranges >= dtrace_toxranges_max) { 15552 int osize, nsize; 15553 dtrace_toxrange_t *range; 15554 15555 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15556 15557 if (osize == 0) { 15558 ASSERT(dtrace_toxrange == NULL); 15559 ASSERT(dtrace_toxranges_max == 0); 15560 dtrace_toxranges_max = 1; 15561 } else { 15562 dtrace_toxranges_max <<= 1; 15563 } 15564 15565 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); 15566 range = kmem_zalloc(nsize, KM_SLEEP); 15567 15568 if (dtrace_toxrange != NULL) { 15569 ASSERT(osize != 0); 15570 bcopy(dtrace_toxrange, range, osize); 15571 kmem_free(dtrace_toxrange, osize); 15572 } 15573 15574 dtrace_toxrange = range; 15575 } 15576 15577 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL); 15578 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL); 15579 15580 dtrace_toxrange[dtrace_toxranges].dtt_base = base; 15581 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; 15582 dtrace_toxranges++; 15583 } 15584 15585 static void 15586 dtrace_getf_barrier() 15587 { 15588 /* 15589 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings 15590 * that contain calls to getf(), this routine will be called on every 15591 * closef() before either the underlying vnode is released or the 15592 * file_t itself is freed. By the time we are here, it is essential 15593 * that the file_t can no longer be accessed from a call to getf() 15594 * in probe context -- that assures that a dtrace_sync() can be used 15595 * to clear out any enablings referring to the old structures. 15596 */ 15597 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 || 15598 kcred->cr_zone->zone_dtrace_getf != 0) 15599 dtrace_sync(); 15600 } 15601 15602 /* 15603 * DTrace Driver Cookbook Functions 15604 */ 15605 /*ARGSUSED*/ 15606 static int 15607 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 15608 { 15609 dtrace_provider_id_t id; 15610 dtrace_state_t *state = NULL; 15611 dtrace_enabling_t *enab; 15612 15613 mutex_enter(&cpu_lock); 15614 mutex_enter(&dtrace_provider_lock); 15615 mutex_enter(&dtrace_lock); 15616 15617 if (ddi_soft_state_init(&dtrace_softstate, 15618 sizeof (dtrace_state_t), 0) != 0) { 15619 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state"); 15620 mutex_exit(&cpu_lock); 15621 mutex_exit(&dtrace_provider_lock); 15622 mutex_exit(&dtrace_lock); 15623 return (DDI_FAILURE); 15624 } 15625 15626 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR, 15627 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE || 15628 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR, 15629 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) { 15630 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes"); 15631 ddi_remove_minor_node(devi, NULL); 15632 ddi_soft_state_fini(&dtrace_softstate); 15633 mutex_exit(&cpu_lock); 15634 mutex_exit(&dtrace_provider_lock); 15635 mutex_exit(&dtrace_lock); 15636 return (DDI_FAILURE); 15637 } 15638 15639 ddi_report_dev(devi); 15640 dtrace_devi = devi; 15641 15642 dtrace_modload = dtrace_module_loaded; 15643 dtrace_modunload = dtrace_module_unloaded; 15644 dtrace_cpu_init = dtrace_cpu_setup_initial; 15645 dtrace_helpers_cleanup = dtrace_helpers_destroy; 15646 dtrace_helpers_fork = dtrace_helpers_duplicate; 15647 dtrace_cpustart_init = dtrace_suspend; 15648 dtrace_cpustart_fini = dtrace_resume; 15649 dtrace_debugger_init = dtrace_suspend; 15650 dtrace_debugger_fini = dtrace_resume; 15651 15652 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 15653 15654 ASSERT(MUTEX_HELD(&cpu_lock)); 15655 15656 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1, 15657 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 15658 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE, 15659 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0, 15660 VM_SLEEP | VMC_IDENTIFIER); 15661 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri, 15662 1, INT_MAX, 0); 15663 15664 dtrace_state_cache = kmem_cache_create("dtrace_state_cache", 15665 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN, 15666 NULL, NULL, NULL, NULL, NULL, 0); 15667 15668 ASSERT(MUTEX_HELD(&cpu_lock)); 15669 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod), 15670 offsetof(dtrace_probe_t, dtpr_nextmod), 15671 offsetof(dtrace_probe_t, dtpr_prevmod)); 15672 15673 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func), 15674 offsetof(dtrace_probe_t, dtpr_nextfunc), 15675 offsetof(dtrace_probe_t, dtpr_prevfunc)); 15676 15677 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name), 15678 offsetof(dtrace_probe_t, dtpr_nextname), 15679 offsetof(dtrace_probe_t, dtpr_prevname)); 15680 15681 if (dtrace_retain_max < 1) { 15682 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " 15683 "setting to 1", dtrace_retain_max); 15684 dtrace_retain_max = 1; 15685 } 15686 15687 /* 15688 * Now discover our toxic ranges. 