xref: /titanic_51/usr/src/uts/common/dtrace/dtrace.c (revision 1a7c1b724419d3cb5fa6eea75123c6b2060ba31b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace - Dynamic Tracing for Solaris
31  *
32  * This is the implementation of the Solaris Dynamic Tracing framework
33  * (DTrace).  The user-visible interface to DTrace is described at length in
34  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35  * library, the in-kernel DTrace framework, and the DTrace providers are
36  * described in the block comments in the <sys/dtrace.h> header file.  The
37  * internal architecture of DTrace is described in the block comments in the
38  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39  * implementation very much assume mastery of all of these sources; if one has
40  * an unanswered question about the implementation, one should consult them
41  * first.
42  *
43  * The functions here are ordered roughly as follows:
44  *
45  *   - Probe context functions
46  *   - Probe hashing functions
47  *   - Non-probe context utility functions
48  *   - Matching functions
49  *   - Provider-to-Framework API functions
50  *   - Probe management functions
51  *   - DIF object functions
52  *   - Format functions
53  *   - Predicate functions
54  *   - ECB functions
55  *   - Buffer functions
56  *   - Enabling functions
57  *   - DOF functions
58  *   - Anonymous enabling functions
59  *   - Consumer state functions
60  *   - Helper functions
61  *   - Hook functions
62  *   - Driver cookbook functions
63  *
64  * Each group of functions begins with a block comment labelled the "DTrace
65  * [Group] Functions", allowing one to find each block by searching forward
66  * on capital-f functions.
67  */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 
148 /*
149  * DTrace External Variables
150  *
151  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152  * available to DTrace consumers via the backtick (`) syntax.  One of these,
153  * dtrace_zero, is made deliberately so:  it is provided as a source of
154  * well-known, zero-filled memory.  While this variable is not documented,
155  * it is used by some translators as an implementation detail.
156  */
157 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158 
159 /*
160  * DTrace Internal Variables
161  */
162 static dev_info_t	*dtrace_devi;		/* device info */
163 static vmem_t		*dtrace_arena;		/* probe ID arena */
164 static vmem_t		*dtrace_minor;		/* minor number arena */
165 static taskq_t		*dtrace_taskq;		/* task queue */
166 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167 static int		dtrace_nprobes;		/* number of probes */
168 static dtrace_provider_t *dtrace_provider;	/* provider list */
169 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170 static int		dtrace_opens;		/* number of opens */
171 static void		*dtrace_softstate;	/* softstate pointer */
172 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
173 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
174 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
175 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
176 static int		dtrace_toxranges;	/* number of toxic ranges */
177 static int		dtrace_toxranges_max;	/* size of toxic range array */
178 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
179 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
180 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
181 static kthread_t	*dtrace_panicked;	/* panicking thread */
182 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
183 static int		dtrace_double_errors;	/* ERRORs inducing error */
184 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187 static dtrace_state_t	*dtrace_state;		/* temporary variable */
188 static int		dtrace_error;		/* temporary variable */
189 
190 /*
191  * DTrace Locking
192  * DTrace is protected by three (relatively coarse-grained) locks:
193  *
194  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
195  *     including enabling state, probes, ECBs, consumer state, helper state,
196  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
197  *     probe context is lock-free -- synchronization is handled via the
198  *     dtrace_sync() cross call mechanism.
199  *
200  * (2) dtrace_provider_lock is required when manipulating provider state, or
201  *     when provider state must be held constant.
202  *
203  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
204  *     when meta provider state must be held constant.
205  *
206  * The lock ordering between these three locks is dtrace_meta_lock before
207  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
208  * several places where dtrace_provider_lock is held by the framework as it
209  * calls into the providers -- which then call back into the framework,
210  * grabbing dtrace_lock.)
211  *
212  * There are two other locks in the mix:  mod_lock and cpu_lock.  cpu_lock
213  * continues its historical role as a coarse-grained lock; it is acquired
214  * before both dtrace_provider_lock and dtrace_lock.  mod_lock is slightly
215  * stranger:  it must be acquired _between_ dtrace_provider_lock and
216  * dtrace_lock.
217  */
218 static kmutex_t		dtrace_lock;		/* probe state lock */
219 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
220 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
221 
222 /*
223  * DTrace Provider Variables
224  *
225  * These are the variables relating to DTrace as a provider (that is, the
226  * provider of the BEGIN, END, and ERROR probes).
227  */
228 static dtrace_pattr_t	dtrace_provider_attr = {
229 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
230 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
231 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
232 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
233 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
234 };
235 
236 static void
237 dtrace_nullop(void)
238 {}
239 
240 static dtrace_pops_t	dtrace_provider_ops = {
241 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
242 	(void (*)(void *, struct modctl *))dtrace_nullop,
243 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
244 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	NULL,
248 	NULL,
249 	NULL,
250 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
251 };
252 
253 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
254 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
255 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
256 
257 /*
258  * DTrace Helper Tracing Variables
259  */
260 uint32_t dtrace_helptrace_next = 0;
261 uint32_t dtrace_helptrace_nlocals;
262 char	*dtrace_helptrace_buffer;
263 int	dtrace_helptrace_bufsize = 512 * 1024;
264 
265 #ifdef DEBUG
266 int	dtrace_helptrace_enabled = 1;
267 #else
268 int	dtrace_helptrace_enabled = 0;
269 #endif
270 
271 /*
272  * DTrace Error Hashing
273  *
274  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
275  * table.  This is very useful for checking coverage of tests that are
276  * expected to induce DIF or DOF processing errors, and may be useful for
277  * debugging problems in the DIF code generator or in DOF generation .  The
278  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
279  */
280 #ifdef DEBUG
281 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
282 static const char *dtrace_errlast;
283 static kthread_t *dtrace_errthread;
284 static kmutex_t dtrace_errlock;
285 #endif
286 
287 /*
288  * DTrace Macros and Constants
289  *
290  * These are various macros that are useful in various spots in the
291  * implementation, along with a few random constants that have no meaning
292  * outside of the implementation.  There is no real structure to this cpp
293  * mishmash -- but is there ever?
294  */
295 #define	DTRACE_HASHSTR(hash, probe)	\
296 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
297 
298 #define	DTRACE_HASHNEXT(hash, probe)	\
299 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
300 
301 #define	DTRACE_HASHPREV(hash, probe)	\
302 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
303 
304 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
305 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
306 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
307 
308 #define	DTRACE_AGGHASHSIZE_SLEW		17
309 
310 /*
311  * The key for a thread-local variable consists of the lower 61 bits of the
312  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
313  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
314  * equal to a variable identifier.  This is necessary (but not sufficient) to
315  * assure that global associative arrays never collide with thread-local
316  * variables.  To guarantee that they cannot collide, we must also define the
317  * order for keying dynamic variables.  That order is:
318  *
319  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
320  *
321  * Because the variable-key and the tls-key are in orthogonal spaces, there is
322  * no way for a global variable key signature to match a thread-local key
323  * signature.
324  */
325 #define	DTRACE_TLS_THRKEY(where) { \
326 	uint_t intr = 0; \
327 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
328 	for (; actv; actv >>= 1) \
329 		intr++; \
330 	ASSERT(intr < (1 << 3)); \
331 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
332 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
333 }
334 
335 #define	DTRACE_STORE(type, tomax, offset, what) \
336 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
337 
338 #ifndef __i386
339 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
340 	if (addr & (size - 1)) {					\
341 		*flags |= CPU_DTRACE_BADALIGN;				\
342 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
343 		return (0);						\
344 	}
345 #else
346 #define	DTRACE_ALIGNCHECK(addr, size, flags)
347 #endif
348 
349 #define	DTRACE_LOADFUNC(bits)						\
350 /*CSTYLED*/								\
351 uint##bits##_t								\
352 dtrace_load##bits(uintptr_t addr)					\
353 {									\
354 	size_t size = bits / NBBY;					\
355 	/*CSTYLED*/							\
356 	uint##bits##_t rval;						\
357 	int i;								\
358 	volatile uint16_t *flags = (volatile uint16_t *)		\
359 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
360 									\
361 	DTRACE_ALIGNCHECK(addr, size, flags);				\
362 									\
363 	for (i = 0; i < dtrace_toxranges; i++) {			\
364 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
365 			continue;					\
366 									\
367 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
368 			continue;					\
369 									\
370 		/*							\
371 		 * This address falls within a toxic region; return 0.	\
372 		 */							\
373 		*flags |= CPU_DTRACE_BADADDR;				\
374 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
375 		return (0);						\
376 	}								\
377 									\
378 	*flags |= CPU_DTRACE_NOFAULT;					\
379 	/*CSTYLED*/							\
380 	rval = *((volatile uint##bits##_t *)addr);			\
381 	*flags &= ~CPU_DTRACE_NOFAULT;					\
382 									\
383 	return (rval);							\
384 }
385 
386 #ifdef _LP64
387 #define	dtrace_loadptr	dtrace_load64
388 #else
389 #define	dtrace_loadptr	dtrace_load32
390 #endif
391 
392 #define	DTRACE_MATCH_NEXT	0
393 #define	DTRACE_MATCH_DONE	1
394 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
395 #define	DTRACE_STATE_ALIGN	64
396 
397 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
398 static void dtrace_enabling_provide(dtrace_provider_t *);
399 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
400 static void dtrace_enabling_matchall(void);
401 static dtrace_state_t *dtrace_anon_grab(void);
402 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
403     dtrace_state_t *, uint64_t, uint64_t);
404 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
405 static void dtrace_buffer_drop(dtrace_buffer_t *);
406 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
407     dtrace_state_t *, dtrace_mstate_t *);
408 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
409     dtrace_optval_t);
410 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
411 
412 /*
413  * DTrace Probe Context Functions
414  *
415  * These functions are called from probe context.  Because probe context is
416  * any context in which C may be called, arbitrarily locks may be held,
417  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
418  * As a result, functions called from probe context may only call other DTrace
419  * support functions -- they may not interact at all with the system at large.
420  * (Note that the ASSERT macro is made probe-context safe by redefining it in
421  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
422  * loads are to be performed from probe context, they _must_ be in terms of
423  * the safe dtrace_load*() variants.
424  *
425  * Some functions in this block are not actually called from probe context;
426  * for these functions, there will be a comment above the function reading
427  * "Note:  not called from probe context."
428  */
429 void
430 dtrace_panic(const char *format, ...)
431 {
432 	va_list alist;
433 
434 	va_start(alist, format);
435 	dtrace_vpanic(format, alist);
436 	va_end(alist);
437 }
438 
439 int
440 dtrace_assfail(const char *a, const char *f, int l)
441 {
442 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
443 
444 	/*
445 	 * We just need something here that even the most clever compiler
446 	 * cannot optimize away.
447 	 */
448 	return (a[(uintptr_t)f]);
449 }
450 
451 /*
452  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
453  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
454  */
455 DTRACE_LOADFUNC(8)
456 DTRACE_LOADFUNC(16)
457 DTRACE_LOADFUNC(32)
458 DTRACE_LOADFUNC(64)
459 
460 static int
461 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
462 {
463 	if (dest < mstate->dtms_scratch_base)
464 		return (0);
465 
466 	if (dest + size < dest)
467 		return (0);
468 
469 	if (dest + size > mstate->dtms_scratch_ptr)
470 		return (0);
471 
472 	return (1);
473 }
474 
475 static int
476 dtrace_canstore_statvar(uint64_t addr, size_t sz,
477     dtrace_statvar_t **svars, int nsvars)
478 {
479 	int i;
480 
481 	for (i = 0; i < nsvars; i++) {
482 		dtrace_statvar_t *svar = svars[i];
483 
484 		if (svar == NULL || svar->dtsv_size == 0)
485 			continue;
486 
487 		if (addr - svar->dtsv_data < svar->dtsv_size &&
488 		    addr + sz <= svar->dtsv_data + svar->dtsv_size)
489 			return (1);
490 	}
491 
492 	return (0);
493 }
494 
495 /*
496  * Check to see if the address is within a memory region to which a store may
497  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
498  * region.  The caller of dtrace_canstore() is responsible for performing any
499  * alignment checks that are needed before stores are actually executed.
500  */
501 static int
502 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
503     dtrace_vstate_t *vstate)
504 {
505 	uintptr_t a;
506 	size_t s;
507 
508 	/*
509 	 * First, check to see if the address is in scratch space...
510 	 */
511 	a = mstate->dtms_scratch_base;
512 	s = mstate->dtms_scratch_size;
513 
514 	if (addr - a < s && addr + sz <= a + s)
515 		return (1);
516 
517 	/*
518 	 * Now check to see if it's a dynamic variable.  This check will pick
519 	 * up both thread-local variables and any global dynamically-allocated
520 	 * variables.
521 	 */
522 	a = (uintptr_t)vstate->dtvs_dynvars.dtds_base;
523 	s = vstate->dtvs_dynvars.dtds_size;
524 	if (addr - a < s && addr + sz <= a + s)
525 		return (1);
526 
527 	/*
528 	 * Finally, check the static local and global variables.  These checks
529 	 * take the longest, so we perform them last.
530 	 */
531 	if (dtrace_canstore_statvar(addr, sz,
532 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
533 		return (1);
534 
535 	if (dtrace_canstore_statvar(addr, sz,
536 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
537 		return (1);
538 
539 	return (0);
540 }
541 
542 /*
543  * Compare two strings using safe loads.
544  */
545 static int
546 dtrace_strncmp(char *s1, char *s2, size_t limit)
547 {
548 	uint8_t c1, c2;
549 	volatile uint16_t *flags;
550 
551 	if (s1 == s2 || limit == 0)
552 		return (0);
553 
554 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
555 
556 	do {
557 		if (s1 == NULL) {
558 			c1 = '\0';
559 		} else {
560 			c1 = dtrace_load8((uintptr_t)s1++);
561 		}
562 
563 		if (s2 == NULL) {
564 			c2 = '\0';
565 		} else {
566 			c2 = dtrace_load8((uintptr_t)s2++);
567 		}
568 
569 		if (c1 != c2)
570 			return (c1 - c2);
571 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
572 
573 	return (0);
574 }
575 
576 /*
577  * Compute strlen(s) for a string using safe memory accesses.  The additional
578  * len parameter is used to specify a maximum length to ensure completion.
579  */
580 static size_t
581 dtrace_strlen(const char *s, size_t lim)
582 {
583 	uint_t len;
584 
585 	for (len = 0; len != lim; len++) {
586 		if (dtrace_load8((uintptr_t)s++) == '\0')
587 			break;
588 	}
589 
590 	return (len);
591 }
592 
593 /*
594  * Check if an address falls within a toxic region.
595  */
596 static int
597 dtrace_istoxic(uintptr_t kaddr, size_t size)
598 {
599 	uintptr_t taddr, tsize;
600 	int i;
601 
602 	for (i = 0; i < dtrace_toxranges; i++) {
603 		taddr = dtrace_toxrange[i].dtt_base;
604 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
605 
606 		if (kaddr - taddr < tsize) {
607 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
608 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
609 			return (1);
610 		}
611 
612 		if (taddr - kaddr < size) {
613 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
614 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
615 			return (1);
616 		}
617 	}
618 
619 	return (0);
620 }
621 
622 /*
623  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
624  * memory specified by the DIF program.  The dst is assumed to be safe memory
625  * that we can store to directly because it is managed by DTrace.  As with
626  * standard bcopy, overlapping copies are handled properly.
627  */
628 static void
629 dtrace_bcopy(const void *src, void *dst, size_t len)
630 {
631 	if (len != 0) {
632 		uint8_t *s1 = dst;
633 		const uint8_t *s2 = src;
634 
635 		if (s1 <= s2) {
636 			do {
637 				*s1++ = dtrace_load8((uintptr_t)s2++);
638 			} while (--len != 0);
639 		} else {
640 			s2 += len;
641 			s1 += len;
642 
643 			do {
644 				*--s1 = dtrace_load8((uintptr_t)--s2);
645 			} while (--len != 0);
646 		}
647 	}
648 }
649 
650 /*
651  * Copy src to dst using safe memory accesses, up to either the specified
652  * length, or the point that a nul byte is encountered.  The src is assumed to
653  * be unsafe memory specified by the DIF program.  The dst is assumed to be
654  * safe memory that we can store to directly because it is managed by DTrace.
655  * Unlike dtrace_bcopy(), overlapping regions are not handled.
656  */
657 static void
658 dtrace_strcpy(const void *src, void *dst, size_t len)
659 {
660 	if (len != 0) {
661 		uint8_t *s1 = dst, c;
662 		const uint8_t *s2 = src;
663 
664 		do {
665 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
666 		} while (--len != 0 && c != '\0');
667 	}
668 }
669 
670 /*
671  * Copy src to dst, deriving the size and type from the specified (BYREF)
672  * variable type.  The src is assumed to be unsafe memory specified by the DIF
673  * program.  The dst is assumed to be DTrace variable memory that is of the
674  * specified type; we assume that we can store to directly.
675  */
676 static void
677 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
678 {
679 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
680 
681 	if (type->dtdt_kind == DIF_TYPE_STRING) {
682 		dtrace_strcpy(src, dst, type->dtdt_size);
683 	} else {
684 		dtrace_bcopy(src, dst, type->dtdt_size);
685 	}
686 }
687 
688 /*
689  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
690  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
691  * safe memory that we can access directly because it is managed by DTrace.
692  */
693 static int
694 dtrace_bcmp(const void *s1, const void *s2, size_t len)
695 {
696 	volatile uint16_t *flags;
697 
698 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
699 
700 	if (s1 == s2)
701 		return (0);
702 
703 	if (s1 == NULL || s2 == NULL)
704 		return (1);
705 
706 	if (s1 != s2 && len != 0) {
707 		const uint8_t *ps1 = s1;
708 		const uint8_t *ps2 = s2;
709 
710 		do {
711 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
712 				return (1);
713 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
714 	}
715 	return (0);
716 }
717 
718 /*
719  * Zero the specified region using a simple byte-by-byte loop.  Note that this
720  * is for safe DTrace-managed memory only.
721  */
722 static void
723 dtrace_bzero(void *dst, size_t len)
724 {
725 	uchar_t *cp;
726 
727 	for (cp = dst; len != 0; len--)
728 		*cp++ = 0;
729 }
730 
731 /*
732  * This privilege checks should be used by actions and subroutines to
733  * verify the credentials of the process that enabled the invoking ECB.
734  */
735 static int
736 dtrace_priv_proc_common(dtrace_state_t *state)
737 {
738 	uid_t uid = state->dts_cred.dcr_uid;
739 	gid_t gid = state->dts_cred.dcr_gid;
740 	cred_t *cr;
741 	proc_t *proc;
742 
743 	if ((cr = CRED()) != NULL &&
744 	    uid == cr->cr_uid &&
745 	    uid == cr->cr_ruid &&
746 	    uid == cr->cr_suid &&
747 	    gid == cr->cr_gid &&
748 	    gid == cr->cr_rgid &&
749 	    gid == cr->cr_sgid &&
750 	    (proc = ttoproc(curthread)) != NULL &&
751 	    !(proc->p_flag & SNOCD))
752 		return (1);
753 
754 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
755 
756 	return (0);
757 }
758 
759 static int
760 dtrace_priv_proc_destructive(dtrace_state_t *state)
761 {
762 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_DESTRUCTIVE)
763 		return (1);
764 
765 	return (dtrace_priv_proc_common(state));
766 }
767 
768 static int
769 dtrace_priv_proc_control(dtrace_state_t *state)
770 {
771 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
772 		return (1);
773 
774 	return (dtrace_priv_proc_common(state));
775 }
776 
777 static int
778 dtrace_priv_proc(dtrace_state_t *state)
779 {
780 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
781 		return (1);
782 
783 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
784 
785 	return (0);
786 }
787 
788 static int
789 dtrace_priv_kernel(dtrace_state_t *state)
790 {
791 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
792 		return (1);
793 
794 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
795 
796 	return (0);
797 }
798 
799 static int
800 dtrace_priv_kernel_destructive(dtrace_state_t *state)
801 {
802 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
803 		return (1);
804 
805 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
806 
807 	return (0);
808 }
809 
810 /*
811  * Note:  not called from probe context.  This function is called
812  * asynchronously (and at a regular interval) from outside of probe context to
813  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
814  * cleaning is explained in detail in <sys/dtrace_impl.h>.
815  */
816 void
817 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
818 {
819 	dtrace_dynvar_t *dirty;
820 	dtrace_dstate_percpu_t *dcpu;
821 	int i, work = 0;
822 
823 	for (i = 0; i < NCPU; i++) {
824 		dcpu = &dstate->dtds_percpu[i];
825 
826 		ASSERT(dcpu->dtdsc_rinsing == NULL);
827 
828 		/*
829 		 * If the dirty list is NULL, there is no dirty work to do.
830 		 */
831 		if (dcpu->dtdsc_dirty == NULL)
832 			continue;
833 
834 		/*
835 		 * If the clean list is non-NULL, then we're not going to do
836 		 * any work for this CPU -- it means that there has not been
837 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
838 		 * since the last time we cleaned house.
839 		 */
840 		if (dcpu->dtdsc_clean != NULL)
841 			continue;
842 
843 		work = 1;
844 
845 		/*
846 		 * Atomically move the dirty list aside.
847 		 */
848 		do {
849 			dirty = dcpu->dtdsc_dirty;
850 
851 			/*
852 			 * Before we zap the dirty list, set the rinsing list.
853 			 * (This allows for a potential assertion in
854 			 * dtrace_dynvar():  if a free dynamic variable appears
855 			 * on a hash chain, either the dirty list or the
856 			 * rinsing list for some CPU must be non-NULL.)
857 			 */
858 			dcpu->dtdsc_rinsing = dirty;
859 			dtrace_membar_producer();
860 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
861 		    dirty, NULL) != dirty);
862 	}
863 
864 	if (!work) {
865 		/*
866 		 * We have no work to do; we can simply return.
867 		 */
868 		return;
869 	}
870 
871 	dtrace_sync();
872 
873 	for (i = 0; i < NCPU; i++) {
874 		dcpu = &dstate->dtds_percpu[i];
875 
876 		if (dcpu->dtdsc_rinsing == NULL)
877 			continue;
878 
879 		/*
880 		 * We are now guaranteed that no hash chain contains a pointer
881 		 * into this dirty list; we can make it clean.
882 		 */
883 		ASSERT(dcpu->dtdsc_clean == NULL);
884 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
885 		dcpu->dtdsc_rinsing = NULL;
886 	}
887 
888 	/*
889 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
890 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
891 	 * This prevents a race whereby a CPU incorrectly decides that
892 	 * the state should be something other than DTRACE_DSTATE_CLEAN
893 	 * after dtrace_dynvar_clean() has completed.
894 	 */
895 	dtrace_sync();
896 
897 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
898 }
899 
900 /*
901  * Depending on the value of the op parameter, this function looks-up,
902  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
903  * allocation is requested, this function will return a pointer to a
904  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
905  * variable can be allocated.  If NULL is returned, the appropriate counter
906  * will be incremented.
907  */
908 dtrace_dynvar_t *
909 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
910     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op)
911 {
912 	uint64_t hashval = 1;
913 	dtrace_dynhash_t *hash = dstate->dtds_hash;
914 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
915 	processorid_t me = CPU->cpu_id, cpu = me;
916 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
917 	size_t bucket, ksize;
918 	size_t chunksize = dstate->dtds_chunksize;
919 	uintptr_t kdata, lock, nstate;
920 	uint_t i;
921 
922 	ASSERT(nkeys != 0);
923 
924 	/*
925 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
926 	 * algorithm.  For the by-value portions, we perform the algorithm in
927 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
928 	 * bit, and seems to have only a minute effect on distribution.  For
929 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
930 	 * over each referenced byte.  It's painful to do this, but it's much
931 	 * better than pathological hash distribution.  The efficacy of the
932 	 * hashing algorithm (and a comparison with other algorithms) may be
933 	 * found by running the ::dtrace_dynstat MDB dcmd.
934 	 */
935 	for (i = 0; i < nkeys; i++) {
936 		if (key[i].dttk_size == 0) {
937 			uint64_t val = key[i].dttk_value;
938 
939 			hashval += (val >> 48) & 0xffff;
940 			hashval += (hashval << 10);
941 			hashval ^= (hashval >> 6);
942 
943 			hashval += (val >> 32) & 0xffff;
944 			hashval += (hashval << 10);
945 			hashval ^= (hashval >> 6);
946 
947 			hashval += (val >> 16) & 0xffff;
948 			hashval += (hashval << 10);
949 			hashval ^= (hashval >> 6);
950 
951 			hashval += val & 0xffff;
952 			hashval += (hashval << 10);
953 			hashval ^= (hashval >> 6);
954 		} else {
955 			/*
956 			 * This is incredibly painful, but it beats the hell
957 			 * out of the alternative.
958 			 */
959 			uint64_t j, size = key[i].dttk_size;
960 			uintptr_t base = (uintptr_t)key[i].dttk_value;
961 
962 			for (j = 0; j < size; j++) {
963 				hashval += dtrace_load8(base + j);
964 				hashval += (hashval << 10);
965 				hashval ^= (hashval >> 6);
966 			}
967 		}
968 	}
969 
970 	hashval += (hashval << 3);
971 	hashval ^= (hashval >> 11);
972 	hashval += (hashval << 15);
973 
974 	/*
975 	 * There is a remote chance (ideally, 1 in 2^32) that our hashval
976 	 * comes out to be 0.  We rely on a zero hashval denoting a free
977 	 * element; if this actually happens, we set the hashval to 1.
978 	 */
979 	if (hashval == 0)
980 		hashval = 1;
981 
982 	/*
983 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
984 	 * important here, tricks can be pulled to reduce it.  (However, it's
985 	 * critical that hash collisions be kept to an absolute minimum;
986 	 * they're much more painful than a divide.)  It's better to have a
987 	 * solution that generates few collisions and still keeps things
988 	 * relatively simple.
989 	 */
990 	bucket = hashval % dstate->dtds_hashsize;
991 
992 	if (op == DTRACE_DYNVAR_DEALLOC) {
993 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
994 
995 		for (;;) {
996 			while ((lock = *lockp) & 1)
997 				continue;
998 
999 			if (dtrace_casptr((void *)lockp,
1000 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1001 				break;
1002 		}
1003 
1004 		dtrace_membar_producer();
1005 	}
1006 
1007 top:
1008 	prev = NULL;
1009 	lock = hash[bucket].dtdh_lock;
1010 
1011 	dtrace_membar_consumer();
1012 
1013 	start = hash[bucket].dtdh_chain;
1014 	ASSERT(start == NULL || start->dtdv_hashval != 0 ||
1015 	    op != DTRACE_DYNVAR_DEALLOC);
1016 
1017 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1018 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1019 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1020 
1021 		if (dvar->dtdv_hashval != hashval) {
1022 			if (dvar->dtdv_hashval == 0) {
1023 				/*
1024 				 * We've gone off the rails.  Somewhere
1025 				 * along the line, one of the members of this
1026 				 * hash chain was deleted.  We could assert
1027 				 * that either the dirty list or the rinsing
1028 				 * list is non-NULL.  (The dtrace_sync() in
1029 				 * dtrace_dynvar_clean() would validate this
1030 				 * assertion.)
1031 				 */
1032 				ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1033 				goto top;
1034 			}
1035 
1036 			goto next;
1037 		}
1038 
1039 		if (dtuple->dtt_nkeys != nkeys)
1040 			goto next;
1041 
1042 		for (i = 0; i < nkeys; i++, dkey++) {
1043 			if (dkey->dttk_size != key[i].dttk_size)
1044 				goto next; /* size or type mismatch */
1045 
1046 			if (dkey->dttk_size != 0) {
1047 				if (dtrace_bcmp(
1048 				    (void *)(uintptr_t)key[i].dttk_value,
1049 				    (void *)(uintptr_t)dkey->dttk_value,
1050 				    dkey->dttk_size))
1051 					goto next;
1052 			} else {
1053 				if (dkey->dttk_value != key[i].dttk_value)
1054 					goto next;
1055 			}
1056 		}
1057 
1058 		if (op != DTRACE_DYNVAR_DEALLOC)
1059 			return (dvar);
1060 
1061 		ASSERT(dvar->dtdv_next == NULL ||
1062 		    dvar->dtdv_next->dtdv_hashval != 0);
1063 
1064 		if (prev != NULL) {
1065 			ASSERT(hash[bucket].dtdh_chain != dvar);
1066 			ASSERT(start != dvar);
1067 			ASSERT(prev->dtdv_next == dvar);
1068 			prev->dtdv_next = dvar->dtdv_next;
1069 		} else {
1070 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1071 			    start, dvar->dtdv_next) != start) {
1072 				/*
1073 				 * We have failed to atomically swing the
1074 				 * hash table head pointer, presumably because
1075 				 * of a conflicting allocation on another CPU.
1076 				 * We need to reread the hash chain and try
1077 				 * again.
1078 				 */
1079 				goto top;
1080 			}
1081 		}
1082 
1083 		dtrace_membar_producer();
1084 
1085 		/*
1086 		 * Now clear the hash value to indicate that it's free.
1087 		 */
1088 		ASSERT(hash[bucket].dtdh_chain != dvar);
1089 		dvar->dtdv_hashval = 0;
1090 
1091 		dtrace_membar_producer();
1092 
1093 		/*
1094 		 * Set the next pointer to point at the dirty list, and
1095 		 * atomically swing the dirty pointer to the newly freed dvar.
1096 		 */
1097 		do {
1098 			next = dcpu->dtdsc_dirty;
1099 			dvar->dtdv_next = next;
1100 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1101 
1102 		/*
1103 		 * Finally, unlock this hash bucket.
1104 		 */
1105 		ASSERT(hash[bucket].dtdh_lock == lock);
1106 		ASSERT(lock & 1);
1107 		hash[bucket].dtdh_lock++;
1108 
1109 		return (NULL);
1110 next:
1111 		prev = dvar;
1112 		continue;
1113 	}
1114 
1115 	if (op != DTRACE_DYNVAR_ALLOC) {
1116 		/*
1117 		 * If we are not to allocate a new variable, we want to
1118 		 * return NULL now.  Before we return, check that the value
1119 		 * of the lock word hasn't changed.  If it has, we may have
1120 		 * seen an inconsistent snapshot.
1121 		 */
1122 		if (op == DTRACE_DYNVAR_NOALLOC) {
1123 			if (hash[bucket].dtdh_lock != lock)
1124 				goto top;
1125 		} else {
1126 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1127 			ASSERT(hash[bucket].dtdh_lock == lock);
1128 			ASSERT(lock & 1);
1129 			hash[bucket].dtdh_lock++;
1130 		}
1131 
1132 		return (NULL);
1133 	}
1134 
1135 	/*
1136 	 * We need to allocate a new dynamic variable.  The size we need is the
1137 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1138 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1139 	 * the size of any referred-to data (dsize).  We then round the final
1140 	 * size up to the chunksize for allocation.
1141 	 */
1142 	for (ksize = 0, i = 0; i < nkeys; i++)
1143 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1144 
1145 	/*
1146 	 * This should be pretty much impossible, but could happen if, say,
1147 	 * strange DIF specified the tuple.  Ideally, this should be an
1148 	 * assertion and not an error condition -- but that requires that the
1149 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1150 	 * bullet-proof.  (That is, it must not be able to be fooled by
1151 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1152 	 * solving this would presumably not amount to solving the Halting
1153 	 * Problem -- but it still seems awfully hard.
1154 	 */
1155 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1156 	    ksize + dsize > chunksize) {
1157 		dcpu->dtdsc_drops++;
1158 		return (NULL);
1159 	}
1160 
1161 	nstate = DTRACE_DSTATE_EMPTY;
1162 
1163 	do {
1164 retry:
1165 		free = dcpu->dtdsc_free;
1166 
1167 		if (free == NULL) {
1168 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1169 			void *rval;
1170 
1171 			if (clean == NULL) {
1172 				/*
1173 				 * We're out of dynamic variable space on
1174 				 * this CPU.  Unless we have tried all CPUs,
1175 				 * we'll try to allocate from a different
1176 				 * CPU.
1177 				 */
1178 				switch (dstate->dtds_state) {
1179 				case DTRACE_DSTATE_CLEAN: {
1180 					void *sp = &dstate->dtds_state;
1181 
1182 					if (++cpu >= NCPU)
1183 						cpu = 0;
1184 
1185 					if (dcpu->dtdsc_dirty != NULL &&
1186 					    nstate == DTRACE_DSTATE_EMPTY)
1187 						nstate = DTRACE_DSTATE_DIRTY;
1188 
1189 					if (dcpu->dtdsc_rinsing != NULL)
1190 						nstate = DTRACE_DSTATE_RINSING;
1191 
1192 					dcpu = &dstate->dtds_percpu[cpu];
1193 
1194 					if (cpu != me)
1195 						goto retry;
1196 
1197 					(void) dtrace_cas32(sp,
1198 					    DTRACE_DSTATE_CLEAN, nstate);
1199 
1200 					/*
1201 					 * To increment the correct bean
1202 					 * counter, take another lap.
1203 					 */
1204 					goto retry;
1205 				}
1206 
1207 				case DTRACE_DSTATE_DIRTY:
1208 					dcpu->dtdsc_dirty_drops++;
1209 					break;
1210 
1211 				case DTRACE_DSTATE_RINSING:
1212 					dcpu->dtdsc_rinsing_drops++;
1213 					break;
1214 
1215 				case DTRACE_DSTATE_EMPTY:
1216 					dcpu->dtdsc_drops++;
1217 					break;
1218 				}
1219 
1220 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1221 				return (NULL);
1222 			}
1223 
1224 			/*
1225 			 * The clean list appears to be non-empty.  We want to
1226 			 * move the clean list to the free list; we start by
1227 			 * moving the clean pointer aside.
1228 			 */
1229 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1230 			    clean, NULL) != clean) {
1231 				/*
1232 				 * We are in one of two situations:
1233 				 *
1234 				 *  (a)	The clean list was switched to the
1235 				 *	free list by another CPU.
1236 				 *
1237 				 *  (b)	The clean list was added to by the
1238 				 *	cleansing cyclic.
1239 				 *
1240 				 * In either of these situations, we can
1241 				 * just reattempt the free list allocation.
1242 				 */
1243 				goto retry;
1244 			}
1245 
1246 			ASSERT(clean->dtdv_hashval == 0);
1247 
1248 			/*
1249 			 * Now we'll move the clean list to the free list.
1250 			 * It's impossible for this to fail:  the only way
1251 			 * the free list can be updated is through this
1252 			 * code path, and only one CPU can own the clean list.
1253 			 * Thus, it would only be possible for this to fail if
1254 			 * this code were racing with dtrace_dynvar_clean().
1255 			 * (That is, if dtrace_dynvar_clean() updated the clean
1256 			 * list, and we ended up racing to update the free
1257 			 * list.)  This race is prevented by the dtrace_sync()
1258 			 * in dtrace_dynvar_clean() -- which flushes the
1259 			 * owners of the clean lists out before resetting
1260 			 * the clean lists.
1261 			 */
1262 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1263 			ASSERT(rval == NULL);
1264 			goto retry;
1265 		}
1266 
1267 		dvar = free;
1268 		new_free = dvar->dtdv_next;
1269 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1270 
1271 	/*
1272 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1273 	 * tuple array and copy any referenced key data into the data space
1274 	 * following the tuple array.  As we do this, we relocate dttk_value
1275 	 * in the final tuple to point to the key data address in the chunk.
1276 	 */
1277 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1278 	dvar->dtdv_data = (void *)(kdata + ksize);
1279 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1280 
1281 	for (i = 0; i < nkeys; i++) {
1282 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1283 		size_t kesize = key[i].dttk_size;
1284 
1285 		if (kesize != 0) {
1286 			dtrace_bcopy(
1287 			    (const void *)(uintptr_t)key[i].dttk_value,
1288 			    (void *)kdata, kesize);
1289 			dkey->dttk_value = kdata;
1290 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1291 		} else {
1292 			dkey->dttk_value = key[i].dttk_value;
1293 		}
1294 
1295 		dkey->dttk_size = kesize;
1296 	}
1297 
1298 	ASSERT(dvar->dtdv_hashval == 0);
1299 	dvar->dtdv_hashval = hashval;
1300 	dvar->dtdv_next = start;
1301 
1302 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1303 		return (dvar);
1304 
1305 	/*
1306 	 * The cas has failed.  Either another CPU is adding an element to
1307 	 * this hash chain, or another CPU is deleting an element from this
1308 	 * hash chain.  The simplest way to deal with both of these cases
1309 	 * (though not necessarily the most efficient) is to free our
1310 	 * allocated block and tail-call ourselves.  Note that the free is
1311 	 * to the dirty list and _not_ to the free list.  This is to prevent
1312 	 * races with allocators, above.
1313 	 */
1314 	dvar->dtdv_hashval = 0;
1315 
1316 	dtrace_membar_producer();
1317 
1318 	do {
1319 		free = dcpu->dtdsc_dirty;
1320 		dvar->dtdv_next = free;
1321 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1322 
1323 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op));
1324 }
1325 
1326 static void
1327 dtrace_aggregate_min(uint64_t *oval, uint64_t nval)
1328 {
1329 	if (nval < *oval)
1330 		*oval = nval;
1331 }
1332 
1333 static void
1334 dtrace_aggregate_max(uint64_t *oval, uint64_t nval)
1335 {
1336 	if (nval > *oval)
1337 		*oval = nval;
1338 }
1339 
1340 static void
1341 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval)
1342 {
1343 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1344 	int64_t val = (int64_t)nval;
1345 
1346 	if (val < 0) {
1347 		for (i = 0; i < zero; i++) {
1348 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1349 				quanta[i]++;
1350 				return;
1351 			}
1352 		}
1353 	} else {
1354 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1355 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1356 				quanta[i - 1]++;
1357 				return;
1358 			}
1359 		}
1360 
1361 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1]++;
1362 		return;
1363 	}
1364 
1365 	ASSERT(0);
1366 }
1367 
1368 static void
1369 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval)
1370 {
1371 	uint64_t arg = *lquanta++;
1372 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1373 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1374 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1375 	int32_t val = (int32_t)nval, level;
1376 
1377 	ASSERT(step != 0);
1378 	ASSERT(levels != 0);
1379 
1380 	if (val < base) {
1381 		/*
1382 		 * This is an underflow.
1383 		 */
1384 		lquanta[0]++;
1385 		return;
1386 	}
1387 
1388 	level = (val - base) / step;
1389 
1390 	if (level < levels) {
1391 		lquanta[level + 1]++;
1392 		return;
1393 	}
1394 
1395 	/*
1396 	 * This is an overflow.
1397 	 */
1398 	lquanta[levels + 1]++;
1399 }
1400 
1401 static void
1402 dtrace_aggregate_avg(uint64_t *data, uint64_t nval)
1403 {
1404 	data[0]++;
1405 	data[1] += nval;
1406 }
1407 
1408 /*ARGSUSED*/
1409 static void
1410 dtrace_aggregate_count(uint64_t *oval, uint64_t nval)
1411 {
1412 	*oval = *oval + 1;
1413 }
1414 
1415 /*ARGSUSED*/
1416 static void
1417 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval)
1418 {
1419 	*oval += nval;
1420 }
1421 
1422 /*
1423  * Aggregate given the tuple in the principal data buffer, and the aggregating
1424  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1425  * buffer is specified as the buf parameter.  This routine does not return
1426  * failure; if there is no space in the aggregation buffer, the data will be
1427  * dropped, and a corresponding counter incremented.
1428  */
1429 static void
1430 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1431     intptr_t offset, dtrace_buffer_t *buf, uint64_t arg)
1432 {
1433 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1434 	uint32_t i, ndx, size, fsize;
1435 	uint32_t align = sizeof (uint64_t) - 1;
1436 	dtrace_aggbuffer_t *agb;
1437 	dtrace_aggkey_t *key;
1438 	uint32_t hashval = 0;
1439 	caddr_t tomax, data, kdata;
1440 	dtrace_actkind_t action;
1441 	uintptr_t offs;
1442 
1443 	if (buf == NULL)
1444 		return;
1445 
1446 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1447 	size = rec->dtrd_offset - agg->dtag_base;
1448 	fsize = size + rec->dtrd_size;
1449 
1450 	ASSERT(dbuf->dtb_tomax != NULL);
1451 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1452 
1453 	if ((tomax = buf->dtb_tomax) == NULL) {
1454 		dtrace_buffer_drop(buf);
1455 		return;
1456 	}
1457 
1458 	/*
1459 	 * The metastructure is always at the bottom of the buffer.
1460 	 */
1461 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1462 	    sizeof (dtrace_aggbuffer_t));
1463 
1464 	if (buf->dtb_offset == 0) {
1465 		/*
1466 		 * We just kludge up approximately 1/8th of the size to be
1467 		 * buckets.  If this guess ends up being routinely
1468 		 * off-the-mark, we may need to dynamically readjust this
1469 		 * based on past performance.
1470 		 */
1471 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1472 
1473 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1474 		    (uintptr_t)tomax || hashsize == 0) {
1475 			/*
1476 			 * We've been given a ludicrously small buffer;
1477 			 * increment our drop count and leave.
1478 			 */
1479 			dtrace_buffer_drop(buf);
1480 			return;
1481 		}
1482 
1483 		/*
1484 		 * And now, a pathetic attempt to try to get a an odd (or
1485 		 * perchance, a prime) hash size for better hash distribution.
1486 		 */
1487 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1488 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1489 
1490 		agb->dtagb_hashsize = hashsize;
1491 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1492 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1493 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1494 
1495 		for (i = 0; i < agb->dtagb_hashsize; i++)
1496 			agb->dtagb_hash[i] = NULL;
1497 	}
1498 
1499 	/*
1500 	 * Calculate the hash value based on the key.  Note that we _don't_
1501 	 * include the aggid in the hashing (but we will store it as part of
1502 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1503 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1504 	 * gets good distribution in practice.  The efficacy of the hashing
1505 	 * algorithm (and a comparison with other algorithms) may be found by
1506 	 * running the ::dtrace_aggstat MDB dcmd.
1507 	 */
1508 	for (i = sizeof (dtrace_aggid_t); i < size; i++) {
1509 		hashval += data[i];
1510 		hashval += (hashval << 10);
1511 		hashval ^= (hashval >> 6);
1512 	}
1513 
1514 	hashval += (hashval << 3);
1515 	hashval ^= (hashval >> 11);
1516 	hashval += (hashval << 15);
1517 
1518 	/*
1519 	 * Yes, the divide here is expensive.  If the cycle count here becomes
1520 	 * prohibitive, we can do tricks to eliminate it.
1521 	 */
1522 	ndx = hashval % agb->dtagb_hashsize;
1523 
1524 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1525 		ASSERT((caddr_t)key >= tomax);
1526 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1527 
1528 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1529 			continue;
1530 
1531 		kdata = key->dtak_data;
1532 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1533 
1534 		for (i = sizeof (dtrace_aggid_t); i < size; i++) {
1535 			if (kdata[i] != data[i])
1536 				goto next;
1537 		}
1538 
1539 		if (action != key->dtak_action) {
1540 			/*
1541 			 * We are aggregating on the same value in the same
1542 			 * aggregation with two different aggregating actions.
1543 			 * (This should have been picked up in the compiler,
1544 			 * so we may be dealing with errant or devious DIF.)
1545 			 * This is an error condition; we indicate as much,
1546 			 * and return.
1547 			 */
1548 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1549 			return;
1550 		}
1551 
1552 		/*
1553 		 * This is a hit:  we need to apply the aggregator to
1554 		 * the value at this key.
1555 		 */
1556 		agg->dtag_aggregate((uint64_t *)(kdata + size), arg);
1557 		return;
1558 next:
1559 		continue;
1560 	}
1561 
1562 	/*
1563 	 * We didn't find it.  We need to allocate some zero-filled space,
1564 	 * link it into the hash table appropriately, and apply the aggregator
1565 	 * to the (zero-filled) value.
1566 	 */
1567 	offs = buf->dtb_offset;
1568 	while (offs & (align - 1))
1569 		offs += sizeof (uint32_t);
1570 
1571 	/*
1572 	 * If we don't have enough room to both allocate a new key _and_
1573 	 * its associated data, increment the drop count and return.
1574 	 */
1575 	if ((uintptr_t)tomax + offs + fsize >
1576 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1577 		dtrace_buffer_drop(buf);
1578 		return;
1579 	}
1580 
1581 	/*CONSTCOND*/
1582 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1583 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1584 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1585 
1586 	key->dtak_data = kdata = tomax + offs;
1587 	buf->dtb_offset = offs + fsize;
1588 
1589 	/*
1590 	 * Now copy the data across.
1591 	 */
1592 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1593 
1594 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1595 		kdata[i] = data[i];
1596 
1597 	for (i = size; i < fsize; i++)
1598 		kdata[i] = 0;
1599 
1600 	key->dtak_hashval = hashval;
1601 	key->dtak_size = size;
1602 	key->dtak_action = action;
1603 	key->dtak_next = agb->dtagb_hash[ndx];
1604 	agb->dtagb_hash[ndx] = key;
1605 
1606 	/*
1607 	 * Finally, apply the aggregator.
1608 	 */
1609 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1610 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), arg);
1611 }
1612 
1613 /*
1614  * Given consumer state, this routine finds a speculation in the INACTIVE
1615  * state and transitions it into the ACTIVE state.  If there is no speculation
1616  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1617  * incremented -- it is up to the caller to take appropriate action.
1618  */
1619 static int
1620 dtrace_speculation(dtrace_state_t *state)
1621 {
1622 	int i = 0;
1623 	dtrace_speculation_state_t current;
1624 	uint32_t *stat = &state->dts_speculations_unavail, count;
1625 
1626 	while (i < state->dts_nspeculations) {
1627 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1628 
1629 		current = spec->dtsp_state;
1630 
1631 		if (current != DTRACESPEC_INACTIVE) {
1632 			if (current == DTRACESPEC_COMMITTINGMANY ||
1633 			    current == DTRACESPEC_COMMITTING ||
1634 			    current == DTRACESPEC_DISCARDING)
1635 				stat = &state->dts_speculations_busy;
1636 			i++;
1637 			continue;
1638 		}
1639 
1640 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1641 		    current, DTRACESPEC_ACTIVE) == current)
1642 			return (i + 1);
1643 	}
1644 
1645 	/*
1646 	 * We couldn't find a speculation.  If we found as much as a single
1647 	 * busy speculation buffer, we'll attribute this failure as "busy"
1648 	 * instead of "unavail".
1649 	 */
1650 	do {
1651 		count = *stat;
1652 	} while (dtrace_cas32(stat, count, count + 1) != count);
1653 
1654 	return (0);
1655 }
1656 
1657 /*
1658  * This routine commits an active speculation.  If the specified speculation
1659  * is not in a valid state to perform a commit(), this routine will silently do
1660  * nothing.  The state of the specified speculation is transitioned according
1661  * to the state transition diagram outlined in <sys/dtrace_impl.h>
1662  */
1663 static void
1664 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
1665     dtrace_specid_t which)
1666 {
1667 	dtrace_speculation_t *spec;
1668 	dtrace_buffer_t *src, *dest;
1669 	uintptr_t daddr, saddr, dlimit;
1670 	dtrace_speculation_state_t current, new;
1671 	intptr_t offs;
1672 
1673 	if (which == 0)
1674 		return;
1675 
1676 	if (which > state->dts_nspeculations) {
1677 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1678 		return;
1679 	}
1680 
1681 	spec = &state->dts_speculations[which - 1];
1682 	src = &spec->dtsp_buffer[cpu];
1683 	dest = &state->dts_buffer[cpu];
1684 
1685 	do {
1686 		current = spec->dtsp_state;
1687 
1688 		if (current == DTRACESPEC_COMMITTINGMANY)
1689 			break;
1690 
1691 		switch (current) {
1692 		case DTRACESPEC_INACTIVE:
1693 		case DTRACESPEC_DISCARDING:
1694 			return;
1695 
1696 		case DTRACESPEC_COMMITTING:
1697 			/*
1698 			 * This is only possible if we are (a) commit()'ing
1699 			 * without having done a prior speculate() on this CPU
1700 			 * and (b) racing with another commit() on a different
1701 			 * CPU.  There's nothing to do -- we just assert that
1702 			 * our offset is 0.
1703 			 */
1704 			ASSERT(src->dtb_offset == 0);
1705 			return;
1706 
1707 		case DTRACESPEC_ACTIVE:
1708 			new = DTRACESPEC_COMMITTING;
1709 			break;
1710 
1711 		case DTRACESPEC_ACTIVEONE:
1712 			/*
1713 			 * This speculation is active on one CPU.  If our
1714 			 * buffer offset is non-zero, we know that the one CPU
1715 			 * must be us.  Otherwise, we are committing on a
1716 			 * different CPU from the speculate(), and we must
1717 			 * rely on being asynchronously cleaned.
1718 			 */
1719 			if (src->dtb_offset != 0) {
1720 				new = DTRACESPEC_COMMITTING;
1721 				break;
1722 			}
1723 			/*FALLTHROUGH*/
1724 
1725 		case DTRACESPEC_ACTIVEMANY:
1726 			new = DTRACESPEC_COMMITTINGMANY;
1727 			break;
1728 
1729 		default:
1730 			ASSERT(0);
1731 		}
1732 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1733 	    current, new) != current);
1734 
1735 	/*
1736 	 * We have set the state to indicate that we are committing this
1737 	 * speculation.  Now reserve the necessary space in the destination
1738 	 * buffer.
1739 	 */
1740 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
1741 	    sizeof (uint64_t), state, NULL)) < 0) {
1742 		dtrace_buffer_drop(dest);
1743 		goto out;
1744 	}
1745 
1746 	/*
1747 	 * We have the space; copy the buffer across.  (Note that this is a
1748 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
1749 	 * a serious performance issue, a high-performance DTrace-specific
1750 	 * bcopy() should obviously be invented.)
1751 	 */
1752 	daddr = (uintptr_t)dest->dtb_tomax + offs;
1753 	dlimit = daddr + src->dtb_offset;
1754 	saddr = (uintptr_t)src->dtb_tomax;
1755 
1756 	/*
1757 	 * First, the aligned portion.
1758 	 */
1759 	while (dlimit - daddr >= sizeof (uint64_t)) {
1760 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
1761 
1762 		daddr += sizeof (uint64_t);
1763 		saddr += sizeof (uint64_t);
1764 	}
1765 
1766 	/*
1767 	 * Now any left-over bit...
1768 	 */
1769 	while (dlimit - daddr)
1770 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
1771 
1772 	/*
1773 	 * Finally, commit the reserved space in the destination buffer.
1774 	 */
1775 	dest->dtb_offset = offs + src->dtb_offset;
1776 
1777 out:
1778 	/*
1779 	 * If we're lucky enough to be the only active CPU on this speculation
1780 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
1781 	 */
1782 	if (current == DTRACESPEC_ACTIVE ||
1783 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
1784 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
1785 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
1786 
1787 		ASSERT(rval == DTRACESPEC_COMMITTING);
1788 	}
1789 
1790 	src->dtb_offset = 0;
1791 	src->dtb_xamot_drops += src->dtb_drops;
1792 	src->dtb_drops = 0;
1793 }
1794 
1795 /*
1796  * This routine discards an active speculation.  If the specified speculation
1797  * is not in a valid state to perform a discard(), this routine will silently
1798  * do nothing.  The state of the specified speculation is transitioned
1799  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
1800  */
1801 static void
1802 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
1803     dtrace_specid_t which)
1804 {
1805 	dtrace_speculation_t *spec;
1806 	dtrace_speculation_state_t current, new;
1807 	dtrace_buffer_t *buf;
1808 
1809 	if (which == 0)
1810 		return;
1811 
1812 	if (which > state->dts_nspeculations) {
1813 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1814 		return;
1815 	}
1816 
1817 	spec = &state->dts_speculations[which - 1];
1818 	buf = &spec->dtsp_buffer[cpu];
1819 
1820 	do {
1821 		current = spec->dtsp_state;
1822 
1823 		switch (current) {
1824 		case DTRACESPEC_INACTIVE:
1825 		case DTRACESPEC_COMMITTINGMANY:
1826 		case DTRACESPEC_COMMITTING:
1827 		case DTRACESPEC_DISCARDING:
1828 			return;
1829 
1830 		case DTRACESPEC_ACTIVE:
1831 		case DTRACESPEC_ACTIVEMANY:
1832 			new = DTRACESPEC_DISCARDING;
1833 			break;
1834 
1835 		case DTRACESPEC_ACTIVEONE:
1836 			if (buf->dtb_offset != 0) {
1837 				new = DTRACESPEC_INACTIVE;
1838 			} else {
1839 				new = DTRACESPEC_DISCARDING;
1840 			}
1841 			break;
1842 
1843 		default:
1844 			ASSERT(0);
1845 		}
1846 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1847 	    current, new) != current);
1848 
1849 	buf->dtb_offset = 0;
1850 	buf->dtb_drops = 0;
1851 }
1852 
1853 /*
1854  * Note:  not called from probe context.  This function is called
1855  * asynchronously from cross call context to clean any speculations that are
1856  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
1857  * transitioned back to the INACTIVE state until all CPUs have cleaned the
1858  * speculation.
1859  */
1860 static void
1861 dtrace_speculation_clean_here(dtrace_state_t *state)
1862 {
1863 	dtrace_icookie_t cookie;
1864 	processorid_t cpu = CPU->cpu_id;
1865 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
1866 	dtrace_specid_t i;
1867 
1868 	cookie = dtrace_interrupt_disable();
1869 
1870 	if (dest->dtb_tomax == NULL) {
1871 		dtrace_interrupt_enable(cookie);
1872 		return;
1873 	}
1874 
1875 	for (i = 0; i < state->dts_nspeculations; i++) {
1876 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1877 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
1878 
1879 		if (src->dtb_tomax == NULL)
1880 			continue;
1881 
1882 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
1883 			src->dtb_offset = 0;
1884 			continue;
1885 		}
1886 
1887 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
1888 			continue;
1889 
1890 		if (src->dtb_offset == 0)
1891 			continue;
1892 
1893 		dtrace_speculation_commit(state, cpu, i + 1);
1894 	}
1895 
1896 	dtrace_interrupt_enable(cookie);
1897 }
1898 
1899 /*
1900  * Note:  not called from probe context.  This function is called
1901  * asynchronously (and at a regular interval) to clean any speculations that
1902  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
1903  * is work to be done, it cross calls all CPUs to perform that work;
1904  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
1905  * INACTIVE state until they have been cleaned by all CPUs.
