xref: /titanic_51/usr/src/uts/common/dtrace/dtrace.c (revision 1901763758d1e410cf3b2040acae1a01781765ce)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace - Dynamic Tracing for Solaris
31  *
32  * This is the implementation of the Solaris Dynamic Tracing framework
33  * (DTrace).  The user-visible interface to DTrace is described at length in
34  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
35  * library, the in-kernel DTrace framework, and the DTrace providers are
36  * described in the block comments in the <sys/dtrace.h> header file.  The
37  * internal architecture of DTrace is described in the block comments in the
38  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
39  * implementation very much assume mastery of all of these sources; if one has
40  * an unanswered question about the implementation, one should consult them
41  * first.
42  *
43  * The functions here are ordered roughly as follows:
44  *
45  *   - Probe context functions
46  *   - Probe hashing functions
47  *   - Non-probe context utility functions
48  *   - Matching functions
49  *   - Provider-to-Framework API functions
50  *   - Probe management functions
51  *   - DIF object functions
52  *   - Format functions
53  *   - Predicate functions
54  *   - ECB functions
55  *   - Buffer functions
56  *   - Enabling functions
57  *   - DOF functions
58  *   - Anonymous enabling functions
59  *   - Consumer state functions
60  *   - Helper functions
61  *   - Hook functions
62  *   - Driver cookbook functions
63  *
64  * Each group of functions begins with a block comment labelled the "DTrace
65  * [Group] Functions", allowing one to find each block by searching forward
66  * on capital-f functions.
67  */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 
95 /*
96  * DTrace Tunable Variables
97  *
98  * The following variables may be tuned by adding a line to /etc/system that
99  * includes both the name of the DTrace module ("dtrace") and the name of the
100  * variable.  For example:
101  *
102  *   set dtrace:dtrace_destructive_disallow = 1
103  *
104  * In general, the only variables that one should be tuning this way are those
105  * that affect system-wide DTrace behavior, and for which the default behavior
106  * is undesirable.  Most of these variables are tunable on a per-consumer
107  * basis using DTrace options, and need not be tuned on a system-wide basis.
108  * When tuning these variables, avoid pathological values; while some attempt
109  * is made to verify the integrity of these variables, they are not considered
110  * part of the supported interface to DTrace, and they are therefore not
111  * checked comprehensively.  Further, these variables should not be tuned
112  * dynamically via "mdb -kw" or other means; they should only be tuned via
113  * /etc/system.
114  */
115 int		dtrace_destructive_disallow = 0;
116 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
117 size_t		dtrace_difo_maxsize = (256 * 1024);
118 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
119 size_t		dtrace_global_maxsize = (16 * 1024);
120 size_t		dtrace_actions_max = (16 * 1024);
121 size_t		dtrace_retain_max = 1024;
122 dtrace_optval_t	dtrace_helper_actions_max = 32;
123 dtrace_optval_t	dtrace_helper_providers_max = 32;
124 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
125 size_t		dtrace_strsize_default = 256;
126 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
127 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
128 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
129 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
130 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
131 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
132 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
133 dtrace_optval_t	dtrace_nspec_default = 1;
134 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
135 dtrace_optval_t dtrace_stackframes_default = 20;
136 dtrace_optval_t dtrace_ustackframes_default = 20;
137 dtrace_optval_t dtrace_jstackframes_default = 50;
138 dtrace_optval_t dtrace_jstackstrsize_default = 512;
139 int		dtrace_msgdsize_max = 128;
140 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
141 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
142 int		dtrace_devdepth_max = 32;
143 int		dtrace_err_verbose;
144 hrtime_t	dtrace_deadman_interval = NANOSEC;
145 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
146 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
147 
148 /*
149  * DTrace External Variables
150  *
151  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
152  * available to DTrace consumers via the backtick (`) syntax.  One of these,
153  * dtrace_zero, is made deliberately so:  it is provided as a source of
154  * well-known, zero-filled memory.  While this variable is not documented,
155  * it is used by some translators as an implementation detail.
156  */
157 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
158 
159 /*
160  * DTrace Internal Variables
161  */
162 static dev_info_t	*dtrace_devi;		/* device info */
163 static vmem_t		*dtrace_arena;		/* probe ID arena */
164 static vmem_t		*dtrace_minor;		/* minor number arena */
165 static taskq_t		*dtrace_taskq;		/* task queue */
166 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
167 static int		dtrace_nprobes;		/* number of probes */
168 static dtrace_provider_t *dtrace_provider;	/* provider list */
169 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
170 static int		dtrace_opens;		/* number of opens */
171 static int		dtrace_helpers;		/* number of helpers */
172 static void		*dtrace_softstate;	/* softstate pointer */
173 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
174 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
175 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
176 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
177 static int		dtrace_toxranges;	/* number of toxic ranges */
178 static int		dtrace_toxranges_max;	/* size of toxic range array */
179 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
180 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
181 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
182 static kthread_t	*dtrace_panicked;	/* panicking thread */
183 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
184 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
185 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
186 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
187 static dtrace_state_t	*dtrace_state;		/* temporary variable */
188 static int		dtrace_err;		/* temporary variable */
189 
190 /*
191  * DTrace Locking
192  * DTrace is protected by three (relatively coarse-grained) locks:
193  *
194  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
195  *     including enabling state, probes, ECBs, consumer state, helper state,
196  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
197  *     probe context is lock-free -- synchronization is handled via the
198  *     dtrace_sync() cross call mechanism.
199  *
200  * (2) dtrace_provider_lock is required when manipulating provider state, or
201  *     when provider state must be held constant.
202  *
203  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
204  *     when meta provider state must be held constant.
205  *
206  * The lock ordering between these three locks is dtrace_meta_lock before
207  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
208  * several places where dtrace_provider_lock is held by the framework as it
209  * calls into the providers -- which then call back into the framework,
210  * grabbing dtrace_lock.)
211  *
212  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
213  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
214  * role as a coarse-grained lock; it is acquired before both of these locks.
215  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
216  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
217  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
218  * acquired _between_ dtrace_provider_lock and dtrace_lock.
219  */
220 static kmutex_t		dtrace_lock;		/* probe state lock */
221 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
222 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
223 
224 /*
225  * DTrace Provider Variables
226  *
227  * These are the variables relating to DTrace as a provider (that is, the
228  * provider of the BEGIN, END, and ERROR probes).
229  */
230 static dtrace_pattr_t	dtrace_provider_attr = {
231 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
232 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
233 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
234 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
235 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
236 };
237 
238 static void
239 dtrace_nullop(void)
240 {}
241 
242 static dtrace_pops_t	dtrace_provider_ops = {
243 	(void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
244 	(void (*)(void *, struct modctl *))dtrace_nullop,
245 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
246 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
247 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
248 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
249 	NULL,
250 	NULL,
251 	NULL,
252 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
253 };
254 
255 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
256 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
257 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
258 
259 /*
260  * DTrace Helper Tracing Variables
261  */
262 uint32_t dtrace_helptrace_next = 0;
263 uint32_t dtrace_helptrace_nlocals;
264 char	*dtrace_helptrace_buffer;
265 int	dtrace_helptrace_bufsize = 512 * 1024;
266 
267 #ifdef DEBUG
268 int	dtrace_helptrace_enabled = 1;
269 #else
270 int	dtrace_helptrace_enabled = 0;
271 #endif
272 
273 /*
274  * DTrace Error Hashing
275  *
276  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
277  * table.  This is very useful for checking coverage of tests that are
278  * expected to induce DIF or DOF processing errors, and may be useful for
279  * debugging problems in the DIF code generator or in DOF generation .  The
280  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
281  */
282 #ifdef DEBUG
283 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
284 static const char *dtrace_errlast;
285 static kthread_t *dtrace_errthread;
286 static kmutex_t dtrace_errlock;
287 #endif
288 
289 /*
290  * DTrace Macros and Constants
291  *
292  * These are various macros that are useful in various spots in the
293  * implementation, along with a few random constants that have no meaning
294  * outside of the implementation.  There is no real structure to this cpp
295  * mishmash -- but is there ever?
296  */
297 #define	DTRACE_HASHSTR(hash, probe)	\
298 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
299 
300 #define	DTRACE_HASHNEXT(hash, probe)	\
301 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
302 
303 #define	DTRACE_HASHPREV(hash, probe)	\
304 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
305 
306 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
307 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
308 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
309 
310 #define	DTRACE_AGGHASHSIZE_SLEW		17
311 
312 /*
313  * The key for a thread-local variable consists of the lower 61 bits of the
314  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
315  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
316  * equal to a variable identifier.  This is necessary (but not sufficient) to
317  * assure that global associative arrays never collide with thread-local
318  * variables.  To guarantee that they cannot collide, we must also define the
319  * order for keying dynamic variables.  That order is:
320  *
321  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
322  *
323  * Because the variable-key and the tls-key are in orthogonal spaces, there is
324  * no way for a global variable key signature to match a thread-local key
325  * signature.
326  */
327 #define	DTRACE_TLS_THRKEY(where) { \
328 	uint_t intr = 0; \
329 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
330 	for (; actv; actv >>= 1) \
331 		intr++; \
332 	ASSERT(intr < (1 << 3)); \
333 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
334 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
335 }
336 
337 #define	DTRACE_STORE(type, tomax, offset, what) \
338 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
339 
340 #ifndef __i386
341 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
342 	if (addr & (size - 1)) {					\
343 		*flags |= CPU_DTRACE_BADALIGN;				\
344 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
345 		return (0);						\
346 	}
347 #else
348 #define	DTRACE_ALIGNCHECK(addr, size, flags)
349 #endif
350 
351 #define	DTRACE_LOADFUNC(bits)						\
352 /*CSTYLED*/								\
353 uint##bits##_t								\
354 dtrace_load##bits(uintptr_t addr)					\
355 {									\
356 	size_t size = bits / NBBY;					\
357 	/*CSTYLED*/							\
358 	uint##bits##_t rval;						\
359 	int i;								\
360 	volatile uint16_t *flags = (volatile uint16_t *)		\
361 	    &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;			\
362 									\
363 	DTRACE_ALIGNCHECK(addr, size, flags);				\
364 									\
365 	for (i = 0; i < dtrace_toxranges; i++) {			\
366 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
367 			continue;					\
368 									\
369 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
370 			continue;					\
371 									\
372 		/*							\
373 		 * This address falls within a toxic region; return 0.	\
374 		 */							\
375 		*flags |= CPU_DTRACE_BADADDR;				\
376 		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr;	\
377 		return (0);						\
378 	}								\
379 									\
380 	*flags |= CPU_DTRACE_NOFAULT;					\
381 	/*CSTYLED*/							\
382 	rval = *((volatile uint##bits##_t *)addr);			\
383 	*flags &= ~CPU_DTRACE_NOFAULT;					\
384 									\
385 	return (rval);							\
386 }
387 
388 #ifdef _LP64
389 #define	dtrace_loadptr	dtrace_load64
390 #else
391 #define	dtrace_loadptr	dtrace_load32
392 #endif
393 
394 #define	DTRACE_MATCH_NEXT	0
395 #define	DTRACE_MATCH_DONE	1
396 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
397 #define	DTRACE_STATE_ALIGN	64
398 
399 #define	DTRACE_FLAGS2FLT(flags)						\
400 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
401 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
402 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
403 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
404 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
405 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
406 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
407 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
408 	DTRACEFLT_UNKNOWN)
409 
410 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
411 static void dtrace_enabling_provide(dtrace_provider_t *);
412 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
413 static void dtrace_enabling_matchall(void);
414 static dtrace_state_t *dtrace_anon_grab(void);
415 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
416     dtrace_state_t *, uint64_t, uint64_t);
417 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
418 static void dtrace_buffer_drop(dtrace_buffer_t *);
419 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
420     dtrace_state_t *, dtrace_mstate_t *);
421 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
422     dtrace_optval_t);
423 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
424 
425 /*
426  * DTrace Probe Context Functions
427  *
428  * These functions are called from probe context.  Because probe context is
429  * any context in which C may be called, arbitrarily locks may be held,
430  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
431  * As a result, functions called from probe context may only call other DTrace
432  * support functions -- they may not interact at all with the system at large.
433  * (Note that the ASSERT macro is made probe-context safe by redefining it in
434  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
435  * loads are to be performed from probe context, they _must_ be in terms of
436  * the safe dtrace_load*() variants.
437  *
438  * Some functions in this block are not actually called from probe context;
439  * for these functions, there will be a comment above the function reading
440  * "Note:  not called from probe context."
441  */
442 void
443 dtrace_panic(const char *format, ...)
444 {
445 	va_list alist;
446 
447 	va_start(alist, format);
448 	dtrace_vpanic(format, alist);
449 	va_end(alist);
450 }
451 
452 int
453 dtrace_assfail(const char *a, const char *f, int l)
454 {
455 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
456 
457 	/*
458 	 * We just need something here that even the most clever compiler
459 	 * cannot optimize away.
460 	 */
461 	return (a[(uintptr_t)f]);
462 }
463 
464 /*
465  * Atomically increment a specified error counter from probe context.
466  */
467 static void
468 dtrace_error(uint32_t *counter)
469 {
470 	/*
471 	 * Most counters stored to in probe context are per-CPU counters.
472 	 * However, there are some error conditions that are sufficiently
473 	 * arcane that they don't merit per-CPU storage.  If these counters
474 	 * are incremented concurrently on different CPUs, scalability will be
475 	 * adversely affected -- but we don't expect them to be white-hot in a
476 	 * correctly constructed enabling...
477 	 */
478 	uint32_t oval, nval;
479 
480 	do {
481 		oval = *counter;
482 
483 		if ((nval = oval + 1) == 0) {
484 			/*
485 			 * If the counter would wrap, set it to 1 -- assuring
486 			 * that the counter is never zero when we have seen
487 			 * errors.  (The counter must be 32-bits because we
488 			 * aren't guaranteed a 64-bit compare&swap operation.)
489 			 * To save this code both the infamy of being fingered
490 			 * by a priggish news story and the indignity of being
491 			 * the target of a neo-puritan witch trial, we're
492 			 * carefully avoiding any colorful description of the
493 			 * likelihood of this condition -- but suffice it to
494 			 * say that it is only slightly more likely than the
495 			 * overflow of predicate cache IDs, as discussed in
496 			 * dtrace_predicate_create().
497 			 */
498 			nval = 1;
499 		}
500 	} while (dtrace_cas32(counter, oval, nval) != oval);
501 }
502 
503 /*
504  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
505  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
506  */
507 DTRACE_LOADFUNC(8)
508 DTRACE_LOADFUNC(16)
509 DTRACE_LOADFUNC(32)
510 DTRACE_LOADFUNC(64)
511 
512 static int
513 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
514 {
515 	if (dest < mstate->dtms_scratch_base)
516 		return (0);
517 
518 	if (dest + size < dest)
519 		return (0);
520 
521 	if (dest + size > mstate->dtms_scratch_ptr)
522 		return (0);
523 
524 	return (1);
525 }
526 
527 static int
528 dtrace_canstore_statvar(uint64_t addr, size_t sz,
529     dtrace_statvar_t **svars, int nsvars)
530 {
531 	int i;
532 
533 	for (i = 0; i < nsvars; i++) {
534 		dtrace_statvar_t *svar = svars[i];
535 
536 		if (svar == NULL || svar->dtsv_size == 0)
537 			continue;
538 
539 		if (addr - svar->dtsv_data < svar->dtsv_size &&
540 		    addr + sz <= svar->dtsv_data + svar->dtsv_size)
541 			return (1);
542 	}
543 
544 	return (0);
545 }
546 
547 /*
548  * Check to see if the address is within a memory region to which a store may
549  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
550  * region.  The caller of dtrace_canstore() is responsible for performing any
551  * alignment checks that are needed before stores are actually executed.
552  */
553 static int
554 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
555     dtrace_vstate_t *vstate)
556 {
557 	uintptr_t a;
558 	size_t s;
559 
560 	/*
561 	 * First, check to see if the address is in scratch space...
562 	 */
563 	a = mstate->dtms_scratch_base;
564 	s = mstate->dtms_scratch_size;
565 
566 	if (addr - a < s && addr + sz <= a + s)
567 		return (1);
568 
569 	/*
570 	 * Now check to see if it's a dynamic variable.  This check will pick
571 	 * up both thread-local variables and any global dynamically-allocated
572 	 * variables.
573 	 */
574 	a = (uintptr_t)vstate->dtvs_dynvars.dtds_base;
575 	s = vstate->dtvs_dynvars.dtds_size;
576 	if (addr - a < s && addr + sz <= a + s)
577 		return (1);
578 
579 	/*
580 	 * Finally, check the static local and global variables.  These checks
581 	 * take the longest, so we perform them last.
582 	 */
583 	if (dtrace_canstore_statvar(addr, sz,
584 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
585 		return (1);
586 
587 	if (dtrace_canstore_statvar(addr, sz,
588 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
589 		return (1);
590 
591 	return (0);
592 }
593 
594 /*
595  * Compare two strings using safe loads.
596  */
597 static int
598 dtrace_strncmp(char *s1, char *s2, size_t limit)
599 {
600 	uint8_t c1, c2;
601 	volatile uint16_t *flags;
602 
603 	if (s1 == s2 || limit == 0)
604 		return (0);
605 
606 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
607 
608 	do {
609 		if (s1 == NULL) {
610 			c1 = '\0';
611 		} else {
612 			c1 = dtrace_load8((uintptr_t)s1++);
613 		}
614 
615 		if (s2 == NULL) {
616 			c2 = '\0';
617 		} else {
618 			c2 = dtrace_load8((uintptr_t)s2++);
619 		}
620 
621 		if (c1 != c2)
622 			return (c1 - c2);
623 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
624 
625 	return (0);
626 }
627 
628 /*
629  * Compute strlen(s) for a string using safe memory accesses.  The additional
630  * len parameter is used to specify a maximum length to ensure completion.
631  */
632 static size_t
633 dtrace_strlen(const char *s, size_t lim)
634 {
635 	uint_t len;
636 
637 	for (len = 0; len != lim; len++) {
638 		if (dtrace_load8((uintptr_t)s++) == '\0')
639 			break;
640 	}
641 
642 	return (len);
643 }
644 
645 /*
646  * Check if an address falls within a toxic region.
647  */
648 static int
649 dtrace_istoxic(uintptr_t kaddr, size_t size)
650 {
651 	uintptr_t taddr, tsize;
652 	int i;
653 
654 	for (i = 0; i < dtrace_toxranges; i++) {
655 		taddr = dtrace_toxrange[i].dtt_base;
656 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
657 
658 		if (kaddr - taddr < tsize) {
659 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
660 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
661 			return (1);
662 		}
663 
664 		if (taddr - kaddr < size) {
665 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
666 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
667 			return (1);
668 		}
669 	}
670 
671 	return (0);
672 }
673 
674 /*
675  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
676  * memory specified by the DIF program.  The dst is assumed to be safe memory
677  * that we can store to directly because it is managed by DTrace.  As with
678  * standard bcopy, overlapping copies are handled properly.
679  */
680 static void
681 dtrace_bcopy(const void *src, void *dst, size_t len)
682 {
683 	if (len != 0) {
684 		uint8_t *s1 = dst;
685 		const uint8_t *s2 = src;
686 
687 		if (s1 <= s2) {
688 			do {
689 				*s1++ = dtrace_load8((uintptr_t)s2++);
690 			} while (--len != 0);
691 		} else {
692 			s2 += len;
693 			s1 += len;
694 
695 			do {
696 				*--s1 = dtrace_load8((uintptr_t)--s2);
697 			} while (--len != 0);
698 		}
699 	}
700 }
701 
702 /*
703  * Copy src to dst using safe memory accesses, up to either the specified
704  * length, or the point that a nul byte is encountered.  The src is assumed to
705  * be unsafe memory specified by the DIF program.  The dst is assumed to be
706  * safe memory that we can store to directly because it is managed by DTrace.
707  * Unlike dtrace_bcopy(), overlapping regions are not handled.
708  */
709 static void
710 dtrace_strcpy(const void *src, void *dst, size_t len)
711 {
712 	if (len != 0) {
713 		uint8_t *s1 = dst, c;
714 		const uint8_t *s2 = src;
715 
716 		do {
717 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
718 		} while (--len != 0 && c != '\0');
719 	}
720 }
721 
722 /*
723  * Copy src to dst, deriving the size and type from the specified (BYREF)
724  * variable type.  The src is assumed to be unsafe memory specified by the DIF
725  * program.  The dst is assumed to be DTrace variable memory that is of the
726  * specified type; we assume that we can store to directly.
727  */
728 static void
729 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
730 {
731 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
732 
733 	if (type->dtdt_kind == DIF_TYPE_STRING) {
734 		dtrace_strcpy(src, dst, type->dtdt_size);
735 	} else {
736 		dtrace_bcopy(src, dst, type->dtdt_size);
737 	}
738 }
739 
740 /*
741  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
742  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
743  * safe memory that we can access directly because it is managed by DTrace.
744  */
745 static int
746 dtrace_bcmp(const void *s1, const void *s2, size_t len)
747 {
748 	volatile uint16_t *flags;
749 
750 	flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
751 
752 	if (s1 == s2)
753 		return (0);
754 
755 	if (s1 == NULL || s2 == NULL)
756 		return (1);
757 
758 	if (s1 != s2 && len != 0) {
759 		const uint8_t *ps1 = s1;
760 		const uint8_t *ps2 = s2;
761 
762 		do {
763 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
764 				return (1);
765 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
766 	}
767 	return (0);
768 }
769 
770 /*
771  * Zero the specified region using a simple byte-by-byte loop.  Note that this
772  * is for safe DTrace-managed memory only.
773  */
774 static void
775 dtrace_bzero(void *dst, size_t len)
776 {
777 	uchar_t *cp;
778 
779 	for (cp = dst; len != 0; len--)
780 		*cp++ = 0;
781 }
782 
783 /*
784  * This privilege checks should be used by actions and subroutines to
785  * verify the credentials of the process that enabled the invoking ECB.
786  */
787 static int
788 dtrace_priv_proc_common(dtrace_state_t *state)
789 {
790 	uid_t uid = state->dts_cred.dcr_uid;
791 	gid_t gid = state->dts_cred.dcr_gid;
792 	cred_t *cr;
793 	proc_t *proc;
794 
795 	if ((cr = CRED()) != NULL &&
796 	    uid == cr->cr_uid &&
797 	    uid == cr->cr_ruid &&
798 	    uid == cr->cr_suid &&
799 	    gid == cr->cr_gid &&
800 	    gid == cr->cr_rgid &&
801 	    gid == cr->cr_sgid &&
802 	    (proc = ttoproc(curthread)) != NULL &&
803 	    !(proc->p_flag & SNOCD))
804 		return (1);
805 
806 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
807 
808 	return (0);
809 }
810 
811 static int
812 dtrace_priv_proc_destructive(dtrace_state_t *state)
813 {
814 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_DESTRUCTIVE)
815 		return (1);
816 
817 	return (dtrace_priv_proc_common(state));
818 }
819 
820 static int
821 dtrace_priv_proc_control(dtrace_state_t *state)
822 {
823 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
824 		return (1);
825 
826 	return (dtrace_priv_proc_common(state));
827 }
828 
829 static int
830 dtrace_priv_proc(dtrace_state_t *state)
831 {
832 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
833 		return (1);
834 
835 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
836 
837 	return (0);
838 }
839 
840 static int
841 dtrace_priv_kernel(dtrace_state_t *state)
842 {
843 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
844 		return (1);
845 
846 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
847 
848 	return (0);
849 }
850 
851 static int
852 dtrace_priv_kernel_destructive(dtrace_state_t *state)
853 {
854 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
855 		return (1);
856 
857 	cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
858 
859 	return (0);
860 }
861 
862 /*
863  * Note:  not called from probe context.  This function is called
864  * asynchronously (and at a regular interval) from outside of probe context to
865  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
866  * cleaning is explained in detail in <sys/dtrace_impl.h>.
867  */
868 void
869 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
870 {
871 	dtrace_dynvar_t *dirty;
872 	dtrace_dstate_percpu_t *dcpu;
873 	int i, work = 0;
874 
875 	for (i = 0; i < NCPU; i++) {
876 		dcpu = &dstate->dtds_percpu[i];
877 
878 		ASSERT(dcpu->dtdsc_rinsing == NULL);
879 
880 		/*
881 		 * If the dirty list is NULL, there is no dirty work to do.
882 		 */
883 		if (dcpu->dtdsc_dirty == NULL)
884 			continue;
885 
886 		/*
887 		 * If the clean list is non-NULL, then we're not going to do
888 		 * any work for this CPU -- it means that there has not been
889 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
890 		 * since the last time we cleaned house.
891 		 */
892 		if (dcpu->dtdsc_clean != NULL)
893 			continue;
894 
895 		work = 1;
896 
897 		/*
898 		 * Atomically move the dirty list aside.
899 		 */
900 		do {
901 			dirty = dcpu->dtdsc_dirty;
902 
903 			/*
904 			 * Before we zap the dirty list, set the rinsing list.
905 			 * (This allows for a potential assertion in
906 			 * dtrace_dynvar():  if a free dynamic variable appears
907 			 * on a hash chain, either the dirty list or the
908 			 * rinsing list for some CPU must be non-NULL.)
909 			 */
910 			dcpu->dtdsc_rinsing = dirty;
911 			dtrace_membar_producer();
912 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
913 		    dirty, NULL) != dirty);
914 	}
915 
916 	if (!work) {
917 		/*
918 		 * We have no work to do; we can simply return.
919 		 */
920 		return;
921 	}
922 
923 	dtrace_sync();
924 
925 	for (i = 0; i < NCPU; i++) {
926 		dcpu = &dstate->dtds_percpu[i];
927 
928 		if (dcpu->dtdsc_rinsing == NULL)
929 			continue;
930 
931 		/*
932 		 * We are now guaranteed that no hash chain contains a pointer
933 		 * into this dirty list; we can make it clean.
934 		 */
935 		ASSERT(dcpu->dtdsc_clean == NULL);
936 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
937 		dcpu->dtdsc_rinsing = NULL;
938 	}
939 
940 	/*
941 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
942 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
943 	 * This prevents a race whereby a CPU incorrectly decides that
944 	 * the state should be something other than DTRACE_DSTATE_CLEAN
945 	 * after dtrace_dynvar_clean() has completed.
946 	 */
947 	dtrace_sync();
948 
949 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
950 }
951 
952 /*
953  * Depending on the value of the op parameter, this function looks-up,
954  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
955  * allocation is requested, this function will return a pointer to a
956  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
957  * variable can be allocated.  If NULL is returned, the appropriate counter
958  * will be incremented.
959  */
960 dtrace_dynvar_t *
961 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
962     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op)
963 {
964 	uint64_t hashval = 1;
965 	dtrace_dynhash_t *hash = dstate->dtds_hash;
966 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
967 	processorid_t me = CPU->cpu_id, cpu = me;
968 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
969 	size_t bucket, ksize;
970 	size_t chunksize = dstate->dtds_chunksize;
971 	uintptr_t kdata, lock, nstate;
972 	uint_t i;
973 
974 	ASSERT(nkeys != 0);
975 
976 	/*
977 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
978 	 * algorithm.  For the by-value portions, we perform the algorithm in
979 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
980 	 * bit, and seems to have only a minute effect on distribution.  For
981 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
982 	 * over each referenced byte.  It's painful to do this, but it's much
983 	 * better than pathological hash distribution.  The efficacy of the
984 	 * hashing algorithm (and a comparison with other algorithms) may be
985 	 * found by running the ::dtrace_dynstat MDB dcmd.
986 	 */
987 	for (i = 0; i < nkeys; i++) {
988 		if (key[i].dttk_size == 0) {
989 			uint64_t val = key[i].dttk_value;
990 
991 			hashval += (val >> 48) & 0xffff;
992 			hashval += (hashval << 10);
993 			hashval ^= (hashval >> 6);
994 
995 			hashval += (val >> 32) & 0xffff;
996 			hashval += (hashval << 10);
997 			hashval ^= (hashval >> 6);
998 
999 			hashval += (val >> 16) & 0xffff;
1000 			hashval += (hashval << 10);
1001 			hashval ^= (hashval >> 6);
1002 
1003 			hashval += val & 0xffff;
1004 			hashval += (hashval << 10);
1005 			hashval ^= (hashval >> 6);
1006 		} else {
1007 			/*
1008 			 * This is incredibly painful, but it beats the hell
1009 			 * out of the alternative.
1010 			 */
1011 			uint64_t j, size = key[i].dttk_size;
1012 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1013 
1014 			for (j = 0; j < size; j++) {
1015 				hashval += dtrace_load8(base + j);
1016 				hashval += (hashval << 10);
1017 				hashval ^= (hashval >> 6);
1018 			}
1019 		}
1020 	}
1021 
1022 	hashval += (hashval << 3);
1023 	hashval ^= (hashval >> 11);
1024 	hashval += (hashval << 15);
1025 
1026 	/*
1027 	 * There is a remote chance (ideally, 1 in 2^32) that our hashval
1028 	 * comes out to be 0.  We rely on a zero hashval denoting a free
1029 	 * element; if this actually happens, we set the hashval to 1.
1030 	 */
1031 	if (hashval == 0)
1032 		hashval = 1;
1033 
1034 	/*
1035 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1036 	 * important here, tricks can be pulled to reduce it.  (However, it's
1037 	 * critical that hash collisions be kept to an absolute minimum;
1038 	 * they're much more painful than a divide.)  It's better to have a
1039 	 * solution that generates few collisions and still keeps things
1040 	 * relatively simple.
1041 	 */
1042 	bucket = hashval % dstate->dtds_hashsize;
1043 
1044 	if (op == DTRACE_DYNVAR_DEALLOC) {
1045 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1046 
1047 		for (;;) {
1048 			while ((lock = *lockp) & 1)
1049 				continue;
1050 
1051 			if (dtrace_casptr((void *)lockp,
1052 			    (void *)lock, (void *)(lock + 1)) == (void *)lock)
1053 				break;
1054 		}
1055 
1056 		dtrace_membar_producer();
1057 	}
1058 
1059 top:
1060 	prev = NULL;
1061 	lock = hash[bucket].dtdh_lock;
1062 
1063 	dtrace_membar_consumer();
1064 
1065 	start = hash[bucket].dtdh_chain;
1066 	ASSERT(start == NULL || start->dtdv_hashval != 0 ||
1067 	    op != DTRACE_DYNVAR_DEALLOC);
1068 
1069 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1070 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1071 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1072 
1073 		if (dvar->dtdv_hashval != hashval) {
1074 			if (dvar->dtdv_hashval == 0) {
1075 				/*
1076 				 * We've gone off the rails.  Somewhere
1077 				 * along the line, one of the members of this
1078 				 * hash chain was deleted.  We could assert
1079 				 * that either the dirty list or the rinsing
1080 				 * list is non-NULL.  (The dtrace_sync() in
1081 				 * dtrace_dynvar_clean() would validate this
1082 				 * assertion.)
1083 				 */
1084 				ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1085 				goto top;
1086 			}
1087 
1088 			goto next;
1089 		}
1090 
1091 		if (dtuple->dtt_nkeys != nkeys)
1092 			goto next;
1093 
1094 		for (i = 0; i < nkeys; i++, dkey++) {
1095 			if (dkey->dttk_size != key[i].dttk_size)
1096 				goto next; /* size or type mismatch */
1097 
1098 			if (dkey->dttk_size != 0) {
1099 				if (dtrace_bcmp(
1100 				    (void *)(uintptr_t)key[i].dttk_value,
1101 				    (void *)(uintptr_t)dkey->dttk_value,
1102 				    dkey->dttk_size))
1103 					goto next;
1104 			} else {
1105 				if (dkey->dttk_value != key[i].dttk_value)
1106 					goto next;
1107 			}
1108 		}
1109 
1110 		if (op != DTRACE_DYNVAR_DEALLOC)
1111 			return (dvar);
1112 
1113 		ASSERT(dvar->dtdv_next == NULL ||
1114 		    dvar->dtdv_next->dtdv_hashval != 0);
1115 
1116 		if (prev != NULL) {
1117 			ASSERT(hash[bucket].dtdh_chain != dvar);
1118 			ASSERT(start != dvar);
1119 			ASSERT(prev->dtdv_next == dvar);
1120 			prev->dtdv_next = dvar->dtdv_next;
1121 		} else {
1122 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1123 			    start, dvar->dtdv_next) != start) {
1124 				/*
1125 				 * We have failed to atomically swing the
1126 				 * hash table head pointer, presumably because
1127 				 * of a conflicting allocation on another CPU.
1128 				 * We need to reread the hash chain and try
1129 				 * again.
1130 				 */
1131 				goto top;
1132 			}
1133 		}
1134 
1135 		dtrace_membar_producer();
1136 
1137 		/*
1138 		 * Now clear the hash value to indicate that it's free.
1139 		 */
1140 		ASSERT(hash[bucket].dtdh_chain != dvar);
1141 		dvar->dtdv_hashval = 0;
1142 
1143 		dtrace_membar_producer();
1144 
1145 		/*
1146 		 * Set the next pointer to point at the dirty list, and
1147 		 * atomically swing the dirty pointer to the newly freed dvar.
1148 		 */
1149 		do {
1150 			next = dcpu->dtdsc_dirty;
1151 			dvar->dtdv_next = next;
1152 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1153 
1154 		/*
1155 		 * Finally, unlock this hash bucket.
1156 		 */
1157 		ASSERT(hash[bucket].dtdh_lock == lock);
1158 		ASSERT(lock & 1);
1159 		hash[bucket].dtdh_lock++;
1160 
1161 		return (NULL);
1162 next:
1163 		prev = dvar;
1164 		continue;
1165 	}
1166 
1167 	if (op != DTRACE_DYNVAR_ALLOC) {
1168 		/*
1169 		 * If we are not to allocate a new variable, we want to
1170 		 * return NULL now.  Before we return, check that the value
1171 		 * of the lock word hasn't changed.  If it has, we may have
1172 		 * seen an inconsistent snapshot.
1173 		 */
1174 		if (op == DTRACE_DYNVAR_NOALLOC) {
1175 			if (hash[bucket].dtdh_lock != lock)
1176 				goto top;
1177 		} else {
1178 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1179 			ASSERT(hash[bucket].dtdh_lock == lock);
1180 			ASSERT(lock & 1);
1181 			hash[bucket].dtdh_lock++;
1182 		}
1183 
1184 		return (NULL);
1185 	}
1186 
1187 	/*
1188 	 * We need to allocate a new dynamic variable.  The size we need is the
1189 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1190 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1191 	 * the size of any referred-to data (dsize).  We then round the final
1192 	 * size up to the chunksize for allocation.
1193 	 */
1194 	for (ksize = 0, i = 0; i < nkeys; i++)
1195 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1196 
1197 	/*
1198 	 * This should be pretty much impossible, but could happen if, say,
1199 	 * strange DIF specified the tuple.  Ideally, this should be an
1200 	 * assertion and not an error condition -- but that requires that the
1201 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1202 	 * bullet-proof.  (That is, it must not be able to be fooled by
1203 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1204 	 * solving this would presumably not amount to solving the Halting
1205 	 * Problem -- but it still seems awfully hard.
1206 	 */
1207 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1208 	    ksize + dsize > chunksize) {
1209 		dcpu->dtdsc_drops++;
1210 		return (NULL);
1211 	}
1212 
1213 	nstate = DTRACE_DSTATE_EMPTY;
1214 
1215 	do {
1216 retry:
1217 		free = dcpu->dtdsc_free;
1218 
1219 		if (free == NULL) {
1220 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1221 			void *rval;
1222 
1223 			if (clean == NULL) {
1224 				/*
1225 				 * We're out of dynamic variable space on
1226 				 * this CPU.  Unless we have tried all CPUs,
1227 				 * we'll try to allocate from a different
1228 				 * CPU.
1229 				 */
1230 				switch (dstate->dtds_state) {
1231 				case DTRACE_DSTATE_CLEAN: {
1232 					void *sp = &dstate->dtds_state;
1233 
1234 					if (++cpu >= NCPU)
1235 						cpu = 0;
1236 
1237 					if (dcpu->dtdsc_dirty != NULL &&
1238 					    nstate == DTRACE_DSTATE_EMPTY)
1239 						nstate = DTRACE_DSTATE_DIRTY;
1240 
1241 					if (dcpu->dtdsc_rinsing != NULL)
1242 						nstate = DTRACE_DSTATE_RINSING;
1243 
1244 					dcpu = &dstate->dtds_percpu[cpu];
1245 
1246 					if (cpu != me)
1247 						goto retry;
1248 
1249 					(void) dtrace_cas32(sp,
1250 					    DTRACE_DSTATE_CLEAN, nstate);
1251 
1252 					/*
1253 					 * To increment the correct bean
1254 					 * counter, take another lap.
1255 					 */
1256 					goto retry;
1257 				}
1258 
1259 				case DTRACE_DSTATE_DIRTY:
1260 					dcpu->dtdsc_dirty_drops++;
1261 					break;
1262 
1263 				case DTRACE_DSTATE_RINSING:
1264 					dcpu->dtdsc_rinsing_drops++;
1265 					break;
1266 
1267 				case DTRACE_DSTATE_EMPTY:
1268 					dcpu->dtdsc_drops++;
1269 					break;
1270 				}
1271 
1272 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1273 				return (NULL);
1274 			}
1275 
1276 			/*
1277 			 * The clean list appears to be non-empty.  We want to
1278 			 * move the clean list to the free list; we start by
1279 			 * moving the clean pointer aside.
1280 			 */
1281 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1282 			    clean, NULL) != clean) {
1283 				/*
1284 				 * We are in one of two situations:
1285 				 *
1286 				 *  (a)	The clean list was switched to the
1287 				 *	free list by another CPU.
1288 				 *
1289 				 *  (b)	The clean list was added to by the
1290 				 *	cleansing cyclic.
1291 				 *
1292 				 * In either of these situations, we can
1293 				 * just reattempt the free list allocation.
1294 				 */
1295 				goto retry;
1296 			}
1297 
1298 			ASSERT(clean->dtdv_hashval == 0);
1299 
1300 			/*
1301 			 * Now we'll move the clean list to the free list.
1302 			 * It's impossible for this to fail:  the only way
1303 			 * the free list can be updated is through this
1304 			 * code path, and only one CPU can own the clean list.
1305 			 * Thus, it would only be possible for this to fail if
1306 			 * this code were racing with dtrace_dynvar_clean().
1307 			 * (That is, if dtrace_dynvar_clean() updated the clean
1308 			 * list, and we ended up racing to update the free
1309 			 * list.)  This race is prevented by the dtrace_sync()
1310 			 * in dtrace_dynvar_clean() -- which flushes the
1311 			 * owners of the clean lists out before resetting
1312 			 * the clean lists.
1313 			 */
1314 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1315 			ASSERT(rval == NULL);
1316 			goto retry;
1317 		}
1318 
1319 		dvar = free;
1320 		new_free = dvar->dtdv_next;
1321 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1322 
1323 	/*
1324 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1325 	 * tuple array and copy any referenced key data into the data space
1326 	 * following the tuple array.  As we do this, we relocate dttk_value
1327 	 * in the final tuple to point to the key data address in the chunk.
1328 	 */
1329 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1330 	dvar->dtdv_data = (void *)(kdata + ksize);
1331 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1332 
1333 	for (i = 0; i < nkeys; i++) {
1334 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1335 		size_t kesize = key[i].dttk_size;
1336 
1337 		if (kesize != 0) {
1338 			dtrace_bcopy(
1339 			    (const void *)(uintptr_t)key[i].dttk_value,
1340 			    (void *)kdata, kesize);
1341 			dkey->dttk_value = kdata;
1342 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1343 		} else {
1344 			dkey->dttk_value = key[i].dttk_value;
1345 		}
1346 
1347 		dkey->dttk_size = kesize;
1348 	}
1349 
1350 	ASSERT(dvar->dtdv_hashval == 0);
1351 	dvar->dtdv_hashval = hashval;
1352 	dvar->dtdv_next = start;
1353 
1354 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1355 		return (dvar);
1356 
1357 	/*
1358 	 * The cas has failed.  Either another CPU is adding an element to
1359 	 * this hash chain, or another CPU is deleting an element from this
1360 	 * hash chain.  The simplest way to deal with both of these cases
1361 	 * (though not necessarily the most efficient) is to free our
1362 	 * allocated block and tail-call ourselves.  Note that the free is
1363 	 * to the dirty list and _not_ to the free list.  This is to prevent
1364 	 * races with allocators, above.
1365 	 */
1366 	dvar->dtdv_hashval = 0;
1367 
1368 	dtrace_membar_producer();
1369 
1370 	do {
1371 		free = dcpu->dtdsc_dirty;
1372 		dvar->dtdv_next = free;
1373 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1374 
1375 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op));
1376 }
1377 
1378 /*ARGSUSED*/
1379 static void
1380 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1381 {
1382 	if (nval < *oval)
1383 		*oval = nval;
1384 }
1385 
1386 /*ARGSUSED*/
1387 static void
1388 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1389 {
1390 	if (nval > *oval)
1391 		*oval = nval;
1392 }
1393 
1394 static void
1395 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1396 {
1397 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1398 	int64_t val = (int64_t)nval;
1399 
1400 	if (val < 0) {
1401 		for (i = 0; i < zero; i++) {
1402 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1403 				quanta[i] += incr;
1404 				return;
1405 			}
1406 		}
1407 	} else {
1408 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1409 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1410 				quanta[i - 1] += incr;
1411 				return;
1412 			}
1413 		}
1414 
1415 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1416 		return;
1417 	}
1418 
1419 	ASSERT(0);
1420 }
1421 
1422 static void
1423 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1424 {
1425 	uint64_t arg = *lquanta++;
1426 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1427 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1428 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1429 	int32_t val = (int32_t)nval, level;
1430 
1431 	ASSERT(step != 0);
1432 	ASSERT(levels != 0);
1433 
1434 	if (val < base) {
1435 		/*
1436 		 * This is an underflow.
1437 		 */
1438 		lquanta[0] += incr;
1439 		return;
1440 	}
1441 
1442 	level = (val - base) / step;
1443 
1444 	if (level < levels) {
1445 		lquanta[level + 1] += incr;
1446 		return;
1447 	}
1448 
1449 	/*
1450 	 * This is an overflow.
1451 	 */
1452 	lquanta[levels + 1] += incr;
1453 }
1454 
1455 /*ARGSUSED*/
1456 static void
1457 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1458 {
1459 	data[0]++;
1460 	data[1] += nval;
1461 }
1462 
1463 /*ARGSUSED*/
1464 static void
1465 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
1466 {
1467 	*oval = *oval + 1;
1468 }
1469 
1470 /*ARGSUSED*/
1471 static void
1472 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
1473 {
1474 	*oval += nval;
1475 }
1476 
1477 /*
1478  * Aggregate given the tuple in the principal data buffer, and the aggregating
1479  * action denoted by the specified dtrace_aggregation_t.  The aggregation
1480  * buffer is specified as the buf parameter.  This routine does not return
1481  * failure; if there is no space in the aggregation buffer, the data will be
1482  * dropped, and a corresponding counter incremented.
1483  */
1484 static void
1485 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
1486     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
1487 {
1488 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
1489 	uint32_t i, ndx, size, fsize;
1490 	uint32_t align = sizeof (uint64_t) - 1;
1491 	dtrace_aggbuffer_t *agb;
1492 	dtrace_aggkey_t *key;
1493 	uint32_t hashval = 0;
1494 	caddr_t tomax, data, kdata;
1495 	dtrace_actkind_t action;
1496 	uintptr_t offs;
1497 
1498 	if (buf == NULL)
1499 		return;
1500 
1501 	if (!agg->dtag_hasarg) {
1502 		/*
1503 		 * Currently, only quantize() and lquantize() take additional
1504 		 * arguments, and they have the same semantics:  an increment
1505 		 * value that defaults to 1 when not present.  If additional
1506 		 * aggregating actions take arguments, the setting of the
1507 		 * default argument value will presumably have to become more
1508 		 * sophisticated...
1509 		 */
1510 		arg = 1;
1511 	}
1512 
1513 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
1514 	size = rec->dtrd_offset - agg->dtag_base;
1515 	fsize = size + rec->dtrd_size;
1516 
1517 	ASSERT(dbuf->dtb_tomax != NULL);
1518 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
1519 
1520 	if ((tomax = buf->dtb_tomax) == NULL) {
1521 		dtrace_buffer_drop(buf);
1522 		return;
1523 	}
1524 
1525 	/*
1526 	 * The metastructure is always at the bottom of the buffer.
1527 	 */
1528 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
1529 	    sizeof (dtrace_aggbuffer_t));
1530 
1531 	if (buf->dtb_offset == 0) {
1532 		/*
1533 		 * We just kludge up approximately 1/8th of the size to be
1534 		 * buckets.  If this guess ends up being routinely
1535 		 * off-the-mark, we may need to dynamically readjust this
1536 		 * based on past performance.
1537 		 */
1538 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
1539 
1540 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
1541 		    (uintptr_t)tomax || hashsize == 0) {
1542 			/*
1543 			 * We've been given a ludicrously small buffer;
1544 			 * increment our drop count and leave.
1545 			 */
1546 			dtrace_buffer_drop(buf);
1547 			return;
1548 		}
1549 
1550 		/*
1551 		 * And now, a pathetic attempt to try to get a an odd (or
1552 		 * perchance, a prime) hash size for better hash distribution.
1553 		 */
1554 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
1555 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
1556 
1557 		agb->dtagb_hashsize = hashsize;
1558 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
1559 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
1560 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
1561 
1562 		for (i = 0; i < agb->dtagb_hashsize; i++)
1563 			agb->dtagb_hash[i] = NULL;
1564 	}
1565 
1566 	/*
1567 	 * Calculate the hash value based on the key.  Note that we _don't_
1568 	 * include the aggid in the hashing (but we will store it as part of
1569 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
1570 	 * algorithm: a simple, quick algorithm that has no known funnels, and
1571 	 * gets good distribution in practice.  The efficacy of the hashing
1572 	 * algorithm (and a comparison with other algorithms) may be found by
1573 	 * running the ::dtrace_aggstat MDB dcmd.
1574 	 */
1575 	for (i = sizeof (dtrace_aggid_t); i < size; i++) {
1576 		hashval += data[i];
1577 		hashval += (hashval << 10);
1578 		hashval ^= (hashval >> 6);
1579 	}
1580 
1581 	hashval += (hashval << 3);
1582 	hashval ^= (hashval >> 11);
1583 	hashval += (hashval << 15);
1584 
1585 	/*
1586 	 * Yes, the divide here is expensive.  If the cycle count here becomes
1587 	 * prohibitive, we can do tricks to eliminate it.
1588 	 */
1589 	ndx = hashval % agb->dtagb_hashsize;
1590 
1591 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
1592 		ASSERT((caddr_t)key >= tomax);
1593 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
1594 
1595 		if (hashval != key->dtak_hashval || key->dtak_size != size)
1596 			continue;
1597 
1598 		kdata = key->dtak_data;
1599 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
1600 
1601 		for (i = sizeof (dtrace_aggid_t); i < size; i++) {
1602 			if (kdata[i] != data[i])
1603 				goto next;
1604 		}
1605 
1606 		if (action != key->dtak_action) {
1607 			/*
1608 			 * We are aggregating on the same value in the same
1609 			 * aggregation with two different aggregating actions.
1610 			 * (This should have been picked up in the compiler,
1611 			 * so we may be dealing with errant or devious DIF.)
1612 			 * This is an error condition; we indicate as much,
1613 			 * and return.
1614 			 */
1615 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
1616 			return;
1617 		}
1618 
1619 		/*
1620 		 * This is a hit:  we need to apply the aggregator to
1621 		 * the value at this key.
1622 		 */
1623 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
1624 		return;
1625 next:
1626 		continue;
1627 	}
1628 
1629 	/*
1630 	 * We didn't find it.  We need to allocate some zero-filled space,
1631 	 * link it into the hash table appropriately, and apply the aggregator
1632 	 * to the (zero-filled) value.
1633 	 */
1634 	offs = buf->dtb_offset;
1635 	while (offs & (align - 1))
1636 		offs += sizeof (uint32_t);
1637 
1638 	/*
1639 	 * If we don't have enough room to both allocate a new key _and_
1640 	 * its associated data, increment the drop count and return.
1641 	 */
1642 	if ((uintptr_t)tomax + offs + fsize >
1643 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
1644 		dtrace_buffer_drop(buf);
1645 		return;
1646 	}
1647 
1648 	/*CONSTCOND*/
1649 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
1650 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
1651 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
1652 
1653 	key->dtak_data = kdata = tomax + offs;
1654 	buf->dtb_offset = offs + fsize;
1655 
1656 	/*
1657 	 * Now copy the data across.
1658 	 */
1659 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
1660 
1661 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
1662 		kdata[i] = data[i];
1663 
1664 	for (i = size; i < fsize; i++)
1665 		kdata[i] = 0;
1666 
1667 	key->dtak_hashval = hashval;
1668 	key->dtak_size = size;
1669 	key->dtak_action = action;
1670 	key->dtak_next = agb->dtagb_hash[ndx];
1671 	agb->dtagb_hash[ndx] = key;
1672 
1673 	/*
1674 	 * Finally, apply the aggregator.
1675 	 */
1676 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
1677 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
1678 }
1679 
1680 /*
1681  * Given consumer state, this routine finds a speculation in the INACTIVE
1682  * state and transitions it into the ACTIVE state.  If there is no speculation
1683  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
1684  * incremented -- it is up to the caller to take appropriate action.