15689 */ 15690 dtrace_toxic_ranges(dtrace_toxrange_add); 15691 15692 /* 15693 * Before we register ourselves as a provider to our own framework, 15694 * we would like to assert that dtrace_provider is NULL -- but that's 15695 * not true if we were loaded as a dependency of a DTrace provider. 15696 * Once we've registered, we can assert that dtrace_provider is our 15697 * pseudo provider. 15698 */ 15699 (void) dtrace_register("dtrace", &dtrace_provider_attr, 15700 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id); 15701 15702 ASSERT(dtrace_provider != NULL); 15703 ASSERT((dtrace_provider_id_t)dtrace_provider == id); 15704 15705 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) 15706 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL); 15707 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) 15708 dtrace_provider, NULL, NULL, "END", 0, NULL); 15709 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) 15710 dtrace_provider, NULL, NULL, "ERROR", 1, NULL); 15711 15712 dtrace_anon_property(); 15713 mutex_exit(&cpu_lock); 15714 15715 /* 15716 * If there are already providers, we must ask them to provide their 15717 * probes, and then match any anonymous enabling against them. Note 15718 * that there should be no other retained enablings at this time: 15719 * the only retained enablings at this time should be the anonymous 15720 * enabling. 15721 */ 15722 if (dtrace_anon.dta_enabling != NULL) { 15723 ASSERT(dtrace_retained == dtrace_anon.dta_enabling); 15724 15725 dtrace_enabling_provide(NULL); 15726 state = dtrace_anon.dta_state; 15727 15728 /* 15729 * We couldn't hold cpu_lock across the above call to 15730 * dtrace_enabling_provide(), but we must hold it to actually 15731 * enable the probes. We have to drop all of our locks, pick 15732 * up cpu_lock, and regain our locks before matching the 15733 * retained anonymous enabling. 15734 */ 15735 mutex_exit(&dtrace_lock); 15736 mutex_exit(&dtrace_provider_lock); 15737 15738 mutex_enter(&cpu_lock); 15739 mutex_enter(&dtrace_provider_lock); 15740 mutex_enter(&dtrace_lock); 15741 15742 if ((enab = dtrace_anon.dta_enabling) != NULL) 15743 (void) dtrace_enabling_match(enab, NULL); 15744 15745 mutex_exit(&cpu_lock); 15746 } 15747 15748 mutex_exit(&dtrace_lock); 15749 mutex_exit(&dtrace_provider_lock); 15750 15751 if (state != NULL) { 15752 /* 15753 * If we created any anonymous state, set it going now. 15754 */ 15755 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon); 15756 } 15757 15758 return (DDI_SUCCESS); 15759 } 15760 15761 /*ARGSUSED*/ 15762 static int 15763 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 15764 { 15765 dtrace_state_t *state; 15766 uint32_t priv; 15767 uid_t uid; 15768 zoneid_t zoneid; 15769 15770 if (getminor(*devp) == DTRACEMNRN_HELPER) 15771 return (0); 15772 15773 /* 15774 * If this wasn't an open with the "helper" minor, then it must be 15775 * the "dtrace" minor. 15776 */ 15777 if (getminor(*devp) != DTRACEMNRN_DTRACE) 15778 return (ENXIO); 15779 15780 /* 15781 * If no DTRACE_PRIV_* bits are set in the credential, then the 15782 * caller lacks sufficient permission to do anything with DTrace. 15783 */ 15784 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid); 15785 if (priv == DTRACE_PRIV_NONE) 15786 return (EACCES); 15787 15788 /* 15789 * Ask all providers to provide all their probes. 15790 */ 15791 mutex_enter(&dtrace_provider_lock); 15792 dtrace_probe_provide(NULL, NULL); 15793 mutex_exit(&dtrace_provider_lock); 15794 15795 mutex_enter(&cpu_lock); 15796 mutex_enter(&dtrace_lock); 15797 dtrace_opens++; 15798 dtrace_membar_producer(); 15799 15800 /* 15801 * If the kernel debugger is active (that is, if the kernel debugger 15802 * modified text in some way), we won't allow the open. 15803 */ 15804 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { 15805 dtrace_opens--; 15806 mutex_exit(&cpu_lock); 15807 mutex_exit(&dtrace_lock); 15808 return (EBUSY); 15809 } 15810 15811 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) { 15812 /* 15813 * If DTrace helper tracing is enabled, we need to allocate the 15814 * trace buffer and initialize the values. 15815 */ 15816 dtrace_helptrace_buffer = 15817 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); 15818 dtrace_helptrace_next = 0; 15819 dtrace_helptrace_wrapped = 0; 15820 dtrace_helptrace_enable = 0; 15821 } 15822 15823 state = dtrace_state_create(devp, cred_p); 15824 mutex_exit(&cpu_lock); 15825 15826 if (state == NULL) { 15827 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15828 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15829 mutex_exit(&dtrace_lock); 15830 return (EAGAIN); 15831 } 15832 15833 mutex_exit(&dtrace_lock); 15834 15835 return (0); 15836 } 15837 15838 /*ARGSUSED*/ 15839 static int 15840 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) 15841 { 15842 minor_t minor = getminor(dev); 15843 dtrace_state_t *state; 15844 dtrace_helptrace_t *buf = NULL; 15845 15846 if (minor == DTRACEMNRN_HELPER) 15847 return (0); 15848 15849 state = ddi_get_soft_state(dtrace_softstate, minor); 15850 15851 mutex_enter(&cpu_lock); 15852 mutex_enter(&dtrace_lock); 15853 15854 if (state->dts_anon) { 15855 /* 15856 * There is anonymous state. Destroy that first. 