1906  */
1907 static void
1908 dtrace_speculation_clean(dtrace_state_t *state)
1909 {
1910 	int work = 0, rv;
1911 	dtrace_specid_t i;
1912 
1913 	for (i = 0; i < state->dts_nspeculations; i++) {
1914 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1915 
1916 		ASSERT(!spec->dtsp_cleaning);
1917 
1918 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
1919 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
1920 			continue;
1921 
1922 		work++;
1923 		spec->dtsp_cleaning = 1;
1924 	}
1925 
1926 	if (!work)
1927 		return;
1928 
1929 	dtrace_xcall(DTRACE_CPUALL,
1930 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
1931 
1932 	/*
1933 	 * We now know that all CPUs have committed or discarded their
1934 	 * speculation buffers, as appropriate.  We can now set the state
1935 	 * to inactive.
1936 	 */
1937 	for (i = 0; i < state->dts_nspeculations; i++) {
1938 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1939 		dtrace_speculation_state_t current, new;
1940 
1941 		if (!spec->dtsp_cleaning)
1942 			continue;
1943 
1944 		current = spec->dtsp_state;
1945 		ASSERT(current == DTRACESPEC_DISCARDING ||
1946 		    current == DTRACESPEC_COMMITTINGMANY);
1947 
1948 		new = DTRACESPEC_INACTIVE;
1949 
1950 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
1951 		ASSERT(rv == current);
1952 		spec->dtsp_cleaning = 0;
1953 	}
1954 }
1955 
1956 /*
1957  * Called as part of a speculate() to get the speculative buffer associated
1958  * with a given speculation.  Returns NULL if the specified speculation is not
1959  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
1960  * the active CPU is not the specified CPU -- the speculation will be
1961  * atomically transitioned into the ACTIVEMANY state.
1962  */
1963 static dtrace_buffer_t *
1964 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
1965     dtrace_specid_t which)
1966 {
1967 	dtrace_speculation_t *spec;
1968 	dtrace_speculation_state_t current, new;
1969 	dtrace_buffer_t *buf;
1970 
1971 	if (which == 0)
1972 		return (NULL);
1973 
1974 	if (which > state->dts_nspeculations) {
1975 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1976 		return (NULL);
1977 	}
1978 
1979 	spec = &state->dts_speculations[which - 1];
1980 	buf = &spec->dtsp_buffer[cpuid];
1981 
1982 	do {
1983 		current = spec->dtsp_state;
1984 
1985 		switch (current) {
1986 		case DTRACESPEC_INACTIVE:
1987 		case DTRACESPEC_COMMITTINGMANY:
1988 		case DTRACESPEC_DISCARDING:
1989 			return (NULL);
1990 
1991 		case DTRACESPEC_COMMITTING:
1992 			ASSERT(buf->dtb_offset == 0);
1993 			return (NULL);
1994 
1995 		case DTRACESPEC_ACTIVEONE:
1996 			/*
1997 			 * This speculation is currently active on one CPU.
1998 			 * Check the offset in the buffer; if it's non-zero,
1999 			 * that CPU must be us (and we leave the state alone).
2000 			 * If it's zero, assume that we're starting on a new
2001 			 * CPU -- and change the state to indicate that the
2002 			 * speculation is active on more than one CPU.
2003 			 */
2004 			if (buf->dtb_offset != 0)
2005 				return (buf);
2006 
2007 			new = DTRACESPEC_ACTIVEMANY;
2008 			break;
2009 
2010 		case DTRACESPEC_ACTIVEMANY:
2011 			return (buf);
2012 
2013 		case DTRACESPEC_ACTIVE:
2014 			new = DTRACESPEC_ACTIVEONE;
2015 			break;
2016 
2017 		default:
2018 			ASSERT(0);
2019 		}
2020 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2021 	    current, new) != current);
2022 
2023 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2024 	return (buf);
2025 }
2026 
2027 /*
2028  * This function implements the DIF emulator's variable lookups.  The emulator
2029  * passes a reserved variable identifier and optional built-in array index.
2030  */
2031 static uint64_t
2032 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2033     uint64_t i)
2034 {
2035 	/*
2036 	 * If we're accessing one of the uncached arguments, we'll turn this
2037 	 * into a reference in the args array.
2038 	 */
2039 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2040 		i = v - DIF_VAR_ARG0;
2041 		v = DIF_VAR_ARGS;
2042 	}
2043 
2044 	switch (v) {
2045 	case DIF_VAR_ARGS:
2046 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2047 		if (i >= sizeof (mstate->dtms_arg) /
2048 		    sizeof (mstate->dtms_arg[0])) {
2049 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2050 			dtrace_provider_t *pv;
2051 			uint64_t val;
2052 
2053 			pv = mstate->dtms_probe->dtpr_provider;
2054 			if (pv->dtpv_pops.dtps_getargval != NULL)
2055 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2056 				    mstate->dtms_probe->dtpr_id,
2057 				    mstate->dtms_probe->dtpr_arg, i, aframes);
2058 			else
2059 				val = dtrace_getarg(i, aframes);
2060 
2061 			/*
2062 			 * This is regrettably required to keep the compiler
2063 			 * from tail-optimizing the call to dtrace_getarg().
2064 			 * The condition always evaluates to true, but the
2065 			 * compiler has no way of figuring that out a priori.
2066 			 * (None of this would be necessary if the compiler
2067 			 * could be relied upon to _always_ tail-optimize
2068 			 * the call to dtrace_getarg() -- but it can't.)
2069 			 */
2070 			if (mstate->dtms_probe != NULL)
2071 				return (val);
2072 
2073 			ASSERT(0);
2074 		}
2075 
2076 		return (mstate->dtms_arg[i]);
2077 
2078 	case DIF_VAR_UREGS: {
2079 		klwp_t *lwp;
2080 
2081 		if (!dtrace_priv_proc(state))
2082 			return (0);
2083 
2084 		if ((lwp = curthread->t_lwp) == NULL) {
2085 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2086 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2087 			return (0);
2088 		}
2089 
2090 		return (dtrace_getreg(lwp->lwp_regs, i));
2091 	}
2092 
2093 	case DIF_VAR_CURTHREAD:
2094 		if (!dtrace_priv_kernel(state))
2095 			return (0);
2096 		return ((uint64_t)(uintptr_t)curthread);
2097 
2098 	case DIF_VAR_TIMESTAMP:
2099 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2100 			mstate->dtms_timestamp = dtrace_gethrtime();
2101 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2102 		}
2103 		return (mstate->dtms_timestamp);
2104 
2105 	case DIF_VAR_VTIMESTAMP:
2106 		ASSERT(dtrace_vtime_references != 0);
2107 		return (curthread->t_dtrace_vtime);
2108 
2109 	case DIF_VAR_WALLTIMESTAMP:
2110 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2111 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2112 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2113 		}
2114 		return (mstate->dtms_walltimestamp);
2115 
2116 	case DIF_VAR_IPL:
2117 		if (!dtrace_priv_kernel(state))
2118 			return (0);
2119 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2120 			mstate->dtms_ipl = dtrace_getipl();
2121 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2122 		}
2123 		return (mstate->dtms_ipl);
2124 
2125 	case DIF_VAR_EPID:
2126 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2127 		return (mstate->dtms_epid);
2128 
2129 	case DIF_VAR_ID:
2130 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2131 		return (mstate->dtms_probe->dtpr_id);
2132 
2133 	case DIF_VAR_STACKDEPTH:
2134 		if (!dtrace_priv_kernel(state))
2135 			return (0);
2136 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2137 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2138 
2139 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2140 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2141 		}
2142 		return (mstate->dtms_stackdepth);
2143 
2144 	case DIF_VAR_USTACKDEPTH:
2145 		if (!dtrace_priv_proc(state))
2146 			return (0);
2147 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2148 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2149 			mstate->dtms_ustackdepth = dtrace_getustackdepth();
2150 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2151 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2152 		}
2153 		return (mstate->dtms_ustackdepth);
2154 
2155 	case DIF_VAR_CALLER:
2156 		if (!dtrace_priv_kernel(state))
2157 			return (0);
2158 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2159 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2160 
2161 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2162 				/*
2163 				 * If this is an unanchored probe, we are
2164 				 * required to go through the slow path:
2165 				 * dtrace_caller() only guarantees correct
2166 				 * results for anchored probes.
2167 				 */
2168 				pc_t caller[2];
2169 
2170 				dtrace_getpcstack(caller, 2, aframes,
2171 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2172 				mstate->dtms_caller = caller[1];
2173 			} else if ((mstate->dtms_caller =
2174 			    dtrace_caller(aframes)) == -1) {
2175 				/*
2176 				 * We have failed to do this the quick way;
2177 				 * we must resort to the slower approach of
2178 				 * calling dtrace_getpcstack().
2179 				 */
2180 				pc_t caller;
2181 
2182 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2183 				mstate->dtms_caller = caller;
2184 			}
2185 
2186 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2187 		}
2188 		return (mstate->dtms_caller);
2189 
2190 	case DIF_VAR_PROBEPROV:
2191 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2192 		return ((uint64_t)(uintptr_t)
2193 		    mstate->dtms_probe->dtpr_provider->dtpv_name);
2194 
2195 	case DIF_VAR_PROBEMOD:
2196 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2197 		return ((uint64_t)(uintptr_t)
2198 		    mstate->dtms_probe->dtpr_mod);
2199 
2200 	case DIF_VAR_PROBEFUNC:
2201 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2202 		return ((uint64_t)(uintptr_t)
2203 		    mstate->dtms_probe->dtpr_func);
2204 
2205 	case DIF_VAR_PROBENAME:
2206 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2207 		return ((uint64_t)(uintptr_t)
2208 		    mstate->dtms_probe->dtpr_name);
2209 
2210 	case DIF_VAR_PID:
2211 		if (!dtrace_priv_proc(state))
2212 			return (0);
2213 
2214 		/*
2215 		 * Note that we are assuming that an unanchored probe is
2216 		 * always due to a high-level interrupt.  (And we're assuming
2217 		 * that there is only a single high level interrupt.)
2218 		 */
2219 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2220 			return (pid0.pid_id);
2221 
2222 		/*
2223 		 * It is always safe to dereference one's own t_procp pointer:
2224 		 * it always points to a valid, allocated proc structure.
2225 		 * Further, it is always safe to dereference the p_pidp member
2226 		 * of one's own proc structure.  (These are truisms becuase
2227 		 * threads and processes don't clean up their own state --
2228 		 * they leave that task to whomever reaps them.)
2229 		 */
2230 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2231 
2232 	case DIF_VAR_TID:
2233 		/*
2234 		 * See comment in DIF_VAR_PID.
2235 		 */
2236 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2237 			return (0);
2238 
2239 		return ((uint64_t)curthread->t_tid);
2240 
2241 	case DIF_VAR_EXECNAME:
2242 		if (!dtrace_priv_proc(state))
2243 			return (0);
2244 
2245 		/*
2246 		 * See comment in DIF_VAR_PID.
2247 		 */
2248 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2249 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2250 
2251 		/*
2252 		 * It is always safe to dereference one's own t_procp pointer:
2253 		 * it always points to a valid, allocated proc structure.
2254 		 * (This is true because threads don't clean up their own
2255 		 * state -- they leave that task to whomever reaps them.)
2256 		 */
2257 		return ((uint64_t)(uintptr_t)
2258 		    curthread->t_procp->p_user.u_comm);
2259 
2260 	case DIF_VAR_ZONENAME:
2261 		if (!dtrace_priv_proc(state))
2262 			return (0);
2263 
2264 		/*
2265 		 * See comment in DIF_VAR_PID.
2266 		 */
2267 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2268 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2269 
2270 		/*
2271 		 * It is always safe to dereference one's own t_procp pointer:
2272 		 * it always points to a valid, allocated proc structure.
2273 		 * (This is true because threads don't clean up their own
2274 		 * state -- they leave that task to whomever reaps them.)
2275 		 */
2276 		return ((uint64_t)(uintptr_t)
2277 		    curthread->t_procp->p_zone->zone_name);
2278 
2279 	default:
2280 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2281 		return (0);
2282 	}
2283 }
2284 
2285 /*
2286  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2287  * Notice that we don't bother validating the proper number of arguments or
2288  * their types in the tuple stack.  This isn't needed because all argument
2289  * interpretation is safe because of our load safety -- the worst that can
2290  * happen is that a bogus program can obtain bogus results.
2291  */
2292 static void
2293 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2294     dtrace_key_t *tupregs, int nargs,
2295     dtrace_mstate_t *mstate, dtrace_state_t *state)
2296 {
2297 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2298 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2299 
2300 	union {
2301 		mutex_impl_t mi;
2302 		uint64_t mx;
2303 	} m;
2304 
2305 	union {
2306 		krwlock_t ri;
2307 		uintptr_t rw;
2308 	} r;
2309 
2310 	switch (subr) {
2311 	case DIF_SUBR_RAND:
2312 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2313 		break;
2314 
2315 	case DIF_SUBR_MUTEX_OWNED:
2316 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2317 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2318 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2319 		else
2320 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2321 		break;
2322 
2323 	case DIF_SUBR_MUTEX_OWNER:
2324 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2325 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2326 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2327 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2328 		else
2329 			regs[rd] = 0;
2330 		break;
2331 
2332 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2333 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2334 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2335 		break;
2336 
2337 	case DIF_SUBR_MUTEX_TYPE_SPIN:
2338 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2339 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2340 		break;
2341 
2342 	case DIF_SUBR_RW_READ_HELD: {
2343 		uintptr_t tmp;
2344 
2345 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2346 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2347 		break;
2348 	}
2349 
2350 	case DIF_SUBR_RW_WRITE_HELD:
2351 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2352 		regs[rd] = _RW_WRITE_HELD(&r.ri);
2353 		break;
2354 
2355 	case DIF_SUBR_RW_ISWRITER:
2356 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2357 		regs[rd] = _RW_ISWRITER(&r.ri);
2358 		break;
2359 
2360 	case DIF_SUBR_BCOPY: {
2361 		/*
2362 		 * We need to be sure that the destination is in the scratch
2363 		 * region -- no other region is allowed.
2364 		 */
2365 		uintptr_t src = tupregs[0].dttk_value;
2366 		uintptr_t dest = tupregs[1].dttk_value;
2367 		size_t size = tupregs[2].dttk_value;
2368 
2369 		if (!dtrace_inscratch(dest, size, mstate)) {
2370 			*flags |= CPU_DTRACE_BADADDR;
2371 			*illval = regs[rd];
2372 			break;
2373 		}
2374 
2375 		dtrace_bcopy((void *)src, (void *)dest, size);
2376 		break;
2377 	}
2378 
2379 	case DIF_SUBR_ALLOCA:
2380 	case DIF_SUBR_COPYIN: {
2381 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2382 		uint64_t size =
2383 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2384 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2385 
2386 		/*
2387 		 * This action doesn't require any credential checks since
2388 		 * probes will not activate in user contexts to which the
2389 		 * enabling user does not have permissions.
2390 		 */
2391 		if (mstate->dtms_scratch_ptr + scratch_size >
2392 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2393 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2394 			regs[rd] = NULL;
2395 			break;
2396 		}
2397 
2398 		if (subr == DIF_SUBR_COPYIN) {
2399 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2400 			dtrace_copyin(tupregs[0].dttk_value, dest, size);
2401 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2402 		}
2403 
2404 		mstate->dtms_scratch_ptr += scratch_size;
2405 		regs[rd] = dest;
2406 		break;
2407 	}
2408 
2409 	case DIF_SUBR_COPYINTO: {
2410 		uint64_t size = tupregs[1].dttk_value;
2411 		uintptr_t dest = tupregs[2].dttk_value;
2412 
2413 		/*
2414 		 * This action doesn't require any credential checks since
2415 		 * probes will not activate in user contexts to which the
2416 		 * enabling user does not have permissions.
2417 		 */
2418 		if (!dtrace_inscratch(dest, size, mstate)) {
2419 			*flags |= CPU_DTRACE_BADADDR;
2420 			*illval = regs[rd];
2421 			break;
2422 		}
2423 
2424 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2425 		dtrace_copyin(tupregs[0].dttk_value, dest, size);
2426 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2427 		break;
2428 	}
2429 
2430 	case DIF_SUBR_COPYINSTR: {
2431 		uintptr_t dest = mstate->dtms_scratch_ptr;
2432 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2433 
2434 		if (nargs > 1 && tupregs[1].dttk_value < size)
2435 			size = tupregs[1].dttk_value + 1;
2436 
2437 		/*
2438 		 * This action doesn't require any credential checks since
2439 		 * probes will not activate in user contexts to which the
2440 		 * enabling user does not have permissions.
2441 		 */
2442 		if (mstate->dtms_scratch_ptr + size >
2443 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2444 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2445 			regs[rd] = NULL;
2446 			break;
2447 		}
2448 
2449 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2450 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size);
2451 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2452 
2453 		((char *)dest)[size - 1] = '\0';
2454 		mstate->dtms_scratch_ptr += size;
2455 		regs[rd] = dest;
2456 		break;
2457 	}
2458 
2459 	case DIF_SUBR_MSGSIZE:
2460 	case DIF_SUBR_MSGDSIZE: {
2461 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
2462 		uintptr_t wptr, rptr;
2463 		size_t count = 0;
2464 		int cont = 0;
2465 
2466 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2467 			wptr = dtrace_loadptr(baddr +
2468 			    offsetof(mblk_t, b_wptr));
2469 
2470 			rptr = dtrace_loadptr(baddr +
2471 			    offsetof(mblk_t, b_rptr));
2472 
2473 			if (wptr < rptr) {
2474 				*flags |= CPU_DTRACE_BADADDR;
2475 				*illval = tupregs[0].dttk_value;
2476 				break;
2477 			}
2478 
2479 			daddr = dtrace_loadptr(baddr +
2480 			    offsetof(mblk_t, b_datap));
2481 
2482 			baddr = dtrace_loadptr(baddr +
2483 			    offsetof(mblk_t, b_cont));
2484 
2485 			/*
2486 			 * We want to prevent against denial-of-service here,
2487 			 * so we're only going to search the list for
2488 			 * dtrace_msgdsize_max mblks.
2489 			 */
2490 			if (cont++ > dtrace_msgdsize_max) {
2491 				*flags |= CPU_DTRACE_ILLOP;
2492 				break;
2493 			}
2494 
2495 			if (subr == DIF_SUBR_MSGDSIZE) {
2496 				if (dtrace_load8(daddr +
2497 				    offsetof(dblk_t, db_type)) != M_DATA)
2498 					continue;
2499 			}
2500 
2501 			count += wptr - rptr;
2502 		}
2503 
2504 		if (!(*flags & CPU_DTRACE_FAULT))
2505 			regs[rd] = count;
2506 
2507 		break;
2508 	}
2509 
2510 	case DIF_SUBR_PROGENYOF: {
2511 		pid_t pid = tupregs[0].dttk_value;
2512 		proc_t *p;
2513 		int rval = 0;
2514 
2515 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2516 
2517 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
2518 			if (p->p_pidp->pid_id == pid) {
2519 				rval = 1;
2520 				break;
2521 			}
2522 		}
2523 
2524 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2525 
2526 		regs[rd] = rval;
2527 		break;
2528 	}
2529 
2530 	case DIF_SUBR_SPECULATION:
2531 		regs[rd] = dtrace_speculation(state);
2532 		break;
2533 
2534 	case DIF_SUBR_COPYOUT: {
2535 		uintptr_t kaddr = tupregs[0].dttk_value;
2536 		uintptr_t uaddr = tupregs[1].dttk_value;
2537 		uint64_t size = tupregs[2].dttk_value;
2538 
2539 		if (!dtrace_destructive_disallow &&
2540 		    dtrace_priv_proc_control(state) &&
2541 		    !dtrace_istoxic(kaddr, size)) {
2542 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2543 			dtrace_copyout(kaddr, uaddr, size);
2544 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2545 		}
2546 		break;
2547 	}
2548 
2549 	case DIF_SUBR_COPYOUTSTR: {
2550 		uintptr_t kaddr = tupregs[0].dttk_value;
2551 		uintptr_t uaddr = tupregs[1].dttk_value;
2552 		uint64_t size = tupregs[2].dttk_value;
2553 
2554 		if (!dtrace_destructive_disallow &&
2555 		    dtrace_priv_proc_control(state) &&
2556 		    !dtrace_istoxic(kaddr, size)) {
2557 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2558 			dtrace_copyoutstr(kaddr, uaddr, size);
2559 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2560 		}
2561 		break;
2562 	}
2563 
2564 	case DIF_SUBR_STRLEN:
2565 		regs[rd] = dtrace_strlen((char *)(uintptr_t)
2566 		    tupregs[0].dttk_value,
2567 		    state->dts_options[DTRACEOPT_STRSIZE]);
2568 		break;
2569 
2570 	case DIF_SUBR_STRCHR:
2571 	case DIF_SUBR_STRRCHR: {
2572 		/*
2573 		 * We're going to iterate over the string looking for the
2574 		 * specified character.  We will iterate until we have reached
2575 		 * the string length or we have found the character.  If this
2576 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
2577 		 * of the specified character instead of the first.
2578 		 */
2579 		uintptr_t addr = tupregs[0].dttk_value;
2580 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
2581 		char c, target = (char)tupregs[1].dttk_value;
2582 
2583 		for (regs[rd] = NULL; addr < limit; addr++) {
2584 			if ((c = dtrace_load8(addr)) == target) {
2585 				regs[rd] = addr;
2586 
2587 				if (subr == DIF_SUBR_STRCHR)
2588 					break;
2589 			}
2590 
2591 			if (c == '\0')
2592 				break;
2593 		}
2594 
2595 		break;
2596 	}
2597 
2598 	case DIF_SUBR_STRSTR:
2599 	case DIF_SUBR_INDEX:
2600 	case DIF_SUBR_RINDEX: {
2601 		/*
2602 		 * We're going to iterate over the string looking for the
2603 		 * specified string.  We will iterate until we have reached
2604 		 * the string length or we have found the string.  (Yes, this
2605 		 * is done in the most naive way possible -- but considering
2606 		 * that the string we're searching for is likely to be
2607 		 * relatively short, the complexity of Rabin-Karp or similar
2608 		 * hardly seems merited.)
2609 		 */
2610 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
2611 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
2612 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2613 		size_t len = dtrace_strlen(addr, size);
2614 		size_t sublen = dtrace_strlen(substr, size);
2615 		char *limit = addr + len, *orig = addr;
2616 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
2617 		int inc = 1;
2618 
2619 		regs[rd] = notfound;
2620 
2621 		/*
2622 		 * strstr() and index()/rindex() have similar semantics if
2623 		 * both strings are the empty string: strstr() returns a
2624 		 * pointer to the (empty) string, and index() and rindex()
2625 		 * both return index 0 (regardless of any position argument).
2626 		 */
2627 		if (sublen == 0 && len == 0) {
2628 			if (subr == DIF_SUBR_STRSTR)
2629 				regs[rd] = (uintptr_t)addr;
2630 			else
2631 				regs[rd] = 0;
2632 			break;
2633 		}
2634 
2635 		if (subr != DIF_SUBR_STRSTR) {
2636 			if (subr == DIF_SUBR_RINDEX) {
2637 				limit = orig - 1;
2638 				addr += len;
2639 				inc = -1;
2640 			}
2641 
2642 			/*
2643 			 * Both index() and rindex() take an optional position
2644 			 * argument that denotes the starting position.
2645 			 */
2646 			if (nargs == 3) {
2647 				int64_t pos = (int64_t)tupregs[2].dttk_value;
2648 
2649 				/*
2650 				 * If the position argument to index() is
2651 				 * negative, Perl implicitly clamps it at
2652 				 * zero.  This semantic is a little surprising
2653 				 * given the special meaning of negative
2654 				 * positions to similar Perl functions like
2655 				 * substr(), but it appears to reflect a
2656 				 * notion that index() can start from a
2657 				 * negative index and increment its way up to
2658 				 * the string.  Given this notion, Perl's
2659 				 * rindex() is at least self-consistent in
2660 				 * that it implicitly clamps positions greater
2661 				 * than the string length to be the string
2662 				 * length.  Where Perl completely loses
2663 				 * coherence, however, is when the specified
2664 				 * substring is the empty string ("").  In
2665 				 * this case, even if the position is
2666 				 * negative, rindex() returns 0 -- and even if
2667 				 * the position is greater than the length,
2668 				 * index() returns the string length.  These
2669 				 * semantics violate the notion that index()
2670 				 * should never return a value less than the
2671 				 * specified position and that rindex() should
2672 				 * never return a value greater than the
2673 				 * specified position.  (One assumes that
2674 				 * these semantics are artifacts of Perl's
2675 				 * implementation and not the results of
2676 				 * deliberate design -- it beggars belief that
2677 				 * even Larry Wall could desire such oddness.)
2678 				 * While in the abstract one would wish for
2679 				 * consistent position semantics across
2680 				 * substr(), index() and rindex() -- or at the
2681 				 * very least self-consitent position
2682 				 * semantics for index() and rindex() -- we
2683 				 * instead opt to keep with the extant Perl
2684 				 * semantics, in all their broken glory.  (Do
2685 				 * we have more desire to maintain Perl's
2686 				 * semantics than Perl does?  Probably.)
2687 				 */
2688 				if (subr == DIF_SUBR_RINDEX) {
2689 					if (pos < 0) {
2690 						if (sublen == 0)
2691 							regs[rd] = 0;
2692 						break;
2693 					}
2694 
2695 					if (pos > len)
2696 						pos = len;
2697 				} else {
2698 					if (pos < 0)
2699 						pos = 0;
2700 
2701 					if (pos >= len) {
2702 						if (sublen == 0)
2703 							regs[rd] = len;
2704 						break;
2705 					}
2706 				}
2707 
2708 				addr = orig + pos;
2709 			}
2710 		}
2711 
2712 		for (regs[rd] = notfound; addr != limit; addr += inc) {
2713 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
2714 				if (subr != DIF_SUBR_STRSTR) {
2715 					/*
2716 					 * As D index() and rindex() are
2717 					 * modeled on Perl (and not on awk),
2718 					 * we return a zero-based (and not a
2719 					 * one-based) index.  (For you Perl
2720 					 * weenies: no, we're not going to add
2721 					 * $[ -- and shouldn't you be at a con
2722 					 * or something?)
2723 					 */
2724 					regs[rd] = (uintptr_t)(addr - orig);
2725 					break;
2726 				}
2727 
2728 				ASSERT(subr == DIF_SUBR_STRSTR);
2729 				regs[rd] = (uintptr_t)addr;
2730 				break;
2731 			}
2732 		}
2733 
2734 		break;
2735 	}
2736 
2737 	case DIF_SUBR_STRTOK: {
2738 		uintptr_t addr = tupregs[0].dttk_value;
2739 		uintptr_t tokaddr = tupregs[1].dttk_value;
2740 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2741 		uintptr_t limit, toklimit = tokaddr + size;
2742 		uint8_t c, tokmap[32];	 /* 256 / 8 */
2743 		char *dest = (char *)mstate->dtms_scratch_ptr;
2744 		int i;
2745 
2746 		if (mstate->dtms_scratch_ptr + size >
2747 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2748 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2749 			regs[rd] = NULL;
2750 			break;
2751 		}
2752 
2753 		if (addr == NULL) {
2754 			/*
2755 			 * If the address specified is NULL, we use our saved
2756 			 * strtok pointer from the mstate.  Note that this
2757 			 * means that the saved strtok pointer is _only_
2758 			 * valid within multiple enablings of the same probe --
2759 			 * it behaves like an implicit clause-local variable.
2760 			 */
2761 			addr = mstate->dtms_strtok;
2762 		}
2763 
2764 		/*
2765 		 * First, zero the token map, and then process the token
2766 		 * string -- setting a bit in the map for every character
2767 		 * found in the token string.
2768 		 */
2769 		for (i = 0; i < sizeof (tokmap); i++)
2770 			tokmap[i] = 0;
2771 
2772 		for (; tokaddr < toklimit; tokaddr++) {
2773 			if ((c = dtrace_load8(tokaddr)) == '\0')
2774 				break;
2775 
2776 			ASSERT((c >> 3) < sizeof (tokmap));
2777 			tokmap[c >> 3] |= (1 << (c & 0x7));
2778 		}
2779 
2780 		for (limit = addr + size; addr < limit; addr++) {
2781 			/*
2782 			 * We're looking for a character that is _not_ contained
2783 			 * in the token string.
2784 			 */
2785 			if ((c = dtrace_load8(addr)) == '\0')
2786 				break;
2787 
2788 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
2789 				break;
2790 		}
2791 
2792 		if (c == '\0') {
2793 			/*
2794 			 * We reached the end of the string without finding
2795 			 * any character that was not in the token string.
2796 			 * We return NULL in this case, and we set the saved
2797 			 * address to NULL as well.
2798 			 */
2799 			regs[rd] = NULL;
2800 			mstate->dtms_strtok = NULL;
2801 			break;
2802 		}
2803 
2804 		/*
2805 		 * From here on, we're copying into the destination string.
2806 		 */
2807 		for (i = 0; addr < limit && i < size - 1; addr++) {
2808 			if ((c = dtrace_load8(addr)) == '\0')
2809 				break;
2810 
2811 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
2812 				break;
2813 
2814 			ASSERT(i < size);
2815 			dest[i++] = c;
2816 		}
2817 
2818 		ASSERT(i < size);
2819 		dest[i] = '\0';
2820 		regs[rd] = (uintptr_t)dest;
2821 		mstate->dtms_scratch_ptr += size;
2822 		mstate->dtms_strtok = addr;
2823 		break;
2824 	}
2825 
2826 	case DIF_SUBR_SUBSTR: {
2827 		uintptr_t s = tupregs[0].dttk_value;
2828 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2829 		char *d = (char *)mstate->dtms_scratch_ptr;
2830 		int64_t index = (int64_t)tupregs[1].dttk_value;
2831 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
2832 		size_t len = dtrace_strlen((char *)s, size);
2833 		int64_t i = 0;
2834 
2835 		if (nargs <= 2)
2836 			remaining = (int64_t)size;
2837 
2838 		if (mstate->dtms_scratch_ptr + size >
2839 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2840 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2841 			regs[rd] = NULL;
2842 			break;
2843 		}
2844 
2845 		if (index < 0) {
2846 			index += len;
2847 
2848 			if (index < 0 && index + remaining > 0) {
2849 				remaining += index;
2850 				index = 0;
2851 			}
2852 		}
2853 
2854 		if (index >= len || index < 0)
2855 			index = len;
2856 
2857 		for (d[0] = '\0'; remaining > 0; remaining--) {
2858 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
2859 				break;
2860 
2861 			if (i == size) {
2862 				d[i - 1] = '\0';
2863 				break;
2864 			}
2865 		}
2866 
2867 		mstate->dtms_scratch_ptr += size;
2868 		regs[rd] = (uintptr_t)d;
2869 		break;
2870 	}
2871 
2872 	case DIF_SUBR_GETMAJOR:
2873 #ifdef _LP64
2874 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
2875 #else
2876 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
2877 #endif
2878 		break;
2879 
2880 	case DIF_SUBR_GETMINOR:
2881 #ifdef _LP64
2882 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
2883 #else
2884 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
2885 #endif
2886 		break;
2887 
2888 	case DIF_SUBR_DDI_PATHNAME: {
2889 		/*
2890 		 * This one is a galactic mess.  We are going to roughly
2891 		 * emulate ddi_pathname(), but it's made more complicated
2892 		 * by the fact that we (a) want to include the minor name and
2893 		 * (b) must proceed iteratively instead of recursively.
2894 		 */
2895 		uintptr_t dest = mstate->dtms_scratch_ptr;
2896 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2897 		char *start = (char *)dest, *end = start + size - 1;
2898 		uintptr_t daddr = tupregs[0].dttk_value;
2899 		int64_t minor = (int64_t)tupregs[1].dttk_value;
2900 		char *s;
2901 		int i, len, depth = 0;
2902 
2903 		if (size == 0 || mstate->dtms_scratch_ptr + size >
2904 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2905 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2906 			regs[rd] = NULL;
2907 			break;
2908 		}
2909 
2910 		*end = '\0';
2911 
2912 		/*
2913 		 * We want to have a name for the minor.  In order to do this,
2914 		 * we need to walk the minor list from the devinfo.  We want
2915 		 * to be sure that we don't infinitely walk a circular list,
2916 		 * so we check for circularity by sending a scout pointer
2917 		 * ahead two elements for every element that we iterate over;
2918 		 * if the list is circular, these will ultimately point to the
2919 		 * same element.  You may recognize this little trick as the
2920 		 * answer to a stupid interview question -- one that always
2921 		 * seems to be asked by those who had to have it laboriously
2922 		 * explained to them, and who can't even concisely describe
2923 		 * the conditions under which one would be forced to resort to
2924 		 * this technique.  Needless to say, those conditions are
2925 		 * found here -- and probably only here.  Is this is the only
2926 		 * use of this infamous trick in shipping, production code?
2927 		 * If it isn't, it probably should be...
2928 		 */
2929 		if (minor != -1) {
2930 			uintptr_t maddr = dtrace_loadptr(daddr +
2931 			    offsetof(struct dev_info, devi_minor));
2932 
2933 			uintptr_t next = offsetof(struct ddi_minor_data, next);
2934 			uintptr_t name = offsetof(struct ddi_minor_data,
2935 			    d_minor) + offsetof(struct ddi_minor, name);
2936 			uintptr_t dev = offsetof(struct ddi_minor_data,
2937 			    d_minor) + offsetof(struct ddi_minor, dev);
2938 			uintptr_t scout;
2939 
2940 			if (maddr != NULL)
2941 				scout = dtrace_loadptr(maddr + next);
2942 
2943 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2944 				uint64_t m;
2945 #ifdef _LP64
2946 				m = dtrace_load64(maddr + dev) & MAXMIN64;
2947 #else
2948 				m = dtrace_load32(maddr + dev) & MAXMIN;
2949 #endif
2950 				if (m != minor) {
2951 					maddr = dtrace_loadptr(maddr + next);
2952 
2953 					if (scout == NULL)
2954 						continue;
2955 
2956 					scout = dtrace_loadptr(scout + next);
2957 
2958 					if (scout == NULL)
2959 						continue;
2960 
2961 					scout = dtrace_loadptr(scout + next);
2962 
2963 					if (scout == NULL)
2964 						continue;
2965 
2966 					if (scout == maddr) {
2967 						*flags |= CPU_DTRACE_ILLOP;
2968 						break;
2969 					}
2970 
2971 					continue;
2972 				}
2973 
2974 				/*
2975 				 * We have the minor data.  Now we need to
2976 				 * copy the minor's name into the end of the
2977 				 * pathname.
2978 				 */
2979 				s = (char *)dtrace_loadptr(maddr + name);
2980 				len = dtrace_strlen(s, size);
2981 
2982 				if (*flags & CPU_DTRACE_FAULT)
2983 					break;
2984 
2985 				if (len != 0) {
2986 					if ((end -= (len + 1)) < start)
2987 						break;
2988 
2989 					*end = ':';
2990 				}
2991 
2992 				for (i = 1; i <= len; i++)
2993 					end[i] = dtrace_load8((uintptr_t)s++);
2994 				break;
2995 			}
2996 		}
2997 
2998 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2999 			ddi_node_state_t devi_state;
3000 
3001 			devi_state = dtrace_load32(daddr +
3002 			    offsetof(struct dev_info, devi_node_state));
3003 
3004 			if (*flags & CPU_DTRACE_FAULT)
3005 				break;
3006 
3007 			if (devi_state >= DS_INITIALIZED) {
3008 				s = (char *)dtrace_loadptr(daddr +
3009 				    offsetof(struct dev_info, devi_addr));
3010 				len = dtrace_strlen(s, size);
3011 
3012 				if (*flags & CPU_DTRACE_FAULT)
3013 					break;
3014 
3015 				if (len != 0) {
3016 					if ((end -= (len + 1)) < start)
3017 						break;
3018 
3019 					*end = '@';
3020 				}
3021 
3022 				for (i = 1; i <= len; i++)
3023 					end[i] = dtrace_load8((uintptr_t)s++);
3024 			}
3025 
3026 			/*
3027 			 * Now for the node name...
3028 			 */
3029 			s = (char *)dtrace_loadptr(daddr +
3030 			    offsetof(struct dev_info, devi_node_name));
3031 
3032 			daddr = dtrace_loadptr(daddr +
3033 			    offsetof(struct dev_info, devi_parent));
3034 
3035 			/*
3036 			 * If our parent is NULL (that is, if we're the root
3037 			 * node), we're going to use the special path
3038 			 * "devices".
3039 			 */
3040 			if (daddr == NULL)
3041 				s = "devices";
3042 
3043 			len = dtrace_strlen(s, size);
3044 			if (*flags & CPU_DTRACE_FAULT)
3045 				break;
3046 
3047 			if ((end -= (len + 1)) < start)
3048 				break;
3049 
3050 			for (i = 1; i <= len; i++)
3051 				end[i] = dtrace_load8((uintptr_t)s++);
3052 			*end = '/';
3053 
3054 			if (depth++ > dtrace_devdepth_max) {
3055 				*flags |= CPU_DTRACE_ILLOP;
3056 				break;
3057 			}
3058 		}
3059 
3060 		if (end < start)
3061 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3062 
3063 		if (daddr == NULL) {
3064 			regs[rd] = (uintptr_t)end;
3065 			mstate->dtms_scratch_ptr += size;
3066 		}
3067 
3068 		break;
3069 	}
3070 
3071 	case DIF_SUBR_STRJOIN: {
3072 		char *d = (char *)mstate->dtms_scratch_ptr;
3073 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3074 		uintptr_t s1 = tupregs[0].dttk_value;
3075 		uintptr_t s2 = tupregs[1].dttk_value;
3076 		int i = 0;
3077 
3078 		if (mstate->dtms_scratch_ptr + size >
3079 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3080 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3081 			regs[rd] = NULL;
3082 			break;
3083 		}
3084 
3085 		for (;;) {
3086 			if (i >= size) {
3087 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3088 				regs[rd] = NULL;
3089 				break;
3090 			}
3091 
3092 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3093 				i--;
3094 				break;
3095 			}
3096 		}
3097 
3098 		for (;;) {
3099 			if (i >= size) {
3100 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3101 				regs[rd] = NULL;
3102 				break;
3103 			}
3104 
3105 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3106 				break;
3107 		}
3108 
3109 		if (i < size) {
3110 			mstate->dtms_scratch_ptr += i;
3111 			regs[rd] = (uintptr_t)d;
3112 		}
3113 
3114 		break;
3115 	}
3116 
3117 	case DIF_SUBR_LLTOSTR: {
3118 		int64_t i = (int64_t)tupregs[0].dttk_value;
3119 		int64_t val = i < 0 ? i * -1 : i;
3120 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3121 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3122 
3123 		if (mstate->dtms_scratch_ptr + size >
3124 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3125 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3126 			regs[rd] = NULL;
3127 			break;
3128 		}
3129 
3130 		for (*end-- = '\0'; val; val /= 10)
3131 			*end-- = '0' + (val % 10);
3132 
3133 		if (i == 0)
3134 			*end-- = '0';
3135 
3136 		if (i < 0)
3137 			*end-- = '-';
3138 
3139 		regs[rd] = (uintptr_t)end + 1;
3140 		mstate->dtms_scratch_ptr += size;
3141 		break;
3142 	}
3143 
3144 	case DIF_SUBR_DIRNAME:
3145 	case DIF_SUBR_BASENAME: {
3146 		char *dest = (char *)mstate->dtms_scratch_ptr;
3147 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3148 		uintptr_t src = tupregs[0].dttk_value;
3149 		int i, j, len = dtrace_strlen((char *)src, size);
3150 		int lastbase = -1, firstbase = -1, lastdir = -1;
3151 		int start, end;
3152 
3153 		if (mstate->dtms_scratch_ptr + size >
3154 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3155 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3156 			regs[rd] = NULL;
3157 			break;
3158 		}
3159 
3160 		/*
3161 		 * The basename and dirname for a zero-length string is
3162 		 * defined to be "."
3163 		 */
3164 		if (len == 0) {
3165 			len = 1;
3166 			src = (uintptr_t)".";
3167 		}
3168 
3169 		/*
3170 		 * Start from the back of the string, moving back toward the
3171 		 * front until we see a character that isn't a slash.  That
3172 		 * character is the last character in the basename.
3173 		 */
3174 		for (i = len - 1; i >= 0; i--) {
3175 			if (dtrace_load8(src + i) != '/')
3176 				break;
3177 		}
3178 
3179 		if (i >= 0)
3180 			lastbase = i;
3181 
3182 		/*
3183 		 * Starting from the last character in the basename, move
3184 		 * towards the front until we find a slash.  The character
3185 		 * that we processed immediately before that is the first
3186 		 * character in the basename.
3187 		 */
3188 		for (; i >= 0; i--) {
3189 			if (dtrace_load8(src + i) == '/')
3190 				break;
3191 		}
3192 
3193 		if (i >= 0)
3194 			firstbase = i + 1;
3195 
3196 		/*
3197 		 * Now keep going until we find a non-slash character.  That
3198 		 * character is the last character in the dirname.
3199 		 */
3200 		for (; i >= 0; i--) {
3201 			if (dtrace_load8(src + i) != '/')
3202 				break;
3203 		}
3204 
3205 		if (i >= 0)
3206 			lastdir = i;
3207 
3208 		ASSERT(!(lastbase == -1 && firstbase != -1));
3209 		ASSERT(!(firstbase == -1 && lastdir != -1));
3210 
3211 		if (lastbase == -1) {
3212 			/*
3213 			 * We didn't find a non-slash character.  We know that
3214 			 * the length is non-zero, so the whole string must be
3215 			 * slashes.  In either the dirname or the basename
3216 			 * case, we return '/'.
3217 			 */
3218 			ASSERT(firstbase == -1);
3219 			firstbase = lastbase = lastdir = 0;
3220 		}
3221 
3222 		if (firstbase == -1) {
3223 			/*
3224 			 * The entire string consists only of a basename
3225 			 * component.  If we're looking for dirname, we need
3226 			 * to change our string to be just "."; if we're
3227 			 * looking for a basename, we'll just set the first
3228 			 * character of the basename to be 0.
3229 			 */
3230 			if (subr == DIF_SUBR_DIRNAME) {
3231 				ASSERT(lastdir == -1);
3232 				src = (uintptr_t)".";
3233 				lastdir = 0;
3234 			} else {
3235 				firstbase = 0;
3236 			}
3237 		}
3238 
3239 		if (subr == DIF_SUBR_DIRNAME) {
3240 			if (lastdir == -1) {
3241 				/*
3242 				 * We know that we have a slash in the name --
3243 				 * or lastdir would be set to 0, above.  And
3244 				 * because lastdir is -1, we know that this
3245 				 * slash must be the first character.  (That
3246 				 * is, the full string must be of the form
3247 				 * "/basename".)  In this case, the last
3248 				 * character of the directory name is 0.
3249 				 */
3250 				lastdir = 0;
3251 			}
3252 
3253 			start = 0;
3254 			end = lastdir;
3255 		} else {
3256 			ASSERT(subr == DIF_SUBR_BASENAME);
3257 			ASSERT(firstbase != -1 && lastbase != -1);
3258 			start = firstbase;
3259 			end = lastbase;
3260 		}
3261 
3262 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3263 			dest[j] = dtrace_load8(src + i);
3264 
3265 		dest[j] = '\0';
3266 		regs[rd] = (uintptr_t)dest;
3267 		mstate->dtms_scratch_ptr += size;
3268 		break;
3269 	}
3270 
3271 	case DIF_SUBR_CLEANPATH: {
3272 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3273 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3274 		uintptr_t src = tupregs[0].dttk_value;
3275 		int i = 0, j = 0;
3276 
3277 		if (mstate->dtms_scratch_ptr + size >
3278 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3279 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3280 			regs[rd] = NULL;
3281 			break;
3282 		}
3283 
3284 		/*
3285 		 * Move forward, loading each character.
3286 		 */
3287 		do {
3288 			c = dtrace_load8(src + i++);
3289 next:
3290 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3291 				break;
3292 
3293 			if (c != '/') {
3294 				dest[j++] = c;
3295 				continue;
3296 			}
3297 
3298 			c = dtrace_load8(src + i++);
3299 
3300 			if (c == '/') {
3301 				/*
3302 				 * We have two slashes -- we can just advance
3303 				 * to the next character.
3304 				 */
3305 				goto next;
3306 			}
3307 
3308 			if (c != '.') {
3309 				/*
3310 				 * This is not "." and it's not ".." -- we can
3311 				 * just store the "/" and this character and
3312 				 * drive on.
3313 				 */
3314 				dest[j++] = '/';
3315 				dest[j++] = c;
3316 				continue;
3317 			}
3318 
3319 			c = dtrace_load8(src + i++);
3320 
3321 			if (c == '/') {
3322 				/*
3323 				 * This is a "/./" component.  We're not going
3324 				 * to store anything in the destination buffer;
3325 				 * we're just going to go to the next component.
3326 				 */
3327 				goto next;
3328 			}
3329 
3330 			if (c != '.') {
3331 				/*
3332 				 * This is not ".." -- we can just store the
3333 				 * "/." and this character and continue
3334 				 * processing.
3335 				 */
3336 				dest[j++] = '/';
3337 				dest[j++] = '.';
3338 				dest[j++] = c;
3339 				continue;
3340 			}
3341 
3342 			c = dtrace_load8(src + i++);
3343 
3344 			if (c != '/' && c != '\0') {
3345 				/*
3346 				 * This is not ".." -- it's "..[mumble]".
3347 				 * We'll store the "/.." and this character
3348 				 * and continue processing.
3349 				 */
3350 				dest[j++] = '/';
3351 				dest[j++] = '.';
3352 				dest[j++] = '.';
3353 				dest[j++] = c;
3354 				continue;
3355 			}
3356 
3357 			/*
3358 			 * This is "/../" or "/..\0".  We need to back up
3359 			 * our destination pointer until we find a "/".
3360 			 */
3361 			i--;
3362 			while (j != 0 && dest[--j] != '/')
3363 				continue;
3364 
3365 			if (c == '\0')
3366 				dest[++j] = '/';
3367 		} while (c != '\0');
3368 
3369 		dest[j] = '\0';
3370 		regs[rd] = (uintptr_t)dest;
3371 		mstate->dtms_scratch_ptr += size;
3372 		break;
3373 	}
3374 	}
3375 }
3376 
3377 /*
3378  * Emulate the execution of DTrace IR instructions specified by the given
3379  * DIF object.  This function is deliberately void of assertions as all of
3380  * the necessary checks are handled by a call to dtrace_difo_validate().
3381  */
3382 static uint64_t
3383 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
3384     dtrace_vstate_t *vstate, dtrace_state_t *state)
3385 {
3386 	const dif_instr_t *text = difo->dtdo_buf;
3387 	const uint_t textlen = difo->dtdo_len;
3388 	const char *strtab = difo->dtdo_strtab;
3389 	const uint64_t *inttab = difo->dtdo_inttab;
3390 
3391 	uint64_t rval = 0;
3392 	dtrace_statvar_t *svar;
3393 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
3394 	dtrace_difv_t *v;
3395 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3396 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3397 
3398 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
3399 	uint64_t regs[DIF_DIR_NREGS];
3400 	uint64_t *tmp;
3401 
3402 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
3403 	int64_t cc_r;
3404 	uint_t pc = 0, id, opc;
3405 	uint8_t ttop = 0;
3406 	dif_instr_t instr;
3407 	uint_t r1, r2, rd;
3408 
3409 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
3410 
3411 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
3412 		opc = pc;
3413 
3414 		instr = text[pc++];
3415 		r1 = DIF_INSTR_R1(instr);
3416 		r2 = DIF_INSTR_R2(instr);
3417 		rd = DIF_INSTR_RD(instr);
3418 
3419 		switch (DIF_INSTR_OP(instr)) {
3420 		case DIF_OP_OR:
3421 			regs[rd] = regs[r1] | regs[r2];
3422 			break;
3423 		case DIF_OP_XOR:
3424 			regs[rd] = regs[r1] ^ regs[r2];
3425 			break;
3426 		case DIF_OP_AND:
3427 			regs[rd] = regs[r1] & regs[r2];
3428 			break;
3429 		case DIF_OP_SLL:
3430 			regs[rd] = regs[r1] << regs[r2];
3431 			break;
3432 		case DIF_OP_SRL:
3433 			regs[rd] = regs[r1] >> regs[r2];
3434 			break;
3435 		case DIF_OP_SUB:
3436 			regs[rd] = regs[r1] - regs[r2];
3437 			break;
3438 		case DIF_OP_ADD:
3439 			regs[rd] = regs[r1] + regs[r2];
3440 			break;
3441 		case DIF_OP_MUL:
3442 			regs[rd] = regs[r1] * regs[r2];
3443 			break;
3444 		case DIF_OP_SDIV:
3445 			if (regs[r2] == 0) {
3446 				regs[rd] = 0;
3447 				*flags |= CPU_DTRACE_DIVZERO;
3448 			} else {
3449 				regs[rd] = (int64_t)regs[r1] /
3450 				    (int64_t)regs[r2];
3451 			}
3452 			break;
3453 
3454 		case DIF_OP_UDIV:
3455 			if (regs[r2] == 0) {
3456 				regs[rd] = 0;
3457 				*flags |= CPU_DTRACE_DIVZERO;
3458 			} else {
3459 				regs[rd] = regs[r1] / regs[r2];
3460 			}
3461 			break;
3462 
3463 		case DIF_OP_SREM:
3464 			if (regs[r2] == 0) {
3465 				regs[rd] = 0;
3466 				*flags |= CPU_DTRACE_DIVZERO;
3467 			} else {
3468 				regs[rd] = (int64_t)regs[r1] %
3469 				    (int64_t)regs[r2];
3470 			}
3471 			break;
3472 
3473 		case DIF_OP_UREM:
3474 			if (regs[r2] == 0) {
3475 				regs[rd] = 0;
3476 				*flags |= CPU_DTRACE_DIVZERO;
3477 			} else {
3478 				regs[rd] = regs[r1] % regs[r2];
3479 			}
3480 			break;
3481 
3482 		case DIF_OP_NOT:
3483 			regs[rd] = ~regs[r1];
3484 			break;
3485 		case DIF_OP_MOV:
3486 			regs[rd] = regs[r1];
3487 			break;
3488 		case DIF_OP_CMP:
3489 			cc_r = regs[r1] - regs[r2];
3490 			cc_n = cc_r < 0;
3491 			cc_z = cc_r == 0;
3492 			cc_v = 0;
3493 			cc_c = regs[r1] < regs[r2];
3494 			break;
3495 		case DIF_OP_TST:
3496 			cc_n = cc_v = cc_c = 0;
3497 			cc_z = regs[r1] == 0;
3498 			break;
3499 		case DIF_OP_BA:
3500 			pc = DIF_INSTR_LABEL(instr);
3501 			break;
3502 		case DIF_OP_BE:
3503 			if (cc_z)
3504 				pc = DIF_INSTR_LABEL(instr);
3505 			break;
3506 		case DIF_OP_BNE:
3507 			if (cc_z == 0)
3508 				pc = DIF_INSTR_LABEL(instr);
3509 			break;
3510 		case DIF_OP_BG:
3511 			if ((cc_z | (cc_n ^ cc_v)) == 0)
3512 				pc = DIF_INSTR_LABEL(instr);
3513 			break;
3514 		case DIF_OP_BGU:
3515 			if ((cc_c | cc_z) == 0)
3516 				pc = DIF_INSTR_LABEL(instr);
3517 			break;
3518 		case DIF_OP_BGE:
3519 			if ((cc_n ^ cc_v) == 0)
3520 				pc = DIF_INSTR_LABEL(instr);
3521 			break;
3522 		case DIF_OP_BGEU:
3523 			if (cc_c == 0)
3524 				pc = DIF_INSTR_LABEL(instr);
3525 			break;
3526 		case DIF_OP_BL:
3527 			if (cc_n ^ cc_v)
3528 				pc = DIF_INSTR_LABEL(instr);
3529 			break;
3530 		case DIF_OP_BLU:
3531 			if (cc_c)
3532 				pc = DIF_INSTR_LABEL(instr);
3533 			break;
3534 		case DIF_OP_BLE:
3535 			if (cc_z | (cc_n ^ cc_v))
3536 				pc = DIF_INSTR_LABEL(instr);
3537 			break;
3538 		case DIF_OP_BLEU:
3539 			if (cc_c | cc_z)
3540 				pc = DIF_INSTR_LABEL(instr);
3541 			break;
3542 		case DIF_OP_RLDSB:
3543 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3544 				*flags |= CPU_DTRACE_KPRIV;
3545 				*illval = regs[r1];
3546 				break;
3547 			}
3548 			/*FALLTHROUGH*/
3549 		case DIF_OP_LDSB:
3550 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
3551 			break;
3552 		case DIF_OP_RLDSH:
3553 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3554 				*flags |= CPU_DTRACE_KPRIV;
3555 				*illval = regs[r1];
3556 				break;
3557 			}
3558 			/*FALLTHROUGH*/
3559 		case DIF_OP_LDSH:
3560 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
3561 			break;
3562 		case DIF_OP_RLDSW:
3563 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3564 				*flags |= CPU_DTRACE_KPRIV;
3565 				*illval = regs[r1];
3566 				break;
3567 			}
3568 			/*FALLTHROUGH*/
3569 		case DIF_OP_LDSW:
3570 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
3571 			break;
3572 		case DIF_OP_RLDUB:
3573 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3574 				*flags |= CPU_DTRACE_KPRIV;
3575 				*illval = regs[r1];
3576 				break;
3577 			}
3578 			/*FALLTHROUGH*/
3579 		case DIF_OP_LDUB:
3580 			regs[rd] = dtrace_load8(regs[r1]);
3581 			break;
3582 		case DIF_OP_RLDUH:
3583 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3584 				*flags |= CPU_DTRACE_KPRIV;
3585 				*illval = regs[r1];
3586 				break;
3587 			}
3588 			/*FALLTHROUGH*/
3589 		case DIF_OP_LDUH:
3590 			regs[rd] = dtrace_load16(regs[r1]);
3591 			break;
3592 		case DIF_OP_RLDUW:
3593 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3594 				*flags |= CPU_DTRACE_KPRIV;
3595 				*illval = regs[r1];
3596 				break;
3597 			}
3598 			/*FALLTHROUGH*/
3599 		case DIF_OP_LDUW:
3600 			regs[rd] = dtrace_load32(regs[r1]);
3601 			break;
3602 		case DIF_OP_RLDX:
3603 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
3604 				*flags |= CPU_DTRACE_KPRIV;
3605 				*illval = regs[r1];
3606 				break;
3607 			}
3608 			/*FALLTHROUGH*/
3609 		case DIF_OP_LDX:
3610 			regs[rd] = dtrace_load64(regs[r1]);
3611 			break;
3612 		case DIF_OP_ULDSB:
3613 			regs[rd] = (int8_t)
3614 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3615 			break;
3616 		case DIF_OP_ULDSH:
3617 			regs[rd] = (int16_t)
3618 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3619 			break;
3620 		case DIF_OP_ULDSW:
3621 			regs[rd] = (int32_t)
3622 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3623 			break;
3624 		case DIF_OP_ULDUB:
3625 			regs[rd] =
3626 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3627 			break;
3628 		case DIF_OP_ULDUH:
3629 			regs[rd] =
3630 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3631 			break;
3632 		case DIF_OP_ULDUW:
3633 			regs[rd] =
3634 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3635 			break;
3636 		case DIF_OP_ULDX:
3637 			regs[rd] =
3638 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
3639 			break;
3640 		case DIF_OP_RET:
3641 			rval = regs[rd];
3642 			break;
3643 		case DIF_OP_NOP:
3644 			break;
3645 		case DIF_OP_SETX:
3646 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
3647 			break;
3648 		case DIF_OP_SETS:
3649 			regs[rd] = (uint64_t)(uintptr_t)
3650 			    (strtab + DIF_INSTR_STRING(instr));
3651 			break;
3652 		case DIF_OP_SCMP:
3653 			cc_r = dtrace_strncmp((char *)(uintptr_t)regs[r1],
3654 			    (char *)(uintptr_t)regs[r2],
3655 			    state->dts_options[DTRACEOPT_STRSIZE]);
3656 
3657 			cc_n = cc_r < 0;
3658 			cc_z = cc_r == 0;
3659 			cc_v = cc_c = 0;
3660 			break;
3661 		case DIF_OP_LDGA:
3662 			regs[rd] = dtrace_dif_variable(mstate, state,
3663 			    r1, regs[r2]);
3664 			break;
3665 		case DIF_OP_LDGS:
3666 			id = DIF_INSTR_VAR(instr);
3667 
3668 			if (id >= DIF_VAR_OTHER_UBASE) {
3669 				uintptr_t a;
3670 
3671 				id -= DIF_VAR_OTHER_UBASE;
3672 				svar = vstate->dtvs_globals[id];
3673 				ASSERT(svar != NULL);
3674 				v = &svar->dtsv_var;
3675 
3676 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
3677 					regs[rd] = svar->dtsv_data;
3678 					break;
3679 				}
3680 
3681 				a = (uintptr_t)svar->dtsv_data;
3682 
3683 				if (*(uint8_t *)a == UINT8_MAX) {
3684 					/*
3685 					 * If the 0th byte is set to UINT8_MAX
3686 					 * then this is to be treated as a
3687 					 * reference to a NULL variable.