1685  */
1686 static int
1687 dtrace_speculation(dtrace_state_t *state)
1688 {
1689 	int i = 0;
1690 	dtrace_speculation_state_t current;
1691 	uint32_t *stat = &state->dts_speculations_unavail, count;
1692 
1693 	while (i < state->dts_nspeculations) {
1694 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1695 
1696 		current = spec->dtsp_state;
1697 
1698 		if (current != DTRACESPEC_INACTIVE) {
1699 			if (current == DTRACESPEC_COMMITTINGMANY ||
1700 			    current == DTRACESPEC_COMMITTING ||
1701 			    current == DTRACESPEC_DISCARDING)
1702 				stat = &state->dts_speculations_busy;
1703 			i++;
1704 			continue;
1705 		}
1706 
1707 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1708 		    current, DTRACESPEC_ACTIVE) == current)
1709 			return (i + 1);
1710 	}
1711 
1712 	/*
1713 	 * We couldn't find a speculation.  If we found as much as a single
1714 	 * busy speculation buffer, we'll attribute this failure as "busy"
1715 	 * instead of "unavail".
1716 	 */
1717 	do {
1718 		count = *stat;
1719 	} while (dtrace_cas32(stat, count, count + 1) != count);
1720 
1721 	return (0);
1722 }
1723 
1724 /*
1725  * This routine commits an active speculation.  If the specified speculation
1726  * is not in a valid state to perform a commit(), this routine will silently do
1727  * nothing.  The state of the specified speculation is transitioned according
1728  * to the state transition diagram outlined in <sys/dtrace_impl.h>
1729  */
1730 static void
1731 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
1732     dtrace_specid_t which)
1733 {
1734 	dtrace_speculation_t *spec;
1735 	dtrace_buffer_t *src, *dest;
1736 	uintptr_t daddr, saddr, dlimit;
1737 	dtrace_speculation_state_t current, new;
1738 	intptr_t offs;
1739 
1740 	if (which == 0)
1741 		return;
1742 
1743 	if (which > state->dts_nspeculations) {
1744 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1745 		return;
1746 	}
1747 
1748 	spec = &state->dts_speculations[which - 1];
1749 	src = &spec->dtsp_buffer[cpu];
1750 	dest = &state->dts_buffer[cpu];
1751 
1752 	do {
1753 		current = spec->dtsp_state;
1754 
1755 		if (current == DTRACESPEC_COMMITTINGMANY)
1756 			break;
1757 
1758 		switch (current) {
1759 		case DTRACESPEC_INACTIVE:
1760 		case DTRACESPEC_DISCARDING:
1761 			return;
1762 
1763 		case DTRACESPEC_COMMITTING:
1764 			/*
1765 			 * This is only possible if we are (a) commit()'ing
1766 			 * without having done a prior speculate() on this CPU
1767 			 * and (b) racing with another commit() on a different
1768 			 * CPU.  There's nothing to do -- we just assert that
1769 			 * our offset is 0.
1770 			 */
1771 			ASSERT(src->dtb_offset == 0);
1772 			return;
1773 
1774 		case DTRACESPEC_ACTIVE:
1775 			new = DTRACESPEC_COMMITTING;
1776 			break;
1777 
1778 		case DTRACESPEC_ACTIVEONE:
1779 			/*
1780 			 * This speculation is active on one CPU.  If our
1781 			 * buffer offset is non-zero, we know that the one CPU
1782 			 * must be us.  Otherwise, we are committing on a
1783 			 * different CPU from the speculate(), and we must
1784 			 * rely on being asynchronously cleaned.
1785 			 */
1786 			if (src->dtb_offset != 0) {
1787 				new = DTRACESPEC_COMMITTING;
1788 				break;
1789 			}
1790 			/*FALLTHROUGH*/
1791 
1792 		case DTRACESPEC_ACTIVEMANY:
1793 			new = DTRACESPEC_COMMITTINGMANY;
1794 			break;
1795 
1796 		default:
1797 			ASSERT(0);
1798 		}
1799 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1800 	    current, new) != current);
1801 
1802 	/*
1803 	 * We have set the state to indicate that we are committing this
1804 	 * speculation.  Now reserve the necessary space in the destination
1805 	 * buffer.
1806 	 */
1807 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
1808 	    sizeof (uint64_t), state, NULL)) < 0) {
1809 		dtrace_buffer_drop(dest);
1810 		goto out;
1811 	}
1812 
1813 	/*
1814 	 * We have the space; copy the buffer across.  (Note that this is a
1815 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
1816 	 * a serious performance issue, a high-performance DTrace-specific
1817 	 * bcopy() should obviously be invented.)
1818 	 */
1819 	daddr = (uintptr_t)dest->dtb_tomax + offs;
1820 	dlimit = daddr + src->dtb_offset;
1821 	saddr = (uintptr_t)src->dtb_tomax;
1822 
1823 	/*
1824 	 * First, the aligned portion.
1825 	 */
1826 	while (dlimit - daddr >= sizeof (uint64_t)) {
1827 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
1828 
1829 		daddr += sizeof (uint64_t);
1830 		saddr += sizeof (uint64_t);
1831 	}
1832 
1833 	/*
1834 	 * Now any left-over bit...
1835 	 */
1836 	while (dlimit - daddr)
1837 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
1838 
1839 	/*
1840 	 * Finally, commit the reserved space in the destination buffer.
1841 	 */
1842 	dest->dtb_offset = offs + src->dtb_offset;
1843 
1844 out:
1845 	/*
1846 	 * If we're lucky enough to be the only active CPU on this speculation
1847 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
1848 	 */
1849 	if (current == DTRACESPEC_ACTIVE ||
1850 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
1851 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
1852 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
1853 
1854 		ASSERT(rval == DTRACESPEC_COMMITTING);
1855 	}
1856 
1857 	src->dtb_offset = 0;
1858 	src->dtb_xamot_drops += src->dtb_drops;
1859 	src->dtb_drops = 0;
1860 }
1861 
1862 /*
1863  * This routine discards an active speculation.  If the specified speculation
1864  * is not in a valid state to perform a discard(), this routine will silently
1865  * do nothing.  The state of the specified speculation is transitioned
1866  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
1867  */
1868 static void
1869 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
1870     dtrace_specid_t which)
1871 {
1872 	dtrace_speculation_t *spec;
1873 	dtrace_speculation_state_t current, new;
1874 	dtrace_buffer_t *buf;
1875 
1876 	if (which == 0)
1877 		return;
1878 
1879 	if (which > state->dts_nspeculations) {
1880 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
1881 		return;
1882 	}
1883 
1884 	spec = &state->dts_speculations[which - 1];
1885 	buf = &spec->dtsp_buffer[cpu];
1886 
1887 	do {
1888 		current = spec->dtsp_state;
1889 
1890 		switch (current) {
1891 		case DTRACESPEC_INACTIVE:
1892 		case DTRACESPEC_COMMITTINGMANY:
1893 		case DTRACESPEC_COMMITTING:
1894 		case DTRACESPEC_DISCARDING:
1895 			return;
1896 
1897 		case DTRACESPEC_ACTIVE:
1898 		case DTRACESPEC_ACTIVEMANY:
1899 			new = DTRACESPEC_DISCARDING;
1900 			break;
1901 
1902 		case DTRACESPEC_ACTIVEONE:
1903 			if (buf->dtb_offset != 0) {
1904 				new = DTRACESPEC_INACTIVE;
1905 			} else {
1906 				new = DTRACESPEC_DISCARDING;
1907 			}
1908 			break;
1909 
1910 		default:
1911 			ASSERT(0);
1912 		}
1913 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
1914 	    current, new) != current);
1915 
1916 	buf->dtb_offset = 0;
1917 	buf->dtb_drops = 0;
1918 }
1919 
1920 /*
1921  * Note:  not called from probe context.  This function is called
1922  * asynchronously from cross call context to clean any speculations that are
1923  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
1924  * transitioned back to the INACTIVE state until all CPUs have cleaned the
1925  * speculation.
1926  */
1927 static void
1928 dtrace_speculation_clean_here(dtrace_state_t *state)
1929 {
1930 	dtrace_icookie_t cookie;
1931 	processorid_t cpu = CPU->cpu_id;
1932 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
1933 	dtrace_specid_t i;
1934 
1935 	cookie = dtrace_interrupt_disable();
1936 
1937 	if (dest->dtb_tomax == NULL) {
1938 		dtrace_interrupt_enable(cookie);
1939 		return;
1940 	}
1941 
1942 	for (i = 0; i < state->dts_nspeculations; i++) {
1943 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1944 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
1945 
1946 		if (src->dtb_tomax == NULL)
1947 			continue;
1948 
1949 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
1950 			src->dtb_offset = 0;
1951 			continue;
1952 		}
1953 
1954 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
1955 			continue;
1956 
1957 		if (src->dtb_offset == 0)
1958 			continue;
1959 
1960 		dtrace_speculation_commit(state, cpu, i + 1);
1961 	}
1962 
1963 	dtrace_interrupt_enable(cookie);
1964 }
1965 
1966 /*
1967  * Note:  not called from probe context.  This function is called
1968  * asynchronously (and at a regular interval) to clean any speculations that
1969  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
1970  * is work to be done, it cross calls all CPUs to perform that work;
1971  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
1972  * INACTIVE state until they have been cleaned by all CPUs.
1973  */
1974 static void
1975 dtrace_speculation_clean(dtrace_state_t *state)
1976 {
1977 	int work = 0, rv;
1978 	dtrace_specid_t i;
1979 
1980 	for (i = 0; i < state->dts_nspeculations; i++) {
1981 		dtrace_speculation_t *spec = &state->dts_speculations[i];
1982 
1983 		ASSERT(!spec->dtsp_cleaning);
1984 
1985 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
1986 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
1987 			continue;
1988 
1989 		work++;
1990 		spec->dtsp_cleaning = 1;
1991 	}
1992 
1993 	if (!work)
1994 		return;
1995 
1996 	dtrace_xcall(DTRACE_CPUALL,
1997 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
1998 
1999 	/*
2000 	 * We now know that all CPUs have committed or discarded their
2001 	 * speculation buffers, as appropriate.  We can now set the state
2002 	 * to inactive.
2003 	 */
2004 	for (i = 0; i < state->dts_nspeculations; i++) {
2005 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2006 		dtrace_speculation_state_t current, new;
2007 
2008 		if (!spec->dtsp_cleaning)
2009 			continue;
2010 
2011 		current = spec->dtsp_state;
2012 		ASSERT(current == DTRACESPEC_DISCARDING ||
2013 		    current == DTRACESPEC_COMMITTINGMANY);
2014 
2015 		new = DTRACESPEC_INACTIVE;
2016 
2017 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2018 		ASSERT(rv == current);
2019 		spec->dtsp_cleaning = 0;
2020 	}
2021 }
2022 
2023 /*
2024  * Called as part of a speculate() to get the speculative buffer associated
2025  * with a given speculation.  Returns NULL if the specified speculation is not
2026  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2027  * the active CPU is not the specified CPU -- the speculation will be
2028  * atomically transitioned into the ACTIVEMANY state.
2029  */
2030 static dtrace_buffer_t *
2031 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2032     dtrace_specid_t which)
2033 {
2034 	dtrace_speculation_t *spec;
2035 	dtrace_speculation_state_t current, new;
2036 	dtrace_buffer_t *buf;
2037 
2038 	if (which == 0)
2039 		return (NULL);
2040 
2041 	if (which > state->dts_nspeculations) {
2042 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2043 		return (NULL);
2044 	}
2045 
2046 	spec = &state->dts_speculations[which - 1];
2047 	buf = &spec->dtsp_buffer[cpuid];
2048 
2049 	do {
2050 		current = spec->dtsp_state;
2051 
2052 		switch (current) {
2053 		case DTRACESPEC_INACTIVE:
2054 		case DTRACESPEC_COMMITTINGMANY:
2055 		case DTRACESPEC_DISCARDING:
2056 			return (NULL);
2057 
2058 		case DTRACESPEC_COMMITTING:
2059 			ASSERT(buf->dtb_offset == 0);
2060 			return (NULL);
2061 
2062 		case DTRACESPEC_ACTIVEONE:
2063 			/*
2064 			 * This speculation is currently active on one CPU.
2065 			 * Check the offset in the buffer; if it's non-zero,
2066 			 * that CPU must be us (and we leave the state alone).
2067 			 * If it's zero, assume that we're starting on a new
2068 			 * CPU -- and change the state to indicate that the
2069 			 * speculation is active on more than one CPU.
2070 			 */
2071 			if (buf->dtb_offset != 0)
2072 				return (buf);
2073 
2074 			new = DTRACESPEC_ACTIVEMANY;
2075 			break;
2076 
2077 		case DTRACESPEC_ACTIVEMANY:
2078 			return (buf);
2079 
2080 		case DTRACESPEC_ACTIVE:
2081 			new = DTRACESPEC_ACTIVEONE;
2082 			break;
2083 
2084 		default:
2085 			ASSERT(0);
2086 		}
2087 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2088 	    current, new) != current);
2089 
2090 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2091 	return (buf);
2092 }
2093 
2094 /*
2095  * This function implements the DIF emulator's variable lookups.  The emulator
2096  * passes a reserved variable identifier and optional built-in array index.
2097  */
2098 static uint64_t
2099 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2100     uint64_t ndx)
2101 {
2102 	/*
2103 	 * If we're accessing one of the uncached arguments, we'll turn this
2104 	 * into a reference in the args array.
2105 	 */
2106 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2107 		ndx = v - DIF_VAR_ARG0;
2108 		v = DIF_VAR_ARGS;
2109 	}
2110 
2111 	switch (v) {
2112 	case DIF_VAR_ARGS:
2113 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2114 		if (ndx >= sizeof (mstate->dtms_arg) /
2115 		    sizeof (mstate->dtms_arg[0])) {
2116 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2117 			dtrace_provider_t *pv;
2118 			uint64_t val;
2119 
2120 			pv = mstate->dtms_probe->dtpr_provider;
2121 			if (pv->dtpv_pops.dtps_getargval != NULL)
2122 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2123 				    mstate->dtms_probe->dtpr_id,
2124 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2125 			else
2126 				val = dtrace_getarg(ndx, aframes);
2127 
2128 			/*
2129 			 * This is regrettably required to keep the compiler
2130 			 * from tail-optimizing the call to dtrace_getarg().
2131 			 * The condition always evaluates to true, but the
2132 			 * compiler has no way of figuring that out a priori.
2133 			 * (None of this would be necessary if the compiler
2134 			 * could be relied upon to _always_ tail-optimize
2135 			 * the call to dtrace_getarg() -- but it can't.)
2136 			 */
2137 			if (mstate->dtms_probe != NULL)
2138 				return (val);
2139 
2140 			ASSERT(0);
2141 		}
2142 
2143 		return (mstate->dtms_arg[ndx]);
2144 
2145 	case DIF_VAR_UREGS: {
2146 		klwp_t *lwp;
2147 
2148 		if (!dtrace_priv_proc(state))
2149 			return (0);
2150 
2151 		if ((lwp = curthread->t_lwp) == NULL) {
2152 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2153 			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
2154 			return (0);
2155 		}
2156 
2157 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2158 	}
2159 
2160 	case DIF_VAR_CURTHREAD:
2161 		if (!dtrace_priv_kernel(state))
2162 			return (0);
2163 		return ((uint64_t)(uintptr_t)curthread);
2164 
2165 	case DIF_VAR_TIMESTAMP:
2166 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2167 			mstate->dtms_timestamp = dtrace_gethrtime();
2168 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2169 		}
2170 		return (mstate->dtms_timestamp);
2171 
2172 	case DIF_VAR_VTIMESTAMP:
2173 		ASSERT(dtrace_vtime_references != 0);
2174 		return (curthread->t_dtrace_vtime);
2175 
2176 	case DIF_VAR_WALLTIMESTAMP:
2177 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2178 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2179 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2180 		}
2181 		return (mstate->dtms_walltimestamp);
2182 
2183 	case DIF_VAR_IPL:
2184 		if (!dtrace_priv_kernel(state))
2185 			return (0);
2186 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2187 			mstate->dtms_ipl = dtrace_getipl();
2188 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2189 		}
2190 		return (mstate->dtms_ipl);
2191 
2192 	case DIF_VAR_EPID:
2193 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2194 		return (mstate->dtms_epid);
2195 
2196 	case DIF_VAR_ID:
2197 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2198 		return (mstate->dtms_probe->dtpr_id);
2199 
2200 	case DIF_VAR_STACKDEPTH:
2201 		if (!dtrace_priv_kernel(state))
2202 			return (0);
2203 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2204 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2205 
2206 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2207 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2208 		}
2209 		return (mstate->dtms_stackdepth);
2210 
2211 	case DIF_VAR_USTACKDEPTH:
2212 		if (!dtrace_priv_proc(state))
2213 			return (0);
2214 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2215 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2216 			mstate->dtms_ustackdepth = dtrace_getustackdepth();
2217 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2218 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2219 		}
2220 		return (mstate->dtms_ustackdepth);
2221 
2222 	case DIF_VAR_CALLER:
2223 		if (!dtrace_priv_kernel(state))
2224 			return (0);
2225 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2226 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2227 
2228 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2229 				/*
2230 				 * If this is an unanchored probe, we are
2231 				 * required to go through the slow path:
2232 				 * dtrace_caller() only guarantees correct
2233 				 * results for anchored probes.
2234 				 */
2235 				pc_t caller[2];
2236 
2237 				dtrace_getpcstack(caller, 2, aframes,
2238 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2239 				mstate->dtms_caller = caller[1];
2240 			} else if ((mstate->dtms_caller =
2241 			    dtrace_caller(aframes)) == -1) {
2242 				/*
2243 				 * We have failed to do this the quick way;
2244 				 * we must resort to the slower approach of
2245 				 * calling dtrace_getpcstack().
2246 				 */
2247 				pc_t caller;
2248 
2249 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2250 				mstate->dtms_caller = caller;
2251 			}
2252 
2253 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2254 		}
2255 		return (mstate->dtms_caller);
2256 
2257 	case DIF_VAR_UCALLER:
2258 		if (!dtrace_priv_proc(state))
2259 			return (0);
2260 
2261 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2262 			uint64_t ustack[3];
2263 
2264 			/*
2265 			 * dtrace_getupcstack() fills in the first uint64_t
2266 			 * with the current PID.  The second uint64_t will
2267 			 * be the program counter at user-level.  The third
2268 			 * uint64_t will contain the caller, which is what
2269 			 * we're after.
2270 			 */
2271 			ustack[2] = NULL;
2272 			dtrace_getupcstack(ustack, 3);
2273 			mstate->dtms_ucaller = ustack[2];
2274 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2275 		}
2276 
2277 		return (mstate->dtms_ucaller);
2278 
2279 	case DIF_VAR_PROBEPROV:
2280 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2281 		return ((uint64_t)(uintptr_t)
2282 		    mstate->dtms_probe->dtpr_provider->dtpv_name);
2283 
2284 	case DIF_VAR_PROBEMOD:
2285 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2286 		return ((uint64_t)(uintptr_t)
2287 		    mstate->dtms_probe->dtpr_mod);
2288 
2289 	case DIF_VAR_PROBEFUNC:
2290 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2291 		return ((uint64_t)(uintptr_t)
2292 		    mstate->dtms_probe->dtpr_func);
2293 
2294 	case DIF_VAR_PROBENAME:
2295 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2296 		return ((uint64_t)(uintptr_t)
2297 		    mstate->dtms_probe->dtpr_name);
2298 
2299 	case DIF_VAR_PID:
2300 		if (!dtrace_priv_proc(state))
2301 			return (0);
2302 
2303 		/*
2304 		 * Note that we are assuming that an unanchored probe is
2305 		 * always due to a high-level interrupt.  (And we're assuming
2306 		 * that there is only a single high level interrupt.)
2307 		 */
2308 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2309 			return (pid0.pid_id);
2310 
2311 		/*
2312 		 * It is always safe to dereference one's own t_procp pointer:
2313 		 * it always points to a valid, allocated proc structure.
2314 		 * Further, it is always safe to dereference the p_pidp member
2315 		 * of one's own proc structure.  (These are truisms becuase
2316 		 * threads and processes don't clean up their own state --
2317 		 * they leave that task to whomever reaps them.)
2318 		 */
2319 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
2320 
2321 	case DIF_VAR_TID:
2322 		/*
2323 		 * See comment in DIF_VAR_PID.
2324 		 */
2325 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2326 			return (0);
2327 
2328 		return ((uint64_t)curthread->t_tid);
2329 
2330 	case DIF_VAR_EXECNAME:
2331 		if (!dtrace_priv_proc(state))
2332 			return (0);
2333 
2334 		/*
2335 		 * See comment in DIF_VAR_PID.
2336 		 */
2337 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2338 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
2339 
2340 		/*
2341 		 * It is always safe to dereference one's own t_procp pointer:
2342 		 * it always points to a valid, allocated proc structure.
2343 		 * (This is true because threads don't clean up their own
2344 		 * state -- they leave that task to whomever reaps them.)
2345 		 */
2346 		return ((uint64_t)(uintptr_t)
2347 		    curthread->t_procp->p_user.u_comm);
2348 
2349 	case DIF_VAR_ZONENAME:
2350 		if (!dtrace_priv_proc(state))
2351 			return (0);
2352 
2353 		/*
2354 		 * See comment in DIF_VAR_PID.
2355 		 */
2356 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
2357 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
2358 
2359 		/*
2360 		 * It is always safe to dereference one's own t_procp pointer:
2361 		 * it always points to a valid, allocated proc structure.
2362 		 * (This is true because threads don't clean up their own
2363 		 * state -- they leave that task to whomever reaps them.)
2364 		 */
2365 		return ((uint64_t)(uintptr_t)
2366 		    curthread->t_procp->p_zone->zone_name);
2367 
2368 	default:
2369 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2370 		return (0);
2371 	}
2372 }
2373 
2374 /*
2375  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
2376  * Notice that we don't bother validating the proper number of arguments or
2377  * their types in the tuple stack.  This isn't needed because all argument
2378  * interpretation is safe because of our load safety -- the worst that can
2379  * happen is that a bogus program can obtain bogus results.
2380  */
2381 static void
2382 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
2383     dtrace_key_t *tupregs, int nargs,
2384     dtrace_mstate_t *mstate, dtrace_state_t *state)
2385 {
2386 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
2387 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
2388 
2389 	union {
2390 		mutex_impl_t mi;
2391 		uint64_t mx;
2392 	} m;
2393 
2394 	union {
2395 		krwlock_t ri;
2396 		uintptr_t rw;
2397 	} r;
2398 
2399 	switch (subr) {
2400 	case DIF_SUBR_RAND:
2401 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
2402 		break;
2403 
2404 	case DIF_SUBR_MUTEX_OWNED:
2405 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2406 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
2407 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
2408 		else
2409 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
2410 		break;
2411 
2412 	case DIF_SUBR_MUTEX_OWNER:
2413 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2414 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
2415 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
2416 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
2417 		else
2418 			regs[rd] = 0;
2419 		break;
2420 
2421 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
2422 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2423 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
2424 		break;
2425 
2426 	case DIF_SUBR_MUTEX_TYPE_SPIN:
2427 		m.mx = dtrace_load64(tupregs[0].dttk_value);
2428 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
2429 		break;
2430 
2431 	case DIF_SUBR_RW_READ_HELD: {
2432 		uintptr_t tmp;
2433 
2434 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2435 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
2436 		break;
2437 	}
2438 
2439 	case DIF_SUBR_RW_WRITE_HELD:
2440 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2441 		regs[rd] = _RW_WRITE_HELD(&r.ri);
2442 		break;
2443 
2444 	case DIF_SUBR_RW_ISWRITER:
2445 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
2446 		regs[rd] = _RW_ISWRITER(&r.ri);
2447 		break;
2448 
2449 	case DIF_SUBR_BCOPY: {
2450 		/*
2451 		 * We need to be sure that the destination is in the scratch
2452 		 * region -- no other region is allowed.
2453 		 */
2454 		uintptr_t src = tupregs[0].dttk_value;
2455 		uintptr_t dest = tupregs[1].dttk_value;
2456 		size_t size = tupregs[2].dttk_value;
2457 
2458 		if (!dtrace_inscratch(dest, size, mstate)) {
2459 			*flags |= CPU_DTRACE_BADADDR;
2460 			*illval = regs[rd];
2461 			break;
2462 		}
2463 
2464 		dtrace_bcopy((void *)src, (void *)dest, size);
2465 		break;
2466 	}
2467 
2468 	case DIF_SUBR_ALLOCA:
2469 	case DIF_SUBR_COPYIN: {
2470 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
2471 		uint64_t size =
2472 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
2473 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
2474 
2475 		/*
2476 		 * This action doesn't require any credential checks since
2477 		 * probes will not activate in user contexts to which the
2478 		 * enabling user does not have permissions.
2479 		 */
2480 		if (mstate->dtms_scratch_ptr + scratch_size >
2481 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2482 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2483 			regs[rd] = NULL;
2484 			break;
2485 		}
2486 
2487 		if (subr == DIF_SUBR_COPYIN) {
2488 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2489 			dtrace_copyin(tupregs[0].dttk_value, dest, size);
2490 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2491 		}
2492 
2493 		mstate->dtms_scratch_ptr += scratch_size;
2494 		regs[rd] = dest;
2495 		break;
2496 	}
2497 
2498 	case DIF_SUBR_COPYINTO: {
2499 		uint64_t size = tupregs[1].dttk_value;
2500 		uintptr_t dest = tupregs[2].dttk_value;
2501 
2502 		/*
2503 		 * This action doesn't require any credential checks since
2504 		 * probes will not activate in user contexts to which the
2505 		 * enabling user does not have permissions.
2506 		 */
2507 		if (!dtrace_inscratch(dest, size, mstate)) {
2508 			*flags |= CPU_DTRACE_BADADDR;
2509 			*illval = regs[rd];
2510 			break;
2511 		}
2512 
2513 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2514 		dtrace_copyin(tupregs[0].dttk_value, dest, size);
2515 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2516 		break;
2517 	}
2518 
2519 	case DIF_SUBR_COPYINSTR: {
2520 		uintptr_t dest = mstate->dtms_scratch_ptr;
2521 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2522 
2523 		if (nargs > 1 && tupregs[1].dttk_value < size)
2524 			size = tupregs[1].dttk_value + 1;
2525 
2526 		/*
2527 		 * This action doesn't require any credential checks since
2528 		 * probes will not activate in user contexts to which the
2529 		 * enabling user does not have permissions.
2530 		 */
2531 		if (mstate->dtms_scratch_ptr + size >
2532 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2533 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2534 			regs[rd] = NULL;
2535 			break;
2536 		}
2537 
2538 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2539 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size);
2540 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2541 
2542 		((char *)dest)[size - 1] = '\0';
2543 		mstate->dtms_scratch_ptr += size;
2544 		regs[rd] = dest;
2545 		break;
2546 	}
2547 
2548 	case DIF_SUBR_MSGSIZE:
2549 	case DIF_SUBR_MSGDSIZE: {
2550 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
2551 		uintptr_t wptr, rptr;
2552 		size_t count = 0;
2553 		int cont = 0;
2554 
2555 		while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
2556 			wptr = dtrace_loadptr(baddr +
2557 			    offsetof(mblk_t, b_wptr));
2558 
2559 			rptr = dtrace_loadptr(baddr +
2560 			    offsetof(mblk_t, b_rptr));
2561 
2562 			if (wptr < rptr) {
2563 				*flags |= CPU_DTRACE_BADADDR;
2564 				*illval = tupregs[0].dttk_value;
2565 				break;
2566 			}
2567 
2568 			daddr = dtrace_loadptr(baddr +
2569 			    offsetof(mblk_t, b_datap));
2570 
2571 			baddr = dtrace_loadptr(baddr +
2572 			    offsetof(mblk_t, b_cont));
2573 
2574 			/*
2575 			 * We want to prevent against denial-of-service here,
2576 			 * so we're only going to search the list for
2577 			 * dtrace_msgdsize_max mblks.
2578 			 */
2579 			if (cont++ > dtrace_msgdsize_max) {
2580 				*flags |= CPU_DTRACE_ILLOP;
2581 				break;
2582 			}
2583 
2584 			if (subr == DIF_SUBR_MSGDSIZE) {
2585 				if (dtrace_load8(daddr +
2586 				    offsetof(dblk_t, db_type)) != M_DATA)
2587 					continue;
2588 			}
2589 
2590 			count += wptr - rptr;
2591 		}
2592 
2593 		if (!(*flags & CPU_DTRACE_FAULT))
2594 			regs[rd] = count;
2595 
2596 		break;
2597 	}
2598 
2599 	case DIF_SUBR_PROGENYOF: {
2600 		pid_t pid = tupregs[0].dttk_value;
2601 		proc_t *p;
2602 		int rval = 0;
2603 
2604 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2605 
2606 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
2607 			if (p->p_pidp->pid_id == pid) {
2608 				rval = 1;
2609 				break;
2610 			}
2611 		}
2612 
2613 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2614 
2615 		regs[rd] = rval;
2616 		break;
2617 	}
2618 
2619 	case DIF_SUBR_SPECULATION:
2620 		regs[rd] = dtrace_speculation(state);
2621 		break;
2622 
2623 	case DIF_SUBR_COPYOUT: {
2624 		uintptr_t kaddr = tupregs[0].dttk_value;
2625 		uintptr_t uaddr = tupregs[1].dttk_value;
2626 		uint64_t size = tupregs[2].dttk_value;
2627 
2628 		if (!dtrace_destructive_disallow &&
2629 		    dtrace_priv_proc_control(state) &&
2630 		    !dtrace_istoxic(kaddr, size)) {
2631 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2632 			dtrace_copyout(kaddr, uaddr, size);
2633 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2634 		}
2635 		break;
2636 	}
2637 
2638 	case DIF_SUBR_COPYOUTSTR: {
2639 		uintptr_t kaddr = tupregs[0].dttk_value;
2640 		uintptr_t uaddr = tupregs[1].dttk_value;
2641 		uint64_t size = tupregs[2].dttk_value;
2642 
2643 		if (!dtrace_destructive_disallow &&
2644 		    dtrace_priv_proc_control(state) &&
2645 		    !dtrace_istoxic(kaddr, size)) {
2646 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2647 			dtrace_copyoutstr(kaddr, uaddr, size);
2648 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2649 		}
2650 		break;
2651 	}
2652 
2653 	case DIF_SUBR_STRLEN:
2654 		regs[rd] = dtrace_strlen((char *)(uintptr_t)
2655 		    tupregs[0].dttk_value,
2656 		    state->dts_options[DTRACEOPT_STRSIZE]);
2657 		break;
2658 
2659 	case DIF_SUBR_STRCHR:
2660 	case DIF_SUBR_STRRCHR: {
2661 		/*
2662 		 * We're going to iterate over the string looking for the
2663 		 * specified character.  We will iterate until we have reached
2664 		 * the string length or we have found the character.  If this
2665 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
2666 		 * of the specified character instead of the first.
2667 		 */
2668 		uintptr_t addr = tupregs[0].dttk_value;
2669 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
2670 		char c, target = (char)tupregs[1].dttk_value;
2671 
2672 		for (regs[rd] = NULL; addr < limit; addr++) {
2673 			if ((c = dtrace_load8(addr)) == target) {
2674 				regs[rd] = addr;
2675 
2676 				if (subr == DIF_SUBR_STRCHR)
2677 					break;
2678 			}
2679 
2680 			if (c == '\0')
2681 				break;
2682 		}
2683 
2684 		break;
2685 	}
2686 
2687 	case DIF_SUBR_STRSTR:
2688 	case DIF_SUBR_INDEX:
2689 	case DIF_SUBR_RINDEX: {
2690 		/*
2691 		 * We're going to iterate over the string looking for the
2692 		 * specified string.  We will iterate until we have reached
2693 		 * the string length or we have found the string.  (Yes, this
2694 		 * is done in the most naive way possible -- but considering
2695 		 * that the string we're searching for is likely to be
2696 		 * relatively short, the complexity of Rabin-Karp or similar
2697 		 * hardly seems merited.)
2698 		 */
2699 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
2700 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
2701 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2702 		size_t len = dtrace_strlen(addr, size);
2703 		size_t sublen = dtrace_strlen(substr, size);
2704 		char *limit = addr + len, *orig = addr;
2705 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
2706 		int inc = 1;
2707 
2708 		regs[rd] = notfound;
2709 
2710 		/*
2711 		 * strstr() and index()/rindex() have similar semantics if
2712 		 * both strings are the empty string: strstr() returns a
2713 		 * pointer to the (empty) string, and index() and rindex()
2714 		 * both return index 0 (regardless of any position argument).
2715 		 */
2716 		if (sublen == 0 && len == 0) {
2717 			if (subr == DIF_SUBR_STRSTR)
2718 				regs[rd] = (uintptr_t)addr;
2719 			else
2720 				regs[rd] = 0;
2721 			break;
2722 		}
2723 
2724 		if (subr != DIF_SUBR_STRSTR) {
2725 			if (subr == DIF_SUBR_RINDEX) {
2726 				limit = orig - 1;
2727 				addr += len;
2728 				inc = -1;
2729 			}
2730 
2731 			/*
2732 			 * Both index() and rindex() take an optional position
2733 			 * argument that denotes the starting position.
2734 			 */
2735 			if (nargs == 3) {
2736 				int64_t pos = (int64_t)tupregs[2].dttk_value;
2737 
2738 				/*
2739 				 * If the position argument to index() is
2740 				 * negative, Perl implicitly clamps it at
2741 				 * zero.  This semantic is a little surprising
2742 				 * given the special meaning of negative
2743 				 * positions to similar Perl functions like
2744 				 * substr(), but it appears to reflect a
2745 				 * notion that index() can start from a
2746 				 * negative index and increment its way up to
2747 				 * the string.  Given this notion, Perl's
2748 				 * rindex() is at least self-consistent in
2749 				 * that it implicitly clamps positions greater
2750 				 * than the string length to be the string
2751 				 * length.  Where Perl completely loses
2752 				 * coherence, however, is when the specified
2753 				 * substring is the empty string ("").  In
2754 				 * this case, even if the position is
2755 				 * negative, rindex() returns 0 -- and even if
2756 				 * the position is greater than the length,
2757 				 * index() returns the string length.  These
2758 				 * semantics violate the notion that index()
2759 				 * should never return a value less than the
2760 				 * specified position and that rindex() should
2761 				 * never return a value greater than the
2762 				 * specified position.  (One assumes that
2763 				 * these semantics are artifacts of Perl's
2764 				 * implementation and not the results of
2765 				 * deliberate design -- it beggars belief that
2766 				 * even Larry Wall could desire such oddness.)
2767 				 * While in the abstract one would wish for
2768 				 * consistent position semantics across
2769 				 * substr(), index() and rindex() -- or at the
2770 				 * very least self-consistent position
2771 				 * semantics for index() and rindex() -- we
2772 				 * instead opt to keep with the extant Perl
2773 				 * semantics, in all their broken glory.  (Do
2774 				 * we have more desire to maintain Perl's
2775 				 * semantics than Perl does?  Probably.)
2776 				 */
2777 				if (subr == DIF_SUBR_RINDEX) {
2778 					if (pos < 0) {
2779 						if (sublen == 0)
2780 							regs[rd] = 0;
2781 						break;
2782 					}
2783 
2784 					if (pos > len)
2785 						pos = len;
2786 				} else {
2787 					if (pos < 0)
2788 						pos = 0;
2789 
2790 					if (pos >= len) {
2791 						if (sublen == 0)
2792 							regs[rd] = len;
2793 						break;
2794 					}
2795 				}
2796 
2797 				addr = orig + pos;
2798 			}
2799 		}
2800 
2801 		for (regs[rd] = notfound; addr != limit; addr += inc) {
2802 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
2803 				if (subr != DIF_SUBR_STRSTR) {
2804 					/*
2805 					 * As D index() and rindex() are
2806 					 * modeled on Perl (and not on awk),
2807 					 * we return a zero-based (and not a
2808 					 * one-based) index.  (For you Perl
2809 					 * weenies: no, we're not going to add
2810 					 * $[ -- and shouldn't you be at a con
2811 					 * or something?)
2812 					 */
2813 					regs[rd] = (uintptr_t)(addr - orig);
2814 					break;
2815 				}
2816 
2817 				ASSERT(subr == DIF_SUBR_STRSTR);
2818 				regs[rd] = (uintptr_t)addr;
2819 				break;
2820 			}
2821 		}
2822 
2823 		break;
2824 	}
2825 
2826 	case DIF_SUBR_STRTOK: {
2827 		uintptr_t addr = tupregs[0].dttk_value;
2828 		uintptr_t tokaddr = tupregs[1].dttk_value;
2829 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2830 		uintptr_t limit, toklimit = tokaddr + size;
2831 		uint8_t c, tokmap[32];	 /* 256 / 8 */
2832 		char *dest = (char *)mstate->dtms_scratch_ptr;
2833 		int i;
2834 
2835 		if (mstate->dtms_scratch_ptr + size >
2836 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2837 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2838 			regs[rd] = NULL;
2839 			break;
2840 		}
2841 
2842 		if (addr == NULL) {
2843 			/*
2844 			 * If the address specified is NULL, we use our saved
2845 			 * strtok pointer from the mstate.  Note that this
2846 			 * means that the saved strtok pointer is _only_
2847 			 * valid within multiple enablings of the same probe --
2848 			 * it behaves like an implicit clause-local variable.
2849 			 */
2850 			addr = mstate->dtms_strtok;
2851 		}
2852 
2853 		/*
2854 		 * First, zero the token map, and then process the token
2855 		 * string -- setting a bit in the map for every character
2856 		 * found in the token string.
2857 		 */
2858 		for (i = 0; i < sizeof (tokmap); i++)
2859 			tokmap[i] = 0;
2860 
2861 		for (; tokaddr < toklimit; tokaddr++) {
2862 			if ((c = dtrace_load8(tokaddr)) == '\0')
2863 				break;
2864 
2865 			ASSERT((c >> 3) < sizeof (tokmap));
2866 			tokmap[c >> 3] |= (1 << (c & 0x7));
2867 		}
2868 
2869 		for (limit = addr + size; addr < limit; addr++) {
2870 			/*
2871 			 * We're looking for a character that is _not_ contained
2872 			 * in the token string.
2873 			 */
2874 			if ((c = dtrace_load8(addr)) == '\0')
2875 				break;
2876 
2877 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
2878 				break;
2879 		}
2880 
2881 		if (c == '\0') {
2882 			/*
2883 			 * We reached the end of the string without finding
2884 			 * any character that was not in the token string.
2885 			 * We return NULL in this case, and we set the saved
2886 			 * address to NULL as well.
2887 			 */
2888 			regs[rd] = NULL;
2889 			mstate->dtms_strtok = NULL;
2890 			break;
2891 		}
2892 
2893 		/*
2894 		 * From here on, we're copying into the destination string.
2895 		 */
2896 		for (i = 0; addr < limit && i < size - 1; addr++) {
2897 			if ((c = dtrace_load8(addr)) == '\0')
2898 				break;
2899 
2900 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
2901 				break;
2902 
2903 			ASSERT(i < size);
2904 			dest[i++] = c;
2905 		}
2906 
2907 		ASSERT(i < size);
2908 		dest[i] = '\0';
2909 		regs[rd] = (uintptr_t)dest;
2910 		mstate->dtms_scratch_ptr += size;
2911 		mstate->dtms_strtok = addr;
2912 		break;
2913 	}
2914 
2915 	case DIF_SUBR_SUBSTR: {
2916 		uintptr_t s = tupregs[0].dttk_value;
2917 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2918 		char *d = (char *)mstate->dtms_scratch_ptr;
2919 		int64_t index = (int64_t)tupregs[1].dttk_value;
2920 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
2921 		size_t len = dtrace_strlen((char *)s, size);
2922 		int64_t i = 0;
2923 
2924 		if (nargs <= 2)
2925 			remaining = (int64_t)size;
2926 
2927 		if (mstate->dtms_scratch_ptr + size >
2928 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2929 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2930 			regs[rd] = NULL;
2931 			break;
2932 		}
2933 
2934 		if (index < 0) {
2935 			index += len;
2936 
2937 			if (index < 0 && index + remaining > 0) {
2938 				remaining += index;
2939 				index = 0;
2940 			}
2941 		}
2942 
2943 		if (index >= len || index < 0)
2944 			index = len;
2945 
2946 		for (d[0] = '\0'; remaining > 0; remaining--) {
2947 			if ((d[i++] = dtrace_load8(s++ + index)) == '\0')
2948 				break;
2949 
2950 			if (i == size) {
2951 				d[i - 1] = '\0';
2952 				break;
2953 			}
2954 		}
2955 
2956 		mstate->dtms_scratch_ptr += size;
2957 		regs[rd] = (uintptr_t)d;
2958 		break;
2959 	}
2960 
2961 	case DIF_SUBR_GETMAJOR:
2962 #ifdef _LP64
2963 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
2964 #else
2965 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
2966 #endif
2967 		break;
2968 
2969 	case DIF_SUBR_GETMINOR:
2970 #ifdef _LP64
2971 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
2972 #else
2973 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
2974 #endif
2975 		break;
2976 
2977 	case DIF_SUBR_DDI_PATHNAME: {
2978 		/*
2979 		 * This one is a galactic mess.  We are going to roughly
2980 		 * emulate ddi_pathname(), but it's made more complicated
2981 		 * by the fact that we (a) want to include the minor name and
2982 		 * (b) must proceed iteratively instead of recursively.
2983 		 */
2984 		uintptr_t dest = mstate->dtms_scratch_ptr;
2985 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2986 		char *start = (char *)dest, *end = start + size - 1;
2987 		uintptr_t daddr = tupregs[0].dttk_value;
2988 		int64_t minor = (int64_t)tupregs[1].dttk_value;
2989 		char *s;
2990 		int i, len, depth = 0;
2991 
2992 		if (size == 0 || mstate->dtms_scratch_ptr + size >
2993 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2994 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2995 			regs[rd] = NULL;
2996 			break;
2997 		}
2998 
2999 		*end = '\0';
3000 
3001 		/*
3002 		 * We want to have a name for the minor.  In order to do this,
3003 		 * we need to walk the minor list from the devinfo.  We want
3004 		 * to be sure that we don't infinitely walk a circular list,
3005 		 * so we check for circularity by sending a scout pointer
3006 		 * ahead two elements for every element that we iterate over;
3007 		 * if the list is circular, these will ultimately point to the
3008 		 * same element.  You may recognize this little trick as the
3009 		 * answer to a stupid interview question -- one that always
3010 		 * seems to be asked by those who had to have it laboriously
3011 		 * explained to them, and who can't even concisely describe
3012 		 * the conditions under which one would be forced to resort to
3013 		 * this technique.  Needless to say, those conditions are
3014 		 * found here -- and probably only here.  Is this is the only
3015 		 * use of this infamous trick in shipping, production code?
3016 		 * If it isn't, it probably should be...
3017 		 */
3018 		if (minor != -1) {
3019 			uintptr_t maddr = dtrace_loadptr(daddr +
3020 			    offsetof(struct dev_info, devi_minor));
3021 
3022 			uintptr_t next = offsetof(struct ddi_minor_data, next);
3023 			uintptr_t name = offsetof(struct ddi_minor_data,
3024 			    d_minor) + offsetof(struct ddi_minor, name);
3025 			uintptr_t dev = offsetof(struct ddi_minor_data,
3026 			    d_minor) + offsetof(struct ddi_minor, dev);
3027 			uintptr_t scout;
3028 
3029 			if (maddr != NULL)
3030 				scout = dtrace_loadptr(maddr + next);
3031 
3032 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3033 				uint64_t m;
3034 #ifdef _LP64
3035 				m = dtrace_load64(maddr + dev) & MAXMIN64;
3036 #else
3037 				m = dtrace_load32(maddr + dev) & MAXMIN;
3038 #endif
3039 				if (m != minor) {
3040 					maddr = dtrace_loadptr(maddr + next);
3041 
3042 					if (scout == NULL)
3043 						continue;
3044 
3045 					scout = dtrace_loadptr(scout + next);
3046 
3047 					if (scout == NULL)
3048 						continue;
3049 
3050 					scout = dtrace_loadptr(scout + next);
3051 
3052 					if (scout == NULL)
3053 						continue;
3054 
3055 					if (scout == maddr) {
3056 						*flags |= CPU_DTRACE_ILLOP;
3057 						break;
3058 					}
3059 
3060 					continue;
3061 				}
3062 
3063 				/*
3064 				 * We have the minor data.  Now we need to
3065 				 * copy the minor's name into the end of the
3066 				 * pathname.
3067 				 */
3068 				s = (char *)dtrace_loadptr(maddr + name);
3069 				len = dtrace_strlen(s, size);
3070 
3071 				if (*flags & CPU_DTRACE_FAULT)
3072 					break;
3073 
3074 				if (len != 0) {
3075 					if ((end -= (len + 1)) < start)
3076 						break;
3077 
3078 					*end = ':';
3079 				}
3080 
3081 				for (i = 1; i <= len; i++)
3082 					end[i] = dtrace_load8((uintptr_t)s++);
3083 				break;
3084 			}
3085 		}
3086 
3087 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
3088 			ddi_node_state_t devi_state;
3089 
3090 			devi_state = dtrace_load32(daddr +
3091 			    offsetof(struct dev_info, devi_node_state));
3092 
3093 			if (*flags & CPU_DTRACE_FAULT)
3094 				break;
3095 
3096 			if (devi_state >= DS_INITIALIZED) {
3097 				s = (char *)dtrace_loadptr(daddr +
3098 				    offsetof(struct dev_info, devi_addr));
3099 				len = dtrace_strlen(s, size);
3100 
3101 				if (*flags & CPU_DTRACE_FAULT)
3102 					break;
3103 
3104 				if (len != 0) {
3105 					if ((end -= (len + 1)) < start)
3106 						break;
3107 
3108 					*end = '@';
3109 				}
3110 
3111 				for (i = 1; i <= len; i++)
3112 					end[i] = dtrace_load8((uintptr_t)s++);
3113 			}
3114 
3115 			/*
3116 			 * Now for the node name...
3117 			 */
3118 			s = (char *)dtrace_loadptr(daddr +
3119 			    offsetof(struct dev_info, devi_node_name));
3120 
3121 			daddr = dtrace_loadptr(daddr +
3122 			    offsetof(struct dev_info, devi_parent));
3123 
3124 			/*
3125 			 * If our parent is NULL (that is, if we're the root
3126 			 * node), we're going to use the special path
3127 			 * "devices".
3128 			 */
3129 			if (daddr == NULL)
3130 				s = "devices";
3131 
3132 			len = dtrace_strlen(s, size);
3133 			if (*flags & CPU_DTRACE_FAULT)
3134 				break;
3135 
3136 			if ((end -= (len + 1)) < start)
3137 				break;
3138 
3139 			for (i = 1; i <= len; i++)
3140 				end[i] = dtrace_load8((uintptr_t)s++);
3141 			*end = '/';
3142 
3143 			if (depth++ > dtrace_devdepth_max) {
3144 				*flags |= CPU_DTRACE_ILLOP;
3145 				break;
3146 			}
3147 		}
3148 
3149 		if (end < start)
3150 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3151 
3152 		if (daddr == NULL) {
3153 			regs[rd] = (uintptr_t)end;
3154 			mstate->dtms_scratch_ptr += size;
3155 		}
3156 
3157 		break;
3158 	}
3159 
3160 	case DIF_SUBR_STRJOIN: {
3161 		char *d = (char *)mstate->dtms_scratch_ptr;
3162 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3163 		uintptr_t s1 = tupregs[0].dttk_value;
3164 		uintptr_t s2 = tupregs[1].dttk_value;
3165 		int i = 0;
3166 
3167 		if (mstate->dtms_scratch_ptr + size >
3168 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3169 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3170 			regs[rd] = NULL;
3171 			break;
3172 		}
3173 
3174 		for (;;) {
3175 			if (i >= size) {
3176 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3177 				regs[rd] = NULL;
3178 				break;
3179 			}
3180 
3181 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
3182 				i--;
3183 				break;
3184 			}
3185 		}
3186 
3187 		for (;;) {
3188 			if (i >= size) {
3189 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3190 				regs[rd] = NULL;
3191 				break;
3192 			}
3193 
3194 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
3195 				break;
3196 		}
3197 
3198 		if (i < size) {
3199 			mstate->dtms_scratch_ptr += i;
3200 			regs[rd] = (uintptr_t)d;
3201 		}
3202 
3203 		break;
3204 	}
3205 
3206 	case DIF_SUBR_LLTOSTR: {
3207 		int64_t i = (int64_t)tupregs[0].dttk_value;
3208 		int64_t val = i < 0 ? i * -1 : i;
3209 		uint64_t size = 22;	/* enough room for 2^64 in decimal */
3210 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
3211 
3212 		if (mstate->dtms_scratch_ptr + size >
3213 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3214 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3215 			regs[rd] = NULL;
3216 			break;
3217 		}
3218 
3219 		for (*end-- = '\0'; val; val /= 10)
3220 			*end-- = '0' + (val % 10);
3221 
3222 		if (i == 0)
3223 			*end-- = '0';
3224 
3225 		if (i < 0)
3226 			*end-- = '-';
3227 
3228 		regs[rd] = (uintptr_t)end + 1;
3229 		mstate->dtms_scratch_ptr += size;
3230 		break;
3231 	}
3232 
3233 	case DIF_SUBR_DIRNAME:
3234 	case DIF_SUBR_BASENAME: {
3235 		char *dest = (char *)mstate->dtms_scratch_ptr;
3236 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3237 		uintptr_t src = tupregs[0].dttk_value;
3238 		int i, j, len = dtrace_strlen((char *)src, size);
3239 		int lastbase = -1, firstbase = -1, lastdir = -1;
3240 		int start, end;
3241 
3242 		if (mstate->dtms_scratch_ptr + size >
3243 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3244 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3245 			regs[rd] = NULL;
3246 			break;
3247 		}
3248 
3249 		/*
3250 		 * The basename and dirname for a zero-length string is
3251 		 * defined to be "."