15857 */ 15858 ASSERT(dtrace_anon.dta_state == NULL); 15859 dtrace_state_destroy(state->dts_anon); 15860 } 15861 15862 if (dtrace_helptrace_disable) { 15863 /* 15864 * If we have been told to disable helper tracing, set the 15865 * buffer to NULL before calling into dtrace_state_destroy(); 15866 * we take advantage of its dtrace_sync() to know that no 15867 * CPU is in probe context with enabled helper tracing 15868 * after it returns. 15869 */ 15870 buf = dtrace_helptrace_buffer; 15871 dtrace_helptrace_buffer = NULL; 15872 } 15873 15874 dtrace_state_destroy(state); 15875 ASSERT(dtrace_opens > 0); 15876 15877 /* 15878 * Only relinquish control of the kernel debugger interface when there 15879 * are no consumers and no anonymous enablings. 15880 */ 15881 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) 15882 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 15883 15884 if (buf != NULL) { 15885 kmem_free(buf, dtrace_helptrace_bufsize); 15886 dtrace_helptrace_disable = 0; 15887 } 15888 15889 mutex_exit(&dtrace_lock); 15890 mutex_exit(&cpu_lock); 15891 15892 return (0); 15893 } 15894 15895 /*ARGSUSED*/ 15896 static int 15897 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv) 15898 { 15899 int rval; 15900 dof_helper_t help, *dhp = NULL; 15901 15902 switch (cmd) { 15903 case DTRACEHIOC_ADDDOF: 15904 if (copyin((void *)arg, &help, sizeof (help)) != 0) { 15905 dtrace_dof_error(NULL, "failed to copyin DOF helper"); 15906 return (EFAULT); 15907 } 15908 15909 dhp = &help; 15910 arg = (intptr_t)help.dofhp_dof; 15911 /*FALLTHROUGH*/ 15912 15913 case DTRACEHIOC_ADD: { 15914 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval); 15915 15916 if (dof == NULL) 15917 return (rval); 15918 15919 mutex_enter(&dtrace_lock); 15920 15921 /* 15922 * dtrace_helper_slurp() takes responsibility for the dof -- 15923 * it may free it now or it may save it and free it later. 15924 */ 15925 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) { 15926 *rv = rval; 15927 rval = 0; 15928 } else { 15929 rval = EINVAL; 15930 } 15931 15932 mutex_exit(&dtrace_lock); 15933 return (rval); 15934 } 15935 15936 case DTRACEHIOC_REMOVE: { 15937 mutex_enter(&dtrace_lock); 15938 rval = dtrace_helper_destroygen(arg); 15939 mutex_exit(&dtrace_lock); 15940 15941 return (rval); 15942 } 15943 15944 default: 15945 break; 15946 } 15947 15948 return (ENOTTY); 15949 } 15950 15951 /*ARGSUSED*/ 15952 static int 15953 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv) 15954 { 15955 minor_t minor = getminor(dev); 15956 dtrace_state_t *state; 15957 int rval; 15958 15959 if (minor == DTRACEMNRN_HELPER) 15960 return (dtrace_ioctl_helper(cmd, arg, rv)); 15961 15962 state = ddi_get_soft_state(dtrace_softstate, minor); 15963 15964 if (state->dts_anon) { 15965 ASSERT(dtrace_anon.dta_state == NULL); 15966 state = state->dts_anon; 15967 } 15968 15969 switch (cmd) { 15970 case DTRACEIOC_PROVIDER: { 15971 dtrace_providerdesc_t pvd; 15972 dtrace_provider_t *pvp; 15973 15974 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0) 15975 return (EFAULT); 15976 15977 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; 15978 mutex_enter(&dtrace_provider_lock); 15979 15980 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { 15981 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0) 15982 break; 15983 } 15984 15985 mutex_exit(&dtrace_provider_lock); 15986 15987 if (pvp == NULL) 15988 return (ESRCH); 15989 15990 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t)); 15991 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t)); 15992 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0) 15993 return (EFAULT); 15994 15995 return (0); 15996 } 15997 15998 case DTRACEIOC_EPROBE: { 15999 dtrace_eprobedesc_t epdesc; 16000 dtrace_ecb_t *ecb; 16001 dtrace_action_t *act; 16002 void *buf; 16003 size_t size; 16004 uintptr_t dest; 16005 int nrecs; 16006 16007 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0) 16008 return (EFAULT); 16009 16010 mutex_enter(&dtrace_lock); 16011 16012 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) { 16013 mutex_exit(&dtrace_lock); 16014 return (EINVAL); 16015 } 16016 16017 if (ecb->dte_probe == NULL) { 16018 mutex_exit(&dtrace_lock); 16019 return (EINVAL); 16020 } 16021 16022 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; 16023 epdesc.dtepd_uarg = ecb->dte_uarg; 16024 epdesc.dtepd_size = ecb->dte_size; 16025 16026 nrecs = epdesc.dtepd_nrecs; 16027 epdesc.dtepd_nrecs = 0; 16028 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16029 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16030 continue; 16031 16032 epdesc.dtepd_nrecs++; 16033 } 16034 16035 /* 16036 * Now that we have the size, we need to allocate a temporary 16037 * buffer in which to store the complete description. We need 16038 * the temporary buffer to be able to drop dtrace_lock() 16039 * across the copyout(), below. 