3688 					 */
3689 					regs[rd] = NULL;
3690 				} else {
3691 					regs[rd] = a + sizeof (uint64_t);
3692 				}
3693 
3694 				break;
3695 			}
3696 
3697 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
3698 			break;
3699 
3700 		case DIF_OP_STGS:
3701 			id = DIF_INSTR_VAR(instr);
3702 
3703 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3704 			id -= DIF_VAR_OTHER_UBASE;
3705 
3706 			svar = vstate->dtvs_globals[id];
3707 			ASSERT(svar != NULL);
3708 			v = &svar->dtsv_var;
3709 
3710 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3711 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3712 
3713 				ASSERT(a != NULL);
3714 				ASSERT(svar->dtsv_size != 0);
3715 
3716 				if (regs[rd] == NULL) {
3717 					*(uint8_t *)a = UINT8_MAX;
3718 					break;
3719 				} else {
3720 					*(uint8_t *)a = 0;
3721 					a += sizeof (uint64_t);
3722 				}
3723 
3724 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3725 				    (void *)a, &v->dtdv_type);
3726 				break;
3727 			}
3728 
3729 			svar->dtsv_data = regs[rd];
3730 			break;
3731 
3732 		case DIF_OP_LDTA:
3733 			/*
3734 			 * There are no DTrace built-in thread-local arrays at
3735 			 * present.  This opcode is saved for future work.
3736 			 */
3737 			*flags |= CPU_DTRACE_ILLOP;
3738 			regs[rd] = 0;
3739 			break;
3740 
3741 		case DIF_OP_LDLS:
3742 			id = DIF_INSTR_VAR(instr);
3743 
3744 			if (id < DIF_VAR_OTHER_UBASE) {
3745 				/*
3746 				 * For now, this has no meaning.
3747 				 */
3748 				regs[rd] = 0;
3749 				break;
3750 			}
3751 
3752 			id -= DIF_VAR_OTHER_UBASE;
3753 
3754 			ASSERT(id < vstate->dtvs_nlocals);
3755 			ASSERT(vstate->dtvs_locals != NULL);
3756 
3757 			svar = vstate->dtvs_locals[id];
3758 			ASSERT(svar != NULL);
3759 			v = &svar->dtsv_var;
3760 
3761 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3762 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3763 				size_t sz = v->dtdv_type.dtdt_size;
3764 
3765 				sz += sizeof (uint64_t);
3766 				ASSERT(svar->dtsv_size == NCPU * sz);
3767 				a += CPU->cpu_id * sz;
3768 
3769 				if (*(uint8_t *)a == UINT8_MAX) {
3770 					/*
3771 					 * If the 0th byte is set to UINT8_MAX
3772 					 * then this is to be treated as a
3773 					 * reference to a NULL variable.
3774 					 */
3775 					regs[rd] = NULL;
3776 				} else {
3777 					regs[rd] = a + sizeof (uint64_t);
3778 				}
3779 
3780 				break;
3781 			}
3782 
3783 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
3784 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
3785 			regs[rd] = tmp[CPU->cpu_id];
3786 			break;
3787 
3788 		case DIF_OP_STLS:
3789 			id = DIF_INSTR_VAR(instr);
3790 
3791 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3792 			id -= DIF_VAR_OTHER_UBASE;
3793 			ASSERT(id < vstate->dtvs_nlocals);
3794 
3795 			ASSERT(vstate->dtvs_locals != NULL);
3796 			svar = vstate->dtvs_locals[id];
3797 			ASSERT(svar != NULL);
3798 			v = &svar->dtsv_var;
3799 
3800 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3801 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3802 				size_t sz = v->dtdv_type.dtdt_size;
3803 
3804 				sz += sizeof (uint64_t);
3805 				ASSERT(svar->dtsv_size == NCPU * sz);
3806 				a += CPU->cpu_id * sz;
3807 
3808 				if (regs[rd] == NULL) {
3809 					*(uint8_t *)a = UINT8_MAX;
3810 					break;
3811 				} else {
3812 					*(uint8_t *)a = 0;
3813 					a += sizeof (uint64_t);
3814 				}
3815 
3816 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3817 				    (void *)a, &v->dtdv_type);
3818 				break;
3819 			}
3820 
3821 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
3822 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
3823 			tmp[CPU->cpu_id] = regs[rd];
3824 			break;
3825 
3826 		case DIF_OP_LDTS: {
3827 			dtrace_dynvar_t *dvar;
3828 			dtrace_key_t *key;
3829 
3830 			id = DIF_INSTR_VAR(instr);
3831 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3832 			id -= DIF_VAR_OTHER_UBASE;
3833 			v = &vstate->dtvs_tlocals[id];
3834 
3835 			key = &tupregs[DIF_DTR_NREGS];
3836 			key[0].dttk_value = (uint64_t)id;
3837 			key[0].dttk_size = 0;
3838 			DTRACE_TLS_THRKEY(key[1].dttk_value);
3839 			key[1].dttk_size = 0;
3840 
3841 			dvar = dtrace_dynvar(dstate, 2, key,
3842 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC);
3843 
3844 			if (dvar == NULL) {
3845 				regs[rd] = 0;
3846 				break;
3847 			}
3848 
3849 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3850 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
3851 			} else {
3852 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
3853 			}
3854 
3855 			break;
3856 		}
3857 
3858 		case DIF_OP_STTS: {
3859 			dtrace_dynvar_t *dvar;
3860 			dtrace_key_t *key;
3861 
3862 			id = DIF_INSTR_VAR(instr);
3863 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3864 			id -= DIF_VAR_OTHER_UBASE;
3865 
3866 			key = &tupregs[DIF_DTR_NREGS];
3867 			key[0].dttk_value = (uint64_t)id;
3868 			key[0].dttk_size = 0;
3869 			DTRACE_TLS_THRKEY(key[1].dttk_value);
3870 			key[1].dttk_size = 0;
3871 			v = &vstate->dtvs_tlocals[id];
3872 
3873 			dvar = dtrace_dynvar(dstate, 2, key,
3874 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
3875 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
3876 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
3877 			    DTRACE_DYNVAR_DEALLOC);
3878 
3879 			/*
3880 			 * Given that we're storing to thread-local data,
3881 			 * we need to flush our predicate cache.
3882 			 */
3883 			curthread->t_predcache = NULL;
3884 
3885 			if (dvar == NULL)
3886 				break;
3887 
3888 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3889 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3890 				    dvar->dtdv_data, &v->dtdv_type);
3891 			} else {
3892 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
3893 			}
3894 
3895 			break;
3896 		}
3897 
3898 		case DIF_OP_SRA:
3899 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
3900 			break;
3901 
3902 		case DIF_OP_CALL:
3903 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
3904 			    regs, tupregs, ttop, mstate, state);
3905 			break;
3906 
3907 		case DIF_OP_PUSHTR:
3908 			if (ttop == DIF_DTR_NREGS) {
3909 				*flags |= CPU_DTRACE_TUPOFLOW;
3910 				break;
3911 			}
3912 
3913 			if (r1 == DIF_TYPE_STRING) {
3914 				/*
3915 				 * If this is a string type and the size is 0,
3916 				 * we'll use the system-wide default string
3917 				 * size.  Note that we are _not_ looking at
3918 				 * the value of the DTRACEOPT_STRSIZE option;
3919 				 * had this been set, we would expect to have
3920 				 * a non-zero size value in the "pushtr".
3921 				 */
3922 				tupregs[ttop].dttk_size =
3923 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
3924 				    regs[r2] ? regs[r2] :
3925 				    dtrace_strsize_default) + 1;
3926 			} else {
3927 				tupregs[ttop].dttk_size = regs[r2];
3928 			}
3929 
3930 			tupregs[ttop++].dttk_value = regs[rd];
3931 			break;
3932 
3933 		case DIF_OP_PUSHTV:
3934 			if (ttop == DIF_DTR_NREGS) {
3935 				*flags |= CPU_DTRACE_TUPOFLOW;
3936 				break;
3937 			}
3938 
3939 			tupregs[ttop].dttk_value = regs[rd];
3940 			tupregs[ttop++].dttk_size = 0;
3941 			break;
3942 
3943 		case DIF_OP_POPTS:
3944 			if (ttop != 0)
3945 				ttop--;
3946 			break;
3947 
3948 		case DIF_OP_FLUSHTS:
3949 			ttop = 0;
3950 			break;
3951 
3952 		case DIF_OP_LDGAA:
3953 		case DIF_OP_LDTAA: {
3954 			dtrace_dynvar_t *dvar;
3955 			dtrace_key_t *key = tupregs;
3956 			uint_t nkeys = ttop;
3957 
3958 			id = DIF_INSTR_VAR(instr);
3959 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3960 			id -= DIF_VAR_OTHER_UBASE;
3961 
3962 			key[nkeys].dttk_value = (uint64_t)id;
3963 			key[nkeys++].dttk_size = 0;
3964 
3965 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
3966 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
3967 				key[nkeys++].dttk_size = 0;
3968 				v = &vstate->dtvs_tlocals[id];
3969 			} else {
3970 				v = &vstate->dtvs_globals[id]->dtsv_var;
3971 			}
3972 
3973 			dvar = dtrace_dynvar(dstate, nkeys, key,
3974 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
3975 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
3976 			    DTRACE_DYNVAR_NOALLOC);
3977 
3978 			if (dvar == NULL) {
3979 				regs[rd] = 0;
3980 				break;
3981 			}
3982 
3983 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3984 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
3985 			} else {
3986 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
3987 			}
3988 
3989 			break;
3990 		}
3991 
3992 		case DIF_OP_STGAA:
3993 		case DIF_OP_STTAA: {
3994 			dtrace_dynvar_t *dvar;
3995 			dtrace_key_t *key = tupregs;
3996 			uint_t nkeys = ttop;
3997 
3998 			id = DIF_INSTR_VAR(instr);
3999 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4000 			id -= DIF_VAR_OTHER_UBASE;
4001 
4002 			key[nkeys].dttk_value = (uint64_t)id;
4003 			key[nkeys++].dttk_size = 0;
4004 
4005 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
4006 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4007 				key[nkeys++].dttk_size = 0;
4008 				v = &vstate->dtvs_tlocals[id];
4009 			} else {
4010 				v = &vstate->dtvs_globals[id]->dtsv_var;
4011 			}
4012 
4013 			dvar = dtrace_dynvar(dstate, nkeys, key,
4014 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4015 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4016 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4017 			    DTRACE_DYNVAR_DEALLOC);
4018 
4019 			if (dvar == NULL)
4020 				break;
4021 
4022 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4023 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4024 				    dvar->dtdv_data, &v->dtdv_type);
4025 			} else {
4026 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4027 			}
4028 
4029 			break;
4030 		}
4031 
4032 		case DIF_OP_ALLOCS: {
4033 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4034 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4035 
4036 			if (mstate->dtms_scratch_ptr + size >
4037 			    mstate->dtms_scratch_base +
4038 			    mstate->dtms_scratch_size) {
4039 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4040 				regs[rd] = NULL;
4041 			} else {
4042 				dtrace_bzero((void *)
4043 				    mstate->dtms_scratch_ptr, size);
4044 				mstate->dtms_scratch_ptr += size;
4045 				regs[rd] = ptr;
4046 			}
4047 			break;
4048 		}
4049 
4050 		case DIF_OP_COPYS:
4051 			if (!dtrace_canstore(regs[rd], regs[r2],
4052 			    mstate, vstate)) {
4053 				*flags |= CPU_DTRACE_BADADDR;
4054 				*illval = regs[rd];
4055 				break;
4056 			}
4057 
4058 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4059 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4060 			break;
4061 
4062 		case DIF_OP_STB:
4063 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4064 				*flags |= CPU_DTRACE_BADADDR;
4065 				*illval = regs[rd];
4066 				break;
4067 			}
4068 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4069 			break;
4070 
4071 		case DIF_OP_STH:
4072 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4073 				*flags |= CPU_DTRACE_BADADDR;
4074 				*illval = regs[rd];
4075 				break;
4076 			}
4077 			if (regs[rd] & 1) {
4078 				*flags |= CPU_DTRACE_BADALIGN;
4079 				*illval = regs[rd];
4080 				break;
4081 			}
4082 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4083 			break;
4084 
4085 		case DIF_OP_STW:
4086 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4087 				*flags |= CPU_DTRACE_BADADDR;
4088 				*illval = regs[rd];
4089 				break;
4090 			}
4091 			if (regs[rd] & 3) {
4092 				*flags |= CPU_DTRACE_BADALIGN;
4093 				*illval = regs[rd];
4094 				break;
4095 			}
4096 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4097 			break;
4098 
4099 		case DIF_OP_STX:
4100 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4101 				*flags |= CPU_DTRACE_BADADDR;
4102 				*illval = regs[rd];
4103 				break;
4104 			}
4105 			if (regs[rd] & 7) {
4106 				*flags |= CPU_DTRACE_BADALIGN;
4107 				*illval = regs[rd];
4108 				break;
4109 			}
4110 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4111 			break;
4112 		}
4113 	}
4114 
4115 	if (!(*flags & CPU_DTRACE_FAULT))
4116 		return (rval);
4117 
4118 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4119 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4120 
4121 	return (0);
4122 }
4123 
4124 static void
4125 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4126 {
4127 	dtrace_probe_t *probe = ecb->dte_probe;
4128 	dtrace_provider_t *prov = probe->dtpr_provider;
4129 	char c[DTRACE_FULLNAMELEN + 80], *str;
4130 	char *msg = "dtrace: breakpoint action at probe ";
4131 	char *ecbmsg = " (ecb ";
4132 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4133 	uintptr_t val = (uintptr_t)ecb;
4134 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4135 
4136 	if (dtrace_destructive_disallow)
4137 		return;
4138 
4139 	/*
4140 	 * It's impossible to be taking action on the NULL probe.
4141 	 */
4142 	ASSERT(probe != NULL);
4143 
4144 	/*
4145 	 * This is a poor man's (destitute man's?) sprintf():  we want to
4146 	 * print the provider name, module name, function name and name of
4147 	 * the probe, along with the hex address of the ECB with the breakpoint
4148 	 * action -- all of which we must place in the character buffer by
4149 	 * hand.
4150 	 */
4151 	while (*msg != '\0')
4152 		c[i++] = *msg++;
4153 
4154 	for (str = prov->dtpv_name; *str != '\0'; str++)
4155 		c[i++] = *str;
4156 	c[i++] = ':';
4157 
4158 	for (str = probe->dtpr_mod; *str != '\0'; str++)
4159 		c[i++] = *str;
4160 	c[i++] = ':';
4161 
4162 	for (str = probe->dtpr_func; *str != '\0'; str++)
4163 		c[i++] = *str;
4164 	c[i++] = ':';
4165 
4166 	for (str = probe->dtpr_name; *str != '\0'; str++)
4167 		c[i++] = *str;
4168 
4169 	while (*ecbmsg != '\0')
4170 		c[i++] = *ecbmsg++;
4171 
4172 	while (shift >= 0) {
4173 		mask = (uintptr_t)0xf << shift;
4174 
4175 		if (val >= ((uintptr_t)1 << shift))
4176 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4177 		shift -= 4;
4178 	}
4179 
4180 	c[i++] = ')';
4181 	c[i] = '\0';
4182 
4183 	debug_enter(c);
4184 }
4185 
4186 static void
4187 dtrace_action_panic(dtrace_ecb_t *ecb)
4188 {
4189 	dtrace_probe_t *probe = ecb->dte_probe;
4190 
4191 	/*
4192 	 * It's impossible to be taking action on the NULL probe.
4193 	 */
4194 	ASSERT(probe != NULL);
4195 
4196 	if (dtrace_destructive_disallow)
4197 		return;
4198 
4199 	if (dtrace_panicked != NULL)
4200 		return;
4201 
4202 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4203 		return;
4204 
4205 	/*
4206 	 * We won the right to panic.  (We want to be sure that only one
4207 	 * thread calls panic() from dtrace_probe(), and that panic() is
4208 	 * called exactly once.)
4209 	 */
4210 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4211 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4212 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4213 }
4214 
4215 static void
4216 dtrace_action_raise(uint64_t sig)
4217 {
4218 	if (dtrace_destructive_disallow)
4219 		return;
4220 
4221 	if (sig >= NSIG) {
4222 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4223 		return;
4224 	}
4225 
4226 	/*
4227 	 * raise() has a queue depth of 1 -- we ignore all subsequent
4228 	 * invocations of the raise() action.
4229 	 */
4230 	if (curthread->t_dtrace_sig == 0)
4231 		curthread->t_dtrace_sig = (uint8_t)sig;
4232 
4233 	curthread->t_sig_check = 1;
4234 	aston(curthread);
4235 }
4236 
4237 static void
4238 dtrace_action_stop(void)
4239 {
4240 	if (dtrace_destructive_disallow)
4241 		return;
4242 
4243 	if (!curthread->t_dtrace_stop) {
4244 		curthread->t_dtrace_stop = 1;
4245 		curthread->t_sig_check = 1;
4246 		aston(curthread);
4247 	}
4248 }
4249 
4250 static void
4251 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4252 {
4253 	hrtime_t now;
4254 	volatile uint16_t *flags;
4255 	cpu_t *cpu = CPU;
4256 
4257 	if (dtrace_destructive_disallow)
4258 		return;
4259 
4260 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4261 
4262 	now = dtrace_gethrtime();
4263 
4264 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4265 		/*
4266 		 * We need to advance the mark to the current time.
4267 		 */
4268 		cpu->cpu_dtrace_chillmark = now;
4269 		cpu->cpu_dtrace_chilled = 0;
4270 	}
4271 
4272 	/*
4273 	 * Now check to see if the requested chill time would take us over
4274 	 * the maximum amount of time allowed in the chill interval.  (Or
4275 	 * worse, if the calculation itself induces overflow.)
4276 	 */
4277 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4278 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4279 		*flags |= CPU_DTRACE_ILLOP;
4280 		return;
4281 	}
4282 
4283 	while (dtrace_gethrtime() - now < val)
4284 		continue;
4285 
4286 	/*
4287 	 * Normally, we assure that the value of the variable "timestamp" does
4288 	 * not change within an ECB.  The presence of chill() represents an
4289 	 * exception to this rule, however.
4290 	 */
4291 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
4292 	cpu->cpu_dtrace_chilled += val;
4293 }
4294 
4295 static void
4296 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
4297     uint64_t *buf, uint64_t arg)
4298 {
4299 	int nframes = DTRACE_USTACK_NFRAMES(arg);
4300 	int strsize = DTRACE_USTACK_STRSIZE(arg);
4301 	uint64_t *pcs = &buf[1], *fps;
4302 	char *str = (char *)&pcs[nframes];
4303 	int size, offs = 0, i, j;
4304 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
4305 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4306 	char *sym;
4307 
4308 	/*
4309 	 * Should be taking a faster path if string space has not been
4310 	 * allocated.
4311 	 */
4312 	ASSERT(strsize != 0);
4313 
4314 	/*
4315 	 * We will first allocate some temporary space for the frame pointers.
4316 	 */
4317 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4318 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
4319 	    (nframes * sizeof (uint64_t));
4320 
4321 	if (mstate->dtms_scratch_ptr + size >
4322 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
4323 		/*
4324 		 * Not enough room for our frame pointers -- need to indicate
4325 		 * that we ran out of scratch space.
4326 		 */
4327 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4328 		return;
4329 	}
4330 
4331 	mstate->dtms_scratch_ptr += size;
4332 	saved = mstate->dtms_scratch_ptr;
4333 
4334 	/*
4335 	 * Now get a stack with both program counters and frame pointers.
4336 	 */
4337 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4338 	dtrace_getufpstack(buf, fps, nframes + 1);
4339 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4340 
4341 	/*
4342 	 * If that faulted, we're cooked.
4343 	 */
4344 	if (*flags & CPU_DTRACE_FAULT)
4345 		goto out;
4346 
4347 	/*
4348 	 * Now we want to walk up the stack, calling the USTACK helper.  For
4349 	 * each iteration, we restore the scratch pointer.
4350 	 */
4351 	for (i = 0; i < nframes; i++) {
4352 		mstate->dtms_scratch_ptr = saved;
4353 
4354 		if (offs >= strsize)
4355 			break;
4356 
4357 		sym = (char *)(uintptr_t)dtrace_helper(
4358 		    DTRACE_HELPER_ACTION_USTACK,
4359 		    mstate, state, pcs[i], fps[i]);
4360 
4361 		/*
4362 		 * If we faulted while running the helper, we're going to
4363 		 * clear the fault and null out the corresponding string.
4364 		 */
4365 		if (*flags & CPU_DTRACE_FAULT) {
4366 			*flags &= ~CPU_DTRACE_FAULT;
4367 			str[offs++] = '\0';
4368 			continue;
4369 		}
4370 
4371 		if (sym == NULL) {
4372 			str[offs++] = '\0';
4373 			continue;
4374 		}
4375 
4376 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4377 
4378 		/*
4379 		 * Now copy in the string that the helper returned to us.
4380 		 */
4381 		for (j = 0; offs + j < strsize; j++) {
4382 			if ((str[offs + j] = sym[j]) == '\0')
4383 				break;
4384 		}
4385 
4386 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4387 
4388 		/*
4389 		 * If we didn't have room for all of the last string, break
4390 		 * out -- the loop at the end will take clear of zeroing the
4391 		 * remainder of the string table.
4392 		 */
4393 		if (offs + j >= strsize)
4394 			break;
4395 
4396 		offs += j + 1;
4397 	}
4398 
4399 	while (offs < strsize)
4400 		str[offs++] = '\0';
4401 
4402 out:
4403 	mstate->dtms_scratch_ptr = old;
4404 }
4405 
4406 /*
4407  * If you're looking for the epicenter of DTrace, you just found it.  This
4408  * is the function called by the provider to fire a probe -- from which all
4409  * subsequent probe-context DTrace activity emanates.
4410  */
4411 void
4412 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
4413     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
4414 {
4415 	processorid_t cpuid;
4416 	dtrace_icookie_t cookie;
4417 	dtrace_probe_t *probe;
4418 	dtrace_mstate_t mstate;
4419 	dtrace_ecb_t *ecb;
4420 	dtrace_action_t *act;
4421 	intptr_t offs;
4422 	size_t size;
4423 	int vtime, onintr;
4424 	volatile uint16_t *flags;
4425 	hrtime_t now;
4426 
4427 	/*
4428 	 * Kick out immediately if this CPU is still being born (in which case
4429 	 * curthread will be set to -1)
4430 	 */
4431 	if ((uintptr_t)curthread & 1)
4432 		return;
4433 
4434 	cookie = dtrace_interrupt_disable();
4435 	probe = dtrace_probes[id - 1];
4436 	cpuid = CPU->cpu_id;
4437 	onintr = CPU_ON_INTR(CPU);
4438 
4439 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
4440 	    probe->dtpr_predcache == curthread->t_predcache) {
4441 		/*
4442 		 * We have hit in the predicate cache; we know that
4443 		 * this predicate would evaluate to be false.
4444 		 */
4445 		dtrace_interrupt_enable(cookie);
4446 		return;
4447 	}
4448 
4449 	if (panic_quiesce) {
4450 		/*
4451 		 * We don't trace anything if we're panicking.
4452 		 */
4453 		dtrace_interrupt_enable(cookie);
4454 		return;
4455 	}
4456 
4457 	now = dtrace_gethrtime();
4458 	vtime = dtrace_vtime_references != 0;
4459 
4460 	if (vtime && curthread->t_dtrace_start)
4461 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
4462 
4463 	mstate.dtms_probe = probe;
4464 	mstate.dtms_arg[0] = arg0;
4465 	mstate.dtms_arg[1] = arg1;
4466 	mstate.dtms_arg[2] = arg2;
4467 	mstate.dtms_arg[3] = arg3;
4468 	mstate.dtms_arg[4] = arg4;
4469 
4470 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
4471 
4472 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
4473 		dtrace_predicate_t *pred = ecb->dte_predicate;
4474 		dtrace_state_t *state = ecb->dte_state;
4475 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
4476 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
4477 		dtrace_vstate_t *vstate = &state->dts_vstate;
4478 		dtrace_provider_t *prov = probe->dtpr_provider;
4479 		int committed = 0;
4480 		caddr_t tomax;
4481 
4482 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
4483 		*flags &= ~CPU_DTRACE_ERROR;
4484 
4485 		if (prov == dtrace_provider) {
4486 			/*
4487 			 * If dtrace itself is the provider of this probe,
4488 			 * we're only going to continue processing the ECB if
4489 			 * arg0 (the dtrace_state_t) is equal to the ECB's
4490 			 * creating state.  (This prevents disjoint consumers
4491 			 * from seeing one another's metaprobes.)
4492 			 */
4493 			if (arg0 != (uint64_t)(uintptr_t)state)
4494 				continue;
4495 		}
4496 
4497 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
4498 			/*
4499 			 * We're not currently active.  If our provider isn't
4500 			 * the dtrace pseudo provider, we're not interested.
4501 			 */
4502 			if (prov != dtrace_provider)
4503 				continue;
4504 
4505 			/*
4506 			 * Now we must further check if we are in the BEGIN
4507 			 * probe.  If we are, we will only continue processing
4508 			 * if we're still in WARMUP -- if one BEGIN enabling
4509 			 * has invoked the exit() action, we don't want to
4510 			 * evaluate subsequent BEGIN enablings.
4511 			 */
4512 			if (probe->dtpr_id == dtrace_probeid_begin &&
4513 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
4514 				ASSERT(state->dts_activity ==
4515 				    DTRACE_ACTIVITY_DRAINING);
4516 				continue;
4517 			}
4518 		}
4519 
4520 		if (ecb->dte_cond) {
4521 			/*
4522 			 * If the dte_cond bits indicate that this
4523 			 * consumer is only allowed to see user-mode firings
4524 			 * of this probe, call the provider's dtps_usermode()
4525 			 * entry point to check that the probe was fired
4526 			 * while in a user context. Skip this ECB if that's
4527 			 * not the case.
4528 			 */
4529 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
4530 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
4531 			    probe->dtpr_id, probe->dtpr_arg) == 0)
4532 				continue;
4533 
4534 			/*
4535 			 * This is more subtle than it looks. We have to be
4536 			 * absolutely certain that CRED() isn't going to
4537 			 * change out from under us so it's only legit to
4538 			 * examine that structure if we're in constrained
4539 			 * situations. Currently, the only times we'll this
4540 			 * check is if a non-super-user has enabled the
4541 			 * profile or syscall providers -- providers that
4542 			 * allow visibility of all processes. For the
4543 			 * profile case, the check above will ensure that
4544 			 * we're examining a user context.
4545 			 */
4546 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
4547 				uid_t uid = ecb->dte_state->dts_cred.dcr_uid;
4548 				gid_t gid = ecb->dte_state->dts_cred.dcr_gid;
4549 				cred_t *cr;
4550 				proc_t *proc;
4551 
4552 				if ((cr = CRED()) == NULL ||
4553 				    uid != cr->cr_uid ||
4554 				    uid != cr->cr_ruid ||
4555 				    uid != cr->cr_suid ||
4556 				    gid != cr->cr_gid ||
4557 				    gid != cr->cr_rgid ||
4558 				    gid != cr->cr_sgid ||
4559 				    (proc = ttoproc(curthread)) == NULL ||
4560 				    (proc->p_flag & SNOCD))
4561 					continue;
4562 
4563 			}
4564 		}
4565 
4566 		if (now - state->dts_alive > dtrace_deadman_timeout) {
4567 			/*
4568 			 * We seem to be dead.  Unless we (a) have kernel
4569 			 * destructive permissions (b) have expicitly enabled
4570 			 * destructive actions and (c) destructive actions have
4571 			 * not been disabled, we're going to transition into
4572 			 * the KILLED state, from which no further processing
4573 			 * on this state will be performed.
4574 			 */
4575 			if (!dtrace_priv_kernel_destructive(state) ||
4576 			    !state->dts_cred.dcr_destructive ||
4577 			    dtrace_destructive_disallow) {
4578 				void *activity = &state->dts_activity;
4579 				dtrace_activity_t current;
4580 
4581 				do {
4582 					current = state->dts_activity;
4583 				} while (dtrace_cas32(activity, current,
4584 				    DTRACE_ACTIVITY_KILLED) != current);
4585 
4586 				continue;
4587 			}
4588 		}
4589 
4590 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
4591 		    ecb->dte_alignment, state, &mstate)) < 0)
4592 			continue;
4593 
4594 		tomax = buf->dtb_tomax;
4595 		ASSERT(tomax != NULL);
4596 
4597 		if (ecb->dte_size != 0)
4598 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
4599 
4600 		mstate.dtms_epid = ecb->dte_epid;
4601 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
4602 
4603 		if (pred != NULL) {
4604 			dtrace_difo_t *dp = pred->dtp_difo;
4605 			int rval;
4606 
4607 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
4608 
4609 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
4610 				dtrace_cacheid_t cid = probe->dtpr_predcache;
4611 
4612 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
4613 					/*
4614 					 * Update the predicate cache...
4615 					 */
4616 					ASSERT(cid == pred->dtp_cacheid);
4617 					curthread->t_predcache = cid;
4618 				}
4619 
4620 				continue;
4621 			}
4622 		}
4623 
4624 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
4625 		    act != NULL; act = act->dta_next) {
4626 			uint64_t val;
4627 			size_t valoffs;
4628 			dtrace_difo_t *dp;
4629 			dtrace_recdesc_t *rec = &act->dta_rec;
4630 
4631 			size = rec->dtrd_size;
4632 			valoffs = offs + rec->dtrd_offset;
4633 
4634 			if (DTRACEACT_ISAGG(act->dta_kind)) {
4635 				uint64_t v = 0xbad;
4636 				dtrace_aggregation_t *agg;
4637 
4638 				agg = (dtrace_aggregation_t *)act;
4639 
4640 				if ((dp = act->dta_difo) != NULL)
4641 					v = dtrace_dif_emulate(dp,
4642 					    &mstate, vstate, state);
4643 
4644 				if (*flags & CPU_DTRACE_ERROR)
4645 					continue;
4646 
4647 				dtrace_aggregate(agg, buf, offs, aggbuf, v);
4648 				continue;
4649 			}
4650 
4651 			switch (act->dta_kind) {
4652 			case DTRACEACT_STOP:
4653 				if (dtrace_priv_proc_destructive(state))
4654 					dtrace_action_stop();
4655 				continue;
4656 
4657 			case DTRACEACT_BREAKPOINT:
4658 				if (dtrace_priv_kernel_destructive(state))
4659 					dtrace_action_breakpoint(ecb);
4660 				continue;
4661 
4662 			case DTRACEACT_PANIC:
4663 				if (dtrace_priv_kernel_destructive(state))
4664 					dtrace_action_panic(ecb);
4665 				continue;
4666 
4667 			case DTRACEACT_STACK:
4668 				if (!dtrace_priv_kernel(state))
4669 					continue;
4670 
4671 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
4672 				    size / sizeof (pc_t), probe->dtpr_aframes,
4673 				    DTRACE_ANCHORED(probe) ? NULL :
4674 				    (uint32_t *)arg0);
4675 
4676 				continue;
4677 
4678 			case DTRACEACT_JSTACK:
4679 			case DTRACEACT_USTACK:
4680 				if (!dtrace_priv_proc(state))
4681 					continue;
4682 
4683 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
4684 				    curproc->p_dtrace_helpers != NULL) {
4685 					/*
4686 					 * This is the slow path -- we have
4687 					 * allocated string space, and we're
4688 					 * getting the stack of a process that
4689 					 * has helpers.  Call into a separate
4690 					 * routine to perform this processing.
4691 					 */
4692 					dtrace_action_ustack(&mstate, state,
4693 					    (uint64_t *)(tomax + valoffs),
4694 					    rec->dtrd_arg);
4695 					continue;
4696 				}
4697 
4698 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4699 				dtrace_getupcstack((uint64_t *)
4700 				    (tomax + valoffs),
4701 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
4702 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4703 				continue;
4704 
4705 			default:
4706 				break;
4707 			}
4708 
4709 			dp = act->dta_difo;
4710 			ASSERT(dp != NULL);
4711 
4712 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
4713 
4714 			if (*flags & CPU_DTRACE_ERROR)
4715 				continue;
4716 
4717 			switch (act->dta_kind) {
4718 			case DTRACEACT_SPECULATE:
4719 				ASSERT(buf == &state->dts_buffer[cpuid]);
4720 				buf = dtrace_speculation_buffer(state,
4721 				    cpuid, val);
4722 
4723 				if (buf == NULL) {
4724 					*flags |= CPU_DTRACE_DROP;
4725 					continue;
4726 				}
4727 
4728 				offs = dtrace_buffer_reserve(buf,
4729 				    ecb->dte_needed, ecb->dte_alignment,
4730 				    state, NULL);
4731 
4732 				if (offs < 0) {
4733 					*flags |= CPU_DTRACE_DROP;
4734 					continue;
4735 				}
4736 
4737 				tomax = buf->dtb_tomax;
4738 				ASSERT(tomax != NULL);
4739 
4740 				if (ecb->dte_size != 0)
4741 					DTRACE_STORE(uint32_t, tomax, offs,
4742 					    ecb->dte_epid);
4743 				continue;
4744 
4745 			case DTRACEACT_CHILL:
4746 				if (dtrace_priv_kernel_destructive(state))
4747 					dtrace_action_chill(&mstate, val);
4748 				continue;
4749 
4750 			case DTRACEACT_RAISE:
4751 				if (dtrace_priv_proc_destructive(state))
4752 					dtrace_action_raise(val);
4753 				continue;
4754 
4755 			case DTRACEACT_COMMIT:
4756 				ASSERT(!committed);
4757 
4758 				/*
4759 				 * We need to commit our buffer state.
4760 				 */
4761 				if (ecb->dte_size)
4762 					buf->dtb_offset = offs + ecb->dte_size;
4763 				buf = &state->dts_buffer[cpuid];
4764 				dtrace_speculation_commit(state, cpuid, val);
4765 				committed = 1;
4766 				continue;
4767 
4768 			case DTRACEACT_DISCARD:
4769 				dtrace_speculation_discard(state, cpuid, val);
4770 				continue;
4771 
4772 			case DTRACEACT_DIFEXPR:
4773 			case DTRACEACT_LIBACT:
4774 			case DTRACEACT_PRINTF:
4775 			case DTRACEACT_PRINTA:
4776 			case DTRACEACT_SYSTEM:
4777 			case DTRACEACT_FREOPEN:
4778 				break;
4779 
4780 			case DTRACEACT_EXIT: {
4781 				/*
4782 				 * For the exit action, we are going to attempt
4783 				 * to atomically set our activity to be
4784 				 * draining.  If this fails (either because
4785 				 * another CPU has beat us to the exit action,
4786 				 * or because our current activity is something
4787 				 * other than ACTIVE or WARMUP), we will
4788 				 * continue.  This assures that the exit action
4789 				 * can be successfully recorded at most once
4790 				 * when we're in the ACTIVE state.  If we're
4791 				 * encountering the exit() action while in
4792 				 * COOLDOWN, however, we want to honor the new
4793 				 * status code.  (We know that we're the only
4794 				 * thread in COOLDOWN, so there is no race.)
4795 				 */
4796 				void *activity = &state->dts_activity;
4797 				dtrace_activity_t current = state->dts_activity;
4798 
4799 				if (current == DTRACE_ACTIVITY_COOLDOWN)
4800 					break;
4801 
4802 				if (current != DTRACE_ACTIVITY_WARMUP)
4803 					current = DTRACE_ACTIVITY_ACTIVE;
4804 
4805 				if (dtrace_cas32(activity, current,
4806 				    DTRACE_ACTIVITY_DRAINING) != current) {
4807 					*flags |= CPU_DTRACE_DROP;
4808 					continue;
4809 				}
4810 
4811 				break;
4812 			}
4813 
4814 			default:
4815 				ASSERT(0);
4816 			}
4817 
4818 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
4819 				uintptr_t end = valoffs + size;
4820 
4821 				/*
4822 				 * If this is a string, we're going to only
4823 				 * load until we find the zero byte -- after
4824 				 * which we'll store zero bytes.
4825 				 */
4826 				if (dp->dtdo_rtype.dtdt_kind ==
4827 				    DIF_TYPE_STRING) {
4828 					char c = '\0' + 1;
4829 					size_t s;
4830 
4831 					for (s = 0; s < size; s++) {
4832 						if (c != '\0')
4833 							c = dtrace_load8(val++);
4834 
4835 						DTRACE_STORE(uint8_t, tomax,
4836 						    valoffs++, c);
4837 					}
4838 
4839 					continue;
4840 				}
4841 
4842 				while (valoffs < end) {
4843 					DTRACE_STORE(uint8_t, tomax, valoffs++,
4844 					    dtrace_load8(val++));
4845 				}
4846 
4847 				continue;
4848 			}
4849 
4850 			switch (size) {
4851 			case 0:
4852 				break;
4853 
4854 			case sizeof (uint8_t):
4855 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
4856 				break;
4857 			case sizeof (uint16_t):
4858 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
4859 				break;
4860 			case sizeof (uint32_t):
4861 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
4862 				break;
4863 			case sizeof (uint64_t):
4864 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
4865 				break;
4866 			default:
4867 				/*
4868 				 * Any other size should have been returned by
4869 				 * reference, not by value.
4870 				 */
4871 				ASSERT(0);
4872 				break;
4873 			}
4874 		}
4875 
4876 		if (*flags & CPU_DTRACE_DROP)
4877 			continue;
4878 
4879 		if (*flags & CPU_DTRACE_FAULT) {
4880 			int ndx;
4881 			dtrace_action_t *err;
4882 
4883 			buf->dtb_errors++;
4884 
4885 			if (probe->dtpr_id == dtrace_probeid_error) {
4886 				/*
4887 				 * There's nothing we can do -- we had an
4888 				 * error on the error probe.
4889 				 */
4890 				dtrace_double_errors++;
4891 				continue;
4892 			}
4893 
4894 			if (vtime) {
4895 				/*
4896 				 * Before recursing on dtrace_probe(), we
4897 				 * need to explicitly clear out our start
4898 				 * time to prevent it from being accumulated
4899 				 * into t_dtrace_vtime.
4900 				 */
4901 				curthread->t_dtrace_start = 0;
4902 			}
4903 
4904 			/*
4905 			 * Iterate over the actions to figure out which action
4906 			 * we were processing when we experienced the error.
4907 			 * Note that act points _past_ the faulting action; if
4908 			 * act is ecb->dte_action, the fault was in the
4909 			 * predicate, if it's ecb->dte_action->dta_next it's
4910 			 * in action #1, and so on.
4911 			 */
4912 			for (err = ecb->dte_action, ndx = 0;
4913 			    err != act; err = err->dta_next, ndx++)
4914 				continue;
4915 
4916 			dtrace_probe_error(state, ecb->dte_epid, ndx,
4917 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
4918 			    mstate.dtms_fltoffs : -1,
4919 			    (*flags & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :
4920 			    (*flags & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :
4921 			    (*flags & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :
4922 			    (*flags & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :
4923 			    (*flags & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :
4924 			    (*flags & CPU_DTRACE_TUPOFLOW) ?
4925 			    DTRACEFLT_TUPOFLOW :
4926 			    (*flags & CPU_DTRACE_BADALIGN) ?
4927 			    DTRACEFLT_BADALIGN :
4928 			    (*flags & CPU_DTRACE_NOSCRATCH) ?
4929 			    DTRACEFLT_NOSCRATCH : DTRACEFLT_UNKNOWN,
4930 			    cpu_core[cpuid].cpuc_dtrace_illval);
4931 
4932 			continue;
4933 		}
4934 
4935 		if (!committed)
4936 			buf->dtb_offset = offs + ecb->dte_size;
4937 	}
4938 
4939 	if (vtime)
4940 		curthread->t_dtrace_start = dtrace_gethrtime();
4941 
4942 	dtrace_interrupt_enable(cookie);
4943 }
4944 
4945 /*
4946  * DTrace Probe Hashing Functions
4947  *
4948  * The functions in this section (and indeed, the functions in remaining
4949  * sections) are not _called_ from probe context.  (Any exceptions to this are
4950  * marked with a "Note:".)  Rather, they are called from elsewhere in the
4951  * DTrace framework to look-up probes in, add probes to and remove probes from
4952  * the DTrace probe hashes.  (Each probe is hashed by each element of the
4953  * probe tuple -- allowing for fast lookups, regardless of what was
4954  * specified.)
4955  */
4956 static uint_t
4957 dtrace_hash_str(char *p)
4958 {
4959 	unsigned int g;
4960 	uint_t hval = 0;
4961 
4962 	while (*p) {
4963 		hval = (hval << 4) + *p++;
4964 		if ((g = (hval & 0xf0000000)) != 0)
4965 			hval ^= g >> 24;
4966 		hval &= ~g;
4967 	}
4968 	return (hval);
4969 }
4970 
4971 static dtrace_hash_t *
4972 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
4973 {
4974 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
4975 
4976 	hash->dth_stroffs = stroffs;
4977 	hash->dth_nextoffs = nextoffs;
4978 	hash->dth_prevoffs = prevoffs;
4979 
4980 	hash->dth_size = 1;
4981 	hash->dth_mask = hash->dth_size - 1;
4982 
4983 	hash->dth_tab = kmem_zalloc(hash->dth_size *
4984 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
4985 
4986 	return (hash);
4987 }
4988 
4989 static void
4990 dtrace_hash_destroy(dtrace_hash_t *hash)
4991 {
4992 #ifdef DEBUG
4993 	int i;
4994 
4995 	for (i = 0; i < hash->dth_size; i++)
4996 		ASSERT(hash->dth_tab[i] == NULL);
4997 #endif
4998 
4999 	kmem_free(hash->dth_tab,
5000 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
5001 	kmem_free(hash, sizeof (dtrace_hash_t));
5002 }
5003 
5004 static void
5005 dtrace_hash_resize(dtrace_hash_t *hash)
5006 {
5007 	int size = hash->dth_size, i, ndx;
5008 	int new_size = hash->dth_size << 1;
5009 	int new_mask = new_size - 1;
5010 	dtrace_hashbucket_t **new_tab, *bucket, *next;
5011 
5012 	ASSERT((new_size & new_mask) == 0);
5013 
5014 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5015 
5016 	for (i = 0; i < size; i++) {
5017 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5018 			dtrace_probe_t *probe = bucket->dthb_chain;
5019 
5020 			ASSERT(probe != NULL);
5021 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5022 
5023 			next = bucket->dthb_next;
5024 			bucket->dthb_next = new_tab[ndx];
5025 			new_tab[ndx] = bucket;
5026 		}
5027 	}
5028 
5029 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5030 	hash->dth_tab = new_tab;
5031 	hash->dth_size = new_size;
5032 	hash->dth_mask = new_mask;
5033 }
5034 
5035 static void
5036 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5037 {
5038 	int hashval = DTRACE_HASHSTR(hash, new);
5039 	int ndx = hashval & hash->dth_mask;
5040 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5041 	dtrace_probe_t **nextp, **prevp;
5042 
5043 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5044 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5045 			goto add;
5046 	}
5047 
5048 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5049 		dtrace_hash_resize(hash);
5050 		dtrace_hash_add(hash, new);
5051 		return;
5052 	}
5053 
5054 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5055 	bucket->dthb_next = hash->dth_tab[ndx];
5056 	hash->dth_tab[ndx] = bucket;
5057 	hash->dth_nbuckets++;
5058 
5059 add:
5060 	nextp = DTRACE_HASHNEXT(hash, new);
5061 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5062 	*nextp = bucket->dthb_chain;
5063 
5064 	if (bucket->dthb_chain != NULL) {
5065 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5066 		ASSERT(*prevp == NULL);
5067 		*prevp = new;
5068 	}
5069 
5070 	bucket->dthb_chain = new;
5071 	bucket->dthb_len++;
5072 }
5073 
5074 static dtrace_probe_t *
5075 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5076 {
5077 	int hashval = DTRACE_HASHSTR(hash, template);
5078 	int ndx = hashval & hash->dth_mask;
5079 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5080 
5081 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5082 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5083 			return (bucket->dthb_chain);
5084 	}
5085 
5086 	return (NULL);
5087 }
5088 
5089 static int
5090 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5091 {
5092 	int hashval = DTRACE_HASHSTR(hash, template);
5093 	int ndx = hashval & hash->dth_mask;
5094 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5095 
5096 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5097 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5098 			return (bucket->dthb_len);
5099 	}
5100 
5101 	return (NULL);
5102 }
5103 
5104 static void
5105 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5106 {
5107 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5108 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5109 
5110 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5111 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5112 
5113 	/*
5114 	 * Find the bucket that we're removing this probe from.
5115 	 */
5116 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5117 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5118 			break;
5119 	}
5120 
5121 	ASSERT(bucket != NULL);
5122 
5123 	if (*prevp == NULL) {
5124 		if (*nextp == NULL) {
5125 			/*
5126 			 * The removed probe was the only probe on this
5127 			 * bucket; we need to remove the bucket.
5128 			 */
5129 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5130 
5131 			ASSERT(bucket->dthb_chain == probe);
5132 			ASSERT(b != NULL);
5133 
5134 			if (b == bucket) {
5135 				hash->dth_tab[ndx] = bucket->dthb_next;
5136 			} else {
5137 				while (b->dthb_next != bucket)
5138 					b = b->dthb_next;
5139 				b->dthb_next = bucket->dthb_next;
5140 			}
5141 
5142 			ASSERT(hash->dth_nbuckets > 0);
5143 			hash->dth_nbuckets--;
5144 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5145 			return;
5146 		}
5147 
5148 		bucket->dthb_chain = *nextp;
5149 	} else {
5150 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5151 	}
5152 
5153 	if (*nextp != NULL)
5154 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5155 }
5156 
5157 /*
5158  * DTrace Utility Functions
5159  *
5160  * These are random utility functions that are _not_ called from probe context.
5161  */
5162 static int
5163 dtrace_badattr(const dtrace_attribute_t *a)
5164 {
5165 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5166 	    a->dtat_data > DTRACE_STABILITY_MAX ||
5167 	    a->dtat_class > DTRACE_CLASS_MAX);
5168 }
5169 
5170 /*
5171  * Return a duplicate copy of a string.  If the specified string is NULL,
5172  * this function returns a zero-length string.
5173  */
5174 static char *
5175 dtrace_strdup(const char *str)
5176 {
5177 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5178 
5179 	if (str != NULL)
5180 		(void) strcpy(new, str);
5181 
5182 	return (new);
5183 }
5184 
5185 #define	DTRACE_ISALPHA(c)	\
5186 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5187 
5188 static int
5189 dtrace_badname(const char *s)
5190 {
5191 	char c;
5192 
5193 	if (s == NULL || (c = *s++) == '\0')
5194 		return (0);
5195 
5196 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5197 		return (1);
5198 
5199 	while ((c = *s++) != '\0') {
5200 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
5201 		    c != '-' && c != '_' && c != '.' && c != '`')
5202 			return (1);
5203 	}
5204 
5205 	return (0);
5206 }
5207 
5208 static void
5209 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp)
5210 {
5211 	uint32_t priv;
5212 
5213 	*uidp = crgetuid(cr);
5214 	if (PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
5215 		priv = DTRACE_PRIV_ALL;
5216 	} else {
5217 		priv = 0;
5218 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
5219 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
5220 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
5221 			priv |= DTRACE_PRIV_USER;
5222 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
5223 			priv |= DTRACE_PRIV_PROC;
5224 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
5225 			priv |= DTRACE_PRIV_OWNER;
5226 	}
5227 
5228 	*privp = priv;
5229 }
5230 
5231 #ifdef DTRACE_ERRDEBUG
5232 static void
5233 dtrace_errdebug(const char *str)
5234 {
5235 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
5236 	int occupied = 0;
5237 
5238 	mutex_enter(&dtrace_errlock);
5239 	dtrace_errlast = str;
5240 	dtrace_errthread = curthread;
5241 
5242 	while (occupied++ < DTRACE_ERRHASHSZ) {
5243 		if (dtrace_errhash[hval].dter_msg == str) {
5244 			dtrace_errhash[hval].dter_count++;
5245 			goto out;
5246 		}
5247 
5248 		if (dtrace_errhash[hval].dter_msg != NULL) {
5249 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
5250 			continue;
5251 		}
5252 
5253 		dtrace_errhash[hval].dter_msg = str;
5254 		dtrace_errhash[hval].dter_count = 1;
5255 		goto out;
5256 	}
5257 
5258 	panic("dtrace: undersized error hash");
5259 out:
5260 	mutex_exit(&dtrace_errlock);
5261 }
5262 #endif
5263 
5264 /*
5265  * DTrace Matching Functions
5266  *
5267  * These functions are used to match groups of probes, given some elements of
5268  * a probe tuple, or some globbed expressions for elements of a probe tuple.
5269  */
5270 static int
5271 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid)
5272 {
5273 	if (priv != DTRACE_PRIV_ALL) {
5274 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
5275 		uint32_t match = priv & ppriv;
5276 
5277 		/*
5278 		 * No PRIV_DTRACE_* privileges...
5279 		 */
5280 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
5281 		    DTRACE_PRIV_KERNEL)) == 0)
5282 			return (0);
5283 
5284 		/*
5285 		 * No matching bits, but there were bits to match...
5286 		 */
5287 		if (match == 0 && ppriv != 0)
5288 			return (0);
5289 
5290 		/*
5291 		 * Need to have permissions to the process, but don't...
5292 		 */
5293 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
5294 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid)
5295 			return (0);
5296 	}
5297 
5298 	return (1);
5299 }
5300 
5301 /*
5302  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
5303  * consists of input pattern strings and an ops-vector to evaluate them.
5304  * This function returns >0 for match, 0 for no match, and <0 for error.