3252 		 */
3253 		if (len == 0) {
3254 			len = 1;
3255 			src = (uintptr_t)".";
3256 		}
3257 
3258 		/*
3259 		 * Start from the back of the string, moving back toward the
3260 		 * front until we see a character that isn't a slash.  That
3261 		 * character is the last character in the basename.
3262 		 */
3263 		for (i = len - 1; i >= 0; i--) {
3264 			if (dtrace_load8(src + i) != '/')
3265 				break;
3266 		}
3267 
3268 		if (i >= 0)
3269 			lastbase = i;
3270 
3271 		/*
3272 		 * Starting from the last character in the basename, move
3273 		 * towards the front until we find a slash.  The character
3274 		 * that we processed immediately before that is the first
3275 		 * character in the basename.
3276 		 */
3277 		for (; i >= 0; i--) {
3278 			if (dtrace_load8(src + i) == '/')
3279 				break;
3280 		}
3281 
3282 		if (i >= 0)
3283 			firstbase = i + 1;
3284 
3285 		/*
3286 		 * Now keep going until we find a non-slash character.  That
3287 		 * character is the last character in the dirname.
3288 		 */
3289 		for (; i >= 0; i--) {
3290 			if (dtrace_load8(src + i) != '/')
3291 				break;
3292 		}
3293 
3294 		if (i >= 0)
3295 			lastdir = i;
3296 
3297 		ASSERT(!(lastbase == -1 && firstbase != -1));
3298 		ASSERT(!(firstbase == -1 && lastdir != -1));
3299 
3300 		if (lastbase == -1) {
3301 			/*
3302 			 * We didn't find a non-slash character.  We know that
3303 			 * the length is non-zero, so the whole string must be
3304 			 * slashes.  In either the dirname or the basename
3305 			 * case, we return '/'.
3306 			 */
3307 			ASSERT(firstbase == -1);
3308 			firstbase = lastbase = lastdir = 0;
3309 		}
3310 
3311 		if (firstbase == -1) {
3312 			/*
3313 			 * The entire string consists only of a basename
3314 			 * component.  If we're looking for dirname, we need
3315 			 * to change our string to be just "."; if we're
3316 			 * looking for a basename, we'll just set the first
3317 			 * character of the basename to be 0.
3318 			 */
3319 			if (subr == DIF_SUBR_DIRNAME) {
3320 				ASSERT(lastdir == -1);
3321 				src = (uintptr_t)".";
3322 				lastdir = 0;
3323 			} else {
3324 				firstbase = 0;
3325 			}
3326 		}
3327 
3328 		if (subr == DIF_SUBR_DIRNAME) {
3329 			if (lastdir == -1) {
3330 				/*
3331 				 * We know that we have a slash in the name --
3332 				 * or lastdir would be set to 0, above.  And
3333 				 * because lastdir is -1, we know that this
3334 				 * slash must be the first character.  (That
3335 				 * is, the full string must be of the form
3336 				 * "/basename".)  In this case, the last
3337 				 * character of the directory name is 0.
3338 				 */
3339 				lastdir = 0;
3340 			}
3341 
3342 			start = 0;
3343 			end = lastdir;
3344 		} else {
3345 			ASSERT(subr == DIF_SUBR_BASENAME);
3346 			ASSERT(firstbase != -1 && lastbase != -1);
3347 			start = firstbase;
3348 			end = lastbase;
3349 		}
3350 
3351 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
3352 			dest[j] = dtrace_load8(src + i);
3353 
3354 		dest[j] = '\0';
3355 		regs[rd] = (uintptr_t)dest;
3356 		mstate->dtms_scratch_ptr += size;
3357 		break;
3358 	}
3359 
3360 	case DIF_SUBR_CLEANPATH: {
3361 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
3362 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3363 		uintptr_t src = tupregs[0].dttk_value;
3364 		int i = 0, j = 0;
3365 
3366 		if (mstate->dtms_scratch_ptr + size >
3367 		    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3368 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3369 			regs[rd] = NULL;
3370 			break;
3371 		}
3372 
3373 		/*
3374 		 * Move forward, loading each character.
3375 		 */
3376 		do {
3377 			c = dtrace_load8(src + i++);
3378 next:
3379 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
3380 				break;
3381 
3382 			if (c != '/') {
3383 				dest[j++] = c;
3384 				continue;
3385 			}
3386 
3387 			c = dtrace_load8(src + i++);
3388 
3389 			if (c == '/') {
3390 				/*
3391 				 * We have two slashes -- we can just advance
3392 				 * to the next character.
3393 				 */
3394 				goto next;
3395 			}
3396 
3397 			if (c != '.') {
3398 				/*
3399 				 * This is not "." and it's not ".." -- we can
3400 				 * just store the "/" and this character and
3401 				 * drive on.
3402 				 */
3403 				dest[j++] = '/';
3404 				dest[j++] = c;
3405 				continue;
3406 			}
3407 
3408 			c = dtrace_load8(src + i++);
3409 
3410 			if (c == '/') {
3411 				/*
3412 				 * This is a "/./" component.  We're not going
3413 				 * to store anything in the destination buffer;
3414 				 * we're just going to go to the next component.
3415 				 */
3416 				goto next;
3417 			}
3418 
3419 			if (c != '.') {
3420 				/*
3421 				 * This is not ".." -- we can just store the
3422 				 * "/." and this character and continue
3423 				 * processing.
3424 				 */
3425 				dest[j++] = '/';
3426 				dest[j++] = '.';
3427 				dest[j++] = c;
3428 				continue;
3429 			}
3430 
3431 			c = dtrace_load8(src + i++);
3432 
3433 			if (c != '/' && c != '\0') {
3434 				/*
3435 				 * This is not ".." -- it's "..[mumble]".
3436 				 * We'll store the "/.." and this character
3437 				 * and continue processing.
3438 				 */
3439 				dest[j++] = '/';
3440 				dest[j++] = '.';
3441 				dest[j++] = '.';
3442 				dest[j++] = c;
3443 				continue;
3444 			}
3445 
3446 			/*
3447 			 * This is "/../" or "/..\0".  We need to back up
3448 			 * our destination pointer until we find a "/".
3449 			 */
3450 			i--;
3451 			while (j != 0 && dest[--j] != '/')
3452 				continue;
3453 
3454 			if (c == '\0')
3455 				dest[++j] = '/';
3456 		} while (c != '\0');
3457 
3458 		dest[j] = '\0';
3459 		regs[rd] = (uintptr_t)dest;
3460 		mstate->dtms_scratch_ptr += size;
3461 		break;
3462 	}
3463 	}
3464 }
3465 
3466 /*
3467  * Emulate the execution of DTrace IR instructions specified by the given
3468  * DIF object.  This function is deliberately void of assertions as all of
3469  * the necessary checks are handled by a call to dtrace_difo_validate().
3470  */
3471 static uint64_t
3472 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
3473     dtrace_vstate_t *vstate, dtrace_state_t *state)
3474 {
3475 	const dif_instr_t *text = difo->dtdo_buf;
3476 	const uint_t textlen = difo->dtdo_len;
3477 	const char *strtab = difo->dtdo_strtab;
3478 	const uint64_t *inttab = difo->dtdo_inttab;
3479 
3480 	uint64_t rval = 0;
3481 	dtrace_statvar_t *svar;
3482 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
3483 	dtrace_difv_t *v;
3484 	volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3485 	volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3486 
3487 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
3488 	uint64_t regs[DIF_DIR_NREGS];
3489 	uint64_t *tmp;
3490 
3491 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
3492 	int64_t cc_r;
3493 	uint_t pc = 0, id, opc;
3494 	uint8_t ttop = 0;
3495 	dif_instr_t instr;
3496 	uint_t r1, r2, rd;
3497 
3498 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
3499 
3500 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
3501 		opc = pc;
3502 
3503 		instr = text[pc++];
3504 		r1 = DIF_INSTR_R1(instr);
3505 		r2 = DIF_INSTR_R2(instr);
3506 		rd = DIF_INSTR_RD(instr);
3507 
3508 		switch (DIF_INSTR_OP(instr)) {
3509 		case DIF_OP_OR:
3510 			regs[rd] = regs[r1] | regs[r2];
3511 			break;
3512 		case DIF_OP_XOR:
3513 			regs[rd] = regs[r1] ^ regs[r2];
3514 			break;
3515 		case DIF_OP_AND:
3516 			regs[rd] = regs[r1] & regs[r2];
3517 			break;
3518 		case DIF_OP_SLL:
3519 			regs[rd] = regs[r1] << regs[r2];
3520 			break;
3521 		case DIF_OP_SRL:
3522 			regs[rd] = regs[r1] >> regs[r2];
3523 			break;
3524 		case DIF_OP_SUB:
3525 			regs[rd] = regs[r1] - regs[r2];
3526 			break;
3527 		case DIF_OP_ADD:
3528 			regs[rd] = regs[r1] + regs[r2];
3529 			break;
3530 		case DIF_OP_MUL:
3531 			regs[rd] = regs[r1] * regs[r2];
3532 			break;
3533 		case DIF_OP_SDIV:
3534 			if (regs[r2] == 0) {
3535 				regs[rd] = 0;
3536 				*flags |= CPU_DTRACE_DIVZERO;
3537 			} else {
3538 				regs[rd] = (int64_t)regs[r1] /
3539 				    (int64_t)regs[r2];
3540 			}
3541 			break;
3542 
3543 		case DIF_OP_UDIV:
3544 			if (regs[r2] == 0) {
3545 				regs[rd] = 0;
3546 				*flags |= CPU_DTRACE_DIVZERO;
3547 			} else {
3548 				regs[rd] = regs[r1] / regs[r2];
3549 			}
3550 			break;
3551 
3552 		case DIF_OP_SREM:
3553 			if (regs[r2] == 0) {
3554 				regs[rd] = 0;
3555 				*flags |= CPU_DTRACE_DIVZERO;
3556 			} else {
3557 				regs[rd] = (int64_t)regs[r1] %
3558 				    (int64_t)regs[r2];
3559 			}
3560 			break;
3561 
3562 		case DIF_OP_UREM:
3563 			if (regs[r2] == 0) {
3564 				regs[rd] = 0;
3565 				*flags |= CPU_DTRACE_DIVZERO;
3566 			} else {
3567 				regs[rd] = regs[r1] % regs[r2];
3568 			}
3569 			break;
3570 
3571 		case DIF_OP_NOT:
3572 			regs[rd] = ~regs[r1];
3573 			break;
3574 		case DIF_OP_MOV:
3575 			regs[rd] = regs[r1];
3576 			break;
3577 		case DIF_OP_CMP:
3578 			cc_r = regs[r1] - regs[r2];
3579 			cc_n = cc_r < 0;
3580 			cc_z = cc_r == 0;
3581 			cc_v = 0;
3582 			cc_c = regs[r1] < regs[r2];
3583 			break;
3584 		case DIF_OP_TST:
3585 			cc_n = cc_v = cc_c = 0;
3586 			cc_z = regs[r1] == 0;
3587 			break;
3588 		case DIF_OP_BA:
3589 			pc = DIF_INSTR_LABEL(instr);
3590 			break;
3591 		case DIF_OP_BE:
3592 			if (cc_z)
3593 				pc = DIF_INSTR_LABEL(instr);
3594 			break;
3595 		case DIF_OP_BNE:
3596 			if (cc_z == 0)
3597 				pc = DIF_INSTR_LABEL(instr);
3598 			break;
3599 		case DIF_OP_BG:
3600 			if ((cc_z | (cc_n ^ cc_v)) == 0)
3601 				pc = DIF_INSTR_LABEL(instr);
3602 			break;
3603 		case DIF_OP_BGU:
3604 			if ((cc_c | cc_z) == 0)
3605 				pc = DIF_INSTR_LABEL(instr);
3606 			break;
3607 		case DIF_OP_BGE:
3608 			if ((cc_n ^ cc_v) == 0)
3609 				pc = DIF_INSTR_LABEL(instr);
3610 			break;
3611 		case DIF_OP_BGEU:
3612 			if (cc_c == 0)
3613 				pc = DIF_INSTR_LABEL(instr);
3614 			break;
3615 		case DIF_OP_BL:
3616 			if (cc_n ^ cc_v)
3617 				pc = DIF_INSTR_LABEL(instr);
3618 			break;
3619 		case DIF_OP_BLU:
3620 			if (cc_c)
3621 				pc = DIF_INSTR_LABEL(instr);
3622 			break;
3623 		case DIF_OP_BLE:
3624 			if (cc_z | (cc_n ^ cc_v))
3625 				pc = DIF_INSTR_LABEL(instr);
3626 			break;
3627 		case DIF_OP_BLEU:
3628 			if (cc_c | cc_z)
3629 				pc = DIF_INSTR_LABEL(instr);
3630 			break;
3631 		case DIF_OP_RLDSB:
3632 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3633 				*flags |= CPU_DTRACE_KPRIV;
3634 				*illval = regs[r1];
3635 				break;
3636 			}
3637 			/*FALLTHROUGH*/
3638 		case DIF_OP_LDSB:
3639 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
3640 			break;
3641 		case DIF_OP_RLDSH:
3642 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3643 				*flags |= CPU_DTRACE_KPRIV;
3644 				*illval = regs[r1];
3645 				break;
3646 			}
3647 			/*FALLTHROUGH*/
3648 		case DIF_OP_LDSH:
3649 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
3650 			break;
3651 		case DIF_OP_RLDSW:
3652 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3653 				*flags |= CPU_DTRACE_KPRIV;
3654 				*illval = regs[r1];
3655 				break;
3656 			}
3657 			/*FALLTHROUGH*/
3658 		case DIF_OP_LDSW:
3659 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
3660 			break;
3661 		case DIF_OP_RLDUB:
3662 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
3663 				*flags |= CPU_DTRACE_KPRIV;
3664 				*illval = regs[r1];
3665 				break;
3666 			}
3667 			/*FALLTHROUGH*/
3668 		case DIF_OP_LDUB:
3669 			regs[rd] = dtrace_load8(regs[r1]);
3670 			break;
3671 		case DIF_OP_RLDUH:
3672 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
3673 				*flags |= CPU_DTRACE_KPRIV;
3674 				*illval = regs[r1];
3675 				break;
3676 			}
3677 			/*FALLTHROUGH*/
3678 		case DIF_OP_LDUH:
3679 			regs[rd] = dtrace_load16(regs[r1]);
3680 			break;
3681 		case DIF_OP_RLDUW:
3682 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
3683 				*flags |= CPU_DTRACE_KPRIV;
3684 				*illval = regs[r1];
3685 				break;
3686 			}
3687 			/*FALLTHROUGH*/
3688 		case DIF_OP_LDUW:
3689 			regs[rd] = dtrace_load32(regs[r1]);
3690 			break;
3691 		case DIF_OP_RLDX:
3692 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
3693 				*flags |= CPU_DTRACE_KPRIV;
3694 				*illval = regs[r1];
3695 				break;
3696 			}
3697 			/*FALLTHROUGH*/
3698 		case DIF_OP_LDX:
3699 			regs[rd] = dtrace_load64(regs[r1]);
3700 			break;
3701 		case DIF_OP_ULDSB:
3702 			regs[rd] = (int8_t)
3703 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3704 			break;
3705 		case DIF_OP_ULDSH:
3706 			regs[rd] = (int16_t)
3707 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3708 			break;
3709 		case DIF_OP_ULDSW:
3710 			regs[rd] = (int32_t)
3711 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3712 			break;
3713 		case DIF_OP_ULDUB:
3714 			regs[rd] =
3715 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
3716 			break;
3717 		case DIF_OP_ULDUH:
3718 			regs[rd] =
3719 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
3720 			break;
3721 		case DIF_OP_ULDUW:
3722 			regs[rd] =
3723 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
3724 			break;
3725 		case DIF_OP_ULDX:
3726 			regs[rd] =
3727 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
3728 			break;
3729 		case DIF_OP_RET:
3730 			rval = regs[rd];
3731 			break;
3732 		case DIF_OP_NOP:
3733 			break;
3734 		case DIF_OP_SETX:
3735 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
3736 			break;
3737 		case DIF_OP_SETS:
3738 			regs[rd] = (uint64_t)(uintptr_t)
3739 			    (strtab + DIF_INSTR_STRING(instr));
3740 			break;
3741 		case DIF_OP_SCMP:
3742 			cc_r = dtrace_strncmp((char *)(uintptr_t)regs[r1],
3743 			    (char *)(uintptr_t)regs[r2],
3744 			    state->dts_options[DTRACEOPT_STRSIZE]);
3745 
3746 			cc_n = cc_r < 0;
3747 			cc_z = cc_r == 0;
3748 			cc_v = cc_c = 0;
3749 			break;
3750 		case DIF_OP_LDGA:
3751 			regs[rd] = dtrace_dif_variable(mstate, state,
3752 			    r1, regs[r2]);
3753 			break;
3754 		case DIF_OP_LDGS:
3755 			id = DIF_INSTR_VAR(instr);
3756 
3757 			if (id >= DIF_VAR_OTHER_UBASE) {
3758 				uintptr_t a;
3759 
3760 				id -= DIF_VAR_OTHER_UBASE;
3761 				svar = vstate->dtvs_globals[id];
3762 				ASSERT(svar != NULL);
3763 				v = &svar->dtsv_var;
3764 
3765 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
3766 					regs[rd] = svar->dtsv_data;
3767 					break;
3768 				}
3769 
3770 				a = (uintptr_t)svar->dtsv_data;
3771 
3772 				if (*(uint8_t *)a == UINT8_MAX) {
3773 					/*
3774 					 * If the 0th byte is set to UINT8_MAX
3775 					 * then this is to be treated as a
3776 					 * reference to a NULL variable.
3777 					 */
3778 					regs[rd] = NULL;
3779 				} else {
3780 					regs[rd] = a + sizeof (uint64_t);
3781 				}
3782 
3783 				break;
3784 			}
3785 
3786 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
3787 			break;
3788 
3789 		case DIF_OP_STGS:
3790 			id = DIF_INSTR_VAR(instr);
3791 
3792 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3793 			id -= DIF_VAR_OTHER_UBASE;
3794 
3795 			svar = vstate->dtvs_globals[id];
3796 			ASSERT(svar != NULL);
3797 			v = &svar->dtsv_var;
3798 
3799 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3800 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3801 
3802 				ASSERT(a != NULL);
3803 				ASSERT(svar->dtsv_size != 0);
3804 
3805 				if (regs[rd] == NULL) {
3806 					*(uint8_t *)a = UINT8_MAX;
3807 					break;
3808 				} else {
3809 					*(uint8_t *)a = 0;
3810 					a += sizeof (uint64_t);
3811 				}
3812 
3813 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3814 				    (void *)a, &v->dtdv_type);
3815 				break;
3816 			}
3817 
3818 			svar->dtsv_data = regs[rd];
3819 			break;
3820 
3821 		case DIF_OP_LDTA:
3822 			/*
3823 			 * There are no DTrace built-in thread-local arrays at
3824 			 * present.  This opcode is saved for future work.
3825 			 */
3826 			*flags |= CPU_DTRACE_ILLOP;
3827 			regs[rd] = 0;
3828 			break;
3829 
3830 		case DIF_OP_LDLS:
3831 			id = DIF_INSTR_VAR(instr);
3832 
3833 			if (id < DIF_VAR_OTHER_UBASE) {
3834 				/*
3835 				 * For now, this has no meaning.
3836 				 */
3837 				regs[rd] = 0;
3838 				break;
3839 			}
3840 
3841 			id -= DIF_VAR_OTHER_UBASE;
3842 
3843 			ASSERT(id < vstate->dtvs_nlocals);
3844 			ASSERT(vstate->dtvs_locals != NULL);
3845 
3846 			svar = vstate->dtvs_locals[id];
3847 			ASSERT(svar != NULL);
3848 			v = &svar->dtsv_var;
3849 
3850 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3851 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3852 				size_t sz = v->dtdv_type.dtdt_size;
3853 
3854 				sz += sizeof (uint64_t);
3855 				ASSERT(svar->dtsv_size == NCPU * sz);
3856 				a += CPU->cpu_id * sz;
3857 
3858 				if (*(uint8_t *)a == UINT8_MAX) {
3859 					/*
3860 					 * If the 0th byte is set to UINT8_MAX
3861 					 * then this is to be treated as a
3862 					 * reference to a NULL variable.
3863 					 */
3864 					regs[rd] = NULL;
3865 				} else {
3866 					regs[rd] = a + sizeof (uint64_t);
3867 				}
3868 
3869 				break;
3870 			}
3871 
3872 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
3873 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
3874 			regs[rd] = tmp[CPU->cpu_id];
3875 			break;
3876 
3877 		case DIF_OP_STLS:
3878 			id = DIF_INSTR_VAR(instr);
3879 
3880 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3881 			id -= DIF_VAR_OTHER_UBASE;
3882 			ASSERT(id < vstate->dtvs_nlocals);
3883 
3884 			ASSERT(vstate->dtvs_locals != NULL);
3885 			svar = vstate->dtvs_locals[id];
3886 			ASSERT(svar != NULL);
3887 			v = &svar->dtsv_var;
3888 
3889 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3890 				uintptr_t a = (uintptr_t)svar->dtsv_data;
3891 				size_t sz = v->dtdv_type.dtdt_size;
3892 
3893 				sz += sizeof (uint64_t);
3894 				ASSERT(svar->dtsv_size == NCPU * sz);
3895 				a += CPU->cpu_id * sz;
3896 
3897 				if (regs[rd] == NULL) {
3898 					*(uint8_t *)a = UINT8_MAX;
3899 					break;
3900 				} else {
3901 					*(uint8_t *)a = 0;
3902 					a += sizeof (uint64_t);
3903 				}
3904 
3905 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3906 				    (void *)a, &v->dtdv_type);
3907 				break;
3908 			}
3909 
3910 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
3911 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
3912 			tmp[CPU->cpu_id] = regs[rd];
3913 			break;
3914 
3915 		case DIF_OP_LDTS: {
3916 			dtrace_dynvar_t *dvar;
3917 			dtrace_key_t *key;
3918 
3919 			id = DIF_INSTR_VAR(instr);
3920 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3921 			id -= DIF_VAR_OTHER_UBASE;
3922 			v = &vstate->dtvs_tlocals[id];
3923 
3924 			key = &tupregs[DIF_DTR_NREGS];
3925 			key[0].dttk_value = (uint64_t)id;
3926 			key[0].dttk_size = 0;
3927 			DTRACE_TLS_THRKEY(key[1].dttk_value);
3928 			key[1].dttk_size = 0;
3929 
3930 			dvar = dtrace_dynvar(dstate, 2, key,
3931 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC);
3932 
3933 			if (dvar == NULL) {
3934 				regs[rd] = 0;
3935 				break;
3936 			}
3937 
3938 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3939 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
3940 			} else {
3941 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
3942 			}
3943 
3944 			break;
3945 		}
3946 
3947 		case DIF_OP_STTS: {
3948 			dtrace_dynvar_t *dvar;
3949 			dtrace_key_t *key;
3950 
3951 			id = DIF_INSTR_VAR(instr);
3952 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
3953 			id -= DIF_VAR_OTHER_UBASE;
3954 
3955 			key = &tupregs[DIF_DTR_NREGS];
3956 			key[0].dttk_value = (uint64_t)id;
3957 			key[0].dttk_size = 0;
3958 			DTRACE_TLS_THRKEY(key[1].dttk_value);
3959 			key[1].dttk_size = 0;
3960 			v = &vstate->dtvs_tlocals[id];
3961 
3962 			dvar = dtrace_dynvar(dstate, 2, key,
3963 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
3964 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
3965 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
3966 			    DTRACE_DYNVAR_DEALLOC);
3967 
3968 			/*
3969 			 * Given that we're storing to thread-local data,
3970 			 * we need to flush our predicate cache.
3971 			 */
3972 			curthread->t_predcache = NULL;
3973 
3974 			if (dvar == NULL)
3975 				break;
3976 
3977 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
3978 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
3979 				    dvar->dtdv_data, &v->dtdv_type);
3980 			} else {
3981 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
3982 			}
3983 
3984 			break;
3985 		}
3986 
3987 		case DIF_OP_SRA:
3988 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
3989 			break;
3990 
3991 		case DIF_OP_CALL:
3992 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
3993 			    regs, tupregs, ttop, mstate, state);
3994 			break;
3995 
3996 		case DIF_OP_PUSHTR:
3997 			if (ttop == DIF_DTR_NREGS) {
3998 				*flags |= CPU_DTRACE_TUPOFLOW;
3999 				break;
4000 			}
4001 
4002 			if (r1 == DIF_TYPE_STRING) {
4003 				/*
4004 				 * If this is a string type and the size is 0,
4005 				 * we'll use the system-wide default string
4006 				 * size.  Note that we are _not_ looking at
4007 				 * the value of the DTRACEOPT_STRSIZE option;
4008 				 * had this been set, we would expect to have
4009 				 * a non-zero size value in the "pushtr".
4010 				 */
4011 				tupregs[ttop].dttk_size =
4012 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
4013 				    regs[r2] ? regs[r2] :
4014 				    dtrace_strsize_default) + 1;
4015 			} else {
4016 				tupregs[ttop].dttk_size = regs[r2];
4017 			}
4018 
4019 			tupregs[ttop++].dttk_value = regs[rd];
4020 			break;
4021 
4022 		case DIF_OP_PUSHTV:
4023 			if (ttop == DIF_DTR_NREGS) {
4024 				*flags |= CPU_DTRACE_TUPOFLOW;
4025 				break;
4026 			}
4027 
4028 			tupregs[ttop].dttk_value = regs[rd];
4029 			tupregs[ttop++].dttk_size = 0;
4030 			break;
4031 
4032 		case DIF_OP_POPTS:
4033 			if (ttop != 0)
4034 				ttop--;
4035 			break;
4036 
4037 		case DIF_OP_FLUSHTS:
4038 			ttop = 0;
4039 			break;
4040 
4041 		case DIF_OP_LDGAA:
4042 		case DIF_OP_LDTAA: {
4043 			dtrace_dynvar_t *dvar;
4044 			dtrace_key_t *key = tupregs;
4045 			uint_t nkeys = ttop;
4046 
4047 			id = DIF_INSTR_VAR(instr);
4048 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4049 			id -= DIF_VAR_OTHER_UBASE;
4050 
4051 			key[nkeys].dttk_value = (uint64_t)id;
4052 			key[nkeys++].dttk_size = 0;
4053 
4054 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
4055 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4056 				key[nkeys++].dttk_size = 0;
4057 				v = &vstate->dtvs_tlocals[id];
4058 			} else {
4059 				v = &vstate->dtvs_globals[id]->dtsv_var;
4060 			}
4061 
4062 			dvar = dtrace_dynvar(dstate, nkeys, key,
4063 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4064 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4065 			    DTRACE_DYNVAR_NOALLOC);
4066 
4067 			if (dvar == NULL) {
4068 				regs[rd] = 0;
4069 				break;
4070 			}
4071 
4072 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4073 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
4074 			} else {
4075 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
4076 			}
4077 
4078 			break;
4079 		}
4080 
4081 		case DIF_OP_STGAA:
4082 		case DIF_OP_STTAA: {
4083 			dtrace_dynvar_t *dvar;
4084 			dtrace_key_t *key = tupregs;
4085 			uint_t nkeys = ttop;
4086 
4087 			id = DIF_INSTR_VAR(instr);
4088 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
4089 			id -= DIF_VAR_OTHER_UBASE;
4090 
4091 			key[nkeys].dttk_value = (uint64_t)id;
4092 			key[nkeys++].dttk_size = 0;
4093 
4094 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
4095 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
4096 				key[nkeys++].dttk_size = 0;
4097 				v = &vstate->dtvs_tlocals[id];
4098 			} else {
4099 				v = &vstate->dtvs_globals[id]->dtsv_var;
4100 			}
4101 
4102 			dvar = dtrace_dynvar(dstate, nkeys, key,
4103 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
4104 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
4105 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
4106 			    DTRACE_DYNVAR_DEALLOC);
4107 
4108 			if (dvar == NULL)
4109 				break;
4110 
4111 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
4112 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
4113 				    dvar->dtdv_data, &v->dtdv_type);
4114 			} else {
4115 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
4116 			}
4117 
4118 			break;
4119 		}
4120 
4121 		case DIF_OP_ALLOCS: {
4122 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4123 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
4124 
4125 			if (mstate->dtms_scratch_ptr + size >
4126 			    mstate->dtms_scratch_base +
4127 			    mstate->dtms_scratch_size) {
4128 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4129 				regs[rd] = NULL;
4130 			} else {
4131 				dtrace_bzero((void *)
4132 				    mstate->dtms_scratch_ptr, size);
4133 				mstate->dtms_scratch_ptr += size;
4134 				regs[rd] = ptr;
4135 			}
4136 			break;
4137 		}
4138 
4139 		case DIF_OP_COPYS:
4140 			if (!dtrace_canstore(regs[rd], regs[r2],
4141 			    mstate, vstate)) {
4142 				*flags |= CPU_DTRACE_BADADDR;
4143 				*illval = regs[rd];
4144 				break;
4145 			}
4146 
4147 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
4148 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
4149 			break;
4150 
4151 		case DIF_OP_STB:
4152 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
4153 				*flags |= CPU_DTRACE_BADADDR;
4154 				*illval = regs[rd];
4155 				break;
4156 			}
4157 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
4158 			break;
4159 
4160 		case DIF_OP_STH:
4161 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
4162 				*flags |= CPU_DTRACE_BADADDR;
4163 				*illval = regs[rd];
4164 				break;
4165 			}
4166 			if (regs[rd] & 1) {
4167 				*flags |= CPU_DTRACE_BADALIGN;
4168 				*illval = regs[rd];
4169 				break;
4170 			}
4171 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
4172 			break;
4173 
4174 		case DIF_OP_STW:
4175 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
4176 				*flags |= CPU_DTRACE_BADADDR;
4177 				*illval = regs[rd];
4178 				break;
4179 			}
4180 			if (regs[rd] & 3) {
4181 				*flags |= CPU_DTRACE_BADALIGN;
4182 				*illval = regs[rd];
4183 				break;
4184 			}
4185 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
4186 			break;
4187 
4188 		case DIF_OP_STX:
4189 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
4190 				*flags |= CPU_DTRACE_BADADDR;
4191 				*illval = regs[rd];
4192 				break;
4193 			}
4194 			if (regs[rd] & 7) {
4195 				*flags |= CPU_DTRACE_BADALIGN;
4196 				*illval = regs[rd];
4197 				break;
4198 			}
4199 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
4200 			break;
4201 		}
4202 	}
4203 
4204 	if (!(*flags & CPU_DTRACE_FAULT))
4205 		return (rval);
4206 
4207 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
4208 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
4209 
4210 	return (0);
4211 }
4212 
4213 static void
4214 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
4215 {
4216 	dtrace_probe_t *probe = ecb->dte_probe;
4217 	dtrace_provider_t *prov = probe->dtpr_provider;
4218 	char c[DTRACE_FULLNAMELEN + 80], *str;
4219 	char *msg = "dtrace: breakpoint action at probe ";
4220 	char *ecbmsg = " (ecb ";
4221 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
4222 	uintptr_t val = (uintptr_t)ecb;
4223 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
4224 
4225 	if (dtrace_destructive_disallow)
4226 		return;
4227 
4228 	/*
4229 	 * It's impossible to be taking action on the NULL probe.
4230 	 */
4231 	ASSERT(probe != NULL);
4232 
4233 	/*
4234 	 * This is a poor man's (destitute man's?) sprintf():  we want to
4235 	 * print the provider name, module name, function name and name of
4236 	 * the probe, along with the hex address of the ECB with the breakpoint
4237 	 * action -- all of which we must place in the character buffer by
4238 	 * hand.
4239 	 */
4240 	while (*msg != '\0')
4241 		c[i++] = *msg++;
4242 
4243 	for (str = prov->dtpv_name; *str != '\0'; str++)
4244 		c[i++] = *str;
4245 	c[i++] = ':';
4246 
4247 	for (str = probe->dtpr_mod; *str != '\0'; str++)
4248 		c[i++] = *str;
4249 	c[i++] = ':';
4250 
4251 	for (str = probe->dtpr_func; *str != '\0'; str++)
4252 		c[i++] = *str;
4253 	c[i++] = ':';
4254 
4255 	for (str = probe->dtpr_name; *str != '\0'; str++)
4256 		c[i++] = *str;
4257 
4258 	while (*ecbmsg != '\0')
4259 		c[i++] = *ecbmsg++;
4260 
4261 	while (shift >= 0) {
4262 		mask = (uintptr_t)0xf << shift;
4263 
4264 		if (val >= ((uintptr_t)1 << shift))
4265 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
4266 		shift -= 4;
4267 	}
4268 
4269 	c[i++] = ')';
4270 	c[i] = '\0';
4271 
4272 	debug_enter(c);
4273 }
4274 
4275 static void
4276 dtrace_action_panic(dtrace_ecb_t *ecb)
4277 {
4278 	dtrace_probe_t *probe = ecb->dte_probe;
4279 
4280 	/*
4281 	 * It's impossible to be taking action on the NULL probe.
4282 	 */
4283 	ASSERT(probe != NULL);
4284 
4285 	if (dtrace_destructive_disallow)
4286 		return;
4287 
4288 	if (dtrace_panicked != NULL)
4289 		return;
4290 
4291 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
4292 		return;
4293 
4294 	/*
4295 	 * We won the right to panic.  (We want to be sure that only one
4296 	 * thread calls panic() from dtrace_probe(), and that panic() is
4297 	 * called exactly once.)
4298 	 */
4299 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
4300 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
4301 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
4302 }
4303 
4304 static void
4305 dtrace_action_raise(uint64_t sig)
4306 {
4307 	if (dtrace_destructive_disallow)
4308 		return;
4309 
4310 	if (sig >= NSIG) {
4311 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4312 		return;
4313 	}
4314 
4315 	/*
4316 	 * raise() has a queue depth of 1 -- we ignore all subsequent
4317 	 * invocations of the raise() action.
4318 	 */
4319 	if (curthread->t_dtrace_sig == 0)
4320 		curthread->t_dtrace_sig = (uint8_t)sig;
4321 
4322 	curthread->t_sig_check = 1;
4323 	aston(curthread);
4324 }
4325 
4326 static void
4327 dtrace_action_stop(void)
4328 {
4329 	if (dtrace_destructive_disallow)
4330 		return;
4331 
4332 	if (!curthread->t_dtrace_stop) {
4333 		curthread->t_dtrace_stop = 1;
4334 		curthread->t_sig_check = 1;
4335 		aston(curthread);
4336 	}
4337 }
4338 
4339 static void
4340 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
4341 {
4342 	hrtime_t now;
4343 	volatile uint16_t *flags;
4344 	cpu_t *cpu = CPU;
4345 
4346 	if (dtrace_destructive_disallow)
4347 		return;
4348 
4349 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
4350 
4351 	now = dtrace_gethrtime();
4352 
4353 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
4354 		/*
4355 		 * We need to advance the mark to the current time.
4356 		 */
4357 		cpu->cpu_dtrace_chillmark = now;
4358 		cpu->cpu_dtrace_chilled = 0;
4359 	}
4360 
4361 	/*
4362 	 * Now check to see if the requested chill time would take us over
4363 	 * the maximum amount of time allowed in the chill interval.  (Or
4364 	 * worse, if the calculation itself induces overflow.)
4365 	 */
4366 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
4367 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
4368 		*flags |= CPU_DTRACE_ILLOP;
4369 		return;
4370 	}
4371 
4372 	while (dtrace_gethrtime() - now < val)
4373 		continue;
4374 
4375 	/*
4376 	 * Normally, we assure that the value of the variable "timestamp" does
4377 	 * not change within an ECB.  The presence of chill() represents an
4378 	 * exception to this rule, however.
4379 	 */
4380 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
4381 	cpu->cpu_dtrace_chilled += val;
4382 }
4383 
4384 static void
4385 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
4386     uint64_t *buf, uint64_t arg)
4387 {
4388 	int nframes = DTRACE_USTACK_NFRAMES(arg);
4389 	int strsize = DTRACE_USTACK_STRSIZE(arg);
4390 	uint64_t *pcs = &buf[1], *fps;
4391 	char *str = (char *)&pcs[nframes];
4392 	int size, offs = 0, i, j;
4393 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
4394 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4395 	char *sym;
4396 
4397 	/*
4398 	 * Should be taking a faster path if string space has not been
4399 	 * allocated.
4400 	 */
4401 	ASSERT(strsize != 0);
4402 
4403 	/*
4404 	 * We will first allocate some temporary space for the frame pointers.
4405 	 */
4406 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4407 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
4408 	    (nframes * sizeof (uint64_t));
4409 
4410 	if (mstate->dtms_scratch_ptr + size >
4411 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
4412 		/*
4413 		 * Not enough room for our frame pointers -- need to indicate
4414 		 * that we ran out of scratch space.
4415 		 */
4416 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4417 		return;
4418 	}
4419 
4420 	mstate->dtms_scratch_ptr += size;
4421 	saved = mstate->dtms_scratch_ptr;
4422 
4423 	/*
4424 	 * Now get a stack with both program counters and frame pointers.
4425 	 */
4426 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4427 	dtrace_getufpstack(buf, fps, nframes + 1);
4428 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4429 
4430 	/*
4431 	 * If that faulted, we're cooked.
4432 	 */
4433 	if (*flags & CPU_DTRACE_FAULT)
4434 		goto out;
4435 
4436 	/*
4437 	 * Now we want to walk up the stack, calling the USTACK helper.  For
4438 	 * each iteration, we restore the scratch pointer.
4439 	 */
4440 	for (i = 0; i < nframes; i++) {
4441 		mstate->dtms_scratch_ptr = saved;
4442 
4443 		if (offs >= strsize)
4444 			break;
4445 
4446 		sym = (char *)(uintptr_t)dtrace_helper(
4447 		    DTRACE_HELPER_ACTION_USTACK,
4448 		    mstate, state, pcs[i], fps[i]);
4449 
4450 		/*
4451 		 * If we faulted while running the helper, we're going to
4452 		 * clear the fault and null out the corresponding string.
4453 		 */
4454 		if (*flags & CPU_DTRACE_FAULT) {
4455 			*flags &= ~CPU_DTRACE_FAULT;
4456 			str[offs++] = '\0';
4457 			continue;
4458 		}
4459 
4460 		if (sym == NULL) {
4461 			str[offs++] = '\0';
4462 			continue;
4463 		}
4464 
4465 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4466 
4467 		/*
4468 		 * Now copy in the string that the helper returned to us.
4469 		 */
4470 		for (j = 0; offs + j < strsize; j++) {
4471 			if ((str[offs + j] = sym[j]) == '\0')
4472 				break;
4473 		}
4474 
4475 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4476 
4477 		offs += j + 1;
4478 	}
4479 
4480 	if (offs >= strsize) {
4481 		/*
4482 		 * If we didn't have room for all of the strings, we don't
4483 		 * abort processing -- this needn't be a fatal error -- but we
4484 		 * still want to increment a counter (dts_stkstroverflows) to
4485 		 * allow this condition to be warned about.  (If this is from
4486 		 * a jstack() action, it is easily tuned via jstackstrsize.)
4487 		 */
4488 		dtrace_error(&state->dts_stkstroverflows);
4489 	}
4490 
4491 	while (offs < strsize)
4492 		str[offs++] = '\0';
4493 
4494 out:
4495 	mstate->dtms_scratch_ptr = old;
4496 }
4497 
4498 /*
4499  * If you're looking for the epicenter of DTrace, you just found it.  This
4500  * is the function called by the provider to fire a probe -- from which all
4501  * subsequent probe-context DTrace activity emanates.
4502  */
4503 void
4504 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
4505     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
4506 {
4507 	processorid_t cpuid;
4508 	dtrace_icookie_t cookie;
4509 	dtrace_probe_t *probe;
4510 	dtrace_mstate_t mstate;
4511 	dtrace_ecb_t *ecb;
4512 	dtrace_action_t *act;
4513 	intptr_t offs;
4514 	size_t size;
4515 	int vtime, onintr;
4516 	volatile uint16_t *flags;
4517 	hrtime_t now;
4518 
4519 	/*
4520 	 * Kick out immediately if this CPU is still being born (in which case
4521 	 * curthread will be set to -1)
4522 	 */
4523 	if ((uintptr_t)curthread & 1)
4524 		return;
4525 
4526 	cookie = dtrace_interrupt_disable();
4527 	probe = dtrace_probes[id - 1];
4528 	cpuid = CPU->cpu_id;
4529 	onintr = CPU_ON_INTR(CPU);
4530 
4531 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
4532 	    probe->dtpr_predcache == curthread->t_predcache) {
4533 		/*
4534 		 * We have hit in the predicate cache; we know that
4535 		 * this predicate would evaluate to be false.
4536 		 */
4537 		dtrace_interrupt_enable(cookie);
4538 		return;
4539 	}
4540 
4541 	if (panic_quiesce) {
4542 		/*
4543 		 * We don't trace anything if we're panicking.
4544 		 */
4545 		dtrace_interrupt_enable(cookie);
4546 		return;
4547 	}
4548 
4549 	now = dtrace_gethrtime();
4550 	vtime = dtrace_vtime_references != 0;
4551 
4552 	if (vtime && curthread->t_dtrace_start)
4553 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
4554 
4555 	mstate.dtms_probe = probe;
4556 	mstate.dtms_arg[0] = arg0;
4557 	mstate.dtms_arg[1] = arg1;
4558 	mstate.dtms_arg[2] = arg2;
4559 	mstate.dtms_arg[3] = arg3;
4560 	mstate.dtms_arg[4] = arg4;
4561 
4562 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
4563 
4564 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
4565 		dtrace_predicate_t *pred = ecb->dte_predicate;
4566 		dtrace_state_t *state = ecb->dte_state;
4567 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
4568 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
4569 		dtrace_vstate_t *vstate = &state->dts_vstate;
4570 		dtrace_provider_t *prov = probe->dtpr_provider;
4571 		int committed = 0;
4572 		caddr_t tomax;
4573 
4574 		/*
4575 		 * A little subtlety with the following (seemingly innocuous)
4576 		 * declaration of the automatic 'val':  by looking at the
4577 		 * code, you might think that it could be declared in the
4578 		 * action processing loop, below.  (That is, it's only used in
4579 		 * the action processing loop.)  However, it must be declared
4580 		 * out of that scope because in the case of DIF expression
4581 		 * arguments to aggregating actions, one iteration of the
4582 		 * action loop will use the last iteration's value.
4583 		 */
4584 #ifdef lint
4585 		uint64_t val = 0;
4586 #else
4587 		uint64_t val;
4588 #endif
4589 
4590 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
4591 		*flags &= ~CPU_DTRACE_ERROR;
4592 
4593 		if (prov == dtrace_provider) {
4594 			/*
4595 			 * If dtrace itself is the provider of this probe,
4596 			 * we're only going to continue processing the ECB if
4597 			 * arg0 (the dtrace_state_t) is equal to the ECB's
4598 			 * creating state.  (This prevents disjoint consumers
4599 			 * from seeing one another's metaprobes.)
4600 			 */
4601 			if (arg0 != (uint64_t)(uintptr_t)state)
4602 				continue;
4603 		}
4604 
4605 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
4606 			/*
4607 			 * We're not currently active.  If our provider isn't
4608 			 * the dtrace pseudo provider, we're not interested.
4609 			 */
4610 			if (prov != dtrace_provider)
4611 				continue;
4612 
4613 			/*
4614 			 * Now we must further check if we are in the BEGIN
4615 			 * probe.  If we are, we will only continue processing
4616 			 * if we're still in WARMUP -- if one BEGIN enabling
4617 			 * has invoked the exit() action, we don't want to
4618 			 * evaluate subsequent BEGIN enablings.
4619 			 */
4620 			if (probe->dtpr_id == dtrace_probeid_begin &&
4621 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
4622 				ASSERT(state->dts_activity ==
4623 				    DTRACE_ACTIVITY_DRAINING);
4624 				continue;
4625 			}
4626 		}
4627 
4628 		if (ecb->dte_cond) {
4629 			/*
4630 			 * If the dte_cond bits indicate that this
4631 			 * consumer is only allowed to see user-mode firings
4632 			 * of this probe, call the provider's dtps_usermode()
4633 			 * entry point to check that the probe was fired
4634 			 * while in a user context. Skip this ECB if that's
4635 			 * not the case.
4636 			 */
4637 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
4638 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
4639 			    probe->dtpr_id, probe->dtpr_arg) == 0)
4640 				continue;
4641 
4642 			/*
4643 			 * This is more subtle than it looks. We have to be
4644 			 * absolutely certain that CRED() isn't going to
4645 			 * change out from under us so it's only legit to
4646 			 * examine that structure if we're in constrained
4647 			 * situations. Currently, the only times we'll this
4648 			 * check is if a non-super-user has enabled the
4649 			 * profile or syscall providers -- providers that
4650 			 * allow visibility of all processes. For the
4651 			 * profile case, the check above will ensure that
4652 			 * we're examining a user context.
4653 			 */
4654 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
4655 				uid_t uid = ecb->dte_state->dts_cred.dcr_uid;
4656 				gid_t gid = ecb->dte_state->dts_cred.dcr_gid;
4657 				cred_t *cr;
4658 				proc_t *proc;
4659 
4660 				if ((cr = CRED()) == NULL ||
4661 				    uid != cr->cr_uid ||
4662 				    uid != cr->cr_ruid ||
4663 				    uid != cr->cr_suid ||
4664 				    gid != cr->cr_gid ||
4665 				    gid != cr->cr_rgid ||
4666 				    gid != cr->cr_sgid ||
4667 				    (proc = ttoproc(curthread)) == NULL ||
4668 				    (proc->p_flag & SNOCD))
4669 					continue;
4670 
4671 			}
4672 		}
4673 
4674 		if (now - state->dts_alive > dtrace_deadman_timeout) {
4675 			/*
4676 			 * We seem to be dead.  Unless we (a) have kernel
4677 			 * destructive permissions (b) have expicitly enabled
4678 			 * destructive actions and (c) destructive actions have
4679 			 * not been disabled, we're going to transition into
4680 			 * the KILLED state, from which no further processing
4681 			 * on this state will be performed.
4682 			 */
4683 			if (!dtrace_priv_kernel_destructive(state) ||
4684 			    !state->dts_cred.dcr_destructive ||
4685 			    dtrace_destructive_disallow) {
4686 				void *activity = &state->dts_activity;
4687 				dtrace_activity_t current;
4688 
4689 				do {
4690 					current = state->dts_activity;
4691 				} while (dtrace_cas32(activity, current,
4692 				    DTRACE_ACTIVITY_KILLED) != current);
4693 
4694 				continue;
4695 			}
4696 		}
4697 
4698 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
4699 		    ecb->dte_alignment, state, &mstate)) < 0)
4700 			continue;
4701 
4702 		tomax = buf->dtb_tomax;
4703 		ASSERT(tomax != NULL);
4704 
4705 		if (ecb->dte_size != 0)
4706 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
4707 
4708 		mstate.dtms_epid = ecb->dte_epid;
4709 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
4710 
4711 		if (pred != NULL) {
4712 			dtrace_difo_t *dp = pred->dtp_difo;
4713 			int rval;
4714 
4715 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
4716 
4717 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
4718 				dtrace_cacheid_t cid = probe->dtpr_predcache;
4719 
4720 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
4721 					/*
4722 					 * Update the predicate cache...
4723 					 */
4724 					ASSERT(cid == pred->dtp_cacheid);
4725 					curthread->t_predcache = cid;
4726 				}
4727 
4728 				continue;
4729 			}
4730 		}
4731 
4732 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
4733 		    act != NULL; act = act->dta_next) {
4734 			size_t valoffs;
4735 			dtrace_difo_t *dp;
4736 			dtrace_recdesc_t *rec = &act->dta_rec;
4737 
4738 			size = rec->dtrd_size;
4739 			valoffs = offs + rec->dtrd_offset;
4740 
4741 			if (DTRACEACT_ISAGG(act->dta_kind)) {
4742 				uint64_t v = 0xbad;
4743 				dtrace_aggregation_t *agg;
4744 
4745 				agg = (dtrace_aggregation_t *)act;
4746 
4747 				if ((dp = act->dta_difo) != NULL)
4748 					v = dtrace_dif_emulate(dp,
4749 					    &mstate, vstate, state);
4750 
4751 				if (*flags & CPU_DTRACE_ERROR)
4752 					continue;
4753 
4754 				/*
4755 				 * Note that we always pass the expression
4756 				 * value from the previous iteration of the
4757 				 * action loop.  This value will only be used
4758 				 * if there is an expression argument to the
4759 				 * aggregating action, denoted by the
4760 				 * dtag_hasarg field.
4761 				 */
4762 				dtrace_aggregate(agg, buf,
4763 				    offs, aggbuf, v, val);
4764 				continue;
4765 			}
4766 
4767 			switch (act->dta_kind) {
4768 			case DTRACEACT_STOP:
4769 				if (dtrace_priv_proc_destructive(state))
4770 					dtrace_action_stop();
4771 				continue;
4772 
4773 			case DTRACEACT_BREAKPOINT:
4774 				if (dtrace_priv_kernel_destructive(state))
4775 					dtrace_action_breakpoint(ecb);
4776 				continue;
4777 
4778 			case DTRACEACT_PANIC:
4779 				if (dtrace_priv_kernel_destructive(state))
4780 					dtrace_action_panic(ecb);
4781 				continue;
4782 
4783 			case DTRACEACT_STACK:
4784 				if (!dtrace_priv_kernel(state))
4785 					continue;
4786 
4787 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
4788 				    size / sizeof (pc_t), probe->dtpr_aframes,
4789 				    DTRACE_ANCHORED(probe) ? NULL :
4790 				    (uint32_t *)arg0);
4791 
4792 				continue;
4793 
4794 			case DTRACEACT_JSTACK:
4795 			case DTRACEACT_USTACK:
4796 				if (!dtrace_priv_proc(state))
4797 					continue;
4798 
4799 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
4800 				    curproc->p_dtrace_helpers != NULL) {
4801 					/*
4802 					 * This is the slow path -- we have
4803 					 * allocated string space, and we're
4804 					 * getting the stack of a process that
4805 					 * has helpers.  Call into a separate
4806 					 * routine to perform this processing.