16040 */ 16041 size = sizeof (dtrace_eprobedesc_t) + 16042 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); 16043 16044 buf = kmem_alloc(size, KM_SLEEP); 16045 dest = (uintptr_t)buf; 16046 16047 bcopy(&epdesc, (void *)dest, sizeof (epdesc)); 16048 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); 16049 16050 for (act = ecb->dte_action; act != NULL; act = act->dta_next) { 16051 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) 16052 continue; 16053 16054 if (nrecs-- == 0) 16055 break; 16056 16057 bcopy(&act->dta_rec, (void *)dest, 16058 sizeof (dtrace_recdesc_t)); 16059 dest += sizeof (dtrace_recdesc_t); 16060 } 16061 16062 mutex_exit(&dtrace_lock); 16063 16064 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16065 kmem_free(buf, size); 16066 return (EFAULT); 16067 } 16068 16069 kmem_free(buf, size); 16070 return (0); 16071 } 16072 16073 case DTRACEIOC_AGGDESC: { 16074 dtrace_aggdesc_t aggdesc; 16075 dtrace_action_t *act; 16076 dtrace_aggregation_t *agg; 16077 int nrecs; 16078 uint32_t offs; 16079 dtrace_recdesc_t *lrec; 16080 void *buf; 16081 size_t size; 16082 uintptr_t dest; 16083 16084 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0) 16085 return (EFAULT); 16086 16087 mutex_enter(&dtrace_lock); 16088 16089 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) { 16090 mutex_exit(&dtrace_lock); 16091 return (EINVAL); 16092 } 16093 16094 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; 16095 16096 nrecs = aggdesc.dtagd_nrecs; 16097 aggdesc.dtagd_nrecs = 0; 16098 16099 offs = agg->dtag_base; 16100 lrec = &agg->dtag_action.dta_rec; 16101 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; 16102 16103 for (act = agg->dtag_first; ; act = act->dta_next) { 16104 ASSERT(act->dta_intuple || 16105 DTRACEACT_ISAGG(act->dta_kind)); 16106 16107 /* 16108 * If this action has a record size of zero, it 16109 * denotes an argument to the aggregating action. 16110 * Because the presence of this record doesn't (or 16111 * shouldn't) affect the way the data is interpreted, 16112 * we don't copy it out to save user-level the 16113 * confusion of dealing with a zero-length record. 16114 */ 16115 if (act->dta_rec.dtrd_size == 0) { 16116 ASSERT(agg->dtag_hasarg); 16117 continue; 16118 } 16119 16120 aggdesc.dtagd_nrecs++; 16121 16122 if (act == &agg->dtag_action) 16123 break; 16124 } 16125 16126 /* 16127 * Now that we have the size, we need to allocate a temporary 16128 * buffer in which to store the complete description. We need 16129 * the temporary buffer to be able to drop dtrace_lock() 16130 * across the copyout(), below. 16131 */ 16132 size = sizeof (dtrace_aggdesc_t) + 16133 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); 16134 16135 buf = kmem_alloc(size, KM_SLEEP); 16136 dest = (uintptr_t)buf; 16137 16138 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc)); 16139 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); 16140 16141 for (act = agg->dtag_first; ; act = act->dta_next) { 16142 dtrace_recdesc_t rec = act->dta_rec; 16143 16144 /* 16145 * See the comment in the above loop for why we pass 16146 * over zero-length records. 16147 */ 16148 if (rec.dtrd_size == 0) { 16149 ASSERT(agg->dtag_hasarg); 16150 continue; 16151 } 16152 16153 if (nrecs-- == 0) 16154 break; 16155 16156 rec.dtrd_offset -= offs; 16157 bcopy(&rec, (void *)dest, sizeof (rec)); 16158 dest += sizeof (dtrace_recdesc_t); 16159 16160 if (act == &agg->dtag_action) 16161 break; 16162 } 16163 16164 mutex_exit(&dtrace_lock); 16165 16166 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) { 16167 kmem_free(buf, size); 16168 return (EFAULT); 16169 } 16170 16171 kmem_free(buf, size); 16172 return (0); 16173 } 16174 16175 case DTRACEIOC_ENABLE: { 16176 dof_hdr_t *dof; 16177 dtrace_enabling_t *enab = NULL; 16178 dtrace_vstate_t *vstate; 16179 int err = 0; 16180 16181 *rv = 0; 16182 16183 /* 16184 * If a NULL argument has been passed, we take this as our 16185 * cue to reevaluate our enablings. 