5305  */
5306 static int
5307 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
5308     uint32_t priv, uid_t uid)
5309 {
5310 	dtrace_provider_t *pvp = prp->dtpr_provider;
5311 	int rv;
5312 
5313 	if (pvp->dtpv_defunct)
5314 		return (0);
5315 
5316 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
5317 		return (rv);
5318 
5319 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
5320 		return (rv);
5321 
5322 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
5323 		return (rv);
5324 
5325 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
5326 		return (rv);
5327 
5328 	if (dtrace_match_priv(prp, priv, uid) == 0)
5329 		return (0);
5330 
5331 	return (rv);
5332 }
5333 
5334 /*
5335  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
5336  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
5337  * libc's version, the kernel version only applies to 8-bit ASCII strings.
5338  * In addition, all of the recursion cases except for '*' matching have been
5339  * unwound.  For '*', we still implement recursive evaluation, but a depth
5340  * counter is maintained and matching is aborted if we recurse too deep.
5341  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
5342  */
5343 static int
5344 dtrace_match_glob(const char *s, const char *p, int depth)
5345 {
5346 	const char *olds;
5347 	char s1, c;
5348 	int gs;
5349 
5350 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
5351 		return (-1);
5352 
5353 	if (s == NULL)
5354 		s = ""; /* treat NULL as empty string */
5355 
5356 top:
5357 	olds = s;
5358 	s1 = *s++;
5359 
5360 	if (p == NULL)
5361 		return (0);
5362 
5363 	if ((c = *p++) == '\0')
5364 		return (s1 == '\0');
5365 
5366 	switch (c) {
5367 	case '[': {
5368 		int ok = 0, notflag = 0;
5369 		char lc = '\0';
5370 
5371 		if (s1 == '\0')
5372 			return (0);
5373 
5374 		if (*p == '!') {
5375 			notflag = 1;
5376 			p++;
5377 		}
5378 
5379 		if ((c = *p++) == '\0')
5380 			return (0);
5381 
5382 		do {
5383 			if (c == '-' && lc != '\0' && *p != ']') {
5384 				if ((c = *p++) == '\0')
5385 					return (0);
5386 				if (c == '\\' && (c = *p++) == '\0')
5387 					return (0);
5388 
5389 				if (notflag) {
5390 					if (s1 < lc || s1 > c)
5391 						ok++;
5392 					else
5393 						return (0);
5394 				} else if (lc <= s1 && s1 <= c)
5395 					ok++;
5396 
5397 			} else if (c == '\\' && (c = *p++) == '\0')
5398 				return (0);
5399 
5400 			lc = c; /* save left-hand 'c' for next iteration */
5401 
5402 			if (notflag) {
5403 				if (s1 != c)
5404 					ok++;
5405 				else
5406 					return (0);
5407 			} else if (s1 == c)
5408 				ok++;
5409 
5410 			if ((c = *p++) == '\0')
5411 				return (0);
5412 
5413 		} while (c != ']');
5414 
5415 		if (ok)
5416 			goto top;
5417 
5418 		return (0);
5419 	}
5420 
5421 	case '\\':
5422 		if ((c = *p++) == '\0')
5423 			return (0);
5424 		/*FALLTHRU*/
5425 
5426 	default:
5427 		if (c != s1)
5428 			return (0);
5429 		/*FALLTHRU*/
5430 
5431 	case '?':
5432 		if (s1 != '\0')
5433 			goto top;
5434 		return (0);
5435 
5436 	case '*':
5437 		while (*p == '*')
5438 			p++; /* consecutive *'s are identical to a single one */
5439 
5440 		if (*p == '\0')
5441 			return (1);
5442 
5443 		for (s = olds; *s != '\0'; s++) {
5444 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
5445 				return (gs);
5446 		}
5447 
5448 		return (0);
5449 	}
5450 }
5451 
5452 /*ARGSUSED*/
5453 static int
5454 dtrace_match_string(const char *s, const char *p, int depth)
5455 {
5456 	return (s != NULL && strcmp(s, p) == 0);
5457 }
5458 
5459 /*ARGSUSED*/
5460 static int
5461 dtrace_match_nul(const char *s, const char *p, int depth)
5462 {
5463 	return (1); /* always match the empty pattern */
5464 }
5465 
5466 /*ARGSUSED*/
5467 static int
5468 dtrace_match_nonzero(const char *s, const char *p, int depth)
5469 {
5470 	return (s != NULL && s[0] != '\0');
5471 }
5472 
5473 static int
5474 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
5475     int (*matched)(dtrace_probe_t *, void *), void *arg)
5476 {
5477 	dtrace_probe_t template, *probe;
5478 	dtrace_hash_t *hash = NULL;
5479 	int len, best = INT_MAX, nmatched = 0;
5480 	dtrace_id_t i;
5481 
5482 	ASSERT(MUTEX_HELD(&dtrace_lock));
5483 
5484 	/*
5485 	 * If the probe ID is specified in the key, just lookup by ID and
5486 	 * invoke the match callback once if a matching probe is found.
5487 	 */
5488 	if (pkp->dtpk_id != DTRACE_IDNONE) {
5489 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
5490 		    dtrace_match_probe(probe, pkp, priv, uid) > 0) {
5491 			(void) (*matched)(probe, arg);
5492 			nmatched++;
5493 		}
5494 		return (nmatched);
5495 	}
5496 
5497 	template.dtpr_mod = (char *)pkp->dtpk_mod;
5498 	template.dtpr_func = (char *)pkp->dtpk_func;
5499 	template.dtpr_name = (char *)pkp->dtpk_name;
5500 
5501 	/*
5502 	 * We want to find the most distinct of the module name, function
5503 	 * name, and name.  So for each one that is not a glob pattern or
5504 	 * empty string, we perform a lookup in the corresponding hash and
5505 	 * use the hash table with the fewest collisions to do our search.
5506 	 */
5507 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
5508 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
5509 		best = len;
5510 		hash = dtrace_bymod;
5511 	}
5512 
5513 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
5514 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
5515 		best = len;
5516 		hash = dtrace_byfunc;
5517 	}
5518 
5519 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
5520 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
5521 		best = len;
5522 		hash = dtrace_byname;
5523 	}
5524 
5525 	/*
5526 	 * If we did not select a hash table, iterate over every probe and
5527 	 * invoke our callback for each one that matches our input probe key.
5528 	 */
5529 	if (hash == NULL) {
5530 		for (i = 0; i < dtrace_nprobes; i++) {
5531 			if ((probe = dtrace_probes[i]) == NULL ||
5532 			    dtrace_match_probe(probe, pkp, priv, uid) <= 0)
5533 				continue;
5534 
5535 			nmatched++;
5536 
5537 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5538 				break;
5539 		}
5540 
5541 		return (nmatched);
5542 	}
5543 
5544 	/*
5545 	 * If we selected a hash table, iterate over each probe of the same key
5546 	 * name and invoke the callback for every probe that matches the other
5547 	 * attributes of our input probe key.
5548 	 */
5549 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
5550 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
5551 
5552 		if (dtrace_match_probe(probe, pkp, priv, uid) <= 0)
5553 			continue;
5554 
5555 		nmatched++;
5556 
5557 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5558 			break;
5559 	}
5560 
5561 	return (nmatched);
5562 }
5563 
5564 /*
5565  * Return the function pointer dtrace_probecmp() should use to compare the
5566  * specified pattern with a string.  For NULL or empty patterns, we select
5567  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
5568  * For non-empty non-glob strings, we use dtrace_match_string().
5569  */
5570 static dtrace_probekey_f *
5571 dtrace_probekey_func(const char *p)
5572 {
5573 	char c;
5574 
5575 	if (p == NULL || *p == '\0')
5576 		return (&dtrace_match_nul);
5577 
5578 	while ((c = *p++) != '\0') {
5579 		if (c == '[' || c == '?' || c == '*' || c == '\\')
5580 			return (&dtrace_match_glob);
5581 	}
5582 
5583 	return (&dtrace_match_string);
5584 }
5585 
5586 /*
5587  * Build a probe comparison key for use with dtrace_match_probe() from the
5588  * given probe description.  By convention, a null key only matches anchored
5589  * probes: if each field is the empty string, reset dtpk_fmatch to
5590  * dtrace_match_nonzero().
5591  */
5592 static void
5593 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
5594 {
5595 	pkp->dtpk_prov = pdp->dtpd_provider;
5596 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
5597 
5598 	pkp->dtpk_mod = pdp->dtpd_mod;
5599 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
5600 
5601 	pkp->dtpk_func = pdp->dtpd_func;
5602 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
5603 
5604 	pkp->dtpk_name = pdp->dtpd_name;
5605 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
5606 
5607 	pkp->dtpk_id = pdp->dtpd_id;
5608 
5609 	if (pkp->dtpk_id == DTRACE_IDNONE &&
5610 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
5611 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
5612 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
5613 	    pkp->dtpk_nmatch == &dtrace_match_nul)
5614 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
5615 }
5616 
5617 /*
5618  * DTrace Provider-to-Framework API Functions
5619  *
5620  * These functions implement much of the Provider-to-Framework API, as
5621  * described in <sys/dtrace.h>.  The parts of the API not in this section are
5622  * the functions in the API for probe management (found below), and
5623  * dtrace_probe() itself (found above).
5624  */
5625 
5626 /*
5627  * Register the calling provider with the DTrace framework.  This should
5628  * generally be called by DTrace providers in their attach(9E) entry point.
5629  */
5630 int
5631 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
5632     uid_t uid, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
5633 {
5634 	dtrace_provider_t *provider;
5635 
5636 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
5637 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5638 		    "arguments", name ? name : "<NULL>");
5639 		return (EINVAL);
5640 	}
5641 
5642 	if (name[0] == '\0' || dtrace_badname(name)) {
5643 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5644 		    "provider name", name);
5645 		return (EINVAL);
5646 	}
5647 
5648 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
5649 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
5650 	    pops->dtps_destroy == NULL ||
5651 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
5652 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5653 		    "provider ops", name);
5654 		return (EINVAL);
5655 	}
5656 
5657 	if (dtrace_badattr(&pap->dtpa_provider) ||
5658 	    dtrace_badattr(&pap->dtpa_mod) ||
5659 	    dtrace_badattr(&pap->dtpa_func) ||
5660 	    dtrace_badattr(&pap->dtpa_name) ||
5661 	    dtrace_badattr(&pap->dtpa_args)) {
5662 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5663 		    "provider attributes", name);
5664 		return (EINVAL);
5665 	}
5666 
5667 	if (priv & ~DTRACE_PRIV_ALL) {
5668 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5669 		    "privilege attributes", name);
5670 		return (EINVAL);
5671 	}
5672 
5673 	if ((priv & DTRACE_PRIV_KERNEL) &&
5674 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
5675 	    pops->dtps_usermode == NULL) {
5676 		cmn_err(CE_WARN, "failed to register provider '%s': need "
5677 		    "dtps_usermode() op for given privilege attributes", name);
5678 		return (EINVAL);
5679 	}
5680 
5681 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
5682 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
5683 	(void) strcpy(provider->dtpv_name, name);
5684 
5685 	provider->dtpv_attr = *pap;
5686 	provider->dtpv_priv.dtpp_flags = priv;
5687 	provider->dtpv_priv.dtpp_uid = uid;
5688 	provider->dtpv_pops = *pops;
5689 
5690 	if (pops->dtps_provide == NULL) {
5691 		ASSERT(pops->dtps_provide_module != NULL);
5692 		provider->dtpv_pops.dtps_provide =
5693 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
5694 	}
5695 
5696 	if (pops->dtps_provide_module == NULL) {
5697 		ASSERT(pops->dtps_provide != NULL);
5698 		provider->dtpv_pops.dtps_provide_module =
5699 		    (void (*)(void *, struct modctl *))dtrace_nullop;
5700 	}
5701 
5702 	if (pops->dtps_suspend == NULL) {
5703 		ASSERT(pops->dtps_resume == NULL);
5704 		provider->dtpv_pops.dtps_suspend =
5705 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
5706 		provider->dtpv_pops.dtps_resume =
5707 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
5708 	}
5709 
5710 	provider->dtpv_arg = arg;
5711 	*idp = (dtrace_provider_id_t)provider;
5712 
5713 	if (pops == &dtrace_provider_ops) {
5714 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
5715 		ASSERT(MUTEX_HELD(&dtrace_lock));
5716 		ASSERT(dtrace_anon.dta_enabling == NULL);
5717 
5718 		/*
5719 		 * We make sure that the DTrace provider is at the head of
5720 		 * the provider chain.
5721 		 */
5722 		provider->dtpv_next = dtrace_provider;
5723 		dtrace_provider = provider;
5724 		return (0);
5725 	}
5726 
5727 	mutex_enter(&dtrace_provider_lock);
5728 	mutex_enter(&dtrace_lock);
5729 
5730 	/*
5731 	 * If there is at least one provider registered, we'll add this
5732 	 * provider after the first provider.
5733 	 */
5734 	if (dtrace_provider != NULL) {
5735 		provider->dtpv_next = dtrace_provider->dtpv_next;
5736 		dtrace_provider->dtpv_next = provider;
5737 	} else {
5738 		dtrace_provider = provider;
5739 	}
5740 
5741 	if (dtrace_retained != NULL) {
5742 		dtrace_enabling_provide(provider);
5743 
5744 		/*
5745 		 * Now we need to call dtrace_enabling_matchall() -- which
5746 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
5747 		 * to drop all of our locks before calling into it...
5748 		 */
5749 		mutex_exit(&dtrace_lock);
5750 		mutex_exit(&dtrace_provider_lock);
5751 		dtrace_enabling_matchall();
5752 
5753 		return (0);
5754 	}
5755 
5756 	mutex_exit(&dtrace_lock);
5757 	mutex_exit(&dtrace_provider_lock);
5758 
5759 	return (0);
5760 }
5761 
5762 /*
5763  * Unregister the specified provider from the DTrace framework.  This should
5764  * generally be called by DTrace providers in their detach(9E) entry point.
5765  */
5766 int
5767 dtrace_unregister(dtrace_provider_id_t id)
5768 {
5769 	dtrace_provider_t *old = (dtrace_provider_t *)id;
5770 	dtrace_provider_t *prev = NULL;
5771 	int i, self = 0;
5772 	dtrace_probe_t *probe, *first = NULL;
5773 
5774 	if (old->dtpv_pops.dtps_enable ==
5775 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
5776 		/*
5777 		 * If DTrace itself is the provider, we're called with locks
5778 		 * already held.
5779 		 */
5780 		ASSERT(old == dtrace_provider);
5781 		ASSERT(dtrace_devi != NULL);
5782 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
5783 		ASSERT(MUTEX_HELD(&dtrace_lock));
5784 		self = 1;
5785 
5786 		if (dtrace_provider->dtpv_next != NULL) {
5787 			/*
5788 			 * There's another provider here; return failure.
5789 			 */
5790 			return (EBUSY);
5791 		}
5792 	} else {
5793 		mutex_enter(&dtrace_provider_lock);
5794 		mutex_enter(&mod_lock);
5795 		mutex_enter(&dtrace_lock);
5796 	}
5797 
5798 	/*
5799 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
5800 	 * probes, we refuse to let providers slither away, unless this
5801 	 * provider has already been explicitly invalidated.
5802 	 */
5803 	if (!old->dtpv_defunct &&
5804 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
5805 	    dtrace_anon.dta_state->dts_necbs > 0))) {
5806 		if (!self) {
5807 			mutex_exit(&dtrace_lock);
5808 			mutex_exit(&mod_lock);
5809 			mutex_exit(&dtrace_provider_lock);
5810 		}
5811 		return (EBUSY);
5812 	}
5813 
5814 	/*
5815 	 * Attempt to destroy the probes associated with this provider.
5816 	 */
5817 	for (i = 0; i < dtrace_nprobes; i++) {
5818 		if ((probe = dtrace_probes[i]) == NULL)
5819 			continue;
5820 
5821 		if (probe->dtpr_provider != old)
5822 			continue;
5823 
5824 		if (probe->dtpr_ecb == NULL)
5825 			continue;
5826 
5827 		/*
5828 		 * We have at least one ECB; we can't remove this provider.
5829 		 */
5830 		if (!self) {
5831 			mutex_exit(&dtrace_lock);
5832 			mutex_exit(&mod_lock);
5833 			mutex_exit(&dtrace_provider_lock);
5834 		}
5835 		return (EBUSY);
5836 	}
5837 
5838 	/*
5839 	 * All of the probes for this provider are disabled; we can safely
5840 	 * remove all of them from their hash chains and from the probe array.
5841 	 */
5842 	for (i = 0; i < dtrace_nprobes; i++) {
5843 		if ((probe = dtrace_probes[i]) == NULL)
5844 			continue;
5845 
5846 		if (probe->dtpr_provider != old)
5847 			continue;
5848 
5849 		dtrace_probes[i] = NULL;
5850 
5851 		dtrace_hash_remove(dtrace_bymod, probe);
5852 		dtrace_hash_remove(dtrace_byfunc, probe);
5853 		dtrace_hash_remove(dtrace_byname, probe);
5854 
5855 		if (first == NULL) {
5856 			first = probe;
5857 			probe->dtpr_nextmod = NULL;
5858 		} else {
5859 			probe->dtpr_nextmod = first;
5860 			first = probe;
5861 		}
5862 	}
5863 
5864 	/*
5865 	 * The provider's probes have been removed from the hash chains and
5866 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
5867 	 * everyone has cleared out from any probe array processing.
5868 	 */
5869 	dtrace_sync();
5870 
5871 	for (probe = first; probe != NULL; probe = first) {
5872 		first = probe->dtpr_nextmod;
5873 
5874 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
5875 		    probe->dtpr_arg);
5876 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
5877 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
5878 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
5879 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
5880 		kmem_free(probe, sizeof (dtrace_probe_t));
5881 	}
5882 
5883 	if ((prev = dtrace_provider) == old) {
5884 		ASSERT(self || dtrace_devi == NULL);
5885 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
5886 		dtrace_provider = old->dtpv_next;
5887 	} else {
5888 		while (prev != NULL && prev->dtpv_next != old)
5889 			prev = prev->dtpv_next;
5890 
5891 		if (prev == NULL) {
5892 			panic("attempt to unregister non-existent "
5893 			    "dtrace provider %p\n", (void *)id);
5894 		}
5895 
5896 		prev->dtpv_next = old->dtpv_next;
5897 	}
5898 
5899 	if (!self) {
5900 		mutex_exit(&dtrace_lock);
5901 		mutex_exit(&mod_lock);
5902 		mutex_exit(&dtrace_provider_lock);
5903 	}
5904 
5905 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
5906 	kmem_free(old, sizeof (dtrace_provider_t));
5907 
5908 	return (0);
5909 }
5910 
5911 /*
5912  * Invalidate the specified provider.  All subsequent probe lookups for the
5913  * specified provider will fail, but its probes will not be removed.
5914  */
5915 void
5916 dtrace_invalidate(dtrace_provider_id_t id)
5917 {
5918 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
5919 
5920 	ASSERT(pvp->dtpv_pops.dtps_enable !=
5921 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
5922 
5923 	mutex_enter(&dtrace_provider_lock);
5924 	mutex_enter(&dtrace_lock);
5925 
5926 	pvp->dtpv_defunct = 1;
5927 
5928 	mutex_exit(&dtrace_lock);
5929 	mutex_exit(&dtrace_provider_lock);
5930 }
5931 
5932 /*
5933  * Indicate whether or not DTrace has attached.
5934  */
5935 int
5936 dtrace_attached(void)
5937 {
5938 	/*
5939 	 * dtrace_provider will be non-NULL iff the DTrace driver has
5940 	 * attached.  (It's non-NULL because DTrace is always itself a
5941 	 * provider.)
5942 	 */
5943 	return (dtrace_provider != NULL);
5944 }
5945 
5946 /*
5947  * Remove all the unenabled probes for the given provider.  This function is
5948  * not unlike dtrace_unregister(), except that it doesn't remove the provider
5949  * -- just as many of its associated probes as it can.
5950  */
5951 int
5952 dtrace_condense(dtrace_provider_id_t id)
5953 {
5954 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
5955 	int i;
5956 	dtrace_probe_t *probe;
5957 
5958 	/*
5959 	 * Make sure this isn't the dtrace provider itself.
5960 	 */
5961 	ASSERT(prov->dtpv_pops.dtps_enable !=
5962 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
5963 
5964 	mutex_enter(&dtrace_provider_lock);
5965 	mutex_enter(&dtrace_lock);
5966 
5967 	/*
5968 	 * Attempt to destroy the probes associated with this provider.
5969 	 */
5970 	for (i = 0; i < dtrace_nprobes; i++) {
5971 		if ((probe = dtrace_probes[i]) == NULL)
5972 			continue;
5973 
5974 		if (probe->dtpr_provider != prov)
5975 			continue;
5976 
5977 		if (probe->dtpr_ecb != NULL)
5978 			continue;
5979 
5980 		dtrace_probes[i] = NULL;
5981 
5982 		dtrace_hash_remove(dtrace_bymod, probe);
5983 		dtrace_hash_remove(dtrace_byfunc, probe);
5984 		dtrace_hash_remove(dtrace_byname, probe);
5985 
5986 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
5987 		    probe->dtpr_arg);
5988 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
5989 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
5990 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
5991 		kmem_free(probe, sizeof (dtrace_probe_t));
5992 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
5993 	}
5994 
5995 	mutex_exit(&dtrace_lock);
5996 	mutex_exit(&dtrace_provider_lock);
5997 
5998 	return (0);
5999 }
6000 
6001 /*
6002  * DTrace Probe Management Functions
6003  *
6004  * The functions in this section perform the DTrace probe management,
6005  * including functions to create probes, look-up probes, and call into the
6006  * providers to request that probes be provided.  Some of these functions are
6007  * in the Provider-to-Framework API; these functions can be identified by the
6008  * fact that they are not declared "static".
6009  */
6010 
6011 /*
6012  * Create a probe with the specified module name, function name, and name.
6013  */
6014 dtrace_id_t
6015 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6016     const char *func, const char *name, int aframes, void *arg)
6017 {
6018 	dtrace_probe_t *probe, **probes;
6019 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6020 	dtrace_id_t id;
6021 
6022 	if (provider == dtrace_provider) {
6023 		ASSERT(MUTEX_HELD(&dtrace_lock));
6024 	} else {
6025 		mutex_enter(&dtrace_lock);
6026 	}
6027 
6028 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6029 	    VM_BESTFIT | VM_SLEEP);
6030 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6031 
6032 	probe->dtpr_id = id;
6033 	probe->dtpr_gen = dtrace_probegen++;
6034 	probe->dtpr_mod = dtrace_strdup(mod);
6035 	probe->dtpr_func = dtrace_strdup(func);
6036 	probe->dtpr_name = dtrace_strdup(name);
6037 	probe->dtpr_arg = arg;
6038 	probe->dtpr_aframes = aframes;
6039 	probe->dtpr_provider = provider;
6040 
6041 	dtrace_hash_add(dtrace_bymod, probe);
6042 	dtrace_hash_add(dtrace_byfunc, probe);
6043 	dtrace_hash_add(dtrace_byname, probe);
6044 
6045 	if (id - 1 >= dtrace_nprobes) {
6046 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6047 		size_t nsize = osize << 1;
6048 
6049 		if (nsize == 0) {
6050 			ASSERT(osize == 0);
6051 			ASSERT(dtrace_probes == NULL);
6052 			nsize = sizeof (dtrace_probe_t *);
6053 		}
6054 
6055 		probes = kmem_zalloc(nsize, KM_SLEEP);
6056 
6057 		if (dtrace_probes == NULL) {
6058 			ASSERT(osize == 0);
6059 			dtrace_probes = probes;
6060 			dtrace_nprobes = 1;
6061 		} else {
6062 			dtrace_probe_t **oprobes = dtrace_probes;
6063 
6064 			bcopy(oprobes, probes, osize);
6065 			dtrace_membar_producer();
6066 			dtrace_probes = probes;
6067 
6068 			dtrace_sync();
6069 
6070 			/*
6071 			 * All CPUs are now seeing the new probes array; we can
6072 			 * safely free the old array.
6073 			 */
6074 			kmem_free(oprobes, osize);
6075 			dtrace_nprobes <<= 1;
6076 		}
6077 
6078 		ASSERT(id - 1 < dtrace_nprobes);
6079 	}
6080 
6081 	ASSERT(dtrace_probes[id - 1] == NULL);
6082 	dtrace_probes[id - 1] = probe;
6083 
6084 	if (provider != dtrace_provider)
6085 		mutex_exit(&dtrace_lock);
6086 
6087 	return (id);
6088 }
6089 
6090 static dtrace_probe_t *
6091 dtrace_probe_lookup_id(dtrace_id_t id)
6092 {
6093 	ASSERT(MUTEX_HELD(&dtrace_lock));
6094 
6095 	if (id == 0 || id > dtrace_nprobes)
6096 		return (NULL);
6097 
6098 	return (dtrace_probes[id - 1]);
6099 }
6100 
6101 static int
6102 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6103 {
6104 	*((dtrace_id_t *)arg) = probe->dtpr_id;
6105 
6106 	return (DTRACE_MATCH_DONE);
6107 }
6108 
6109 /*
6110  * Look up a probe based on provider and one or more of module name, function
6111  * name and probe name.
6112  */
6113 dtrace_id_t
6114 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6115     const char *func, const char *name)
6116 {
6117 	dtrace_probekey_t pkey;
6118 	dtrace_id_t id;
6119 	int match;
6120 
6121 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6122 	pkey.dtpk_pmatch = &dtrace_match_string;
6123 	pkey.dtpk_mod = mod;
6124 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6125 	pkey.dtpk_func = func;
6126 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6127 	pkey.dtpk_name = name;
6128 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6129 	pkey.dtpk_id = DTRACE_IDNONE;
6130 
6131 	mutex_enter(&dtrace_lock);
6132 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0,
6133 	    dtrace_probe_lookup_match, &id);
6134 	mutex_exit(&dtrace_lock);
6135 
6136 	ASSERT(match == 1 || match == 0);
6137 	return (match ? id : 0);
6138 }
6139 
6140 /*
6141  * Returns the probe argument associated with the specified probe.
6142  */
6143 void *
6144 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6145 {
6146 	dtrace_probe_t *probe;
6147 	void *rval = NULL;
6148 
6149 	mutex_enter(&dtrace_lock);
6150 
6151 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6152 	    probe->dtpr_provider == (dtrace_provider_t *)id)
6153 		rval = probe->dtpr_arg;
6154 
6155 	mutex_exit(&dtrace_lock);
6156 
6157 	return (rval);
6158 }
6159 
6160 /*
6161  * Copy a probe into a probe description.
6162  */
6163 static void
6164 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6165 {
6166 	bzero(pdp, sizeof (dtrace_probedesc_t));
6167 	pdp->dtpd_id = prp->dtpr_id;
6168 
6169 	(void) strncpy(pdp->dtpd_provider,
6170 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6171 
6172 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6173 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6174 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6175 }
6176 
6177 /*
6178  * Called to indicate that a probe -- or probes -- should be provided by a
6179  * specfied provider.  If the specified description is NULL, the provider will
6180  * be told to provide all of its probes.  (This is done whenever a new
6181  * consumer comes along, or whenever a retained enabling is to be matched.) If
6182  * the specified description is non-NULL, the provider is given the
6183  * opportunity to dynamically provide the specified probe, allowing providers
6184  * to support the creation of probes on-the-fly.  (So-called _autocreated_
6185  * probes.)  If the provider is NULL, the operations will be applied to all
6186  * providers; if the provider is non-NULL the operations will only be applied
6187  * to the specified provider.  The dtrace_provider_lock must be held, and the
6188  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
6189  * will need to grab the dtrace_lock when it reenters the framework through
6190  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
6191  */
6192 static void
6193 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
6194 {
6195 	struct modctl *ctl;
6196 	int all = 0;
6197 
6198 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6199 
6200 	if (prv == NULL) {
6201 		all = 1;
6202 		prv = dtrace_provider;
6203 	}
6204 
6205 	do {
6206 		/*
6207 		 * First, call the blanket provide operation.
6208 		 */
6209 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
6210 
6211 		/*
6212 		 * Now call the per-module provide operation.  We will grab
6213 		 * mod_lock to prevent the list from being modified.  Note
6214 		 * that this also prevents the mod_busy bits from changing.
6215 		 * (mod_busy can only be changed with mod_lock held.)
6216 		 */
6217 		mutex_enter(&mod_lock);
6218 
6219 		ctl = &modules;
6220 		do {
6221 			if (ctl->mod_busy || ctl->mod_mp == NULL)
6222 				continue;
6223 
6224 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
6225 
6226 		} while ((ctl = ctl->mod_next) != &modules);
6227 
6228 		mutex_exit(&mod_lock);
6229 	} while (all && (prv = prv->dtpv_next) != NULL);
6230 }
6231 
6232 /*
6233  * Iterate over each probe, and call the Framework-to-Provider API function
6234  * denoted by offs.
6235  */
6236 static void
6237 dtrace_probe_foreach(uintptr_t offs)
6238 {
6239 	dtrace_provider_t *prov;
6240 	void (*func)(void *, dtrace_id_t, void *);
6241 	dtrace_probe_t *probe;
6242 	dtrace_icookie_t cookie;
6243 	int i;
6244 
6245 	/*
6246 	 * We disable interrupts to walk through the probe array.  This is
6247 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
6248 	 * won't see stale data.
6249 	 */
6250 	cookie = dtrace_interrupt_disable();
6251 
6252 	for (i = 0; i < dtrace_nprobes; i++) {
6253 		if ((probe = dtrace_probes[i]) == NULL)
6254 			continue;
6255 
6256 		if (probe->dtpr_ecb == NULL) {
6257 			/*
6258 			 * This probe isn't enabled -- don't call the function.
6259 			 */
6260 			continue;
6261 		}
6262 
6263 		prov = probe->dtpr_provider;
6264 		func = *((void(**)(void *, dtrace_id_t, void *))
6265 		    ((uintptr_t)&prov->dtpv_pops + offs));
6266 
6267 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
6268 	}
6269 
6270 	dtrace_interrupt_enable(cookie);
6271 }
6272 
6273 static int
6274 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
6275 {
6276 	dtrace_probekey_t pkey;
6277 	uint32_t priv;
6278 	uid_t uid;
6279 
6280 	ASSERT(MUTEX_HELD(&dtrace_lock));
6281 	dtrace_ecb_create_cache = NULL;
6282 
6283 	if (desc == NULL) {
6284 		/*
6285 		 * If we're passed a NULL description, we're being asked to
6286 		 * create an ECB with a NULL probe.
6287 		 */
6288 		(void) dtrace_ecb_create_enable(NULL, enab);
6289 		return (0);
6290 	}
6291 
6292 	dtrace_probekey(desc, &pkey);
6293 	dtrace_cred2priv(CRED(), &priv, &uid);
6294 
6295 	return (dtrace_match(&pkey, priv, uid, dtrace_ecb_create_enable, enab));
6296 }
6297 
6298 /*
6299  * DTrace Helper Provider Functions
6300  */
6301 static void
6302 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
6303 {
6304 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
6305 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
6306 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
6307 }
6308 
6309 static void
6310 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
6311     const dof_provider_t *dofprov, char *strtab)
6312 {
6313 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
6314 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
6315 	    dofprov->dofpv_provattr);
6316 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
6317 	    dofprov->dofpv_modattr);
6318 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
6319 	    dofprov->dofpv_funcattr);
6320 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
6321 	    dofprov->dofpv_nameattr);
6322 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
6323 	    dofprov->dofpv_argsattr);
6324 }
6325 
6326 static void
6327 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6328 {
6329 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6330 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6331 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
6332 	dof_provider_t *provider;
6333 	dof_probe_t *probe;
6334 	uint32_t *off;
6335 	uint8_t *arg;
6336 	char *strtab;
6337 	uint_t i, nprobes;
6338 	dtrace_helper_provdesc_t dhpv;
6339 	dtrace_helper_probedesc_t dhpb;
6340 	dtrace_meta_t *meta = dtrace_meta_pid;
6341 	dtrace_mops_t *mops = &meta->dtm_mops;
6342 	void *parg;
6343 
6344 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6345 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6346 	    provider->dofpv_strtab * dof->dofh_secsize);
6347 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6348 	    provider->dofpv_probes * dof->dofh_secsize);
6349 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6350 	    provider->dofpv_prargs * dof->dofh_secsize);
6351 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6352 	    provider->dofpv_proffs * dof->dofh_secsize);
6353 
6354 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6355 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
6356 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
6357 
6358 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
6359 
6360 	/*
6361 	 * Create the provider.
6362 	 */
6363 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6364 
6365 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
6366 		return;
6367 
6368 	meta->dtm_count++;
6369 
6370 	/*
6371 	 * Create the probes.
6372 	 */
6373 	for (i = 0; i < nprobes; i++) {
6374 		probe = (dof_probe_t *)(uintptr_t)(daddr +
6375 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
6376 
6377 		dhpb.dthpb_mod = dhp->dofhp_mod;
6378 		dhpb.dthpb_func = strtab + probe->dofpr_func;
6379 		dhpb.dthpb_name = strtab + probe->dofpr_name;
6380 		dhpb.dthpb_base = probe->dofpr_addr;
6381 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
6382 		dhpb.dthpb_noffs = probe->dofpr_noffs;
6383 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
6384 		dhpb.dthpb_nargc = probe->dofpr_nargc;
6385 		dhpb.dthpb_xargc = probe->dofpr_xargc;
6386 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
6387 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
6388 
6389 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
6390 	}
6391 }
6392 
6393 static void
6394 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
6395 {
6396 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6397 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6398 	int i;
6399 
6400 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6401 
6402 	for (i = 0; i < dof->dofh_secnum; i++) {
6403 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6404 		    dof->dofh_secoff + i * dof->dofh_secsize);
6405 
6406 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6407 			continue;
6408 
6409 		dtrace_helper_provide_one(dhp, sec, pid);
6410 	}
6411 }
6412 
6413 static void
6414 dtrace_helper_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6415 {
6416 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6417 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6418 	dof_sec_t *str_sec;
6419 	dof_provider_t *provider;
6420 	char *strtab;
6421 	dtrace_helper_provdesc_t dhpv;
6422 	dtrace_meta_t *meta = dtrace_meta_pid;
6423 	dtrace_mops_t *mops = &meta->dtm_mops;
6424 
6425 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6426 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6427 	    provider->dofpv_strtab * dof->dofh_secsize);
6428 
6429 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6430 
6431 	/*
6432 	 * Create the provider.
6433 	 */
6434 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6435 
6436 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
6437 
6438 	meta->dtm_count--;
6439 }
6440 
6441 static void
6442 dtrace_helper_remove(dof_helper_t *dhp, pid_t pid)
6443 {
6444 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6445 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6446 	int i;
6447 
6448 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6449 
6450 	for (i = 0; i < dof->dofh_secnum; i++) {
6451 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6452 		    dof->dofh_secoff + i * dof->dofh_secsize);
6453 
6454 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6455 			continue;
6456 
6457 		dtrace_helper_remove_one(dhp, sec, pid);
6458 	}
6459 }
6460 
6461 /*
6462  * DTrace Meta Provider-to-Framework API Functions
6463  *
6464  * These functions implement the Meta Provider-to-Framework API, as described
6465  * in <sys/dtrace.h>.
6466  */
6467 int
6468 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
6469     dtrace_meta_provider_id_t *idp)
6470 {
6471 	dtrace_meta_t *meta;
6472 	dtrace_helpers_t *help, *next;
6473 	int i;
6474 
6475 	*idp = DTRACE_METAPROVNONE;
6476 
6477 	/*
6478 	 * We strictly don't need the name, but we hold onto it for
6479 	 * debuggability. All hail error queues!
6480 	 */
6481 	if (name == NULL) {
6482 		cmn_err(CE_WARN, "failed to register meta-provider: "
6483 		    "invalid name");
6484 		return (EINVAL);
6485 	}
6486 
6487 	if (mops == NULL ||
6488 	    mops->dtms_create_probe == NULL ||
6489 	    mops->dtms_provide_pid == NULL ||
6490 	    mops->dtms_remove_pid == NULL) {
6491 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6492 		    "invalid ops", name);
6493 		return (EINVAL);
6494 	}
6495 
6496 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
6497 	meta->dtm_mops = *mops;
6498 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6499 	(void) strcpy(meta->dtm_name, name);
6500 	meta->dtm_arg = arg;
6501 
6502 	mutex_enter(&dtrace_meta_lock);
6503 	mutex_enter(&dtrace_lock);
6504 
6505 	if (dtrace_meta_pid != NULL) {
6506 		mutex_exit(&dtrace_lock);
6507 		mutex_exit(&dtrace_meta_lock);
6508 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6509 		    "user-land meta-provider exists", name);
6510 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
6511 		kmem_free(meta, sizeof (dtrace_meta_t));
6512 		return (EINVAL);
6513 	}
6514 
6515 	dtrace_meta_pid = meta;
6516 	*idp = (dtrace_meta_provider_id_t)meta;
6517 
6518 	/*
6519 	 * If there are providers and probes ready to go, pass them
6520 	 * off to the new meta provider now.
6521 	 */
6522 
6523 	help = dtrace_deferred_pid;
6524 	dtrace_deferred_pid = NULL;
6525 
6526 	mutex_exit(&dtrace_lock);
6527 
6528 	while (help != NULL) {
6529 		for (i = 0; i < help->dthps_nprovs; i++) {
6530 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
6531 			    help->dthps_pid);
6532 		}
6533 
6534 		next = help->dthps_next;
6535 		help->dthps_next = NULL;
6536 		help->dthps_prev = NULL;
6537 		help = next;
6538 	}
6539 
6540 	mutex_exit(&dtrace_meta_lock);
6541 
6542 	return (0);
6543 }
6544 
6545 int
6546 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
6547 {
6548 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
6549 
6550 	mutex_enter(&dtrace_meta_lock);
6551 	mutex_enter(&dtrace_lock);
6552 
6553 	if (old == dtrace_meta_pid) {
6554 		pp = &dtrace_meta_pid;
6555 	} else {
6556 		panic("attempt to unregister non-existent "
6557 		    "dtrace meta-provider %p\n", (void *)old);
6558 	}
6559 
6560 	if (old->dtm_count != 0) {
6561 		mutex_exit(&dtrace_lock);
6562 		mutex_exit(&dtrace_meta_lock);
6563 		return (EBUSY);
6564 	}
6565 
6566 	*pp = NULL;
6567 
6568 	mutex_exit(&dtrace_lock);
6569 	mutex_exit(&dtrace_meta_lock);
6570 
6571 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
6572 	kmem_free(old, sizeof (dtrace_meta_t));
6573 
6574 	return (0);
6575 }
6576 
6577 
6578 /*
6579  * DTrace DIF Object Functions
6580  */
6581 static int
6582 dtrace_difo_err(uint_t pc, const char *format, ...)
6583 {
6584 	if (dtrace_err_verbose) {
6585 		va_list alist;
6586 
6587 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
6588 		va_start(alist, format);
6589 		(void) vuprintf(format, alist);
6590 		va_end(alist);
6591 	}
6592 
6593 #ifdef DTRACE_ERRDEBUG
6594 	dtrace_errdebug(format);
6595 #endif
6596 	return (1);
6597 }
6598 
6599 /*
6600  * Validate a DTrace DIF object by checking the IR instructions.  The following
6601  * rules are currently enforced by dtrace_difo_validate():
6602  *
6603  * 1. Each instruction must have a valid opcode
6604  * 2. Each register, string, variable, or subroutine reference must be valid
6605  * 3. No instruction can modify register %r0 (must be zero)
6606  * 4. All instruction reserved bits must be set to zero
6607  * 5. The last instruction must be a "ret" instruction
6608  * 6. All branch targets must reference a valid instruction _after_ the branch
6609  */
6610 static int
6611 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
6612     cred_t *cr)
6613 {
6614 	int err = 0, i;
6615 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
6616 	int kcheck;
6617 	uint_t pc;
6618 
6619 	kcheck = cr == NULL ||
6620 	    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE) == 0;
6621 
6622 	dp->dtdo_destructive = 0;
6623 
6624 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
6625 		dif_instr_t instr = dp->dtdo_buf[pc];
6626 
6627 		uint_t r1 = DIF_INSTR_R1(instr);
6628 		uint_t r2 = DIF_INSTR_R2(instr);
6629 		uint_t rd = DIF_INSTR_RD(instr);
6630 		uint_t rs = DIF_INSTR_RS(instr);
6631 		uint_t label = DIF_INSTR_LABEL(instr);
6632 		uint_t v = DIF_INSTR_VAR(instr);
6633 		uint_t subr = DIF_INSTR_SUBR(instr);
6634 		uint_t type = DIF_INSTR_TYPE(instr);
6635 		uint_t op = DIF_INSTR_OP(instr);
6636 
6637 		switch (op) {
6638 		case DIF_OP_OR:
6639 		case DIF_OP_XOR:
6640 		case DIF_OP_AND:
6641 		case DIF_OP_SLL:
6642 		case DIF_OP_SRL:
6643 		case DIF_OP_SRA:
6644 		case DIF_OP_SUB:
6645 		case DIF_OP_ADD:
6646 		case DIF_OP_MUL:
6647 		case DIF_OP_SDIV:
6648 		case DIF_OP_UDIV:
6649 		case DIF_OP_SREM:
6650 		case DIF_OP_UREM:
6651 		case DIF_OP_COPYS:
6652 			if (r1 >= nregs)
6653 				err += efunc(pc, "invalid register %u\n", r1);
6654 			if (r2 >= nregs)
6655 				err += efunc(pc, "invalid register %u\n", r2);
6656 			if (rd >= nregs)
6657 				err += efunc(pc, "invalid register %u\n", rd);
6658 			if (rd == 0)
6659 				err += efunc(pc, "cannot write to %r0\n");
6660 			break;
6661 		case DIF_OP_NOT:
6662 		case DIF_OP_MOV:
6663 		case DIF_OP_ALLOCS:
6664 			if (r1 >= nregs)
6665 				err += efunc(pc, "invalid register %u\n", r1);
6666 			if (r2 != 0)
6667 				err += efunc(pc, "non-zero reserved bits\n");
6668 			if (rd >= nregs)
6669 				err += efunc(pc, "invalid register %u\n", rd);
6670 			if (rd == 0)
6671 				err += efunc(pc, "cannot write to %r0\n");
6672 			break;
6673 		case DIF_OP_LDSB:
6674 		case DIF_OP_LDSH:
6675 		case DIF_OP_LDSW:
6676 		case DIF_OP_LDUB:
6677 		case DIF_OP_LDUH:
6678 		case DIF_OP_LDUW:
6679 		case DIF_OP_LDX:
6680 			if (r1 >= nregs)
6681 				err += efunc(pc, "invalid register %u\n", r1);
6682 			if (r2 != 0)
6683 				err += efunc(pc, "non-zero reserved bits\n");
6684 			if (rd >= nregs)
6685 				err += efunc(pc, "invalid register %u\n", rd);
6686 			if (rd == 0)
6687 				err += efunc(pc, "cannot write to %r0\n");
6688 			if (kcheck)
6689 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
6690 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
6691 			break;
6692 		case DIF_OP_RLDSB:
6693 		case DIF_OP_RLDSH:
6694 		case DIF_OP_RLDSW:
6695 		case DIF_OP_RLDUB:
6696 		case DIF_OP_RLDUH:
6697 		case DIF_OP_RLDUW:
6698 		case DIF_OP_RLDX:
6699 			if (r1 >= nregs)
6700 				err += efunc(pc, "invalid register %u\n", r1);
6701 			if (r2 != 0)
6702 				err += efunc(pc, "non-zero reserved bits\n");
6703 			if (rd >= nregs)
6704 				err += efunc(pc, "invalid register %u\n", rd);
6705 			if (rd == 0)
6706 				err += efunc(pc, "cannot write to %r0\n");
6707 			break;
6708 		case DIF_OP_ULDSB:
6709 		case DIF_OP_ULDSH:
6710 		case DIF_OP_ULDSW:
6711 		case DIF_OP_ULDUB:
6712 		case DIF_OP_ULDUH:
6713 		case DIF_OP_ULDUW:
6714 		case DIF_OP_ULDX:
6715 			if (r1 >= nregs)
6716 				err += efunc(pc, "invalid register %u\n", r1);
6717 			if (r2 != 0)
6718 				err += efunc(pc, "non-zero reserved bits\n");
6719 			if (rd >= nregs)
6720 				err += efunc(pc, "invalid register %u\n", rd);
6721 			if (rd == 0)
6722 				err += efunc(pc, "cannot write to %r0\n");
6723 			break;
6724 		case DIF_OP_STB:
6725 		case DIF_OP_STH:
6726 		case DIF_OP_STW:
6727 		case DIF_OP_STX:
6728 			if (r1 >= nregs)
6729 				err += efunc(pc, "invalid register %u\n", r1);
6730 			if (r2 != 0)
6731 				err += efunc(pc, "non-zero reserved bits\n");
6732 			if (rd >= nregs)
6733 				err += efunc(pc, "invalid register %u\n", rd);
6734 			if (rd == 0)
6735 				err += efunc(pc, "cannot write to 0 address\n");
6736 			break;
6737 		case DIF_OP_CMP:
6738 		case DIF_OP_SCMP:
6739 			if (r1 >= nregs)
6740 				err += efunc(pc, "invalid register %u\n", r1);
6741 			if (r2 >= nregs)
6742 				err += efunc(pc, "invalid register %u\n", r2);
6743 			if (rd != 0)
6744 				err += efunc(pc, "non-zero reserved bits\n");
6745 			break;
6746 		case DIF_OP_TST:
6747 			if (r1 >= nregs)
6748 				err += efunc(pc, "invalid register %u\n", r1);
6749 			if (r2 != 0 || rd != 0)
6750 				err += efunc(pc, "non-zero reserved bits\n");
6751 			break;
6752 		case DIF_OP_BA:
6753 		case DIF_OP_BE:
6754 		case DIF_OP_BNE:
6755 		case DIF_OP_BG:
6756 		case DIF_OP_BGU:
6757 		case DIF_OP_BGE:
6758 		case DIF_OP_BGEU:
6759 		case DIF_OP_BL:
6760 		case DIF_OP_BLU:
6761 		case DIF_OP_BLE:
6762 		case DIF_OP_BLEU:
6763 			if (label >= dp->dtdo_len) {
6764 				err += efunc(pc, "invalid branch target %u\n",
6765 				    label);
6766 			}
6767 			if (label <= pc) {
6768 				err += efunc(pc, "backward branch to %u\n",
6769 				    label);
6770 			}
6771 			break;
6772 		case DIF_OP_RET:
6773 			if (r1 != 0 || r2 != 0)
6774 				err += efunc(pc, "non-zero reserved bits\n");
6775 			if (rd >= nregs)
6776 				err += efunc(pc, "invalid register %u\n", rd);
6777 			break;
6778 		case DIF_OP_NOP:
6779 		case DIF_OP_POPTS:
6780 		case DIF_OP_FLUSHTS:
6781 			if (r1 != 0 || r2 != 0 || rd != 0)
6782 				err += efunc(pc, "non-zero reserved bits\n");
6783 			break;
6784 		case DIF_OP_SETX:
6785 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
6786 				err += efunc(pc, "invalid integer ref %u\n",
6787 				    DIF_INSTR_INTEGER(instr));
6788 			}
6789 			if (rd >= nregs)
6790 				err += efunc(pc, "invalid register %u\n", rd);
6791 			if (rd == 0)
6792 				err += efunc(pc, "cannot write to %r0\n");
6793 			break;
6794 		case DIF_OP_SETS:
6795 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
6796 				err += efunc(pc, "invalid string ref %u\n",
6797 				    DIF_INSTR_STRING(instr));
6798 			}
6799 			if (rd >= nregs)
6800 				err += efunc(pc, "invalid register %u\n", rd);
6801 			if (rd == 0)
6802 				err += efunc(pc, "cannot write to %r0\n");
6803 			break;
6804 		case DIF_OP_LDGA:
6805 		case DIF_OP_LDTA:
6806 			if (r1 > DIF_VAR_ARRAY_MAX)
6807 				err += efunc(pc, "invalid array %u\n", r1);
6808 			if (r2 >= nregs)
6809 				err += efunc(pc, "invalid register %u\n", r2);
6810 			if (rd >= nregs)
6811 				err += efunc(pc, "invalid register %u\n", rd);
6812 			if (rd == 0)
6813 				err += efunc(pc, "cannot write to %r0\n");
6814 			break;
6815 		case DIF_OP_LDGS:
6816 		case DIF_OP_LDTS:
6817 		case DIF_OP_LDLS:
6818 		case DIF_OP_LDGAA:
6819 		case DIF_OP_LDTAA:
6820 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
6821 				err += efunc(pc, "invalid variable %u\n", v);
6822 			if (rd >= nregs)
6823 				err += efunc(pc, "invalid register %u\n", rd);
6824 			if (rd == 0)
6825 				err += efunc(pc, "cannot write to %r0\n");
6826 			break;
6827 		case DIF_OP_STGS:
6828 		case DIF_OP_STTS:
6829 		case DIF_OP_STLS:
6830 		case DIF_OP_STGAA:
6831 		case DIF_OP_STTAA:
6832 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
6833 				err += efunc(pc, "invalid variable %u\n", v);
6834 			if (rs >= nregs)
6835 				err += efunc(pc, "invalid register %u\n", rd);
6836 			break;
6837 		case DIF_OP_CALL:
6838 			if (subr > DIF_SUBR_MAX)
6839 				err += efunc(pc, "invalid subr %u\n", subr);
6840 			if (rd >= nregs)
6841 				err += efunc(pc, "invalid register %u\n", rd);
6842 			if (rd == 0)
6843 				err += efunc(pc, "cannot write to %r0\n");
6844 
6845 			if (subr == DIF_SUBR_COPYOUT ||
6846 			    subr == DIF_SUBR_COPYOUTSTR) {
6847 				dp->dtdo_destructive = 1;
6848 			}
6849 			break;
6850 		case DIF_OP_PUSHTR:
6851 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
6852 				err += efunc(pc, "invalid ref type %u\n", type);
6853 			if (r2 >= nregs)
6854 				err += efunc(pc, "invalid register %u\n", r2);
6855 			if (rs >= nregs)
6856 				err += efunc(pc, "invalid register %u\n", rs);
6857 			break;
6858 		case DIF_OP_PUSHTV:
6859 			if (type != DIF_TYPE_CTF)
6860 				err += efunc(pc, "invalid val type %u\n", type);
6861 			if (r2 >= nregs)
6862 				err += efunc(pc, "invalid register %u\n", r2);
6863 			if (rs >= nregs)
6864 				err += efunc(pc, "invalid register %u\n", rs);
6865 			break;
6866 		default:
6867 			err += efunc(pc, "invalid opcode %u\n",
6868 			    DIF_INSTR_OP(instr));
6869 		}
6870 	}
6871 
6872 	if (dp->dtdo_len != 0 &&
6873 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
6874 		err += efunc(dp->dtdo_len - 1,
6875 		    "expected 'ret' as last DIF instruction\n");
6876 	}
6877 
6878 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
6879 		/*
6880 		 * If we're not returning by reference, the size must be either
6881 		 * 0 or the size of one of the base types.
6882 		 */
6883 		switch (dp->dtdo_rtype.dtdt_size) {
6884 		case 0:
6885 		case sizeof (uint8_t):
6886 		case sizeof (uint16_t):
6887 		case sizeof (uint32_t):
6888 		case sizeof (uint64_t):
6889 			break;
6890 
6891 		default:
6892 			err += efunc(dp->dtdo_len - 1, "bad return size");
6893 		}
6894 	}
6895 
6896 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
6897 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
6898 		dtrace_diftype_t *vt, *et;
6899 		uint_t id, ndx;
6900 
6901 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
6902 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
6903 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
6904 			err += efunc(i, "unrecognized variable scope %d\n",
6905 			    v->dtdv_scope);
6906 			break;
6907 		}
6908 
6909 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
6910 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
6911 			err += efunc(i, "unrecognized variable type %d\n",
6912 			    v->dtdv_kind);
6913 			break;
6914 		}
6915 
6916 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
6917 			err += efunc(i, "%d exceeds variable id limit\n", id);
6918 			break;
6919 		}
6920 
6921 		if (id < DIF_VAR_OTHER_UBASE)
6922 			continue;
6923 
6924 		/*
6925 		 * For user-defined variables, we need to check that this
6926 		 * definition is identical to any previous definition that we
6927 		 * encountered.
6928 		 */
6929 		ndx = id - DIF_VAR_OTHER_UBASE;
6930 
6931 		switch (v->dtdv_scope) {
6932 		case DIFV_SCOPE_GLOBAL:
6933 			if (ndx < vstate->dtvs_nglobals) {
6934 				dtrace_statvar_t *svar;
6935 
6936 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
6937 					existing = &svar->dtsv_var;
6938 			}
6939 
6940 			break;
6941 
6942 		case DIFV_SCOPE_THREAD:
6943 			if (ndx < vstate->dtvs_ntlocals)
6944 				existing = &vstate->dtvs_tlocals[ndx];
6945 			break;
6946 
6947 		case DIFV_SCOPE_LOCAL:
6948 			if (ndx < vstate->dtvs_nlocals) {
6949 				dtrace_statvar_t *svar;
6950 
6951 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
6952 					existing = &svar->dtsv_var;
6953 			}
6954 
6955 			break;
6956 		}
6957 
6958 		vt = &v->dtdv_type;
6959 
6960 		if (vt->dtdt_flags & DIF_TF_BYREF) {
6961 			if (vt->dtdt_size == 0) {
6962 				err += efunc(i, "zero-sized variable\n");
6963 				break;
6964 			}
6965 
6966 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
6967 			    vt->dtdt_size > dtrace_global_maxsize) {
6968 				err += efunc(i, "oversized by-ref global\n");
6969 				break;
6970 			}
6971 		}
6972 
6973 		if (existing == NULL || existing->dtdv_id == 0)
6974 			continue;
6975 
6976 		ASSERT(existing->dtdv_id == v->dtdv_id);
6977 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
6978 
6979 		if (existing->dtdv_kind != v->dtdv_kind)
6980 			err += efunc(i, "%d changed variable kind\n", id);
6981 
6982 		et = &existing->dtdv_type;
6983 
6984 		if (vt->dtdt_flags != et->dtdt_flags) {
6985 			err += efunc(i, "%d changed variable type flags\n", id);
6986 			break;
6987 		}
6988 
6989 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
6990 			err += efunc(i, "%d changed variable type size\n", id);
6991 			break;
6992 		}
6993 	}
6994 
6995 	return (err);
6996 }
6997 
6998 /*
6999  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
7000  * are much more constrained than normal DIFOs.  Specifically, they may
7001  * not:
7002  *
7003  * 1. Make calls to subroutines other than copyin() or copyinstr().