4807 					 */
4808 					dtrace_action_ustack(&mstate, state,
4809 					    (uint64_t *)(tomax + valoffs),
4810 					    rec->dtrd_arg);
4811 					continue;
4812 				}
4813 
4814 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4815 				dtrace_getupcstack((uint64_t *)
4816 				    (tomax + valoffs),
4817 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
4818 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4819 				continue;
4820 
4821 			default:
4822 				break;
4823 			}
4824 
4825 			dp = act->dta_difo;
4826 			ASSERT(dp != NULL);
4827 
4828 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
4829 
4830 			if (*flags & CPU_DTRACE_ERROR)
4831 				continue;
4832 
4833 			switch (act->dta_kind) {
4834 			case DTRACEACT_SPECULATE:
4835 				ASSERT(buf == &state->dts_buffer[cpuid]);
4836 				buf = dtrace_speculation_buffer(state,
4837 				    cpuid, val);
4838 
4839 				if (buf == NULL) {
4840 					*flags |= CPU_DTRACE_DROP;
4841 					continue;
4842 				}
4843 
4844 				offs = dtrace_buffer_reserve(buf,
4845 				    ecb->dte_needed, ecb->dte_alignment,
4846 				    state, NULL);
4847 
4848 				if (offs < 0) {
4849 					*flags |= CPU_DTRACE_DROP;
4850 					continue;
4851 				}
4852 
4853 				tomax = buf->dtb_tomax;
4854 				ASSERT(tomax != NULL);
4855 
4856 				if (ecb->dte_size != 0)
4857 					DTRACE_STORE(uint32_t, tomax, offs,
4858 					    ecb->dte_epid);
4859 				continue;
4860 
4861 			case DTRACEACT_CHILL:
4862 				if (dtrace_priv_kernel_destructive(state))
4863 					dtrace_action_chill(&mstate, val);
4864 				continue;
4865 
4866 			case DTRACEACT_RAISE:
4867 				if (dtrace_priv_proc_destructive(state))
4868 					dtrace_action_raise(val);
4869 				continue;
4870 
4871 			case DTRACEACT_COMMIT:
4872 				ASSERT(!committed);
4873 
4874 				/*
4875 				 * We need to commit our buffer state.
4876 				 */
4877 				if (ecb->dte_size)
4878 					buf->dtb_offset = offs + ecb->dte_size;
4879 				buf = &state->dts_buffer[cpuid];
4880 				dtrace_speculation_commit(state, cpuid, val);
4881 				committed = 1;
4882 				continue;
4883 
4884 			case DTRACEACT_DISCARD:
4885 				dtrace_speculation_discard(state, cpuid, val);
4886 				continue;
4887 
4888 			case DTRACEACT_DIFEXPR:
4889 			case DTRACEACT_LIBACT:
4890 			case DTRACEACT_PRINTF:
4891 			case DTRACEACT_PRINTA:
4892 			case DTRACEACT_SYSTEM:
4893 			case DTRACEACT_FREOPEN:
4894 				break;
4895 
4896 			case DTRACEACT_SYM:
4897 			case DTRACEACT_MOD:
4898 				if (!dtrace_priv_kernel(state))
4899 					continue;
4900 				break;
4901 
4902 			case DTRACEACT_USYM:
4903 			case DTRACEACT_UMOD:
4904 			case DTRACEACT_UADDR: {
4905 				struct pid *pid = curthread->t_procp->p_pidp;
4906 
4907 				if (!dtrace_priv_proc(state))
4908 					continue;
4909 
4910 				DTRACE_STORE(uint64_t, tomax,
4911 				    valoffs, (uint64_t)pid->pid_id);
4912 				DTRACE_STORE(uint64_t, tomax,
4913 				    valoffs + sizeof (uint64_t), val);
4914 
4915 				continue;
4916 			}
4917 
4918 			case DTRACEACT_EXIT: {
4919 				/*
4920 				 * For the exit action, we are going to attempt
4921 				 * to atomically set our activity to be
4922 				 * draining.  If this fails (either because
4923 				 * another CPU has beat us to the exit action,
4924 				 * or because our current activity is something
4925 				 * other than ACTIVE or WARMUP), we will
4926 				 * continue.  This assures that the exit action
4927 				 * can be successfully recorded at most once
4928 				 * when we're in the ACTIVE state.  If we're
4929 				 * encountering the exit() action while in
4930 				 * COOLDOWN, however, we want to honor the new
4931 				 * status code.  (We know that we're the only
4932 				 * thread in COOLDOWN, so there is no race.)
4933 				 */
4934 				void *activity = &state->dts_activity;
4935 				dtrace_activity_t current = state->dts_activity;
4936 
4937 				if (current == DTRACE_ACTIVITY_COOLDOWN)
4938 					break;
4939 
4940 				if (current != DTRACE_ACTIVITY_WARMUP)
4941 					current = DTRACE_ACTIVITY_ACTIVE;
4942 
4943 				if (dtrace_cas32(activity, current,
4944 				    DTRACE_ACTIVITY_DRAINING) != current) {
4945 					*flags |= CPU_DTRACE_DROP;
4946 					continue;
4947 				}
4948 
4949 				break;
4950 			}
4951 
4952 			default:
4953 				ASSERT(0);
4954 			}
4955 
4956 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
4957 				uintptr_t end = valoffs + size;
4958 
4959 				/*
4960 				 * If this is a string, we're going to only
4961 				 * load until we find the zero byte -- after
4962 				 * which we'll store zero bytes.
4963 				 */
4964 				if (dp->dtdo_rtype.dtdt_kind ==
4965 				    DIF_TYPE_STRING) {
4966 					char c = '\0' + 1;
4967 					size_t s;
4968 
4969 					for (s = 0; s < size; s++) {
4970 						if (c != '\0')
4971 							c = dtrace_load8(val++);
4972 
4973 						DTRACE_STORE(uint8_t, tomax,
4974 						    valoffs++, c);
4975 					}
4976 
4977 					continue;
4978 				}
4979 
4980 				while (valoffs < end) {
4981 					DTRACE_STORE(uint8_t, tomax, valoffs++,
4982 					    dtrace_load8(val++));
4983 				}
4984 
4985 				continue;
4986 			}
4987 
4988 			switch (size) {
4989 			case 0:
4990 				break;
4991 
4992 			case sizeof (uint8_t):
4993 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
4994 				break;
4995 			case sizeof (uint16_t):
4996 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
4997 				break;
4998 			case sizeof (uint32_t):
4999 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
5000 				break;
5001 			case sizeof (uint64_t):
5002 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
5003 				break;
5004 			default:
5005 				/*
5006 				 * Any other size should have been returned by
5007 				 * reference, not by value.
5008 				 */
5009 				ASSERT(0);
5010 				break;
5011 			}
5012 		}
5013 
5014 		if (*flags & CPU_DTRACE_DROP)
5015 			continue;
5016 
5017 		if (*flags & CPU_DTRACE_FAULT) {
5018 			int ndx;
5019 			dtrace_action_t *err;
5020 
5021 			buf->dtb_errors++;
5022 
5023 			if (probe->dtpr_id == dtrace_probeid_error) {
5024 				/*
5025 				 * There's nothing we can do -- we had an
5026 				 * error on the error probe.  We bump an
5027 				 * error counter to at least indicate that
5028 				 * this condition happened.
5029 				 */
5030 				dtrace_error(&state->dts_dblerrors);
5031 				continue;
5032 			}
5033 
5034 			if (vtime) {
5035 				/*
5036 				 * Before recursing on dtrace_probe(), we
5037 				 * need to explicitly clear out our start
5038 				 * time to prevent it from being accumulated
5039 				 * into t_dtrace_vtime.
5040 				 */
5041 				curthread->t_dtrace_start = 0;
5042 			}
5043 
5044 			/*
5045 			 * Iterate over the actions to figure out which action
5046 			 * we were processing when we experienced the error.
5047 			 * Note that act points _past_ the faulting action; if
5048 			 * act is ecb->dte_action, the fault was in the
5049 			 * predicate, if it's ecb->dte_action->dta_next it's
5050 			 * in action #1, and so on.
5051 			 */
5052 			for (err = ecb->dte_action, ndx = 0;
5053 			    err != act; err = err->dta_next, ndx++)
5054 				continue;
5055 
5056 			dtrace_probe_error(state, ecb->dte_epid, ndx,
5057 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
5058 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
5059 			    cpu_core[cpuid].cpuc_dtrace_illval);
5060 
5061 			continue;
5062 		}
5063 
5064 		if (!committed)
5065 			buf->dtb_offset = offs + ecb->dte_size;
5066 	}
5067 
5068 	if (vtime)
5069 		curthread->t_dtrace_start = dtrace_gethrtime();
5070 
5071 	dtrace_interrupt_enable(cookie);
5072 }
5073 
5074 /*
5075  * DTrace Probe Hashing Functions
5076  *
5077  * The functions in this section (and indeed, the functions in remaining
5078  * sections) are not _called_ from probe context.  (Any exceptions to this are
5079  * marked with a "Note:".)  Rather, they are called from elsewhere in the
5080  * DTrace framework to look-up probes in, add probes to and remove probes from
5081  * the DTrace probe hashes.  (Each probe is hashed by each element of the
5082  * probe tuple -- allowing for fast lookups, regardless of what was
5083  * specified.)
5084  */
5085 static uint_t
5086 dtrace_hash_str(char *p)
5087 {
5088 	unsigned int g;
5089 	uint_t hval = 0;
5090 
5091 	while (*p) {
5092 		hval = (hval << 4) + *p++;
5093 		if ((g = (hval & 0xf0000000)) != 0)
5094 			hval ^= g >> 24;
5095 		hval &= ~g;
5096 	}
5097 	return (hval);
5098 }
5099 
5100 static dtrace_hash_t *
5101 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
5102 {
5103 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
5104 
5105 	hash->dth_stroffs = stroffs;
5106 	hash->dth_nextoffs = nextoffs;
5107 	hash->dth_prevoffs = prevoffs;
5108 
5109 	hash->dth_size = 1;
5110 	hash->dth_mask = hash->dth_size - 1;
5111 
5112 	hash->dth_tab = kmem_zalloc(hash->dth_size *
5113 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
5114 
5115 	return (hash);
5116 }
5117 
5118 static void
5119 dtrace_hash_destroy(dtrace_hash_t *hash)
5120 {
5121 #ifdef DEBUG
5122 	int i;
5123 
5124 	for (i = 0; i < hash->dth_size; i++)
5125 		ASSERT(hash->dth_tab[i] == NULL);
5126 #endif
5127 
5128 	kmem_free(hash->dth_tab,
5129 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
5130 	kmem_free(hash, sizeof (dtrace_hash_t));
5131 }
5132 
5133 static void
5134 dtrace_hash_resize(dtrace_hash_t *hash)
5135 {
5136 	int size = hash->dth_size, i, ndx;
5137 	int new_size = hash->dth_size << 1;
5138 	int new_mask = new_size - 1;
5139 	dtrace_hashbucket_t **new_tab, *bucket, *next;
5140 
5141 	ASSERT((new_size & new_mask) == 0);
5142 
5143 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
5144 
5145 	for (i = 0; i < size; i++) {
5146 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
5147 			dtrace_probe_t *probe = bucket->dthb_chain;
5148 
5149 			ASSERT(probe != NULL);
5150 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
5151 
5152 			next = bucket->dthb_next;
5153 			bucket->dthb_next = new_tab[ndx];
5154 			new_tab[ndx] = bucket;
5155 		}
5156 	}
5157 
5158 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
5159 	hash->dth_tab = new_tab;
5160 	hash->dth_size = new_size;
5161 	hash->dth_mask = new_mask;
5162 }
5163 
5164 static void
5165 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
5166 {
5167 	int hashval = DTRACE_HASHSTR(hash, new);
5168 	int ndx = hashval & hash->dth_mask;
5169 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5170 	dtrace_probe_t **nextp, **prevp;
5171 
5172 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5173 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
5174 			goto add;
5175 	}
5176 
5177 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
5178 		dtrace_hash_resize(hash);
5179 		dtrace_hash_add(hash, new);
5180 		return;
5181 	}
5182 
5183 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
5184 	bucket->dthb_next = hash->dth_tab[ndx];
5185 	hash->dth_tab[ndx] = bucket;
5186 	hash->dth_nbuckets++;
5187 
5188 add:
5189 	nextp = DTRACE_HASHNEXT(hash, new);
5190 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
5191 	*nextp = bucket->dthb_chain;
5192 
5193 	if (bucket->dthb_chain != NULL) {
5194 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
5195 		ASSERT(*prevp == NULL);
5196 		*prevp = new;
5197 	}
5198 
5199 	bucket->dthb_chain = new;
5200 	bucket->dthb_len++;
5201 }
5202 
5203 static dtrace_probe_t *
5204 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
5205 {
5206 	int hashval = DTRACE_HASHSTR(hash, template);
5207 	int ndx = hashval & hash->dth_mask;
5208 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5209 
5210 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5211 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5212 			return (bucket->dthb_chain);
5213 	}
5214 
5215 	return (NULL);
5216 }
5217 
5218 static int
5219 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
5220 {
5221 	int hashval = DTRACE_HASHSTR(hash, template);
5222 	int ndx = hashval & hash->dth_mask;
5223 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5224 
5225 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5226 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
5227 			return (bucket->dthb_len);
5228 	}
5229 
5230 	return (NULL);
5231 }
5232 
5233 static void
5234 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
5235 {
5236 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
5237 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
5238 
5239 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
5240 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
5241 
5242 	/*
5243 	 * Find the bucket that we're removing this probe from.
5244 	 */
5245 	for (; bucket != NULL; bucket = bucket->dthb_next) {
5246 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
5247 			break;
5248 	}
5249 
5250 	ASSERT(bucket != NULL);
5251 
5252 	if (*prevp == NULL) {
5253 		if (*nextp == NULL) {
5254 			/*
5255 			 * The removed probe was the only probe on this
5256 			 * bucket; we need to remove the bucket.
5257 			 */
5258 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
5259 
5260 			ASSERT(bucket->dthb_chain == probe);
5261 			ASSERT(b != NULL);
5262 
5263 			if (b == bucket) {
5264 				hash->dth_tab[ndx] = bucket->dthb_next;
5265 			} else {
5266 				while (b->dthb_next != bucket)
5267 					b = b->dthb_next;
5268 				b->dthb_next = bucket->dthb_next;
5269 			}
5270 
5271 			ASSERT(hash->dth_nbuckets > 0);
5272 			hash->dth_nbuckets--;
5273 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
5274 			return;
5275 		}
5276 
5277 		bucket->dthb_chain = *nextp;
5278 	} else {
5279 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
5280 	}
5281 
5282 	if (*nextp != NULL)
5283 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
5284 }
5285 
5286 /*
5287  * DTrace Utility Functions
5288  *
5289  * These are random utility functions that are _not_ called from probe context.
5290  */
5291 static int
5292 dtrace_badattr(const dtrace_attribute_t *a)
5293 {
5294 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
5295 	    a->dtat_data > DTRACE_STABILITY_MAX ||
5296 	    a->dtat_class > DTRACE_CLASS_MAX);
5297 }
5298 
5299 /*
5300  * Return a duplicate copy of a string.  If the specified string is NULL,
5301  * this function returns a zero-length string.
5302  */
5303 static char *
5304 dtrace_strdup(const char *str)
5305 {
5306 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
5307 
5308 	if (str != NULL)
5309 		(void) strcpy(new, str);
5310 
5311 	return (new);
5312 }
5313 
5314 #define	DTRACE_ISALPHA(c)	\
5315 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
5316 
5317 static int
5318 dtrace_badname(const char *s)
5319 {
5320 	char c;
5321 
5322 	if (s == NULL || (c = *s++) == '\0')
5323 		return (0);
5324 
5325 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
5326 		return (1);
5327 
5328 	while ((c = *s++) != '\0') {
5329 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
5330 		    c != '-' && c != '_' && c != '.' && c != '`')
5331 			return (1);
5332 	}
5333 
5334 	return (0);
5335 }
5336 
5337 static void
5338 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp)
5339 {
5340 	uint32_t priv;
5341 
5342 	*uidp = crgetuid(cr);
5343 	if (PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
5344 		priv = DTRACE_PRIV_ALL;
5345 	} else {
5346 		priv = 0;
5347 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
5348 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
5349 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
5350 			priv |= DTRACE_PRIV_USER;
5351 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
5352 			priv |= DTRACE_PRIV_PROC;
5353 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
5354 			priv |= DTRACE_PRIV_OWNER;
5355 	}
5356 
5357 	*privp = priv;
5358 }
5359 
5360 #ifdef DTRACE_ERRDEBUG
5361 static void
5362 dtrace_errdebug(const char *str)
5363 {
5364 	int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
5365 	int occupied = 0;
5366 
5367 	mutex_enter(&dtrace_errlock);
5368 	dtrace_errlast = str;
5369 	dtrace_errthread = curthread;
5370 
5371 	while (occupied++ < DTRACE_ERRHASHSZ) {
5372 		if (dtrace_errhash[hval].dter_msg == str) {
5373 			dtrace_errhash[hval].dter_count++;
5374 			goto out;
5375 		}
5376 
5377 		if (dtrace_errhash[hval].dter_msg != NULL) {
5378 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
5379 			continue;
5380 		}
5381 
5382 		dtrace_errhash[hval].dter_msg = str;
5383 		dtrace_errhash[hval].dter_count = 1;
5384 		goto out;
5385 	}
5386 
5387 	panic("dtrace: undersized error hash");
5388 out:
5389 	mutex_exit(&dtrace_errlock);
5390 }
5391 #endif
5392 
5393 /*
5394  * DTrace Matching Functions
5395  *
5396  * These functions are used to match groups of probes, given some elements of
5397  * a probe tuple, or some globbed expressions for elements of a probe tuple.
5398  */
5399 static int
5400 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid)
5401 {
5402 	if (priv != DTRACE_PRIV_ALL) {
5403 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
5404 		uint32_t match = priv & ppriv;
5405 
5406 		/*
5407 		 * No PRIV_DTRACE_* privileges...
5408 		 */
5409 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
5410 		    DTRACE_PRIV_KERNEL)) == 0)
5411 			return (0);
5412 
5413 		/*
5414 		 * No matching bits, but there were bits to match...
5415 		 */
5416 		if (match == 0 && ppriv != 0)
5417 			return (0);
5418 
5419 		/*
5420 		 * Need to have permissions to the process, but don't...
5421 		 */
5422 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
5423 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid)
5424 			return (0);
5425 	}
5426 
5427 	return (1);
5428 }
5429 
5430 /*
5431  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
5432  * consists of input pattern strings and an ops-vector to evaluate them.
5433  * This function returns >0 for match, 0 for no match, and <0 for error.
5434  */
5435 static int
5436 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
5437     uint32_t priv, uid_t uid)
5438 {
5439 	dtrace_provider_t *pvp = prp->dtpr_provider;
5440 	int rv;
5441 
5442 	if (pvp->dtpv_defunct)
5443 		return (0);
5444 
5445 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
5446 		return (rv);
5447 
5448 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
5449 		return (rv);
5450 
5451 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
5452 		return (rv);
5453 
5454 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
5455 		return (rv);
5456 
5457 	if (dtrace_match_priv(prp, priv, uid) == 0)
5458 		return (0);
5459 
5460 	return (rv);
5461 }
5462 
5463 /*
5464  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
5465  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
5466  * libc's version, the kernel version only applies to 8-bit ASCII strings.
5467  * In addition, all of the recursion cases except for '*' matching have been
5468  * unwound.  For '*', we still implement recursive evaluation, but a depth
5469  * counter is maintained and matching is aborted if we recurse too deep.
5470  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
5471  */
5472 static int
5473 dtrace_match_glob(const char *s, const char *p, int depth)
5474 {
5475 	const char *olds;
5476 	char s1, c;
5477 	int gs;
5478 
5479 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
5480 		return (-1);
5481 
5482 	if (s == NULL)
5483 		s = ""; /* treat NULL as empty string */
5484 
5485 top:
5486 	olds = s;
5487 	s1 = *s++;
5488 
5489 	if (p == NULL)
5490 		return (0);
5491 
5492 	if ((c = *p++) == '\0')
5493 		return (s1 == '\0');
5494 
5495 	switch (c) {
5496 	case '[': {
5497 		int ok = 0, notflag = 0;
5498 		char lc = '\0';
5499 
5500 		if (s1 == '\0')
5501 			return (0);
5502 
5503 		if (*p == '!') {
5504 			notflag = 1;
5505 			p++;
5506 		}
5507 
5508 		if ((c = *p++) == '\0')
5509 			return (0);
5510 
5511 		do {
5512 			if (c == '-' && lc != '\0' && *p != ']') {
5513 				if ((c = *p++) == '\0')
5514 					return (0);
5515 				if (c == '\\' && (c = *p++) == '\0')
5516 					return (0);
5517 
5518 				if (notflag) {
5519 					if (s1 < lc || s1 > c)
5520 						ok++;
5521 					else
5522 						return (0);
5523 				} else if (lc <= s1 && s1 <= c)
5524 					ok++;
5525 
5526 			} else if (c == '\\' && (c = *p++) == '\0')
5527 				return (0);
5528 
5529 			lc = c; /* save left-hand 'c' for next iteration */
5530 
5531 			if (notflag) {
5532 				if (s1 != c)
5533 					ok++;
5534 				else
5535 					return (0);
5536 			} else if (s1 == c)
5537 				ok++;
5538 
5539 			if ((c = *p++) == '\0')
5540 				return (0);
5541 
5542 		} while (c != ']');
5543 
5544 		if (ok)
5545 			goto top;
5546 
5547 		return (0);
5548 	}
5549 
5550 	case '\\':
5551 		if ((c = *p++) == '\0')
5552 			return (0);
5553 		/*FALLTHRU*/
5554 
5555 	default:
5556 		if (c != s1)
5557 			return (0);
5558 		/*FALLTHRU*/
5559 
5560 	case '?':
5561 		if (s1 != '\0')
5562 			goto top;
5563 		return (0);
5564 
5565 	case '*':
5566 		while (*p == '*')
5567 			p++; /* consecutive *'s are identical to a single one */
5568 
5569 		if (*p == '\0')
5570 			return (1);
5571 
5572 		for (s = olds; *s != '\0'; s++) {
5573 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
5574 				return (gs);
5575 		}
5576 
5577 		return (0);
5578 	}
5579 }
5580 
5581 /*ARGSUSED*/
5582 static int
5583 dtrace_match_string(const char *s, const char *p, int depth)
5584 {
5585 	return (s != NULL && strcmp(s, p) == 0);
5586 }
5587 
5588 /*ARGSUSED*/
5589 static int
5590 dtrace_match_nul(const char *s, const char *p, int depth)
5591 {
5592 	return (1); /* always match the empty pattern */
5593 }
5594 
5595 /*ARGSUSED*/
5596 static int
5597 dtrace_match_nonzero(const char *s, const char *p, int depth)
5598 {
5599 	return (s != NULL && s[0] != '\0');
5600 }
5601 
5602 static int
5603 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
5604     int (*matched)(dtrace_probe_t *, void *), void *arg)
5605 {
5606 	dtrace_probe_t template, *probe;
5607 	dtrace_hash_t *hash = NULL;
5608 	int len, best = INT_MAX, nmatched = 0;
5609 	dtrace_id_t i;
5610 
5611 	ASSERT(MUTEX_HELD(&dtrace_lock));
5612 
5613 	/*
5614 	 * If the probe ID is specified in the key, just lookup by ID and
5615 	 * invoke the match callback once if a matching probe is found.
5616 	 */
5617 	if (pkp->dtpk_id != DTRACE_IDNONE) {
5618 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
5619 		    dtrace_match_probe(probe, pkp, priv, uid) > 0) {
5620 			(void) (*matched)(probe, arg);
5621 			nmatched++;
5622 		}
5623 		return (nmatched);
5624 	}
5625 
5626 	template.dtpr_mod = (char *)pkp->dtpk_mod;
5627 	template.dtpr_func = (char *)pkp->dtpk_func;
5628 	template.dtpr_name = (char *)pkp->dtpk_name;
5629 
5630 	/*
5631 	 * We want to find the most distinct of the module name, function
5632 	 * name, and name.  So for each one that is not a glob pattern or
5633 	 * empty string, we perform a lookup in the corresponding hash and
5634 	 * use the hash table with the fewest collisions to do our search.
5635 	 */
5636 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
5637 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
5638 		best = len;
5639 		hash = dtrace_bymod;
5640 	}
5641 
5642 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
5643 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
5644 		best = len;
5645 		hash = dtrace_byfunc;
5646 	}
5647 
5648 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
5649 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
5650 		best = len;
5651 		hash = dtrace_byname;
5652 	}
5653 
5654 	/*
5655 	 * If we did not select a hash table, iterate over every probe and
5656 	 * invoke our callback for each one that matches our input probe key.
5657 	 */
5658 	if (hash == NULL) {
5659 		for (i = 0; i < dtrace_nprobes; i++) {
5660 			if ((probe = dtrace_probes[i]) == NULL ||
5661 			    dtrace_match_probe(probe, pkp, priv, uid) <= 0)
5662 				continue;
5663 
5664 			nmatched++;
5665 
5666 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5667 				break;
5668 		}
5669 
5670 		return (nmatched);
5671 	}
5672 
5673 	/*
5674 	 * If we selected a hash table, iterate over each probe of the same key
5675 	 * name and invoke the callback for every probe that matches the other
5676 	 * attributes of our input probe key.
5677 	 */
5678 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
5679 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
5680 
5681 		if (dtrace_match_probe(probe, pkp, priv, uid) <= 0)
5682 			continue;
5683 
5684 		nmatched++;
5685 
5686 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
5687 			break;
5688 	}
5689 
5690 	return (nmatched);
5691 }
5692 
5693 /*
5694  * Return the function pointer dtrace_probecmp() should use to compare the
5695  * specified pattern with a string.  For NULL or empty patterns, we select
5696  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
5697  * For non-empty non-glob strings, we use dtrace_match_string().
5698  */
5699 static dtrace_probekey_f *
5700 dtrace_probekey_func(const char *p)
5701 {
5702 	char c;
5703 
5704 	if (p == NULL || *p == '\0')
5705 		return (&dtrace_match_nul);
5706 
5707 	while ((c = *p++) != '\0') {
5708 		if (c == '[' || c == '?' || c == '*' || c == '\\')
5709 			return (&dtrace_match_glob);
5710 	}
5711 
5712 	return (&dtrace_match_string);
5713 }
5714 
5715 /*
5716  * Build a probe comparison key for use with dtrace_match_probe() from the
5717  * given probe description.  By convention, a null key only matches anchored
5718  * probes: if each field is the empty string, reset dtpk_fmatch to
5719  * dtrace_match_nonzero().
5720  */
5721 static void
5722 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
5723 {
5724 	pkp->dtpk_prov = pdp->dtpd_provider;
5725 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
5726 
5727 	pkp->dtpk_mod = pdp->dtpd_mod;
5728 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
5729 
5730 	pkp->dtpk_func = pdp->dtpd_func;
5731 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
5732 
5733 	pkp->dtpk_name = pdp->dtpd_name;
5734 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
5735 
5736 	pkp->dtpk_id = pdp->dtpd_id;
5737 
5738 	if (pkp->dtpk_id == DTRACE_IDNONE &&
5739 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
5740 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
5741 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
5742 	    pkp->dtpk_nmatch == &dtrace_match_nul)
5743 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
5744 }
5745 
5746 /*
5747  * DTrace Provider-to-Framework API Functions
5748  *
5749  * These functions implement much of the Provider-to-Framework API, as
5750  * described in <sys/dtrace.h>.  The parts of the API not in this section are
5751  * the functions in the API for probe management (found below), and
5752  * dtrace_probe() itself (found above).
5753  */
5754 
5755 /*
5756  * Register the calling provider with the DTrace framework.  This should
5757  * generally be called by DTrace providers in their attach(9E) entry point.
5758  */
5759 int
5760 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
5761     uid_t uid, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
5762 {
5763 	dtrace_provider_t *provider;
5764 
5765 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
5766 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5767 		    "arguments", name ? name : "<NULL>");
5768 		return (EINVAL);
5769 	}
5770 
5771 	if (name[0] == '\0' || dtrace_badname(name)) {
5772 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5773 		    "provider name", name);
5774 		return (EINVAL);
5775 	}
5776 
5777 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
5778 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
5779 	    pops->dtps_destroy == NULL ||
5780 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
5781 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5782 		    "provider ops", name);
5783 		return (EINVAL);
5784 	}
5785 
5786 	if (dtrace_badattr(&pap->dtpa_provider) ||
5787 	    dtrace_badattr(&pap->dtpa_mod) ||
5788 	    dtrace_badattr(&pap->dtpa_func) ||
5789 	    dtrace_badattr(&pap->dtpa_name) ||
5790 	    dtrace_badattr(&pap->dtpa_args)) {
5791 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5792 		    "provider attributes", name);
5793 		return (EINVAL);
5794 	}
5795 
5796 	if (priv & ~DTRACE_PRIV_ALL) {
5797 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
5798 		    "privilege attributes", name);
5799 		return (EINVAL);
5800 	}
5801 
5802 	if ((priv & DTRACE_PRIV_KERNEL) &&
5803 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
5804 	    pops->dtps_usermode == NULL) {
5805 		cmn_err(CE_WARN, "failed to register provider '%s': need "
5806 		    "dtps_usermode() op for given privilege attributes", name);
5807 		return (EINVAL);
5808 	}
5809 
5810 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
5811 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
5812 	(void) strcpy(provider->dtpv_name, name);
5813 
5814 	provider->dtpv_attr = *pap;
5815 	provider->dtpv_priv.dtpp_flags = priv;
5816 	provider->dtpv_priv.dtpp_uid = uid;
5817 	provider->dtpv_pops = *pops;
5818 
5819 	if (pops->dtps_provide == NULL) {
5820 		ASSERT(pops->dtps_provide_module != NULL);
5821 		provider->dtpv_pops.dtps_provide =
5822 		    (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
5823 	}
5824 
5825 	if (pops->dtps_provide_module == NULL) {
5826 		ASSERT(pops->dtps_provide != NULL);
5827 		provider->dtpv_pops.dtps_provide_module =
5828 		    (void (*)(void *, struct modctl *))dtrace_nullop;
5829 	}
5830 
5831 	if (pops->dtps_suspend == NULL) {
5832 		ASSERT(pops->dtps_resume == NULL);
5833 		provider->dtpv_pops.dtps_suspend =
5834 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
5835 		provider->dtpv_pops.dtps_resume =
5836 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
5837 	}
5838 
5839 	provider->dtpv_arg = arg;
5840 	*idp = (dtrace_provider_id_t)provider;
5841 
5842 	if (pops == &dtrace_provider_ops) {
5843 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
5844 		ASSERT(MUTEX_HELD(&dtrace_lock));
5845 		ASSERT(dtrace_anon.dta_enabling == NULL);
5846 
5847 		/*
5848 		 * We make sure that the DTrace provider is at the head of
5849 		 * the provider chain.
5850 		 */
5851 		provider->dtpv_next = dtrace_provider;
5852 		dtrace_provider = provider;
5853 		return (0);
5854 	}
5855 
5856 	mutex_enter(&dtrace_provider_lock);
5857 	mutex_enter(&dtrace_lock);
5858 
5859 	/*
5860 	 * If there is at least one provider registered, we'll add this
5861 	 * provider after the first provider.
5862 	 */
5863 	if (dtrace_provider != NULL) {
5864 		provider->dtpv_next = dtrace_provider->dtpv_next;
5865 		dtrace_provider->dtpv_next = provider;
5866 	} else {
5867 		dtrace_provider = provider;
5868 	}
5869 
5870 	if (dtrace_retained != NULL) {
5871 		dtrace_enabling_provide(provider);
5872 
5873 		/*
5874 		 * Now we need to call dtrace_enabling_matchall() -- which
5875 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
5876 		 * to drop all of our locks before calling into it...
5877 		 */
5878 		mutex_exit(&dtrace_lock);
5879 		mutex_exit(&dtrace_provider_lock);
5880 		dtrace_enabling_matchall();
5881 
5882 		return (0);
5883 	}
5884 
5885 	mutex_exit(&dtrace_lock);
5886 	mutex_exit(&dtrace_provider_lock);
5887 
5888 	return (0);
5889 }
5890 
5891 /*
5892  * Unregister the specified provider from the DTrace framework.  This should
5893  * generally be called by DTrace providers in their detach(9E) entry point.
5894  */
5895 int
5896 dtrace_unregister(dtrace_provider_id_t id)
5897 {
5898 	dtrace_provider_t *old = (dtrace_provider_t *)id;
5899 	dtrace_provider_t *prev = NULL;
5900 	int i, self = 0;
5901 	dtrace_probe_t *probe, *first = NULL;
5902 
5903 	if (old->dtpv_pops.dtps_enable ==
5904 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
5905 		/*
5906 		 * If DTrace itself is the provider, we're called with locks
5907 		 * already held.
5908 		 */
5909 		ASSERT(old == dtrace_provider);
5910 		ASSERT(dtrace_devi != NULL);
5911 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
5912 		ASSERT(MUTEX_HELD(&dtrace_lock));
5913 		self = 1;
5914 
5915 		if (dtrace_provider->dtpv_next != NULL) {
5916 			/*
5917 			 * There's another provider here; return failure.
5918 			 */
5919 			return (EBUSY);
5920 		}
5921 	} else {
5922 		mutex_enter(&dtrace_provider_lock);
5923 		mutex_enter(&mod_lock);
5924 		mutex_enter(&dtrace_lock);
5925 	}
5926 
5927 	/*
5928 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
5929 	 * probes, we refuse to let providers slither away, unless this
5930 	 * provider has already been explicitly invalidated.
5931 	 */
5932 	if (!old->dtpv_defunct &&
5933 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
5934 	    dtrace_anon.dta_state->dts_necbs > 0))) {
5935 		if (!self) {
5936 			mutex_exit(&dtrace_lock);
5937 			mutex_exit(&mod_lock);
5938 			mutex_exit(&dtrace_provider_lock);
5939 		}
5940 		return (EBUSY);
5941 	}
5942 
5943 	/*
5944 	 * Attempt to destroy the probes associated with this provider.
5945 	 */
5946 	for (i = 0; i < dtrace_nprobes; i++) {
5947 		if ((probe = dtrace_probes[i]) == NULL)
5948 			continue;
5949 
5950 		if (probe->dtpr_provider != old)
5951 			continue;
5952 
5953 		if (probe->dtpr_ecb == NULL)
5954 			continue;
5955 
5956 		/*
5957 		 * We have at least one ECB; we can't remove this provider.
5958 		 */
5959 		if (!self) {
5960 			mutex_exit(&dtrace_lock);
5961 			mutex_exit(&mod_lock);
5962 			mutex_exit(&dtrace_provider_lock);
5963 		}
5964 		return (EBUSY);
5965 	}
5966 
5967 	/*
5968 	 * All of the probes for this provider are disabled; we can safely
5969 	 * remove all of them from their hash chains and from the probe array.
5970 	 */
5971 	for (i = 0; i < dtrace_nprobes; i++) {
5972 		if ((probe = dtrace_probes[i]) == NULL)
5973 			continue;
5974 
5975 		if (probe->dtpr_provider != old)
5976 			continue;
5977 
5978 		dtrace_probes[i] = NULL;
5979 
5980 		dtrace_hash_remove(dtrace_bymod, probe);
5981 		dtrace_hash_remove(dtrace_byfunc, probe);
5982 		dtrace_hash_remove(dtrace_byname, probe);
5983 
5984 		if (first == NULL) {
5985 			first = probe;
5986 			probe->dtpr_nextmod = NULL;
5987 		} else {
5988 			probe->dtpr_nextmod = first;
5989 			first = probe;
5990 		}
5991 	}
5992 
5993 	/*
5994 	 * The provider's probes have been removed from the hash chains and
5995 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
5996 	 * everyone has cleared out from any probe array processing.
5997 	 */
5998 	dtrace_sync();
5999 
6000 	for (probe = first; probe != NULL; probe = first) {
6001 		first = probe->dtpr_nextmod;
6002 
6003 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
6004 		    probe->dtpr_arg);
6005 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6006 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6007 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6008 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
6009 		kmem_free(probe, sizeof (dtrace_probe_t));
6010 	}
6011 
6012 	if ((prev = dtrace_provider) == old) {
6013 		ASSERT(self || dtrace_devi == NULL);
6014 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
6015 		dtrace_provider = old->dtpv_next;
6016 	} else {
6017 		while (prev != NULL && prev->dtpv_next != old)
6018 			prev = prev->dtpv_next;
6019 
6020 		if (prev == NULL) {
6021 			panic("attempt to unregister non-existent "
6022 			    "dtrace provider %p\n", (void *)id);
6023 		}
6024 
6025 		prev->dtpv_next = old->dtpv_next;
6026 	}
6027 
6028 	if (!self) {
6029 		mutex_exit(&dtrace_lock);
6030 		mutex_exit(&mod_lock);
6031 		mutex_exit(&dtrace_provider_lock);
6032 	}
6033 
6034 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
6035 	kmem_free(old, sizeof (dtrace_provider_t));
6036 
6037 	return (0);
6038 }
6039 
6040 /*
6041  * Invalidate the specified provider.  All subsequent probe lookups for the
6042  * specified provider will fail, but its probes will not be removed.
6043  */
6044 void
6045 dtrace_invalidate(dtrace_provider_id_t id)
6046 {
6047 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
6048 
6049 	ASSERT(pvp->dtpv_pops.dtps_enable !=
6050 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6051 
6052 	mutex_enter(&dtrace_provider_lock);
6053 	mutex_enter(&dtrace_lock);
6054 
6055 	pvp->dtpv_defunct = 1;
6056 
6057 	mutex_exit(&dtrace_lock);
6058 	mutex_exit(&dtrace_provider_lock);
6059 }
6060 
6061 /*
6062  * Indicate whether or not DTrace has attached.
6063  */
6064 int
6065 dtrace_attached(void)
6066 {
6067 	/*
6068 	 * dtrace_provider will be non-NULL iff the DTrace driver has
6069 	 * attached.  (It's non-NULL because DTrace is always itself a
6070 	 * provider.)
6071 	 */
6072 	return (dtrace_provider != NULL);
6073 }
6074 
6075 /*
6076  * Remove all the unenabled probes for the given provider.  This function is
6077  * not unlike dtrace_unregister(), except that it doesn't remove the provider
6078  * -- just as many of its associated probes as it can.
6079  */
6080 int
6081 dtrace_condense(dtrace_provider_id_t id)
6082 {
6083 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
6084 	int i;
6085 	dtrace_probe_t *probe;
6086 
6087 	/*
6088 	 * Make sure this isn't the dtrace provider itself.
6089 	 */
6090 	ASSERT(prov->dtpv_pops.dtps_enable !=
6091 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
6092 
6093 	mutex_enter(&dtrace_provider_lock);
6094 	mutex_enter(&dtrace_lock);
6095 
6096 	/*
6097 	 * Attempt to destroy the probes associated with this provider.
6098 	 */
6099 	for (i = 0; i < dtrace_nprobes; i++) {
6100 		if ((probe = dtrace_probes[i]) == NULL)
6101 			continue;
6102 
6103 		if (probe->dtpr_provider != prov)
6104 			continue;
6105 
6106 		if (probe->dtpr_ecb != NULL)
6107 			continue;
6108 
6109 		dtrace_probes[i] = NULL;
6110 
6111 		dtrace_hash_remove(dtrace_bymod, probe);
6112 		dtrace_hash_remove(dtrace_byfunc, probe);
6113 		dtrace_hash_remove(dtrace_byname, probe);
6114 
6115 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
6116 		    probe->dtpr_arg);
6117 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
6118 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
6119 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
6120 		kmem_free(probe, sizeof (dtrace_probe_t));
6121 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
6122 	}
6123 
6124 	mutex_exit(&dtrace_lock);
6125 	mutex_exit(&dtrace_provider_lock);
6126 
6127 	return (0);
6128 }
6129 
6130 /*
6131  * DTrace Probe Management Functions
6132  *
6133  * The functions in this section perform the DTrace probe management,
6134  * including functions to create probes, look-up probes, and call into the
6135  * providers to request that probes be provided.  Some of these functions are
6136  * in the Provider-to-Framework API; these functions can be identified by the
6137  * fact that they are not declared "static".
6138  */
6139 
6140 /*
6141  * Create a probe with the specified module name, function name, and name.
6142  */
6143 dtrace_id_t
6144 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
6145     const char *func, const char *name, int aframes, void *arg)
6146 {
6147 	dtrace_probe_t *probe, **probes;
6148 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
6149 	dtrace_id_t id;
6150 
6151 	if (provider == dtrace_provider) {
6152 		ASSERT(MUTEX_HELD(&dtrace_lock));
6153 	} else {
6154 		mutex_enter(&dtrace_lock);
6155 	}
6156 
6157 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
6158 	    VM_BESTFIT | VM_SLEEP);
6159 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
6160 
6161 	probe->dtpr_id = id;
6162 	probe->dtpr_gen = dtrace_probegen++;
6163 	probe->dtpr_mod = dtrace_strdup(mod);
6164 	probe->dtpr_func = dtrace_strdup(func);
6165 	probe->dtpr_name = dtrace_strdup(name);
6166 	probe->dtpr_arg = arg;
6167 	probe->dtpr_aframes = aframes;
6168 	probe->dtpr_provider = provider;
6169 
6170 	dtrace_hash_add(dtrace_bymod, probe);
6171 	dtrace_hash_add(dtrace_byfunc, probe);
6172 	dtrace_hash_add(dtrace_byname, probe);
6173 
6174 	if (id - 1 >= dtrace_nprobes) {
6175 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
6176 		size_t nsize = osize << 1;
6177 
6178 		if (nsize == 0) {
6179 			ASSERT(osize == 0);
6180 			ASSERT(dtrace_probes == NULL);
6181 			nsize = sizeof (dtrace_probe_t *);
6182 		}
6183 
6184 		probes = kmem_zalloc(nsize, KM_SLEEP);
6185 
6186 		if (dtrace_probes == NULL) {
6187 			ASSERT(osize == 0);
6188 			dtrace_probes = probes;
6189 			dtrace_nprobes = 1;
6190 		} else {
6191 			dtrace_probe_t **oprobes = dtrace_probes;
6192 
6193 			bcopy(oprobes, probes, osize);
6194 			dtrace_membar_producer();
6195 			dtrace_probes = probes;
6196 
6197 			dtrace_sync();
6198 
6199 			/*
6200 			 * All CPUs are now seeing the new probes array; we can
6201 			 * safely free the old array.
6202 			 */
6203 			kmem_free(oprobes, osize);
6204 			dtrace_nprobes <<= 1;
6205 		}
6206 
6207 		ASSERT(id - 1 < dtrace_nprobes);
6208 	}
6209 
6210 	ASSERT(dtrace_probes[id - 1] == NULL);
6211 	dtrace_probes[id - 1] = probe;
6212 
6213 	if (provider != dtrace_provider)
6214 		mutex_exit(&dtrace_lock);
6215 
6216 	return (id);
6217 }
6218 
6219 static dtrace_probe_t *
6220 dtrace_probe_lookup_id(dtrace_id_t id)
6221 {
6222 	ASSERT(MUTEX_HELD(&dtrace_lock));
6223 
6224 	if (id == 0 || id > dtrace_nprobes)
6225 		return (NULL);
6226 
6227 	return (dtrace_probes[id - 1]);
6228 }
6229 
6230 static int
6231 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
6232 {
6233 	*((dtrace_id_t *)arg) = probe->dtpr_id;
6234 
6235 	return (DTRACE_MATCH_DONE);
6236 }
6237 
6238 /*
6239  * Look up a probe based on provider and one or more of module name, function
6240  * name and probe name.
6241  */
6242 dtrace_id_t
6243 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
6244     const char *func, const char *name)
6245 {
6246 	dtrace_probekey_t pkey;
6247 	dtrace_id_t id;
6248 	int match;
6249 
6250 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
6251 	pkey.dtpk_pmatch = &dtrace_match_string;
6252 	pkey.dtpk_mod = mod;
6253 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
6254 	pkey.dtpk_func = func;
6255 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
6256 	pkey.dtpk_name = name;
6257 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
6258 	pkey.dtpk_id = DTRACE_IDNONE;
6259 
6260 	mutex_enter(&dtrace_lock);
6261 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0,
6262 	    dtrace_probe_lookup_match, &id);
6263 	mutex_exit(&dtrace_lock);
6264 
6265 	ASSERT(match == 1 || match == 0);
6266 	return (match ? id : 0);
6267 }
6268 
6269 /*
6270  * Returns the probe argument associated with the specified probe.
6271  */
6272 void *
6273 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
6274 {
6275 	dtrace_probe_t *probe;
6276 	void *rval = NULL;
6277 
6278 	mutex_enter(&dtrace_lock);
6279 
6280 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
6281 	    probe->dtpr_provider == (dtrace_provider_t *)id)
6282 		rval = probe->dtpr_arg;
6283 
6284 	mutex_exit(&dtrace_lock);
6285 
6286 	return (rval);
6287 }
6288 
6289 /*
6290  * Copy a probe into a probe description.
6291  */
6292 static void
6293 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
6294 {
6295 	bzero(pdp, sizeof (dtrace_probedesc_t));
6296 	pdp->dtpd_id = prp->dtpr_id;
6297 
6298 	(void) strncpy(pdp->dtpd_provider,
6299 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
6300 
6301 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
6302 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
6303 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
6304 }
6305 
6306 /*
6307  * Called to indicate that a probe -- or probes -- should be provided by a
6308  * specfied provider.  If the specified description is NULL, the provider will
6309  * be told to provide all of its probes.  (This is done whenever a new
6310  * consumer comes along, or whenever a retained enabling is to be matched.) If
6311  * the specified description is non-NULL, the provider is given the
6312  * opportunity to dynamically provide the specified probe, allowing providers
6313  * to support the creation of probes on-the-fly.  (So-called _autocreated_
6314  * probes.)  If the provider is NULL, the operations will be applied to all
6315  * providers; if the provider is non-NULL the operations will only be applied
6316  * to the specified provider.  The dtrace_provider_lock must be held, and the
6317  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
6318  * will need to grab the dtrace_lock when it reenters the framework through
6319  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
6320  */
6321 static void
6322 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
6323 {
6324 	struct modctl *ctl;
6325 	int all = 0;
6326 
6327 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
6328 
6329 	if (prv == NULL) {
6330 		all = 1;
6331 		prv = dtrace_provider;
6332 	}
6333 
6334 	do {
6335 		/*
6336 		 * First, call the blanket provide operation.
6337 		 */
6338 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
6339 
6340 		/*
6341 		 * Now call the per-module provide operation.  We will grab
6342 		 * mod_lock to prevent the list from being modified.  Note
6343 		 * that this also prevents the mod_busy bits from changing.
6344 		 * (mod_busy can only be changed with mod_lock held.)
6345 		 */
6346 		mutex_enter(&mod_lock);
6347 
6348 		ctl = &modules;
6349 		do {
6350 			if (ctl->mod_busy || ctl->mod_mp == NULL)
6351 				continue;
6352 
6353 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
6354 
6355 		} while ((ctl = ctl->mod_next) != &modules);
6356 
6357 		mutex_exit(&mod_lock);
6358 	} while (all && (prv = prv->dtpv_next) != NULL);
6359 }
6360 
6361 /*
6362  * Iterate over each probe, and call the Framework-to-Provider API function
6363  * denoted by offs.
6364  */
6365 static void
6366 dtrace_probe_foreach(uintptr_t offs)
6367 {
6368 	dtrace_provider_t *prov;
6369 	void (*func)(void *, dtrace_id_t, void *);
6370 	dtrace_probe_t *probe;
6371 	dtrace_icookie_t cookie;
6372 	int i;
6373 
6374 	/*
6375 	 * We disable interrupts to walk through the probe array.  This is
6376 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
6377 	 * won't see stale data.
6378 	 */
6379 	cookie = dtrace_interrupt_disable();
6380 
6381 	for (i = 0; i < dtrace_nprobes; i++) {
6382 		if ((probe = dtrace_probes[i]) == NULL)
6383 			continue;
6384 
6385 		if (probe->dtpr_ecb == NULL) {
6386 			/*
6387 			 * This probe isn't enabled -- don't call the function.
6388 			 */
6389 			continue;
6390 		}
6391 
6392 		prov = probe->dtpr_provider;
6393 		func = *((void(**)(void *, dtrace_id_t, void *))
6394 		    ((uintptr_t)&prov->dtpv_pops + offs));
6395 
6396 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
6397 	}
6398 
6399 	dtrace_interrupt_enable(cookie);
6400 }
6401 
6402 static int
6403 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
6404 {
6405 	dtrace_probekey_t pkey;
6406 	uint32_t priv;
6407 	uid_t uid;
6408 
6409 	ASSERT(MUTEX_HELD(&dtrace_lock));
6410 	dtrace_ecb_create_cache = NULL;
6411 
6412 	if (desc == NULL) {
6413 		/*
6414 		 * If we're passed a NULL description, we're being asked to
6415 		 * create an ECB with a NULL probe.