16186 */ 16187 if (arg == NULL) { 16188 dtrace_enabling_matchall(); 16189 16190 return (0); 16191 } 16192 16193 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL) 16194 return (rval); 16195 16196 mutex_enter(&cpu_lock); 16197 mutex_enter(&dtrace_lock); 16198 vstate = &state->dts_vstate; 16199 16200 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { 16201 mutex_exit(&dtrace_lock); 16202 mutex_exit(&cpu_lock); 16203 dtrace_dof_destroy(dof); 16204 return (EBUSY); 16205 } 16206 16207 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) { 16208 mutex_exit(&dtrace_lock); 16209 mutex_exit(&cpu_lock); 16210 dtrace_dof_destroy(dof); 16211 return (EINVAL); 16212 } 16213 16214 if ((rval = dtrace_dof_options(dof, state)) != 0) { 16215 dtrace_enabling_destroy(enab); 16216 mutex_exit(&dtrace_lock); 16217 mutex_exit(&cpu_lock); 16218 dtrace_dof_destroy(dof); 16219 return (rval); 16220 } 16221 16222 if ((err = dtrace_enabling_match(enab, rv)) == 0) { 16223 err = dtrace_enabling_retain(enab); 16224 } else { 16225 dtrace_enabling_destroy(enab); 16226 } 16227 16228 mutex_exit(&cpu_lock); 16229 mutex_exit(&dtrace_lock); 16230 dtrace_dof_destroy(dof); 16231 16232 return (err); 16233 } 16234 16235 case DTRACEIOC_REPLICATE: { 16236 dtrace_repldesc_t desc; 16237 dtrace_probedesc_t *match = &desc.dtrpd_match; 16238 dtrace_probedesc_t *create = &desc.dtrpd_create; 16239 int err; 16240 16241 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16242 return (EFAULT); 16243 16244 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16245 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16246 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16247 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16248 16249 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16250 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16251 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16252 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16253 16254 mutex_enter(&dtrace_lock); 16255 err = dtrace_enabling_replicate(state, match, create); 16256 mutex_exit(&dtrace_lock); 16257 16258 return (err); 16259 } 16260 16261 case DTRACEIOC_PROBEMATCH: 16262 case DTRACEIOC_PROBES: { 16263 dtrace_probe_t *probe = NULL; 16264 dtrace_probedesc_t desc; 16265 dtrace_probekey_t pkey; 16266 dtrace_id_t i; 16267 int m = 0; 16268 uint32_t priv; 16269 uid_t uid; 16270 zoneid_t zoneid; 16271 16272 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16273 return (EFAULT); 16274 16275 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; 16276 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; 16277 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; 16278 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; 16279 16280 /* 16281 * Before we attempt to match this probe, we want to give 16282 * all providers the opportunity to provide it. 16283 */ 16284 if (desc.dtpd_id == DTRACE_IDNONE) { 16285 mutex_enter(&dtrace_provider_lock); 16286 dtrace_probe_provide(&desc, NULL); 16287 mutex_exit(&dtrace_provider_lock); 16288 desc.dtpd_id++; 16289 } 16290 16291 if (cmd == DTRACEIOC_PROBEMATCH) { 16292 dtrace_probekey(&desc, &pkey); 16293 pkey.dtpk_id = DTRACE_IDNONE; 16294 } 16295 16296 dtrace_cred2priv(cr, &priv, &uid, &zoneid); 16297 16298 mutex_enter(&dtrace_lock); 16299 16300 if (cmd == DTRACEIOC_PROBEMATCH) { 16301 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16302 if ((probe = dtrace_probes[i - 1]) != NULL && 16303 (m = dtrace_match_probe(probe, &pkey, 16304 priv, uid, zoneid)) != 0) 16305 break; 16306 } 16307 16308 if (m < 0) { 16309 mutex_exit(&dtrace_lock); 16310 return (EINVAL); 16311 } 16312 16313 } else { 16314 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) { 16315 if ((probe = dtrace_probes[i - 1]) != NULL && 16316 dtrace_match_priv(probe, priv, uid, zoneid)) 16317 break; 16318 } 16319 } 16320 16321 if (probe == NULL) { 16322 mutex_exit(&dtrace_lock); 16323 return (ESRCH); 16324 } 16325 16326 dtrace_probe_description(probe, &desc); 16327 mutex_exit(&dtrace_lock); 16328 16329 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16330 return (EFAULT); 16331 16332 return (0); 16333 } 16334 16335 case DTRACEIOC_PROBEARG: { 16336 dtrace_argdesc_t desc; 16337 dtrace_probe_t *probe; 16338 dtrace_provider_t *prov; 16339 16340 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16341 return (EFAULT); 16342 16343 if (desc.dtargd_id == DTRACE_IDNONE) 16344 return (EINVAL); 16345 16346 if (desc.dtargd_ndx == DTRACE_ARGNONE) 16347 return (EINVAL); 16348 16349 mutex_enter(&dtrace_provider_lock); 16350 mutex_enter(&mod_lock); 16351 mutex_enter(&dtrace_lock); 16352 16353 if (desc.dtargd_id > dtrace_nprobes) { 16354 mutex_exit(&dtrace_lock); 16355 mutex_exit(&mod_lock); 16356 mutex_exit(&dtrace_provider_lock); 16357 return (EINVAL); 16358 } 16359 16360 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { 16361 mutex_exit(&dtrace_lock); 16362 mutex_exit(&mod_lock); 16363 mutex_exit(&dtrace_provider_lock); 16364 return (EINVAL); 16365 } 16366 16367 mutex_exit(&dtrace_lock); 16368 16369 prov = probe->dtpr_provider; 16370 16371 if (prov->dtpv_pops.dtps_getargdesc == NULL) { 16372 /* 16373 * There isn't any typed information for this probe. 