7004  * 2. Access DTrace variables other than the args[] array, and the
7005  *    curthread, pid, tid and execname variables.
7006  * 3. Have thread-local variables.
7007  * 4. Have dynamic variables.
7008  */
7009 static int
7010 dtrace_difo_validate_helper(dtrace_difo_t *dp)
7011 {
7012 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7013 	int err = 0;
7014 	uint_t pc;
7015 
7016 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7017 		dif_instr_t instr = dp->dtdo_buf[pc];
7018 
7019 		uint_t v = DIF_INSTR_VAR(instr);
7020 		uint_t subr = DIF_INSTR_SUBR(instr);
7021 		uint_t op = DIF_INSTR_OP(instr);
7022 
7023 		switch (op) {
7024 		case DIF_OP_OR:
7025 		case DIF_OP_XOR:
7026 		case DIF_OP_AND:
7027 		case DIF_OP_SLL:
7028 		case DIF_OP_SRL:
7029 		case DIF_OP_SRA:
7030 		case DIF_OP_SUB:
7031 		case DIF_OP_ADD:
7032 		case DIF_OP_MUL:
7033 		case DIF_OP_SDIV:
7034 		case DIF_OP_UDIV:
7035 		case DIF_OP_SREM:
7036 		case DIF_OP_UREM:
7037 		case DIF_OP_COPYS:
7038 		case DIF_OP_NOT:
7039 		case DIF_OP_MOV:
7040 		case DIF_OP_RLDSB:
7041 		case DIF_OP_RLDSH:
7042 		case DIF_OP_RLDSW:
7043 		case DIF_OP_RLDUB:
7044 		case DIF_OP_RLDUH:
7045 		case DIF_OP_RLDUW:
7046 		case DIF_OP_RLDX:
7047 		case DIF_OP_ULDSB:
7048 		case DIF_OP_ULDSH:
7049 		case DIF_OP_ULDSW:
7050 		case DIF_OP_ULDUB:
7051 		case DIF_OP_ULDUH:
7052 		case DIF_OP_ULDUW:
7053 		case DIF_OP_ULDX:
7054 		case DIF_OP_STB:
7055 		case DIF_OP_STH:
7056 		case DIF_OP_STW:
7057 		case DIF_OP_STX:
7058 		case DIF_OP_ALLOCS:
7059 		case DIF_OP_CMP:
7060 		case DIF_OP_SCMP:
7061 		case DIF_OP_TST:
7062 		case DIF_OP_BA:
7063 		case DIF_OP_BE:
7064 		case DIF_OP_BNE:
7065 		case DIF_OP_BG:
7066 		case DIF_OP_BGU:
7067 		case DIF_OP_BGE:
7068 		case DIF_OP_BGEU:
7069 		case DIF_OP_BL:
7070 		case DIF_OP_BLU:
7071 		case DIF_OP_BLE:
7072 		case DIF_OP_BLEU:
7073 		case DIF_OP_RET:
7074 		case DIF_OP_NOP:
7075 		case DIF_OP_POPTS:
7076 		case DIF_OP_FLUSHTS:
7077 		case DIF_OP_SETX:
7078 		case DIF_OP_SETS:
7079 		case DIF_OP_LDGA:
7080 		case DIF_OP_LDLS:
7081 		case DIF_OP_STGS:
7082 		case DIF_OP_STLS:
7083 		case DIF_OP_PUSHTR:
7084 		case DIF_OP_PUSHTV:
7085 			break;
7086 
7087 		case DIF_OP_LDGS:
7088 			if (v >= DIF_VAR_OTHER_UBASE)
7089 				break;
7090 
7091 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7092 				break;
7093 
7094 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7095 			    v == DIF_VAR_TID || v == DIF_VAR_EXECNAME ||
7096 			    v == DIF_VAR_ZONENAME)
7097 				break;
7098 
7099 			err += efunc(pc, "illegal variable %u\n", v);
7100 			break;
7101 
7102 		case DIF_OP_LDTA:
7103 		case DIF_OP_LDTS:
7104 		case DIF_OP_LDGAA:
7105 		case DIF_OP_LDTAA:
7106 			err += efunc(pc, "illegal dynamic variable load\n");
7107 			break;
7108 
7109 		case DIF_OP_STTS:
7110 		case DIF_OP_STGAA:
7111 		case DIF_OP_STTAA:
7112 			err += efunc(pc, "illegal dynamic variable store\n");
7113 			break;
7114 
7115 		case DIF_OP_CALL:
7116 			if (subr == DIF_SUBR_ALLOCA ||
7117 			    subr == DIF_SUBR_BCOPY ||
7118 			    subr == DIF_SUBR_COPYIN ||
7119 			    subr == DIF_SUBR_COPYINTO ||
7120 			    subr == DIF_SUBR_COPYINSTR)
7121 				break;
7122 
7123 			err += efunc(pc, "invalid subr %u\n", subr);
7124 			break;
7125 
7126 		default:
7127 			err += efunc(pc, "invalid opcode %u\n",
7128 			    DIF_INSTR_OP(instr));
7129 		}
7130 	}
7131 
7132 	return (err);
7133 }
7134 
7135 /*
7136  * Returns 1 if the expression in the DIF object can be cached on a per-thread
7137  * basis; 0 if not.
7138  */
7139 static int
7140 dtrace_difo_cacheable(dtrace_difo_t *dp)
7141 {
7142 	int i;
7143 
7144 	if (dp == NULL)
7145 		return (0);
7146 
7147 	for (i = 0; i < dp->dtdo_varlen; i++) {
7148 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7149 
7150 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
7151 			continue;
7152 
7153 		switch (v->dtdv_id) {
7154 		case DIF_VAR_CURTHREAD:
7155 		case DIF_VAR_PID:
7156 		case DIF_VAR_TID:
7157 		case DIF_VAR_EXECNAME:
7158 		case DIF_VAR_ZONENAME:
7159 			break;
7160 
7161 		default:
7162 			return (0);
7163 		}
7164 	}
7165 
7166 	/*
7167 	 * This DIF object may be cacheable.  Now we need to look for any
7168 	 * load variant instructions, or any stores to thread-local variables.
7169 	 */
7170 	for (i = 0; i < dp->dtdo_len; i++) {
7171 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
7172 
7173 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
7174 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
7175 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
7176 		    (op == DIF_OP_STTS))
7177 			return (0);
7178 	}
7179 
7180 	return (1);
7181 }
7182 
7183 static void
7184 dtrace_difo_hold(dtrace_difo_t *dp)
7185 {
7186 	int i;
7187 
7188 	ASSERT(MUTEX_HELD(&dtrace_lock));
7189 
7190 	dp->dtdo_refcnt++;
7191 	ASSERT(dp->dtdo_refcnt != 0);
7192 
7193 	/*
7194 	 * We need to check this DIF object for references to the variable
7195 	 * DIF_VAR_VTIMESTAMP.
7196 	 */
7197 	for (i = 0; i < dp->dtdo_varlen; i++) {
7198 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7199 
7200 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7201 			continue;
7202 
7203 		if (dtrace_vtime_references++ == 0)
7204 			dtrace_vtime_enable();
7205 	}
7206 }
7207 
7208 /*
7209  * This routine calculates the dynamic variable chunksize for a given DIF
7210  * object.  The calculation is not fool-proof, and can probably be tricked by
7211  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
7212  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
7213  * if a dynamic variable size exceeds the chunksize.
7214  */
7215 static void
7216 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7217 {
7218 	uint64_t sval;
7219 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
7220 	const dif_instr_t *text = dp->dtdo_buf;
7221 	uint_t pc, srd = 0;
7222 	uint_t ttop = 0;
7223 	size_t size, ksize;
7224 	uint_t id, i;
7225 
7226 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7227 		dif_instr_t instr = text[pc];
7228 		uint_t op = DIF_INSTR_OP(instr);
7229 		uint_t rd = DIF_INSTR_RD(instr);
7230 		uint_t r1 = DIF_INSTR_R1(instr);
7231 		uint_t nkeys = 0;
7232 		uchar_t scope;
7233 
7234 		dtrace_key_t *key = tupregs;
7235 
7236 		switch (op) {
7237 		case DIF_OP_SETX:
7238 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
7239 			srd = rd;
7240 			continue;
7241 
7242 		case DIF_OP_STTS:
7243 			key = &tupregs[DIF_DTR_NREGS];
7244 			key[0].dttk_size = 0;
7245 			key[1].dttk_size = 0;
7246 			nkeys = 2;
7247 			scope = DIFV_SCOPE_THREAD;
7248 			break;
7249 
7250 		case DIF_OP_STGAA:
7251 		case DIF_OP_STTAA:
7252 			nkeys = ttop;
7253 
7254 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
7255 				key[nkeys++].dttk_size = 0;
7256 
7257 			key[nkeys++].dttk_size = 0;
7258 
7259 			if (op == DIF_OP_STTAA) {
7260 				scope = DIFV_SCOPE_THREAD;
7261 			} else {
7262 				scope = DIFV_SCOPE_GLOBAL;
7263 			}
7264 
7265 			break;
7266 
7267 		case DIF_OP_PUSHTR:
7268 			if (ttop == DIF_DTR_NREGS)
7269 				return;
7270 
7271 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
7272 				/*
7273 				 * If the register for the size of the "pushtr"
7274 				 * is %r0 (or the value is 0) and the type is
7275 				 * a string, we'll use the system-wide default
7276 				 * string size.
7277 				 */
7278 				tupregs[ttop++].dttk_size =
7279 				    dtrace_strsize_default;
7280 			} else {
7281 				if (srd == 0)
7282 					return;
7283 
7284 				tupregs[ttop++].dttk_size = sval;
7285 			}
7286 
7287 			break;
7288 
7289 		case DIF_OP_PUSHTV:
7290 			if (ttop == DIF_DTR_NREGS)
7291 				return;
7292 
7293 			tupregs[ttop++].dttk_size = 0;
7294 			break;
7295 
7296 		case DIF_OP_FLUSHTS:
7297 			ttop = 0;
7298 			break;
7299 
7300 		case DIF_OP_POPTS:
7301 			if (ttop != 0)
7302 				ttop--;
7303 			break;
7304 		}
7305 
7306 		sval = 0;
7307 		srd = 0;
7308 
7309 		if (nkeys == 0)
7310 			continue;
7311 
7312 		/*
7313 		 * We have a dynamic variable allocation; calculate its size.
7314 		 */
7315 		for (ksize = 0, i = 0; i < nkeys; i++)
7316 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
7317 
7318 		size = sizeof (dtrace_dynvar_t);
7319 		size += sizeof (dtrace_key_t) * (nkeys - 1);
7320 		size += ksize;
7321 
7322 		/*
7323 		 * Now we need to determine the size of the stored data.
7324 		 */
7325 		id = DIF_INSTR_VAR(instr);
7326 
7327 		for (i = 0; i < dp->dtdo_varlen; i++) {
7328 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
7329 
7330 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
7331 				size += v->dtdv_type.dtdt_size;
7332 				break;
7333 			}
7334 		}
7335 
7336 		if (i == dp->dtdo_varlen)
7337 			return;
7338 
7339 		/*
7340 		 * We have the size.  If this is larger than the chunk size
7341 		 * for our dynamic variable state, reset the chunk size.
7342 		 */
7343 		size = P2ROUNDUP(size, sizeof (uint64_t));
7344 
7345 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
7346 			vstate->dtvs_dynvars.dtds_chunksize = size;
7347 	}
7348 }
7349 
7350 static void
7351 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7352 {
7353 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
7354 	uint_t id;
7355 
7356 	ASSERT(MUTEX_HELD(&dtrace_lock));
7357 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
7358 
7359 	for (i = 0; i < dp->dtdo_varlen; i++) {
7360 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7361 		dtrace_statvar_t *svar, ***svarp;
7362 		size_t dsize = 0;
7363 		uint8_t scope = v->dtdv_scope;
7364 		int *np;
7365 
7366 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7367 			continue;
7368 
7369 		id -= DIF_VAR_OTHER_UBASE;
7370 
7371 		switch (scope) {
7372 		case DIFV_SCOPE_THREAD:
7373 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
7374 				dtrace_difv_t *tlocals;
7375 
7376 				if ((ntlocals = (otlocals << 1)) == 0)
7377 					ntlocals = 1;
7378 
7379 				osz = otlocals * sizeof (dtrace_difv_t);
7380 				nsz = ntlocals * sizeof (dtrace_difv_t);
7381 
7382 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
7383 
7384 				if (osz != 0) {
7385 					bcopy(vstate->dtvs_tlocals,
7386 					    tlocals, osz);
7387 					kmem_free(vstate->dtvs_tlocals, osz);
7388 				}
7389 
7390 				vstate->dtvs_tlocals = tlocals;
7391 				vstate->dtvs_ntlocals = ntlocals;
7392 			}
7393 
7394 			vstate->dtvs_tlocals[id] = *v;
7395 			continue;
7396 
7397 		case DIFV_SCOPE_LOCAL:
7398 			np = &vstate->dtvs_nlocals;
7399 			svarp = &vstate->dtvs_locals;
7400 
7401 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7402 				dsize = NCPU * (v->dtdv_type.dtdt_size +
7403 				    sizeof (uint64_t));
7404 			else
7405 				dsize = NCPU * sizeof (uint64_t);
7406 
7407 			break;
7408 
7409 		case DIFV_SCOPE_GLOBAL:
7410 			np = &vstate->dtvs_nglobals;
7411 			svarp = &vstate->dtvs_globals;
7412 
7413 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7414 				dsize = v->dtdv_type.dtdt_size +
7415 				    sizeof (uint64_t);
7416 
7417 			break;
7418 
7419 		default:
7420 			ASSERT(0);
7421 		}
7422 
7423 		while (id >= (oldsvars = *np)) {
7424 			dtrace_statvar_t **statics;
7425 			int newsvars, oldsize, newsize;
7426 
7427 			if ((newsvars = (oldsvars << 1)) == 0)
7428 				newsvars = 1;
7429 
7430 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
7431 			newsize = newsvars * sizeof (dtrace_statvar_t *);
7432 
7433 			statics = kmem_zalloc(newsize, KM_SLEEP);
7434 
7435 			if (oldsize != 0) {
7436 				bcopy(*svarp, statics, oldsize);
7437 				kmem_free(*svarp, oldsize);
7438 			}
7439 
7440 			*svarp = statics;
7441 			*np = newsvars;
7442 		}
7443 
7444 		if ((svar = (*svarp)[id]) == NULL) {
7445 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
7446 			svar->dtsv_var = *v;
7447 
7448 			if ((svar->dtsv_size = dsize) != 0) {
7449 				svar->dtsv_data = (uint64_t)(uintptr_t)
7450 				    kmem_zalloc(dsize, KM_SLEEP);
7451 			}
7452 
7453 			(*svarp)[id] = svar;
7454 		}
7455 
7456 		svar->dtsv_refcnt++;
7457 	}
7458 
7459 	dtrace_difo_chunksize(dp, vstate);
7460 	dtrace_difo_hold(dp);
7461 }
7462 
7463 static dtrace_difo_t *
7464 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7465 {
7466 	dtrace_difo_t *new;
7467 	size_t sz;
7468 
7469 	ASSERT(dp->dtdo_buf != NULL);
7470 	ASSERT(dp->dtdo_refcnt != 0);
7471 
7472 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
7473 
7474 	ASSERT(dp->dtdo_buf != NULL);
7475 	sz = dp->dtdo_len * sizeof (dif_instr_t);
7476 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
7477 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
7478 	new->dtdo_len = dp->dtdo_len;
7479 
7480 	if (dp->dtdo_strtab != NULL) {
7481 		ASSERT(dp->dtdo_strlen != 0);
7482 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
7483 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
7484 		new->dtdo_strlen = dp->dtdo_strlen;
7485 	}
7486 
7487 	if (dp->dtdo_inttab != NULL) {
7488 		ASSERT(dp->dtdo_intlen != 0);
7489 		sz = dp->dtdo_intlen * sizeof (uint64_t);
7490 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
7491 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
7492 		new->dtdo_intlen = dp->dtdo_intlen;
7493 	}
7494 
7495 	if (dp->dtdo_vartab != NULL) {
7496 		ASSERT(dp->dtdo_varlen != 0);
7497 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
7498 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
7499 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
7500 		new->dtdo_varlen = dp->dtdo_varlen;
7501 	}
7502 
7503 	dtrace_difo_init(new, vstate);
7504 	return (new);
7505 }
7506 
7507 static void
7508 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7509 {
7510 	int i;
7511 
7512 	ASSERT(dp->dtdo_refcnt == 0);
7513 
7514 	for (i = 0; i < dp->dtdo_varlen; i++) {
7515 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7516 		dtrace_statvar_t *svar, **svarp;
7517 		uint_t id;
7518 		uint8_t scope = v->dtdv_scope;
7519 		int *np;
7520 
7521 		switch (scope) {
7522 		case DIFV_SCOPE_THREAD:
7523 			continue;
7524 
7525 		case DIFV_SCOPE_LOCAL:
7526 			np = &vstate->dtvs_nlocals;
7527 			svarp = vstate->dtvs_locals;
7528 			break;
7529 
7530 		case DIFV_SCOPE_GLOBAL:
7531 			np = &vstate->dtvs_nglobals;
7532 			svarp = vstate->dtvs_globals;
7533 			break;
7534 
7535 		default:
7536 			ASSERT(0);
7537 		}
7538 
7539 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7540 			continue;
7541 
7542 		id -= DIF_VAR_OTHER_UBASE;
7543 		ASSERT(id < *np);
7544 
7545 		svar = svarp[id];
7546 		ASSERT(svar != NULL);
7547 		ASSERT(svar->dtsv_refcnt > 0);
7548 
7549 		if (--svar->dtsv_refcnt > 0)
7550 			continue;
7551 
7552 		if (svar->dtsv_size != 0) {
7553 			ASSERT(svar->dtsv_data != NULL);
7554 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
7555 			    svar->dtsv_size);
7556 		}
7557 
7558 		kmem_free(svar, sizeof (dtrace_statvar_t));
7559 		svarp[id] = NULL;
7560 	}
7561 
7562 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
7563 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
7564 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
7565 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
7566 
7567 	kmem_free(dp, sizeof (dtrace_difo_t));
7568 }
7569 
7570 static void
7571 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7572 {
7573 	int i;
7574 
7575 	ASSERT(MUTEX_HELD(&dtrace_lock));
7576 	ASSERT(dp->dtdo_refcnt != 0);
7577 
7578 	for (i = 0; i < dp->dtdo_varlen; i++) {
7579 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7580 
7581 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7582 			continue;
7583 
7584 		ASSERT(dtrace_vtime_references > 0);
7585 		if (--dtrace_vtime_references == 0)
7586 			dtrace_vtime_disable();
7587 	}
7588 
7589 	if (--dp->dtdo_refcnt == 0)
7590 		dtrace_difo_destroy(dp, vstate);
7591 }
7592 
7593 /*
7594  * DTrace Format Functions
7595  */
7596 static uint16_t
7597 dtrace_format_add(dtrace_state_t *state, char *str)
7598 {
7599 	char *fmt, **new;
7600 	uint16_t ndx, len = strlen(str) + 1;
7601 
7602 	fmt = kmem_zalloc(len, KM_SLEEP);
7603 	bcopy(str, fmt, len);
7604 
7605 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
7606 		if (state->dts_formats[ndx] == NULL) {
7607 			state->dts_formats[ndx] = fmt;
7608 			return (ndx + 1);
7609 		}
7610 	}
7611 
7612 	if (state->dts_nformats == USHRT_MAX) {
7613 		/*
7614 		 * This is only likely if a denial-of-service attack is being
7615 		 * attempted.  As such, it's okay to fail silently here.
7616 		 */
7617 		kmem_free(fmt, len);
7618 		return (0);
7619 	}
7620 
7621 	/*
7622 	 * For simplicity, we always resize the formats array to be exactly the
7623 	 * number of formats.
7624 	 */
7625 	ndx = state->dts_nformats++;
7626 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
7627 
7628 	if (state->dts_formats != NULL) {
7629 		ASSERT(ndx != 0);
7630 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
7631 		kmem_free(state->dts_formats, ndx * sizeof (char *));
7632 	}
7633 
7634 	state->dts_formats = new;
7635 	state->dts_formats[ndx] = fmt;
7636 
7637 	return (ndx + 1);
7638 }
7639 
7640 static void
7641 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
7642 {
7643 	char *fmt;
7644 
7645 	ASSERT(state->dts_formats != NULL);
7646 	ASSERT(format <= state->dts_nformats);
7647 	ASSERT(state->dts_formats[format - 1] != NULL);
7648 
7649 	fmt = state->dts_formats[format - 1];
7650 	kmem_free(fmt, strlen(fmt) + 1);
7651 	state->dts_formats[format - 1] = NULL;
7652 }
7653 
7654 static void
7655 dtrace_format_destroy(dtrace_state_t *state)
7656 {
7657 	int i;
7658 
7659 	if (state->dts_nformats == 0) {
7660 		ASSERT(state->dts_formats == NULL);
7661 		return;
7662 	}
7663 
7664 	ASSERT(state->dts_formats != NULL);
7665 
7666 	for (i = 0; i < state->dts_nformats; i++) {
7667 		char *fmt = state->dts_formats[i];
7668 
7669 		if (fmt == NULL)
7670 			continue;
7671 
7672 		kmem_free(fmt, strlen(fmt) + 1);
7673 	}
7674 
7675 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
7676 	state->dts_nformats = 0;
7677 	state->dts_formats = NULL;
7678 }
7679 
7680 /*
7681  * DTrace Predicate Functions
7682  */
7683 static dtrace_predicate_t *
7684 dtrace_predicate_create(dtrace_difo_t *dp)
7685 {
7686 	dtrace_predicate_t *pred;
7687 
7688 	ASSERT(MUTEX_HELD(&dtrace_lock));
7689 	ASSERT(dp->dtdo_refcnt != 0);
7690 
7691 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
7692 	pred->dtp_difo = dp;
7693 	pred->dtp_refcnt = 1;
7694 
7695 	if (!dtrace_difo_cacheable(dp))
7696 		return (pred);
7697 
7698 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
7699 		/*
7700 		 * This is only theoretically possible -- we have had 2^32
7701 		 * cacheable predicates on this machine.  We cannot allow any
7702 		 * more predicates to become cacheable:  as unlikely as it is,
7703 		 * there may be a thread caching a (now stale) predicate cache
7704 		 * ID. (N.B.: the temptation is being successfully resisted to
7705 		 * have this cmn_err() "Holy shit -- we executed this code!")
7706 		 */
7707 		return (pred);
7708 	}
7709 
7710 	pred->dtp_cacheid = dtrace_predcache_id++;
7711 
7712 	return (pred);
7713 }
7714 
7715 static void
7716 dtrace_predicate_hold(dtrace_predicate_t *pred)
7717 {
7718 	ASSERT(MUTEX_HELD(&dtrace_lock));
7719 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
7720 	ASSERT(pred->dtp_refcnt > 0);
7721 
7722 	pred->dtp_refcnt++;
7723 }
7724 
7725 static void
7726 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
7727 {
7728 	dtrace_difo_t *dp = pred->dtp_difo;
7729 
7730 	ASSERT(MUTEX_HELD(&dtrace_lock));
7731 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
7732 	ASSERT(pred->dtp_refcnt > 0);
7733 
7734 	if (--pred->dtp_refcnt == 0) {
7735 		dtrace_difo_release(pred->dtp_difo, vstate);
7736 		kmem_free(pred, sizeof (dtrace_predicate_t));
7737 	}
7738 }
7739 
7740 /*
7741  * DTrace Action Description Functions
7742  */
7743 static dtrace_actdesc_t *
7744 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
7745     uint64_t uarg, uint64_t arg)
7746 {
7747 	dtrace_actdesc_t *act;
7748 
7749 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
7750 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
7751 
7752 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
7753 	act->dtad_kind = kind;
7754 	act->dtad_ntuple = ntuple;
7755 	act->dtad_uarg = uarg;
7756 	act->dtad_arg = arg;
7757 	act->dtad_refcnt = 1;
7758 
7759 	return (act);
7760 }
7761 
7762 static void
7763 dtrace_actdesc_hold(dtrace_actdesc_t *act)
7764 {
7765 	ASSERT(act->dtad_refcnt >= 1);
7766 	act->dtad_refcnt++;
7767 }
7768 
7769 static void
7770 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
7771 {
7772 	dtrace_actkind_t kind = act->dtad_kind;
7773 	dtrace_difo_t *dp;
7774 
7775 	ASSERT(act->dtad_refcnt >= 1);
7776 
7777 	if (--act->dtad_refcnt != 0)
7778 		return;
7779 
7780 	if ((dp = act->dtad_difo) != NULL)
7781 		dtrace_difo_release(dp, vstate);
7782 
7783 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
7784 		char *str = (char *)(uintptr_t)act->dtad_arg;
7785 
7786 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
7787 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
7788 
7789 		if (str != NULL)
7790 			kmem_free(str, strlen(str) + 1);
7791 	}
7792 
7793 	kmem_free(act, sizeof (dtrace_actdesc_t));
7794 }
7795 
7796 /*
7797  * DTrace ECB Functions
7798  */
7799 static dtrace_ecb_t *
7800 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
7801 {
7802 	dtrace_ecb_t *ecb;
7803 	dtrace_epid_t epid;
7804 
7805 	ASSERT(MUTEX_HELD(&dtrace_lock));
7806 
7807 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
7808 	ecb->dte_predicate = NULL;
7809 	ecb->dte_probe = probe;
7810 
7811 	/*
7812 	 * The default size is the size of the default action: recording
7813 	 * the epid.
7814 	 */
7815 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
7816 	ecb->dte_alignment = sizeof (dtrace_epid_t);
7817 
7818 	epid = state->dts_epid++;
7819 
7820 	if (epid - 1 >= state->dts_necbs) {
7821 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
7822 		int necbs = state->dts_necbs << 1;
7823 
7824 		ASSERT(epid == state->dts_necbs + 1);
7825 
7826 		if (necbs == 0) {
7827 			ASSERT(oecbs == NULL);
7828 			necbs = 1;
7829 		}
7830 
7831 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
7832 
7833 		if (oecbs != NULL)
7834 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
7835 
7836 		dtrace_membar_producer();
7837 		state->dts_ecbs = ecbs;
7838 
7839 		if (oecbs != NULL) {
7840 			/*
7841 			 * If this state is active, we must dtrace_sync()
7842 			 * before we can free the old dts_ecbs array:  we're
7843 			 * coming in hot, and there may be active ring
7844 			 * buffer processing (which indexes into the dts_ecbs
7845 			 * array) on another CPU.
7846 			 */
7847 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
7848 				dtrace_sync();
7849 
7850 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
7851 		}
7852 
7853 		dtrace_membar_producer();
7854 		state->dts_necbs = necbs;
7855 	}
7856 
7857 	ecb->dte_state = state;
7858 
7859 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
7860 	dtrace_membar_producer();
7861 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
7862 
7863 	return (ecb);
7864 }
7865 
7866 static void
7867 dtrace_ecb_enable(dtrace_ecb_t *ecb)
7868 {
7869 	dtrace_probe_t *probe = ecb->dte_probe;
7870 
7871 	ASSERT(MUTEX_HELD(&cpu_lock));
7872 	ASSERT(MUTEX_HELD(&dtrace_lock));
7873 	ASSERT(ecb->dte_next == NULL);
7874 
7875 	if (probe == NULL) {
7876 		/*
7877 		 * This is the NULL probe -- there's nothing to do.
7878 		 */
7879 		return;
7880 	}
7881 
7882 	if (probe->dtpr_ecb == NULL) {
7883 		dtrace_provider_t *prov = probe->dtpr_provider;
7884 
7885 		/*
7886 		 * We're the first ECB on this probe.
7887 		 */
7888 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
7889 
7890 		if (ecb->dte_predicate != NULL)
7891 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
7892 
7893 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
7894 		    probe->dtpr_id, probe->dtpr_arg);
7895 	} else {
7896 		/*
7897 		 * This probe is already active.  Swing the last pointer to
7898 		 * point to the new ECB, and issue a dtrace_sync() to assure
7899 		 * that all CPUs have seen the change.
7900 		 */
7901 		ASSERT(probe->dtpr_ecb_last != NULL);
7902 		probe->dtpr_ecb_last->dte_next = ecb;
7903 		probe->dtpr_ecb_last = ecb;
7904 		probe->dtpr_predcache = 0;
7905 
7906 		dtrace_sync();
7907 	}
7908 }
7909 
7910 static void
7911 dtrace_ecb_resize(dtrace_ecb_t *ecb)
7912 {
7913 	uint32_t maxalign = sizeof (dtrace_epid_t);
7914 	uint32_t align = sizeof (uint8_t), offs, diff;
7915 	dtrace_action_t *act;
7916 	int wastuple = 0;
7917 	uint32_t aggbase = UINT32_MAX;
7918 	dtrace_state_t *state = ecb->dte_state;
7919 
7920 	/*
7921 	 * If we record anything, we always record the epid.  (And we always
7922 	 * record it first.)
7923 	 */
7924 	offs = sizeof (dtrace_epid_t);
7925 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
7926 
7927 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
7928 		dtrace_recdesc_t *rec = &act->dta_rec;
7929 
7930 		if ((align = rec->dtrd_alignment) > maxalign)
7931 			maxalign = align;
7932 
7933 		if (!wastuple && act->dta_intuple) {
7934 			/*
7935 			 * This is the first record in a tuple.  Align the
7936 			 * offset to be at offset 4 in an 8-byte aligned
7937 			 * block.
7938 			 */
7939 			diff = offs + sizeof (dtrace_aggid_t);
7940 
7941 			if (diff = (diff & (sizeof (uint64_t) - 1)))
7942 				offs += sizeof (uint64_t) - diff;
7943 
7944 			aggbase = offs - sizeof (dtrace_aggid_t);
7945 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
7946 		}
7947 
7948 		/*LINTED*/
7949 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
7950 			/*
7951 			 * The current offset is not properly aligned; align it.
7952 			 */
7953 			offs += align - diff;
7954 		}
7955 
7956 		rec->dtrd_offset = offs;
7957 
7958 		if (offs + rec->dtrd_size > ecb->dte_needed) {
7959 			ecb->dte_needed = offs + rec->dtrd_size;
7960 
7961 			if (ecb->dte_needed > state->dts_needed)
7962 				state->dts_needed = ecb->dte_needed;
7963 		}
7964 
7965 		if (DTRACEACT_ISAGG(act->dta_kind)) {
7966 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
7967 			dtrace_action_t *first = agg->dtag_first, *prev;
7968 
7969 			ASSERT(rec->dtrd_size != 0 && first != NULL);
7970 			ASSERT(wastuple);
7971 			ASSERT(aggbase != UINT32_MAX);
7972 
7973 			agg->dtag_base = aggbase;
7974 
7975 			while ((prev = first->dta_prev) != NULL &&
7976 			    DTRACEACT_ISAGG(prev->dta_kind)) {
7977 				agg = (dtrace_aggregation_t *)prev;
7978 				first = agg->dtag_first;
7979 			}
7980 
7981 			if (prev != NULL) {
7982 				offs = prev->dta_rec.dtrd_offset +
7983 				    prev->dta_rec.dtrd_size;
7984 			} else {
7985 				offs = sizeof (dtrace_epid_t);
7986 			}
7987 			wastuple = 0;
7988 		} else {
7989 			if (!act->dta_intuple)
7990 				ecb->dte_size = offs + rec->dtrd_size;
7991 
7992 			offs += rec->dtrd_size;
7993 		}
7994 
7995 		wastuple = act->dta_intuple;
7996 	}
7997 
7998 	if ((act = ecb->dte_action) != NULL &&
7999 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
8000 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
8001 		/*
8002 		 * If the size is still sizeof (dtrace_epid_t), then all
8003 		 * actions store no data; set the size to 0.
8004 		 */
8005 		ecb->dte_alignment = maxalign;
8006 		ecb->dte_size = 0;
8007 
8008 		/*
8009 		 * If the needed space is still sizeof (dtrace_epid_t), then
8010 		 * all actions need no additional space; set the needed
8011 		 * size to 0.
8012 		 */
8013 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8014 			ecb->dte_needed = 0;
8015 
8016 		return;
8017 	}
8018 
8019 	/*
8020 	 * Set our alignment, and make sure that the dte_size and dte_needed
8021 	 * are aligned to the size of an EPID.
8022 	 */
8023 	ecb->dte_alignment = maxalign;
8024 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8025 	    ~(sizeof (dtrace_epid_t) - 1);
8026 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8027 	    ~(sizeof (dtrace_epid_t) - 1);
8028 	ASSERT(ecb->dte_size <= ecb->dte_needed);
8029 }
8030 
8031 static dtrace_action_t *
8032 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8033 {
8034 	dtrace_aggregation_t *agg;
8035 	size_t size = sizeof (uint64_t);
8036 	int ntuple = desc->dtad_ntuple;
8037 	dtrace_action_t *act;
8038 	dtrace_recdesc_t *frec;
8039 	dtrace_aggid_t aggid;
8040 	dtrace_state_t *state = ecb->dte_state;
8041 
8042 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8043 	agg->dtag_ecb = ecb;
8044 
8045 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8046 
8047 	switch (desc->dtad_kind) {
8048 	case DTRACEAGG_MIN:
8049 		agg->dtag_initial = UINT64_MAX;
8050 		agg->dtag_aggregate = dtrace_aggregate_min;
8051 		break;
8052 
8053 	case DTRACEAGG_MAX:
8054 		agg->dtag_aggregate = dtrace_aggregate_max;
8055 		break;
8056 
8057 	case DTRACEAGG_COUNT:
8058 		agg->dtag_aggregate = dtrace_aggregate_count;
8059 		break;
8060 
8061 	case DTRACEAGG_QUANTIZE:
8062 		agg->dtag_aggregate = dtrace_aggregate_quantize;
8063 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8064 		    sizeof (uint64_t);
8065 		break;
8066 
8067 	case DTRACEAGG_LQUANTIZE: {
8068 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8069 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8070 
8071 		agg->dtag_initial = desc->dtad_arg;
8072 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8073 
8074 		if (step == 0 || levels == 0)
8075 			goto err;
8076 
8077 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8078 		break;
8079 	}
8080 
8081 	case DTRACEAGG_AVG:
8082 		agg->dtag_aggregate = dtrace_aggregate_avg;
8083 		size = sizeof (uint64_t) * 2;
8084 		break;
8085 
8086 	case DTRACEAGG_SUM:
8087 		agg->dtag_aggregate = dtrace_aggregate_sum;
8088 		break;
8089 
8090 	default:
8091 		goto err;
8092 	}
8093 
8094 	agg->dtag_action.dta_rec.dtrd_size = size;
8095 
8096 	if (ntuple == 0)
8097 		goto err;
8098 
8099 	/*
8100 	 * We must make sure that we have enough actions for the n-tuple.
8101 	 */
8102 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8103 		if (DTRACEACT_ISAGG(act->dta_kind))
8104 			break;
8105 
8106 		if (--ntuple == 0) {
8107 			/*
8108 			 * This is the action with which our n-tuple begins.
8109 			 */
8110 			agg->dtag_first = act;
8111 			goto success;
8112 		}
8113 	}
8114 
8115 	/*
8116 	 * This n-tuple is short by ntuple elements.  Return failure.
8117 	 */
8118 	ASSERT(ntuple != 0);
8119 err:
8120 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8121 	return (NULL);
8122 
8123 success:
8124 	/*
8125 	 * We need to allocate an id for this aggregation.
8126 	 */
8127 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
8128 	    VM_BESTFIT | VM_SLEEP);
8129 
8130 	if (aggid - 1 >= state->dts_naggregations) {
8131 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
8132 		dtrace_aggregation_t **aggs;
8133 		int naggs = state->dts_naggregations << 1;
8134 		int onaggs = state->dts_naggregations;
8135 
8136 		ASSERT(aggid == state->dts_naggregations + 1);
8137 
8138 		if (naggs == 0) {
8139 			ASSERT(oaggs == NULL);
8140 			naggs = 1;
8141 		}
8142 
8143 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
8144 
8145 		if (oaggs != NULL) {
8146 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
8147 			kmem_free(oaggs, onaggs * sizeof (*aggs));
8148 		}
8149 
8150 		state->dts_aggregations = aggs;
8151 		state->dts_naggregations = naggs;
8152 	}
8153 
8154 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
8155 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
8156 
8157 	frec = &agg->dtag_first->dta_rec;
8158 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
8159 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
8160 
8161 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
8162 		ASSERT(!act->dta_intuple);
8163 		act->dta_intuple = 1;
8164 	}
8165 
8166 	return (&agg->dtag_action);
8167 }
8168 
8169 static void
8170 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
8171 {
8172 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8173 	dtrace_state_t *state = ecb->dte_state;
8174 	dtrace_aggid_t aggid = agg->dtag_id;
8175 
8176 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
8177 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
8178 
8179 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
8180 	state->dts_aggregations[aggid - 1] = NULL;
8181 
8182 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8183 }
8184 
8185 static int
8186 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8187 {
8188 	dtrace_action_t *action, *last;
8189 	dtrace_difo_t *dp = desc->dtad_difo;
8190 	uint32_t size = 0, align = sizeof (uint8_t), mask;
8191 	uint16_t format = 0;
8192 	dtrace_recdesc_t *rec;
8193 	dtrace_state_t *state = ecb->dte_state;
8194 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
8195 	uint64_t arg = desc->dtad_arg;
8196 
8197 	ASSERT(MUTEX_HELD(&dtrace_lock));
8198 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
8199 
8200 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
8201 		/*
8202 		 * If this is an aggregating action, there must be neither
8203 		 * a speculate nor a commit on the action chain.
8204 		 */
8205 		dtrace_action_t *act;
8206 
8207 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8208 			if (act->dta_kind == DTRACEACT_COMMIT)
8209 				return (EINVAL);
8210 
8211 			if (act->dta_kind == DTRACEACT_SPECULATE)
8212 				return (EINVAL);
8213 		}
8214 
8215 		action = dtrace_ecb_aggregation_create(ecb, desc);
8216 
8217 		if (action == NULL)
8218 			return (EINVAL);
8219 	} else {
8220 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
8221 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
8222 		    dp != NULL && dp->dtdo_destructive)) {
8223 			state->dts_destructive = 1;
8224 		}
8225 
8226 		switch (desc->dtad_kind) {
8227 		case DTRACEACT_PRINTF:
8228 		case DTRACEACT_PRINTA:
8229 		case DTRACEACT_SYSTEM:
8230 		case DTRACEACT_FREOPEN:
8231 			/*
8232 			 * We know that our arg is a string -- turn it into a
8233 			 * format.
8234 			 */
8235 			if (arg == NULL) {
8236 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
8237 				format = 0;
8238 			} else {
8239 				ASSERT(arg != NULL);
8240 				ASSERT(arg > KERNELBASE);
8241 				format = dtrace_format_add(state,
8242 				    (char *)(uintptr_t)arg);
8243 			}
8244 
8245 			/*FALLTHROUGH*/
8246 		case DTRACEACT_LIBACT:
8247 		case DTRACEACT_DIFEXPR:
8248 			if (dp == NULL)
8249 				return (EINVAL);
8250 
8251 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
8252 				break;
8253 
8254 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
8255 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8256 					return (EINVAL);
8257 
8258 				size = opt[DTRACEOPT_STRSIZE];
8259 			}
8260 
8261 			break;
8262 
8263 		case DTRACEACT_STACK:
8264 			if ((nframes = arg) == 0) {
8265 				nframes = opt[DTRACEOPT_STACKFRAMES];
8266 				ASSERT(nframes > 0);
8267 				arg = nframes;
8268 			}
8269 
8270 			size = nframes * sizeof (pc_t);
8271 			break;
8272 
8273 		case DTRACEACT_JSTACK:
8274 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
8275 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
8276 
8277 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
8278 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
8279 
8280 			arg = DTRACE_USTACK_ARG(nframes, strsize);
8281 
8282 			/*FALLTHROUGH*/
8283 		case DTRACEACT_USTACK:
8284 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
8285 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
8286 				strsize = DTRACE_USTACK_STRSIZE(arg);
8287 				nframes = opt[DTRACEOPT_USTACKFRAMES];
8288 				ASSERT(nframes > 0);
8289 				arg = DTRACE_USTACK_ARG(nframes, strsize);
8290 			}
8291 
8292 			/*
8293 			 * Save a slot for the pid.
8294 			 */
8295 			size = (nframes + 1) * sizeof (uint64_t);
8296 			size += DTRACE_USTACK_STRSIZE(arg);
8297 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
8298 
8299 			break;
8300 
8301 		case DTRACEACT_STOP:
8302 		case DTRACEACT_BREAKPOINT:
8303 		case DTRACEACT_PANIC:
8304 			break;
8305 
8306 		case DTRACEACT_CHILL:
8307 		case DTRACEACT_DISCARD:
8308 		case DTRACEACT_RAISE:
8309 			if (dp == NULL)
8310 				return (EINVAL);
8311 			break;
8312 
8313 		case DTRACEACT_EXIT:
8314 			if (dp == NULL ||
8315 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
8316 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8317 				return (EINVAL);
8318 			break;
8319 
8320 		case DTRACEACT_SPECULATE:
8321 
8322 			if (ecb->dte_action != NULL && ecb->dte_size != 0)
8323 				return (EINVAL);
8324 
8325 			if (dp == NULL)
8326 				return (EINVAL);
8327 
8328 			state->dts_speculates = 1;
8329 			break;
8330 
8331 		case DTRACEACT_COMMIT: {
8332 			dtrace_action_t *act = ecb->dte_action;
8333 
8334 			for (; act != NULL; act = act->dta_next) {
8335 				if (act->dta_kind == DTRACEACT_COMMIT)
8336 					return (EINVAL);
8337 			}
8338 
8339 			if (dp == NULL)
8340 				return (EINVAL);
8341 			break;
8342 		}
8343 
8344 		default:
8345 			return (EINVAL);
8346 		}
8347 
8348 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
8349 			/*
8350 			 * If this is a data-storing action or a speculate,
8351 			 * we must be sure that there isn't a commit on the
8352 			 * action chain.
8353 			 */
8354 			dtrace_action_t *act = ecb->dte_action;
8355 
8356 			for (; act != NULL; act = act->dta_next) {
8357 				if (act->dta_kind == DTRACEACT_COMMIT)
8358 					return (EINVAL);
8359 			}
8360 		}
8361 
8362 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
8363 		action->dta_rec.dtrd_size = size;
8364 	}
8365 
8366 	action->dta_refcnt = 1;
8367 	rec = &action->dta_rec;
8368 	size = rec->dtrd_size;
8369 
8370 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
8371 		if (!(size & mask)) {
8372 			align = mask + 1;
8373 			break;
8374 		}
8375 	}
8376 
8377 	action->dta_kind = desc->dtad_kind;
8378 
8379 	if ((action->dta_difo = dp) != NULL)
8380 		dtrace_difo_hold(dp);
8381 
8382 	rec->dtrd_action = action->dta_kind;
8383 	rec->dtrd_arg = arg;
8384 
8385 	if (ecb->dte_state == dtrace_anon.dta_state) {
8386 		/*
8387 		 * If this is an anonymous enabling, explicitly clear the uarg.
8388 		 */
8389 		rec->dtrd_uarg = 0;
8390 	} else {
8391 		rec->dtrd_uarg = desc->dtad_uarg;
8392 	}
8393 
8394 	rec->dtrd_alignment = (uint16_t)align;
8395 	rec->dtrd_format = format;
8396 
8397 	if ((last = ecb->dte_action_last) != NULL) {
8398 		ASSERT(ecb->dte_action != NULL);
8399 		action->dta_prev = last;
8400 		last->dta_next = action;
8401 	} else {
8402 		ASSERT(ecb->dte_action == NULL);
8403 		ecb->dte_action = action;
8404 	}
8405 
8406 	ecb->dte_action_last = action;
8407 
8408 	return (0);
8409 }
8410 
8411 static void
8412 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
8413 {
8414 	dtrace_action_t *act = ecb->dte_action, *next;
8415 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
8416 	dtrace_difo_t *dp;
8417 	uint16_t format;
8418 
8419 	if (act != NULL && act->dta_refcnt > 1) {
8420 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
8421 		act->dta_refcnt--;
8422 	} else {
8423 		for (; act != NULL; act = next) {
8424 			next = act->dta_next;
8425 			ASSERT(next != NULL || act == ecb->dte_action_last);
8426 			ASSERT(act->dta_refcnt == 1);
8427 
8428 			if ((format = act->dta_rec.dtrd_format) != 0)
8429 				dtrace_format_remove(ecb->dte_state, format);
8430 
8431 			if ((dp = act->dta_difo) != NULL)
8432 				dtrace_difo_release(dp, vstate);
8433 
8434 			if (DTRACEACT_ISAGG(act->dta_kind)) {
8435 				dtrace_ecb_aggregation_destroy(ecb, act);
8436 			} else {
8437 				kmem_free(act, sizeof (dtrace_action_t));
8438 			}
8439 		}
8440 	}
8441 
8442 	ecb->dte_action = NULL;
8443 	ecb->dte_action_last = NULL;
8444 	ecb->dte_size = sizeof (dtrace_epid_t);
8445 }
8446 
8447 static void
8448 dtrace_ecb_disable(dtrace_ecb_t *ecb)
8449 {
8450 	/*
8451 	 * We disable the ECB by removing it from its probe.
8452 	 */
8453 	dtrace_ecb_t *pecb, *prev = NULL;
8454 	dtrace_probe_t *probe = ecb->dte_probe;
8455 
8456 	ASSERT(MUTEX_HELD(&dtrace_lock));
8457 
8458 	if (probe == NULL) {
8459 		/*
8460 		 * This is the NULL probe; there is nothing to disable.
8461 		 */
8462 		return;
8463 	}
8464 
8465 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
8466 		if (pecb == ecb)
8467 			break;
8468 		prev = pecb;
8469 	}
8470 
8471 	ASSERT(pecb != NULL);
8472 
8473 	if (prev == NULL) {
8474 		probe->dtpr_ecb = ecb->dte_next;
8475 	} else {
8476 		prev->dte_next = ecb->dte_next;
8477 	}
8478 
8479 	if (ecb == probe->dtpr_ecb_last) {
8480 		ASSERT(ecb->dte_next == NULL);
8481 		probe->dtpr_ecb_last = prev;
8482 	}
8483 
8484 	/*
8485 	 * The ECB has been disconnected from the probe; now sync to assure
8486 	 * that all CPUs have seen the change before returning.
8487 	 */
8488 	dtrace_sync();
8489 
8490 	if (probe->dtpr_ecb == NULL) {
8491 		/*
8492 		 * That was the last ECB on the probe; clear the predicate
8493 		 * cache ID for the probe, disable it and sync one more time
8494 		 * to assure that we'll never hit it again.
8495 		 */
8496 		dtrace_provider_t *prov = probe->dtpr_provider;
8497 
8498 		ASSERT(ecb->dte_next == NULL);
8499 		ASSERT(probe->dtpr_ecb_last == NULL);
8500 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
8501 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
8502 		    probe->dtpr_id, probe->dtpr_arg);
8503 		dtrace_sync();
8504 	} else {
8505 		/*
8506 		 * There is at least one ECB remaining on the probe.  If there
8507 		 * is _exactly_ one, set the probe's predicate cache ID to be
8508 		 * the predicate cache ID of the remaining ECB.
8509 		 */
8510 		ASSERT(probe->dtpr_ecb_last != NULL);
8511 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
8512 
8513 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
8514 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
8515 
8516 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
8517 
8518 			if (p != NULL)
8519 				probe->dtpr_predcache = p->dtp_cacheid;
8520 		}
8521 
8522 		ecb->dte_next = NULL;
8523 	}
8524 }
8525 
8526 static void
8527 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
8528 {
8529 	dtrace_state_t *state = ecb->dte_state;
8530 	dtrace_vstate_t *vstate = &state->dts_vstate;
8531 	dtrace_predicate_t *pred;
8532 	dtrace_epid_t epid = ecb->dte_epid;
8533 
8534 	ASSERT(MUTEX_HELD(&dtrace_lock));
8535 	ASSERT(ecb->dte_next == NULL);
8536 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
8537 
8538 	if ((pred = ecb->dte_predicate) != NULL)
8539 		dtrace_predicate_release(pred, vstate);
8540 
8541 	dtrace_ecb_action_remove(ecb);
8542 
8543 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
8544 	state->dts_ecbs[epid - 1] = NULL;
8545 
8546 	kmem_free(ecb, sizeof (dtrace_ecb_t));
8547 }
8548 
8549 static dtrace_ecb_t *
8550 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
8551     dtrace_enabling_t *enab)
8552 {
8553 	dtrace_ecb_t *ecb;
8554 	dtrace_predicate_t *pred;
8555 	dtrace_actdesc_t *act;
8556 	dtrace_provider_t *prov;
8557 	dtrace_ecbdesc_t *desc = enab->dten_current;
8558 
8559 	ASSERT(MUTEX_HELD(&dtrace_lock));
8560 	ASSERT(state != NULL);
8561 
8562 	ecb = dtrace_ecb_add(state, probe);
8563 	ecb->dte_uarg = desc->dted_uarg;
8564 
8565 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
8566 		dtrace_predicate_hold(pred);
8567 		ecb->dte_predicate = pred;
8568 	}
8569 
8570 	if (probe != NULL) {
8571 		/*
8572 		 * If the provider shows more leg than the consumer is old
8573 		 * enough to see, we need to enable the appropriate implicit
8574 		 * predicate bits to prevent the ecb from activating at
8575 		 * revealing times.
8576 		 */
8577 		prov = probe->dtpr_provider;
8578 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
8579 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
8580 			ecb->dte_cond |= DTRACE_COND_OWNER;
8581 
8582 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
8583 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
8584 			ecb->dte_cond |= DTRACE_COND_USERMODE;
8585 	}
8586 
8587 	if (dtrace_ecb_create_cache != NULL) {
8588 		/*
8589 		 * If we have a cached ecb, we'll use its action list instead
8590 		 * of creating our own (saving both time and space).
8591 		 */
8592 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
8593 		dtrace_action_t *act = cached->dte_action;
8594 
8595 		if (act != NULL) {
8596 			ASSERT(act->dta_refcnt > 0);
8597 			act->dta_refcnt++;
8598 			ecb->dte_action = act;
8599 			ecb->dte_action_last = cached->dte_action_last;
8600 			ecb->dte_needed = cached->dte_needed;
8601 			ecb->dte_size = cached->dte_size;
8602 			ecb->dte_alignment = cached->dte_alignment;
8603 		}
8604 
8605 		return (ecb);
8606 	}
8607 
8608 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
8609 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
8610 			dtrace_ecb_destroy(ecb);
8611 			return (NULL);
8612 		}
8613 	}
8614 
8615 	dtrace_ecb_resize(ecb);
8616 
8617 	return (dtrace_ecb_create_cache = ecb);
8618 }
8619 
8620 static int
8621 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
8622 {
8623 	dtrace_ecb_t *ecb;
8624 	dtrace_enabling_t *enab = arg;
8625 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
8626 
8627 	ASSERT(state != NULL);
8628 
8629 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
8630 		/*
8631 		 * This probe was created in a generation for which this
8632 		 * enabling has previously created ECBs; we don't want to
8633 		 * enable it again, so just kick out.
8634 		 */
8635 		return (DTRACE_MATCH_NEXT);
8636 	}
8637 
8638 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
8639 		return (DTRACE_MATCH_DONE);
8640 
8641 	dtrace_ecb_enable(ecb);
8642 	return (DTRACE_MATCH_NEXT);
8643 }
8644 
8645 static dtrace_ecb_t *
8646 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
8647 {
8648 	dtrace_ecb_t *ecb;
8649 
8650 	ASSERT(MUTEX_HELD(&dtrace_lock));
8651 
8652 	if (id == 0 || id > state->dts_necbs)
8653 		return (NULL);
8654 
8655 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
8656 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
8657 
8658 	return (state->dts_ecbs[id - 1]);
8659 }
8660 
8661 static dtrace_aggregation_t *
8662 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
8663 {
8664 	dtrace_aggregation_t *agg;
8665 
8666 	ASSERT(MUTEX_HELD(&dtrace_lock));
8667 
8668 	if (id == 0 || id > state->dts_naggregations)
8669 		return (NULL);
8670 
8671 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
8672 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
8673 	    agg->dtag_id == id);
8674 
8675 	return (state->dts_aggregations[id - 1]);
8676 }
8677 
8678 /*
8679  * DTrace Buffer Functions
8680  *
8681  * The following functions manipulate DTrace buffers.  Most of these functions
8682  * are called in the context of establishing or processing consumer state;
8683  * exceptions are explicitly noted.
8684  */
8685 
8686 /*
8687  * Note:  called from cross call context.  This function switches the two
8688  * buffers on a given CPU.  The atomicity of this operation is assured by
8689  * disabling interrupts while the actual switch takes place; the disabling of
8690  * interrupts serializes the execution with any execution of dtrace_probe() on
8691  * the same CPU.