6416 		 */
6417 		(void) dtrace_ecb_create_enable(NULL, enab);
6418 		return (0);
6419 	}
6420 
6421 	dtrace_probekey(desc, &pkey);
6422 	dtrace_cred2priv(CRED(), &priv, &uid);
6423 
6424 	return (dtrace_match(&pkey, priv, uid, dtrace_ecb_create_enable, enab));
6425 }
6426 
6427 /*
6428  * DTrace Helper Provider Functions
6429  */
6430 static void
6431 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
6432 {
6433 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
6434 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
6435 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
6436 }
6437 
6438 static void
6439 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
6440     const dof_provider_t *dofprov, char *strtab)
6441 {
6442 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
6443 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
6444 	    dofprov->dofpv_provattr);
6445 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
6446 	    dofprov->dofpv_modattr);
6447 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
6448 	    dofprov->dofpv_funcattr);
6449 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
6450 	    dofprov->dofpv_nameattr);
6451 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
6452 	    dofprov->dofpv_argsattr);
6453 }
6454 
6455 static void
6456 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6457 {
6458 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6459 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6460 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
6461 	dof_provider_t *provider;
6462 	dof_probe_t *probe;
6463 	uint32_t *off;
6464 	uint8_t *arg;
6465 	char *strtab;
6466 	uint_t i, nprobes;
6467 	dtrace_helper_provdesc_t dhpv;
6468 	dtrace_helper_probedesc_t dhpb;
6469 	dtrace_meta_t *meta = dtrace_meta_pid;
6470 	dtrace_mops_t *mops = &meta->dtm_mops;
6471 	void *parg;
6472 
6473 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6474 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6475 	    provider->dofpv_strtab * dof->dofh_secsize);
6476 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6477 	    provider->dofpv_probes * dof->dofh_secsize);
6478 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6479 	    provider->dofpv_prargs * dof->dofh_secsize);
6480 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6481 	    provider->dofpv_proffs * dof->dofh_secsize);
6482 
6483 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6484 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
6485 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
6486 
6487 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
6488 
6489 	/*
6490 	 * Create the provider.
6491 	 */
6492 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6493 
6494 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
6495 		return;
6496 
6497 	meta->dtm_count++;
6498 
6499 	/*
6500 	 * Create the probes.
6501 	 */
6502 	for (i = 0; i < nprobes; i++) {
6503 		probe = (dof_probe_t *)(uintptr_t)(daddr +
6504 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
6505 
6506 		dhpb.dthpb_mod = dhp->dofhp_mod;
6507 		dhpb.dthpb_func = strtab + probe->dofpr_func;
6508 		dhpb.dthpb_name = strtab + probe->dofpr_name;
6509 		dhpb.dthpb_base = probe->dofpr_addr;
6510 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
6511 		dhpb.dthpb_noffs = probe->dofpr_noffs;
6512 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
6513 		dhpb.dthpb_nargc = probe->dofpr_nargc;
6514 		dhpb.dthpb_xargc = probe->dofpr_xargc;
6515 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
6516 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
6517 
6518 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
6519 	}
6520 }
6521 
6522 static void
6523 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
6524 {
6525 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6526 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6527 	int i;
6528 
6529 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6530 
6531 	for (i = 0; i < dof->dofh_secnum; i++) {
6532 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6533 		    dof->dofh_secoff + i * dof->dofh_secsize);
6534 
6535 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6536 			continue;
6537 
6538 		dtrace_helper_provide_one(dhp, sec, pid);
6539 	}
6540 
6541 	/*
6542 	 * We may have just created probes, so we must now rematch against
6543 	 * any retained enablings.  Note that this call will acquire both
6544 	 * cpu_lock and dtrace_lock; the fact that we are holding
6545 	 * dtrace_meta_lock now is what defines the ordering with respect to
6546 	 * these three locks.
6547 	 */
6548 	dtrace_enabling_matchall();
6549 }
6550 
6551 static void
6552 dtrace_helper_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
6553 {
6554 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6555 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6556 	dof_sec_t *str_sec;
6557 	dof_provider_t *provider;
6558 	char *strtab;
6559 	dtrace_helper_provdesc_t dhpv;
6560 	dtrace_meta_t *meta = dtrace_meta_pid;
6561 	dtrace_mops_t *mops = &meta->dtm_mops;
6562 
6563 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
6564 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
6565 	    provider->dofpv_strtab * dof->dofh_secsize);
6566 
6567 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
6568 
6569 	/*
6570 	 * Create the provider.
6571 	 */
6572 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
6573 
6574 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
6575 
6576 	meta->dtm_count--;
6577 }
6578 
6579 static void
6580 dtrace_helper_remove(dof_helper_t *dhp, pid_t pid)
6581 {
6582 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
6583 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
6584 	int i;
6585 
6586 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
6587 
6588 	for (i = 0; i < dof->dofh_secnum; i++) {
6589 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
6590 		    dof->dofh_secoff + i * dof->dofh_secsize);
6591 
6592 		if (sec->dofs_type != DOF_SECT_PROVIDER)
6593 			continue;
6594 
6595 		dtrace_helper_remove_one(dhp, sec, pid);
6596 	}
6597 }
6598 
6599 /*
6600  * DTrace Meta Provider-to-Framework API Functions
6601  *
6602  * These functions implement the Meta Provider-to-Framework API, as described
6603  * in <sys/dtrace.h>.
6604  */
6605 int
6606 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
6607     dtrace_meta_provider_id_t *idp)
6608 {
6609 	dtrace_meta_t *meta;
6610 	dtrace_helpers_t *help, *next;
6611 	int i;
6612 
6613 	*idp = DTRACE_METAPROVNONE;
6614 
6615 	/*
6616 	 * We strictly don't need the name, but we hold onto it for
6617 	 * debuggability. All hail error queues!
6618 	 */
6619 	if (name == NULL) {
6620 		cmn_err(CE_WARN, "failed to register meta-provider: "
6621 		    "invalid name");
6622 		return (EINVAL);
6623 	}
6624 
6625 	if (mops == NULL ||
6626 	    mops->dtms_create_probe == NULL ||
6627 	    mops->dtms_provide_pid == NULL ||
6628 	    mops->dtms_remove_pid == NULL) {
6629 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6630 		    "invalid ops", name);
6631 		return (EINVAL);
6632 	}
6633 
6634 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
6635 	meta->dtm_mops = *mops;
6636 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
6637 	(void) strcpy(meta->dtm_name, name);
6638 	meta->dtm_arg = arg;
6639 
6640 	mutex_enter(&dtrace_meta_lock);
6641 	mutex_enter(&dtrace_lock);
6642 
6643 	if (dtrace_meta_pid != NULL) {
6644 		mutex_exit(&dtrace_lock);
6645 		mutex_exit(&dtrace_meta_lock);
6646 		cmn_err(CE_WARN, "failed to register meta-register %s: "
6647 		    "user-land meta-provider exists", name);
6648 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
6649 		kmem_free(meta, sizeof (dtrace_meta_t));
6650 		return (EINVAL);
6651 	}
6652 
6653 	dtrace_meta_pid = meta;
6654 	*idp = (dtrace_meta_provider_id_t)meta;
6655 
6656 	/*
6657 	 * If there are providers and probes ready to go, pass them
6658 	 * off to the new meta provider now.
6659 	 */
6660 
6661 	help = dtrace_deferred_pid;
6662 	dtrace_deferred_pid = NULL;
6663 
6664 	mutex_exit(&dtrace_lock);
6665 
6666 	while (help != NULL) {
6667 		for (i = 0; i < help->dthps_nprovs; i++) {
6668 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
6669 			    help->dthps_pid);
6670 		}
6671 
6672 		next = help->dthps_next;
6673 		help->dthps_next = NULL;
6674 		help->dthps_prev = NULL;
6675 		help = next;
6676 	}
6677 
6678 	mutex_exit(&dtrace_meta_lock);
6679 
6680 	return (0);
6681 }
6682 
6683 int
6684 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
6685 {
6686 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
6687 
6688 	mutex_enter(&dtrace_meta_lock);
6689 	mutex_enter(&dtrace_lock);
6690 
6691 	if (old == dtrace_meta_pid) {
6692 		pp = &dtrace_meta_pid;
6693 	} else {
6694 		panic("attempt to unregister non-existent "
6695 		    "dtrace meta-provider %p\n", (void *)old);
6696 	}
6697 
6698 	if (old->dtm_count != 0) {
6699 		mutex_exit(&dtrace_lock);
6700 		mutex_exit(&dtrace_meta_lock);
6701 		return (EBUSY);
6702 	}
6703 
6704 	*pp = NULL;
6705 
6706 	mutex_exit(&dtrace_lock);
6707 	mutex_exit(&dtrace_meta_lock);
6708 
6709 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
6710 	kmem_free(old, sizeof (dtrace_meta_t));
6711 
6712 	return (0);
6713 }
6714 
6715 
6716 /*
6717  * DTrace DIF Object Functions
6718  */
6719 static int
6720 dtrace_difo_err(uint_t pc, const char *format, ...)
6721 {
6722 	if (dtrace_err_verbose) {
6723 		va_list alist;
6724 
6725 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
6726 		va_start(alist, format);
6727 		(void) vuprintf(format, alist);
6728 		va_end(alist);
6729 	}
6730 
6731 #ifdef DTRACE_ERRDEBUG
6732 	dtrace_errdebug(format);
6733 #endif
6734 	return (1);
6735 }
6736 
6737 /*
6738  * Validate a DTrace DIF object by checking the IR instructions.  The following
6739  * rules are currently enforced by dtrace_difo_validate():
6740  *
6741  * 1. Each instruction must have a valid opcode
6742  * 2. Each register, string, variable, or subroutine reference must be valid
6743  * 3. No instruction can modify register %r0 (must be zero)
6744  * 4. All instruction reserved bits must be set to zero
6745  * 5. The last instruction must be a "ret" instruction
6746  * 6. All branch targets must reference a valid instruction _after_ the branch
6747  */
6748 static int
6749 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
6750     cred_t *cr)
6751 {
6752 	int err = 0, i;
6753 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
6754 	int kcheck;
6755 	uint_t pc;
6756 
6757 	kcheck = cr == NULL ||
6758 	    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE) == 0;
6759 
6760 	dp->dtdo_destructive = 0;
6761 
6762 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
6763 		dif_instr_t instr = dp->dtdo_buf[pc];
6764 
6765 		uint_t r1 = DIF_INSTR_R1(instr);
6766 		uint_t r2 = DIF_INSTR_R2(instr);
6767 		uint_t rd = DIF_INSTR_RD(instr);
6768 		uint_t rs = DIF_INSTR_RS(instr);
6769 		uint_t label = DIF_INSTR_LABEL(instr);
6770 		uint_t v = DIF_INSTR_VAR(instr);
6771 		uint_t subr = DIF_INSTR_SUBR(instr);
6772 		uint_t type = DIF_INSTR_TYPE(instr);
6773 		uint_t op = DIF_INSTR_OP(instr);
6774 
6775 		switch (op) {
6776 		case DIF_OP_OR:
6777 		case DIF_OP_XOR:
6778 		case DIF_OP_AND:
6779 		case DIF_OP_SLL:
6780 		case DIF_OP_SRL:
6781 		case DIF_OP_SRA:
6782 		case DIF_OP_SUB:
6783 		case DIF_OP_ADD:
6784 		case DIF_OP_MUL:
6785 		case DIF_OP_SDIV:
6786 		case DIF_OP_UDIV:
6787 		case DIF_OP_SREM:
6788 		case DIF_OP_UREM:
6789 		case DIF_OP_COPYS:
6790 			if (r1 >= nregs)
6791 				err += efunc(pc, "invalid register %u\n", r1);
6792 			if (r2 >= nregs)
6793 				err += efunc(pc, "invalid register %u\n", r2);
6794 			if (rd >= nregs)
6795 				err += efunc(pc, "invalid register %u\n", rd);
6796 			if (rd == 0)
6797 				err += efunc(pc, "cannot write to %r0\n");
6798 			break;
6799 		case DIF_OP_NOT:
6800 		case DIF_OP_MOV:
6801 		case DIF_OP_ALLOCS:
6802 			if (r1 >= nregs)
6803 				err += efunc(pc, "invalid register %u\n", r1);
6804 			if (r2 != 0)
6805 				err += efunc(pc, "non-zero reserved bits\n");
6806 			if (rd >= nregs)
6807 				err += efunc(pc, "invalid register %u\n", rd);
6808 			if (rd == 0)
6809 				err += efunc(pc, "cannot write to %r0\n");
6810 			break;
6811 		case DIF_OP_LDSB:
6812 		case DIF_OP_LDSH:
6813 		case DIF_OP_LDSW:
6814 		case DIF_OP_LDUB:
6815 		case DIF_OP_LDUH:
6816 		case DIF_OP_LDUW:
6817 		case DIF_OP_LDX:
6818 			if (r1 >= nregs)
6819 				err += efunc(pc, "invalid register %u\n", r1);
6820 			if (r2 != 0)
6821 				err += efunc(pc, "non-zero reserved bits\n");
6822 			if (rd >= nregs)
6823 				err += efunc(pc, "invalid register %u\n", rd);
6824 			if (rd == 0)
6825 				err += efunc(pc, "cannot write to %r0\n");
6826 			if (kcheck)
6827 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
6828 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
6829 			break;
6830 		case DIF_OP_RLDSB:
6831 		case DIF_OP_RLDSH:
6832 		case DIF_OP_RLDSW:
6833 		case DIF_OP_RLDUB:
6834 		case DIF_OP_RLDUH:
6835 		case DIF_OP_RLDUW:
6836 		case DIF_OP_RLDX:
6837 			if (r1 >= nregs)
6838 				err += efunc(pc, "invalid register %u\n", r1);
6839 			if (r2 != 0)
6840 				err += efunc(pc, "non-zero reserved bits\n");
6841 			if (rd >= nregs)
6842 				err += efunc(pc, "invalid register %u\n", rd);
6843 			if (rd == 0)
6844 				err += efunc(pc, "cannot write to %r0\n");
6845 			break;
6846 		case DIF_OP_ULDSB:
6847 		case DIF_OP_ULDSH:
6848 		case DIF_OP_ULDSW:
6849 		case DIF_OP_ULDUB:
6850 		case DIF_OP_ULDUH:
6851 		case DIF_OP_ULDUW:
6852 		case DIF_OP_ULDX:
6853 			if (r1 >= nregs)
6854 				err += efunc(pc, "invalid register %u\n", r1);
6855 			if (r2 != 0)
6856 				err += efunc(pc, "non-zero reserved bits\n");
6857 			if (rd >= nregs)
6858 				err += efunc(pc, "invalid register %u\n", rd);
6859 			if (rd == 0)
6860 				err += efunc(pc, "cannot write to %r0\n");
6861 			break;
6862 		case DIF_OP_STB:
6863 		case DIF_OP_STH:
6864 		case DIF_OP_STW:
6865 		case DIF_OP_STX:
6866 			if (r1 >= nregs)
6867 				err += efunc(pc, "invalid register %u\n", r1);
6868 			if (r2 != 0)
6869 				err += efunc(pc, "non-zero reserved bits\n");
6870 			if (rd >= nregs)
6871 				err += efunc(pc, "invalid register %u\n", rd);
6872 			if (rd == 0)
6873 				err += efunc(pc, "cannot write to 0 address\n");
6874 			break;
6875 		case DIF_OP_CMP:
6876 		case DIF_OP_SCMP:
6877 			if (r1 >= nregs)
6878 				err += efunc(pc, "invalid register %u\n", r1);
6879 			if (r2 >= nregs)
6880 				err += efunc(pc, "invalid register %u\n", r2);
6881 			if (rd != 0)
6882 				err += efunc(pc, "non-zero reserved bits\n");
6883 			break;
6884 		case DIF_OP_TST:
6885 			if (r1 >= nregs)
6886 				err += efunc(pc, "invalid register %u\n", r1);
6887 			if (r2 != 0 || rd != 0)
6888 				err += efunc(pc, "non-zero reserved bits\n");
6889 			break;
6890 		case DIF_OP_BA:
6891 		case DIF_OP_BE:
6892 		case DIF_OP_BNE:
6893 		case DIF_OP_BG:
6894 		case DIF_OP_BGU:
6895 		case DIF_OP_BGE:
6896 		case DIF_OP_BGEU:
6897 		case DIF_OP_BL:
6898 		case DIF_OP_BLU:
6899 		case DIF_OP_BLE:
6900 		case DIF_OP_BLEU:
6901 			if (label >= dp->dtdo_len) {
6902 				err += efunc(pc, "invalid branch target %u\n",
6903 				    label);
6904 			}
6905 			if (label <= pc) {
6906 				err += efunc(pc, "backward branch to %u\n",
6907 				    label);
6908 			}
6909 			break;
6910 		case DIF_OP_RET:
6911 			if (r1 != 0 || r2 != 0)
6912 				err += efunc(pc, "non-zero reserved bits\n");
6913 			if (rd >= nregs)
6914 				err += efunc(pc, "invalid register %u\n", rd);
6915 			break;
6916 		case DIF_OP_NOP:
6917 		case DIF_OP_POPTS:
6918 		case DIF_OP_FLUSHTS:
6919 			if (r1 != 0 || r2 != 0 || rd != 0)
6920 				err += efunc(pc, "non-zero reserved bits\n");
6921 			break;
6922 		case DIF_OP_SETX:
6923 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
6924 				err += efunc(pc, "invalid integer ref %u\n",
6925 				    DIF_INSTR_INTEGER(instr));
6926 			}
6927 			if (rd >= nregs)
6928 				err += efunc(pc, "invalid register %u\n", rd);
6929 			if (rd == 0)
6930 				err += efunc(pc, "cannot write to %r0\n");
6931 			break;
6932 		case DIF_OP_SETS:
6933 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
6934 				err += efunc(pc, "invalid string ref %u\n",
6935 				    DIF_INSTR_STRING(instr));
6936 			}
6937 			if (rd >= nregs)
6938 				err += efunc(pc, "invalid register %u\n", rd);
6939 			if (rd == 0)
6940 				err += efunc(pc, "cannot write to %r0\n");
6941 			break;
6942 		case DIF_OP_LDGA:
6943 		case DIF_OP_LDTA:
6944 			if (r1 > DIF_VAR_ARRAY_MAX)
6945 				err += efunc(pc, "invalid array %u\n", r1);
6946 			if (r2 >= nregs)
6947 				err += efunc(pc, "invalid register %u\n", r2);
6948 			if (rd >= nregs)
6949 				err += efunc(pc, "invalid register %u\n", rd);
6950 			if (rd == 0)
6951 				err += efunc(pc, "cannot write to %r0\n");
6952 			break;
6953 		case DIF_OP_LDGS:
6954 		case DIF_OP_LDTS:
6955 		case DIF_OP_LDLS:
6956 		case DIF_OP_LDGAA:
6957 		case DIF_OP_LDTAA:
6958 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
6959 				err += efunc(pc, "invalid variable %u\n", v);
6960 			if (rd >= nregs)
6961 				err += efunc(pc, "invalid register %u\n", rd);
6962 			if (rd == 0)
6963 				err += efunc(pc, "cannot write to %r0\n");
6964 			break;
6965 		case DIF_OP_STGS:
6966 		case DIF_OP_STTS:
6967 		case DIF_OP_STLS:
6968 		case DIF_OP_STGAA:
6969 		case DIF_OP_STTAA:
6970 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
6971 				err += efunc(pc, "invalid variable %u\n", v);
6972 			if (rs >= nregs)
6973 				err += efunc(pc, "invalid register %u\n", rd);
6974 			break;
6975 		case DIF_OP_CALL:
6976 			if (subr > DIF_SUBR_MAX)
6977 				err += efunc(pc, "invalid subr %u\n", subr);
6978 			if (rd >= nregs)
6979 				err += efunc(pc, "invalid register %u\n", rd);
6980 			if (rd == 0)
6981 				err += efunc(pc, "cannot write to %r0\n");
6982 
6983 			if (subr == DIF_SUBR_COPYOUT ||
6984 			    subr == DIF_SUBR_COPYOUTSTR) {
6985 				dp->dtdo_destructive = 1;
6986 			}
6987 			break;
6988 		case DIF_OP_PUSHTR:
6989 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
6990 				err += efunc(pc, "invalid ref type %u\n", type);
6991 			if (r2 >= nregs)
6992 				err += efunc(pc, "invalid register %u\n", r2);
6993 			if (rs >= nregs)
6994 				err += efunc(pc, "invalid register %u\n", rs);
6995 			break;
6996 		case DIF_OP_PUSHTV:
6997 			if (type != DIF_TYPE_CTF)
6998 				err += efunc(pc, "invalid val type %u\n", type);
6999 			if (r2 >= nregs)
7000 				err += efunc(pc, "invalid register %u\n", r2);
7001 			if (rs >= nregs)
7002 				err += efunc(pc, "invalid register %u\n", rs);
7003 			break;
7004 		default:
7005 			err += efunc(pc, "invalid opcode %u\n",
7006 			    DIF_INSTR_OP(instr));
7007 		}
7008 	}
7009 
7010 	if (dp->dtdo_len != 0 &&
7011 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
7012 		err += efunc(dp->dtdo_len - 1,
7013 		    "expected 'ret' as last DIF instruction\n");
7014 	}
7015 
7016 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
7017 		/*
7018 		 * If we're not returning by reference, the size must be either
7019 		 * 0 or the size of one of the base types.
7020 		 */
7021 		switch (dp->dtdo_rtype.dtdt_size) {
7022 		case 0:
7023 		case sizeof (uint8_t):
7024 		case sizeof (uint16_t):
7025 		case sizeof (uint32_t):
7026 		case sizeof (uint64_t):
7027 			break;
7028 
7029 		default:
7030 			err += efunc(dp->dtdo_len - 1, "bad return size");
7031 		}
7032 	}
7033 
7034 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
7035 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
7036 		dtrace_diftype_t *vt, *et;
7037 		uint_t id, ndx;
7038 
7039 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
7040 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
7041 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
7042 			err += efunc(i, "unrecognized variable scope %d\n",
7043 			    v->dtdv_scope);
7044 			break;
7045 		}
7046 
7047 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
7048 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
7049 			err += efunc(i, "unrecognized variable type %d\n",
7050 			    v->dtdv_kind);
7051 			break;
7052 		}
7053 
7054 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
7055 			err += efunc(i, "%d exceeds variable id limit\n", id);
7056 			break;
7057 		}
7058 
7059 		if (id < DIF_VAR_OTHER_UBASE)
7060 			continue;
7061 
7062 		/*
7063 		 * For user-defined variables, we need to check that this
7064 		 * definition is identical to any previous definition that we
7065 		 * encountered.
7066 		 */
7067 		ndx = id - DIF_VAR_OTHER_UBASE;
7068 
7069 		switch (v->dtdv_scope) {
7070 		case DIFV_SCOPE_GLOBAL:
7071 			if (ndx < vstate->dtvs_nglobals) {
7072 				dtrace_statvar_t *svar;
7073 
7074 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
7075 					existing = &svar->dtsv_var;
7076 			}
7077 
7078 			break;
7079 
7080 		case DIFV_SCOPE_THREAD:
7081 			if (ndx < vstate->dtvs_ntlocals)
7082 				existing = &vstate->dtvs_tlocals[ndx];
7083 			break;
7084 
7085 		case DIFV_SCOPE_LOCAL:
7086 			if (ndx < vstate->dtvs_nlocals) {
7087 				dtrace_statvar_t *svar;
7088 
7089 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
7090 					existing = &svar->dtsv_var;
7091 			}
7092 
7093 			break;
7094 		}
7095 
7096 		vt = &v->dtdv_type;
7097 
7098 		if (vt->dtdt_flags & DIF_TF_BYREF) {
7099 			if (vt->dtdt_size == 0) {
7100 				err += efunc(i, "zero-sized variable\n");
7101 				break;
7102 			}
7103 
7104 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
7105 			    vt->dtdt_size > dtrace_global_maxsize) {
7106 				err += efunc(i, "oversized by-ref global\n");
7107 				break;
7108 			}
7109 		}
7110 
7111 		if (existing == NULL || existing->dtdv_id == 0)
7112 			continue;
7113 
7114 		ASSERT(existing->dtdv_id == v->dtdv_id);
7115 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
7116 
7117 		if (existing->dtdv_kind != v->dtdv_kind)
7118 			err += efunc(i, "%d changed variable kind\n", id);
7119 
7120 		et = &existing->dtdv_type;
7121 
7122 		if (vt->dtdt_flags != et->dtdt_flags) {
7123 			err += efunc(i, "%d changed variable type flags\n", id);
7124 			break;
7125 		}
7126 
7127 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
7128 			err += efunc(i, "%d changed variable type size\n", id);
7129 			break;
7130 		}
7131 	}
7132 
7133 	return (err);
7134 }
7135 
7136 /*
7137  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
7138  * are much more constrained than normal DIFOs.  Specifically, they may
7139  * not:
7140  *
7141  * 1. Make calls to subroutines other than copyin(), copyinstr() or
7142  *    miscellaneous string routines
7143  * 2. Access DTrace variables other than the args[] array, and the
7144  *    curthread, pid, tid and execname variables.
7145  * 3. Have thread-local variables.
7146  * 4. Have dynamic variables.
7147  */
7148 static int
7149 dtrace_difo_validate_helper(dtrace_difo_t *dp)
7150 {
7151 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
7152 	int err = 0;
7153 	uint_t pc;
7154 
7155 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7156 		dif_instr_t instr = dp->dtdo_buf[pc];
7157 
7158 		uint_t v = DIF_INSTR_VAR(instr);
7159 		uint_t subr = DIF_INSTR_SUBR(instr);
7160 		uint_t op = DIF_INSTR_OP(instr);
7161 
7162 		switch (op) {
7163 		case DIF_OP_OR:
7164 		case DIF_OP_XOR:
7165 		case DIF_OP_AND:
7166 		case DIF_OP_SLL:
7167 		case DIF_OP_SRL:
7168 		case DIF_OP_SRA:
7169 		case DIF_OP_SUB:
7170 		case DIF_OP_ADD:
7171 		case DIF_OP_MUL:
7172 		case DIF_OP_SDIV:
7173 		case DIF_OP_UDIV:
7174 		case DIF_OP_SREM:
7175 		case DIF_OP_UREM:
7176 		case DIF_OP_COPYS:
7177 		case DIF_OP_NOT:
7178 		case DIF_OP_MOV:
7179 		case DIF_OP_RLDSB:
7180 		case DIF_OP_RLDSH:
7181 		case DIF_OP_RLDSW:
7182 		case DIF_OP_RLDUB:
7183 		case DIF_OP_RLDUH:
7184 		case DIF_OP_RLDUW:
7185 		case DIF_OP_RLDX:
7186 		case DIF_OP_ULDSB:
7187 		case DIF_OP_ULDSH:
7188 		case DIF_OP_ULDSW:
7189 		case DIF_OP_ULDUB:
7190 		case DIF_OP_ULDUH:
7191 		case DIF_OP_ULDUW:
7192 		case DIF_OP_ULDX:
7193 		case DIF_OP_STB:
7194 		case DIF_OP_STH:
7195 		case DIF_OP_STW:
7196 		case DIF_OP_STX:
7197 		case DIF_OP_ALLOCS:
7198 		case DIF_OP_CMP:
7199 		case DIF_OP_SCMP:
7200 		case DIF_OP_TST:
7201 		case DIF_OP_BA:
7202 		case DIF_OP_BE:
7203 		case DIF_OP_BNE:
7204 		case DIF_OP_BG:
7205 		case DIF_OP_BGU:
7206 		case DIF_OP_BGE:
7207 		case DIF_OP_BGEU:
7208 		case DIF_OP_BL:
7209 		case DIF_OP_BLU:
7210 		case DIF_OP_BLE:
7211 		case DIF_OP_BLEU:
7212 		case DIF_OP_RET:
7213 		case DIF_OP_NOP:
7214 		case DIF_OP_POPTS:
7215 		case DIF_OP_FLUSHTS:
7216 		case DIF_OP_SETX:
7217 		case DIF_OP_SETS:
7218 		case DIF_OP_LDGA:
7219 		case DIF_OP_LDLS:
7220 		case DIF_OP_STGS:
7221 		case DIF_OP_STLS:
7222 		case DIF_OP_PUSHTR:
7223 		case DIF_OP_PUSHTV:
7224 			break;
7225 
7226 		case DIF_OP_LDGS:
7227 			if (v >= DIF_VAR_OTHER_UBASE)
7228 				break;
7229 
7230 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
7231 				break;
7232 
7233 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
7234 			    v == DIF_VAR_TID || v == DIF_VAR_EXECNAME ||
7235 			    v == DIF_VAR_ZONENAME)
7236 				break;
7237 
7238 			err += efunc(pc, "illegal variable %u\n", v);
7239 			break;
7240 
7241 		case DIF_OP_LDTA:
7242 		case DIF_OP_LDTS:
7243 		case DIF_OP_LDGAA:
7244 		case DIF_OP_LDTAA:
7245 			err += efunc(pc, "illegal dynamic variable load\n");
7246 			break;
7247 
7248 		case DIF_OP_STTS:
7249 		case DIF_OP_STGAA:
7250 		case DIF_OP_STTAA:
7251 			err += efunc(pc, "illegal dynamic variable store\n");
7252 			break;
7253 
7254 		case DIF_OP_CALL:
7255 			if (subr == DIF_SUBR_ALLOCA ||
7256 			    subr == DIF_SUBR_BCOPY ||
7257 			    subr == DIF_SUBR_COPYIN ||
7258 			    subr == DIF_SUBR_COPYINTO ||
7259 			    subr == DIF_SUBR_COPYINSTR ||
7260 			    subr == DIF_SUBR_INDEX ||
7261 			    subr == DIF_SUBR_LLTOSTR ||
7262 			    subr == DIF_SUBR_RINDEX ||
7263 			    subr == DIF_SUBR_STRCHR ||
7264 			    subr == DIF_SUBR_STRJOIN ||
7265 			    subr == DIF_SUBR_STRRCHR ||
7266 			    subr == DIF_SUBR_STRSTR)
7267 				break;
7268 
7269 			err += efunc(pc, "invalid subr %u\n", subr);
7270 			break;
7271 
7272 		default:
7273 			err += efunc(pc, "invalid opcode %u\n",
7274 			    DIF_INSTR_OP(instr));
7275 		}
7276 	}
7277 
7278 	return (err);
7279 }
7280 
7281 /*
7282  * Returns 1 if the expression in the DIF object can be cached on a per-thread
7283  * basis; 0 if not.
7284  */
7285 static int
7286 dtrace_difo_cacheable(dtrace_difo_t *dp)
7287 {
7288 	int i;
7289 
7290 	if (dp == NULL)
7291 		return (0);
7292 
7293 	for (i = 0; i < dp->dtdo_varlen; i++) {
7294 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7295 
7296 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
7297 			continue;
7298 
7299 		switch (v->dtdv_id) {
7300 		case DIF_VAR_CURTHREAD:
7301 		case DIF_VAR_PID:
7302 		case DIF_VAR_TID:
7303 		case DIF_VAR_EXECNAME:
7304 		case DIF_VAR_ZONENAME:
7305 			break;
7306 
7307 		default:
7308 			return (0);
7309 		}
7310 	}
7311 
7312 	/*
7313 	 * This DIF object may be cacheable.  Now we need to look for any
7314 	 * array loading instructions, any memory loading instructions, or
7315 	 * any stores to thread-local variables.
7316 	 */
7317 	for (i = 0; i < dp->dtdo_len; i++) {
7318 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
7319 
7320 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
7321 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
7322 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
7323 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
7324 			return (0);
7325 	}
7326 
7327 	return (1);
7328 }
7329 
7330 static void
7331 dtrace_difo_hold(dtrace_difo_t *dp)
7332 {
7333 	int i;
7334 
7335 	ASSERT(MUTEX_HELD(&dtrace_lock));
7336 
7337 	dp->dtdo_refcnt++;
7338 	ASSERT(dp->dtdo_refcnt != 0);
7339 
7340 	/*
7341 	 * We need to check this DIF object for references to the variable
7342 	 * DIF_VAR_VTIMESTAMP.
7343 	 */
7344 	for (i = 0; i < dp->dtdo_varlen; i++) {
7345 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7346 
7347 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7348 			continue;
7349 
7350 		if (dtrace_vtime_references++ == 0)
7351 			dtrace_vtime_enable();
7352 	}
7353 }
7354 
7355 /*
7356  * This routine calculates the dynamic variable chunksize for a given DIF
7357  * object.  The calculation is not fool-proof, and can probably be tricked by
7358  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
7359  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
7360  * if a dynamic variable size exceeds the chunksize.
7361  */
7362 static void
7363 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7364 {
7365 	uint64_t sval;
7366 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
7367 	const dif_instr_t *text = dp->dtdo_buf;
7368 	uint_t pc, srd = 0;
7369 	uint_t ttop = 0;
7370 	size_t size, ksize;
7371 	uint_t id, i;
7372 
7373 	for (pc = 0; pc < dp->dtdo_len; pc++) {
7374 		dif_instr_t instr = text[pc];
7375 		uint_t op = DIF_INSTR_OP(instr);
7376 		uint_t rd = DIF_INSTR_RD(instr);
7377 		uint_t r1 = DIF_INSTR_R1(instr);
7378 		uint_t nkeys = 0;
7379 		uchar_t scope;
7380 
7381 		dtrace_key_t *key = tupregs;
7382 
7383 		switch (op) {
7384 		case DIF_OP_SETX:
7385 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
7386 			srd = rd;
7387 			continue;
7388 
7389 		case DIF_OP_STTS:
7390 			key = &tupregs[DIF_DTR_NREGS];
7391 			key[0].dttk_size = 0;
7392 			key[1].dttk_size = 0;
7393 			nkeys = 2;
7394 			scope = DIFV_SCOPE_THREAD;
7395 			break;
7396 
7397 		case DIF_OP_STGAA:
7398 		case DIF_OP_STTAA:
7399 			nkeys = ttop;
7400 
7401 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
7402 				key[nkeys++].dttk_size = 0;
7403 
7404 			key[nkeys++].dttk_size = 0;
7405 
7406 			if (op == DIF_OP_STTAA) {
7407 				scope = DIFV_SCOPE_THREAD;
7408 			} else {
7409 				scope = DIFV_SCOPE_GLOBAL;
7410 			}
7411 
7412 			break;
7413 
7414 		case DIF_OP_PUSHTR:
7415 			if (ttop == DIF_DTR_NREGS)
7416 				return;
7417 
7418 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
7419 				/*
7420 				 * If the register for the size of the "pushtr"
7421 				 * is %r0 (or the value is 0) and the type is
7422 				 * a string, we'll use the system-wide default
7423 				 * string size.
7424 				 */
7425 				tupregs[ttop++].dttk_size =
7426 				    dtrace_strsize_default;
7427 			} else {
7428 				if (srd == 0)
7429 					return;
7430 
7431 				tupregs[ttop++].dttk_size = sval;
7432 			}
7433 
7434 			break;
7435 
7436 		case DIF_OP_PUSHTV:
7437 			if (ttop == DIF_DTR_NREGS)
7438 				return;
7439 
7440 			tupregs[ttop++].dttk_size = 0;
7441 			break;
7442 
7443 		case DIF_OP_FLUSHTS:
7444 			ttop = 0;
7445 			break;
7446 
7447 		case DIF_OP_POPTS:
7448 			if (ttop != 0)
7449 				ttop--;
7450 			break;
7451 		}
7452 
7453 		sval = 0;
7454 		srd = 0;
7455 
7456 		if (nkeys == 0)
7457 			continue;
7458 
7459 		/*
7460 		 * We have a dynamic variable allocation; calculate its size.
7461 		 */
7462 		for (ksize = 0, i = 0; i < nkeys; i++)
7463 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
7464 
7465 		size = sizeof (dtrace_dynvar_t);
7466 		size += sizeof (dtrace_key_t) * (nkeys - 1);
7467 		size += ksize;
7468 
7469 		/*
7470 		 * Now we need to determine the size of the stored data.
7471 		 */
7472 		id = DIF_INSTR_VAR(instr);
7473 
7474 		for (i = 0; i < dp->dtdo_varlen; i++) {
7475 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
7476 
7477 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
7478 				size += v->dtdv_type.dtdt_size;
7479 				break;
7480 			}
7481 		}
7482 
7483 		if (i == dp->dtdo_varlen)
7484 			return;
7485 
7486 		/*
7487 		 * We have the size.  If this is larger than the chunk size
7488 		 * for our dynamic variable state, reset the chunk size.
7489 		 */
7490 		size = P2ROUNDUP(size, sizeof (uint64_t));
7491 
7492 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
7493 			vstate->dtvs_dynvars.dtds_chunksize = size;
7494 	}
7495 }
7496 
7497 static void
7498 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7499 {
7500 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
7501 	uint_t id;
7502 
7503 	ASSERT(MUTEX_HELD(&dtrace_lock));
7504 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
7505 
7506 	for (i = 0; i < dp->dtdo_varlen; i++) {
7507 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7508 		dtrace_statvar_t *svar, ***svarp;
7509 		size_t dsize = 0;
7510 		uint8_t scope = v->dtdv_scope;
7511 		int *np;
7512 
7513 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7514 			continue;
7515 
7516 		id -= DIF_VAR_OTHER_UBASE;
7517 
7518 		switch (scope) {
7519 		case DIFV_SCOPE_THREAD:
7520 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
7521 				dtrace_difv_t *tlocals;
7522 
7523 				if ((ntlocals = (otlocals << 1)) == 0)
7524 					ntlocals = 1;
7525 
7526 				osz = otlocals * sizeof (dtrace_difv_t);
7527 				nsz = ntlocals * sizeof (dtrace_difv_t);
7528 
7529 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
7530 
7531 				if (osz != 0) {
7532 					bcopy(vstate->dtvs_tlocals,
7533 					    tlocals, osz);
7534 					kmem_free(vstate->dtvs_tlocals, osz);
7535 				}
7536 
7537 				vstate->dtvs_tlocals = tlocals;
7538 				vstate->dtvs_ntlocals = ntlocals;
7539 			}
7540 
7541 			vstate->dtvs_tlocals[id] = *v;
7542 			continue;
7543 
7544 		case DIFV_SCOPE_LOCAL:
7545 			np = &vstate->dtvs_nlocals;
7546 			svarp = &vstate->dtvs_locals;
7547 
7548 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7549 				dsize = NCPU * (v->dtdv_type.dtdt_size +
7550 				    sizeof (uint64_t));
7551 			else
7552 				dsize = NCPU * sizeof (uint64_t);
7553 
7554 			break;
7555 
7556 		case DIFV_SCOPE_GLOBAL:
7557 			np = &vstate->dtvs_nglobals;
7558 			svarp = &vstate->dtvs_globals;
7559 
7560 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
7561 				dsize = v->dtdv_type.dtdt_size +
7562 				    sizeof (uint64_t);
7563 
7564 			break;
7565 
7566 		default:
7567 			ASSERT(0);
7568 		}
7569 
7570 		while (id >= (oldsvars = *np)) {
7571 			dtrace_statvar_t **statics;
7572 			int newsvars, oldsize, newsize;
7573 
7574 			if ((newsvars = (oldsvars << 1)) == 0)
7575 				newsvars = 1;
7576 
7577 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
7578 			newsize = newsvars * sizeof (dtrace_statvar_t *);
7579 
7580 			statics = kmem_zalloc(newsize, KM_SLEEP);
7581 
7582 			if (oldsize != 0) {
7583 				bcopy(*svarp, statics, oldsize);
7584 				kmem_free(*svarp, oldsize);
7585 			}
7586 
7587 			*svarp = statics;
7588 			*np = newsvars;
7589 		}
7590 
7591 		if ((svar = (*svarp)[id]) == NULL) {
7592 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
7593 			svar->dtsv_var = *v;
7594 
7595 			if ((svar->dtsv_size = dsize) != 0) {
7596 				svar->dtsv_data = (uint64_t)(uintptr_t)
7597 				    kmem_zalloc(dsize, KM_SLEEP);
7598 			}
7599 
7600 			(*svarp)[id] = svar;
7601 		}
7602 
7603 		svar->dtsv_refcnt++;
7604 	}
7605 
7606 	dtrace_difo_chunksize(dp, vstate);
7607 	dtrace_difo_hold(dp);
7608 }
7609 
7610 static dtrace_difo_t *
7611 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7612 {
7613 	dtrace_difo_t *new;
7614 	size_t sz;
7615 
7616 	ASSERT(dp->dtdo_buf != NULL);
7617 	ASSERT(dp->dtdo_refcnt != 0);
7618 
7619 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
7620 
7621 	ASSERT(dp->dtdo_buf != NULL);
7622 	sz = dp->dtdo_len * sizeof (dif_instr_t);
7623 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
7624 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
7625 	new->dtdo_len = dp->dtdo_len;
7626 
7627 	if (dp->dtdo_strtab != NULL) {
7628 		ASSERT(dp->dtdo_strlen != 0);
7629 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
7630 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
7631 		new->dtdo_strlen = dp->dtdo_strlen;
7632 	}
7633 
7634 	if (dp->dtdo_inttab != NULL) {
7635 		ASSERT(dp->dtdo_intlen != 0);
7636 		sz = dp->dtdo_intlen * sizeof (uint64_t);
7637 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
7638 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
7639 		new->dtdo_intlen = dp->dtdo_intlen;
7640 	}
7641 
7642 	if (dp->dtdo_vartab != NULL) {
7643 		ASSERT(dp->dtdo_varlen != 0);
7644 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
7645 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
7646 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
7647 		new->dtdo_varlen = dp->dtdo_varlen;
7648 	}
7649 
7650 	dtrace_difo_init(new, vstate);
7651 	return (new);
7652 }
7653 
7654 static void
7655 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7656 {
7657 	int i;
7658 
7659 	ASSERT(dp->dtdo_refcnt == 0);
7660 
7661 	for (i = 0; i < dp->dtdo_varlen; i++) {
7662 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7663 		dtrace_statvar_t *svar, **svarp;
7664 		uint_t id;
7665 		uint8_t scope = v->dtdv_scope;
7666 		int *np;
7667 
7668 		switch (scope) {
7669 		case DIFV_SCOPE_THREAD:
7670 			continue;
7671 
7672 		case DIFV_SCOPE_LOCAL:
7673 			np = &vstate->dtvs_nlocals;
7674 			svarp = vstate->dtvs_locals;
7675 			break;
7676 
7677 		case DIFV_SCOPE_GLOBAL:
7678 			np = &vstate->dtvs_nglobals;
7679 			svarp = vstate->dtvs_globals;
7680 			break;
7681 
7682 		default:
7683 			ASSERT(0);
7684 		}
7685 
7686 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
7687 			continue;
7688 
7689 		id -= DIF_VAR_OTHER_UBASE;
7690 		ASSERT(id < *np);
7691 
7692 		svar = svarp[id];
7693 		ASSERT(svar != NULL);
7694 		ASSERT(svar->dtsv_refcnt > 0);
7695 
7696 		if (--svar->dtsv_refcnt > 0)
7697 			continue;
7698 
7699 		if (svar->dtsv_size != 0) {
7700 			ASSERT(svar->dtsv_data != NULL);
7701 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
7702 			    svar->dtsv_size);
7703 		}
7704 
7705 		kmem_free(svar, sizeof (dtrace_statvar_t));
7706 		svarp[id] = NULL;
7707 	}
7708 
7709 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
7710 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
7711 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
7712 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
7713 
7714 	kmem_free(dp, sizeof (dtrace_difo_t));
7715 }
7716 
7717 static void
7718 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
7719 {
7720 	int i;
7721 
7722 	ASSERT(MUTEX_HELD(&dtrace_lock));
7723 	ASSERT(dp->dtdo_refcnt != 0);
7724 
7725 	for (i = 0; i < dp->dtdo_varlen; i++) {
7726 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
7727 
7728 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
7729 			continue;
7730 
7731 		ASSERT(dtrace_vtime_references > 0);
7732 		if (--dtrace_vtime_references == 0)
7733 			dtrace_vtime_disable();
7734 	}
7735 
7736 	if (--dp->dtdo_refcnt == 0)
7737 		dtrace_difo_destroy(dp, vstate);
7738 }
7739 
7740 /*
7741  * DTrace Format Functions
7742  */
7743 static uint16_t
7744 dtrace_format_add(dtrace_state_t *state, char *str)
7745 {
7746 	char *fmt, **new;
7747 	uint16_t ndx, len = strlen(str) + 1;
7748 
7749 	fmt = kmem_zalloc(len, KM_SLEEP);
7750 	bcopy(str, fmt, len);
7751 
7752 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
7753 		if (state->dts_formats[ndx] == NULL) {
7754 			state->dts_formats[ndx] = fmt;
7755 			return (ndx + 1);
7756 		}
7757 	}
7758 
7759 	if (state->dts_nformats == USHRT_MAX) {
7760 		/*
7761 		 * This is only likely if a denial-of-service attack is being
7762 		 * attempted.  As such, it's okay to fail silently here.
7763 		 */
7764 		kmem_free(fmt, len);
7765 		return (0);
7766 	}
7767 
7768 	/*
7769 	 * For simplicity, we always resize the formats array to be exactly the
7770 	 * number of formats.
7771 	 */
7772 	ndx = state->dts_nformats++;
7773 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
7774 
7775 	if (state->dts_formats != NULL) {
7776 		ASSERT(ndx != 0);
7777 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
7778 		kmem_free(state->dts_formats, ndx * sizeof (char *));
7779 	}
7780 
7781 	state->dts_formats = new;
7782 	state->dts_formats[ndx] = fmt;
7783 
7784 	return (ndx + 1);
7785 }
7786 
7787 static void
7788 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
7789 {
7790 	char *fmt;
7791 
7792 	ASSERT(state->dts_formats != NULL);
7793 	ASSERT(format <= state->dts_nformats);
7794 	ASSERT(state->dts_formats[format - 1] != NULL);
7795 
7796 	fmt = state->dts_formats[format - 1];
7797 	kmem_free(fmt, strlen(fmt) + 1);
7798 	state->dts_formats[format - 1] = NULL;
7799 }
7800 
7801 static void
7802 dtrace_format_destroy(dtrace_state_t *state)
7803 {
7804 	int i;
7805 
7806 	if (state->dts_nformats == 0) {
7807 		ASSERT(state->dts_formats == NULL);
7808 		return;
7809 	}
7810 
7811 	ASSERT(state->dts_formats != NULL);
7812 
7813 	for (i = 0; i < state->dts_nformats; i++) {
7814 		char *fmt = state->dts_formats[i];
7815 
7816 		if (fmt == NULL)
7817 			continue;
7818 
7819 		kmem_free(fmt, strlen(fmt) + 1);
7820 	}
7821 
7822 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
7823 	state->dts_nformats = 0;
7824 	state->dts_formats = NULL;
7825 }
7826 
7827 /*
7828  * DTrace Predicate Functions
7829  */
7830 static dtrace_predicate_t *
7831 dtrace_predicate_create(dtrace_difo_t *dp)
7832 {
7833 	dtrace_predicate_t *pred;
7834 
7835 	ASSERT(MUTEX_HELD(&dtrace_lock));
7836 	ASSERT(dp->dtdo_refcnt != 0);
7837 
7838 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
7839 	pred->dtp_difo = dp;
7840 	pred->dtp_refcnt = 1;
7841 
7842 	if (!dtrace_difo_cacheable(dp))
7843 		return (pred);
7844 
7845 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
7846 		/*
7847 		 * This is only theoretically possible -- we have had 2^32
7848 		 * cacheable predicates on this machine.  We cannot allow any
7849 		 * more predicates to become cacheable:  as unlikely as it is,
7850 		 * there may be a thread caching a (now stale) predicate cache
7851 		 * ID. (N.B.: the temptation is being successfully resisted to
7852 		 * have this cmn_err() "Holy shit -- we executed this code!")
7853 		 */
7854 		return (pred);
7855 	}
7856 
7857 	pred->dtp_cacheid = dtrace_predcache_id++;
7858 
7859 	return (pred);
7860 }
7861 
7862 static void
7863 dtrace_predicate_hold(dtrace_predicate_t *pred)
7864 {
7865 	ASSERT(MUTEX_HELD(&dtrace_lock));
7866 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
7867 	ASSERT(pred->dtp_refcnt > 0);
7868 
7869 	pred->dtp_refcnt++;
7870 }
7871 
7872 static void
7873 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
7874 {
7875 	dtrace_difo_t *dp = pred->dtp_difo;
7876 
7877 	ASSERT(MUTEX_HELD(&dtrace_lock));
7878 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
7879 	ASSERT(pred->dtp_refcnt > 0);
7880 
7881 	if (--pred->dtp_refcnt == 0) {
7882 		dtrace_difo_release(pred->dtp_difo, vstate);
7883 		kmem_free(pred, sizeof (dtrace_predicate_t));
7884 	}
7885 }
7886 
7887 /*
7888  * DTrace Action Description Functions
7889  */
7890 static dtrace_actdesc_t *
7891 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
7892     uint64_t uarg, uint64_t arg)
7893 {
7894 	dtrace_actdesc_t *act;
7895 
7896 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
7897 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
7898 
7899 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
7900 	act->dtad_kind = kind;
7901 	act->dtad_ntuple = ntuple;
7902 	act->dtad_uarg = uarg;
7903 	act->dtad_arg = arg;
7904 	act->dtad_refcnt = 1;
7905 
7906 	return (act);
7907 }
7908 
7909 static void
7910 dtrace_actdesc_hold(dtrace_actdesc_t *act)
7911 {
7912 	ASSERT(act->dtad_refcnt >= 1);
7913 	act->dtad_refcnt++;
7914 }
7915 
7916 static void
7917 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
7918 {
7919 	dtrace_actkind_t kind = act->dtad_kind;
7920 	dtrace_difo_t *dp;
7921 
7922 	ASSERT(act->dtad_refcnt >= 1);
7923 
7924 	if (--act->dtad_refcnt != 0)
7925 		return;
7926 
7927 	if ((dp = act->dtad_difo) != NULL)
7928 		dtrace_difo_release(dp, vstate);
7929 
7930 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
7931 		char *str = (char *)(uintptr_t)act->dtad_arg;
7932 
7933 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
7934 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
7935 
7936 		if (str != NULL)
7937 			kmem_free(str, strlen(str) + 1);
7938 	}
7939 
7940 	kmem_free(act, sizeof (dtrace_actdesc_t));
7941 }
7942 
7943 /*
7944  * DTrace ECB Functions
7945  */
7946 static dtrace_ecb_t *
7947 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
7948 {
7949 	dtrace_ecb_t *ecb;
7950 	dtrace_epid_t epid;
7951 
7952 	ASSERT(MUTEX_HELD(&dtrace_lock));
7953 
7954 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
7955 	ecb->dte_predicate = NULL;
7956 	ecb->dte_probe = probe;
7957 
7958 	/*
7959 	 * The default size is the size of the default action: recording
7960 	 * the epid.