16374 * Set the argument number to DTRACE_ARGNONE. 16375 */ 16376 desc.dtargd_ndx = DTRACE_ARGNONE; 16377 } else { 16378 desc.dtargd_native[0] = '\0'; 16379 desc.dtargd_xlate[0] = '\0'; 16380 desc.dtargd_mapping = desc.dtargd_ndx; 16381 16382 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, 16383 probe->dtpr_id, probe->dtpr_arg, &desc); 16384 } 16385 16386 mutex_exit(&mod_lock); 16387 mutex_exit(&dtrace_provider_lock); 16388 16389 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16390 return (EFAULT); 16391 16392 return (0); 16393 } 16394 16395 case DTRACEIOC_GO: { 16396 processorid_t cpuid; 16397 rval = dtrace_state_go(state, &cpuid); 16398 16399 if (rval != 0) 16400 return (rval); 16401 16402 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16403 return (EFAULT); 16404 16405 return (0); 16406 } 16407 16408 case DTRACEIOC_STOP: { 16409 processorid_t cpuid; 16410 16411 mutex_enter(&dtrace_lock); 16412 rval = dtrace_state_stop(state, &cpuid); 16413 mutex_exit(&dtrace_lock); 16414 16415 if (rval != 0) 16416 return (rval); 16417 16418 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0) 16419 return (EFAULT); 16420 16421 return (0); 16422 } 16423 16424 case DTRACEIOC_DOFGET: { 16425 dof_hdr_t hdr, *dof; 16426 uint64_t len; 16427 16428 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0) 16429 return (EFAULT); 16430 16431 mutex_enter(&dtrace_lock); 16432 dof = dtrace_dof_create(state); 16433 mutex_exit(&dtrace_lock); 16434 16435 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); 16436 rval = copyout(dof, (void *)arg, len); 16437 dtrace_dof_destroy(dof); 16438 16439 return (rval == 0 ? 0 : EFAULT); 16440 } 16441 16442 case DTRACEIOC_AGGSNAP: 16443 case DTRACEIOC_BUFSNAP: { 16444 dtrace_bufdesc_t desc; 16445 caddr_t cached; 16446 dtrace_buffer_t *buf; 16447 16448 if (copyin((void *)arg, &desc, sizeof (desc)) != 0) 16449 return (EFAULT); 16450 16451 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) 16452 return (EINVAL); 16453 16454 mutex_enter(&dtrace_lock); 16455 16456 if (cmd == DTRACEIOC_BUFSNAP) { 16457 buf = &state->dts_buffer[desc.dtbd_cpu]; 16458 } else { 16459 buf = &state->dts_aggbuffer[desc.dtbd_cpu]; 16460 } 16461 16462 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { 16463 size_t sz = buf->dtb_offset; 16464 16465 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { 16466 mutex_exit(&dtrace_lock); 16467 return (EBUSY); 16468 } 16469 16470 /* 16471 * If this buffer has already been consumed, we're 16472 * going to indicate that there's nothing left here 16473 * to consume. 16474 */ 16475 if (buf->dtb_flags & DTRACEBUF_CONSUMED) { 16476 mutex_exit(&dtrace_lock); 16477 16478 desc.dtbd_size = 0; 16479 desc.dtbd_drops = 0; 16480 desc.dtbd_errors = 0; 16481 desc.dtbd_oldest = 0; 16482 sz = sizeof (desc); 16483 16484 if (copyout(&desc, (void *)arg, sz) != 0) 16485 return (EFAULT); 16486 16487 return (0); 16488 } 16489 16490 /* 16491 * If this is a ring buffer that has wrapped, we want 16492 * to copy the whole thing out. 16493 */ 16494 if (buf->dtb_flags & DTRACEBUF_WRAPPED) { 16495 dtrace_buffer_polish(buf); 16496 sz = buf->dtb_size; 16497 } 16498 16499 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) { 16500 mutex_exit(&dtrace_lock); 16501 return (EFAULT); 16502 } 16503 16504 desc.dtbd_size = sz; 16505 desc.dtbd_drops = buf->dtb_drops; 16506 desc.dtbd_errors = buf->dtb_errors; 16507 desc.dtbd_oldest = buf->dtb_xamot_offset; 16508 desc.dtbd_timestamp = dtrace_gethrtime(); 16509 16510 mutex_exit(&dtrace_lock); 16511 16512 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16513 return (EFAULT); 16514 16515 buf->dtb_flags |= DTRACEBUF_CONSUMED; 16516 16517 return (0); 16518 } 16519 16520 if (buf->dtb_tomax == NULL) { 16521 ASSERT(buf->dtb_xamot == NULL); 16522 mutex_exit(&dtrace_lock); 16523 return (ENOENT); 16524 } 16525 16526 cached = buf->dtb_tomax; 16527 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); 16528 16529 dtrace_xcall(desc.dtbd_cpu, 16530 (dtrace_xcall_t)dtrace_buffer_switch, buf); 16531 16532 state->dts_errors += buf->dtb_xamot_errors; 16533 16534 /* 16535 * If the buffers did not actually switch, then the cross call 16536 * did not take place -- presumably because the given CPU is 16537 * not in the ready set. If this is the case, we'll return 16538 * ENOENT. 16539 */ 16540 if (buf->dtb_tomax == cached) { 16541 ASSERT(buf->dtb_xamot != cached); 16542 mutex_exit(&dtrace_lock); 16543 return (ENOENT); 16544 } 16545 16546 ASSERT(cached == buf->dtb_xamot); 16547 16548 /* 16549 * We have our snapshot; now copy it out. 16550 */ 16551 if (copyout(buf->dtb_xamot, desc.dtbd_data, 16552 buf->dtb_xamot_offset) != 0) { 16553 mutex_exit(&dtrace_lock); 16554 return (EFAULT); 16555 } 16556 16557 desc.dtbd_size = buf->dtb_xamot_offset; 16558 desc.dtbd_drops = buf->dtb_xamot_drops; 16559 desc.dtbd_errors = buf->dtb_xamot_errors; 16560 desc.dtbd_oldest = 0; 16561 desc.dtbd_timestamp = buf->dtb_switched; 16562 16563 mutex_exit(&dtrace_lock); 16564 16565 /* 16566 * Finally, copy out the buffer description. 