8692  */
8693 static void
8694 dtrace_buffer_switch(dtrace_buffer_t *buf)
8695 {
8696 	caddr_t tomax = buf->dtb_tomax;
8697 	caddr_t xamot = buf->dtb_xamot;
8698 	dtrace_icookie_t cookie;
8699 
8700 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
8701 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
8702 
8703 	cookie = dtrace_interrupt_disable();
8704 	buf->dtb_tomax = xamot;
8705 	buf->dtb_xamot = tomax;
8706 	buf->dtb_xamot_drops = buf->dtb_drops;
8707 	buf->dtb_xamot_offset = buf->dtb_offset;
8708 	buf->dtb_xamot_errors = buf->dtb_errors;
8709 	buf->dtb_xamot_flags = buf->dtb_flags;
8710 	buf->dtb_offset = 0;
8711 	buf->dtb_drops = 0;
8712 	buf->dtb_errors = 0;
8713 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
8714 	dtrace_interrupt_enable(cookie);
8715 }
8716 
8717 /*
8718  * Note:  called from cross call context.  This function activates a buffer
8719  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
8720  * is guaranteed by the disabling of interrupts.
8721  */
8722 static void
8723 dtrace_buffer_activate(dtrace_state_t *state)
8724 {
8725 	dtrace_buffer_t *buf;
8726 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
8727 
8728 	buf = &state->dts_buffer[CPU->cpu_id];
8729 
8730 	if (buf->dtb_tomax != NULL) {
8731 		/*
8732 		 * We might like to assert that the buffer is marked inactive,
8733 		 * but this isn't necessarily true:  the buffer for the CPU
8734 		 * that processes the BEGIN probe has its buffer activated
8735 		 * manually.  In this case, we take the (harmless) action
8736 		 * re-clearing the bit INACTIVE bit.
8737 		 */
8738 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
8739 	}
8740 
8741 	dtrace_interrupt_enable(cookie);
8742 }
8743 
8744 static int
8745 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
8746     processorid_t cpu)
8747 {
8748 	cpu_t *cp;
8749 	dtrace_buffer_t *buf;
8750 
8751 	ASSERT(MUTEX_HELD(&cpu_lock));
8752 	ASSERT(MUTEX_HELD(&dtrace_lock));
8753 
8754 	if (crgetuid(CRED()) != 0 && size > dtrace_nonroot_maxsize)
8755 		return (EFBIG);
8756 
8757 	cp = cpu_list;
8758 
8759 	do {
8760 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
8761 			continue;
8762 
8763 		buf = &bufs[cp->cpu_id];
8764 
8765 		/*
8766 		 * If there is already a buffer allocated for this CPU, it
8767 		 * is only possible that this is a DR event.  In this case,
8768 		 * the buffer size must match our specified size.
8769 		 */
8770 		if (buf->dtb_tomax != NULL) {
8771 			ASSERT(buf->dtb_size == size);
8772 			continue;
8773 		}
8774 
8775 		ASSERT(buf->dtb_xamot == NULL);
8776 
8777 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
8778 			goto err;
8779 
8780 		buf->dtb_size = size;
8781 		buf->dtb_flags = flags;
8782 		buf->dtb_offset = 0;
8783 		buf->dtb_drops = 0;
8784 
8785 		if (flags & DTRACEBUF_NOSWITCH)
8786 			continue;
8787 
8788 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
8789 			goto err;
8790 	} while ((cp = cp->cpu_next) != cpu_list);
8791 
8792 	return (0);
8793 
8794 err:
8795 	cp = cpu_list;
8796 
8797 	do {
8798 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
8799 			continue;
8800 
8801 		buf = &bufs[cp->cpu_id];
8802 
8803 		if (buf->dtb_xamot != NULL) {
8804 			ASSERT(buf->dtb_tomax != NULL);
8805 			ASSERT(buf->dtb_size == size);
8806 			kmem_free(buf->dtb_xamot, size);
8807 		}
8808 
8809 		if (buf->dtb_tomax != NULL) {
8810 			ASSERT(buf->dtb_size == size);
8811 			kmem_free(buf->dtb_tomax, size);
8812 		}
8813 
8814 		buf->dtb_tomax = NULL;
8815 		buf->dtb_xamot = NULL;
8816 		buf->dtb_size = 0;
8817 	} while ((cp = cp->cpu_next) != cpu_list);
8818 
8819 	return (ENOMEM);
8820 }
8821 
8822 /*
8823  * Note:  called from probe context.  This function just increments the drop
8824  * count on a buffer.  It has been made a function to allow for the
8825  * possibility of understanding the source of mysterious drop counts.  (A
8826  * problem for which one may be particularly disappointed that DTrace cannot
8827  * be used to understand DTrace.)
8828  */
8829 static void
8830 dtrace_buffer_drop(dtrace_buffer_t *buf)
8831 {
8832 	buf->dtb_drops++;
8833 }
8834 
8835 /*
8836  * Note:  called from probe context.  This function is called to reserve space
8837  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
8838  * mstate.  Returns the new offset in the buffer, or a negative value if an
8839  * error has occurred.
8840  */
8841 static intptr_t
8842 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
8843     dtrace_state_t *state, dtrace_mstate_t *mstate)
8844 {
8845 	intptr_t offs = buf->dtb_offset, soffs;
8846 	intptr_t woffs;
8847 	caddr_t tomax;
8848 	size_t total;
8849 
8850 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
8851 		return (-1);
8852 
8853 	if ((tomax = buf->dtb_tomax) == NULL) {
8854 		dtrace_buffer_drop(buf);
8855 		return (-1);
8856 	}
8857 
8858 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
8859 		while (offs & (align - 1)) {
8860 			/*
8861 			 * Assert that our alignment is off by a number which
8862 			 * is itself sizeof (uint32_t) aligned.
8863 			 */
8864 			ASSERT(!((align - (offs & (align - 1))) &
8865 			    (sizeof (uint32_t) - 1)));
8866 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
8867 			offs += sizeof (uint32_t);
8868 		}
8869 
8870 		if ((soffs = offs + needed) > buf->dtb_size) {
8871 			dtrace_buffer_drop(buf);
8872 			return (-1);
8873 		}
8874 
8875 		if (mstate == NULL)
8876 			return (offs);
8877 
8878 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
8879 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
8880 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
8881 
8882 		return (offs);
8883 	}
8884 
8885 	if (buf->dtb_flags & DTRACEBUF_FILL) {
8886 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
8887 		    (buf->dtb_flags & DTRACEBUF_FULL))
8888 			return (-1);
8889 		goto out;
8890 	}
8891 
8892 	total = needed + (offs & (align - 1));
8893 
8894 	/*
8895 	 * For a ring buffer, life is quite a bit more complicated.  Before
8896 	 * we can store any padding, we need to adjust our wrapping offset.
8897 	 * (If we've never before wrapped or we're not about to, no adjustment
8898 	 * is required.)
8899 	 */
8900 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
8901 	    offs + total > buf->dtb_size) {
8902 		woffs = buf->dtb_xamot_offset;
8903 
8904 		if (offs + total > buf->dtb_size) {
8905 			/*
8906 			 * We can't fit in the end of the buffer.  First, a
8907 			 * sanity check that we can fit in the buffer at all.
8908 			 */
8909 			if (total > buf->dtb_size) {
8910 				dtrace_buffer_drop(buf);
8911 				return (-1);
8912 			}
8913 
8914 			/*
8915 			 * We're going to be storing at the top of the buffer,
8916 			 * so now we need to deal with the wrapped offset.  We
8917 			 * only reset our wrapped offset to 0 if it is
8918 			 * currently greater than the current offset.  If it
8919 			 * is less than the current offset, it is because a
8920 			 * previous allocation induced a wrap -- but the
8921 			 * allocation didn't subsequently take the space due
8922 			 * to an error or false predicate evaluation.  In this
8923 			 * case, we'll just leave the wrapped offset alone: if
8924 			 * the wrapped offset hasn't been advanced far enough
8925 			 * for this allocation, it will be adjusted in the
8926 			 * lower loop.
8927 			 */
8928 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
8929 				if (woffs >= offs)
8930 					woffs = 0;
8931 			} else {
8932 				woffs = 0;
8933 			}
8934 
8935 			/*
8936 			 * Now we know that we're going to be storing to the
8937 			 * top of the buffer and that there is room for us
8938 			 * there.  We need to clear the buffer from the current
8939 			 * offset to the end (there may be old gunk there).
8940 			 */
8941 			while (offs < buf->dtb_size)
8942 				tomax[offs++] = 0;
8943 
8944 			/*
8945 			 * We need to set our offset to zero.  And because we
8946 			 * are wrapping, we need to set the bit indicating as
8947 			 * much.  We can also adjust our needed space back
8948 			 * down to the space required by the ECB -- we know
8949 			 * that the top of the buffer is aligned.
8950 			 */
8951 			offs = 0;
8952 			total = needed;
8953 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
8954 		} else {
8955 			/*
8956 			 * There is room for us in the buffer, so we simply
8957 			 * need to check the wrapped offset.
8958 			 */
8959 			if (woffs < offs) {
8960 				/*
8961 				 * The wrapped offset is less than the offset.
8962 				 * This can happen if we allocated buffer space
8963 				 * that induced a wrap, but then we didn't
8964 				 * subsequently take the space due to an error
8965 				 * or false predicate evaluation.  This is
8966 				 * okay; we know that _this_ allocation isn't
8967 				 * going to induce a wrap.  We still can't
8968 				 * reset the wrapped offset to be zero,
8969 				 * however: the space may have been trashed in
8970 				 * the previous failed probe attempt.  But at
8971 				 * least the wrapped offset doesn't need to
8972 				 * be adjusted at all...
8973 				 */
8974 				goto out;
8975 			}
8976 		}
8977 
8978 		while (offs + total > woffs) {
8979 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
8980 			size_t size;
8981 
8982 			if (epid == DTRACE_EPIDNONE) {
8983 				size = sizeof (uint32_t);
8984 			} else {
8985 				ASSERT(epid <= state->dts_necbs);
8986 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
8987 
8988 				size = state->dts_ecbs[epid - 1]->dte_size;
8989 			}
8990 
8991 			ASSERT(woffs + size <= buf->dtb_size);
8992 			ASSERT(size != 0);
8993 
8994 			if (woffs + size == buf->dtb_size) {
8995 				/*
8996 				 * We've reached the end of the buffer; we want
8997 				 * to set the wrapped offset to 0 and break
8998 				 * out.  However, if the offs is 0, then we're
8999 				 * in a strange edge-condition:  the amount of
9000 				 * space that we want to reserve plus the size
9001 				 * of the record that we're overwriting is
9002 				 * greater than the size of the buffer.  This
9003 				 * is problematic because if we reserve the
9004 				 * space but subsequently don't consume it (due
9005 				 * to a failed predicate or error) the wrapped
9006 				 * offset will be 0 -- yet the EPID at offset 0
9007 				 * will not be committed.  This situation is
9008 				 * relatively easy to deal with:  if we're in
9009 				 * this case, the buffer is indistinguishable
9010 				 * from one that hasn't wrapped; we need only
9011 				 * finish the job by clearing the wrapped bit,
9012 				 * explicitly setting the offset to be 0, and
9013 				 * zero'ing out the old data in the buffer.
9014 				 */
9015 				if (offs == 0) {
9016 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9017 					buf->dtb_offset = 0;
9018 					woffs = total;
9019 
9020 					while (woffs < buf->dtb_size)
9021 						tomax[woffs++] = 0;
9022 				}
9023 
9024 				woffs = 0;
9025 				break;
9026 			}
9027 
9028 			woffs += size;
9029 		}
9030 
9031 		/*
9032 		 * We have a wrapped offset.  It may be that the wrapped offset
9033 		 * has become zero -- that's okay.
9034 		 */
9035 		buf->dtb_xamot_offset = woffs;
9036 	}
9037 
9038 out:
9039 	/*
9040 	 * Now we can plow the buffer with any necessary padding.
9041 	 */
9042 	while (offs & (align - 1)) {
9043 		/*
9044 		 * Assert that our alignment is off by a number which
9045 		 * is itself sizeof (uint32_t) aligned.
9046 		 */
9047 		ASSERT(!((align - (offs & (align - 1))) &
9048 		    (sizeof (uint32_t) - 1)));
9049 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9050 		offs += sizeof (uint32_t);
9051 	}
9052 
9053 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9054 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9055 			buf->dtb_flags |= DTRACEBUF_FULL;
9056 			return (-1);
9057 		}
9058 	}
9059 
9060 	if (mstate == NULL)
9061 		return (offs);
9062 
9063 	/*
9064 	 * For ring buffers and fill buffers, the scratch space is always
9065 	 * the inactive buffer.
9066 	 */
9067 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9068 	mstate->dtms_scratch_size = buf->dtb_size;
9069 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9070 
9071 	return (offs);
9072 }
9073 
9074 static void
9075 dtrace_buffer_polish(dtrace_buffer_t *buf)
9076 {
9077 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9078 	ASSERT(MUTEX_HELD(&dtrace_lock));
9079 
9080 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9081 		return;
9082 
9083 	/*
9084 	 * We need to polish the ring buffer.  There are three cases:
9085 	 *
9086 	 * - The first (and presumably most common) is that there is no gap
9087 	 *   between the buffer offset and the wrapped offset.  In this case,
9088 	 *   there is nothing in the buffer that isn't valid data; we can
9089 	 *   mark the buffer as polished and return.
9090 	 *
9091 	 * - The second (less common than the first but still more common
9092 	 *   than the third) is that there is a gap between the buffer offset
9093 	 *   and the wrapped offset, and the wrapped offset is larger than the
9094 	 *   buffer offset.  This can happen because of an alignment issue, or
9095 	 *   can happen because of a call to dtrace_buffer_reserve() that
9096 	 *   didn't subsequently consume the buffer space.  In this case,
9097 	 *   we need to zero the data from the buffer offset to the wrapped
9098 	 *   offset.
9099 	 *
9100 	 * - The third (and least common) is that there is a gap between the
9101 	 *   buffer offset and the wrapped offset, but the wrapped offset is
9102 	 *   _less_ than the buffer offset.  This can only happen because a
9103 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
9104 	 *   was not subsequently consumed.  In this case, we need to zero the
9105 	 *   space from the offset to the end of the buffer _and_ from the
9106 	 *   top of the buffer to the wrapped offset.
9107 	 */
9108 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
9109 		bzero(buf->dtb_tomax + buf->dtb_offset,
9110 		    buf->dtb_xamot_offset - buf->dtb_offset);
9111 	}
9112 
9113 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
9114 		bzero(buf->dtb_tomax + buf->dtb_offset,
9115 		    buf->dtb_size - buf->dtb_offset);
9116 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
9117 	}
9118 }
9119 
9120 static void
9121 dtrace_buffer_free(dtrace_buffer_t *bufs)
9122 {
9123 	int i;
9124 
9125 	for (i = 0; i < NCPU; i++) {
9126 		dtrace_buffer_t *buf = &bufs[i];
9127 
9128 		if (buf->dtb_tomax == NULL) {
9129 			ASSERT(buf->dtb_xamot == NULL);
9130 			ASSERT(buf->dtb_size == 0);
9131 			continue;
9132 		}
9133 
9134 		if (buf->dtb_xamot != NULL) {
9135 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9136 			kmem_free(buf->dtb_xamot, buf->dtb_size);
9137 		}
9138 
9139 		kmem_free(buf->dtb_tomax, buf->dtb_size);
9140 		buf->dtb_size = 0;
9141 		buf->dtb_tomax = NULL;
9142 		buf->dtb_xamot = NULL;
9143 	}
9144 }
9145 
9146 /*
9147  * DTrace Enabling Functions
9148  */
9149 static dtrace_enabling_t *
9150 dtrace_enabling_create(dtrace_vstate_t *vstate)
9151 {
9152 	dtrace_enabling_t *enab;
9153 
9154 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
9155 	enab->dten_vstate = vstate;
9156 
9157 	return (enab);
9158 }
9159 
9160 static void
9161 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
9162 {
9163 	dtrace_ecbdesc_t **ndesc;
9164 	size_t osize, nsize;
9165 
9166 	/*
9167 	 * We can't add to enablings after we've enabled them, or after we've
9168 	 * retained them.
9169 	 */
9170 	ASSERT(enab->dten_probegen == 0);
9171 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9172 
9173 	if (enab->dten_ndesc < enab->dten_maxdesc) {
9174 		enab->dten_desc[enab->dten_ndesc++] = ecb;
9175 		return;
9176 	}
9177 
9178 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9179 
9180 	if (enab->dten_maxdesc == 0) {
9181 		enab->dten_maxdesc = 1;
9182 	} else {
9183 		enab->dten_maxdesc <<= 1;
9184 	}
9185 
9186 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
9187 
9188 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9189 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
9190 	bcopy(enab->dten_desc, ndesc, osize);
9191 	kmem_free(enab->dten_desc, osize);
9192 
9193 	enab->dten_desc = ndesc;
9194 	enab->dten_desc[enab->dten_ndesc++] = ecb;
9195 }
9196 
9197 static void
9198 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
9199     dtrace_probedesc_t *pd)
9200 {
9201 	dtrace_ecbdesc_t *new;
9202 	dtrace_predicate_t *pred;
9203 	dtrace_actdesc_t *act;
9204 
9205 	/*
9206 	 * We're going to create a new ECB description that matches the
9207 	 * specified ECB in every way, but has the specified probe description.
9208 	 */
9209 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
9210 
9211 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
9212 		dtrace_predicate_hold(pred);
9213 
9214 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
9215 		dtrace_actdesc_hold(act);
9216 
9217 	new->dted_action = ecb->dted_action;
9218 	new->dted_pred = ecb->dted_pred;
9219 	new->dted_probe = *pd;
9220 	new->dted_uarg = ecb->dted_uarg;
9221 
9222 	dtrace_enabling_add(enab, new);
9223 }
9224 
9225 static void
9226 dtrace_enabling_dump(dtrace_enabling_t *enab)
9227 {
9228 	int i;
9229 
9230 	for (i = 0; i < enab->dten_ndesc; i++) {
9231 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
9232 
9233 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
9234 		    desc->dtpd_provider, desc->dtpd_mod,
9235 		    desc->dtpd_func, desc->dtpd_name);
9236 	}
9237 }
9238 
9239 static void
9240 dtrace_enabling_destroy(dtrace_enabling_t *enab)
9241 {
9242 	int i;
9243 	dtrace_ecbdesc_t *ep;
9244 	dtrace_vstate_t *vstate = enab->dten_vstate;
9245 
9246 	ASSERT(MUTEX_HELD(&dtrace_lock));
9247 
9248 	for (i = 0; i < enab->dten_ndesc; i++) {
9249 		dtrace_actdesc_t *act, *next;
9250 		dtrace_predicate_t *pred;
9251 
9252 		ep = enab->dten_desc[i];
9253 
9254 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
9255 			dtrace_predicate_release(pred, vstate);
9256 
9257 		for (act = ep->dted_action; act != NULL; act = next) {
9258 			next = act->dtad_next;
9259 			dtrace_actdesc_release(act, vstate);
9260 		}
9261 
9262 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
9263 	}
9264 
9265 	kmem_free(enab->dten_desc,
9266 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
9267 
9268 	/*
9269 	 * If this was a retained enabling, decrement the dts_nretained count
9270 	 * and take it off of the dtrace_retained list.
9271 	 */
9272 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
9273 	    dtrace_retained == enab) {
9274 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9275 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
9276 		enab->dten_vstate->dtvs_state->dts_nretained--;
9277 	}
9278 
9279 	if (enab->dten_prev == NULL) {
9280 		if (dtrace_retained == enab) {
9281 			dtrace_retained = enab->dten_next;
9282 
9283 			if (dtrace_retained != NULL)
9284 				dtrace_retained->dten_prev = NULL;
9285 		}
9286 	} else {
9287 		ASSERT(enab != dtrace_retained);
9288 		ASSERT(dtrace_retained != NULL);
9289 		enab->dten_prev->dten_next = enab->dten_next;
9290 	}
9291 
9292 	if (enab->dten_next != NULL) {
9293 		ASSERT(dtrace_retained != NULL);
9294 		enab->dten_next->dten_prev = enab->dten_prev;
9295 	}
9296 
9297 	kmem_free(enab, sizeof (dtrace_enabling_t));
9298 }
9299 
9300 static int
9301 dtrace_enabling_retain(dtrace_enabling_t *enab)
9302 {
9303 	dtrace_state_t *state;
9304 
9305 	ASSERT(MUTEX_HELD(&dtrace_lock));
9306 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9307 	ASSERT(enab->dten_vstate != NULL);
9308 
9309 	state = enab->dten_vstate->dtvs_state;
9310 	ASSERT(state != NULL);
9311 
9312 	/*
9313 	 * We only allow each state to retain dtrace_retain_max enablings.
9314 	 */
9315 	if (state->dts_nretained >= dtrace_retain_max)
9316 		return (ENOSPC);
9317 
9318 	state->dts_nretained++;
9319 
9320 	if (dtrace_retained == NULL) {
9321 		dtrace_retained = enab;
9322 		return (0);
9323 	}
9324 
9325 	enab->dten_next = dtrace_retained;
9326 	dtrace_retained->dten_prev = enab;
9327 	dtrace_retained = enab;
9328 
9329 	return (0);
9330 }
9331 
9332 static int
9333 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
9334     dtrace_probedesc_t *create)
9335 {
9336 	dtrace_enabling_t *new, *enab;
9337 	int found = 0, err = ENOENT;
9338 
9339 	ASSERT(MUTEX_HELD(&dtrace_lock));
9340 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
9341 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
9342 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
9343 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
9344 
9345 	new = dtrace_enabling_create(&state->dts_vstate);
9346 
9347 	/*
9348 	 * Iterate over all retained enablings, looking for enablings that
9349 	 * match the specified state.
9350 	 */
9351 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9352 		int i;
9353 
9354 		/*
9355 		 * dtvs_state can only be NULL for helper enablings -- and
9356 		 * helper enablings can't be retained.
9357 		 */
9358 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9359 
9360 		if (enab->dten_vstate->dtvs_state != state)
9361 			continue;
9362 
9363 		/*
9364 		 * Now iterate over each probe description; we're looking for
9365 		 * an exact match to the specified probe description.
9366 		 */
9367 		for (i = 0; i < enab->dten_ndesc; i++) {
9368 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9369 			dtrace_probedesc_t *pd = &ep->dted_probe;
9370 
9371 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
9372 				continue;
9373 
9374 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
9375 				continue;
9376 
9377 			if (strcmp(pd->dtpd_func, match->dtpd_func))
9378 				continue;
9379 
9380 			if (strcmp(pd->dtpd_name, match->dtpd_name))
9381 				continue;
9382 
9383 			/*
9384 			 * We have a winning probe!  Add it to our growing
9385 			 * enabling.
9386 			 */
9387 			found = 1;
9388 			dtrace_enabling_addlike(new, ep, create);
9389 		}
9390 	}
9391 
9392 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
9393 		dtrace_enabling_destroy(new);
9394 		return (err);
9395 	}
9396 
9397 	return (0);
9398 }
9399 
9400 static void
9401 dtrace_enabling_retract(dtrace_state_t *state)
9402 {
9403 	dtrace_enabling_t *enab, *next;
9404 
9405 	ASSERT(MUTEX_HELD(&dtrace_lock));
9406 
9407 	/*
9408 	 * Iterate over all retained enablings, destroy the enablings retained
9409 	 * for the specified state.
9410 	 */
9411 	for (enab = dtrace_retained; enab != NULL; enab = next) {
9412 		next = enab->dten_next;
9413 
9414 		/*
9415 		 * dtvs_state can only be NULL for helper enablings -- and
9416 		 * helper enablings can't be retained.
9417 		 */
9418 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9419 
9420 		if (enab->dten_vstate->dtvs_state == state) {
9421 			ASSERT(state->dts_nretained > 0);
9422 			dtrace_enabling_destroy(enab);
9423 		}
9424 	}
9425 
9426 	ASSERT(state->dts_nretained == 0);
9427 }
9428 
9429 static int
9430 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
9431 {
9432 	int i = 0;
9433 	int matched = 0;
9434 
9435 	ASSERT(MUTEX_HELD(&cpu_lock));
9436 	ASSERT(MUTEX_HELD(&dtrace_lock));
9437 
9438 	for (i = 0; i < enab->dten_ndesc; i++) {
9439 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9440 
9441 		enab->dten_current = ep;
9442 		enab->dten_error = 0;
9443 
9444 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
9445 
9446 		if (enab->dten_error != 0) {
9447 			/*
9448 			 * If we get an error half-way through enabling the
9449 			 * probes, we kick out -- perhaps with some number of
9450 			 * them enabled.  Leaving enabled probes enabled may
9451 			 * be slightly confusing for user-level, but we expect
9452 			 * that no one will attempt to actually drive on in
9453 			 * the face of such errors.  If this is an anonymous
9454 			 * enabling (indicated with a NULL nmatched pointer),
9455 			 * we cmn_err() a message.  We aren't expecting to
9456 			 * get such an error -- such as it can exist at all,
9457 			 * it would be a result of corrupted DOF in the driver
9458 			 * properties.
9459 			 */
9460 			if (nmatched == NULL) {
9461 				cmn_err(CE_WARN, "dtrace_enabling_match() "
9462 				    "error on %p: %d", (void *)ep,
9463 				    enab->dten_error);
9464 			}
9465 
9466 			return (enab->dten_error);
9467 		}
9468 	}
9469 
9470 	enab->dten_probegen = dtrace_probegen;
9471 	if (nmatched != NULL)
9472 		*nmatched = matched;
9473 
9474 	return (0);
9475 }
9476 
9477 static void
9478 dtrace_enabling_matchall(void)
9479 {
9480 	dtrace_enabling_t *enab;
9481 
9482 	mutex_enter(&cpu_lock);
9483 	mutex_enter(&dtrace_lock);
9484 
9485 	/*
9486 	 * Because we can be called after dtrace_detach() has been called, we
9487 	 * cannot assert that there are retained enablings.  We can safely
9488 	 * load from dtrace_retained, however:  the taskq_destroy() at the
9489 	 * end of dtrace_detach() will block pending our completion.
9490 	 */
9491 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
9492 		(void) dtrace_enabling_match(enab, NULL);
9493 
9494 	mutex_exit(&dtrace_lock);
9495 	mutex_exit(&cpu_lock);
9496 }
9497 
9498 static int
9499 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
9500 {
9501 	dtrace_enabling_t *enab;
9502 	int matched, total = 0, err;
9503 
9504 	ASSERT(MUTEX_HELD(&cpu_lock));
9505 	ASSERT(MUTEX_HELD(&dtrace_lock));
9506 
9507 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9508 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9509 
9510 		if (enab->dten_vstate->dtvs_state != state)
9511 			continue;
9512 
9513 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
9514 			return (err);
9515 
9516 		total += matched;
9517 	}
9518 
9519 	if (nmatched != NULL)
9520 		*nmatched = total;
9521 
9522 	return (0);
9523 }
9524 
9525 /*
9526  * If an enabling is to be enabled without having matched probes (that is, if
9527  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
9528  * enabling must be _primed_ by creating an ECB for every ECB description.
9529  * This must be done to assure that we know the number of speculations, the
9530  * number of aggregations, the minimum buffer size needed, etc. before we
9531  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
9532  * enabling any probes, we create ECBs for every ECB decription, but with a
9533  * NULL probe -- which is exactly what this function does.
9534  */
9535 static void
9536 dtrace_enabling_prime(dtrace_state_t *state)
9537 {
9538 	dtrace_enabling_t *enab;
9539 	int i;
9540 
9541 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9542 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9543 
9544 		if (enab->dten_vstate->dtvs_state != state)
9545 			continue;
9546 
9547 		/*
9548 		 * We don't want to prime an enabling more than once, lest
9549 		 * we allow a malicious user to induce resource exhaustion.
9550 		 * (The ECBs that result from priming an enabling aren't
9551 		 * leaked -- but they also aren't deallocated until the
9552 		 * consumer state is destroyed.)
9553 		 */
9554 		if (enab->dten_primed)
9555 			continue;
9556 
9557 		for (i = 0; i < enab->dten_ndesc; i++) {
9558 			enab->dten_current = enab->dten_desc[i];
9559 			(void) dtrace_probe_enable(NULL, enab);
9560 		}
9561 
9562 		enab->dten_primed = 1;
9563 	}
9564 }
9565 
9566 /*
9567  * Called to indicate that probes should be provided due to retained
9568  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
9569  * must take an initial lap through the enabling calling the dtps_provide()
9570  * entry point explicitly to allow for autocreated probes.
9571  */
9572 static void
9573 dtrace_enabling_provide(dtrace_provider_t *prv)
9574 {
9575 	int i, all = 0;
9576 	dtrace_probedesc_t desc;
9577 
9578 	ASSERT(MUTEX_HELD(&dtrace_lock));
9579 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9580 
9581 	if (prv == NULL) {
9582 		all = 1;
9583 		prv = dtrace_provider;
9584 	}
9585 
9586 	do {
9587 		dtrace_enabling_t *enab = dtrace_retained;
9588 		void *parg = prv->dtpv_arg;
9589 
9590 		for (; enab != NULL; enab = enab->dten_next) {
9591 			for (i = 0; i < enab->dten_ndesc; i++) {
9592 				desc = enab->dten_desc[i]->dted_probe;
9593 				mutex_exit(&dtrace_lock);
9594 				prv->dtpv_pops.dtps_provide(parg, &desc);
9595 				mutex_enter(&dtrace_lock);
9596 			}
9597 		}
9598 	} while (all && (prv = prv->dtpv_next) != NULL);
9599 
9600 	mutex_exit(&dtrace_lock);
9601 	dtrace_probe_provide(NULL, all ? NULL : prv);
9602 	mutex_enter(&dtrace_lock);
9603 }
9604 
9605 /*
9606  * DTrace DOF Functions
9607  */
9608 /*ARGSUSED*/
9609 static void
9610 dtrace_dof_error(dof_hdr_t *dof, const char *str)
9611 {
9612 	if (dtrace_err_verbose)
9613 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
9614 
9615 #ifdef DTRACE_ERRDEBUG
9616 	dtrace_errdebug(str);
9617 #endif
9618 }
9619 
9620 /*
9621  * Create DOF out of a currently enabled state.  Right now, we only create
9622  * DOF containing the run-time options -- but this could be expanded to create
9623  * complete DOF representing the enabled state.
9624  */
9625 static dof_hdr_t *
9626 dtrace_dof_create(dtrace_state_t *state)
9627 {
9628 	dof_hdr_t *dof;
9629 	dof_sec_t *sec;
9630 	dof_optdesc_t *opt;
9631 	int i, len = sizeof (dof_hdr_t) +
9632 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
9633 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
9634 
9635 	ASSERT(MUTEX_HELD(&dtrace_lock));
9636 
9637 	dof = kmem_zalloc(len, KM_SLEEP);
9638 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
9639 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
9640 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
9641 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
9642 
9643 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
9644 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
9645 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION_1;
9646 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
9647 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
9648 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
9649 
9650 	dof->dofh_flags = 0;
9651 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
9652 	dof->dofh_secsize = sizeof (dof_sec_t);
9653 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
9654 	dof->dofh_secoff = sizeof (dof_hdr_t);
9655 	dof->dofh_loadsz = len;
9656 	dof->dofh_filesz = len;
9657 	dof->dofh_pad = 0;
9658 
9659 	/*
9660 	 * Fill in the option section header...
9661 	 */
9662 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
9663 	sec->dofs_type = DOF_SECT_OPTDESC;
9664 	sec->dofs_align = sizeof (uint64_t);
9665 	sec->dofs_flags = DOF_SECF_LOAD;
9666 	sec->dofs_entsize = sizeof (dof_optdesc_t);
9667 
9668 	opt = (dof_optdesc_t *)((uintptr_t)sec +
9669 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
9670 
9671 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
9672 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
9673 
9674 	for (i = 0; i < DTRACEOPT_MAX; i++) {
9675 		opt[i].dofo_option = i;
9676 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
9677 		opt[i].dofo_value = state->dts_options[i];
9678 	}
9679 
9680 	return (dof);
9681 }
9682 
9683 static dof_hdr_t *
9684 dtrace_dof_copyin(uintptr_t uarg, int *errp)
9685 {
9686 	dof_hdr_t hdr, *dof;
9687 
9688 	ASSERT(!MUTEX_HELD(&dtrace_lock));
9689 
9690 	/*
9691 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
9692 	 */
9693 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
9694 		dtrace_dof_error(NULL, "failed to copyin DOF header");
9695 		*errp = EFAULT;
9696 		return (NULL);
9697 	}
9698 
9699 	/*
9700 	 * Now we'll allocate the entire DOF and copy it in -- provided
9701 	 * that the length isn't outrageous.
9702 	 */
9703 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
9704 		dtrace_dof_error(&hdr, "load size exceeds maximum");
9705 		*errp = E2BIG;
9706 		return (NULL);
9707 	}
9708 
9709 	if (hdr.dofh_loadsz < sizeof (hdr)) {
9710 		dtrace_dof_error(&hdr, "invalid load size");
9711 		*errp = EINVAL;
9712 		return (NULL);
9713 	}
9714 
9715 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
9716 
9717 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
9718 		kmem_free(dof, hdr.dofh_loadsz);
9719 		*errp = EFAULT;
9720 		return (NULL);
9721 	}
9722 
9723 	return (dof);
9724 }
9725 
9726 static dof_hdr_t *
9727 dtrace_dof_property(const char *name)
9728 {
9729 	uchar_t *buf;
9730 	uint64_t loadsz;
9731 	unsigned int len, i;
9732 	dof_hdr_t *dof;
9733 
9734 	/*
9735 	 * Unfortunately, array of values in .conf files are always (and
9736 	 * only) interpreted to be integer arrays.  We must read our DOF
9737 	 * as an integer array, and then squeeze it into a byte array.
9738 	 */
9739 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
9740 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
9741 		return (NULL);
9742 
9743 	for (i = 0; i < len; i++)
9744 		buf[i] = (uchar_t)(((int *)buf)[i]);
9745 
9746 	if (len < sizeof (dof_hdr_t)) {
9747 		ddi_prop_free(buf);
9748 		dtrace_dof_error(NULL, "truncated header");
9749 		return (NULL);
9750 	}
9751 
9752 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
9753 		ddi_prop_free(buf);
9754 		dtrace_dof_error(NULL, "truncated DOF");
9755 		return (NULL);
9756 	}
9757 
9758 	if (loadsz >= dtrace_dof_maxsize) {
9759 		ddi_prop_free(buf);
9760 		dtrace_dof_error(NULL, "oversized DOF");
9761 		return (NULL);
9762 	}
9763 
9764 	dof = kmem_alloc(loadsz, KM_SLEEP);
9765 	bcopy(buf, dof, loadsz);
9766 	ddi_prop_free(buf);
9767 
9768 	return (dof);
9769 }
9770 
9771 static void
9772 dtrace_dof_destroy(dof_hdr_t *dof)
9773 {
9774 	kmem_free(dof, dof->dofh_loadsz);
9775 }
9776 
9777 /*
9778  * Return the dof_sec_t pointer corresponding to a given section index.  If the
9779  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
9780  * a type other than DOF_SECT_NONE is specified, the header is checked against
9781  * this type and NULL is returned if the types do not match.
9782  */
9783 static dof_sec_t *
9784 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
9785 {
9786 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
9787 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
9788 
9789 	if (i >= dof->dofh_secnum) {
9790 		dtrace_dof_error(dof, "referenced section index is invalid");
9791 		return (NULL);
9792 	}
9793 
9794 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
9795 		dtrace_dof_error(dof, "referenced section is not loadable");
9796 		return (NULL);
9797 	}
9798 
9799 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
9800 		dtrace_dof_error(dof, "referenced section is the wrong type");
9801 		return (NULL);
9802 	}
9803 
9804 	return (sec);
9805 }
9806 
9807 static dtrace_probedesc_t *
9808 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
9809 {
9810 	dof_probedesc_t *probe;
9811 	dof_sec_t *strtab;
9812 	uintptr_t daddr = (uintptr_t)dof;
9813 	uintptr_t str;
9814 	size_t size;
9815 
9816 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
9817 		dtrace_dof_error(dof, "invalid probe section");
9818 		return (NULL);
9819 	}
9820 
9821 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
9822 		dtrace_dof_error(dof, "bad alignment in probe description");
9823 		return (NULL);
9824 	}
9825 
9826 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
9827 		dtrace_dof_error(dof, "truncated probe description");
9828 		return (NULL);
9829 	}
9830 
9831 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
9832 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
9833 
9834 	if (strtab == NULL)
9835 		return (NULL);
9836 
9837 	str = daddr + strtab->dofs_offset;
9838 	size = strtab->dofs_size;
9839 
9840 	if (probe->dofp_provider >= strtab->dofs_size) {
9841 		dtrace_dof_error(dof, "corrupt probe provider");
9842 		return (NULL);
9843 	}
9844 
9845 	(void) strncpy(desc->dtpd_provider,
9846 	    (char *)(str + probe->dofp_provider),
9847 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
9848 
9849 	if (probe->dofp_mod >= strtab->dofs_size) {
9850 		dtrace_dof_error(dof, "corrupt probe module");
9851 		return (NULL);
9852 	}
9853 
9854 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
9855 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
9856 
9857 	if (probe->dofp_func >= strtab->dofs_size) {
9858 		dtrace_dof_error(dof, "corrupt probe function");
9859 		return (NULL);
9860 	}
9861 
9862 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
9863 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
9864 
9865 	if (probe->dofp_name >= strtab->dofs_size) {
9866 		dtrace_dof_error(dof, "corrupt probe name");
9867 		return (NULL);
9868 	}
9869 
9870 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
9871 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
9872 
9873 	return (desc);
9874 }
9875 
9876 static dtrace_difo_t *
9877 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
9878     cred_t *cr)
9879 {
9880 	dtrace_difo_t *dp;
9881 	size_t ttl = 0;
9882 	dof_difohdr_t *dofd;
9883 	uintptr_t daddr = (uintptr_t)dof;
9884 	size_t max = dtrace_difo_maxsize;
9885 	int i, l, n;
9886 
9887 	static const struct {
9888 		int section;
9889 		int bufoffs;
9890 		int lenoffs;
9891 		int entsize;
9892 		int align;
9893 		const char *msg;
9894 	} difo[] = {
9895 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
9896 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
9897 		sizeof (dif_instr_t), "multiple DIF sections" },
9898 
9899 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
9900 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
9901 		sizeof (uint64_t), "multiple integer tables" },
9902 
9903 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
9904 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
9905 		sizeof (char), "multiple string tables" },
9906 
9907 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
9908 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
9909 		sizeof (uint_t), "multiple variable tables" },
9910 
9911 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
9912 	};
9913 
9914 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
9915 		dtrace_dof_error(dof, "invalid DIFO header section");
9916 		return (NULL);
9917 	}
9918 
9919 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
9920 		dtrace_dof_error(dof, "bad alignment in DIFO header");
9921 		return (NULL);
9922 	}
9923 
9924 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
9925 	    sec->dofs_size % sizeof (dof_secidx_t)) {
9926 		dtrace_dof_error(dof, "bad size in DIFO header");
9927 		return (NULL);
9928 	}
9929 
9930 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
9931 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
9932 
9933 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9934 	dp->dtdo_rtype = dofd->dofd_rtype;
9935 
9936 	for (l = 0; l < n; l++) {
9937 		dof_sec_t *subsec;
9938 		void **bufp;
9939 		uint32_t *lenp;
9940 
9941 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
9942 		    dofd->dofd_links[l])) == NULL)
9943 			goto err; /* invalid section link */
9944 
9945 		if (ttl + subsec->dofs_size > max) {
9946 			dtrace_dof_error(dof, "exceeds maximum size");
9947 			goto err;
9948 		}
9949 
9950 		ttl += subsec->dofs_size;
9951 
9952 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
9953 			if (subsec->dofs_type != difo[i].section)
9954 				continue;
9955 
9956 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
9957 				dtrace_dof_error(dof, "section not loaded");
9958 				goto err;
9959 			}
9960 
9961 			if (subsec->dofs_align != difo[i].align) {
9962 				dtrace_dof_error(dof, "bad alignment");
9963 				goto err;
9964 			}
9965 
9966 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
9967 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
9968 
9969 			if (*bufp != NULL) {
9970 				dtrace_dof_error(dof, difo[i].msg);
9971 				goto err;
9972 			}
9973 
9974 			if (difo[i].entsize != subsec->dofs_entsize) {
9975 				dtrace_dof_error(dof, "entry size mismatch");
9976 				goto err;
9977 			}
9978 
9979 			if (subsec->dofs_entsize != 0 &&
9980 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
9981 				dtrace_dof_error(dof, "corrupt entry size");
9982 				goto err;
9983 			}
9984 
9985 			*lenp = subsec->dofs_size;
9986 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
9987 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
9988 			    *bufp, subsec->dofs_size);
9989 
9990 			if (subsec->dofs_entsize != 0)
9991 				*lenp /= subsec->dofs_entsize;
9992 
9993 			break;
9994 		}
9995 
9996 		/*
9997 		 * If we encounter a loadable DIFO sub-section that is not
9998 		 * known to us, assume this is a broken program and fail.
9999 		 */
10000 		if (difo[i].section == DOF_SECT_NONE &&
10001 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
10002 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
10003 			goto err;
10004 		}
10005 	}
10006 
10007 	if (dp->dtdo_buf == NULL) {
10008 		/*
10009 		 * We can't have a DIF object without DIF text.
10010 		 */
10011 		dtrace_dof_error(dof, "missing DIF text");
10012 		goto err;
10013 	}
10014 
10015 	/*
10016 	 * Before we validate the DIF object, run through the variable table
10017 	 * looking for the strings -- if any of their size are under, we'll set
10018 	 * their size to be the system-wide default string size.  Note that
10019 	 * this should _not_ happen if the "strsize" option has been set --
10020 	 * in this case, the compiler should have set the size to reflect the
10021 	 * setting of the option.
10022 	 */
10023 	for (i = 0; i < dp->dtdo_varlen; i++) {
10024 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10025 		dtrace_diftype_t *t = &v->dtdv_type;
10026 
10027 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10028 			continue;
10029 
10030 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10031 			t->dtdt_size = dtrace_strsize_default;
10032 	}
10033 
10034 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10035 		goto err;
10036 
10037 	dtrace_difo_init(dp, vstate);
10038 	return (dp);
10039 
10040 err:
10041 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10042 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10043 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10044 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10045 
10046 	kmem_free(dp, sizeof (dtrace_difo_t));
10047 	return (NULL);
10048 }
10049 
10050 static dtrace_predicate_t *
10051 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10052     cred_t *cr)
10053 {
10054 	dtrace_difo_t *dp;
10055 
10056 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10057 		return (NULL);
10058 
10059 	return (dtrace_predicate_create(dp));
10060 }
10061 
10062 static dtrace_actdesc_t *
10063 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10064     cred_t *cr)
10065 {
10066 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10067 	dof_actdesc_t *desc;
10068 	dof_sec_t *difosec;
10069 	size_t offs;
10070 	uintptr_t daddr = (uintptr_t)dof;
10071 	uint64_t arg;
10072 	dtrace_actkind_t kind;
10073 
10074 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10075 		dtrace_dof_error(dof, "invalid action section");
10076 		return (NULL);
10077 	}
10078 
10079 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10080 		dtrace_dof_error(dof, "truncated action description");
10081 		return (NULL);
10082 	}
10083 
10084 	if (sec->dofs_align != sizeof (uint64_t)) {
10085 		dtrace_dof_error(dof, "bad alignment in action description");
10086 		return (NULL);
10087 	}
10088 
10089 	if (sec->dofs_size < sec->dofs_entsize) {
10090 		dtrace_dof_error(dof, "section entry size exceeds total size");
10091 		return (NULL);
10092 	}
10093 
10094 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
10095 		dtrace_dof_error(dof, "bad entry size in action description");
10096 		return (NULL);
10097 	}
10098 
10099 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
10100 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
10101 		return (NULL);
10102 	}
10103 
10104 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
10105 		desc = (dof_actdesc_t *)(daddr +
10106 		    (uintptr_t)sec->dofs_offset + offs);
10107 		kind = (dtrace_actkind_t)desc->dofa_kind;
10108 
10109 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
10110 		    (kind != DTRACEACT_PRINTA ||
10111 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
10112 			dof_sec_t *strtab;
10113 			char *str, *fmt;
10114 			uint64_t i;
10115 
10116 			/*
10117 			 * printf()-like actions must have a format string.
10118 			 */
10119 			if ((strtab = dtrace_dof_sect(dof,
10120 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
10121 				goto err;
10122 
10123 			str = (char *)((uintptr_t)dof +
10124 			    (uintptr_t)strtab->dofs_offset);
10125 
10126 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
10127 				if (str[i] == '\0')
10128 					break;
10129 			}
10130 
10131 			if (i >= strtab->dofs_size) {
10132 				dtrace_dof_error(dof, "bogus format string");
10133 				goto err;
10134 			}
10135 
10136 			if (i == desc->dofa_arg) {
10137 				dtrace_dof_error(dof, "empty format string");
10138 				goto err;
10139 			}
10140 
10141 			i -= desc->dofa_arg;
10142 			fmt = kmem_alloc(i + 1, KM_SLEEP);
10143 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
10144 			arg = (uint64_t)(uintptr_t)fmt;
10145 		} else {
10146 			if (kind == DTRACEACT_PRINTA) {
10147 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
10148 				arg = 0;
10149 			} else {
10150 				arg = desc->dofa_arg;
10151 			}
10152 		}
10153 
10154 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
10155 		    desc->dofa_uarg, arg);
10156 
10157 		if (last != NULL) {
10158 			last->dtad_next = act;
10159 		} else {
10160 			first = act;
10161 		}
10162 
10163 		last = act;
10164 
10165 		if (desc->dofa_difo == DOF_SECIDX_NONE)
10166 			continue;
10167 
10168 		if ((difosec = dtrace_dof_sect(dof,
10169 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
10170 			goto err;
10171 
10172 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
10173 
10174 		if (act->dtad_difo == NULL)
10175 			goto err;
10176 	}
10177 
10178 	ASSERT(first != NULL);
10179 	return (first);
10180 
10181 err:
10182 	for (act = first; act != NULL; act = next) {
10183 		next = act->dtad_next;
10184 		dtrace_actdesc_release(act, vstate);
10185 	}
10186 
10187 	return (NULL);
10188 }
10189 
10190 static dtrace_ecbdesc_t *
10191 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10192     cred_t *cr)
10193 {
10194 	dtrace_ecbdesc_t *ep;
10195 	dof_ecbdesc_t *ecb;
10196 	dtrace_probedesc_t *desc;
10197 	dtrace_predicate_t *pred = NULL;
10198 
10199 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
10200 		dtrace_dof_error(dof, "truncated ECB description");
10201 		return (NULL);
10202 	}
10203 
10204 	if (sec->dofs_align != sizeof (uint64_t)) {
10205 		dtrace_dof_error(dof, "bad alignment in ECB description");
10206 		return (NULL);
10207 	}
10208 
10209 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
10210 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
10211 
10212 	if (sec == NULL)
10213 		return (NULL);
10214 
10215 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10216 	ep->dted_uarg = ecb->dofe_uarg;
10217 	desc = &ep->dted_probe;
10218 
10219 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
10220 		goto err;
10221 
10222 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
10223 		if ((sec = dtrace_dof_sect(dof,
10224 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
10225 			goto err;
10226 
10227 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
10228 			goto err;
10229 
10230 		ep->dted_pred.dtpdd_predicate = pred;
10231 	}
10232 
10233 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
10234 		if ((sec = dtrace_dof_sect(dof,
10235 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
10236 			goto err;
10237 
10238 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
10239 
10240 		if (ep->dted_action == NULL)
10241 			goto err;
10242 	}
10243 
10244 	return (ep);
10245 
10246 err:
10247 	if (pred != NULL)
10248 		dtrace_predicate_release(pred, vstate);
10249 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10250 	return (NULL);
10251 }
10252 
10253 /*
10254  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
10255  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
10256  * site of any user SETX relocations to account for load object base address.
10257  * In the future, if we need other relocations, this function can be extended.
10258  */
10259 static int
10260 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
10261 {
10262 	uintptr_t daddr = (uintptr_t)dof;
10263 	dof_relohdr_t *dofr =
10264 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10265 	dof_sec_t *ss, *rs, *ts;
10266 	dof_relodesc_t *r;
10267 	uint_t i, n;
10268 
10269 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
10270 	    sec->dofs_align != sizeof (dof_secidx_t)) {
10271 		dtrace_dof_error(dof, "invalid relocation header");
10272 		return (-1);
10273 	}
10274 
10275 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
10276 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
10277 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
10278 
10279 	if (ss == NULL || rs == NULL || ts == NULL)
10280 		return (-1); /* dtrace_dof_error() has been called already */
10281 
10282 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
10283 	    rs->dofs_align != sizeof (uint64_t)) {
10284 		dtrace_dof_error(dof, "invalid relocation section");
10285 		return (-1);
10286 	}
10287 
10288 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
10289 	n = rs->dofs_size / rs->dofs_entsize;
10290 
10291 	for (i = 0; i < n; i++) {
10292 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
10293 
10294 		switch (r->dofr_type) {
10295 		case DOF_RELO_NONE:
10296 			break;
10297 		case DOF_RELO_SETX:
10298 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
10299 			    sizeof (uint64_t) > ts->dofs_size) {
10300 				dtrace_dof_error(dof, "bad relocation offset");
10301 				return (-1);
10302 			}
10303 
10304 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
10305 				dtrace_dof_error(dof, "misaligned setx relo");
10306 				return (-1);
10307 			}
10308 
10309 			*(uint64_t *)taddr += ubase;
10310 			break;
10311 		default:
10312 			dtrace_dof_error(dof, "invalid relocation type");
10313 			return (-1);
10314 		}
10315 
10316 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
10317 	}
10318 
10319 	return (0);
10320 }
10321 
10322 /*
10323  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
10324  * header:  it should be at the front of a memory region that is at least
10325  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
10326  * size.  It need not be validated in any other way.
10327  */
10328 static int
10329 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
10330     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
10331 {
10332 	uint64_t len = dof->dofh_loadsz, seclen;
10333 	uintptr_t daddr = (uintptr_t)dof;
10334 	dtrace_ecbdesc_t *ep;
10335 	dtrace_enabling_t *enab;
10336 	uint_t i;
10337 
10338 	ASSERT(MUTEX_HELD(&dtrace_lock));
10339 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
10340 
10341 	/*
10342 	 * Check the DOF header identification bytes.  In addition to checking
10343 	 * valid settings, we also verify that unused bits/bytes are zeroed so
10344 	 * we can use them later without fear of regressing existing binaries.
10345 	 */
10346 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
10347 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
10348 		dtrace_dof_error(dof, "DOF magic string mismatch");
10349 		return (-1);
10350 	}
10351 
10352 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
10353 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
10354 		dtrace_dof_error(dof, "DOF has invalid data model");
10355 		return (-1);
10356 	}
10357 
10358 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
10359 		dtrace_dof_error(dof, "DOF encoding mismatch");
10360 		return (-1);
10361 	}
10362 
10363 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
10364 		dtrace_dof_error(dof, "DOF version mismatch");
10365 		return (-1);
10366 	}
10367 
10368 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
10369 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
10370 		return (-1);
10371 	}
10372 
10373 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
10374 		dtrace_dof_error(dof, "DOF uses too many integer registers");
10375 		return (-1);
10376 	}
10377 
10378 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
10379 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
10380 		return (-1);
10381 	}
10382 
10383 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
10384 		if (dof->dofh_ident[i] != 0) {
10385 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
10386 			return (-1);
10387 		}
10388 	}
10389 
10390 	if (dof->dofh_flags & ~DOF_FL_VALID) {
10391 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
10392 		return (-1);
10393 	}
10394 
10395 	if (dof->dofh_secsize == 0) {
10396 		dtrace_dof_error(dof, "zero section header size");
10397 		return (-1);
10398 	}
10399 
10400 	/*
10401 	 * Check that the section headers don't exceed the amount of DOF
10402 	 * data.  Note that we cast the section size and number of sections
10403 	 * to uint64_t's to prevent possible overflow in the multiplication.
10404 	 */
10405 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
10406 
10407 	if (dof->dofh_secoff > len || seclen > len ||
10408 	    dof->dofh_secoff + seclen > len) {
10409 		dtrace_dof_error(dof, "truncated section headers");
10410 		return (-1);
10411 	}
10412 
10413 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
10414 		dtrace_dof_error(dof, "misaligned section headers");
10415 		return (-1);
10416 	}
10417 
10418 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
10419 		dtrace_dof_error(dof, "misaligned section size");
10420 		return (-1);
10421 	}
10422 
10423 	/*
10424 	 * Take an initial pass through the section headers to be sure that
10425 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
10426 	 * set, do not permit sections relating to providers, probes, or args.
10427 	 */
10428 	for (i = 0; i < dof->dofh_secnum; i++) {
10429 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10430 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10431 
10432 		if (noprobes) {
10433 			switch (sec->dofs_type) {
10434 			case DOF_SECT_PROVIDER:
10435 			case DOF_SECT_PROBES:
10436 			case DOF_SECT_PRARGS:
10437 			case DOF_SECT_PROFFS:
10438 				dtrace_dof_error(dof, "illegal sections "
10439 				    "for enabling");
10440 				return (-1);
10441 			}
10442 		}
10443 
10444 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10445 			continue; /* just ignore non-loadable sections */
10446 
10447 		if (sec->dofs_align & (sec->dofs_align - 1)) {
10448 			dtrace_dof_error(dof, "bad section alignment");
10449 			return (-1);
10450 		}
10451 
10452 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
10453 			dtrace_dof_error(dof, "misaligned section");
10454 			return (-1);
10455 		}
10456 
10457 		if (sec->dofs_offset > len || sec->dofs_size > len ||
10458 		    sec->dofs_offset + sec->dofs_size > len) {
10459 			dtrace_dof_error(dof, "corrupt section header");
10460 			return (-1);
10461 		}
10462 
10463 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
10464 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
10465 			dtrace_dof_error(dof, "non-terminating string table");
10466 			return (-1);
10467 		}
10468 	}
10469 
10470 	/*
10471 	 * Take a second pass through the sections and locate and perform any
10472 	 * relocations that are present.  We do this after the first pass to
10473 	 * be sure that all sections have had their headers validated.