7961 	 */
7962 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
7963 	ecb->dte_alignment = sizeof (dtrace_epid_t);
7964 
7965 	epid = state->dts_epid++;
7966 
7967 	if (epid - 1 >= state->dts_necbs) {
7968 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
7969 		int necbs = state->dts_necbs << 1;
7970 
7971 		ASSERT(epid == state->dts_necbs + 1);
7972 
7973 		if (necbs == 0) {
7974 			ASSERT(oecbs == NULL);
7975 			necbs = 1;
7976 		}
7977 
7978 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
7979 
7980 		if (oecbs != NULL)
7981 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
7982 
7983 		dtrace_membar_producer();
7984 		state->dts_ecbs = ecbs;
7985 
7986 		if (oecbs != NULL) {
7987 			/*
7988 			 * If this state is active, we must dtrace_sync()
7989 			 * before we can free the old dts_ecbs array:  we're
7990 			 * coming in hot, and there may be active ring
7991 			 * buffer processing (which indexes into the dts_ecbs
7992 			 * array) on another CPU.
7993 			 */
7994 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
7995 				dtrace_sync();
7996 
7997 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
7998 		}
7999 
8000 		dtrace_membar_producer();
8001 		state->dts_necbs = necbs;
8002 	}
8003 
8004 	ecb->dte_state = state;
8005 
8006 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
8007 	dtrace_membar_producer();
8008 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
8009 
8010 	return (ecb);
8011 }
8012 
8013 static void
8014 dtrace_ecb_enable(dtrace_ecb_t *ecb)
8015 {
8016 	dtrace_probe_t *probe = ecb->dte_probe;
8017 
8018 	ASSERT(MUTEX_HELD(&cpu_lock));
8019 	ASSERT(MUTEX_HELD(&dtrace_lock));
8020 	ASSERT(ecb->dte_next == NULL);
8021 
8022 	if (probe == NULL) {
8023 		/*
8024 		 * This is the NULL probe -- there's nothing to do.
8025 		 */
8026 		return;
8027 	}
8028 
8029 	if (probe->dtpr_ecb == NULL) {
8030 		dtrace_provider_t *prov = probe->dtpr_provider;
8031 
8032 		/*
8033 		 * We're the first ECB on this probe.
8034 		 */
8035 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
8036 
8037 		if (ecb->dte_predicate != NULL)
8038 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
8039 
8040 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
8041 		    probe->dtpr_id, probe->dtpr_arg);
8042 	} else {
8043 		/*
8044 		 * This probe is already active.  Swing the last pointer to
8045 		 * point to the new ECB, and issue a dtrace_sync() to assure
8046 		 * that all CPUs have seen the change.
8047 		 */
8048 		ASSERT(probe->dtpr_ecb_last != NULL);
8049 		probe->dtpr_ecb_last->dte_next = ecb;
8050 		probe->dtpr_ecb_last = ecb;
8051 		probe->dtpr_predcache = 0;
8052 
8053 		dtrace_sync();
8054 	}
8055 }
8056 
8057 static void
8058 dtrace_ecb_resize(dtrace_ecb_t *ecb)
8059 {
8060 	uint32_t maxalign = sizeof (dtrace_epid_t);
8061 	uint32_t align = sizeof (uint8_t), offs, diff;
8062 	dtrace_action_t *act;
8063 	int wastuple = 0;
8064 	uint32_t aggbase = UINT32_MAX;
8065 	dtrace_state_t *state = ecb->dte_state;
8066 
8067 	/*
8068 	 * If we record anything, we always record the epid.  (And we always
8069 	 * record it first.)
8070 	 */
8071 	offs = sizeof (dtrace_epid_t);
8072 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
8073 
8074 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8075 		dtrace_recdesc_t *rec = &act->dta_rec;
8076 
8077 		if ((align = rec->dtrd_alignment) > maxalign)
8078 			maxalign = align;
8079 
8080 		if (!wastuple && act->dta_intuple) {
8081 			/*
8082 			 * This is the first record in a tuple.  Align the
8083 			 * offset to be at offset 4 in an 8-byte aligned
8084 			 * block.
8085 			 */
8086 			diff = offs + sizeof (dtrace_aggid_t);
8087 
8088 			if (diff = (diff & (sizeof (uint64_t) - 1)))
8089 				offs += sizeof (uint64_t) - diff;
8090 
8091 			aggbase = offs - sizeof (dtrace_aggid_t);
8092 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
8093 		}
8094 
8095 		/*LINTED*/
8096 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
8097 			/*
8098 			 * The current offset is not properly aligned; align it.
8099 			 */
8100 			offs += align - diff;
8101 		}
8102 
8103 		rec->dtrd_offset = offs;
8104 
8105 		if (offs + rec->dtrd_size > ecb->dte_needed) {
8106 			ecb->dte_needed = offs + rec->dtrd_size;
8107 
8108 			if (ecb->dte_needed > state->dts_needed)
8109 				state->dts_needed = ecb->dte_needed;
8110 		}
8111 
8112 		if (DTRACEACT_ISAGG(act->dta_kind)) {
8113 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8114 			dtrace_action_t *first = agg->dtag_first, *prev;
8115 
8116 			ASSERT(rec->dtrd_size != 0 && first != NULL);
8117 			ASSERT(wastuple);
8118 			ASSERT(aggbase != UINT32_MAX);
8119 
8120 			agg->dtag_base = aggbase;
8121 
8122 			while ((prev = first->dta_prev) != NULL &&
8123 			    DTRACEACT_ISAGG(prev->dta_kind)) {
8124 				agg = (dtrace_aggregation_t *)prev;
8125 				first = agg->dtag_first;
8126 			}
8127 
8128 			if (prev != NULL) {
8129 				offs = prev->dta_rec.dtrd_offset +
8130 				    prev->dta_rec.dtrd_size;
8131 			} else {
8132 				offs = sizeof (dtrace_epid_t);
8133 			}
8134 			wastuple = 0;
8135 		} else {
8136 			if (!act->dta_intuple)
8137 				ecb->dte_size = offs + rec->dtrd_size;
8138 
8139 			offs += rec->dtrd_size;
8140 		}
8141 
8142 		wastuple = act->dta_intuple;
8143 	}
8144 
8145 	if ((act = ecb->dte_action) != NULL &&
8146 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
8147 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
8148 		/*
8149 		 * If the size is still sizeof (dtrace_epid_t), then all
8150 		 * actions store no data; set the size to 0.
8151 		 */
8152 		ecb->dte_alignment = maxalign;
8153 		ecb->dte_size = 0;
8154 
8155 		/*
8156 		 * If the needed space is still sizeof (dtrace_epid_t), then
8157 		 * all actions need no additional space; set the needed
8158 		 * size to 0.
8159 		 */
8160 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
8161 			ecb->dte_needed = 0;
8162 
8163 		return;
8164 	}
8165 
8166 	/*
8167 	 * Set our alignment, and make sure that the dte_size and dte_needed
8168 	 * are aligned to the size of an EPID.
8169 	 */
8170 	ecb->dte_alignment = maxalign;
8171 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
8172 	    ~(sizeof (dtrace_epid_t) - 1);
8173 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
8174 	    ~(sizeof (dtrace_epid_t) - 1);
8175 	ASSERT(ecb->dte_size <= ecb->dte_needed);
8176 }
8177 
8178 static dtrace_action_t *
8179 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8180 {
8181 	dtrace_aggregation_t *agg;
8182 	size_t size = sizeof (uint64_t);
8183 	int ntuple = desc->dtad_ntuple;
8184 	dtrace_action_t *act;
8185 	dtrace_recdesc_t *frec;
8186 	dtrace_aggid_t aggid;
8187 	dtrace_state_t *state = ecb->dte_state;
8188 
8189 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
8190 	agg->dtag_ecb = ecb;
8191 
8192 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
8193 
8194 	switch (desc->dtad_kind) {
8195 	case DTRACEAGG_MIN:
8196 		agg->dtag_initial = UINT64_MAX;
8197 		agg->dtag_aggregate = dtrace_aggregate_min;
8198 		break;
8199 
8200 	case DTRACEAGG_MAX:
8201 		agg->dtag_aggregate = dtrace_aggregate_max;
8202 		break;
8203 
8204 	case DTRACEAGG_COUNT:
8205 		agg->dtag_aggregate = dtrace_aggregate_count;
8206 		break;
8207 
8208 	case DTRACEAGG_QUANTIZE:
8209 		agg->dtag_aggregate = dtrace_aggregate_quantize;
8210 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
8211 		    sizeof (uint64_t);
8212 		break;
8213 
8214 	case DTRACEAGG_LQUANTIZE: {
8215 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
8216 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
8217 
8218 		agg->dtag_initial = desc->dtad_arg;
8219 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
8220 
8221 		if (step == 0 || levels == 0)
8222 			goto err;
8223 
8224 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
8225 		break;
8226 	}
8227 
8228 	case DTRACEAGG_AVG:
8229 		agg->dtag_aggregate = dtrace_aggregate_avg;
8230 		size = sizeof (uint64_t) * 2;
8231 		break;
8232 
8233 	case DTRACEAGG_SUM:
8234 		agg->dtag_aggregate = dtrace_aggregate_sum;
8235 		break;
8236 
8237 	default:
8238 		goto err;
8239 	}
8240 
8241 	agg->dtag_action.dta_rec.dtrd_size = size;
8242 
8243 	if (ntuple == 0)
8244 		goto err;
8245 
8246 	/*
8247 	 * We must make sure that we have enough actions for the n-tuple.
8248 	 */
8249 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
8250 		if (DTRACEACT_ISAGG(act->dta_kind))
8251 			break;
8252 
8253 		if (--ntuple == 0) {
8254 			/*
8255 			 * This is the action with which our n-tuple begins.
8256 			 */
8257 			agg->dtag_first = act;
8258 			goto success;
8259 		}
8260 	}
8261 
8262 	/*
8263 	 * This n-tuple is short by ntuple elements.  Return failure.
8264 	 */
8265 	ASSERT(ntuple != 0);
8266 err:
8267 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8268 	return (NULL);
8269 
8270 success:
8271 	/*
8272 	 * If the last action in the tuple has a size of zero, it's actually
8273 	 * an expression argument for the aggregating action.
8274 	 */
8275 	ASSERT(ecb->dte_action_last != NULL);
8276 	act = ecb->dte_action_last;
8277 
8278 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
8279 		ASSERT(act->dta_difo != NULL);
8280 
8281 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
8282 			agg->dtag_hasarg = 1;
8283 	}
8284 
8285 	/*
8286 	 * We need to allocate an id for this aggregation.
8287 	 */
8288 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
8289 	    VM_BESTFIT | VM_SLEEP);
8290 
8291 	if (aggid - 1 >= state->dts_naggregations) {
8292 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
8293 		dtrace_aggregation_t **aggs;
8294 		int naggs = state->dts_naggregations << 1;
8295 		int onaggs = state->dts_naggregations;
8296 
8297 		ASSERT(aggid == state->dts_naggregations + 1);
8298 
8299 		if (naggs == 0) {
8300 			ASSERT(oaggs == NULL);
8301 			naggs = 1;
8302 		}
8303 
8304 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
8305 
8306 		if (oaggs != NULL) {
8307 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
8308 			kmem_free(oaggs, onaggs * sizeof (*aggs));
8309 		}
8310 
8311 		state->dts_aggregations = aggs;
8312 		state->dts_naggregations = naggs;
8313 	}
8314 
8315 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
8316 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
8317 
8318 	frec = &agg->dtag_first->dta_rec;
8319 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
8320 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
8321 
8322 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
8323 		ASSERT(!act->dta_intuple);
8324 		act->dta_intuple = 1;
8325 	}
8326 
8327 	return (&agg->dtag_action);
8328 }
8329 
8330 static void
8331 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
8332 {
8333 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
8334 	dtrace_state_t *state = ecb->dte_state;
8335 	dtrace_aggid_t aggid = agg->dtag_id;
8336 
8337 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
8338 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
8339 
8340 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
8341 	state->dts_aggregations[aggid - 1] = NULL;
8342 
8343 	kmem_free(agg, sizeof (dtrace_aggregation_t));
8344 }
8345 
8346 static int
8347 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
8348 {
8349 	dtrace_action_t *action, *last;
8350 	dtrace_difo_t *dp = desc->dtad_difo;
8351 	uint32_t size = 0, align = sizeof (uint8_t), mask;
8352 	uint16_t format = 0;
8353 	dtrace_recdesc_t *rec;
8354 	dtrace_state_t *state = ecb->dte_state;
8355 	dtrace_optval_t *opt = state->dts_options, nframes, strsize;
8356 	uint64_t arg = desc->dtad_arg;
8357 
8358 	ASSERT(MUTEX_HELD(&dtrace_lock));
8359 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
8360 
8361 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
8362 		/*
8363 		 * If this is an aggregating action, there must be neither
8364 		 * a speculate nor a commit on the action chain.
8365 		 */
8366 		dtrace_action_t *act;
8367 
8368 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
8369 			if (act->dta_kind == DTRACEACT_COMMIT)
8370 				return (EINVAL);
8371 
8372 			if (act->dta_kind == DTRACEACT_SPECULATE)
8373 				return (EINVAL);
8374 		}
8375 
8376 		action = dtrace_ecb_aggregation_create(ecb, desc);
8377 
8378 		if (action == NULL)
8379 			return (EINVAL);
8380 	} else {
8381 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
8382 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
8383 		    dp != NULL && dp->dtdo_destructive)) {
8384 			state->dts_destructive = 1;
8385 		}
8386 
8387 		switch (desc->dtad_kind) {
8388 		case DTRACEACT_PRINTF:
8389 		case DTRACEACT_PRINTA:
8390 		case DTRACEACT_SYSTEM:
8391 		case DTRACEACT_FREOPEN:
8392 			/*
8393 			 * We know that our arg is a string -- turn it into a
8394 			 * format.
8395 			 */
8396 			if (arg == NULL) {
8397 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA);
8398 				format = 0;
8399 			} else {
8400 				ASSERT(arg != NULL);
8401 				ASSERT(arg > KERNELBASE);
8402 				format = dtrace_format_add(state,
8403 				    (char *)(uintptr_t)arg);
8404 			}
8405 
8406 			/*FALLTHROUGH*/
8407 		case DTRACEACT_LIBACT:
8408 		case DTRACEACT_DIFEXPR:
8409 			if (dp == NULL)
8410 				return (EINVAL);
8411 
8412 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
8413 				break;
8414 
8415 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
8416 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8417 					return (EINVAL);
8418 
8419 				size = opt[DTRACEOPT_STRSIZE];
8420 			}
8421 
8422 			break;
8423 
8424 		case DTRACEACT_STACK:
8425 			if ((nframes = arg) == 0) {
8426 				nframes = opt[DTRACEOPT_STACKFRAMES];
8427 				ASSERT(nframes > 0);
8428 				arg = nframes;
8429 			}
8430 
8431 			size = nframes * sizeof (pc_t);
8432 			break;
8433 
8434 		case DTRACEACT_JSTACK:
8435 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
8436 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
8437 
8438 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
8439 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
8440 
8441 			arg = DTRACE_USTACK_ARG(nframes, strsize);
8442 
8443 			/*FALLTHROUGH*/
8444 		case DTRACEACT_USTACK:
8445 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
8446 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
8447 				strsize = DTRACE_USTACK_STRSIZE(arg);
8448 				nframes = opt[DTRACEOPT_USTACKFRAMES];
8449 				ASSERT(nframes > 0);
8450 				arg = DTRACE_USTACK_ARG(nframes, strsize);
8451 			}
8452 
8453 			/*
8454 			 * Save a slot for the pid.
8455 			 */
8456 			size = (nframes + 1) * sizeof (uint64_t);
8457 			size += DTRACE_USTACK_STRSIZE(arg);
8458 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
8459 
8460 			break;
8461 
8462 		case DTRACEACT_SYM:
8463 		case DTRACEACT_MOD:
8464 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
8465 			    sizeof (uint64_t)) ||
8466 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8467 				return (EINVAL);
8468 			break;
8469 
8470 		case DTRACEACT_USYM:
8471 		case DTRACEACT_UMOD:
8472 		case DTRACEACT_UADDR:
8473 			if (dp == NULL ||
8474 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
8475 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8476 				return (EINVAL);
8477 
8478 			/*
8479 			 * We have a slot for the pid, plus a slot for the
8480 			 * argument.  To keep things simple (aligned with
8481 			 * bitness-neutral sizing), we store each as a 64-bit
8482 			 * quantity.
8483 			 */
8484 			size = 2 * sizeof (uint64_t);
8485 			break;
8486 
8487 		case DTRACEACT_STOP:
8488 		case DTRACEACT_BREAKPOINT:
8489 		case DTRACEACT_PANIC:
8490 			break;
8491 
8492 		case DTRACEACT_CHILL:
8493 		case DTRACEACT_DISCARD:
8494 		case DTRACEACT_RAISE:
8495 			if (dp == NULL)
8496 				return (EINVAL);
8497 			break;
8498 
8499 		case DTRACEACT_EXIT:
8500 			if (dp == NULL ||
8501 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
8502 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
8503 				return (EINVAL);
8504 			break;
8505 
8506 		case DTRACEACT_SPECULATE:
8507 			if (ecb->dte_size > sizeof (dtrace_epid_t))
8508 				return (EINVAL);
8509 
8510 			if (dp == NULL)
8511 				return (EINVAL);
8512 
8513 			state->dts_speculates = 1;
8514 			break;
8515 
8516 		case DTRACEACT_COMMIT: {
8517 			dtrace_action_t *act = ecb->dte_action;
8518 
8519 			for (; act != NULL; act = act->dta_next) {
8520 				if (act->dta_kind == DTRACEACT_COMMIT)
8521 					return (EINVAL);
8522 			}
8523 
8524 			if (dp == NULL)
8525 				return (EINVAL);
8526 			break;
8527 		}
8528 
8529 		default:
8530 			return (EINVAL);
8531 		}
8532 
8533 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
8534 			/*
8535 			 * If this is a data-storing action or a speculate,
8536 			 * we must be sure that there isn't a commit on the
8537 			 * action chain.
8538 			 */
8539 			dtrace_action_t *act = ecb->dte_action;
8540 
8541 			for (; act != NULL; act = act->dta_next) {
8542 				if (act->dta_kind == DTRACEACT_COMMIT)
8543 					return (EINVAL);
8544 			}
8545 		}
8546 
8547 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
8548 		action->dta_rec.dtrd_size = size;
8549 	}
8550 
8551 	action->dta_refcnt = 1;
8552 	rec = &action->dta_rec;
8553 	size = rec->dtrd_size;
8554 
8555 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
8556 		if (!(size & mask)) {
8557 			align = mask + 1;
8558 			break;
8559 		}
8560 	}
8561 
8562 	action->dta_kind = desc->dtad_kind;
8563 
8564 	if ((action->dta_difo = dp) != NULL)
8565 		dtrace_difo_hold(dp);
8566 
8567 	rec->dtrd_action = action->dta_kind;
8568 	rec->dtrd_arg = arg;
8569 
8570 	if (ecb->dte_state == dtrace_anon.dta_state) {
8571 		/*
8572 		 * If this is an anonymous enabling, explicitly clear the uarg.
8573 		 */
8574 		rec->dtrd_uarg = 0;
8575 	} else {
8576 		rec->dtrd_uarg = desc->dtad_uarg;
8577 	}
8578 
8579 	rec->dtrd_alignment = (uint16_t)align;
8580 	rec->dtrd_format = format;
8581 
8582 	if ((last = ecb->dte_action_last) != NULL) {
8583 		ASSERT(ecb->dte_action != NULL);
8584 		action->dta_prev = last;
8585 		last->dta_next = action;
8586 	} else {
8587 		ASSERT(ecb->dte_action == NULL);
8588 		ecb->dte_action = action;
8589 	}
8590 
8591 	ecb->dte_action_last = action;
8592 
8593 	return (0);
8594 }
8595 
8596 static void
8597 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
8598 {
8599 	dtrace_action_t *act = ecb->dte_action, *next;
8600 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
8601 	dtrace_difo_t *dp;
8602 	uint16_t format;
8603 
8604 	if (act != NULL && act->dta_refcnt > 1) {
8605 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
8606 		act->dta_refcnt--;
8607 	} else {
8608 		for (; act != NULL; act = next) {
8609 			next = act->dta_next;
8610 			ASSERT(next != NULL || act == ecb->dte_action_last);
8611 			ASSERT(act->dta_refcnt == 1);
8612 
8613 			if ((format = act->dta_rec.dtrd_format) != 0)
8614 				dtrace_format_remove(ecb->dte_state, format);
8615 
8616 			if ((dp = act->dta_difo) != NULL)
8617 				dtrace_difo_release(dp, vstate);
8618 
8619 			if (DTRACEACT_ISAGG(act->dta_kind)) {
8620 				dtrace_ecb_aggregation_destroy(ecb, act);
8621 			} else {
8622 				kmem_free(act, sizeof (dtrace_action_t));
8623 			}
8624 		}
8625 	}
8626 
8627 	ecb->dte_action = NULL;
8628 	ecb->dte_action_last = NULL;
8629 	ecb->dte_size = sizeof (dtrace_epid_t);
8630 }
8631 
8632 static void
8633 dtrace_ecb_disable(dtrace_ecb_t *ecb)
8634 {
8635 	/*
8636 	 * We disable the ECB by removing it from its probe.
8637 	 */
8638 	dtrace_ecb_t *pecb, *prev = NULL;
8639 	dtrace_probe_t *probe = ecb->dte_probe;
8640 
8641 	ASSERT(MUTEX_HELD(&dtrace_lock));
8642 
8643 	if (probe == NULL) {
8644 		/*
8645 		 * This is the NULL probe; there is nothing to disable.
8646 		 */
8647 		return;
8648 	}
8649 
8650 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
8651 		if (pecb == ecb)
8652 			break;
8653 		prev = pecb;
8654 	}
8655 
8656 	ASSERT(pecb != NULL);
8657 
8658 	if (prev == NULL) {
8659 		probe->dtpr_ecb = ecb->dte_next;
8660 	} else {
8661 		prev->dte_next = ecb->dte_next;
8662 	}
8663 
8664 	if (ecb == probe->dtpr_ecb_last) {
8665 		ASSERT(ecb->dte_next == NULL);
8666 		probe->dtpr_ecb_last = prev;
8667 	}
8668 
8669 	/*
8670 	 * The ECB has been disconnected from the probe; now sync to assure
8671 	 * that all CPUs have seen the change before returning.
8672 	 */
8673 	dtrace_sync();
8674 
8675 	if (probe->dtpr_ecb == NULL) {
8676 		/*
8677 		 * That was the last ECB on the probe; clear the predicate
8678 		 * cache ID for the probe, disable it and sync one more time
8679 		 * to assure that we'll never hit it again.
8680 		 */
8681 		dtrace_provider_t *prov = probe->dtpr_provider;
8682 
8683 		ASSERT(ecb->dte_next == NULL);
8684 		ASSERT(probe->dtpr_ecb_last == NULL);
8685 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
8686 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
8687 		    probe->dtpr_id, probe->dtpr_arg);
8688 		dtrace_sync();
8689 	} else {
8690 		/*
8691 		 * There is at least one ECB remaining on the probe.  If there
8692 		 * is _exactly_ one, set the probe's predicate cache ID to be
8693 		 * the predicate cache ID of the remaining ECB.
8694 		 */
8695 		ASSERT(probe->dtpr_ecb_last != NULL);
8696 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
8697 
8698 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
8699 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
8700 
8701 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
8702 
8703 			if (p != NULL)
8704 				probe->dtpr_predcache = p->dtp_cacheid;
8705 		}
8706 
8707 		ecb->dte_next = NULL;
8708 	}
8709 }
8710 
8711 static void
8712 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
8713 {
8714 	dtrace_state_t *state = ecb->dte_state;
8715 	dtrace_vstate_t *vstate = &state->dts_vstate;
8716 	dtrace_predicate_t *pred;
8717 	dtrace_epid_t epid = ecb->dte_epid;
8718 
8719 	ASSERT(MUTEX_HELD(&dtrace_lock));
8720 	ASSERT(ecb->dte_next == NULL);
8721 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
8722 
8723 	if ((pred = ecb->dte_predicate) != NULL)
8724 		dtrace_predicate_release(pred, vstate);
8725 
8726 	dtrace_ecb_action_remove(ecb);
8727 
8728 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
8729 	state->dts_ecbs[epid - 1] = NULL;
8730 
8731 	kmem_free(ecb, sizeof (dtrace_ecb_t));
8732 }
8733 
8734 static dtrace_ecb_t *
8735 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
8736     dtrace_enabling_t *enab)
8737 {
8738 	dtrace_ecb_t *ecb;
8739 	dtrace_predicate_t *pred;
8740 	dtrace_actdesc_t *act;
8741 	dtrace_provider_t *prov;
8742 	dtrace_ecbdesc_t *desc = enab->dten_current;
8743 
8744 	ASSERT(MUTEX_HELD(&dtrace_lock));
8745 	ASSERT(state != NULL);
8746 
8747 	ecb = dtrace_ecb_add(state, probe);
8748 	ecb->dte_uarg = desc->dted_uarg;
8749 
8750 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
8751 		dtrace_predicate_hold(pred);
8752 		ecb->dte_predicate = pred;
8753 	}
8754 
8755 	if (probe != NULL) {
8756 		/*
8757 		 * If the provider shows more leg than the consumer is old
8758 		 * enough to see, we need to enable the appropriate implicit
8759 		 * predicate bits to prevent the ecb from activating at
8760 		 * revealing times.
8761 		 */
8762 		prov = probe->dtpr_provider;
8763 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
8764 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
8765 			ecb->dte_cond |= DTRACE_COND_OWNER;
8766 
8767 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
8768 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
8769 			ecb->dte_cond |= DTRACE_COND_USERMODE;
8770 	}
8771 
8772 	if (dtrace_ecb_create_cache != NULL) {
8773 		/*
8774 		 * If we have a cached ecb, we'll use its action list instead
8775 		 * of creating our own (saving both time and space).
8776 		 */
8777 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
8778 		dtrace_action_t *act = cached->dte_action;
8779 
8780 		if (act != NULL) {
8781 			ASSERT(act->dta_refcnt > 0);
8782 			act->dta_refcnt++;
8783 			ecb->dte_action = act;
8784 			ecb->dte_action_last = cached->dte_action_last;
8785 			ecb->dte_needed = cached->dte_needed;
8786 			ecb->dte_size = cached->dte_size;
8787 			ecb->dte_alignment = cached->dte_alignment;
8788 		}
8789 
8790 		return (ecb);
8791 	}
8792 
8793 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
8794 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
8795 			dtrace_ecb_destroy(ecb);
8796 			return (NULL);
8797 		}
8798 	}
8799 
8800 	dtrace_ecb_resize(ecb);
8801 
8802 	return (dtrace_ecb_create_cache = ecb);
8803 }
8804 
8805 static int
8806 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
8807 {
8808 	dtrace_ecb_t *ecb;
8809 	dtrace_enabling_t *enab = arg;
8810 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
8811 
8812 	ASSERT(state != NULL);
8813 
8814 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
8815 		/*
8816 		 * This probe was created in a generation for which this
8817 		 * enabling has previously created ECBs; we don't want to
8818 		 * enable it again, so just kick out.
8819 		 */
8820 		return (DTRACE_MATCH_NEXT);
8821 	}
8822 
8823 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
8824 		return (DTRACE_MATCH_DONE);
8825 
8826 	dtrace_ecb_enable(ecb);
8827 	return (DTRACE_MATCH_NEXT);
8828 }
8829 
8830 static dtrace_ecb_t *
8831 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
8832 {
8833 	dtrace_ecb_t *ecb;
8834 
8835 	ASSERT(MUTEX_HELD(&dtrace_lock));
8836 
8837 	if (id == 0 || id > state->dts_necbs)
8838 		return (NULL);
8839 
8840 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
8841 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
8842 
8843 	return (state->dts_ecbs[id - 1]);
8844 }
8845 
8846 static dtrace_aggregation_t *
8847 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
8848 {
8849 	dtrace_aggregation_t *agg;
8850 
8851 	ASSERT(MUTEX_HELD(&dtrace_lock));
8852 
8853 	if (id == 0 || id > state->dts_naggregations)
8854 		return (NULL);
8855 
8856 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
8857 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
8858 	    agg->dtag_id == id);
8859 
8860 	return (state->dts_aggregations[id - 1]);
8861 }
8862 
8863 /*
8864  * DTrace Buffer Functions
8865  *
8866  * The following functions manipulate DTrace buffers.  Most of these functions
8867  * are called in the context of establishing or processing consumer state;
8868  * exceptions are explicitly noted.
8869  */
8870 
8871 /*
8872  * Note:  called from cross call context.  This function switches the two
8873  * buffers on a given CPU.  The atomicity of this operation is assured by
8874  * disabling interrupts while the actual switch takes place; the disabling of
8875  * interrupts serializes the execution with any execution of dtrace_probe() on
8876  * the same CPU.
8877  */
8878 static void
8879 dtrace_buffer_switch(dtrace_buffer_t *buf)
8880 {
8881 	caddr_t tomax = buf->dtb_tomax;
8882 	caddr_t xamot = buf->dtb_xamot;
8883 	dtrace_icookie_t cookie;
8884 
8885 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
8886 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
8887 
8888 	cookie = dtrace_interrupt_disable();
8889 	buf->dtb_tomax = xamot;
8890 	buf->dtb_xamot = tomax;
8891 	buf->dtb_xamot_drops = buf->dtb_drops;
8892 	buf->dtb_xamot_offset = buf->dtb_offset;
8893 	buf->dtb_xamot_errors = buf->dtb_errors;
8894 	buf->dtb_xamot_flags = buf->dtb_flags;
8895 	buf->dtb_offset = 0;
8896 	buf->dtb_drops = 0;
8897 	buf->dtb_errors = 0;
8898 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
8899 	dtrace_interrupt_enable(cookie);
8900 }
8901 
8902 /*
8903  * Note:  called from cross call context.  This function activates a buffer
8904  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
8905  * is guaranteed by the disabling of interrupts.
8906  */
8907 static void
8908 dtrace_buffer_activate(dtrace_state_t *state)
8909 {
8910 	dtrace_buffer_t *buf;
8911 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
8912 
8913 	buf = &state->dts_buffer[CPU->cpu_id];
8914 
8915 	if (buf->dtb_tomax != NULL) {
8916 		/*
8917 		 * We might like to assert that the buffer is marked inactive,
8918 		 * but this isn't necessarily true:  the buffer for the CPU
8919 		 * that processes the BEGIN probe has its buffer activated
8920 		 * manually.  In this case, we take the (harmless) action
8921 		 * re-clearing the bit INACTIVE bit.
8922 		 */
8923 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
8924 	}
8925 
8926 	dtrace_interrupt_enable(cookie);
8927 }
8928 
8929 static int
8930 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
8931     processorid_t cpu)
8932 {
8933 	cpu_t *cp;
8934 	dtrace_buffer_t *buf;
8935 
8936 	ASSERT(MUTEX_HELD(&cpu_lock));
8937 	ASSERT(MUTEX_HELD(&dtrace_lock));
8938 
8939 	if (crgetuid(CRED()) != 0 && size > dtrace_nonroot_maxsize)
8940 		return (EFBIG);
8941 
8942 	cp = cpu_list;
8943 
8944 	do {
8945 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
8946 			continue;
8947 
8948 		buf = &bufs[cp->cpu_id];
8949 
8950 		/*
8951 		 * If there is already a buffer allocated for this CPU, it
8952 		 * is only possible that this is a DR event.  In this case,
8953 		 * the buffer size must match our specified size.
8954 		 */
8955 		if (buf->dtb_tomax != NULL) {
8956 			ASSERT(buf->dtb_size == size);
8957 			continue;
8958 		}
8959 
8960 		ASSERT(buf->dtb_xamot == NULL);
8961 
8962 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
8963 			goto err;
8964 
8965 		buf->dtb_size = size;
8966 		buf->dtb_flags = flags;
8967 		buf->dtb_offset = 0;
8968 		buf->dtb_drops = 0;
8969 
8970 		if (flags & DTRACEBUF_NOSWITCH)
8971 			continue;
8972 
8973 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
8974 			goto err;
8975 	} while ((cp = cp->cpu_next) != cpu_list);
8976 
8977 	return (0);
8978 
8979 err:
8980 	cp = cpu_list;
8981 
8982 	do {
8983 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
8984 			continue;
8985 
8986 		buf = &bufs[cp->cpu_id];
8987 
8988 		if (buf->dtb_xamot != NULL) {
8989 			ASSERT(buf->dtb_tomax != NULL);
8990 			ASSERT(buf->dtb_size == size);
8991 			kmem_free(buf->dtb_xamot, size);
8992 		}
8993 
8994 		if (buf->dtb_tomax != NULL) {
8995 			ASSERT(buf->dtb_size == size);
8996 			kmem_free(buf->dtb_tomax, size);
8997 		}
8998 
8999 		buf->dtb_tomax = NULL;
9000 		buf->dtb_xamot = NULL;
9001 		buf->dtb_size = 0;
9002 	} while ((cp = cp->cpu_next) != cpu_list);
9003 
9004 	return (ENOMEM);
9005 }
9006 
9007 /*
9008  * Note:  called from probe context.  This function just increments the drop
9009  * count on a buffer.  It has been made a function to allow for the
9010  * possibility of understanding the source of mysterious drop counts.  (A
9011  * problem for which one may be particularly disappointed that DTrace cannot
9012  * be used to understand DTrace.)
9013  */
9014 static void
9015 dtrace_buffer_drop(dtrace_buffer_t *buf)
9016 {
9017 	buf->dtb_drops++;
9018 }
9019 
9020 /*
9021  * Note:  called from probe context.  This function is called to reserve space
9022  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
9023  * mstate.  Returns the new offset in the buffer, or a negative value if an
9024  * error has occurred.
9025  */
9026 static intptr_t
9027 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
9028     dtrace_state_t *state, dtrace_mstate_t *mstate)
9029 {
9030 	intptr_t offs = buf->dtb_offset, soffs;
9031 	intptr_t woffs;
9032 	caddr_t tomax;
9033 	size_t total;
9034 
9035 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
9036 		return (-1);
9037 
9038 	if ((tomax = buf->dtb_tomax) == NULL) {
9039 		dtrace_buffer_drop(buf);
9040 		return (-1);
9041 	}
9042 
9043 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
9044 		while (offs & (align - 1)) {
9045 			/*
9046 			 * Assert that our alignment is off by a number which
9047 			 * is itself sizeof (uint32_t) aligned.
9048 			 */
9049 			ASSERT(!((align - (offs & (align - 1))) &
9050 			    (sizeof (uint32_t) - 1)));
9051 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9052 			offs += sizeof (uint32_t);
9053 		}
9054 
9055 		if ((soffs = offs + needed) > buf->dtb_size) {
9056 			dtrace_buffer_drop(buf);
9057 			return (-1);
9058 		}
9059 
9060 		if (mstate == NULL)
9061 			return (offs);
9062 
9063 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
9064 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
9065 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9066 
9067 		return (offs);
9068 	}
9069 
9070 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9071 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
9072 		    (buf->dtb_flags & DTRACEBUF_FULL))
9073 			return (-1);
9074 		goto out;
9075 	}
9076 
9077 	total = needed + (offs & (align - 1));
9078 
9079 	/*
9080 	 * For a ring buffer, life is quite a bit more complicated.  Before
9081 	 * we can store any padding, we need to adjust our wrapping offset.
9082 	 * (If we've never before wrapped or we're not about to, no adjustment
9083 	 * is required.)
9084 	 */
9085 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
9086 	    offs + total > buf->dtb_size) {
9087 		woffs = buf->dtb_xamot_offset;
9088 
9089 		if (offs + total > buf->dtb_size) {
9090 			/*
9091 			 * We can't fit in the end of the buffer.  First, a
9092 			 * sanity check that we can fit in the buffer at all.
9093 			 */
9094 			if (total > buf->dtb_size) {
9095 				dtrace_buffer_drop(buf);
9096 				return (-1);
9097 			}
9098 
9099 			/*
9100 			 * We're going to be storing at the top of the buffer,
9101 			 * so now we need to deal with the wrapped offset.  We
9102 			 * only reset our wrapped offset to 0 if it is
9103 			 * currently greater than the current offset.  If it
9104 			 * is less than the current offset, it is because a
9105 			 * previous allocation induced a wrap -- but the
9106 			 * allocation didn't subsequently take the space due
9107 			 * to an error or false predicate evaluation.  In this
9108 			 * case, we'll just leave the wrapped offset alone: if
9109 			 * the wrapped offset hasn't been advanced far enough
9110 			 * for this allocation, it will be adjusted in the
9111 			 * lower loop.
9112 			 */
9113 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
9114 				if (woffs >= offs)
9115 					woffs = 0;
9116 			} else {
9117 				woffs = 0;
9118 			}
9119 
9120 			/*
9121 			 * Now we know that we're going to be storing to the
9122 			 * top of the buffer and that there is room for us
9123 			 * there.  We need to clear the buffer from the current
9124 			 * offset to the end (there may be old gunk there).
9125 			 */
9126 			while (offs < buf->dtb_size)
9127 				tomax[offs++] = 0;
9128 
9129 			/*
9130 			 * We need to set our offset to zero.  And because we
9131 			 * are wrapping, we need to set the bit indicating as
9132 			 * much.  We can also adjust our needed space back
9133 			 * down to the space required by the ECB -- we know
9134 			 * that the top of the buffer is aligned.
9135 			 */
9136 			offs = 0;
9137 			total = needed;
9138 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
9139 		} else {
9140 			/*
9141 			 * There is room for us in the buffer, so we simply
9142 			 * need to check the wrapped offset.
9143 			 */
9144 			if (woffs < offs) {
9145 				/*
9146 				 * The wrapped offset is less than the offset.
9147 				 * This can happen if we allocated buffer space
9148 				 * that induced a wrap, but then we didn't
9149 				 * subsequently take the space due to an error
9150 				 * or false predicate evaluation.  This is
9151 				 * okay; we know that _this_ allocation isn't
9152 				 * going to induce a wrap.  We still can't
9153 				 * reset the wrapped offset to be zero,
9154 				 * however: the space may have been trashed in
9155 				 * the previous failed probe attempt.  But at
9156 				 * least the wrapped offset doesn't need to
9157 				 * be adjusted at all...
9158 				 */
9159 				goto out;
9160 			}
9161 		}
9162 
9163 		while (offs + total > woffs) {
9164 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
9165 			size_t size;
9166 
9167 			if (epid == DTRACE_EPIDNONE) {
9168 				size = sizeof (uint32_t);
9169 			} else {
9170 				ASSERT(epid <= state->dts_necbs);
9171 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
9172 
9173 				size = state->dts_ecbs[epid - 1]->dte_size;
9174 			}
9175 
9176 			ASSERT(woffs + size <= buf->dtb_size);
9177 			ASSERT(size != 0);
9178 
9179 			if (woffs + size == buf->dtb_size) {
9180 				/*
9181 				 * We've reached the end of the buffer; we want
9182 				 * to set the wrapped offset to 0 and break
9183 				 * out.  However, if the offs is 0, then we're
9184 				 * in a strange edge-condition:  the amount of
9185 				 * space that we want to reserve plus the size
9186 				 * of the record that we're overwriting is
9187 				 * greater than the size of the buffer.  This
9188 				 * is problematic because if we reserve the
9189 				 * space but subsequently don't consume it (due
9190 				 * to a failed predicate or error) the wrapped
9191 				 * offset will be 0 -- yet the EPID at offset 0
9192 				 * will not be committed.  This situation is
9193 				 * relatively easy to deal with:  if we're in
9194 				 * this case, the buffer is indistinguishable
9195 				 * from one that hasn't wrapped; we need only
9196 				 * finish the job by clearing the wrapped bit,
9197 				 * explicitly setting the offset to be 0, and
9198 				 * zero'ing out the old data in the buffer.
9199 				 */
9200 				if (offs == 0) {
9201 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
9202 					buf->dtb_offset = 0;
9203 					woffs = total;
9204 
9205 					while (woffs < buf->dtb_size)
9206 						tomax[woffs++] = 0;
9207 				}
9208 
9209 				woffs = 0;
9210 				break;
9211 			}
9212 
9213 			woffs += size;
9214 		}
9215 
9216 		/*
9217 		 * We have a wrapped offset.  It may be that the wrapped offset
9218 		 * has become zero -- that's okay.
9219 		 */
9220 		buf->dtb_xamot_offset = woffs;
9221 	}
9222 
9223 out:
9224 	/*
9225 	 * Now we can plow the buffer with any necessary padding.
9226 	 */
9227 	while (offs & (align - 1)) {
9228 		/*
9229 		 * Assert that our alignment is off by a number which
9230 		 * is itself sizeof (uint32_t) aligned.
9231 		 */
9232 		ASSERT(!((align - (offs & (align - 1))) &
9233 		    (sizeof (uint32_t) - 1)));
9234 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
9235 		offs += sizeof (uint32_t);
9236 	}
9237 
9238 	if (buf->dtb_flags & DTRACEBUF_FILL) {
9239 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
9240 			buf->dtb_flags |= DTRACEBUF_FULL;
9241 			return (-1);
9242 		}
9243 	}
9244 
9245 	if (mstate == NULL)
9246 		return (offs);
9247 
9248 	/*
9249 	 * For ring buffers and fill buffers, the scratch space is always
9250 	 * the inactive buffer.
9251 	 */
9252 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
9253 	mstate->dtms_scratch_size = buf->dtb_size;
9254 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
9255 
9256 	return (offs);
9257 }
9258 
9259 static void
9260 dtrace_buffer_polish(dtrace_buffer_t *buf)
9261 {
9262 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
9263 	ASSERT(MUTEX_HELD(&dtrace_lock));
9264 
9265 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
9266 		return;
9267 
9268 	/*
9269 	 * We need to polish the ring buffer.  There are three cases:
9270 	 *
9271 	 * - The first (and presumably most common) is that there is no gap
9272 	 *   between the buffer offset and the wrapped offset.  In this case,
9273 	 *   there is nothing in the buffer that isn't valid data; we can
9274 	 *   mark the buffer as polished and return.
9275 	 *
9276 	 * - The second (less common than the first but still more common
9277 	 *   than the third) is that there is a gap between the buffer offset
9278 	 *   and the wrapped offset, and the wrapped offset is larger than the
9279 	 *   buffer offset.  This can happen because of an alignment issue, or
9280 	 *   can happen because of a call to dtrace_buffer_reserve() that
9281 	 *   didn't subsequently consume the buffer space.  In this case,
9282 	 *   we need to zero the data from the buffer offset to the wrapped
9283 	 *   offset.
9284 	 *
9285 	 * - The third (and least common) is that there is a gap between the
9286 	 *   buffer offset and the wrapped offset, but the wrapped offset is
9287 	 *   _less_ than the buffer offset.  This can only happen because a
9288 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
9289 	 *   was not subsequently consumed.  In this case, we need to zero the
9290 	 *   space from the offset to the end of the buffer _and_ from the
9291 	 *   top of the buffer to the wrapped offset.
9292 	 */
9293 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
9294 		bzero(buf->dtb_tomax + buf->dtb_offset,
9295 		    buf->dtb_xamot_offset - buf->dtb_offset);
9296 	}
9297 
9298 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
9299 		bzero(buf->dtb_tomax + buf->dtb_offset,
9300 		    buf->dtb_size - buf->dtb_offset);
9301 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
9302 	}
9303 }
9304 
9305 static void
9306 dtrace_buffer_free(dtrace_buffer_t *bufs)
9307 {
9308 	int i;
9309 
9310 	for (i = 0; i < NCPU; i++) {
9311 		dtrace_buffer_t *buf = &bufs[i];
9312 
9313 		if (buf->dtb_tomax == NULL) {
9314 			ASSERT(buf->dtb_xamot == NULL);
9315 			ASSERT(buf->dtb_size == 0);
9316 			continue;
9317 		}
9318 
9319 		if (buf->dtb_xamot != NULL) {
9320 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
9321 			kmem_free(buf->dtb_xamot, buf->dtb_size);
9322 		}
9323 
9324 		kmem_free(buf->dtb_tomax, buf->dtb_size);
9325 		buf->dtb_size = 0;
9326 		buf->dtb_tomax = NULL;
9327 		buf->dtb_xamot = NULL;
9328 	}
9329 }
9330 
9331 /*
9332  * DTrace Enabling Functions
9333  */
9334 static dtrace_enabling_t *
9335 dtrace_enabling_create(dtrace_vstate_t *vstate)
9336 {
9337 	dtrace_enabling_t *enab;
9338 
9339 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
9340 	enab->dten_vstate = vstate;
9341 
9342 	return (enab);
9343 }
9344 
9345 static void
9346 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
9347 {
9348 	dtrace_ecbdesc_t **ndesc;
9349 	size_t osize, nsize;
9350 
9351 	/*
9352 	 * We can't add to enablings after we've enabled them, or after we've
9353 	 * retained them.
9354 	 */
9355 	ASSERT(enab->dten_probegen == 0);
9356 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9357 
9358 	if (enab->dten_ndesc < enab->dten_maxdesc) {
9359 		enab->dten_desc[enab->dten_ndesc++] = ecb;
9360 		return;
9361 	}
9362 
9363 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9364 
9365 	if (enab->dten_maxdesc == 0) {
9366 		enab->dten_maxdesc = 1;
9367 	} else {
9368 		enab->dten_maxdesc <<= 1;
9369 	}
9370 
9371 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
9372 
9373 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
9374 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
9375 	bcopy(enab->dten_desc, ndesc, osize);
9376 	kmem_free(enab->dten_desc, osize);
9377 
9378 	enab->dten_desc = ndesc;
9379 	enab->dten_desc[enab->dten_ndesc++] = ecb;
9380 }
9381 
9382 static void
9383 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
9384     dtrace_probedesc_t *pd)
9385 {
9386 	dtrace_ecbdesc_t *new;
9387 	dtrace_predicate_t *pred;
9388 	dtrace_actdesc_t *act;
9389 
9390 	/*
9391 	 * We're going to create a new ECB description that matches the
9392 	 * specified ECB in every way, but has the specified probe description.
9393 	 */
9394 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
9395 
9396 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
9397 		dtrace_predicate_hold(pred);
9398 
9399 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
9400 		dtrace_actdesc_hold(act);
9401 
9402 	new->dted_action = ecb->dted_action;
9403 	new->dted_pred = ecb->dted_pred;
9404 	new->dted_probe = *pd;
9405 	new->dted_uarg = ecb->dted_uarg;
9406 
9407 	dtrace_enabling_add(enab, new);
9408 }
9409 
9410 static void
9411 dtrace_enabling_dump(dtrace_enabling_t *enab)
9412 {
9413 	int i;
9414 
9415 	for (i = 0; i < enab->dten_ndesc; i++) {
9416 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
9417 
9418 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
9419 		    desc->dtpd_provider, desc->dtpd_mod,
9420 		    desc->dtpd_func, desc->dtpd_name);
9421 	}
9422 }
9423 
9424 static void
9425 dtrace_enabling_destroy(dtrace_enabling_t *enab)
9426 {
9427 	int i;
9428 	dtrace_ecbdesc_t *ep;
9429 	dtrace_vstate_t *vstate = enab->dten_vstate;
9430 
9431 	ASSERT(MUTEX_HELD(&dtrace_lock));
9432 
9433 	for (i = 0; i < enab->dten_ndesc; i++) {
9434 		dtrace_actdesc_t *act, *next;
9435 		dtrace_predicate_t *pred;
9436 
9437 		ep = enab->dten_desc[i];
9438 
9439 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
9440 			dtrace_predicate_release(pred, vstate);
9441 
9442 		for (act = ep->dted_action; act != NULL; act = next) {
9443 			next = act->dtad_next;
9444 			dtrace_actdesc_release(act, vstate);
9445 		}
9446 
9447 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
9448 	}
9449 
9450 	kmem_free(enab->dten_desc,
9451 	    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
9452 
9453 	/*
9454 	 * If this was a retained enabling, decrement the dts_nretained count
9455 	 * and take it off of the dtrace_retained list.