16567 */ 16568 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0) 16569 return (EFAULT); 16570 16571 return (0); 16572 } 16573 16574 case DTRACEIOC_CONF: { 16575 dtrace_conf_t conf; 16576 16577 bzero(&conf, sizeof (conf)); 16578 conf.dtc_difversion = DIF_VERSION; 16579 conf.dtc_difintregs = DIF_DIR_NREGS; 16580 conf.dtc_diftupregs = DIF_DTR_NREGS; 16581 conf.dtc_ctfmodel = CTF_MODEL_NATIVE; 16582 16583 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0) 16584 return (EFAULT); 16585 16586 return (0); 16587 } 16588 16589 case DTRACEIOC_STATUS: { 16590 dtrace_status_t stat; 16591 dtrace_dstate_t *dstate; 16592 int i, j; 16593 uint64_t nerrs; 16594 16595 /* 16596 * See the comment in dtrace_state_deadman() for the reason 16597 * for setting dts_laststatus to INT64_MAX before setting 16598 * it to the correct value. 16599 */ 16600 state->dts_laststatus = INT64_MAX; 16601 dtrace_membar_producer(); 16602 state->dts_laststatus = dtrace_gethrtime(); 16603 16604 bzero(&stat, sizeof (stat)); 16605 16606 mutex_enter(&dtrace_lock); 16607 16608 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { 16609 mutex_exit(&dtrace_lock); 16610 return (ENOENT); 16611 } 16612 16613 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) 16614 stat.dtst_exiting = 1; 16615 16616 nerrs = state->dts_errors; 16617 dstate = &state->dts_vstate.dtvs_dynvars; 16618 16619 for (i = 0; i < NCPU; i++) { 16620 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i]; 16621 16622 stat.dtst_dyndrops += dcpu->dtdsc_drops; 16623 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; 16624 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; 16625 16626 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) 16627 stat.dtst_filled++; 16628 16629 nerrs += state->dts_buffer[i].dtb_errors; 16630 16631 for (j = 0; j < state->dts_nspeculations; j++) { 16632 dtrace_speculation_t *spec; 16633 dtrace_buffer_t *buf; 16634 16635 spec = &state->dts_speculations[j]; 16636 buf = &spec->dtsp_buffer[i]; 16637 stat.dtst_specdrops += buf->dtb_xamot_drops; 16638 } 16639 } 16640 16641 stat.dtst_specdrops_busy = state->dts_speculations_busy; 16642 stat.dtst_specdrops_unavail = state->dts_speculations_unavail; 16643 stat.dtst_stkstroverflows = state->dts_stkstroverflows; 16644 stat.dtst_dblerrors = state->dts_dblerrors; 16645 stat.dtst_killed = 16646 (state->dts_activity == DTRACE_ACTIVITY_KILLED); 16647 stat.dtst_errors = nerrs; 16648 16649 mutex_exit(&dtrace_lock); 16650 16651 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0) 16652 return (EFAULT); 16653 16654 return (0); 16655 } 16656 16657 case DTRACEIOC_FORMAT: { 16658 dtrace_fmtdesc_t fmt; 16659 char *str; 16660 int len; 16661 16662 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0) 16663 return (EFAULT); 16664 16665 mutex_enter(&dtrace_lock); 16666 16667 if (fmt.dtfd_format == 0 || 16668 fmt.dtfd_format > state->dts_nformats) { 16669 mutex_exit(&dtrace_lock); 16670 return (EINVAL); 16671 } 16672 16673 /* 16674 * Format strings are allocated contiguously and they are 16675 * never freed; if a format index is less than the number 16676 * of formats, we can assert that the format map is non-NULL 16677 * and that the format for the specified index is non-NULL. 16678 */ 16679 ASSERT(state->dts_formats != NULL); 16680 str = state->dts_formats[fmt.dtfd_format - 1]; 16681 ASSERT(str != NULL); 16682 16683 len = strlen(str) + 1; 16684 16685 if (len > fmt.dtfd_length) { 16686 fmt.dtfd_length = len; 16687 16688 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) { 16689 mutex_exit(&dtrace_lock); 16690 return (EINVAL); 16691 } 16692 } else { 16693 if (copyout(str, fmt.dtfd_string, len) != 0) { 16694 mutex_exit(&dtrace_lock); 16695 return (EINVAL); 16696 } 16697 } 16698 16699 mutex_exit(&dtrace_lock); 16700 return (0); 16701 } 16702 16703 default: 16704 break; 16705 } 16706 16707 return (ENOTTY); 16708 } 16709 16710 /*ARGSUSED*/ 16711 static int 16712 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 16713 { 16714 dtrace_state_t *state; 16715 16716 switch (cmd) { 16717 case DDI_DETACH: 16718 break; 16719 16720 case DDI_SUSPEND: 16721 return (DDI_SUCCESS); 16722 16723 default: 16724 return (DDI_FAILURE); 16725 } 16726 16727 mutex_enter(&cpu_lock); 16728 mutex_enter(&dtrace_provider_lock); 16729 mutex_enter(&dtrace_lock); 16730 16731 ASSERT(dtrace_opens == 0); 16732 16733 if (dtrace_helpers > 0) { 16734 mutex_exit(&dtrace_provider_lock); 16735 mutex_exit(&dtrace_lock); 16736 mutex_exit(&cpu_lock); 16737 return (DDI_FAILURE); 16738 } 16739 16740 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { 16741 mutex_exit(&dtrace_provider_lock); 16742 mutex_exit(&dtrace_lock); 16743 mutex_exit(&cpu_lock); 16744 return (DDI_FAILURE); 16745 } 16746 16747 dtrace_provider = NULL; 16748 16749 if ((state = dtrace_anon_grab()) != NULL) { 16750 /* 16751 * If there were ECBs on this state, the provider should 16752 * have not been allowed to detach; assert that there is 16753 * none. 16754 */ 16755 ASSERT(state->dts_necbs == 0); 16756 dtrace_state_destroy(state); 16757 16758 /* 16759 * If we're being detached with anonymous state, we need to 16760 * indicate to the kernel debugger that DTrace is now inactive. 