10474 	 */
10475 	for (i = 0; i < dof->dofh_secnum; i++) {
10476 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10477 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10478 
10479 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10480 			continue; /* skip sections that are not loadable */
10481 
10482 		switch (sec->dofs_type) {
10483 		case DOF_SECT_URELHDR:
10484 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
10485 				return (-1);
10486 			break;
10487 		}
10488 	}
10489 
10490 	if ((enab = *enabp) == NULL)
10491 		enab = *enabp = dtrace_enabling_create(vstate);
10492 
10493 	for (i = 0; i < dof->dofh_secnum; i++) {
10494 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10495 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10496 
10497 		if (sec->dofs_type != DOF_SECT_ECBDESC)
10498 			continue;
10499 
10500 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
10501 			dtrace_enabling_destroy(enab);
10502 			*enabp = NULL;
10503 			return (-1);
10504 		}
10505 
10506 		dtrace_enabling_add(enab, ep);
10507 	}
10508 
10509 	return (0);
10510 }
10511 
10512 /*
10513  * Process DOF for any options.  This routine assumes that the DOF has been
10514  * at least processed by dtrace_dof_slurp().
10515  */
10516 static int
10517 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
10518 {
10519 	int i, rval;
10520 	uint32_t entsize;
10521 	size_t offs;
10522 	dof_optdesc_t *desc;
10523 
10524 	for (i = 0; i < dof->dofh_secnum; i++) {
10525 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
10526 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10527 
10528 		if (sec->dofs_type != DOF_SECT_OPTDESC)
10529 			continue;
10530 
10531 		if (sec->dofs_align != sizeof (uint64_t)) {
10532 			dtrace_dof_error(dof, "bad alignment in "
10533 			    "option description");
10534 			return (EINVAL);
10535 		}
10536 
10537 		if ((entsize = sec->dofs_entsize) == 0) {
10538 			dtrace_dof_error(dof, "zeroed option entry size");
10539 			return (EINVAL);
10540 		}
10541 
10542 		if (entsize < sizeof (dof_optdesc_t)) {
10543 			dtrace_dof_error(dof, "bad option entry size");
10544 			return (EINVAL);
10545 		}
10546 
10547 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
10548 			desc = (dof_optdesc_t *)((uintptr_t)dof +
10549 			    (uintptr_t)sec->dofs_offset + offs);
10550 
10551 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
10552 				dtrace_dof_error(dof, "non-zero option string");
10553 				return (EINVAL);
10554 			}
10555 
10556 			if (desc->dofo_value == DTRACEOPT_UNSET) {
10557 				dtrace_dof_error(dof, "unset option");
10558 				return (EINVAL);
10559 			}
10560 
10561 			if ((rval = dtrace_state_option(state,
10562 			    desc->dofo_option, desc->dofo_value)) != 0) {
10563 				dtrace_dof_error(dof, "rejected option");
10564 				return (rval);
10565 			}
10566 		}
10567 	}
10568 
10569 	return (0);
10570 }
10571 
10572 /*
10573  * DTrace Consumer State Functions
10574  */
10575 int
10576 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
10577 {
10578 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
10579 	void *base;
10580 	uintptr_t limit;
10581 	dtrace_dynvar_t *dvar, *next, *start;
10582 	int i;
10583 
10584 	ASSERT(MUTEX_HELD(&dtrace_lock));
10585 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
10586 
10587 	bzero(dstate, sizeof (dtrace_dstate_t));
10588 
10589 	if ((dstate->dtds_chunksize = chunksize) == 0)
10590 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
10591 
10592 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
10593 		size = min;
10594 
10595 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10596 		return (ENOMEM);
10597 
10598 	dstate->dtds_size = size;
10599 	dstate->dtds_base = base;
10600 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
10601 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
10602 
10603 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
10604 
10605 	if (hashsize != 1 && (hashsize & 1))
10606 		hashsize--;
10607 
10608 	dstate->dtds_hashsize = hashsize;
10609 	dstate->dtds_hash = dstate->dtds_base;
10610 
10611 	/*
10612 	 * Determine number of active CPUs.  Divide free list evenly among
10613 	 * active CPUs.
10614 	 */
10615 	start = (dtrace_dynvar_t *)
10616 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
10617 	limit = (uintptr_t)base + size;
10618 
10619 	maxper = (limit - (uintptr_t)start) / NCPU;
10620 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
10621 
10622 	for (i = 0; i < NCPU; i++) {
10623 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
10624 
10625 		/*
10626 		 * If we don't even have enough chunks to make it once through
10627 		 * NCPUs, we're just going to allocate everything to the first
10628 		 * CPU.  And if we're on the last CPU, we're going to allocate
10629 		 * whatever is left over.  In either case, we set the limit to
10630 		 * be the limit of the dynamic variable space.
10631 		 */
10632 		if (maxper == 0 || i == NCPU - 1) {
10633 			limit = (uintptr_t)base + size;
10634 			start = NULL;
10635 		} else {
10636 			limit = (uintptr_t)start + maxper;
10637 			start = (dtrace_dynvar_t *)limit;
10638 		}
10639 
10640 		ASSERT(limit <= (uintptr_t)base + size);
10641 
10642 		for (;;) {
10643 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
10644 			    dstate->dtds_chunksize);
10645 
10646 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
10647 				break;
10648 
10649 			dvar->dtdv_next = next;
10650 			dvar = next;
10651 		}
10652 
10653 		if (maxper == 0)
10654 			break;
10655 	}
10656 
10657 	return (0);
10658 }
10659 
10660 void
10661 dtrace_dstate_fini(dtrace_dstate_t *dstate)
10662 {
10663 	ASSERT(MUTEX_HELD(&cpu_lock));
10664 
10665 	if (dstate->dtds_base == NULL)
10666 		return;
10667 
10668 	kmem_free(dstate->dtds_base, dstate->dtds_size);
10669 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
10670 }
10671 
10672 static void
10673 dtrace_vstate_fini(dtrace_vstate_t *vstate)
10674 {
10675 	/*
10676 	 * Logical XOR, where are you?
10677 	 */
10678 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
10679 
10680 	if (vstate->dtvs_nglobals > 0) {
10681 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
10682 		    sizeof (dtrace_statvar_t *));
10683 	}
10684 
10685 	if (vstate->dtvs_ntlocals > 0) {
10686 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
10687 		    sizeof (dtrace_difv_t));
10688 	}
10689 
10690 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
10691 
10692 	if (vstate->dtvs_nlocals > 0) {
10693 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
10694 		    sizeof (dtrace_statvar_t *));
10695 	}
10696 }
10697 
10698 static void
10699 dtrace_state_clean(dtrace_state_t *state)
10700 {
10701 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
10702 		return;
10703 
10704 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
10705 	dtrace_speculation_clean(state);
10706 }
10707 
10708 static void
10709 dtrace_state_deadman(dtrace_state_t *state)
10710 {
10711 	hrtime_t now;
10712 
10713 	dtrace_sync();
10714 
10715 	now = dtrace_gethrtime();
10716 
10717 	if (state != dtrace_anon.dta_state &&
10718 	    now - state->dts_laststatus >= dtrace_deadman_user)
10719 		return;
10720 
10721 	/*
10722 	 * We must be sure that dts_alive never appears to be less than the
10723 	 * value upon entry to dtrace_state_deadman(), and because we lack a
10724 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
10725 	 * store INT64_MAX to it, followed by a memory barrier, followed by
10726 	 * the new value.  This assures that dts_alive never appears to be
10727 	 * less than its true value, regardless of the order in which the
10728 	 * stores to the underlying storage are issued.
10729 	 */
10730 	state->dts_alive = INT64_MAX;
10731 	dtrace_membar_producer();
10732 	state->dts_alive = now;
10733 }
10734 
10735 dtrace_state_t *
10736 dtrace_state_create(dev_t *devp, cred_t *cr)
10737 {
10738 	minor_t minor;
10739 	major_t major;
10740 	char c[30];
10741 	dtrace_state_t *state;
10742 	dtrace_optval_t *opt;
10743 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
10744 
10745 	ASSERT(MUTEX_HELD(&dtrace_lock));
10746 	ASSERT(MUTEX_HELD(&cpu_lock));
10747 
10748 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
10749 	    VM_BESTFIT | VM_SLEEP);
10750 
10751 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
10752 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
10753 		return (NULL);
10754 	}
10755 
10756 	state = ddi_get_soft_state(dtrace_softstate, minor);
10757 	state->dts_epid = DTRACE_EPIDNONE + 1;
10758 
10759 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
10760 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
10761 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
10762 
10763 	if (devp != NULL) {
10764 		major = getemajor(*devp);
10765 	} else {
10766 		major = ddi_driver_major(dtrace_devi);
10767 	}
10768 
10769 	state->dts_dev = makedevice(major, minor);
10770 
10771 	if (devp != NULL)
10772 		*devp = state->dts_dev;
10773 
10774 	/*
10775 	 * We allocate NCPU buffers.  On the one hand, this can be quite
10776 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
10777 	 * other hand, it saves an additional memory reference in the probe
10778 	 * path.
10779 	 */
10780 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
10781 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
10782 	state->dts_cleaner = CYCLIC_NONE;
10783 	state->dts_deadman = CYCLIC_NONE;
10784 	state->dts_vstate.dtvs_state = state;
10785 
10786 	for (i = 0; i < DTRACEOPT_MAX; i++)
10787 		state->dts_options[i] = DTRACEOPT_UNSET;
10788 
10789 	/*
10790 	 * Set the default options.
10791 	 */
10792 	opt = state->dts_options;
10793 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
10794 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
10795 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
10796 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
10797 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
10798 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
10799 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
10800 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
10801 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
10802 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
10803 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
10804 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
10805 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
10806 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
10807 
10808 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
10809 
10810 	/*
10811 	 * Set up the credentials for this instantiation.
10812 	 */
10813 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
10814 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
10815 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
10816 	} else {
10817 		state->dts_cred.dcr_uid = crgetuid(cr);
10818 		state->dts_cred.dcr_gid = crgetgid(cr);
10819 
10820 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
10821 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
10822 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
10823 		}
10824 
10825 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) &&
10826 		    PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
10827 			state->dts_cred.dcr_visible |= DTRACE_CRV_ALLPROC;
10828 			state->dts_cred.dcr_action |=
10829 			    DTRACE_CRA_PROC_DESTRUCTIVE;
10830 		}
10831 
10832 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
10833 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
10834 			    DTRACE_CRV_ALLPROC;
10835 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
10836 			    DTRACE_CRA_PROC;
10837 
10838 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
10839 				state->dts_cred.dcr_action |=
10840 				    DTRACE_CRA_PROC_DESTRUCTIVE;
10841 		}
10842 	}
10843 
10844 	return (state);
10845 }
10846 
10847 static int
10848 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
10849 {
10850 	dtrace_optval_t *opt = state->dts_options, size;
10851 	processorid_t cpu;
10852 	int flags = 0, rval;
10853 
10854 	ASSERT(MUTEX_HELD(&dtrace_lock));
10855 	ASSERT(MUTEX_HELD(&cpu_lock));
10856 	ASSERT(which < DTRACEOPT_MAX);
10857 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
10858 	    (state == dtrace_anon.dta_state &&
10859 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
10860 
10861 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
10862 		return (0);
10863 
10864 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
10865 		cpu = opt[DTRACEOPT_CPU];
10866 
10867 	if (which == DTRACEOPT_SPECSIZE)
10868 		flags |= DTRACEBUF_NOSWITCH;
10869 
10870 	if (which == DTRACEOPT_BUFSIZE) {
10871 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
10872 			flags |= DTRACEBUF_RING;
10873 
10874 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
10875 			flags |= DTRACEBUF_FILL;
10876 
10877 		flags |= DTRACEBUF_INACTIVE;
10878 	}
10879 
10880 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
10881 		/*
10882 		 * The size must be 8-byte aligned.  If the size is not 8-byte
10883 		 * aligned, drop it down by the difference.
10884 		 */
10885 		if (size & (sizeof (uint64_t) - 1))
10886 			size -= size & (sizeof (uint64_t) - 1);
10887 
10888 		if (size < state->dts_reserve) {
10889 			/*
10890 			 * Buffers always must be large enough to accommodate
10891 			 * their prereserved space.  We return E2BIG instead
10892 			 * of ENOMEM in this case to allow for user-level
10893 			 * software to differentiate the cases.
10894 			 */
10895 			return (E2BIG);
10896 		}
10897 
10898 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
10899 
10900 		if (rval != ENOMEM) {
10901 			opt[which] = size;
10902 			return (rval);
10903 		}
10904 
10905 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
10906 			return (rval);
10907 	}
10908 
10909 	return (ENOMEM);
10910 }
10911 
10912 static int
10913 dtrace_state_buffers(dtrace_state_t *state)
10914 {
10915 	dtrace_speculation_t *spec = state->dts_speculations;
10916 	int rval, i;
10917 
10918 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
10919 	    DTRACEOPT_BUFSIZE)) != 0)
10920 		return (rval);
10921 
10922 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
10923 	    DTRACEOPT_AGGSIZE)) != 0)
10924 		return (rval);
10925 
10926 	for (i = 0; i < state->dts_nspeculations; i++) {
10927 		if ((rval = dtrace_state_buffer(state,
10928 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
10929 			return (rval);
10930 	}
10931 
10932 	return (0);
10933 }
10934 
10935 static void
10936 dtrace_state_prereserve(dtrace_state_t *state)
10937 {
10938 	dtrace_ecb_t *ecb;
10939 	dtrace_probe_t *probe;
10940 
10941 	state->dts_reserve = 0;
10942 
10943 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
10944 		return;
10945 
10946 	/*
10947 	 * If our buffer policy is a "fill" buffer policy, we need to set the
10948 	 * prereserved space to be the space required by the END probes.
10949 	 */
10950 	probe = dtrace_probes[dtrace_probeid_end - 1];
10951 	ASSERT(probe != NULL);
10952 
10953 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
10954 		if (ecb->dte_state != state)
10955 			continue;
10956 
10957 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
10958 	}
10959 }
10960 
10961 static int
10962 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
10963 {
10964 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
10965 	dtrace_speculation_t *spec;
10966 	dtrace_buffer_t *buf;
10967 	cyc_handler_t hdlr;
10968 	cyc_time_t when;
10969 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
10970 	dtrace_icookie_t cookie;
10971 
10972 	mutex_enter(&cpu_lock);
10973 	mutex_enter(&dtrace_lock);
10974 
10975 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
10976 		rval = EBUSY;
10977 		goto out;
10978 	}
10979 
10980 	/*
10981 	 * Before we can perform any checks, we must prime all of the
10982 	 * retained enablings that correspond to this state.
10983 	 */
10984 	dtrace_enabling_prime(state);
10985 
10986 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
10987 		rval = EACCES;
10988 		goto out;
10989 	}
10990 
10991 	dtrace_state_prereserve(state);
10992 
10993 	/*
10994 	 * Now we want to do is try to allocate our speculations.
10995 	 * We do not automatically resize the number of speculations; if
10996 	 * this fails, we will fail the operation.
10997 	 */
10998 	nspec = opt[DTRACEOPT_NSPEC];
10999 	ASSERT(nspec != DTRACEOPT_UNSET);
11000 
11001 	if (nspec > INT_MAX) {
11002 		rval = ENOMEM;
11003 		goto out;
11004 	}
11005 
11006 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
11007 
11008 	if (spec == NULL) {
11009 		rval = ENOMEM;
11010 		goto out;
11011 	}
11012 
11013 	state->dts_speculations = spec;
11014 	state->dts_nspeculations = (int)nspec;
11015 
11016 	for (i = 0; i < nspec; i++) {
11017 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
11018 			rval = ENOMEM;
11019 			goto err;
11020 		}
11021 
11022 		spec[i].dtsp_buffer = buf;
11023 	}
11024 
11025 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
11026 		if (dtrace_anon.dta_state == NULL) {
11027 			rval = ENOENT;
11028 			goto out;
11029 		}
11030 
11031 		if (state->dts_necbs != 0) {
11032 			rval = EALREADY;
11033 			goto out;
11034 		}
11035 
11036 		state->dts_anon = dtrace_anon_grab();
11037 		ASSERT(state->dts_anon != NULL);
11038 
11039 		*cpu = dtrace_anon.dta_beganon;
11040 
11041 		/*
11042 		 * If the anonymous state is active (as it almost certainly
11043 		 * is if the anonymous enabling ultimately matched anything),
11044 		 * we don't allow any further option processing -- but we
11045 		 * don't return failure.
11046 		 */
11047 		state = state->dts_anon;
11048 
11049 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11050 			goto out;
11051 	}
11052 
11053 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
11054 	    opt[DTRACEOPT_AGGSIZE] != 0) {
11055 		if (state->dts_aggregations == NULL) {
11056 			/*
11057 			 * We're not going to create an aggregation buffer
11058 			 * because we don't have any ECBs that contain
11059 			 * aggregations -- set this option to 0.
11060 			 */
11061 			opt[DTRACEOPT_AGGSIZE] = 0;
11062 		} else {
11063 			/*
11064 			 * If we have an aggregation buffer, we must also have
11065 			 * a buffer to use as scratch.
11066 			 */
11067 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
11068 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
11069 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
11070 			}
11071 		}
11072 	}
11073 
11074 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
11075 	    opt[DTRACEOPT_SPECSIZE] != 0) {
11076 		if (!state->dts_speculates) {
11077 			/*
11078 			 * We're not going to create speculation buffers
11079 			 * because we don't have any ECBs that actually
11080 			 * speculate -- set the speculation size to 0.
11081 			 */
11082 			opt[DTRACEOPT_SPECSIZE] = 0;
11083 		}
11084 	}
11085 
11086 	/*
11087 	 * The bare minimum size for any buffer that we're actually going to
11088 	 * do anything to is sizeof (uint64_t).
11089 	 */
11090 	sz = sizeof (uint64_t);
11091 
11092 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
11093 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
11094 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
11095 		/*
11096 		 * A buffer size has been explicitly set to 0 (or to a size
11097 		 * that will be adjusted to 0) and we need the space -- we
11098 		 * need to return failure.  We return ENOSPC to differentiate
11099 		 * it from failing to allocate a buffer due to failure to meet
11100 		 * the reserve (for which we return E2BIG).
11101 		 */
11102 		rval = ENOSPC;
11103 		goto out;
11104 	}
11105 
11106 	if ((rval = dtrace_state_buffers(state)) != 0)
11107 		goto err;
11108 
11109 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
11110 		sz = dtrace_dstate_defsize;
11111 
11112 	do {
11113 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
11114 
11115 		if (rval == 0)
11116 			break;
11117 
11118 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11119 			goto err;
11120 	} while (sz >>= 1);
11121 
11122 	opt[DTRACEOPT_DYNVARSIZE] = sz;
11123 
11124 	if (rval != 0)
11125 		goto err;
11126 
11127 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
11128 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
11129 
11130 	if (opt[DTRACEOPT_CLEANRATE] == 0)
11131 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11132 
11133 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
11134 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
11135 
11136 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
11137 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11138 
11139 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
11140 	hdlr.cyh_arg = state;
11141 	hdlr.cyh_level = CY_LOW_LEVEL;
11142 
11143 	when.cyt_when = 0;
11144 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
11145 
11146 	state->dts_cleaner = cyclic_add(&hdlr, &when);
11147 
11148 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
11149 	hdlr.cyh_arg = state;
11150 	hdlr.cyh_level = CY_LOW_LEVEL;
11151 
11152 	when.cyt_when = 0;
11153 	when.cyt_interval = dtrace_deadman_interval;
11154 
11155 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
11156 	state->dts_deadman = cyclic_add(&hdlr, &when);
11157 
11158 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
11159 
11160 	/*
11161 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
11162 	 * interrupts here both to record the CPU on which we fired the BEGIN
11163 	 * probe (the data from this CPU will be processed first at user
11164 	 * level) and to manually activate the buffer for this CPU.
11165 	 */
11166 	cookie = dtrace_interrupt_disable();
11167 	*cpu = CPU->cpu_id;
11168 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
11169 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
11170 
11171 	dtrace_probe(dtrace_probeid_begin,
11172 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11173 	dtrace_interrupt_enable(cookie);
11174 	/*
11175 	 * We may have had an exit action from a BEGIN probe; only change our
11176 	 * state to ACTIVE if we're still in WARMUP.
11177 	 */
11178 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
11179 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
11180 
11181 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
11182 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
11183 
11184 	/*
11185 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
11186 	 * want each CPU to transition its principal buffer out of the
11187 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
11188 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
11189 	 * atomically transition from processing none of a state's ECBs to
11190 	 * processing all of them.
11191 	 */
11192 	dtrace_xcall(DTRACE_CPUALL,
11193 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
11194 	goto out;
11195 
11196 err:
11197 	dtrace_buffer_free(state->dts_buffer);
11198 	dtrace_buffer_free(state->dts_aggbuffer);
11199 
11200 	if ((nspec = state->dts_nspeculations) == 0) {
11201 		ASSERT(state->dts_speculations == NULL);
11202 		goto out;
11203 	}
11204 
11205 	spec = state->dts_speculations;
11206 	ASSERT(spec != NULL);
11207 
11208 	for (i = 0; i < state->dts_nspeculations; i++) {
11209 		if ((buf = spec[i].dtsp_buffer) == NULL)
11210 			break;
11211 
11212 		dtrace_buffer_free(buf);
11213 		kmem_free(buf, bufsize);
11214 	}
11215 
11216 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11217 	state->dts_nspeculations = 0;
11218 	state->dts_speculations = NULL;
11219 
11220 out:
11221 	mutex_exit(&dtrace_lock);
11222 	mutex_exit(&cpu_lock);
11223 
11224 	return (rval);
11225 }
11226 
11227 static int
11228 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
11229 {
11230 	dtrace_icookie_t cookie;
11231 
11232 	ASSERT(MUTEX_HELD(&dtrace_lock));
11233 
11234 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
11235 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
11236 		return (EINVAL);
11237 
11238 	/*
11239 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
11240 	 * to be sure that every CPU has seen it.  See below for the details
11241 	 * on why this is done.
11242 	 */
11243 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
11244 	dtrace_sync();
11245 
11246 	/*
11247 	 * By this point, it is impossible for any CPU to be still processing
11248 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
11249 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
11250 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
11251 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
11252 	 * iff we're in the END probe.
11253 	 */
11254 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
11255 	dtrace_sync();
11256 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
11257 
11258 	/*
11259 	 * Finally, we can release the reserve and call the END probe.  We
11260 	 * disable interrupts across calling the END probe to allow us to
11261 	 * return the CPU on which we actually called the END probe.  This
11262 	 * allows user-land to be sure that this CPU's principal buffer is
11263 	 * processed last.
11264 	 */
11265 	state->dts_reserve = 0;
11266 
11267 	cookie = dtrace_interrupt_disable();
11268 	*cpu = CPU->cpu_id;
11269 	dtrace_probe(dtrace_probeid_end,
11270 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11271 	dtrace_interrupt_enable(cookie);
11272 
11273 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
11274 	dtrace_sync();
11275 
11276 	return (0);
11277 }
11278 
11279 static int
11280 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
11281     dtrace_optval_t val)
11282 {
11283 	ASSERT(MUTEX_HELD(&dtrace_lock));
11284 
11285 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11286 		return (EBUSY);
11287 
11288 	if (option >= DTRACEOPT_MAX)
11289 		return (EINVAL);
11290 
11291 	if (option != DTRACEOPT_CPU && val < 0)
11292 		return (EINVAL);
11293 
11294 	switch (option) {
11295 	case DTRACEOPT_DESTRUCTIVE:
11296 		if (dtrace_destructive_disallow)
11297 			return (EACCES);
11298 
11299 		state->dts_cred.dcr_destructive = 1;
11300 		break;
11301 
11302 	case DTRACEOPT_BUFSIZE:
11303 	case DTRACEOPT_DYNVARSIZE:
11304 	case DTRACEOPT_AGGSIZE:
11305 	case DTRACEOPT_SPECSIZE:
11306 	case DTRACEOPT_STRSIZE:
11307 		if (val < 0)
11308 			return (EINVAL);
11309 
11310 		if (val >= LONG_MAX) {
11311 			/*
11312 			 * If this is an otherwise negative value, set it to
11313 			 * the highest multiple of 128m less than LONG_MAX.
11314 			 * Technically, we're adjusting the size without
11315 			 * regard to the buffer resizing policy, but in fact,
11316 			 * this has no effect -- if we set the buffer size to
11317 			 * ~LONG_MAX and the buffer policy is ultimately set to
11318 			 * be "manual", the buffer allocation is guaranteed to
11319 			 * fail, if only because the allocation requires two
11320 			 * buffers.  (We set the the size to the highest
11321 			 * multiple of 128m because it ensures that the size
11322 			 * will remain a multiple of a megabyte when
11323 			 * repeatedly halved -- all the way down to 15m.)
11324 			 */
11325 			val = LONG_MAX - (1 << 27) + 1;
11326 		}
11327 	}
11328 
11329 	state->dts_options[option] = val;
11330 
11331 	return (0);
11332 }
11333 
11334 static void
11335 dtrace_state_destroy(dtrace_state_t *state)
11336 {
11337 	dtrace_ecb_t *ecb;
11338 	dtrace_vstate_t *vstate = &state->dts_vstate;
11339 	minor_t minor = getminor(state->dts_dev);
11340 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11341 	dtrace_speculation_t *spec = state->dts_speculations;
11342 	int nspec = state->dts_nspeculations;
11343 	uint32_t match;
11344 
11345 	ASSERT(MUTEX_HELD(&dtrace_lock));
11346 	ASSERT(MUTEX_HELD(&cpu_lock));
11347 
11348 	/*
11349 	 * First, retract any retained enablings for this state.
11350 	 */
11351 	dtrace_enabling_retract(state);
11352 	ASSERT(state->dts_nretained == 0);
11353 
11354 	/*
11355 	 * Now we need to disable and destroy any enabled probes.  Because any
11356 	 * DTRACE_PRIV_KERNEL probes may actually be slowing our progress
11357 	 * (especially if they're all enabled), we take two passes through
11358 	 * the ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes,
11359 	 * and in the second we disable whatever is left over.
11360 	 */
11361 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
11362 		for (i = 0; i < state->dts_necbs; i++) {
11363 			if ((ecb = state->dts_ecbs[i]) == NULL)
11364 				continue;
11365 
11366 			if (match && ecb->dte_probe != NULL) {
11367 				dtrace_probe_t *probe = ecb->dte_probe;
11368 				dtrace_provider_t *prov = probe->dtpr_provider;
11369 
11370 				if (!(prov->dtpv_priv.dtpp_flags & match))
11371 					continue;
11372 			}
11373 
11374 			dtrace_ecb_disable(ecb);
11375 			dtrace_ecb_destroy(ecb);
11376 		}
11377 
11378 		if (!match)
11379 			break;
11380 	}
11381 
11382 	/*
11383 	 * Before we free the buffers, perform one more sync to assure that
11384 	 * every CPU is out of probe context.
11385 	 */
11386 	dtrace_sync();
11387 
11388 	dtrace_buffer_free(state->dts_buffer);
11389 	dtrace_buffer_free(state->dts_aggbuffer);
11390 
11391 	for (i = 0; i < nspec; i++)
11392 		dtrace_buffer_free(spec[i].dtsp_buffer);
11393 
11394 	if (state->dts_cleaner != CYCLIC_NONE)
11395 		cyclic_remove(state->dts_cleaner);
11396 
11397 	if (state->dts_deadman != CYCLIC_NONE)
11398 		cyclic_remove(state->dts_deadman);
11399 
11400 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
11401 	dtrace_vstate_fini(vstate);
11402 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
11403 
11404 	if (state->dts_aggregations != NULL) {
11405 #ifdef DEBUG
11406 		for (i = 0; i < state->dts_naggregations; i++)
11407 			ASSERT(state->dts_aggregations[i] == NULL);
11408 #endif
11409 		ASSERT(state->dts_naggregations > 0);
11410 		kmem_free(state->dts_aggregations,
11411 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
11412 	}
11413 
11414 	kmem_free(state->dts_buffer, bufsize);
11415 	kmem_free(state->dts_aggbuffer, bufsize);
11416 
11417 	for (i = 0; i < nspec; i++)
11418 		kmem_free(spec[i].dtsp_buffer, bufsize);
11419 
11420 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11421 
11422 	dtrace_format_destroy(state);
11423 
11424 	vmem_destroy(state->dts_aggid_arena);
11425 	ddi_soft_state_free(dtrace_softstate, minor);
11426 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11427 }
11428 
11429 /*
11430  * DTrace Anonymous Enabling Functions
11431  */
11432 static dtrace_state_t *
11433 dtrace_anon_grab(void)
11434 {
11435 	dtrace_state_t *state;
11436 
11437 	ASSERT(MUTEX_HELD(&dtrace_lock));
11438 
11439 	if ((state = dtrace_anon.dta_state) == NULL) {
11440 		ASSERT(dtrace_anon.dta_enabling == NULL);
11441 		return (NULL);
11442 	}
11443 
11444 	ASSERT(dtrace_anon.dta_enabling != NULL);
11445 	ASSERT(dtrace_retained != NULL);
11446 
11447 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
11448 	dtrace_anon.dta_enabling = NULL;
11449 	dtrace_anon.dta_state = NULL;
11450 
11451 	return (state);
11452 }
11453 
11454 static void
11455 dtrace_anon_property(void)
11456 {
11457 	int i, rv;
11458 	dtrace_state_t *state;
11459 	dof_hdr_t *dof;
11460 	char c[32];		/* enough for "dof-data-" + digits */
11461 
11462 	ASSERT(MUTEX_HELD(&dtrace_lock));
11463 	ASSERT(MUTEX_HELD(&cpu_lock));
11464 
11465 	for (i = 0; ; i++) {
11466 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
11467 
11468 		dtrace_err_verbose = 1;
11469 
11470 		if ((dof = dtrace_dof_property(c)) == NULL) {
11471 			dtrace_err_verbose = 0;
11472 			break;
11473 		}
11474 
11475 		/*
11476 		 * We want to create anonymous state, so we need to transition
11477 		 * the kernel debugger to indicate that DTrace is active.  If
11478 		 * this fails (e.g. because the debugger has modified text in
11479 		 * some way), we won't continue with the processing.
11480 		 */
11481 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
11482 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
11483 			    "enabling ignored.");
11484 			dtrace_dof_destroy(dof);
11485 			break;
11486 		}
11487 
11488 		/*
11489 		 * If we haven't allocated an anonymous state, we'll do so now.
11490 		 */
11491 		if ((state = dtrace_anon.dta_state) == NULL) {
11492 			state = dtrace_state_create(NULL, NULL);
11493 			dtrace_anon.dta_state = state;
11494 
11495 			if (state == NULL) {
11496 				/*
11497 				 * This basically shouldn't happen:  the only
11498 				 * failure mode from dtrace_state_create() is a
11499 				 * failure of ddi_soft_state_zalloc() that
11500 				 * itself should never happen.  Still, the
11501 				 * interface allows for a failure mode, and
11502 				 * we want to fail as gracefully as possible:
11503 				 * we'll emit an error message and cease
11504 				 * processing anonymous state in this case.
11505 				 */
11506 				cmn_err(CE_WARN, "failed to create "
11507 				    "anonymous state");
11508 				dtrace_dof_destroy(dof);
11509 				break;
11510 			}
11511 		}
11512 
11513 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
11514 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
11515 
11516 		if (rv == 0)
11517 			rv = dtrace_dof_options(dof, state);
11518 
11519 		dtrace_err_verbose = 0;
11520 		dtrace_dof_destroy(dof);
11521 
11522 		if (rv != 0) {
11523 			/*
11524 			 * This is malformed DOF; chuck any anonymous state
11525 			 * that we created.
11526 			 */
11527 			ASSERT(dtrace_anon.dta_enabling == NULL);
11528 			dtrace_state_destroy(state);
11529 			dtrace_anon.dta_state = NULL;
11530 			break;
11531 		}
11532 
11533 		ASSERT(dtrace_anon.dta_enabling != NULL);
11534 	}
11535 
11536 	if (dtrace_anon.dta_enabling != NULL) {
11537 		int rval;
11538 
11539 		/*
11540 		 * dtrace_enabling_retain() can only fail because we are
11541 		 * trying to retain more enablings than are allowed -- but
11542 		 * we only have one anonymous enabling, and we are guaranteed
11543 		 * to be allowed at least one retained enabling; we assert
11544 		 * that dtrace_enabling_retain() returns success.
11545 		 */
11546 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
11547 		ASSERT(rval == 0);
11548 
11549 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
11550 	}
11551 }
11552 
11553 /*
11554  * DTrace Helper Functions
11555  */
11556 static void
11557 dtrace_helper_trace(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate,
11558     int where)
11559 {
11560 	uint32_t size, next, nnext, i;
11561 	dtrace_helptrace_t *ent;
11562 
11563 	if (!dtrace_helptrace_enabled)
11564 		return;
11565 
11566 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
11567 
11568 	/*
11569 	 * What would a tracing framework be without its own tracing
11570 	 * framework?  (Well, a hell of a lot simpler, for starters...)
11571 	 */
11572 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
11573 	    sizeof (uint64_t) - sizeof (uint64_t);
11574 
11575 	/*
11576 	 * Iterate until we can allocate a slot in the trace buffer.
11577 	 */
11578 	do {
11579 		next = dtrace_helptrace_next;
11580 
11581 		if (next + size < dtrace_helptrace_bufsize) {
11582 			nnext = next + size;
11583 		} else {
11584 			nnext = size;
11585 		}
11586 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
11587 
11588 	/*
11589 	 * We have our slot; fill it in.
11590 	 */
11591 	if (nnext == size)
11592 		next = 0;
11593 
11594 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
11595 	ent->dtht_helper = helper;
11596 	ent->dtht_where = where;
11597 	ent->dtht_nlocals = vstate->dtvs_nlocals;
11598 
11599 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
11600 		dtrace_statvar_t *svar;
11601 
11602 		if ((svar = vstate->dtvs_locals[i]) == NULL)
11603 			continue;
11604 
11605 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
11606 		ent->dtht_locals[i] =
11607 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
11608 	}
11609 }
11610 
11611 static uint64_t
11612 dtrace_helper(int which, dtrace_mstate_t *mstate,
11613     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
11614 {
11615 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
11616 	uint64_t sarg0 = mstate->dtms_arg[0];
11617 	uint64_t sarg1 = mstate->dtms_arg[1];
11618 	uint64_t rval;
11619 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
11620 	dtrace_helper_action_t *helper;
11621 	dtrace_vstate_t *vstate;
11622 	dtrace_difo_t *pred;
11623 	int i, trace = dtrace_helptrace_enabled;
11624 
11625 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
11626 
11627 	if (helpers == NULL)
11628 		return (0);
11629 
11630 	if ((helper = helpers->dthps_actions[which]) == NULL)
11631 		return (0);
11632 
11633 	vstate = &helpers->dthps_vstate;
11634 	mstate->dtms_arg[0] = arg0;
11635 	mstate->dtms_arg[1] = arg1;
11636 
11637 	/*
11638 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
11639 	 * we'll call the corresponding actions.  Note that the below calls
11640 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
11641 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
11642 	 * the stored DIF offset with its own (which is the desired behavior).
11643 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
11644 	 * from machine state; this is okay, too.
11645 	 */
11646 	for (; helper != NULL; helper = helper->dthp_next) {
11647 		if ((pred = helper->dthp_predicate) != NULL) {
11648 			if (trace)
11649 				dtrace_helper_trace(helper, vstate, 0);
11650 
11651 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
11652 				goto next;
11653 
11654 			if (*flags & CPU_DTRACE_FAULT)
11655 				goto err;
11656 		}
11657 
11658 		for (i = 0; i < helper->dthp_nactions; i++) {
11659 			if (trace)
11660 				dtrace_helper_trace(helper, vstate, i + 1);
11661 
11662 			rval = dtrace_dif_emulate(helper->dthp_actions[i],
11663 			    mstate, vstate, state);
11664 
11665 			if (*flags & CPU_DTRACE_FAULT)
11666 				goto err;
11667 		}
11668 
11669 next:
11670 		if (trace)
11671 			dtrace_helper_trace(helper, vstate,
11672 			    DTRACE_HELPTRACE_NEXT);
11673 	}
11674 
11675 	if (trace)
11676 		dtrace_helper_trace(helper, vstate, DTRACE_HELPTRACE_DONE);
11677 
11678 	/*
11679 	 * Restore the arg0 that we saved upon entry.
11680 	 */
11681 	mstate->dtms_arg[0] = sarg0;
11682 	mstate->dtms_arg[1] = sarg1;
11683 
11684 	return (rval);
11685 
11686 err:
11687 	if (trace)
11688 		dtrace_helper_trace(helper, vstate, DTRACE_HELPTRACE_ERR);
11689 
11690 	/*
11691 	 * Restore the arg0 that we saved upon entry.
11692 	 */
11693 	mstate->dtms_arg[0] = sarg0;
11694 	mstate->dtms_arg[1] = sarg1;
11695 
11696 	return (NULL);
11697 }
11698 
11699 static void
11700 dtrace_helper_destroy(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate)
11701 {
11702 	int i;
11703 
11704 	if (helper->dthp_predicate != NULL)
11705 		dtrace_difo_release(helper->dthp_predicate, vstate);
11706 
11707 	for (i = 0; i < helper->dthp_nactions; i++) {
11708 		ASSERT(helper->dthp_actions[i] != NULL);
11709 		dtrace_difo_release(helper->dthp_actions[i], vstate);
11710 	}
11711 
11712 	kmem_free(helper->dthp_actions,
11713 	    helper->dthp_nactions * sizeof (dtrace_difo_t *));
11714 	kmem_free(helper, sizeof (dtrace_helper_action_t));
11715 }
11716 
11717 static int
11718 dtrace_helper_destroygen(int gen)
11719 {
11720 	dtrace_helpers_t *help = curproc->p_dtrace_helpers;
11721 	dtrace_vstate_t *vstate;
11722 	int i;
11723 
11724 	ASSERT(MUTEX_HELD(&dtrace_lock));
11725 
11726 	if (help == NULL || gen > help->dthps_generation)
11727 		return (EINVAL);
11728 
11729 	vstate = &help->dthps_vstate;
11730 
11731 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
11732 		dtrace_helper_action_t *last = NULL, *h, *next;
11733 
11734 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
11735 			next = h->dthp_next;
11736 
11737 			if (h->dthp_generation == gen) {
11738 				if (last != NULL) {
11739 					last->dthp_next = next;
11740 				} else {
11741 					help->dthps_actions[i] = next;
11742 				}
11743 
11744 				dtrace_helper_destroy(h, vstate);
11745 			} else {
11746 				last = h;
11747 			}
11748 		}
11749 	}
11750 
11751 	return (0);
11752 }
11753 
11754 static int
11755 dtrace_helper_validate(dtrace_helper_action_t *helper)
11756 {
11757 	int err = 0, i;
11758 	dtrace_difo_t *dp;
11759 
11760 	if ((dp = helper->dthp_predicate) != NULL)
11761 		err += dtrace_difo_validate_helper(dp);
11762 
11763 	for (i = 0; i < helper->dthp_nactions; i++)
11764 		err += dtrace_difo_validate_helper(helper->dthp_actions[i]);
11765 
11766 	return (err == 0);
11767 }
11768 
11769 static int
11770 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
11771 {
11772 	dtrace_helpers_t *help;
11773 	dtrace_helper_action_t *helper, *last;
11774 	dtrace_actdesc_t *act;
11775 	dtrace_vstate_t *vstate;
11776 	dtrace_predicate_t *pred;
11777 	int count = 0, nactions = 0, i;
11778 
11779 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
11780 		return (EINVAL);
11781 
11782 	help = curproc->p_dtrace_helpers;
11783 	last = help->dthps_actions[which];
11784 	vstate = &help->dthps_vstate;
11785 
11786 	for (count = 0; last != NULL; last = last->dthp_next) {
11787 		count++;
11788 		if (last->dthp_next == NULL)
11789 			break;
11790 	}
11791 
11792 	/*
11793 	 * If we already have dtrace_helper_actions_max helper actions for this
11794 	 * helper action type, we'll refuse to add a new one.
11795 	 */
11796 	if (count >= dtrace_helper_actions_max)
11797 		return (ENOSPC);
11798 
11799 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
11800 	helper->dthp_generation = help->dthps_generation;
11801 
11802 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
11803 		ASSERT(pred->dtp_difo != NULL);
11804 		dtrace_difo_hold(pred->dtp_difo);
11805 		helper->dthp_predicate = pred->dtp_difo;
11806 	}
11807 
11808 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
11809 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
11810 			goto err;
11811 
11812 		if (act->dtad_difo == NULL)
11813 			goto err;
11814 
11815 		nactions++;
11816 	}
11817 
11818 	helper->dthp_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
11819 	    (helper->dthp_nactions = nactions), KM_SLEEP);
11820 
11821 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
11822 		dtrace_difo_hold(act->dtad_difo);
11823 		helper->dthp_actions[i++] = act->dtad_difo;
11824 	}
11825 
11826 	if (!dtrace_helper_validate(helper))
11827 		goto err;
11828 
11829 	if (last == NULL) {
11830 		help->dthps_actions[which] = helper;
11831 	} else {
11832 		last->dthp_next = helper;
11833 	}
11834 
11835 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
11836 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
11837 		dtrace_helptrace_next = 0;
11838 	}
11839 
11840 	return (0);
11841 err:
11842 	dtrace_helper_destroy(helper, vstate);
11843 	return (EINVAL);
11844 }
11845 
11846 static void
11847 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
11848     dof_helper_t *dofhp)
11849 {
11850 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
11851 
11852 	mutex_enter(&dtrace_meta_lock);
11853 	mutex_enter(&dtrace_lock);
11854 
11855 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
11856 		/*
11857 		 * If the dtrace module is loaded but not attached, or if
11858 		 * there aren't isn't a meta provider registered to deal with
11859 		 * these provider descriptions, we need to postpone creating
11860 		 * the actual providers until later.
11861 		 */
11862 
11863 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
11864 		    dtrace_deferred_pid != help) {
11865 			help->dthps_pid = p->p_pid;
11866 			help->dthps_next = dtrace_deferred_pid;
11867 			help->dthps_prev = NULL;
11868 			if (dtrace_deferred_pid != NULL)
11869 				dtrace_deferred_pid->dthps_prev = help;
11870 			dtrace_deferred_pid = help;
11871 		}
11872 
11873 		mutex_exit(&dtrace_lock);
11874 
11875 	} else if (dofhp != NULL) {
11876 		/*
11877 		 * If the dtrace module is loaded and we have a particular
11878 		 * helper provider description, pass that off to the
11879 		 * meta provider.
11880 		 */
11881 
11882 		mutex_exit(&dtrace_lock);
11883 
11884 		dtrace_helper_provide(dofhp, p->p_pid);
11885 
11886 	} else {
11887 		/*
11888 		 * Otherwise, just pass all the helper provider descriptions
11889 		 * off to the meta provider.
11890 		 */
11891 
11892 		int i;
11893 		mutex_exit(&dtrace_lock);
11894 
11895 		for (i = 0; i < help->dthps_nprovs; i++) {
11896 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
11897 			    p->p_pid);
11898 		}
11899 	}
11900 
11901 	mutex_exit(&dtrace_meta_lock);
11902 }
11903 
11904 static int
11905 dtrace_helper_provider_add(dof_helper_t *dofhp)
11906 {
11907 	dtrace_helpers_t *help;
11908 	dtrace_helper_provider_t *hprov, **tmp_provs;
11909 	uint_t tmp_nprovs, i;
11910 
11911 	help = curproc->p_dtrace_helpers;
11912 	ASSERT(help != NULL);
11913 
11914 	/*
11915 	 * If we already have dtrace_helper_providers_max helper providers,
11916 	 * we're refuse to add a new one.
11917 	 */
11918 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
11919 		return (ENOSPC);
11920 
11921 	/*
11922 	 * Check to make sure this isn't a duplicate.
11923 	 */
11924 	for (i = 0; i < help->dthps_nprovs; i++) {
11925 		if (dofhp->dofhp_addr ==
11926 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
11927 			return (EALREADY);
11928 	}
11929 
11930 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
11931 	hprov->dthp_prov = *dofhp;
11932 	hprov->dthp_ref = 1;
11933 
11934 	tmp_nprovs = help->dthps_nprovs;
11935 	tmp_provs = help->dthps_provs;
11936 	help->dthps_nprovs++;
11937 	help->dthps_provs = kmem_zalloc(help->dthps_nprovs *
11938 	    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
11939 
11940 	help->dthps_provs[tmp_nprovs] = hprov;
11941 	if (tmp_provs != NULL) {
11942 		bcopy(tmp_provs, help->dthps_provs, tmp_nprovs *
11943 		    sizeof (dtrace_helper_provider_t *));
11944 		kmem_free(tmp_provs, tmp_nprovs *
11945 		    sizeof (dtrace_helper_provider_t *));
11946 	}
11947 
11948 	return (0);
11949 }
11950 
11951 static void
11952 dtrace_helper_provider_remove(dtrace_helper_provider_t *hprov)
11953 {
11954 	mutex_enter(&dtrace_lock);
11955 
11956 	if (--hprov->dthp_ref == 0) {
11957 		dof_hdr_t *dof;
11958 		mutex_exit(&dtrace_lock);
11959 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
11960 		dtrace_dof_destroy(dof);
11961 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
11962 	} else {
11963 		mutex_exit(&dtrace_lock);
11964 	}
11965 }
11966 
11967 static int
11968 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
11969 {
11970 	uintptr_t daddr = (uintptr_t)dof;
11971 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
11972 	dof_provider_t *provider;
11973 	dof_probe_t *probe;
11974 	uint8_t *arg;
11975 	char *strtab, *typestr;
11976 	dof_stridx_t typeidx;
11977 	size_t typesz;
11978 	uint_t nprobes, j, k;
11979 
11980 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
11981 
11982 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
11983 		dtrace_dof_error(dof, "misaligned section offset");
11984 		return (-1);
11985 	}
11986 
11987 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
11988 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
11989 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
11990 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
11991 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
11992 
11993 	if (str_sec == NULL || prb_sec == NULL ||
11994 	    arg_sec == NULL || off_sec == NULL)
11995 		return (-1);
11996 
11997 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
11998 
11999 	if (provider->dofpv_name >= str_sec->dofs_size ||
12000 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
12001 		dtrace_dof_error(dof, "invalid provider name");
12002 		return (-1);
12003 	}
12004 
12005 	if (prb_sec->dofs_entsize == 0 ||
12006 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
12007 		dtrace_dof_error(dof, "invalid entry size");
12008 		return (-1);
12009 	}
12010 
12011 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
12012 		dtrace_dof_error(dof, "misaligned entry size");
12013 		return (-1);
12014 	}
12015 
12016 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
12017 		dtrace_dof_error(dof, "invalid entry size");
12018 		return (-1);
12019 	}
12020 
12021 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
12022 		dtrace_dof_error(dof, "misaligned section offset");
12023 		return (-1);
12024 	}
12025 
12026 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
12027 		dtrace_dof_error(dof, "invalid entry size");
12028 		return (-1);
12029 	}
12030 
12031 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
12032 
12033 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
12034 
12035 	/*
12036 	 * Take a pass through the probes to check for errors.
12037 	 */
12038 	for (j = 0; j < nprobes; j++) {
12039 		probe = (dof_probe_t *)(uintptr_t)(daddr +
12040 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
12041 
12042 		if (probe->dofpr_func >= str_sec->dofs_size) {
12043 			dtrace_dof_error(dof, "invalid function name");
12044 			return (-1);
12045 		}
12046 
12047 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
12048 			dtrace_dof_error(dof, "function name too long");
12049 			return (-1);
12050 		}
12051 
12052 		if (probe->dofpr_name >= str_sec->dofs_size ||
12053 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
12054 			dtrace_dof_error(dof, "invalid probe name");
12055 			return (-1);
12056 		}
12057 
12058 
12059 		if (probe->dofpr_offidx + probe->dofpr_noffs <
12060 		    probe->dofpr_offidx ||
12061 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
12062 		    off_sec->dofs_entsize > off_sec->dofs_size) {
12063 			dtrace_dof_error(dof, "invalid probe offset");
12064 			return (-1);
12065 		}
12066 
12067 		if (probe->dofpr_argidx + probe->dofpr_xargc <
12068 		    probe->dofpr_argidx ||
12069 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
12070 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
12071 			dtrace_dof_error(dof, "invalid args");
12072 			return (-1);
12073 		}
12074 
12075 		typeidx = probe->dofpr_nargv;
12076 		typestr = strtab + probe->dofpr_nargv;
12077 		for (k = 0; k < probe->dofpr_nargc; k++) {
12078 			if (typeidx >= str_sec->dofs_size) {
12079 				dtrace_dof_error(dof, "bad "
12080 				    "native argument type");
12081 				return (-1);
12082 			}
12083 
12084 			typesz = strlen(typestr) + 1;
12085 			if (typesz > DTRACE_ARGTYPELEN) {
12086 				dtrace_dof_error(dof, "native "
12087 				    "argument type too long");
12088 				return (-1);
12089 			}
12090 			typeidx += typesz;
12091 			typestr += typesz;
12092 		}
12093 
12094 		typeidx = probe->dofpr_xargv;
12095 		typestr = strtab + probe->dofpr_xargv;
12096 		for (k = 0; k < probe->dofpr_xargc; k++) {
12097 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
12098 				dtrace_dof_error(dof, "bad "
12099 				    "native argument index");
12100 				return (-1);
12101 			}
12102 
12103 			if (typeidx >= str_sec->dofs_size) {
12104 				dtrace_dof_error(dof, "bad "
12105 				    "translated argument type");
12106 				return (-1);
12107 			}
12108 
12109 			typesz = strlen(typestr) + 1;
12110 			if (typesz > DTRACE_ARGTYPELEN) {
12111 				dtrace_dof_error(dof, "translated argument "
12112 				    "type too long");
12113 				return (-1);
12114 			}
12115 
12116 			typeidx += typesz;
12117 			typestr += typesz;
12118 		}
12119 	}
12120 
12121 	return (0);
12122 }
12123 
12124 static int
12125 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
12126 {
12127 	dtrace_helpers_t *help;
12128 	dtrace_vstate_t *vstate;
12129 	dtrace_enabling_t *enab = NULL;
12130 	int i, gen, rv, nhelpers = 0, destroy = 1;
12131 
12132 	ASSERT(MUTEX_HELD(&dtrace_lock));
12133 
12134 	if ((help = curproc->p_dtrace_helpers) == NULL)
12135 		help = dtrace_helpers_create(curproc);
12136 
12137 	vstate = &help->dthps_vstate;
12138 
12139 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
12140 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
12141 		dtrace_dof_destroy(dof);
12142 		return (rv);
12143 	}
12144 
12145 	/*
12146 	 * Now we need to walk through the ECB descriptions in the enabling.
12147 	 */
12148 	for (i = 0; i < enab->dten_ndesc; i++) {
12149 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12150 		dtrace_probedesc_t *desc = &ep->dted_probe;
12151 
12152 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
12153 			continue;
12154 
12155 		if (strcmp(desc->dtpd_mod, "helper") != 0)
12156 			continue;
12157 
12158 		if (strcmp(desc->dtpd_func, "ustack") != 0)
12159 			continue;
12160 
12161 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
12162 		    ep)) != 0) {
12163 			/*
12164 			 * Adding this helper action failed -- we are now going
12165 			 * to rip out the entire generation and return failure.
12166 			 */
12167 			(void) dtrace_helper_destroygen(help->dthps_generation);
12168 			dtrace_enabling_destroy(enab);
12169 			dtrace_dof_destroy(dof);
12170 			dtrace_error = rv;
12171 			return (-1);
12172 		}
12173 
12174 		nhelpers++;
12175 	}
12176 
12177 	if (nhelpers < enab->dten_ndesc)
12178 		dtrace_dof_error(dof, "unmatched helpers");
12179 
12180 	if (dhp != NULL) {
12181 		uintptr_t daddr = (uintptr_t)dof;
12182 		int err = 0;
12183 
12184 		/*
12185 		 * Look for helper probes.
12186 		 */
12187 		for (i = 0; i < dof->dofh_secnum; i++) {
12188 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
12189 			    dof->dofh_secoff + i * dof->dofh_secsize);
12190 
12191 			if (sec->dofs_type != DOF_SECT_PROVIDER)
12192 				continue;
12193 
12194 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
12195 				err = 1;
12196 				break;
12197 			}
12198 		}
12199 
12200 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
12201 		if (err == 0 && dtrace_helper_provider_add(dhp) == 0)
12202 			destroy = 0;
12203 		else
12204 			dhp = NULL;
12205 	}
12206 
12207 	gen = help->dthps_generation++;
12208 	dtrace_enabling_destroy(enab);
12209 
12210 	if (dhp != NULL) {
12211 		mutex_exit(&dtrace_lock);
12212 		dtrace_helper_provider_register(curproc, help, dhp);
12213 		mutex_enter(&dtrace_lock);
12214 	}
12215 
12216 	if (destroy)
12217 		dtrace_dof_destroy(dof);
12218 
12219 	return (gen);
12220 }
12221 
12222 static dtrace_helpers_t *
12223 dtrace_helpers_create(proc_t *p)
12224 {
12225 	dtrace_helpers_t *help;
12226 
12227 	ASSERT(MUTEX_HELD(&dtrace_lock));
12228 	ASSERT(p->p_dtrace_helpers == NULL);
12229 
12230 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
12231 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
12232 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
12233 
12234 	p->p_dtrace_helpers = help;
12235 	dtrace_opens++;
12236 
12237 	return (help);
12238 }
12239 
12240 static void
12241 dtrace_helpers_destroy(void)
12242 {
12243 	dtrace_helpers_t *help;
12244 	dtrace_vstate_t *vstate;
12245 	proc_t *p = curproc;
12246 	int i;
12247 
12248 	mutex_enter(&dtrace_lock);
12249 
12250 	ASSERT(p->p_dtrace_helpers != NULL);
12251 	ASSERT(dtrace_opens > 0);
12252 
12253 	help = p->p_dtrace_helpers;
12254 	vstate = &help->dthps_vstate;
12255 
12256 	/*
12257 	 * We're now going to lose the help from this process.