9456 	 */
9457 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
9458 	    dtrace_retained == enab) {
9459 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9460 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
9461 		enab->dten_vstate->dtvs_state->dts_nretained--;
9462 	}
9463 
9464 	if (enab->dten_prev == NULL) {
9465 		if (dtrace_retained == enab) {
9466 			dtrace_retained = enab->dten_next;
9467 
9468 			if (dtrace_retained != NULL)
9469 				dtrace_retained->dten_prev = NULL;
9470 		}
9471 	} else {
9472 		ASSERT(enab != dtrace_retained);
9473 		ASSERT(dtrace_retained != NULL);
9474 		enab->dten_prev->dten_next = enab->dten_next;
9475 	}
9476 
9477 	if (enab->dten_next != NULL) {
9478 		ASSERT(dtrace_retained != NULL);
9479 		enab->dten_next->dten_prev = enab->dten_prev;
9480 	}
9481 
9482 	kmem_free(enab, sizeof (dtrace_enabling_t));
9483 }
9484 
9485 static int
9486 dtrace_enabling_retain(dtrace_enabling_t *enab)
9487 {
9488 	dtrace_state_t *state;
9489 
9490 	ASSERT(MUTEX_HELD(&dtrace_lock));
9491 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
9492 	ASSERT(enab->dten_vstate != NULL);
9493 
9494 	state = enab->dten_vstate->dtvs_state;
9495 	ASSERT(state != NULL);
9496 
9497 	/*
9498 	 * We only allow each state to retain dtrace_retain_max enablings.
9499 	 */
9500 	if (state->dts_nretained >= dtrace_retain_max)
9501 		return (ENOSPC);
9502 
9503 	state->dts_nretained++;
9504 
9505 	if (dtrace_retained == NULL) {
9506 		dtrace_retained = enab;
9507 		return (0);
9508 	}
9509 
9510 	enab->dten_next = dtrace_retained;
9511 	dtrace_retained->dten_prev = enab;
9512 	dtrace_retained = enab;
9513 
9514 	return (0);
9515 }
9516 
9517 static int
9518 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
9519     dtrace_probedesc_t *create)
9520 {
9521 	dtrace_enabling_t *new, *enab;
9522 	int found = 0, err = ENOENT;
9523 
9524 	ASSERT(MUTEX_HELD(&dtrace_lock));
9525 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
9526 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
9527 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
9528 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
9529 
9530 	new = dtrace_enabling_create(&state->dts_vstate);
9531 
9532 	/*
9533 	 * Iterate over all retained enablings, looking for enablings that
9534 	 * match the specified state.
9535 	 */
9536 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9537 		int i;
9538 
9539 		/*
9540 		 * dtvs_state can only be NULL for helper enablings -- and
9541 		 * helper enablings can't be retained.
9542 		 */
9543 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9544 
9545 		if (enab->dten_vstate->dtvs_state != state)
9546 			continue;
9547 
9548 		/*
9549 		 * Now iterate over each probe description; we're looking for
9550 		 * an exact match to the specified probe description.
9551 		 */
9552 		for (i = 0; i < enab->dten_ndesc; i++) {
9553 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9554 			dtrace_probedesc_t *pd = &ep->dted_probe;
9555 
9556 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
9557 				continue;
9558 
9559 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
9560 				continue;
9561 
9562 			if (strcmp(pd->dtpd_func, match->dtpd_func))
9563 				continue;
9564 
9565 			if (strcmp(pd->dtpd_name, match->dtpd_name))
9566 				continue;
9567 
9568 			/*
9569 			 * We have a winning probe!  Add it to our growing
9570 			 * enabling.
9571 			 */
9572 			found = 1;
9573 			dtrace_enabling_addlike(new, ep, create);
9574 		}
9575 	}
9576 
9577 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
9578 		dtrace_enabling_destroy(new);
9579 		return (err);
9580 	}
9581 
9582 	return (0);
9583 }
9584 
9585 static void
9586 dtrace_enabling_retract(dtrace_state_t *state)
9587 {
9588 	dtrace_enabling_t *enab, *next;
9589 
9590 	ASSERT(MUTEX_HELD(&dtrace_lock));
9591 
9592 	/*
9593 	 * Iterate over all retained enablings, destroy the enablings retained
9594 	 * for the specified state.
9595 	 */
9596 	for (enab = dtrace_retained; enab != NULL; enab = next) {
9597 		next = enab->dten_next;
9598 
9599 		/*
9600 		 * dtvs_state can only be NULL for helper enablings -- and
9601 		 * helper enablings can't be retained.
9602 		 */
9603 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9604 
9605 		if (enab->dten_vstate->dtvs_state == state) {
9606 			ASSERT(state->dts_nretained > 0);
9607 			dtrace_enabling_destroy(enab);
9608 		}
9609 	}
9610 
9611 	ASSERT(state->dts_nretained == 0);
9612 }
9613 
9614 static int
9615 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
9616 {
9617 	int i = 0;
9618 	int matched = 0;
9619 
9620 	ASSERT(MUTEX_HELD(&cpu_lock));
9621 	ASSERT(MUTEX_HELD(&dtrace_lock));
9622 
9623 	for (i = 0; i < enab->dten_ndesc; i++) {
9624 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
9625 
9626 		enab->dten_current = ep;
9627 		enab->dten_error = 0;
9628 
9629 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
9630 
9631 		if (enab->dten_error != 0) {
9632 			/*
9633 			 * If we get an error half-way through enabling the
9634 			 * probes, we kick out -- perhaps with some number of
9635 			 * them enabled.  Leaving enabled probes enabled may
9636 			 * be slightly confusing for user-level, but we expect
9637 			 * that no one will attempt to actually drive on in
9638 			 * the face of such errors.  If this is an anonymous
9639 			 * enabling (indicated with a NULL nmatched pointer),
9640 			 * we cmn_err() a message.  We aren't expecting to
9641 			 * get such an error -- such as it can exist at all,
9642 			 * it would be a result of corrupted DOF in the driver
9643 			 * properties.
9644 			 */
9645 			if (nmatched == NULL) {
9646 				cmn_err(CE_WARN, "dtrace_enabling_match() "
9647 				    "error on %p: %d", (void *)ep,
9648 				    enab->dten_error);
9649 			}
9650 
9651 			return (enab->dten_error);
9652 		}
9653 	}
9654 
9655 	enab->dten_probegen = dtrace_probegen;
9656 	if (nmatched != NULL)
9657 		*nmatched = matched;
9658 
9659 	return (0);
9660 }
9661 
9662 static void
9663 dtrace_enabling_matchall(void)
9664 {
9665 	dtrace_enabling_t *enab;
9666 
9667 	mutex_enter(&cpu_lock);
9668 	mutex_enter(&dtrace_lock);
9669 
9670 	/*
9671 	 * Because we can be called after dtrace_detach() has been called, we
9672 	 * cannot assert that there are retained enablings.  We can safely
9673 	 * load from dtrace_retained, however:  the taskq_destroy() at the
9674 	 * end of dtrace_detach() will block pending our completion.
9675 	 */
9676 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next)
9677 		(void) dtrace_enabling_match(enab, NULL);
9678 
9679 	mutex_exit(&dtrace_lock);
9680 	mutex_exit(&cpu_lock);
9681 }
9682 
9683 static int
9684 dtrace_enabling_matchstate(dtrace_state_t *state, int *nmatched)
9685 {
9686 	dtrace_enabling_t *enab;
9687 	int matched, total = 0, err;
9688 
9689 	ASSERT(MUTEX_HELD(&cpu_lock));
9690 	ASSERT(MUTEX_HELD(&dtrace_lock));
9691 
9692 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9693 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9694 
9695 		if (enab->dten_vstate->dtvs_state != state)
9696 			continue;
9697 
9698 		if ((err = dtrace_enabling_match(enab, &matched)) != 0)
9699 			return (err);
9700 
9701 		total += matched;
9702 	}
9703 
9704 	if (nmatched != NULL)
9705 		*nmatched = total;
9706 
9707 	return (0);
9708 }
9709 
9710 /*
9711  * If an enabling is to be enabled without having matched probes (that is, if
9712  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
9713  * enabling must be _primed_ by creating an ECB for every ECB description.
9714  * This must be done to assure that we know the number of speculations, the
9715  * number of aggregations, the minimum buffer size needed, etc. before we
9716  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
9717  * enabling any probes, we create ECBs for every ECB decription, but with a
9718  * NULL probe -- which is exactly what this function does.
9719  */
9720 static void
9721 dtrace_enabling_prime(dtrace_state_t *state)
9722 {
9723 	dtrace_enabling_t *enab;
9724 	int i;
9725 
9726 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
9727 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
9728 
9729 		if (enab->dten_vstate->dtvs_state != state)
9730 			continue;
9731 
9732 		/*
9733 		 * We don't want to prime an enabling more than once, lest
9734 		 * we allow a malicious user to induce resource exhaustion.
9735 		 * (The ECBs that result from priming an enabling aren't
9736 		 * leaked -- but they also aren't deallocated until the
9737 		 * consumer state is destroyed.)
9738 		 */
9739 		if (enab->dten_primed)
9740 			continue;
9741 
9742 		for (i = 0; i < enab->dten_ndesc; i++) {
9743 			enab->dten_current = enab->dten_desc[i];
9744 			(void) dtrace_probe_enable(NULL, enab);
9745 		}
9746 
9747 		enab->dten_primed = 1;
9748 	}
9749 }
9750 
9751 /*
9752  * Called to indicate that probes should be provided due to retained
9753  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
9754  * must take an initial lap through the enabling calling the dtps_provide()
9755  * entry point explicitly to allow for autocreated probes.
9756  */
9757 static void
9758 dtrace_enabling_provide(dtrace_provider_t *prv)
9759 {
9760 	int i, all = 0;
9761 	dtrace_probedesc_t desc;
9762 
9763 	ASSERT(MUTEX_HELD(&dtrace_lock));
9764 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9765 
9766 	if (prv == NULL) {
9767 		all = 1;
9768 		prv = dtrace_provider;
9769 	}
9770 
9771 	do {
9772 		dtrace_enabling_t *enab = dtrace_retained;
9773 		void *parg = prv->dtpv_arg;
9774 
9775 		for (; enab != NULL; enab = enab->dten_next) {
9776 			for (i = 0; i < enab->dten_ndesc; i++) {
9777 				desc = enab->dten_desc[i]->dted_probe;
9778 				mutex_exit(&dtrace_lock);
9779 				prv->dtpv_pops.dtps_provide(parg, &desc);
9780 				mutex_enter(&dtrace_lock);
9781 			}
9782 		}
9783 	} while (all && (prv = prv->dtpv_next) != NULL);
9784 
9785 	mutex_exit(&dtrace_lock);
9786 	dtrace_probe_provide(NULL, all ? NULL : prv);
9787 	mutex_enter(&dtrace_lock);
9788 }
9789 
9790 /*
9791  * DTrace DOF Functions
9792  */
9793 /*ARGSUSED*/
9794 static void
9795 dtrace_dof_error(dof_hdr_t *dof, const char *str)
9796 {
9797 	if (dtrace_err_verbose)
9798 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
9799 
9800 #ifdef DTRACE_ERRDEBUG
9801 	dtrace_errdebug(str);
9802 #endif
9803 }
9804 
9805 /*
9806  * Create DOF out of a currently enabled state.  Right now, we only create
9807  * DOF containing the run-time options -- but this could be expanded to create
9808  * complete DOF representing the enabled state.
9809  */
9810 static dof_hdr_t *
9811 dtrace_dof_create(dtrace_state_t *state)
9812 {
9813 	dof_hdr_t *dof;
9814 	dof_sec_t *sec;
9815 	dof_optdesc_t *opt;
9816 	int i, len = sizeof (dof_hdr_t) +
9817 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
9818 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
9819 
9820 	ASSERT(MUTEX_HELD(&dtrace_lock));
9821 
9822 	dof = kmem_zalloc(len, KM_SLEEP);
9823 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
9824 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
9825 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
9826 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
9827 
9828 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
9829 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
9830 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION_1;
9831 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
9832 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
9833 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
9834 
9835 	dof->dofh_flags = 0;
9836 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
9837 	dof->dofh_secsize = sizeof (dof_sec_t);
9838 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
9839 	dof->dofh_secoff = sizeof (dof_hdr_t);
9840 	dof->dofh_loadsz = len;
9841 	dof->dofh_filesz = len;
9842 	dof->dofh_pad = 0;
9843 
9844 	/*
9845 	 * Fill in the option section header...
9846 	 */
9847 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
9848 	sec->dofs_type = DOF_SECT_OPTDESC;
9849 	sec->dofs_align = sizeof (uint64_t);
9850 	sec->dofs_flags = DOF_SECF_LOAD;
9851 	sec->dofs_entsize = sizeof (dof_optdesc_t);
9852 
9853 	opt = (dof_optdesc_t *)((uintptr_t)sec +
9854 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
9855 
9856 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
9857 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
9858 
9859 	for (i = 0; i < DTRACEOPT_MAX; i++) {
9860 		opt[i].dofo_option = i;
9861 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
9862 		opt[i].dofo_value = state->dts_options[i];
9863 	}
9864 
9865 	return (dof);
9866 }
9867 
9868 static dof_hdr_t *
9869 dtrace_dof_copyin(uintptr_t uarg, int *errp)
9870 {
9871 	dof_hdr_t hdr, *dof;
9872 
9873 	ASSERT(!MUTEX_HELD(&dtrace_lock));
9874 
9875 	/*
9876 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
9877 	 */
9878 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
9879 		dtrace_dof_error(NULL, "failed to copyin DOF header");
9880 		*errp = EFAULT;
9881 		return (NULL);
9882 	}
9883 
9884 	/*
9885 	 * Now we'll allocate the entire DOF and copy it in -- provided
9886 	 * that the length isn't outrageous.
9887 	 */
9888 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
9889 		dtrace_dof_error(&hdr, "load size exceeds maximum");
9890 		*errp = E2BIG;
9891 		return (NULL);
9892 	}
9893 
9894 	if (hdr.dofh_loadsz < sizeof (hdr)) {
9895 		dtrace_dof_error(&hdr, "invalid load size");
9896 		*errp = EINVAL;
9897 		return (NULL);
9898 	}
9899 
9900 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
9901 
9902 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
9903 		kmem_free(dof, hdr.dofh_loadsz);
9904 		*errp = EFAULT;
9905 		return (NULL);
9906 	}
9907 
9908 	return (dof);
9909 }
9910 
9911 static dof_hdr_t *
9912 dtrace_dof_property(const char *name)
9913 {
9914 	uchar_t *buf;
9915 	uint64_t loadsz;
9916 	unsigned int len, i;
9917 	dof_hdr_t *dof;
9918 
9919 	/*
9920 	 * Unfortunately, array of values in .conf files are always (and
9921 	 * only) interpreted to be integer arrays.  We must read our DOF
9922 	 * as an integer array, and then squeeze it into a byte array.
9923 	 */
9924 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
9925 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
9926 		return (NULL);
9927 
9928 	for (i = 0; i < len; i++)
9929 		buf[i] = (uchar_t)(((int *)buf)[i]);
9930 
9931 	if (len < sizeof (dof_hdr_t)) {
9932 		ddi_prop_free(buf);
9933 		dtrace_dof_error(NULL, "truncated header");
9934 		return (NULL);
9935 	}
9936 
9937 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
9938 		ddi_prop_free(buf);
9939 		dtrace_dof_error(NULL, "truncated DOF");
9940 		return (NULL);
9941 	}
9942 
9943 	if (loadsz >= dtrace_dof_maxsize) {
9944 		ddi_prop_free(buf);
9945 		dtrace_dof_error(NULL, "oversized DOF");
9946 		return (NULL);
9947 	}
9948 
9949 	dof = kmem_alloc(loadsz, KM_SLEEP);
9950 	bcopy(buf, dof, loadsz);
9951 	ddi_prop_free(buf);
9952 
9953 	return (dof);
9954 }
9955 
9956 static void
9957 dtrace_dof_destroy(dof_hdr_t *dof)
9958 {
9959 	kmem_free(dof, dof->dofh_loadsz);
9960 }
9961 
9962 /*
9963  * Return the dof_sec_t pointer corresponding to a given section index.  If the
9964  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
9965  * a type other than DOF_SECT_NONE is specified, the header is checked against
9966  * this type and NULL is returned if the types do not match.
9967  */
9968 static dof_sec_t *
9969 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
9970 {
9971 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
9972 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
9973 
9974 	if (i >= dof->dofh_secnum) {
9975 		dtrace_dof_error(dof, "referenced section index is invalid");
9976 		return (NULL);
9977 	}
9978 
9979 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
9980 		dtrace_dof_error(dof, "referenced section is not loadable");
9981 		return (NULL);
9982 	}
9983 
9984 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
9985 		dtrace_dof_error(dof, "referenced section is the wrong type");
9986 		return (NULL);
9987 	}
9988 
9989 	return (sec);
9990 }
9991 
9992 static dtrace_probedesc_t *
9993 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
9994 {
9995 	dof_probedesc_t *probe;
9996 	dof_sec_t *strtab;
9997 	uintptr_t daddr = (uintptr_t)dof;
9998 	uintptr_t str;
9999 	size_t size;
10000 
10001 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
10002 		dtrace_dof_error(dof, "invalid probe section");
10003 		return (NULL);
10004 	}
10005 
10006 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10007 		dtrace_dof_error(dof, "bad alignment in probe description");
10008 		return (NULL);
10009 	}
10010 
10011 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
10012 		dtrace_dof_error(dof, "truncated probe description");
10013 		return (NULL);
10014 	}
10015 
10016 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
10017 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
10018 
10019 	if (strtab == NULL)
10020 		return (NULL);
10021 
10022 	str = daddr + strtab->dofs_offset;
10023 	size = strtab->dofs_size;
10024 
10025 	if (probe->dofp_provider >= strtab->dofs_size) {
10026 		dtrace_dof_error(dof, "corrupt probe provider");
10027 		return (NULL);
10028 	}
10029 
10030 	(void) strncpy(desc->dtpd_provider,
10031 	    (char *)(str + probe->dofp_provider),
10032 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
10033 
10034 	if (probe->dofp_mod >= strtab->dofs_size) {
10035 		dtrace_dof_error(dof, "corrupt probe module");
10036 		return (NULL);
10037 	}
10038 
10039 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
10040 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
10041 
10042 	if (probe->dofp_func >= strtab->dofs_size) {
10043 		dtrace_dof_error(dof, "corrupt probe function");
10044 		return (NULL);
10045 	}
10046 
10047 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
10048 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
10049 
10050 	if (probe->dofp_name >= strtab->dofs_size) {
10051 		dtrace_dof_error(dof, "corrupt probe name");
10052 		return (NULL);
10053 	}
10054 
10055 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
10056 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
10057 
10058 	return (desc);
10059 }
10060 
10061 static dtrace_difo_t *
10062 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10063     cred_t *cr)
10064 {
10065 	dtrace_difo_t *dp;
10066 	size_t ttl = 0;
10067 	dof_difohdr_t *dofd;
10068 	uintptr_t daddr = (uintptr_t)dof;
10069 	size_t max = dtrace_difo_maxsize;
10070 	int i, l, n;
10071 
10072 	static const struct {
10073 		int section;
10074 		int bufoffs;
10075 		int lenoffs;
10076 		int entsize;
10077 		int align;
10078 		const char *msg;
10079 	} difo[] = {
10080 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
10081 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
10082 		sizeof (dif_instr_t), "multiple DIF sections" },
10083 
10084 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
10085 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
10086 		sizeof (uint64_t), "multiple integer tables" },
10087 
10088 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
10089 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
10090 		sizeof (char), "multiple string tables" },
10091 
10092 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
10093 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
10094 		sizeof (uint_t), "multiple variable tables" },
10095 
10096 		{ DOF_SECT_NONE, 0, 0, 0, NULL }
10097 	};
10098 
10099 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
10100 		dtrace_dof_error(dof, "invalid DIFO header section");
10101 		return (NULL);
10102 	}
10103 
10104 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
10105 		dtrace_dof_error(dof, "bad alignment in DIFO header");
10106 		return (NULL);
10107 	}
10108 
10109 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
10110 	    sec->dofs_size % sizeof (dof_secidx_t)) {
10111 		dtrace_dof_error(dof, "bad size in DIFO header");
10112 		return (NULL);
10113 	}
10114 
10115 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10116 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
10117 
10118 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10119 	dp->dtdo_rtype = dofd->dofd_rtype;
10120 
10121 	for (l = 0; l < n; l++) {
10122 		dof_sec_t *subsec;
10123 		void **bufp;
10124 		uint32_t *lenp;
10125 
10126 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
10127 		    dofd->dofd_links[l])) == NULL)
10128 			goto err; /* invalid section link */
10129 
10130 		if (ttl + subsec->dofs_size > max) {
10131 			dtrace_dof_error(dof, "exceeds maximum size");
10132 			goto err;
10133 		}
10134 
10135 		ttl += subsec->dofs_size;
10136 
10137 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
10138 			if (subsec->dofs_type != difo[i].section)
10139 				continue;
10140 
10141 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
10142 				dtrace_dof_error(dof, "section not loaded");
10143 				goto err;
10144 			}
10145 
10146 			if (subsec->dofs_align != difo[i].align) {
10147 				dtrace_dof_error(dof, "bad alignment");
10148 				goto err;
10149 			}
10150 
10151 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
10152 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
10153 
10154 			if (*bufp != NULL) {
10155 				dtrace_dof_error(dof, difo[i].msg);
10156 				goto err;
10157 			}
10158 
10159 			if (difo[i].entsize != subsec->dofs_entsize) {
10160 				dtrace_dof_error(dof, "entry size mismatch");
10161 				goto err;
10162 			}
10163 
10164 			if (subsec->dofs_entsize != 0 &&
10165 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
10166 				dtrace_dof_error(dof, "corrupt entry size");
10167 				goto err;
10168 			}
10169 
10170 			*lenp = subsec->dofs_size;
10171 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
10172 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
10173 			    *bufp, subsec->dofs_size);
10174 
10175 			if (subsec->dofs_entsize != 0)
10176 				*lenp /= subsec->dofs_entsize;
10177 
10178 			break;
10179 		}
10180 
10181 		/*
10182 		 * If we encounter a loadable DIFO sub-section that is not
10183 		 * known to us, assume this is a broken program and fail.
10184 		 */
10185 		if (difo[i].section == DOF_SECT_NONE &&
10186 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
10187 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
10188 			goto err;
10189 		}
10190 	}
10191 
10192 	if (dp->dtdo_buf == NULL) {
10193 		/*
10194 		 * We can't have a DIF object without DIF text.
10195 		 */
10196 		dtrace_dof_error(dof, "missing DIF text");
10197 		goto err;
10198 	}
10199 
10200 	/*
10201 	 * Before we validate the DIF object, run through the variable table
10202 	 * looking for the strings -- if any of their size are under, we'll set
10203 	 * their size to be the system-wide default string size.  Note that
10204 	 * this should _not_ happen if the "strsize" option has been set --
10205 	 * in this case, the compiler should have set the size to reflect the
10206 	 * setting of the option.
10207 	 */
10208 	for (i = 0; i < dp->dtdo_varlen; i++) {
10209 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10210 		dtrace_diftype_t *t = &v->dtdv_type;
10211 
10212 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
10213 			continue;
10214 
10215 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
10216 			t->dtdt_size = dtrace_strsize_default;
10217 	}
10218 
10219 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
10220 		goto err;
10221 
10222 	dtrace_difo_init(dp, vstate);
10223 	return (dp);
10224 
10225 err:
10226 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10227 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10228 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10229 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10230 
10231 	kmem_free(dp, sizeof (dtrace_difo_t));
10232 	return (NULL);
10233 }
10234 
10235 static dtrace_predicate_t *
10236 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10237     cred_t *cr)
10238 {
10239 	dtrace_difo_t *dp;
10240 
10241 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
10242 		return (NULL);
10243 
10244 	return (dtrace_predicate_create(dp));
10245 }
10246 
10247 static dtrace_actdesc_t *
10248 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10249     cred_t *cr)
10250 {
10251 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
10252 	dof_actdesc_t *desc;
10253 	dof_sec_t *difosec;
10254 	size_t offs;
10255 	uintptr_t daddr = (uintptr_t)dof;
10256 	uint64_t arg;
10257 	dtrace_actkind_t kind;
10258 
10259 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
10260 		dtrace_dof_error(dof, "invalid action section");
10261 		return (NULL);
10262 	}
10263 
10264 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
10265 		dtrace_dof_error(dof, "truncated action description");
10266 		return (NULL);
10267 	}
10268 
10269 	if (sec->dofs_align != sizeof (uint64_t)) {
10270 		dtrace_dof_error(dof, "bad alignment in action description");
10271 		return (NULL);
10272 	}
10273 
10274 	if (sec->dofs_size < sec->dofs_entsize) {
10275 		dtrace_dof_error(dof, "section entry size exceeds total size");
10276 		return (NULL);
10277 	}
10278 
10279 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
10280 		dtrace_dof_error(dof, "bad entry size in action description");
10281 		return (NULL);
10282 	}
10283 
10284 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
10285 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
10286 		return (NULL);
10287 	}
10288 
10289 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
10290 		desc = (dof_actdesc_t *)(daddr +
10291 		    (uintptr_t)sec->dofs_offset + offs);
10292 		kind = (dtrace_actkind_t)desc->dofa_kind;
10293 
10294 		if (DTRACEACT_ISPRINTFLIKE(kind) &&
10295 		    (kind != DTRACEACT_PRINTA ||
10296 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
10297 			dof_sec_t *strtab;
10298 			char *str, *fmt;
10299 			uint64_t i;
10300 
10301 			/*
10302 			 * printf()-like actions must have a format string.
10303 			 */
10304 			if ((strtab = dtrace_dof_sect(dof,
10305 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
10306 				goto err;
10307 
10308 			str = (char *)((uintptr_t)dof +
10309 			    (uintptr_t)strtab->dofs_offset);
10310 
10311 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
10312 				if (str[i] == '\0')
10313 					break;
10314 			}
10315 
10316 			if (i >= strtab->dofs_size) {
10317 				dtrace_dof_error(dof, "bogus format string");
10318 				goto err;
10319 			}
10320 
10321 			if (i == desc->dofa_arg) {
10322 				dtrace_dof_error(dof, "empty format string");
10323 				goto err;
10324 			}
10325 
10326 			i -= desc->dofa_arg;
10327 			fmt = kmem_alloc(i + 1, KM_SLEEP);
10328 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
10329 			arg = (uint64_t)(uintptr_t)fmt;
10330 		} else {
10331 			if (kind == DTRACEACT_PRINTA) {
10332 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
10333 				arg = 0;
10334 			} else {
10335 				arg = desc->dofa_arg;
10336 			}
10337 		}
10338 
10339 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
10340 		    desc->dofa_uarg, arg);
10341 
10342 		if (last != NULL) {
10343 			last->dtad_next = act;
10344 		} else {
10345 			first = act;
10346 		}
10347 
10348 		last = act;
10349 
10350 		if (desc->dofa_difo == DOF_SECIDX_NONE)
10351 			continue;
10352 
10353 		if ((difosec = dtrace_dof_sect(dof,
10354 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
10355 			goto err;
10356 
10357 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
10358 
10359 		if (act->dtad_difo == NULL)
10360 			goto err;
10361 	}
10362 
10363 	ASSERT(first != NULL);
10364 	return (first);
10365 
10366 err:
10367 	for (act = first; act != NULL; act = next) {
10368 		next = act->dtad_next;
10369 		dtrace_actdesc_release(act, vstate);
10370 	}
10371 
10372 	return (NULL);
10373 }
10374 
10375 static dtrace_ecbdesc_t *
10376 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
10377     cred_t *cr)
10378 {
10379 	dtrace_ecbdesc_t *ep;
10380 	dof_ecbdesc_t *ecb;
10381 	dtrace_probedesc_t *desc;
10382 	dtrace_predicate_t *pred = NULL;
10383 
10384 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
10385 		dtrace_dof_error(dof, "truncated ECB description");
10386 		return (NULL);
10387 	}
10388 
10389 	if (sec->dofs_align != sizeof (uint64_t)) {
10390 		dtrace_dof_error(dof, "bad alignment in ECB description");
10391 		return (NULL);
10392 	}
10393 
10394 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
10395 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
10396 
10397 	if (sec == NULL)
10398 		return (NULL);
10399 
10400 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
10401 	ep->dted_uarg = ecb->dofe_uarg;
10402 	desc = &ep->dted_probe;
10403 
10404 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
10405 		goto err;
10406 
10407 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
10408 		if ((sec = dtrace_dof_sect(dof,
10409 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
10410 			goto err;
10411 
10412 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
10413 			goto err;
10414 
10415 		ep->dted_pred.dtpdd_predicate = pred;
10416 	}
10417 
10418 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
10419 		if ((sec = dtrace_dof_sect(dof,
10420 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
10421 			goto err;
10422 
10423 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
10424 
10425 		if (ep->dted_action == NULL)
10426 			goto err;
10427 	}
10428 
10429 	return (ep);
10430 
10431 err:
10432 	if (pred != NULL)
10433 		dtrace_predicate_release(pred, vstate);
10434 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
10435 	return (NULL);
10436 }
10437 
10438 /*
10439  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
10440  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
10441  * site of any user SETX relocations to account for load object base address.
10442  * In the future, if we need other relocations, this function can be extended.
10443  */
10444 static int
10445 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
10446 {
10447 	uintptr_t daddr = (uintptr_t)dof;
10448 	dof_relohdr_t *dofr =
10449 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
10450 	dof_sec_t *ss, *rs, *ts;
10451 	dof_relodesc_t *r;
10452 	uint_t i, n;
10453 
10454 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
10455 	    sec->dofs_align != sizeof (dof_secidx_t)) {
10456 		dtrace_dof_error(dof, "invalid relocation header");
10457 		return (-1);
10458 	}
10459 
10460 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
10461 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
10462 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
10463 
10464 	if (ss == NULL || rs == NULL || ts == NULL)
10465 		return (-1); /* dtrace_dof_error() has been called already */
10466 
10467 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
10468 	    rs->dofs_align != sizeof (uint64_t)) {
10469 		dtrace_dof_error(dof, "invalid relocation section");
10470 		return (-1);
10471 	}
10472 
10473 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
10474 	n = rs->dofs_size / rs->dofs_entsize;
10475 
10476 	for (i = 0; i < n; i++) {
10477 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
10478 
10479 		switch (r->dofr_type) {
10480 		case DOF_RELO_NONE:
10481 			break;
10482 		case DOF_RELO_SETX:
10483 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
10484 			    sizeof (uint64_t) > ts->dofs_size) {
10485 				dtrace_dof_error(dof, "bad relocation offset");
10486 				return (-1);
10487 			}
10488 
10489 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
10490 				dtrace_dof_error(dof, "misaligned setx relo");
10491 				return (-1);
10492 			}
10493 
10494 			*(uint64_t *)taddr += ubase;
10495 			break;
10496 		default:
10497 			dtrace_dof_error(dof, "invalid relocation type");
10498 			return (-1);
10499 		}
10500 
10501 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
10502 	}
10503 
10504 	return (0);
10505 }
10506 
10507 /*
10508  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
10509  * header:  it should be at the front of a memory region that is at least
10510  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
10511  * size.  It need not be validated in any other way.
10512  */
10513 static int
10514 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
10515     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
10516 {
10517 	uint64_t len = dof->dofh_loadsz, seclen;
10518 	uintptr_t daddr = (uintptr_t)dof;
10519 	dtrace_ecbdesc_t *ep;
10520 	dtrace_enabling_t *enab;
10521 	uint_t i;
10522 
10523 	ASSERT(MUTEX_HELD(&dtrace_lock));
10524 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
10525 
10526 	/*
10527 	 * Check the DOF header identification bytes.  In addition to checking
10528 	 * valid settings, we also verify that unused bits/bytes are zeroed so
10529 	 * we can use them later without fear of regressing existing binaries.
10530 	 */
10531 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
10532 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
10533 		dtrace_dof_error(dof, "DOF magic string mismatch");
10534 		return (-1);
10535 	}
10536 
10537 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
10538 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
10539 		dtrace_dof_error(dof, "DOF has invalid data model");
10540 		return (-1);
10541 	}
10542 
10543 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
10544 		dtrace_dof_error(dof, "DOF encoding mismatch");
10545 		return (-1);
10546 	}
10547 
10548 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
10549 		dtrace_dof_error(dof, "DOF version mismatch");
10550 		return (-1);
10551 	}
10552 
10553 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
10554 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
10555 		return (-1);
10556 	}
10557 
10558 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
10559 		dtrace_dof_error(dof, "DOF uses too many integer registers");
10560 		return (-1);
10561 	}
10562 
10563 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
10564 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
10565 		return (-1);
10566 	}
10567 
10568 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
10569 		if (dof->dofh_ident[i] != 0) {
10570 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
10571 			return (-1);
10572 		}
10573 	}
10574 
10575 	if (dof->dofh_flags & ~DOF_FL_VALID) {
10576 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
10577 		return (-1);
10578 	}
10579 
10580 	if (dof->dofh_secsize == 0) {
10581 		dtrace_dof_error(dof, "zero section header size");
10582 		return (-1);
10583 	}
10584 
10585 	/*
10586 	 * Check that the section headers don't exceed the amount of DOF
10587 	 * data.  Note that we cast the section size and number of sections
10588 	 * to uint64_t's to prevent possible overflow in the multiplication.
10589 	 */
10590 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
10591 
10592 	if (dof->dofh_secoff > len || seclen > len ||
10593 	    dof->dofh_secoff + seclen > len) {
10594 		dtrace_dof_error(dof, "truncated section headers");
10595 		return (-1);
10596 	}
10597 
10598 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
10599 		dtrace_dof_error(dof, "misaligned section headers");
10600 		return (-1);
10601 	}
10602 
10603 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
10604 		dtrace_dof_error(dof, "misaligned section size");
10605 		return (-1);
10606 	}
10607 
10608 	/*
10609 	 * Take an initial pass through the section headers to be sure that
10610 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
10611 	 * set, do not permit sections relating to providers, probes, or args.
10612 	 */
10613 	for (i = 0; i < dof->dofh_secnum; i++) {
10614 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10615 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10616 
10617 		if (noprobes) {
10618 			switch (sec->dofs_type) {
10619 			case DOF_SECT_PROVIDER:
10620 			case DOF_SECT_PROBES:
10621 			case DOF_SECT_PRARGS:
10622 			case DOF_SECT_PROFFS:
10623 				dtrace_dof_error(dof, "illegal sections "
10624 				    "for enabling");
10625 				return (-1);
10626 			}
10627 		}
10628 
10629 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10630 			continue; /* just ignore non-loadable sections */
10631 
10632 		if (sec->dofs_align & (sec->dofs_align - 1)) {
10633 			dtrace_dof_error(dof, "bad section alignment");
10634 			return (-1);
10635 		}
10636 
10637 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
10638 			dtrace_dof_error(dof, "misaligned section");
10639 			return (-1);
10640 		}
10641 
10642 		if (sec->dofs_offset > len || sec->dofs_size > len ||
10643 		    sec->dofs_offset + sec->dofs_size > len) {
10644 			dtrace_dof_error(dof, "corrupt section header");
10645 			return (-1);
10646 		}
10647 
10648 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
10649 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
10650 			dtrace_dof_error(dof, "non-terminating string table");
10651 			return (-1);
10652 		}
10653 	}
10654 
10655 	/*
10656 	 * Take a second pass through the sections and locate and perform any
10657 	 * relocations that are present.  We do this after the first pass to
10658 	 * be sure that all sections have had their headers validated.
10659 	 */
10660 	for (i = 0; i < dof->dofh_secnum; i++) {
10661 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10662 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10663 
10664 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
10665 			continue; /* skip sections that are not loadable */
10666 
10667 		switch (sec->dofs_type) {
10668 		case DOF_SECT_URELHDR:
10669 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
10670 				return (-1);
10671 			break;
10672 		}
10673 	}
10674 
10675 	if ((enab = *enabp) == NULL)
10676 		enab = *enabp = dtrace_enabling_create(vstate);
10677 
10678 	for (i = 0; i < dof->dofh_secnum; i++) {
10679 		dof_sec_t *sec = (dof_sec_t *)(daddr +
10680 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10681 
10682 		if (sec->dofs_type != DOF_SECT_ECBDESC)
10683 			continue;
10684 
10685 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
10686 			dtrace_enabling_destroy(enab);
10687 			*enabp = NULL;
10688 			return (-1);
10689 		}
10690 
10691 		dtrace_enabling_add(enab, ep);
10692 	}
10693 
10694 	return (0);
10695 }
10696 
10697 /*
10698  * Process DOF for any options.  This routine assumes that the DOF has been
10699  * at least processed by dtrace_dof_slurp().
10700  */
10701 static int
10702 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
10703 {
10704 	int i, rval;
10705 	uint32_t entsize;
10706 	size_t offs;
10707 	dof_optdesc_t *desc;
10708 
10709 	for (i = 0; i < dof->dofh_secnum; i++) {
10710 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
10711 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
10712 
10713 		if (sec->dofs_type != DOF_SECT_OPTDESC)
10714 			continue;
10715 
10716 		if (sec->dofs_align != sizeof (uint64_t)) {
10717 			dtrace_dof_error(dof, "bad alignment in "
10718 			    "option description");
10719 			return (EINVAL);
10720 		}
10721 
10722 		if ((entsize = sec->dofs_entsize) == 0) {
10723 			dtrace_dof_error(dof, "zeroed option entry size");
10724 			return (EINVAL);
10725 		}
10726 
10727 		if (entsize < sizeof (dof_optdesc_t)) {
10728 			dtrace_dof_error(dof, "bad option entry size");
10729 			return (EINVAL);
10730 		}
10731 
10732 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
10733 			desc = (dof_optdesc_t *)((uintptr_t)dof +
10734 			    (uintptr_t)sec->dofs_offset + offs);
10735 
10736 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
10737 				dtrace_dof_error(dof, "non-zero option string");
10738 				return (EINVAL);
10739 			}
10740 
10741 			if (desc->dofo_value == DTRACEOPT_UNSET) {
10742 				dtrace_dof_error(dof, "unset option");
10743 				return (EINVAL);
10744 			}
10745 
10746 			if ((rval = dtrace_state_option(state,
10747 			    desc->dofo_option, desc->dofo_value)) != 0) {
10748 				dtrace_dof_error(dof, "rejected option");
10749 				return (rval);
10750 			}
10751 		}
10752 	}
10753 
10754 	return (0);
10755 }
10756 
10757 /*
10758  * DTrace Consumer State Functions
10759  */
10760 int
10761 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
10762 {
10763 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
10764 	void *base;
10765 	uintptr_t limit;
10766 	dtrace_dynvar_t *dvar, *next, *start;
10767 	int i;
10768 
10769 	ASSERT(MUTEX_HELD(&dtrace_lock));
10770 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
10771 
10772 	bzero(dstate, sizeof (dtrace_dstate_t));
10773 
10774 	if ((dstate->dtds_chunksize = chunksize) == 0)
10775 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
10776 
10777 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
10778 		size = min;
10779 
10780 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10781 		return (ENOMEM);
10782 
10783 	dstate->dtds_size = size;
10784 	dstate->dtds_base = base;
10785 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
10786 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
10787 
10788 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
10789 
10790 	if (hashsize != 1 && (hashsize & 1))
10791 		hashsize--;
10792 
10793 	dstate->dtds_hashsize = hashsize;
10794 	dstate->dtds_hash = dstate->dtds_base;
10795 
10796 	/*
10797 	 * Determine number of active CPUs.  Divide free list evenly among
10798 	 * active CPUs.
10799 	 */
10800 	start = (dtrace_dynvar_t *)
10801 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
10802 	limit = (uintptr_t)base + size;
10803 
10804 	maxper = (limit - (uintptr_t)start) / NCPU;
10805 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
10806 
10807 	for (i = 0; i < NCPU; i++) {
10808 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
10809 
10810 		/*
10811 		 * If we don't even have enough chunks to make it once through
10812 		 * NCPUs, we're just going to allocate everything to the first
10813 		 * CPU.  And if we're on the last CPU, we're going to allocate
10814 		 * whatever is left over.  In either case, we set the limit to
10815 		 * be the limit of the dynamic variable space.
10816 		 */
10817 		if (maxper == 0 || i == NCPU - 1) {
10818 			limit = (uintptr_t)base + size;
10819 			start = NULL;
10820 		} else {
10821 			limit = (uintptr_t)start + maxper;
10822 			start = (dtrace_dynvar_t *)limit;
10823 		}
10824 
10825 		ASSERT(limit <= (uintptr_t)base + size);
10826 
10827 		for (;;) {
10828 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
10829 			    dstate->dtds_chunksize);
10830 
10831 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
10832 				break;
10833 
10834 			dvar->dtdv_next = next;
10835 			dvar = next;
10836 		}
10837 
10838 		if (maxper == 0)
10839 			break;
10840 	}
10841 
10842 	return (0);
10843 }
10844 
10845 void
10846 dtrace_dstate_fini(dtrace_dstate_t *dstate)
10847 {
10848 	ASSERT(MUTEX_HELD(&cpu_lock));
10849 
10850 	if (dstate->dtds_base == NULL)
10851 		return;
10852 
10853 	kmem_free(dstate->dtds_base, dstate->dtds_size);
10854 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
10855 }
10856 
10857 static void
10858 dtrace_vstate_fini(dtrace_vstate_t *vstate)
10859 {
10860 	/*
10861 	 * Logical XOR, where are you?
10862 	 */
10863 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
10864 
10865 	if (vstate->dtvs_nglobals > 0) {
10866 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
10867 		    sizeof (dtrace_statvar_t *));
10868 	}
10869 
10870 	if (vstate->dtvs_ntlocals > 0) {
10871 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
10872 		    sizeof (dtrace_difv_t));
10873 	}
10874 
10875 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
10876 
10877 	if (vstate->dtvs_nlocals > 0) {
10878 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
10879 		    sizeof (dtrace_statvar_t *));
10880 	}
10881 }
10882 
10883 static void
10884 dtrace_state_clean(dtrace_state_t *state)
10885 {
10886 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
10887 		return;
10888 
10889 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
10890 	dtrace_speculation_clean(state);
10891 }
10892 
10893 static void
10894 dtrace_state_deadman(dtrace_state_t *state)
10895 {
10896 	hrtime_t now;
10897 
10898 	dtrace_sync();
10899 
10900 	now = dtrace_gethrtime();
10901 
10902 	if (state != dtrace_anon.dta_state &&
10903 	    now - state->dts_laststatus >= dtrace_deadman_user)
10904 		return;
10905 
10906 	/*
10907 	 * We must be sure that dts_alive never appears to be less than the
10908 	 * value upon entry to dtrace_state_deadman(), and because we lack a
10909 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
10910 	 * store INT64_MAX to it, followed by a memory barrier, followed by
10911 	 * the new value.  This assures that dts_alive never appears to be
10912 	 * less than its true value, regardless of the order in which the
10913 	 * stores to the underlying storage are issued.
10914 	 */
10915 	state->dts_alive = INT64_MAX;
10916 	dtrace_membar_producer();
10917 	state->dts_alive = now;
10918 }
10919 
10920 dtrace_state_t *
10921 dtrace_state_create(dev_t *devp, cred_t *cr)
10922 {
10923 	minor_t minor;
10924 	major_t major;
10925 	char c[30];
10926 	dtrace_state_t *state;
10927 	dtrace_optval_t *opt;
10928 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
10929 
10930 	ASSERT(MUTEX_HELD(&dtrace_lock));
10931 	ASSERT(MUTEX_HELD(&cpu_lock));
10932 
10933 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
10934 	    VM_BESTFIT | VM_SLEEP);
10935 
10936 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
10937 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
10938 		return (NULL);
10939 	}
10940 
10941 	state = ddi_get_soft_state(dtrace_softstate, minor);
10942 	state->dts_epid = DTRACE_EPIDNONE + 1;
10943 
10944 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
10945 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
10946 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
10947 
10948 	if (devp != NULL) {
10949 		major = getemajor(*devp);
10950 	} else {
10951 		major = ddi_driver_major(dtrace_devi);
10952 	}
10953 
10954 	state->dts_dev = makedevice(major, minor);
10955 
10956 	if (devp != NULL)
10957 		*devp = state->dts_dev;
10958 
10959 	/*
10960 	 * We allocate NCPU buffers.  On the one hand, this can be quite
10961 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
10962 	 * other hand, it saves an additional memory reference in the probe
10963 	 * path.
10964 	 */
10965 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
10966 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
10967 	state->dts_cleaner = CYCLIC_NONE;
10968 	state->dts_deadman = CYCLIC_NONE;
10969 	state->dts_vstate.dtvs_state = state;
10970 
10971 	for (i = 0; i < DTRACEOPT_MAX; i++)
10972 		state->dts_options[i] = DTRACEOPT_UNSET;
10973 
10974 	/*
10975 	 * Set the default options.
10976 	 */
10977 	opt = state->dts_options;
10978 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
10979 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
10980 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
10981 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
10982 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
10983 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
10984 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
10985 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
10986 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
10987 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
10988 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
10989 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
10990 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
10991 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
10992 
10993 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
10994 
10995 	/*
10996 	 * Set up the credentials for this instantiation.
10997 	 */
10998 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
10999 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
11000 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
11001 	} else {
11002 		state->dts_cred.dcr_uid = crgetuid(cr);
11003 		state->dts_cred.dcr_gid = crgetgid(cr);
11004 
11005 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
11006 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
11007 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
11008 		}
11009 
11010 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) &&
11011 		    PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
11012 			state->dts_cred.dcr_visible |= DTRACE_CRV_ALLPROC;
11013 			state->dts_cred.dcr_action |=
11014 			    DTRACE_CRA_PROC_DESTRUCTIVE;
11015 		}
11016 
11017 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
11018 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
11019 			    DTRACE_CRV_ALLPROC;
11020 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
11021 			    DTRACE_CRA_PROC;
11022 
11023 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
11024 				state->dts_cred.dcr_action |=
11025 				    DTRACE_CRA_PROC_DESTRUCTIVE;
11026 		}
11027 	}
11028 
11029 	return (state);
11030 }
11031 
11032 static int
11033 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
11034 {
11035 	dtrace_optval_t *opt = state->dts_options, size;
11036 	processorid_t cpu;
11037 	int flags = 0, rval;
11038 
11039 	ASSERT(MUTEX_HELD(&dtrace_lock));
11040 	ASSERT(MUTEX_HELD(&cpu_lock));
11041 	ASSERT(which < DTRACEOPT_MAX);
11042 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
11043 	    (state == dtrace_anon.dta_state &&
11044 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
11045 
11046 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
11047 		return (0);
11048 
11049 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
11050 		cpu = opt[DTRACEOPT_CPU];
11051 
11052 	if (which == DTRACEOPT_SPECSIZE)
11053 		flags |= DTRACEBUF_NOSWITCH;
11054 
11055 	if (which == DTRACEOPT_BUFSIZE) {
11056 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
11057 			flags |= DTRACEBUF_RING;
11058 
11059 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
11060 			flags |= DTRACEBUF_FILL;
11061 
11062 		flags |= DTRACEBUF_INACTIVE;
11063 	}
11064 
11065 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
11066 		/*
11067 		 * The size must be 8-byte aligned.  If the size is not 8-byte
11068 		 * aligned, drop it down by the difference.
11069 		 */
11070 		if (size & (sizeof (uint64_t) - 1))
11071 			size -= size & (sizeof (uint64_t) - 1);
11072 
11073 		if (size < state->dts_reserve) {
11074 			/*
11075 			 * Buffers always must be large enough to accommodate
11076 			 * their prereserved space.  We return E2BIG instead
11077 			 * of ENOMEM in this case to allow for user-level
11078 			 * software to differentiate the cases.
11079 			 */
11080 			return (E2BIG);
11081 		}
11082 
11083 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
11084 
11085 		if (rval != ENOMEM) {
11086 			opt[which] = size;
11087 			return (rval);
11088 		}
11089 
11090 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11091 			return (rval);
11092 	}
11093 
11094 	return (ENOMEM);
11095 }
11096 
11097 static int
11098 dtrace_state_buffers(dtrace_state_t *state)
11099 {
11100 	dtrace_speculation_t *spec = state->dts_speculations;
11101 	int rval, i;
11102 
11103 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
11104 	    DTRACEOPT_BUFSIZE)) != 0)
11105 		return (rval);
11106 
11107 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
11108 	    DTRACEOPT_AGGSIZE)) != 0)
11109 		return (rval);
11110 
11111 	for (i = 0; i < state->dts_nspeculations; i++) {
11112 		if ((rval = dtrace_state_buffer(state,
11113 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
11114 			return (rval);
11115 	}
11116 
11117 	return (0);
11118 }
11119 
11120 static void
11121 dtrace_state_prereserve(dtrace_state_t *state)
11122 {
11123 	dtrace_ecb_t *ecb;
11124 	dtrace_probe_t *probe;
11125 
11126 	state->dts_reserve = 0;
11127 
11128 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
11129 		return;
11130 
11131 	/*
11132 	 * If our buffer policy is a "fill" buffer policy, we need to set the
11133 	 * prereserved space to be the space required by the END probes.
11134 	 */
11135 	probe = dtrace_probes[dtrace_probeid_end - 1];
11136 	ASSERT(probe != NULL);
11137 
11138 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
11139 		if (ecb->dte_state != state)
11140 			continue;
11141 
11142 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
11143 	}
11144 }
11145 
11146 static int
11147 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
11148 {
11149 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
11150 	dtrace_speculation_t *spec;
11151 	dtrace_buffer_t *buf;
11152 	cyc_handler_t hdlr;
11153 	cyc_time_t when;
11154 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11155 	dtrace_icookie_t cookie;
11156 
11157 	mutex_enter(&cpu_lock);
11158 	mutex_enter(&dtrace_lock);
11159 
11160 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
11161 		rval = EBUSY;
11162 		goto out;
11163 	}
11164 
11165 	/*
11166 	 * Before we can perform any checks, we must prime all of the
11167 	 * retained enablings that correspond to this state.