16761 */ 16762 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); 16763 } 16764 16765 bzero(&dtrace_anon, sizeof (dtrace_anon_t)); 16766 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); 16767 dtrace_cpu_init = NULL; 16768 dtrace_helpers_cleanup = NULL; 16769 dtrace_helpers_fork = NULL; 16770 dtrace_cpustart_init = NULL; 16771 dtrace_cpustart_fini = NULL; 16772 dtrace_debugger_init = NULL; 16773 dtrace_debugger_fini = NULL; 16774 dtrace_modload = NULL; 16775 dtrace_modunload = NULL; 16776 16777 ASSERT(dtrace_getf == 0); 16778 ASSERT(dtrace_closef == NULL); 16779 16780 mutex_exit(&cpu_lock); 16781 16782 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); 16783 dtrace_probes = NULL; 16784 dtrace_nprobes = 0; 16785 16786 dtrace_hash_destroy(dtrace_bymod); 16787 dtrace_hash_destroy(dtrace_byfunc); 16788 dtrace_hash_destroy(dtrace_byname); 16789 dtrace_bymod = NULL; 16790 dtrace_byfunc = NULL; 16791 dtrace_byname = NULL; 16792 16793 kmem_cache_destroy(dtrace_state_cache); 16794 vmem_destroy(dtrace_minor); 16795 vmem_destroy(dtrace_arena); 16796 16797 if (dtrace_toxrange != NULL) { 16798 kmem_free(dtrace_toxrange, 16799 dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); 16800 dtrace_toxrange = NULL; 16801 dtrace_toxranges = 0; 16802 dtrace_toxranges_max = 0; 16803 } 16804 16805 ddi_remove_minor_node(dtrace_devi, NULL); 16806 dtrace_devi = NULL; 16807 16808 ddi_soft_state_fini(&dtrace_softstate); 16809 16810 ASSERT(dtrace_vtime_references == 0); 16811 ASSERT(dtrace_opens == 0); 16812 ASSERT(dtrace_retained == NULL); 16813 16814 mutex_exit(&dtrace_lock); 16815 mutex_exit(&dtrace_provider_lock); 16816 16817 /* 16818 * We don't destroy the task queue until after we have dropped our 16819 * locks (taskq_destroy() may block on running tasks). To prevent 16820 * attempting to do work after we have effectively detached but before 16821 * the task queue has been destroyed, all tasks dispatched via the 16822 * task queue must check that DTrace is still attached before 16823 * performing any operation. 16824 */ 16825 taskq_destroy(dtrace_taskq); 16826 dtrace_taskq = NULL; 16827 16828 return (DDI_SUCCESS); 16829 } 16830 16831 /*ARGSUSED*/ 16832 static int 16833 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 16834 { 16835 int error; 16836 16837 switch (infocmd) { 16838 case DDI_INFO_DEVT2DEVINFO: 16839 *result = (void *)dtrace_devi; 16840 error = DDI_SUCCESS; 16841 break; 16842 case DDI_INFO_DEVT2INSTANCE: 16843 *result = (void *)0; 16844 error = DDI_SUCCESS; 16845 break; 16846 default: 16847 error = DDI_FAILURE; 16848 } 16849 return (error); 16850 } 16851 16852 static struct cb_ops dtrace_cb_ops = { 16853 dtrace_open, /* open */ 16854 dtrace_close, /* close */ 16855 nulldev, /* strategy */ 16856 nulldev, /* print */ 16857 nodev, /* dump */ 16858 nodev, /* read */ 16859 nodev, /* write */ 16860 dtrace_ioctl, /* ioctl */ 16861 nodev, /* devmap */ 16862 nodev, /* mmap */ 16863 nodev, /* segmap */ 16864 nochpoll, /* poll */ 16865 ddi_prop_op, /* cb_prop_op */ 16866 0, /* streamtab */ 16867 D_NEW | D_MP /* Driver compatibility flag */ 16868 }; 16869 16870 static struct dev_ops dtrace_ops = { 16871 DEVO_REV, /* devo_rev */ 16872 0, /* refcnt */ 16873 dtrace_info, /* get_dev_info */ 16874 nulldev, /* identify */ 16875 nulldev, /* probe */ 16876 dtrace_attach, /* attach */ 16877 dtrace_detach, /* detach */ 16878 nodev, /* reset */ 16879 &dtrace_cb_ops, /* driver operations */ 16880 NULL, /* bus operations */ 16881 nodev, /* dev power */ 16882 ddi_quiesce_not_needed, /* quiesce */ 16883 }; 16884 16885 static struct modldrv modldrv = { 16886 &mod_driverops, /* module type (this is a pseudo driver) */ 16887 "Dynamic Tracing", /* name of module */ 16888 &dtrace_ops, /* driver ops */ 16889 }; 16890 16891 static struct modlinkage modlinkage = { 16892 MODREV_1, 16893 (void *)&modldrv, 16894 NULL 16895 }; 16896 16897 int 16898 _init(void) 16899 { 16900 return (mod_install(&modlinkage)); 16901 } 16902 16903 int 16904 _info(struct modinfo *modinfop) 16905 { 16906 return (mod_info(&modlinkage, modinfop)); 16907 } 16908 16909 int 16910 _fini(void) 16911 { 16912 return (mod_remove(&modlinkage)); 16913 } 16914