12258 	 */
12259 	p->p_dtrace_helpers = NULL;
12260 	dtrace_sync();
12261 
12262 	/*
12263 	 * Destory the helper actions.
12264 	 */
12265 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12266 		dtrace_helper_action_t *h, *next;
12267 
12268 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12269 			next = h->dthp_next;
12270 			dtrace_helper_destroy(h, vstate);
12271 			h = next;
12272 		}
12273 	}
12274 
12275 	mutex_exit(&dtrace_lock);
12276 
12277 	/*
12278 	 * Destroy the helper providers.
12279 	 */
12280 	if (help->dthps_nprovs > 0) {
12281 		mutex_enter(&dtrace_meta_lock);
12282 		if (dtrace_meta_pid != NULL) {
12283 			ASSERT(dtrace_deferred_pid == NULL);
12284 
12285 			for (i = 0; i < help->dthps_nprovs; i++) {
12286 				dtrace_helper_remove(
12287 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
12288 			}
12289 		} else {
12290 			mutex_enter(&dtrace_lock);
12291 			ASSERT(dtrace_deferred_pid != NULL);
12292 
12293 			/*
12294 			 * Remove the helper from the deferred list.
12295 			 */
12296 			if (help->dthps_next != NULL)
12297 				help->dthps_next->dthps_prev = help->dthps_prev;
12298 			if (help->dthps_prev != NULL)
12299 				help->dthps_prev->dthps_next = help->dthps_next;
12300 			if (dtrace_deferred_pid == help) {
12301 				dtrace_deferred_pid = help->dthps_next;
12302 				ASSERT(help->dthps_prev == NULL);
12303 			}
12304 
12305 			mutex_exit(&dtrace_lock);
12306 		}
12307 
12308 		mutex_exit(&dtrace_meta_lock);
12309 
12310 		for (i = 0; i < help->dthps_nprovs; i++) {
12311 			dtrace_helper_provider_remove(help->dthps_provs[i]);
12312 		}
12313 
12314 		kmem_free(help->dthps_provs, help->dthps_nprovs *
12315 		    sizeof (dtrace_helper_provider_t *));
12316 	}
12317 
12318 	mutex_enter(&dtrace_lock);
12319 
12320 	dtrace_vstate_fini(&help->dthps_vstate);
12321 	kmem_free(help->dthps_actions,
12322 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
12323 	kmem_free(help, sizeof (dtrace_helpers_t));
12324 
12325 	if (--dtrace_opens == 0)
12326 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
12327 
12328 	mutex_exit(&dtrace_lock);
12329 }
12330 
12331 static void
12332 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
12333 {
12334 	dtrace_helpers_t *help, *newhelp;
12335 	dtrace_helper_action_t *helper, *new, *last;
12336 	dtrace_difo_t *dp;
12337 	dtrace_vstate_t *vstate;
12338 	int i, j, sz, hasprovs = 0;
12339 
12340 	mutex_enter(&dtrace_lock);
12341 	ASSERT(from->p_dtrace_helpers != NULL);
12342 	ASSERT(dtrace_opens > 0);
12343 
12344 	help = from->p_dtrace_helpers;
12345 	newhelp = dtrace_helpers_create(to);
12346 	ASSERT(to->p_dtrace_helpers != NULL);
12347 
12348 	newhelp->dthps_generation = help->dthps_generation;
12349 	vstate = &newhelp->dthps_vstate;
12350 
12351 	/*
12352 	 * Duplicate the helper actions.
12353 	 */
12354 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12355 		if ((helper = help->dthps_actions[i]) == NULL)
12356 			continue;
12357 
12358 		for (last = NULL; helper != NULL; helper = helper->dthp_next) {
12359 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
12360 			    KM_SLEEP);
12361 			new->dthp_generation = helper->dthp_generation;
12362 
12363 			if ((dp = helper->dthp_predicate) != NULL) {
12364 				dp = dtrace_difo_duplicate(dp, vstate);
12365 				new->dthp_predicate = dp;
12366 			}
12367 
12368 			new->dthp_nactions = helper->dthp_nactions;
12369 			sz = sizeof (dtrace_difo_t *) * new->dthp_nactions;
12370 			new->dthp_actions = kmem_alloc(sz, KM_SLEEP);
12371 
12372 			for (j = 0; j < new->dthp_nactions; j++) {
12373 				dtrace_difo_t *dp = helper->dthp_actions[j];
12374 
12375 				ASSERT(dp != NULL);
12376 				dp = dtrace_difo_duplicate(dp, vstate);
12377 				new->dthp_actions[j] = dp;
12378 			}
12379 
12380 			if (last != NULL) {
12381 				last->dthp_next = new;
12382 			} else {
12383 				newhelp->dthps_actions[i] = new;
12384 			}
12385 
12386 			last = new;
12387 		}
12388 	}
12389 
12390 	/*
12391 	 * Duplicate the helper providers and register them with the
12392 	 * DTrace framework.
12393 	 */
12394 	if (help->dthps_nprovs > 0) {
12395 		newhelp->dthps_nprovs = help->dthps_nprovs;
12396 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
12397 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12398 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
12399 			newhelp->dthps_provs[i] = help->dthps_provs[i];
12400 			newhelp->dthps_provs[i]->dthp_ref++;
12401 		}
12402 
12403 		hasprovs = 1;
12404 	}
12405 
12406 	mutex_exit(&dtrace_lock);
12407 
12408 	if (hasprovs)
12409 		dtrace_helper_provider_register(to, newhelp, NULL);
12410 }
12411 
12412 /*
12413  * DTrace Hook Functions
12414  */
12415 static void
12416 dtrace_module_loaded(struct modctl *ctl)
12417 {
12418 	dtrace_provider_t *prv;
12419 
12420 	mutex_enter(&dtrace_provider_lock);
12421 	mutex_enter(&mod_lock);
12422 
12423 	ASSERT(ctl->mod_busy);
12424 
12425 	/*
12426 	 * We're going to call each providers per-module provide operation
12427 	 * specifying only this module.
12428 	 */
12429 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
12430 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
12431 
12432 	mutex_exit(&mod_lock);
12433 	mutex_exit(&dtrace_provider_lock);
12434 
12435 	/*
12436 	 * If we have any retained enablings, we need to match against them.
12437 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
12438 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
12439 	 * module.  (In particular, this happens when loading scheduling
12440 	 * classes.)  So if we have any retained enablings, we need to dispatch
12441 	 * our task queue to do the match for us.
12442 	 */
12443 	mutex_enter(&dtrace_lock);
12444 
12445 	if (dtrace_retained == NULL) {
12446 		mutex_exit(&dtrace_lock);
12447 		return;
12448 	}
12449 
12450 	(void) taskq_dispatch(dtrace_taskq,
12451 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
12452 
12453 	mutex_exit(&dtrace_lock);
12454 
12455 	/*
12456 	 * And now, for a little heuristic sleaze:  in general, we want to
12457 	 * match modules as soon as they load.  However, we cannot guarantee
12458 	 * this, because it would lead us to the lock ordering violation
12459 	 * outlined above.  The common case, of course, is that cpu_lock is
12460 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
12461 	 * long enough for the task queue to do its work.  If it's not, it's
12462 	 * not a serious problem -- it just means that the module that we
12463 	 * just loaded may not be immediately instrumentable.
12464 	 */
12465 	delay(1);
12466 }
12467 
12468 static void
12469 dtrace_module_unloaded(struct modctl *ctl)
12470 {
12471 	dtrace_probe_t template, *probe, *first, *next;
12472 	dtrace_provider_t *prov;
12473 
12474 	template.dtpr_mod = ctl->mod_modname;
12475 
12476 	mutex_enter(&dtrace_provider_lock);
12477 	mutex_enter(&mod_lock);
12478 	mutex_enter(&dtrace_lock);
12479 
12480 	if (dtrace_bymod == NULL) {
12481 		/*
12482 		 * The DTrace module is loaded (obviously) but not attached;
12483 		 * we don't have any work to do.
12484 		 */
12485 		mutex_exit(&dtrace_provider_lock);
12486 		mutex_exit(&mod_lock);
12487 		mutex_exit(&dtrace_lock);
12488 		return;
12489 	}
12490 
12491 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
12492 	    probe != NULL; probe = probe->dtpr_nextmod) {
12493 		if (probe->dtpr_ecb != NULL) {
12494 			mutex_exit(&dtrace_provider_lock);
12495 			mutex_exit(&mod_lock);
12496 			mutex_exit(&dtrace_lock);
12497 
12498 			/*
12499 			 * This shouldn't _actually_ be possible -- we're
12500 			 * unloading a module that has an enabled probe in it.
12501 			 * (It's normally up to the provider to make sure that
12502 			 * this can't happen.)  However, because dtps_enable()
12503 			 * doesn't have a failure mode, there can be an
12504 			 * enable/unload race.  Upshot:  we don't want to
12505 			 * assert, but we're not going to disable the
12506 			 * probe, either.
12507 			 */
12508 			if (dtrace_err_verbose) {
12509 				cmn_err(CE_WARN, "unloaded module '%s' had "
12510 				    "enabled probes", ctl->mod_modname);
12511 			}
12512 
12513 			return;
12514 		}
12515 	}
12516 
12517 	probe = first;
12518 
12519 	for (first = NULL; probe != NULL; probe = next) {
12520 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
12521 
12522 		dtrace_probes[probe->dtpr_id - 1] = NULL;
12523 
12524 		next = probe->dtpr_nextmod;
12525 		dtrace_hash_remove(dtrace_bymod, probe);
12526 		dtrace_hash_remove(dtrace_byfunc, probe);
12527 		dtrace_hash_remove(dtrace_byname, probe);
12528 
12529 		if (first == NULL) {
12530 			first = probe;
12531 			probe->dtpr_nextmod = NULL;
12532 		} else {
12533 			probe->dtpr_nextmod = first;
12534 			first = probe;
12535 		}
12536 	}
12537 
12538 	/*
12539 	 * We've removed all of the module's probes from the hash chains and
12540 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
12541 	 * everyone has cleared out from any probe array processing.
12542 	 */
12543 	dtrace_sync();
12544 
12545 	for (probe = first; probe != NULL; probe = first) {
12546 		first = probe->dtpr_nextmod;
12547 		prov = probe->dtpr_provider;
12548 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
12549 		    probe->dtpr_arg);
12550 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
12551 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
12552 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
12553 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
12554 		kmem_free(probe, sizeof (dtrace_probe_t));
12555 	}
12556 
12557 	mutex_exit(&dtrace_lock);
12558 	mutex_exit(&mod_lock);
12559 	mutex_exit(&dtrace_provider_lock);
12560 }
12561 
12562 void
12563 dtrace_suspend(void)
12564 {
12565 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
12566 }
12567 
12568 void
12569 dtrace_resume(void)
12570 {
12571 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
12572 }
12573 
12574 static int
12575 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
12576 {
12577 	ASSERT(MUTEX_HELD(&cpu_lock));
12578 	mutex_enter(&dtrace_lock);
12579 
12580 	switch (what) {
12581 	case CPU_CONFIG: {
12582 		dtrace_state_t *state;
12583 		dtrace_optval_t *opt, rs, c;
12584 
12585 		/*
12586 		 * For now, we only allocate a new buffer for anonymous state.
12587 		 */
12588 		if ((state = dtrace_anon.dta_state) == NULL)
12589 			break;
12590 
12591 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12592 			break;
12593 
12594 		opt = state->dts_options;
12595 		c = opt[DTRACEOPT_CPU];
12596 
12597 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
12598 			break;
12599 
12600 		/*
12601 		 * Regardless of what the actual policy is, we're going to
12602 		 * temporarily set our resize policy to be manual.  We're
12603 		 * also going to temporarily set our CPU option to denote
12604 		 * the newly configured CPU.
12605 		 */
12606 		rs = opt[DTRACEOPT_BUFRESIZE];
12607 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
12608 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
12609 
12610 		(void) dtrace_state_buffers(state);
12611 
12612 		opt[DTRACEOPT_BUFRESIZE] = rs;
12613 		opt[DTRACEOPT_CPU] = c;
12614 
12615 		break;
12616 	}
12617 
12618 	case CPU_UNCONFIG:
12619 		/*
12620 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
12621 		 * buffer will be freed when the consumer exits.)
12622 		 */
12623 		break;
12624 
12625 	default:
12626 		break;
12627 	}
12628 
12629 	mutex_exit(&dtrace_lock);
12630 	return (0);
12631 }
12632 
12633 static void
12634 dtrace_cpu_setup_initial(processorid_t cpu)
12635 {
12636 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
12637 }
12638 
12639 static void
12640 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
12641 {
12642 	if (dtrace_toxranges >= dtrace_toxranges_max) {
12643 		int osize, nsize;
12644 		dtrace_toxrange_t *range;
12645 
12646 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
12647 
12648 		if (osize == 0) {
12649 			ASSERT(dtrace_toxrange == NULL);
12650 			ASSERT(dtrace_toxranges_max == 0);
12651 			dtrace_toxranges_max = 1;
12652 		} else {
12653 			dtrace_toxranges_max <<= 1;
12654 		}
12655 
12656 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
12657 		range = kmem_zalloc(nsize, KM_SLEEP);
12658 
12659 		if (dtrace_toxrange != NULL) {
12660 			ASSERT(osize != 0);
12661 			bcopy(dtrace_toxrange, range, osize);
12662 			kmem_free(dtrace_toxrange, osize);
12663 		}
12664 
12665 		dtrace_toxrange = range;
12666 	}
12667 
12668 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
12669 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
12670 
12671 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
12672 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
12673 	dtrace_toxranges++;
12674 }
12675 
12676 /*
12677  * DTrace Driver Cookbook Functions
12678  */
12679 /*ARGSUSED*/
12680 static int
12681 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
12682 {
12683 	dtrace_provider_id_t id;
12684 	dtrace_state_t *state = NULL;
12685 	dtrace_enabling_t *enab;
12686 
12687 	mutex_enter(&cpu_lock);
12688 	mutex_enter(&dtrace_provider_lock);
12689 	mutex_enter(&dtrace_lock);
12690 
12691 	if (ddi_soft_state_init(&dtrace_softstate, sizeof (dtrace_state_t) +
12692 	    NCPU * sizeof (dtrace_buffer_t), 0) != 0) {
12693 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
12694 		mutex_exit(&cpu_lock);
12695 		mutex_exit(&dtrace_provider_lock);
12696 		mutex_exit(&dtrace_lock);
12697 		return (DDI_FAILURE);
12698 	}
12699 
12700 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
12701 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
12702 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
12703 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
12704 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
12705 		ddi_remove_minor_node(devi, NULL);
12706 		ddi_soft_state_fini(&dtrace_softstate);
12707 		mutex_exit(&cpu_lock);
12708 		mutex_exit(&dtrace_provider_lock);
12709 		mutex_exit(&dtrace_lock);
12710 		return (DDI_FAILURE);
12711 	}
12712 
12713 	ddi_report_dev(devi);
12714 	dtrace_devi = devi;
12715 
12716 	dtrace_modload = dtrace_module_loaded;
12717 	dtrace_modunload = dtrace_module_unloaded;
12718 	dtrace_cpu_init = dtrace_cpu_setup_initial;
12719 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
12720 	dtrace_helpers_fork = dtrace_helpers_duplicate;
12721 	dtrace_cpustart_init = dtrace_suspend;
12722 	dtrace_cpustart_fini = dtrace_resume;
12723 	dtrace_debugger_init = dtrace_suspend;
12724 	dtrace_debugger_fini = dtrace_resume;
12725 	dtrace_kreloc_init = dtrace_suspend;
12726 	dtrace_kreloc_fini = dtrace_resume;
12727 
12728 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
12729 
12730 	ASSERT(MUTEX_HELD(&cpu_lock));
12731 
12732 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
12733 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12734 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
12735 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
12736 	    VM_SLEEP | VMC_IDENTIFIER);
12737 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
12738 	    1, INT_MAX, 0);
12739 
12740 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
12741 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
12742 	    NULL, NULL, NULL, NULL, NULL, 0);
12743 
12744 	ASSERT(MUTEX_HELD(&cpu_lock));
12745 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
12746 	    offsetof(dtrace_probe_t, dtpr_nextmod),
12747 	    offsetof(dtrace_probe_t, dtpr_prevmod));
12748 
12749 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
12750 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
12751 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
12752 
12753 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
12754 	    offsetof(dtrace_probe_t, dtpr_nextname),
12755 	    offsetof(dtrace_probe_t, dtpr_prevname));
12756 
12757 	if (dtrace_retain_max < 1) {
12758 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
12759 		    "setting to 1", dtrace_retain_max);
12760 		dtrace_retain_max = 1;
12761 	}
12762 
12763 	/*
12764 	 * Now discover our toxic ranges.
12765 	 */
12766 	dtrace_toxic_ranges(dtrace_toxrange_add);
12767 
12768 	/*
12769 	 * Before we register ourselves as a provider to our own framework,
12770 	 * we would like to assert that dtrace_provider is NULL -- but that's
12771 	 * not true if we were loaded as a dependency of a DTrace provider.
12772 	 * Once we've registered, we can assert that dtrace_provider is our
12773 	 * pseudo provider.
12774 	 */
12775 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
12776 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
12777 
12778 	ASSERT(dtrace_provider != NULL);
12779 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
12780 
12781 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
12782 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
12783 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
12784 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
12785 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
12786 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
12787 
12788 	dtrace_anon_property();
12789 	mutex_exit(&cpu_lock);
12790 
12791 	/*
12792 	 * If DTrace helper tracing is enabled, we need to allocate the
12793 	 * trace buffer and initialize the values.
12794 	 */
12795 	if (dtrace_helptrace_enabled) {
12796 		ASSERT(dtrace_helptrace_buffer == NULL);
12797 		dtrace_helptrace_buffer =
12798 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
12799 		dtrace_helptrace_next = 0;
12800 	}
12801 
12802 	/*
12803 	 * If there are already providers, we must ask them to provide their
12804 	 * probes, and then match any anonymous enabling against them.  Note
12805 	 * that there should be no other retained enablings at this time:
12806 	 * the only retained enablings at this time should be the anonymous
12807 	 * enabling.
12808 	 */
12809 	if (dtrace_anon.dta_enabling != NULL) {
12810 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
12811 
12812 		dtrace_enabling_provide(NULL);
12813 		state = dtrace_anon.dta_state;
12814 
12815 		/*
12816 		 * We couldn't hold cpu_lock across the above call to
12817 		 * dtrace_enabling_provide(), but we must hold it to actually
12818 		 * enable the probes.  We have to drop all of our locks, pick
12819 		 * up cpu_lock, and regain our locks before matching the
12820 		 * retained anonymous enabling.
12821 		 */
12822 		mutex_exit(&dtrace_lock);
12823 		mutex_exit(&dtrace_provider_lock);
12824 
12825 		mutex_enter(&cpu_lock);
12826 		mutex_enter(&dtrace_provider_lock);
12827 		mutex_enter(&dtrace_lock);
12828 
12829 		if ((enab = dtrace_anon.dta_enabling) != NULL)
12830 			(void) dtrace_enabling_match(enab, NULL);
12831 
12832 		mutex_exit(&cpu_lock);
12833 	}
12834 
12835 	mutex_exit(&dtrace_lock);
12836 	mutex_exit(&dtrace_provider_lock);
12837 
12838 	if (state != NULL) {
12839 		/*
12840 		 * If we created any anonymous state, set it going now.
12841 		 */
12842 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
12843 	}
12844 
12845 	return (DDI_SUCCESS);
12846 }
12847 
12848 /*ARGSUSED*/
12849 static int
12850 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
12851 {
12852 	dtrace_state_t *state;
12853 	uint32_t priv;
12854 	uid_t uid;
12855 
12856 	if (getminor(*devp) == DTRACEMNRN_HELPER)
12857 		return (0);
12858 
12859 	/*
12860 	 * If this wasn't an open with the "helper" minor, then it must be
12861 	 * the "dtrace" minor.
12862 	 */
12863 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
12864 
12865 	/*
12866 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
12867 	 * caller lacks sufficient permission to do anything with DTrace.
12868 	 */
12869 	dtrace_cred2priv(cred_p, &priv, &uid);
12870 	if (priv == DTRACE_PRIV_NONE)
12871 		return (EACCES);
12872 
12873 	/*
12874 	 * Ask all providers to provide all their probes.
12875 	 */
12876 	mutex_enter(&dtrace_provider_lock);
12877 	dtrace_probe_provide(NULL, NULL);
12878 	mutex_exit(&dtrace_provider_lock);
12879 
12880 	mutex_enter(&cpu_lock);
12881 	mutex_enter(&dtrace_lock);
12882 	dtrace_opens++;
12883 	dtrace_membar_producer();
12884 
12885 	/*
12886 	 * If the kernel debugger is active (that is, if the kernel debugger
12887 	 * modified text in some way), we won't allow the open.
12888 	 */
12889 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
12890 		dtrace_opens--;
12891 		mutex_exit(&cpu_lock);
12892 		mutex_exit(&dtrace_lock);
12893 		return (EBUSY);
12894 	}
12895 
12896 	state = dtrace_state_create(devp, cred_p);
12897 	mutex_exit(&cpu_lock);
12898 
12899 	if (state == NULL) {
12900 		if (--dtrace_opens == 0)
12901 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
12902 		mutex_exit(&dtrace_lock);
12903 		return (EAGAIN);
12904 	}
12905 
12906 	mutex_exit(&dtrace_lock);
12907 
12908 	return (0);
12909 }
12910 
12911 /*ARGSUSED*/
12912 static int
12913 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
12914 {
12915 	minor_t minor = getminor(dev);
12916 	dtrace_state_t *state;
12917 
12918 	if (minor == DTRACEMNRN_HELPER)
12919 		return (0);
12920 
12921 	state = ddi_get_soft_state(dtrace_softstate, minor);
12922 
12923 	mutex_enter(&cpu_lock);
12924 	mutex_enter(&dtrace_lock);
12925 
12926 	if (state->dts_anon) {
12927 		/*
12928 		 * There is anonymous state. Destroy that first.
12929 		 */
12930 		ASSERT(dtrace_anon.dta_state == NULL);
12931 		dtrace_state_destroy(state->dts_anon);
12932 	}
12933 
12934 	dtrace_state_destroy(state);
12935 	ASSERT(dtrace_opens > 0);
12936 	if (--dtrace_opens == 0)
12937 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
12938 
12939 	mutex_exit(&dtrace_lock);
12940 	mutex_exit(&cpu_lock);
12941 
12942 	return (0);
12943 }
12944 
12945 /*ARGSUSED*/
12946 static int
12947 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
12948 {
12949 	int rval;
12950 	dof_helper_t help, *dhp = NULL;
12951 
12952 	switch (cmd) {
12953 	case DTRACEHIOC_ADDDOF:
12954 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
12955 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
12956 			return (EFAULT);
12957 		}
12958 
12959 		dhp = &help;
12960 		arg = (intptr_t)help.dofhp_dof;
12961 		/*FALLTHROUGH*/
12962 
12963 	case DTRACEHIOC_ADD: {
12964 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
12965 
12966 		if (dof == NULL)
12967 			return (rval);
12968 
12969 		mutex_enter(&dtrace_lock);
12970 		dtrace_error = 0;
12971 
12972 		/*
12973 		 * dtrace_helper_slurp() takes responsibility for the dof --
12974 		 * it may free it now or it may save it and free it later.
12975 		 */
12976 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
12977 			*rv = rval;
12978 			rval = 0;
12979 		} else {
12980 			rval = EINVAL;
12981 		}
12982 
12983 		mutex_exit(&dtrace_lock);
12984 		return (rval);
12985 	}
12986 
12987 	case DTRACEHIOC_REMOVE: {
12988 		mutex_enter(&dtrace_lock);
12989 		rval = dtrace_helper_destroygen(arg);
12990 		mutex_exit(&dtrace_lock);
12991 
12992 		return (rval);
12993 	}
12994 
12995 	default:
12996 		break;
12997 	}
12998 
12999 	return (ENOTTY);
13000 }
13001 
13002 /*ARGSUSED*/
13003 static int
13004 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
13005 {
13006 	minor_t minor = getminor(dev);
13007 	dtrace_state_t *state;
13008 	int rval;
13009 
13010 	if (minor == DTRACEMNRN_HELPER)
13011 		return (dtrace_ioctl_helper(cmd, arg, rv));
13012 
13013 	state = ddi_get_soft_state(dtrace_softstate, minor);
13014 
13015 	if (state->dts_anon) {
13016 		ASSERT(dtrace_anon.dta_state == NULL);
13017 		state = state->dts_anon;
13018 	}
13019 
13020 	switch (cmd) {
13021 	case DTRACEIOC_PROVIDER: {
13022 		dtrace_providerdesc_t pvd;
13023 		dtrace_provider_t *pvp;
13024 
13025 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
13026 			return (EFAULT);
13027 
13028 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
13029 		mutex_enter(&dtrace_provider_lock);
13030 
13031 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
13032 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
13033 				break;
13034 		}
13035 
13036 		mutex_exit(&dtrace_provider_lock);
13037 
13038 		if (pvp == NULL)
13039 			return (ESRCH);
13040 
13041 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
13042 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
13043 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
13044 			return (EFAULT);
13045 
13046 		return (0);
13047 	}
13048 
13049 	case DTRACEIOC_EPROBE: {
13050 		dtrace_eprobedesc_t epdesc;
13051 		dtrace_ecb_t *ecb;
13052 		dtrace_action_t *act;
13053 		void *buf;
13054 		size_t size;
13055 		uintptr_t dest;
13056 		int nrecs;
13057 
13058 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
13059 			return (EFAULT);
13060 
13061 		mutex_enter(&dtrace_lock);
13062 
13063 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
13064 			mutex_exit(&dtrace_lock);
13065 			return (EINVAL);
13066 		}
13067 
13068 		if (ecb->dte_probe == NULL) {
13069 			mutex_exit(&dtrace_lock);
13070 			return (EINVAL);
13071 		}
13072 
13073 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
13074 		epdesc.dtepd_uarg = ecb->dte_uarg;
13075 		epdesc.dtepd_size = ecb->dte_size;
13076 
13077 		nrecs = epdesc.dtepd_nrecs;
13078 		epdesc.dtepd_nrecs = 0;
13079 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13080 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13081 				continue;
13082 
13083 			epdesc.dtepd_nrecs++;
13084 		}
13085 
13086 		/*
13087 		 * Now that we have the size, we need to allocate a temporary
13088 		 * buffer in which to store the complete description.  We need
13089 		 * the temporary buffer to be able to drop dtrace_lock()
13090 		 * across the copyout(), below.
13091 		 */
13092 		size = sizeof (dtrace_eprobedesc_t) +
13093 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
13094 
13095 		buf = kmem_alloc(size, KM_SLEEP);
13096 		dest = (uintptr_t)buf;
13097 
13098 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
13099 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
13100 
13101 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13102 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13103 				continue;
13104 
13105 			if (nrecs-- == 0)
13106 				break;
13107 
13108 			bcopy(&act->dta_rec, (void *)dest,
13109 			    sizeof (dtrace_recdesc_t));
13110 			dest += sizeof (dtrace_recdesc_t);
13111 		}
13112 
13113 		mutex_exit(&dtrace_lock);
13114 
13115 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13116 			kmem_free(buf, size);
13117 			return (EFAULT);
13118 		}
13119 
13120 		kmem_free(buf, size);
13121 		return (0);
13122 	}
13123 
13124 	case DTRACEIOC_AGGDESC: {
13125 		dtrace_aggdesc_t aggdesc;
13126 		dtrace_action_t *act;
13127 		dtrace_aggregation_t *agg;
13128 		int nrecs;
13129 		uint32_t offs;
13130 		dtrace_recdesc_t *lrec;
13131 		void *buf;
13132 		size_t size;
13133 		uintptr_t dest;
13134 
13135 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
13136 			return (EFAULT);
13137 
13138 		mutex_enter(&dtrace_lock);
13139 
13140 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
13141 			mutex_exit(&dtrace_lock);
13142 			return (EINVAL);
13143 		}
13144 
13145 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
13146 
13147 		nrecs = aggdesc.dtagd_nrecs;
13148 		aggdesc.dtagd_nrecs = 0;
13149 
13150 		offs = agg->dtag_base;
13151 		lrec = &agg->dtag_action.dta_rec;
13152 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
13153 
13154 		for (act = agg->dtag_first; ; act = act->dta_next) {
13155 			ASSERT(act->dta_intuple ||
13156 			    DTRACEACT_ISAGG(act->dta_kind));
13157 			aggdesc.dtagd_nrecs++;
13158 
13159 			if (act == &agg->dtag_action)
13160 				break;
13161 		}
13162 
13163 		/*
13164 		 * Now that we have the size, we need to allocate a temporary
13165 		 * buffer in which to store the complete description.  We need
13166 		 * the temporary buffer to be able to drop dtrace_lock()
13167 		 * across the copyout(), below.
13168 		 */
13169 		size = sizeof (dtrace_aggdesc_t) +
13170 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
13171 
13172 		buf = kmem_alloc(size, KM_SLEEP);
13173 		dest = (uintptr_t)buf;
13174 
13175 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
13176 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
13177 
13178 		for (act = agg->dtag_first; ; act = act->dta_next) {
13179 			dtrace_recdesc_t rec = act->dta_rec;
13180 
13181 			if (nrecs-- == 0)
13182 				break;
13183 
13184 			rec.dtrd_offset -= offs;
13185 			bcopy(&rec, (void *)dest, sizeof (rec));
13186 			dest += sizeof (dtrace_recdesc_t);
13187 
13188 			if (act == &agg->dtag_action)
13189 				break;
13190 		}
13191 
13192 		mutex_exit(&dtrace_lock);
13193 
13194 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13195 			kmem_free(buf, size);
13196 			return (EFAULT);
13197 		}
13198 
13199 		kmem_free(buf, size);
13200 		return (0);
13201 	}
13202 
13203 	case DTRACEIOC_ENABLE: {
13204 		dof_hdr_t *dof;
13205 		dtrace_enabling_t *enab = NULL;
13206 		dtrace_vstate_t *vstate;
13207 		int err = 0;
13208 
13209 		*rv = 0;
13210 
13211 		/*
13212 		 * If a NULL argument has been passed, we take this as our
13213 		 * cue to reevaluate our enablings.
13214 		 */
13215 		if (arg == NULL) {
13216 			mutex_enter(&cpu_lock);
13217 			mutex_enter(&dtrace_lock);
13218 			err = dtrace_enabling_matchstate(state, rv);
13219 			mutex_exit(&dtrace_lock);
13220 			mutex_exit(&cpu_lock);
13221 
13222 			return (err);
13223 		}
13224 
13225 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
13226 			return (rval);
13227 
13228 		mutex_enter(&cpu_lock);
13229 		mutex_enter(&dtrace_lock);
13230 		vstate = &state->dts_vstate;
13231 
13232 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13233 			mutex_exit(&dtrace_lock);
13234 			mutex_exit(&cpu_lock);
13235 			dtrace_dof_destroy(dof);
13236 			return (EBUSY);
13237 		}
13238 
13239 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
13240 			mutex_exit(&dtrace_lock);
13241 			mutex_exit(&cpu_lock);
13242 			dtrace_dof_destroy(dof);
13243 			return (EINVAL);
13244 		}
13245 
13246 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
13247 			dtrace_enabling_destroy(enab);
13248 			mutex_exit(&dtrace_lock);
13249 			mutex_exit(&cpu_lock);
13250 			dtrace_dof_destroy(dof);
13251 			return (rval);
13252 		}
13253 
13254 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
13255 			err = dtrace_enabling_retain(enab);
13256 		} else {
13257 			dtrace_enabling_destroy(enab);
13258 		}
13259 
13260 		mutex_exit(&cpu_lock);
13261 		mutex_exit(&dtrace_lock);
13262 		dtrace_dof_destroy(dof);
13263 
13264 		return (err);
13265 	}
13266 
13267 	case DTRACEIOC_REPLICATE: {
13268 		dtrace_repldesc_t desc;
13269 		dtrace_probedesc_t *match = &desc.dtrpd_match;
13270 		dtrace_probedesc_t *create = &desc.dtrpd_create;
13271 		int err;
13272 
13273 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13274 			return (EFAULT);
13275 
13276 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13277 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13278 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13279 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13280 
13281 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13282 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13283 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13284 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13285 
13286 		mutex_enter(&dtrace_lock);
13287 		err = dtrace_enabling_replicate(state, match, create);
13288 		mutex_exit(&dtrace_lock);
13289 
13290 		return (err);
13291 	}
13292 
13293 	case DTRACEIOC_PROBEMATCH:
13294 	case DTRACEIOC_PROBES: {
13295 		dtrace_probe_t *probe = NULL;
13296 		dtrace_probedesc_t desc;
13297 		dtrace_probekey_t pkey;
13298 		dtrace_id_t i;
13299 		int m = 0;
13300 		uint32_t priv;
13301 		uid_t uid;
13302 
13303 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13304 			return (EFAULT);
13305 
13306 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13307 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13308 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13309 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13310 
13311 		/*
13312 		 * Before we attempt to match this probe, we want to give
13313 		 * all providers the opportunity to provide it.
13314 		 */
13315 		if (desc.dtpd_id == DTRACE_IDNONE) {
13316 			mutex_enter(&dtrace_provider_lock);
13317 			dtrace_probe_provide(&desc, NULL);
13318 			mutex_exit(&dtrace_provider_lock);
13319 			desc.dtpd_id++;
13320 		}
13321 
13322 		if (cmd == DTRACEIOC_PROBEMATCH)  {
13323 			dtrace_probekey(&desc, &pkey);
13324 			pkey.dtpk_id = DTRACE_IDNONE;
13325 		}
13326 
13327 		uid = crgetuid(cr);
13328 		dtrace_cred2priv(cr, &priv, &uid);
13329 
13330 		mutex_enter(&dtrace_lock);
13331 
13332 		if (cmd == DTRACEIOC_PROBEMATCH) {
13333 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13334 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13335 				    (m = dtrace_match_probe(probe, &pkey,
13336 				    priv, uid)) != 0)
13337 					break;
13338 			}
13339 
13340 			if (m < 0) {
13341 				mutex_exit(&dtrace_lock);
13342 				return (EINVAL);
13343 			}
13344 
13345 		} else {
13346 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13347 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13348 				    dtrace_match_priv(probe, priv, uid))
13349 					break;
13350 			}
13351 		}
13352 
13353 		if (probe == NULL) {
13354 			mutex_exit(&dtrace_lock);
13355 			return (ESRCH);
13356 		}
13357 
13358 		dtrace_probe_description(probe, &desc);
13359 		mutex_exit(&dtrace_lock);
13360 
13361 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13362 			return (EFAULT);
13363 
13364 		return (0);
13365 	}
13366 
13367 	case DTRACEIOC_PROBEARG: {
13368 		dtrace_argdesc_t desc;
13369 		dtrace_probe_t *probe;
13370 		dtrace_provider_t *prov;
13371 
13372 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13373 			return (EFAULT);
13374 
13375 		if (desc.dtargd_id == DTRACE_IDNONE)
13376 			return (EINVAL);
13377 
13378 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
13379 			return (EINVAL);
13380 
13381 		mutex_enter(&dtrace_provider_lock);
13382 		mutex_enter(&mod_lock);
13383 		mutex_enter(&dtrace_lock);
13384 
13385 		if (desc.dtargd_id > dtrace_nprobes) {
13386 			mutex_exit(&dtrace_lock);
13387 			mutex_exit(&mod_lock);
13388 			mutex_exit(&dtrace_provider_lock);
13389 			return (EINVAL);
13390 		}
13391 
13392 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
13393 			mutex_exit(&dtrace_lock);
13394 			mutex_exit(&mod_lock);
13395 			mutex_exit(&dtrace_provider_lock);
13396 			return (EINVAL);
13397 		}
13398 
13399 		mutex_exit(&dtrace_lock);
13400 
13401 		prov = probe->dtpr_provider;
13402 
13403 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
13404 			/*
13405 			 * There isn't any typed information for this probe.
13406 			 * Set the argument number to DTRACE_ARGNONE.
13407 			 */
13408 			desc.dtargd_ndx = DTRACE_ARGNONE;
13409 		} else {
13410 			desc.dtargd_native[0] = '\0';
13411 			desc.dtargd_xlate[0] = '\0';
13412 			desc.dtargd_mapping = desc.dtargd_ndx;
13413 
13414 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
13415 			    probe->dtpr_id, probe->dtpr_arg, &desc);
13416 		}
13417 
13418 		mutex_exit(&mod_lock);
13419 		mutex_exit(&dtrace_provider_lock);
13420 
13421 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13422 			return (EFAULT);
13423 
13424 		return (0);
13425 	}
13426 
13427 	case DTRACEIOC_GO: {
13428 		processorid_t cpuid;
13429 		rval = dtrace_state_go(state, &cpuid);
13430 
13431 		if (rval != 0)
13432 			return (rval);
13433 
13434 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13435 			return (EFAULT);
13436 
13437 		return (0);
13438 	}
13439 
13440 	case DTRACEIOC_STOP: {
13441 		processorid_t cpuid;
13442 
13443 		mutex_enter(&dtrace_lock);
13444 		rval = dtrace_state_stop(state, &cpuid);
13445 		mutex_exit(&dtrace_lock);
13446 
13447 		if (rval != 0)
13448 			return (rval);
13449 
13450 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13451 			return (EFAULT);
13452 
13453 		return (0);
13454 	}
13455 
13456 	case DTRACEIOC_DOFGET: {
13457 		dof_hdr_t hdr, *dof;
13458 		uint64_t len;
13459 
13460 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
13461 			return (EFAULT);
13462 
13463 		mutex_enter(&dtrace_lock);
13464 		dof = dtrace_dof_create(state);
13465 		mutex_exit(&dtrace_lock);
13466 
13467 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
13468 		rval = copyout(dof, (void *)arg, len);
13469 		dtrace_dof_destroy(dof);
13470 
13471 		return (rval == 0 ? 0 : EFAULT);
13472 	}
13473 
13474 	case DTRACEIOC_AGGSNAP:
13475 	case DTRACEIOC_BUFSNAP: {
13476 		dtrace_bufdesc_t desc;
13477 		caddr_t cached;
13478 		dtrace_buffer_t *buf;
13479 
13480 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13481 			return (EFAULT);
13482 
13483 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
13484 			return (EINVAL);
13485 
13486 		mutex_enter(&dtrace_lock);
13487 
13488 		if (cmd == DTRACEIOC_BUFSNAP) {
13489 			buf = &state->dts_buffer[desc.dtbd_cpu];
13490 		} else {
13491 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
13492 		}
13493 
13494 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
13495 			size_t sz = buf->dtb_offset;
13496 
13497 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
13498 				mutex_exit(&dtrace_lock);
13499 				return (EBUSY);
13500 			}
13501 
13502 			/*
13503 			 * If this buffer has already been consumed, we're
13504 			 * going to indicate that there's nothing left here
13505 			 * to consume.
13506 			 */
13507 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
13508 				mutex_exit(&dtrace_lock);
13509 
13510 				desc.dtbd_size = 0;
13511 				desc.dtbd_drops = 0;
13512 				desc.dtbd_errors = 0;
13513 				desc.dtbd_oldest = 0;
13514 				sz = sizeof (desc);
13515 
13516 				if (copyout(&desc, (void *)arg, sz) != 0)
13517 					return (EFAULT);
13518 
13519 				return (0);
13520 			}
13521 
13522 			/*
13523 			 * If this is a ring buffer that has wrapped, we want
13524 			 * to copy the whole thing out.
13525 			 */
13526 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
13527 				dtrace_buffer_polish(buf);
13528 				sz = buf->dtb_size;
13529 			}
13530 
13531 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
13532 				mutex_exit(&dtrace_lock);
13533 				return (EFAULT);
13534 			}
13535 
13536 			desc.dtbd_size = sz;
13537 			desc.dtbd_drops = buf->dtb_drops;
13538 			desc.dtbd_errors = buf->dtb_errors;
13539 			desc.dtbd_oldest = buf->dtb_xamot_offset;
13540 
13541 			mutex_exit(&dtrace_lock);
13542 
13543 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13544 				return (EFAULT);
13545 
13546 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
13547 
13548 			return (0);
13549 		}
13550 
13551 		if (buf->dtb_tomax == NULL) {
13552 			ASSERT(buf->dtb_xamot == NULL);
13553 			mutex_exit(&dtrace_lock);
13554 			return (ENOENT);
13555 		}
13556 
13557 		cached = buf->dtb_tomax;
13558 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
13559 
13560 		dtrace_xcall(desc.dtbd_cpu,
13561 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
13562 
13563 		state->dts_errors += buf->dtb_xamot_errors;
13564 
13565 		/*
13566 		 * If the buffers did not actually switch, then the cross call
13567 		 * did not take place -- presumably because the given CPU is
13568 		 * not in the ready set.  If this is the case, we'll return
13569 		 * ENOENT.
13570 		 */
13571 		if (buf->dtb_tomax == cached) {
13572 			ASSERT(buf->dtb_xamot != cached);
13573 			mutex_exit(&dtrace_lock);
13574 			return (ENOENT);
13575 		}
13576 
13577 		ASSERT(cached == buf->dtb_xamot);
13578 
13579 		/*
13580 		 * We have our snapshot; now copy it out.
13581 		 */
13582 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
13583 		    buf->dtb_xamot_offset) != 0) {
13584 			mutex_exit(&dtrace_lock);
13585 			return (EFAULT);
13586 		}
13587 
13588 		desc.dtbd_size = buf->dtb_xamot_offset;
13589 		desc.dtbd_drops = buf->dtb_xamot_drops;
13590 		desc.dtbd_errors = buf->dtb_xamot_errors;
13591 		desc.dtbd_oldest = 0;
13592 
13593 		mutex_exit(&dtrace_lock);
13594 
13595 		/*
13596 		 * Finally, copy out the buffer description.
13597 		 */
13598 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13599 			return (EFAULT);
13600 
13601 		return (0);
13602 	}
13603 
13604 	case DTRACEIOC_CONF: {
13605 		dtrace_conf_t conf;
13606 
13607 		bzero(&conf, sizeof (conf));
13608 		conf.dtc_difversion = DIF_VERSION;
13609 		conf.dtc_difintregs = DIF_DIR_NREGS;
13610 		conf.dtc_diftupregs = DIF_DTR_NREGS;
13611 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
13612 
13613 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
13614 			return (EFAULT);
13615 
13616 		return (0);
13617 	}
13618 
13619 	case DTRACEIOC_STATUS: {
13620 		dtrace_status_t stat;
13621 		dtrace_dstate_t *dstate;
13622 		int i, j;
13623 		uint64_t nerrs;
13624 
13625 		/*
13626 		 * See the comment in dtrace_state_deadman() for the reason
13627 		 * for setting dts_laststatus to INT64_MAX before setting
13628 		 * it to the correct value.
13629 		 */
13630 		state->dts_laststatus = INT64_MAX;
13631 		dtrace_membar_producer();
13632 		state->dts_laststatus = dtrace_gethrtime();
13633 
13634 		bzero(&stat, sizeof (stat));
13635 
13636 		mutex_enter(&dtrace_lock);
13637 
13638 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
13639 			mutex_exit(&dtrace_lock);
13640 			return (ENOENT);
13641 		}
13642 
13643 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
13644 			stat.dtst_exiting = 1;
13645 
13646 		nerrs = state->dts_errors;
13647 		dstate = &state->dts_vstate.dtvs_dynvars;
13648 
13649 		for (i = 0; i < NCPU; i++) {
13650 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
13651 
13652 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
13653 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
13654 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
13655 
13656 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
13657 				stat.dtst_filled++;
13658 
13659 			nerrs += state->dts_buffer[i].dtb_errors;
13660 
13661 			for (j = 0; j < state->dts_nspeculations; j++) {
13662 				dtrace_speculation_t *spec;
13663 				dtrace_buffer_t *buf;
13664 
13665 				spec = &state->dts_speculations[j];
13666 				buf = &spec->dtsp_buffer[i];
13667 				stat.dtst_specdrops += buf->dtb_xamot_drops;
13668 			}
13669 		}
13670 
13671 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
13672 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
13673 		stat.dtst_killed =
13674 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
13675 		stat.dtst_errors = nerrs;
13676 
13677 		mutex_exit(&dtrace_lock);
13678 
13679 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
13680 			return (EFAULT);
13681 
13682 		return (0);
13683 	}
13684 
13685 	case DTRACEIOC_FORMAT: {
13686 		dtrace_fmtdesc_t fmt;
13687 		char *str;
13688 		int len;
13689 
13690 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
13691 			return (EFAULT);
13692 
13693 		mutex_enter(&dtrace_lock);
13694 
13695 		if (fmt.dtfd_format == 0 ||
13696 		    fmt.dtfd_format > state->dts_nformats) {
13697 			mutex_exit(&dtrace_lock);
13698 			return (EINVAL);
13699 		}
13700 
13701 		/*
13702 		 * Format strings are allocated contiguously and they are
13703 		 * never freed; if a format index is less than the number
13704 		 * of formats, we can assert that the format map is non-NULL
13705 		 * and that the format for the specified index is non-NULL.
13706 		 */
13707 		ASSERT(state->dts_formats != NULL);
13708 		str = state->dts_formats[fmt.dtfd_format - 1];
13709 		ASSERT(str != NULL);
13710 
13711 		len = strlen(str) + 1;
13712 
13713 		if (len > fmt.dtfd_length) {
13714 			fmt.dtfd_length = len;
13715 
13716 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
13717 				mutex_exit(&dtrace_lock);
13718 				return (EINVAL);
13719 			}
13720 		} else {
13721 			if (copyout(str, fmt.dtfd_string, len) != 0) {
13722 				mutex_exit(&dtrace_lock);
13723 				return (EINVAL);
13724 			}
13725 		}
13726 
13727 		mutex_exit(&dtrace_lock);
13728 		return (0);
13729 	}
13730 
13731 	default:
13732 		break;
13733 	}
13734 
13735 	return (ENOTTY);
13736 }
13737 
13738 /*ARGSUSED*/
13739 static int
13740 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
13741 {
13742 	dtrace_state_t *state;
13743 
13744 	switch (cmd) {
13745 	case DDI_DETACH:
13746 		break;
13747 
13748 	case DDI_SUSPEND:
13749 		return (DDI_SUCCESS);
13750 
13751 	default:
13752 		return (DDI_FAILURE);
13753 	}
13754 
13755 	mutex_enter(&cpu_lock);
13756 	mutex_enter(&dtrace_provider_lock);
13757 	mutex_enter(&dtrace_lock);
13758 
13759 	if (dtrace_opens > 0) {
13760 		/*
13761 		 * This is only possible because of DTrace helpers attached
13762 		 * to a process -- they count as a DTrace open.  If the locking
13763 		 * weren't such a mess, we could assert that p_dtrace_helpers
13764 		 * is non-NULL for some process.
13765 		 */
13766 		mutex_exit(&dtrace_provider_lock);
13767 		mutex_exit(&dtrace_lock);
13768 		mutex_exit(&cpu_lock);
13769 		return (DDI_FAILURE);
13770 	}
13771 
13772 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
13773 		mutex_exit(&dtrace_provider_lock);
13774 		mutex_exit(&dtrace_lock);
13775 		mutex_exit(&cpu_lock);
13776 		return (DDI_FAILURE);
13777 	}
13778 
13779 	dtrace_provider = NULL;
13780 
13781 	if ((state = dtrace_anon_grab()) != NULL) {
13782 		/*
13783 		 * If there were ECBs on this state, the provider should
13784 		 * have not been allowed to detach; assert that there is
13785 		 * none.
13786 		 */
13787 		ASSERT(state->dts_necbs == 0);
13788 		dtrace_state_destroy(state);
13789 
13790 		/*
13791 		 * If we're being detached with anonymous state, we need to
13792 		 * indicate to the kernel debugger that DTrace is now inactive.
13793 		 */
13794 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13795 	}
13796 
13797 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
13798 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13799 	dtrace_cpu_init = NULL;
13800 	dtrace_helpers_cleanup = NULL;
13801 	dtrace_helpers_fork = NULL;
13802 	dtrace_cpustart_init = NULL;
13803 	dtrace_cpustart_fini = NULL;
13804 	dtrace_debugger_init = NULL;
13805 	dtrace_debugger_fini = NULL;
13806 	dtrace_kreloc_init = NULL;
13807 	dtrace_kreloc_fini = NULL;
13808 	dtrace_modload = NULL;
13809 	dtrace_modunload = NULL;
13810 
13811 	mutex_exit(&cpu_lock);
13812 
13813 	if (dtrace_helptrace_enabled) {
13814 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
13815 		dtrace_helptrace_buffer = NULL;
13816 	}
13817 
13818 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
13819 	dtrace_probes = NULL;
13820 	dtrace_nprobes = 0;
13821 
13822 	dtrace_hash_destroy(dtrace_bymod);
13823 	dtrace_hash_destroy(dtrace_byfunc);
13824 	dtrace_hash_destroy(dtrace_byname);
13825 	dtrace_bymod = NULL;
13826 	dtrace_byfunc = NULL;
13827 	dtrace_byname = NULL;
13828 
13829 	kmem_cache_destroy(dtrace_state_cache);
13830 	vmem_destroy(dtrace_minor);
13831 	vmem_destroy(dtrace_arena);
13832 
13833 	if (dtrace_toxrange != NULL) {
13834 		kmem_free(dtrace_toxrange,
13835 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
13836 		dtrace_toxrange = NULL;
13837 		dtrace_toxranges = 0;
13838 		dtrace_toxranges_max = 0;
13839 	}
13840 
13841 	ddi_remove_minor_node(dtrace_devi, NULL);
13842 	dtrace_devi = NULL;
13843 
13844 	ddi_soft_state_fini(&dtrace_softstate);
13845 
13846 	ASSERT(dtrace_vtime_references == 0);
13847 	ASSERT(dtrace_opens == 0);
13848 	ASSERT(dtrace_retained == NULL);
13849 
13850 	mutex_exit(&dtrace_lock);
13851 	mutex_exit(&dtrace_provider_lock);
13852 
13853 	/*
13854 	 * We don't destroy the task queue until after we have dropped our
13855 	 * locks (taskq_destroy() may block on running tasks).  To prevent
13856 	 * attempting to do work after we have effectively detached but before
13857 	 * the task queue has been destroyed, all tasks dispatched via the
13858 	 * task queue must check that DTrace is still attached before
13859 	 * performing any operation.
13860 	 */
13861 	taskq_destroy(dtrace_taskq);
13862 	dtrace_taskq = NULL;
13863 
13864 	return (DDI_SUCCESS);
13865 }
13866 
13867 /*ARGSUSED*/
13868 static int
13869 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
13870 {
13871 	int error;
13872 
13873 	switch (infocmd) {
13874 	case DDI_INFO_DEVT2DEVINFO:
13875 		*result = (void *)dtrace_devi;
13876 		error = DDI_SUCCESS;
13877 		break;
13878 	case DDI_INFO_DEVT2INSTANCE:
13879 		*result = (void *)0;
13880 		error = DDI_SUCCESS;
13881 		break;
13882 	default:
13883 		error = DDI_FAILURE;
13884 	}
13885 	return (error);
13886 }
13887 
13888 static struct cb_ops dtrace_cb_ops = {
13889 	dtrace_open,		/* open */
13890 	dtrace_close,		/* close */
13891 	nulldev,		/* strategy */
13892 	nulldev,		/* print */
13893 	nodev,			/* dump */
13894 	nodev,			/* read */
13895 	nodev,			/* write */
13896 	dtrace_ioctl,		/* ioctl */
13897 	nodev,			/* devmap */
13898 	nodev,			/* mmap */
13899 	nodev,			/* segmap */
13900 	nochpoll,		/* poll */
13901 	ddi_prop_op,		/* cb_prop_op */
13902 	0,			/* streamtab  */
13903 	D_NEW | D_MP		/* Driver compatibility flag */
13904 };
13905 
13906 static struct dev_ops dtrace_ops = {
13907 	DEVO_REV,		/* devo_rev */
13908 	0,			/* refcnt */
13909 	dtrace_info,		/* get_dev_info */
13910 	nulldev,		/* identify */
13911 	nulldev,		/* probe */
13912 	dtrace_attach,		/* attach */
13913 	dtrace_detach,		/* detach */
13914 	nodev,			/* reset */
13915 	&dtrace_cb_ops,		/* driver operations */
13916 	NULL,			/* bus operations */
13917 	nodev			/* dev power */
13918 };
13919 
13920 static struct modldrv modldrv = {
13921 	&mod_driverops,		/* module type (this is a pseudo driver) */
13922 	"Dynamic Tracing",	/* name of module */
13923 	&dtrace_ops,		/* driver ops */
13924 };
13925 
13926 static struct modlinkage modlinkage = {
13927 	MODREV_1,
13928 	(void *)&modldrv,
13929 	NULL
13930 };
13931 
13932 int
13933 _init(void)
13934 {
13935 	return (mod_install(&modlinkage));
13936 }
13937 
13938 int
13939 _info(struct modinfo *modinfop)
13940 {
13941 	return (mod_info(&modlinkage, modinfop));
13942 }
13943 
13944 int
13945 _fini(void)
13946 {
13947 	return (mod_remove(&modlinkage));
13948 }
13949