11168 	 */
11169 	dtrace_enabling_prime(state);
11170 
11171 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
11172 		rval = EACCES;
11173 		goto out;
11174 	}
11175 
11176 	dtrace_state_prereserve(state);
11177 
11178 	/*
11179 	 * Now we want to do is try to allocate our speculations.
11180 	 * We do not automatically resize the number of speculations; if
11181 	 * this fails, we will fail the operation.
11182 	 */
11183 	nspec = opt[DTRACEOPT_NSPEC];
11184 	ASSERT(nspec != DTRACEOPT_UNSET);
11185 
11186 	if (nspec > INT_MAX) {
11187 		rval = ENOMEM;
11188 		goto out;
11189 	}
11190 
11191 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
11192 
11193 	if (spec == NULL) {
11194 		rval = ENOMEM;
11195 		goto out;
11196 	}
11197 
11198 	state->dts_speculations = spec;
11199 	state->dts_nspeculations = (int)nspec;
11200 
11201 	for (i = 0; i < nspec; i++) {
11202 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
11203 			rval = ENOMEM;
11204 			goto err;
11205 		}
11206 
11207 		spec[i].dtsp_buffer = buf;
11208 	}
11209 
11210 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
11211 		if (dtrace_anon.dta_state == NULL) {
11212 			rval = ENOENT;
11213 			goto out;
11214 		}
11215 
11216 		if (state->dts_necbs != 0) {
11217 			rval = EALREADY;
11218 			goto out;
11219 		}
11220 
11221 		state->dts_anon = dtrace_anon_grab();
11222 		ASSERT(state->dts_anon != NULL);
11223 
11224 		*cpu = dtrace_anon.dta_beganon;
11225 
11226 		/*
11227 		 * If the anonymous state is active (as it almost certainly
11228 		 * is if the anonymous enabling ultimately matched anything),
11229 		 * we don't allow any further option processing -- but we
11230 		 * don't return failure.
11231 		 */
11232 		state = state->dts_anon;
11233 
11234 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11235 			goto out;
11236 	}
11237 
11238 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
11239 	    opt[DTRACEOPT_AGGSIZE] != 0) {
11240 		if (state->dts_aggregations == NULL) {
11241 			/*
11242 			 * We're not going to create an aggregation buffer
11243 			 * because we don't have any ECBs that contain
11244 			 * aggregations -- set this option to 0.
11245 			 */
11246 			opt[DTRACEOPT_AGGSIZE] = 0;
11247 		} else {
11248 			/*
11249 			 * If we have an aggregation buffer, we must also have
11250 			 * a buffer to use as scratch.
11251 			 */
11252 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
11253 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
11254 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
11255 			}
11256 		}
11257 	}
11258 
11259 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
11260 	    opt[DTRACEOPT_SPECSIZE] != 0) {
11261 		if (!state->dts_speculates) {
11262 			/*
11263 			 * We're not going to create speculation buffers
11264 			 * because we don't have any ECBs that actually
11265 			 * speculate -- set the speculation size to 0.
11266 			 */
11267 			opt[DTRACEOPT_SPECSIZE] = 0;
11268 		}
11269 	}
11270 
11271 	/*
11272 	 * The bare minimum size for any buffer that we're actually going to
11273 	 * do anything to is sizeof (uint64_t).
11274 	 */
11275 	sz = sizeof (uint64_t);
11276 
11277 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
11278 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
11279 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
11280 		/*
11281 		 * A buffer size has been explicitly set to 0 (or to a size
11282 		 * that will be adjusted to 0) and we need the space -- we
11283 		 * need to return failure.  We return ENOSPC to differentiate
11284 		 * it from failing to allocate a buffer due to failure to meet
11285 		 * the reserve (for which we return E2BIG).
11286 		 */
11287 		rval = ENOSPC;
11288 		goto out;
11289 	}
11290 
11291 	if ((rval = dtrace_state_buffers(state)) != 0)
11292 		goto err;
11293 
11294 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
11295 		sz = dtrace_dstate_defsize;
11296 
11297 	do {
11298 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
11299 
11300 		if (rval == 0)
11301 			break;
11302 
11303 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
11304 			goto err;
11305 	} while (sz >>= 1);
11306 
11307 	opt[DTRACEOPT_DYNVARSIZE] = sz;
11308 
11309 	if (rval != 0)
11310 		goto err;
11311 
11312 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
11313 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
11314 
11315 	if (opt[DTRACEOPT_CLEANRATE] == 0)
11316 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11317 
11318 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
11319 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
11320 
11321 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
11322 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
11323 
11324 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
11325 	hdlr.cyh_arg = state;
11326 	hdlr.cyh_level = CY_LOW_LEVEL;
11327 
11328 	when.cyt_when = 0;
11329 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
11330 
11331 	state->dts_cleaner = cyclic_add(&hdlr, &when);
11332 
11333 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
11334 	hdlr.cyh_arg = state;
11335 	hdlr.cyh_level = CY_LOW_LEVEL;
11336 
11337 	when.cyt_when = 0;
11338 	when.cyt_interval = dtrace_deadman_interval;
11339 
11340 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
11341 	state->dts_deadman = cyclic_add(&hdlr, &when);
11342 
11343 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
11344 
11345 	/*
11346 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
11347 	 * interrupts here both to record the CPU on which we fired the BEGIN
11348 	 * probe (the data from this CPU will be processed first at user
11349 	 * level) and to manually activate the buffer for this CPU.
11350 	 */
11351 	cookie = dtrace_interrupt_disable();
11352 	*cpu = CPU->cpu_id;
11353 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
11354 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
11355 
11356 	dtrace_probe(dtrace_probeid_begin,
11357 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11358 	dtrace_interrupt_enable(cookie);
11359 	/*
11360 	 * We may have had an exit action from a BEGIN probe; only change our
11361 	 * state to ACTIVE if we're still in WARMUP.
11362 	 */
11363 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
11364 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
11365 
11366 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
11367 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
11368 
11369 	/*
11370 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
11371 	 * want each CPU to transition its principal buffer out of the
11372 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
11373 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
11374 	 * atomically transition from processing none of a state's ECBs to
11375 	 * processing all of them.
11376 	 */
11377 	dtrace_xcall(DTRACE_CPUALL,
11378 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
11379 	goto out;
11380 
11381 err:
11382 	dtrace_buffer_free(state->dts_buffer);
11383 	dtrace_buffer_free(state->dts_aggbuffer);
11384 
11385 	if ((nspec = state->dts_nspeculations) == 0) {
11386 		ASSERT(state->dts_speculations == NULL);
11387 		goto out;
11388 	}
11389 
11390 	spec = state->dts_speculations;
11391 	ASSERT(spec != NULL);
11392 
11393 	for (i = 0; i < state->dts_nspeculations; i++) {
11394 		if ((buf = spec[i].dtsp_buffer) == NULL)
11395 			break;
11396 
11397 		dtrace_buffer_free(buf);
11398 		kmem_free(buf, bufsize);
11399 	}
11400 
11401 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11402 	state->dts_nspeculations = 0;
11403 	state->dts_speculations = NULL;
11404 
11405 out:
11406 	mutex_exit(&dtrace_lock);
11407 	mutex_exit(&cpu_lock);
11408 
11409 	return (rval);
11410 }
11411 
11412 static int
11413 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
11414 {
11415 	dtrace_icookie_t cookie;
11416 
11417 	ASSERT(MUTEX_HELD(&dtrace_lock));
11418 
11419 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
11420 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
11421 		return (EINVAL);
11422 
11423 	/*
11424 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
11425 	 * to be sure that every CPU has seen it.  See below for the details
11426 	 * on why this is done.
11427 	 */
11428 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
11429 	dtrace_sync();
11430 
11431 	/*
11432 	 * By this point, it is impossible for any CPU to be still processing
11433 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
11434 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
11435 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
11436 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
11437 	 * iff we're in the END probe.
11438 	 */
11439 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
11440 	dtrace_sync();
11441 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
11442 
11443 	/*
11444 	 * Finally, we can release the reserve and call the END probe.  We
11445 	 * disable interrupts across calling the END probe to allow us to
11446 	 * return the CPU on which we actually called the END probe.  This
11447 	 * allows user-land to be sure that this CPU's principal buffer is
11448 	 * processed last.
11449 	 */
11450 	state->dts_reserve = 0;
11451 
11452 	cookie = dtrace_interrupt_disable();
11453 	*cpu = CPU->cpu_id;
11454 	dtrace_probe(dtrace_probeid_end,
11455 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
11456 	dtrace_interrupt_enable(cookie);
11457 
11458 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
11459 	dtrace_sync();
11460 
11461 	return (0);
11462 }
11463 
11464 static int
11465 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
11466     dtrace_optval_t val)
11467 {
11468 	ASSERT(MUTEX_HELD(&dtrace_lock));
11469 
11470 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11471 		return (EBUSY);
11472 
11473 	if (option >= DTRACEOPT_MAX)
11474 		return (EINVAL);
11475 
11476 	if (option != DTRACEOPT_CPU && val < 0)
11477 		return (EINVAL);
11478 
11479 	switch (option) {
11480 	case DTRACEOPT_DESTRUCTIVE:
11481 		if (dtrace_destructive_disallow)
11482 			return (EACCES);
11483 
11484 		state->dts_cred.dcr_destructive = 1;
11485 		break;
11486 
11487 	case DTRACEOPT_BUFSIZE:
11488 	case DTRACEOPT_DYNVARSIZE:
11489 	case DTRACEOPT_AGGSIZE:
11490 	case DTRACEOPT_SPECSIZE:
11491 	case DTRACEOPT_STRSIZE:
11492 		if (val < 0)
11493 			return (EINVAL);
11494 
11495 		if (val >= LONG_MAX) {
11496 			/*
11497 			 * If this is an otherwise negative value, set it to
11498 			 * the highest multiple of 128m less than LONG_MAX.
11499 			 * Technically, we're adjusting the size without
11500 			 * regard to the buffer resizing policy, but in fact,
11501 			 * this has no effect -- if we set the buffer size to
11502 			 * ~LONG_MAX and the buffer policy is ultimately set to
11503 			 * be "manual", the buffer allocation is guaranteed to
11504 			 * fail, if only because the allocation requires two
11505 			 * buffers.  (We set the the size to the highest
11506 			 * multiple of 128m because it ensures that the size
11507 			 * will remain a multiple of a megabyte when
11508 			 * repeatedly halved -- all the way down to 15m.)
11509 			 */
11510 			val = LONG_MAX - (1 << 27) + 1;
11511 		}
11512 	}
11513 
11514 	state->dts_options[option] = val;
11515 
11516 	return (0);
11517 }
11518 
11519 static void
11520 dtrace_state_destroy(dtrace_state_t *state)
11521 {
11522 	dtrace_ecb_t *ecb;
11523 	dtrace_vstate_t *vstate = &state->dts_vstate;
11524 	minor_t minor = getminor(state->dts_dev);
11525 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
11526 	dtrace_speculation_t *spec = state->dts_speculations;
11527 	int nspec = state->dts_nspeculations;
11528 	uint32_t match;
11529 
11530 	ASSERT(MUTEX_HELD(&dtrace_lock));
11531 	ASSERT(MUTEX_HELD(&cpu_lock));
11532 
11533 	/*
11534 	 * First, retract any retained enablings for this state.
11535 	 */
11536 	dtrace_enabling_retract(state);
11537 	ASSERT(state->dts_nretained == 0);
11538 
11539 	/*
11540 	 * Now we need to disable and destroy any enabled probes.  Because any
11541 	 * DTRACE_PRIV_KERNEL probes may actually be slowing our progress
11542 	 * (especially if they're all enabled), we take two passes through
11543 	 * the ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes,
11544 	 * and in the second we disable whatever is left over.
11545 	 */
11546 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
11547 		for (i = 0; i < state->dts_necbs; i++) {
11548 			if ((ecb = state->dts_ecbs[i]) == NULL)
11549 				continue;
11550 
11551 			if (match && ecb->dte_probe != NULL) {
11552 				dtrace_probe_t *probe = ecb->dte_probe;
11553 				dtrace_provider_t *prov = probe->dtpr_provider;
11554 
11555 				if (!(prov->dtpv_priv.dtpp_flags & match))
11556 					continue;
11557 			}
11558 
11559 			dtrace_ecb_disable(ecb);
11560 			dtrace_ecb_destroy(ecb);
11561 		}
11562 
11563 		if (!match)
11564 			break;
11565 	}
11566 
11567 	/*
11568 	 * Before we free the buffers, perform one more sync to assure that
11569 	 * every CPU is out of probe context.
11570 	 */
11571 	dtrace_sync();
11572 
11573 	dtrace_buffer_free(state->dts_buffer);
11574 	dtrace_buffer_free(state->dts_aggbuffer);
11575 
11576 	for (i = 0; i < nspec; i++)
11577 		dtrace_buffer_free(spec[i].dtsp_buffer);
11578 
11579 	if (state->dts_cleaner != CYCLIC_NONE)
11580 		cyclic_remove(state->dts_cleaner);
11581 
11582 	if (state->dts_deadman != CYCLIC_NONE)
11583 		cyclic_remove(state->dts_deadman);
11584 
11585 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
11586 	dtrace_vstate_fini(vstate);
11587 	kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
11588 
11589 	if (state->dts_aggregations != NULL) {
11590 #ifdef DEBUG
11591 		for (i = 0; i < state->dts_naggregations; i++)
11592 			ASSERT(state->dts_aggregations[i] == NULL);
11593 #endif
11594 		ASSERT(state->dts_naggregations > 0);
11595 		kmem_free(state->dts_aggregations,
11596 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
11597 	}
11598 
11599 	kmem_free(state->dts_buffer, bufsize);
11600 	kmem_free(state->dts_aggbuffer, bufsize);
11601 
11602 	for (i = 0; i < nspec; i++)
11603 		kmem_free(spec[i].dtsp_buffer, bufsize);
11604 
11605 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
11606 
11607 	dtrace_format_destroy(state);
11608 
11609 	vmem_destroy(state->dts_aggid_arena);
11610 	ddi_soft_state_free(dtrace_softstate, minor);
11611 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
11612 }
11613 
11614 /*
11615  * DTrace Anonymous Enabling Functions
11616  */
11617 static dtrace_state_t *
11618 dtrace_anon_grab(void)
11619 {
11620 	dtrace_state_t *state;
11621 
11622 	ASSERT(MUTEX_HELD(&dtrace_lock));
11623 
11624 	if ((state = dtrace_anon.dta_state) == NULL) {
11625 		ASSERT(dtrace_anon.dta_enabling == NULL);
11626 		return (NULL);
11627 	}
11628 
11629 	ASSERT(dtrace_anon.dta_enabling != NULL);
11630 	ASSERT(dtrace_retained != NULL);
11631 
11632 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
11633 	dtrace_anon.dta_enabling = NULL;
11634 	dtrace_anon.dta_state = NULL;
11635 
11636 	return (state);
11637 }
11638 
11639 static void
11640 dtrace_anon_property(void)
11641 {
11642 	int i, rv;
11643 	dtrace_state_t *state;
11644 	dof_hdr_t *dof;
11645 	char c[32];		/* enough for "dof-data-" + digits */
11646 
11647 	ASSERT(MUTEX_HELD(&dtrace_lock));
11648 	ASSERT(MUTEX_HELD(&cpu_lock));
11649 
11650 	for (i = 0; ; i++) {
11651 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
11652 
11653 		dtrace_err_verbose = 1;
11654 
11655 		if ((dof = dtrace_dof_property(c)) == NULL) {
11656 			dtrace_err_verbose = 0;
11657 			break;
11658 		}
11659 
11660 		/*
11661 		 * We want to create anonymous state, so we need to transition
11662 		 * the kernel debugger to indicate that DTrace is active.  If
11663 		 * this fails (e.g. because the debugger has modified text in
11664 		 * some way), we won't continue with the processing.
11665 		 */
11666 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
11667 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
11668 			    "enabling ignored.");
11669 			dtrace_dof_destroy(dof);
11670 			break;
11671 		}
11672 
11673 		/*
11674 		 * If we haven't allocated an anonymous state, we'll do so now.
11675 		 */
11676 		if ((state = dtrace_anon.dta_state) == NULL) {
11677 			state = dtrace_state_create(NULL, NULL);
11678 			dtrace_anon.dta_state = state;
11679 
11680 			if (state == NULL) {
11681 				/*
11682 				 * This basically shouldn't happen:  the only
11683 				 * failure mode from dtrace_state_create() is a
11684 				 * failure of ddi_soft_state_zalloc() that
11685 				 * itself should never happen.  Still, the
11686 				 * interface allows for a failure mode, and
11687 				 * we want to fail as gracefully as possible:
11688 				 * we'll emit an error message and cease
11689 				 * processing anonymous state in this case.
11690 				 */
11691 				cmn_err(CE_WARN, "failed to create "
11692 				    "anonymous state");
11693 				dtrace_dof_destroy(dof);
11694 				break;
11695 			}
11696 		}
11697 
11698 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
11699 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
11700 
11701 		if (rv == 0)
11702 			rv = dtrace_dof_options(dof, state);
11703 
11704 		dtrace_err_verbose = 0;
11705 		dtrace_dof_destroy(dof);
11706 
11707 		if (rv != 0) {
11708 			/*
11709 			 * This is malformed DOF; chuck any anonymous state
11710 			 * that we created.
11711 			 */
11712 			ASSERT(dtrace_anon.dta_enabling == NULL);
11713 			dtrace_state_destroy(state);
11714 			dtrace_anon.dta_state = NULL;
11715 			break;
11716 		}
11717 
11718 		ASSERT(dtrace_anon.dta_enabling != NULL);
11719 	}
11720 
11721 	if (dtrace_anon.dta_enabling != NULL) {
11722 		int rval;
11723 
11724 		/*
11725 		 * dtrace_enabling_retain() can only fail because we are
11726 		 * trying to retain more enablings than are allowed -- but
11727 		 * we only have one anonymous enabling, and we are guaranteed
11728 		 * to be allowed at least one retained enabling; we assert
11729 		 * that dtrace_enabling_retain() returns success.
11730 		 */
11731 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
11732 		ASSERT(rval == 0);
11733 
11734 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
11735 	}
11736 }
11737 
11738 /*
11739  * DTrace Helper Functions
11740  */
11741 static void
11742 dtrace_helper_trace(dtrace_helper_action_t *helper,
11743     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
11744 {
11745 	uint32_t size, next, nnext, i;
11746 	dtrace_helptrace_t *ent;
11747 	uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
11748 
11749 	if (!dtrace_helptrace_enabled)
11750 		return;
11751 
11752 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
11753 
11754 	/*
11755 	 * What would a tracing framework be without its own tracing
11756 	 * framework?  (Well, a hell of a lot simpler, for starters...)
11757 	 */
11758 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
11759 	    sizeof (uint64_t) - sizeof (uint64_t);
11760 
11761 	/*
11762 	 * Iterate until we can allocate a slot in the trace buffer.
11763 	 */
11764 	do {
11765 		next = dtrace_helptrace_next;
11766 
11767 		if (next + size < dtrace_helptrace_bufsize) {
11768 			nnext = next + size;
11769 		} else {
11770 			nnext = size;
11771 		}
11772 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
11773 
11774 	/*
11775 	 * We have our slot; fill it in.
11776 	 */
11777 	if (nnext == size)
11778 		next = 0;
11779 
11780 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
11781 	ent->dtht_helper = helper;
11782 	ent->dtht_where = where;
11783 	ent->dtht_nlocals = vstate->dtvs_nlocals;
11784 
11785 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
11786 	    mstate->dtms_fltoffs : -1;
11787 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
11788 	ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
11789 
11790 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
11791 		dtrace_statvar_t *svar;
11792 
11793 		if ((svar = vstate->dtvs_locals[i]) == NULL)
11794 			continue;
11795 
11796 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
11797 		ent->dtht_locals[i] =
11798 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
11799 	}
11800 }
11801 
11802 static uint64_t
11803 dtrace_helper(int which, dtrace_mstate_t *mstate,
11804     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
11805 {
11806 	uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
11807 	uint64_t sarg0 = mstate->dtms_arg[0];
11808 	uint64_t sarg1 = mstate->dtms_arg[1];
11809 	uint64_t rval;
11810 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
11811 	dtrace_helper_action_t *helper;
11812 	dtrace_vstate_t *vstate;
11813 	dtrace_difo_t *pred;
11814 	int i, trace = dtrace_helptrace_enabled;
11815 
11816 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
11817 
11818 	if (helpers == NULL)
11819 		return (0);
11820 
11821 	if ((helper = helpers->dthps_actions[which]) == NULL)
11822 		return (0);
11823 
11824 	vstate = &helpers->dthps_vstate;
11825 	mstate->dtms_arg[0] = arg0;
11826 	mstate->dtms_arg[1] = arg1;
11827 
11828 	/*
11829 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
11830 	 * we'll call the corresponding actions.  Note that the below calls
11831 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
11832 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
11833 	 * the stored DIF offset with its own (which is the desired behavior).
11834 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
11835 	 * from machine state; this is okay, too.
11836 	 */
11837 	for (; helper != NULL; helper = helper->dthp_next) {
11838 		if ((pred = helper->dthp_predicate) != NULL) {
11839 			if (trace)
11840 				dtrace_helper_trace(helper, mstate, vstate, 0);
11841 
11842 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
11843 				goto next;
11844 
11845 			if (*flags & CPU_DTRACE_FAULT)
11846 				goto err;
11847 		}
11848 
11849 		for (i = 0; i < helper->dthp_nactions; i++) {
11850 			if (trace)
11851 				dtrace_helper_trace(helper,
11852 				    mstate, vstate, i + 1);
11853 
11854 			rval = dtrace_dif_emulate(helper->dthp_actions[i],
11855 			    mstate, vstate, state);
11856 
11857 			if (*flags & CPU_DTRACE_FAULT)
11858 				goto err;
11859 		}
11860 
11861 next:
11862 		if (trace)
11863 			dtrace_helper_trace(helper, mstate, vstate,
11864 			    DTRACE_HELPTRACE_NEXT);
11865 	}
11866 
11867 	if (trace)
11868 		dtrace_helper_trace(helper, mstate, vstate,
11869 		    DTRACE_HELPTRACE_DONE);
11870 
11871 	/*
11872 	 * Restore the arg0 that we saved upon entry.
11873 	 */
11874 	mstate->dtms_arg[0] = sarg0;
11875 	mstate->dtms_arg[1] = sarg1;
11876 
11877 	return (rval);
11878 
11879 err:
11880 	if (trace)
11881 		dtrace_helper_trace(helper, mstate, vstate,
11882 		    DTRACE_HELPTRACE_ERR);
11883 
11884 	/*
11885 	 * Restore the arg0 that we saved upon entry.
11886 	 */
11887 	mstate->dtms_arg[0] = sarg0;
11888 	mstate->dtms_arg[1] = sarg1;
11889 
11890 	return (NULL);
11891 }
11892 
11893 static void
11894 dtrace_helper_destroy(dtrace_helper_action_t *helper, dtrace_vstate_t *vstate)
11895 {
11896 	int i;
11897 
11898 	if (helper->dthp_predicate != NULL)
11899 		dtrace_difo_release(helper->dthp_predicate, vstate);
11900 
11901 	for (i = 0; i < helper->dthp_nactions; i++) {
11902 		ASSERT(helper->dthp_actions[i] != NULL);
11903 		dtrace_difo_release(helper->dthp_actions[i], vstate);
11904 	}
11905 
11906 	kmem_free(helper->dthp_actions,
11907 	    helper->dthp_nactions * sizeof (dtrace_difo_t *));
11908 	kmem_free(helper, sizeof (dtrace_helper_action_t));
11909 }
11910 
11911 static int
11912 dtrace_helper_destroygen(int gen)
11913 {
11914 	dtrace_helpers_t *help = curproc->p_dtrace_helpers;
11915 	dtrace_vstate_t *vstate;
11916 	int i;
11917 
11918 	ASSERT(MUTEX_HELD(&dtrace_lock));
11919 
11920 	if (help == NULL || gen > help->dthps_generation)
11921 		return (EINVAL);
11922 
11923 	vstate = &help->dthps_vstate;
11924 
11925 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
11926 		dtrace_helper_action_t *last = NULL, *h, *next;
11927 
11928 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
11929 			next = h->dthp_next;
11930 
11931 			if (h->dthp_generation == gen) {
11932 				if (last != NULL) {
11933 					last->dthp_next = next;
11934 				} else {
11935 					help->dthps_actions[i] = next;
11936 				}
11937 
11938 				dtrace_helper_destroy(h, vstate);
11939 			} else {
11940 				last = h;
11941 			}
11942 		}
11943 	}
11944 
11945 	return (0);
11946 }
11947 
11948 static int
11949 dtrace_helper_validate(dtrace_helper_action_t *helper)
11950 {
11951 	int err = 0, i;
11952 	dtrace_difo_t *dp;
11953 
11954 	if ((dp = helper->dthp_predicate) != NULL)
11955 		err += dtrace_difo_validate_helper(dp);
11956 
11957 	for (i = 0; i < helper->dthp_nactions; i++)
11958 		err += dtrace_difo_validate_helper(helper->dthp_actions[i]);
11959 
11960 	return (err == 0);
11961 }
11962 
11963 static int
11964 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
11965 {
11966 	dtrace_helpers_t *help;
11967 	dtrace_helper_action_t *helper, *last;
11968 	dtrace_actdesc_t *act;
11969 	dtrace_vstate_t *vstate;
11970 	dtrace_predicate_t *pred;
11971 	int count = 0, nactions = 0, i;
11972 
11973 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
11974 		return (EINVAL);
11975 
11976 	help = curproc->p_dtrace_helpers;
11977 	last = help->dthps_actions[which];
11978 	vstate = &help->dthps_vstate;
11979 
11980 	for (count = 0; last != NULL; last = last->dthp_next) {
11981 		count++;
11982 		if (last->dthp_next == NULL)
11983 			break;
11984 	}
11985 
11986 	/*
11987 	 * If we already have dtrace_helper_actions_max helper actions for this
11988 	 * helper action type, we'll refuse to add a new one.
11989 	 */
11990 	if (count >= dtrace_helper_actions_max)
11991 		return (ENOSPC);
11992 
11993 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
11994 	helper->dthp_generation = help->dthps_generation;
11995 
11996 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
11997 		ASSERT(pred->dtp_difo != NULL);
11998 		dtrace_difo_hold(pred->dtp_difo);
11999 		helper->dthp_predicate = pred->dtp_difo;
12000 	}
12001 
12002 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
12003 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
12004 			goto err;
12005 
12006 		if (act->dtad_difo == NULL)
12007 			goto err;
12008 
12009 		nactions++;
12010 	}
12011 
12012 	helper->dthp_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
12013 	    (helper->dthp_nactions = nactions), KM_SLEEP);
12014 
12015 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
12016 		dtrace_difo_hold(act->dtad_difo);
12017 		helper->dthp_actions[i++] = act->dtad_difo;
12018 	}
12019 
12020 	if (!dtrace_helper_validate(helper))
12021 		goto err;
12022 
12023 	if (last == NULL) {
12024 		help->dthps_actions[which] = helper;
12025 	} else {
12026 		last->dthp_next = helper;
12027 	}
12028 
12029 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
12030 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
12031 		dtrace_helptrace_next = 0;
12032 	}
12033 
12034 	return (0);
12035 err:
12036 	dtrace_helper_destroy(helper, vstate);
12037 	return (EINVAL);
12038 }
12039 
12040 static void
12041 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
12042     dof_helper_t *dofhp)
12043 {
12044 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
12045 
12046 	mutex_enter(&dtrace_meta_lock);
12047 	mutex_enter(&dtrace_lock);
12048 
12049 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
12050 		/*
12051 		 * If the dtrace module is loaded but not attached, or if
12052 		 * there aren't isn't a meta provider registered to deal with
12053 		 * these provider descriptions, we need to postpone creating
12054 		 * the actual providers until later.
12055 		 */
12056 
12057 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
12058 		    dtrace_deferred_pid != help) {
12059 			help->dthps_pid = p->p_pid;
12060 			help->dthps_next = dtrace_deferred_pid;
12061 			help->dthps_prev = NULL;
12062 			if (dtrace_deferred_pid != NULL)
12063 				dtrace_deferred_pid->dthps_prev = help;
12064 			dtrace_deferred_pid = help;
12065 		}
12066 
12067 		mutex_exit(&dtrace_lock);
12068 
12069 	} else if (dofhp != NULL) {
12070 		/*
12071 		 * If the dtrace module is loaded and we have a particular
12072 		 * helper provider description, pass that off to the
12073 		 * meta provider.
12074 		 */
12075 
12076 		mutex_exit(&dtrace_lock);
12077 
12078 		dtrace_helper_provide(dofhp, p->p_pid);
12079 
12080 	} else {
12081 		/*
12082 		 * Otherwise, just pass all the helper provider descriptions
12083 		 * off to the meta provider.
12084 		 */
12085 
12086 		int i;
12087 		mutex_exit(&dtrace_lock);
12088 
12089 		for (i = 0; i < help->dthps_nprovs; i++) {
12090 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
12091 			    p->p_pid);
12092 		}
12093 	}
12094 
12095 	mutex_exit(&dtrace_meta_lock);
12096 }
12097 
12098 static int
12099 dtrace_helper_provider_add(dof_helper_t *dofhp)
12100 {
12101 	dtrace_helpers_t *help;
12102 	dtrace_helper_provider_t *hprov, **tmp_provs;
12103 	uint_t tmp_nprovs, i;
12104 
12105 	help = curproc->p_dtrace_helpers;
12106 	ASSERT(help != NULL);
12107 
12108 	/*
12109 	 * If we already have dtrace_helper_providers_max helper providers,
12110 	 * we're refuse to add a new one.
12111 	 */
12112 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
12113 		return (ENOSPC);
12114 
12115 	/*
12116 	 * Check to make sure this isn't a duplicate.
12117 	 */
12118 	for (i = 0; i < help->dthps_nprovs; i++) {
12119 		if (dofhp->dofhp_addr ==
12120 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
12121 			return (EALREADY);
12122 	}
12123 
12124 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
12125 	hprov->dthp_prov = *dofhp;
12126 	hprov->dthp_ref = 1;
12127 
12128 	tmp_nprovs = help->dthps_nprovs;
12129 	tmp_provs = help->dthps_provs;
12130 	help->dthps_nprovs++;
12131 	help->dthps_provs = kmem_zalloc(help->dthps_nprovs *
12132 	    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12133 
12134 	help->dthps_provs[tmp_nprovs] = hprov;
12135 	if (tmp_provs != NULL) {
12136 		bcopy(tmp_provs, help->dthps_provs, tmp_nprovs *
12137 		    sizeof (dtrace_helper_provider_t *));
12138 		kmem_free(tmp_provs, tmp_nprovs *
12139 		    sizeof (dtrace_helper_provider_t *));
12140 	}
12141 
12142 	return (0);
12143 }
12144 
12145 static void
12146 dtrace_helper_provider_remove(dtrace_helper_provider_t *hprov)
12147 {
12148 	mutex_enter(&dtrace_lock);
12149 
12150 	if (--hprov->dthp_ref == 0) {
12151 		dof_hdr_t *dof;
12152 		mutex_exit(&dtrace_lock);
12153 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
12154 		dtrace_dof_destroy(dof);
12155 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
12156 	} else {
12157 		mutex_exit(&dtrace_lock);
12158 	}
12159 }
12160 
12161 static int
12162 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
12163 {
12164 	uintptr_t daddr = (uintptr_t)dof;
12165 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec;
12166 	dof_provider_t *provider;
12167 	dof_probe_t *probe;
12168 	uint8_t *arg;
12169 	char *strtab, *typestr;
12170 	dof_stridx_t typeidx;
12171 	size_t typesz;
12172 	uint_t nprobes, j, k;
12173 
12174 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
12175 
12176 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
12177 		dtrace_dof_error(dof, "misaligned section offset");
12178 		return (-1);
12179 	}
12180 
12181 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
12182 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
12183 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
12184 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
12185 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
12186 
12187 	if (str_sec == NULL || prb_sec == NULL ||
12188 	    arg_sec == NULL || off_sec == NULL)
12189 		return (-1);
12190 
12191 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
12192 
12193 	if (provider->dofpv_name >= str_sec->dofs_size ||
12194 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
12195 		dtrace_dof_error(dof, "invalid provider name");
12196 		return (-1);
12197 	}
12198 
12199 	if (prb_sec->dofs_entsize == 0 ||
12200 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
12201 		dtrace_dof_error(dof, "invalid entry size");
12202 		return (-1);
12203 	}
12204 
12205 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
12206 		dtrace_dof_error(dof, "misaligned entry size");
12207 		return (-1);
12208 	}
12209 
12210 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
12211 		dtrace_dof_error(dof, "invalid entry size");
12212 		return (-1);
12213 	}
12214 
12215 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
12216 		dtrace_dof_error(dof, "misaligned section offset");
12217 		return (-1);
12218 	}
12219 
12220 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
12221 		dtrace_dof_error(dof, "invalid entry size");
12222 		return (-1);
12223 	}
12224 
12225 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
12226 
12227 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
12228 
12229 	/*
12230 	 * Take a pass through the probes to check for errors.
12231 	 */
12232 	for (j = 0; j < nprobes; j++) {
12233 		probe = (dof_probe_t *)(uintptr_t)(daddr +
12234 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
12235 
12236 		if (probe->dofpr_func >= str_sec->dofs_size) {
12237 			dtrace_dof_error(dof, "invalid function name");
12238 			return (-1);
12239 		}
12240 
12241 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
12242 			dtrace_dof_error(dof, "function name too long");
12243 			return (-1);
12244 		}
12245 
12246 		if (probe->dofpr_name >= str_sec->dofs_size ||
12247 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
12248 			dtrace_dof_error(dof, "invalid probe name");
12249 			return (-1);
12250 		}
12251 
12252 
12253 		if (probe->dofpr_offidx + probe->dofpr_noffs <
12254 		    probe->dofpr_offidx ||
12255 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
12256 		    off_sec->dofs_entsize > off_sec->dofs_size) {
12257 			dtrace_dof_error(dof, "invalid probe offset");
12258 			return (-1);
12259 		}
12260 
12261 		if (probe->dofpr_argidx + probe->dofpr_xargc <
12262 		    probe->dofpr_argidx ||
12263 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
12264 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
12265 			dtrace_dof_error(dof, "invalid args");
12266 			return (-1);
12267 		}
12268 
12269 		typeidx = probe->dofpr_nargv;
12270 		typestr = strtab + probe->dofpr_nargv;
12271 		for (k = 0; k < probe->dofpr_nargc; k++) {
12272 			if (typeidx >= str_sec->dofs_size) {
12273 				dtrace_dof_error(dof, "bad "
12274 				    "native argument type");
12275 				return (-1);
12276 			}
12277 
12278 			typesz = strlen(typestr) + 1;
12279 			if (typesz > DTRACE_ARGTYPELEN) {
12280 				dtrace_dof_error(dof, "native "
12281 				    "argument type too long");
12282 				return (-1);
12283 			}
12284 			typeidx += typesz;
12285 			typestr += typesz;
12286 		}
12287 
12288 		typeidx = probe->dofpr_xargv;
12289 		typestr = strtab + probe->dofpr_xargv;
12290 		for (k = 0; k < probe->dofpr_xargc; k++) {
12291 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
12292 				dtrace_dof_error(dof, "bad "
12293 				    "native argument index");
12294 				return (-1);
12295 			}
12296 
12297 			if (typeidx >= str_sec->dofs_size) {
12298 				dtrace_dof_error(dof, "bad "
12299 				    "translated argument type");
12300 				return (-1);
12301 			}
12302 
12303 			typesz = strlen(typestr) + 1;
12304 			if (typesz > DTRACE_ARGTYPELEN) {
12305 				dtrace_dof_error(dof, "translated argument "
12306 				    "type too long");
12307 				return (-1);
12308 			}
12309 
12310 			typeidx += typesz;
12311 			typestr += typesz;
12312 		}
12313 	}
12314 
12315 	return (0);
12316 }
12317 
12318 static int
12319 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
12320 {
12321 	dtrace_helpers_t *help;
12322 	dtrace_vstate_t *vstate;
12323 	dtrace_enabling_t *enab = NULL;
12324 	int i, gen, rv, nhelpers = 0, destroy = 1;
12325 
12326 	ASSERT(MUTEX_HELD(&dtrace_lock));
12327 
12328 	if ((help = curproc->p_dtrace_helpers) == NULL)
12329 		help = dtrace_helpers_create(curproc);
12330 
12331 	vstate = &help->dthps_vstate;
12332 
12333 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
12334 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
12335 		dtrace_dof_destroy(dof);
12336 		return (rv);
12337 	}
12338 
12339 	/*
12340 	 * Now we need to walk through the ECB descriptions in the enabling.
12341 	 */
12342 	for (i = 0; i < enab->dten_ndesc; i++) {
12343 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12344 		dtrace_probedesc_t *desc = &ep->dted_probe;
12345 
12346 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
12347 			continue;
12348 
12349 		if (strcmp(desc->dtpd_mod, "helper") != 0)
12350 			continue;
12351 
12352 		if (strcmp(desc->dtpd_func, "ustack") != 0)
12353 			continue;
12354 
12355 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
12356 		    ep)) != 0) {
12357 			/*
12358 			 * Adding this helper action failed -- we are now going
12359 			 * to rip out the entire generation and return failure.
12360 			 */
12361 			(void) dtrace_helper_destroygen(help->dthps_generation);
12362 			dtrace_enabling_destroy(enab);
12363 			dtrace_dof_destroy(dof);
12364 			dtrace_err = rv;
12365 			return (-1);
12366 		}
12367 
12368 		nhelpers++;
12369 	}
12370 
12371 	if (nhelpers < enab->dten_ndesc)
12372 		dtrace_dof_error(dof, "unmatched helpers");
12373 
12374 	if (dhp != NULL) {
12375 		uintptr_t daddr = (uintptr_t)dof;
12376 		int err = 0;
12377 
12378 		/*
12379 		 * Look for helper probes.
12380 		 */
12381 		for (i = 0; i < dof->dofh_secnum; i++) {
12382 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
12383 			    dof->dofh_secoff + i * dof->dofh_secsize);
12384 
12385 			if (sec->dofs_type != DOF_SECT_PROVIDER)
12386 				continue;
12387 
12388 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
12389 				err = 1;
12390 				break;
12391 			}
12392 		}
12393 
12394 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
12395 		if (err == 0 && dtrace_helper_provider_add(dhp) == 0)
12396 			destroy = 0;
12397 		else
12398 			dhp = NULL;
12399 	}
12400 
12401 	gen = help->dthps_generation++;
12402 	dtrace_enabling_destroy(enab);
12403 
12404 	if (dhp != NULL) {
12405 		mutex_exit(&dtrace_lock);
12406 		dtrace_helper_provider_register(curproc, help, dhp);
12407 		mutex_enter(&dtrace_lock);
12408 	}
12409 
12410 	if (destroy)
12411 		dtrace_dof_destroy(dof);
12412 
12413 	return (gen);
12414 }
12415 
12416 static dtrace_helpers_t *
12417 dtrace_helpers_create(proc_t *p)
12418 {
12419 	dtrace_helpers_t *help;
12420 
12421 	ASSERT(MUTEX_HELD(&dtrace_lock));
12422 	ASSERT(p->p_dtrace_helpers == NULL);
12423 
12424 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
12425 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
12426 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
12427 
12428 	p->p_dtrace_helpers = help;
12429 	dtrace_helpers++;
12430 
12431 	return (help);
12432 }
12433 
12434 static void
12435 dtrace_helpers_destroy(void)
12436 {
12437 	dtrace_helpers_t *help;
12438 	dtrace_vstate_t *vstate;
12439 	proc_t *p = curproc;
12440 	int i;
12441 
12442 	mutex_enter(&dtrace_lock);
12443 
12444 	ASSERT(p->p_dtrace_helpers != NULL);
12445 	ASSERT(dtrace_helpers > 0);
12446 
12447 	help = p->p_dtrace_helpers;
12448 	vstate = &help->dthps_vstate;
12449 
12450 	/*
12451 	 * We're now going to lose the help from this process.
12452 	 */
12453 	p->p_dtrace_helpers = NULL;
12454 	dtrace_sync();
12455 
12456 	/*
12457 	 * Destory the helper actions.
12458 	 */
12459 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12460 		dtrace_helper_action_t *h, *next;
12461 
12462 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
12463 			next = h->dthp_next;
12464 			dtrace_helper_destroy(h, vstate);
12465 			h = next;
12466 		}
12467 	}
12468 
12469 	mutex_exit(&dtrace_lock);
12470 
12471 	/*
12472 	 * Destroy the helper providers.
12473 	 */
12474 	if (help->dthps_nprovs > 0) {
12475 		mutex_enter(&dtrace_meta_lock);
12476 		if (dtrace_meta_pid != NULL) {
12477 			ASSERT(dtrace_deferred_pid == NULL);
12478 
12479 			for (i = 0; i < help->dthps_nprovs; i++) {
12480 				dtrace_helper_remove(
12481 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
12482 			}
12483 		} else {
12484 			mutex_enter(&dtrace_lock);
12485 			ASSERT(dtrace_deferred_pid != NULL);
12486 
12487 			/*
12488 			 * Remove the helper from the deferred list.
12489 			 */
12490 			if (help->dthps_next != NULL)
12491 				help->dthps_next->dthps_prev = help->dthps_prev;
12492 			if (help->dthps_prev != NULL)
12493 				help->dthps_prev->dthps_next = help->dthps_next;
12494 			if (dtrace_deferred_pid == help) {
12495 				dtrace_deferred_pid = help->dthps_next;
12496 				ASSERT(help->dthps_prev == NULL);
12497 			}
12498 
12499 			mutex_exit(&dtrace_lock);
12500 		}
12501 
12502 		mutex_exit(&dtrace_meta_lock);
12503 
12504 		for (i = 0; i < help->dthps_nprovs; i++) {
12505 			dtrace_helper_provider_remove(help->dthps_provs[i]);
12506 		}
12507 
12508 		kmem_free(help->dthps_provs, help->dthps_nprovs *
12509 		    sizeof (dtrace_helper_provider_t *));
12510 	}
12511 
12512 	mutex_enter(&dtrace_lock);
12513 
12514 	dtrace_vstate_fini(&help->dthps_vstate);
12515 	kmem_free(help->dthps_actions,
12516 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
12517 	kmem_free(help, sizeof (dtrace_helpers_t));
12518 
12519 	--dtrace_helpers;
12520 	mutex_exit(&dtrace_lock);
12521 }
12522 
12523 static void
12524 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
12525 {
12526 	dtrace_helpers_t *help, *newhelp;
12527 	dtrace_helper_action_t *helper, *new, *last;
12528 	dtrace_difo_t *dp;
12529 	dtrace_vstate_t *vstate;
12530 	int i, j, sz, hasprovs = 0;
12531 
12532 	mutex_enter(&dtrace_lock);
12533 	ASSERT(from->p_dtrace_helpers != NULL);
12534 	ASSERT(dtrace_helpers > 0);
12535 
12536 	help = from->p_dtrace_helpers;
12537 	newhelp = dtrace_helpers_create(to);
12538 	ASSERT(to->p_dtrace_helpers != NULL);
12539 
12540 	newhelp->dthps_generation = help->dthps_generation;
12541 	vstate = &newhelp->dthps_vstate;
12542 
12543 	/*
12544 	 * Duplicate the helper actions.
12545 	 */
12546 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
12547 		if ((helper = help->dthps_actions[i]) == NULL)
12548 			continue;
12549 
12550 		for (last = NULL; helper != NULL; helper = helper->dthp_next) {
12551 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
12552 			    KM_SLEEP);
12553 			new->dthp_generation = helper->dthp_generation;
12554 
12555 			if ((dp = helper->dthp_predicate) != NULL) {
12556 				dp = dtrace_difo_duplicate(dp, vstate);
12557 				new->dthp_predicate = dp;
12558 			}
12559 
12560 			new->dthp_nactions = helper->dthp_nactions;
12561 			sz = sizeof (dtrace_difo_t *) * new->dthp_nactions;
12562 			new->dthp_actions = kmem_alloc(sz, KM_SLEEP);
12563 
12564 			for (j = 0; j < new->dthp_nactions; j++) {
12565 				dtrace_difo_t *dp = helper->dthp_actions[j];
12566 
12567 				ASSERT(dp != NULL);
12568 				dp = dtrace_difo_duplicate(dp, vstate);
12569 				new->dthp_actions[j] = dp;
12570 			}
12571 
12572 			if (last != NULL) {
12573 				last->dthp_next = new;
12574 			} else {
12575 				newhelp->dthps_actions[i] = new;
12576 			}
12577 
12578 			last = new;
12579 		}
12580 	}
12581 
12582 	/*
12583 	 * Duplicate the helper providers and register them with the
12584 	 * DTrace framework.
12585 	 */
12586 	if (help->dthps_nprovs > 0) {
12587 		newhelp->dthps_nprovs = help->dthps_nprovs;
12588 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
12589 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
12590 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
12591 			newhelp->dthps_provs[i] = help->dthps_provs[i];
12592 			newhelp->dthps_provs[i]->dthp_ref++;
12593 		}
12594 
12595 		hasprovs = 1;
12596 	}
12597 
12598 	mutex_exit(&dtrace_lock);
12599 
12600 	if (hasprovs)
12601 		dtrace_helper_provider_register(to, newhelp, NULL);
12602 }
12603 
12604 /*
12605  * DTrace Hook Functions
12606  */
12607 static void
12608 dtrace_module_loaded(struct modctl *ctl)
12609 {
12610 	dtrace_provider_t *prv;
12611 
12612 	mutex_enter(&dtrace_provider_lock);
12613 	mutex_enter(&mod_lock);
12614 
12615 	ASSERT(ctl->mod_busy);
12616 
12617 	/*
12618 	 * We're going to call each providers per-module provide operation
12619 	 * specifying only this module.
12620 	 */
12621 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
12622 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
12623 
12624 	mutex_exit(&mod_lock);
12625 	mutex_exit(&dtrace_provider_lock);
12626 
12627 	/*
12628 	 * If we have any retained enablings, we need to match against them.
12629 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
12630 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
12631 	 * module.  (In particular, this happens when loading scheduling
12632 	 * classes.)  So if we have any retained enablings, we need to dispatch
12633 	 * our task queue to do the match for us.
12634 	 */
12635 	mutex_enter(&dtrace_lock);
12636 
12637 	if (dtrace_retained == NULL) {
12638 		mutex_exit(&dtrace_lock);
12639 		return;
12640 	}
12641 
12642 	(void) taskq_dispatch(dtrace_taskq,
12643 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
12644 
12645 	mutex_exit(&dtrace_lock);
12646 
12647 	/*
12648 	 * And now, for a little heuristic sleaze:  in general, we want to
12649 	 * match modules as soon as they load.  However, we cannot guarantee
12650 	 * this, because it would lead us to the lock ordering violation
12651 	 * outlined above.  The common case, of course, is that cpu_lock is
12652 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
12653 	 * long enough for the task queue to do its work.  If it's not, it's
12654 	 * not a serious problem -- it just means that the module that we
12655 	 * just loaded may not be immediately instrumentable.
12656 	 */
12657 	delay(1);
12658 }
12659 
12660 static void
12661 dtrace_module_unloaded(struct modctl *ctl)
12662 {
12663 	dtrace_probe_t template, *probe, *first, *next;
12664 	dtrace_provider_t *prov;
12665 
12666 	template.dtpr_mod = ctl->mod_modname;
12667 
12668 	mutex_enter(&dtrace_provider_lock);
12669 	mutex_enter(&mod_lock);
12670 	mutex_enter(&dtrace_lock);
12671 
12672 	if (dtrace_bymod == NULL) {
12673 		/*
12674 		 * The DTrace module is loaded (obviously) but not attached;
12675 		 * we don't have any work to do.
12676 		 */
12677 		mutex_exit(&dtrace_provider_lock);
12678 		mutex_exit(&mod_lock);
12679 		mutex_exit(&dtrace_lock);
12680 		return;
12681 	}
12682 
12683 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
12684 	    probe != NULL; probe = probe->dtpr_nextmod) {
12685 		if (probe->dtpr_ecb != NULL) {
12686 			mutex_exit(&dtrace_provider_lock);
12687 			mutex_exit(&mod_lock);
12688 			mutex_exit(&dtrace_lock);
12689 
12690 			/*
12691 			 * This shouldn't _actually_ be possible -- we're
12692 			 * unloading a module that has an enabled probe in it.
12693 			 * (It's normally up to the provider to make sure that
12694 			 * this can't happen.)  However, because dtps_enable()
12695 			 * doesn't have a failure mode, there can be an
12696 			 * enable/unload race.  Upshot:  we don't want to
12697 			 * assert, but we're not going to disable the
12698 			 * probe, either.
12699 			 */
12700 			if (dtrace_err_verbose) {
12701 				cmn_err(CE_WARN, "unloaded module '%s' had "
12702 				    "enabled probes", ctl->mod_modname);
12703 			}
12704 
12705 			return;
12706 		}
12707 	}
12708 
12709 	probe = first;
12710 
12711 	for (first = NULL; probe != NULL; probe = next) {
12712 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
12713 
12714 		dtrace_probes[probe->dtpr_id - 1] = NULL;
12715 
12716 		next = probe->dtpr_nextmod;
12717 		dtrace_hash_remove(dtrace_bymod, probe);
12718 		dtrace_hash_remove(dtrace_byfunc, probe);
12719 		dtrace_hash_remove(dtrace_byname, probe);
12720 
12721 		if (first == NULL) {
12722 			first = probe;
12723 			probe->dtpr_nextmod = NULL;
12724 		} else {
12725 			probe->dtpr_nextmod = first;
12726 			first = probe;
12727 		}
12728 	}
12729 
12730 	/*
12731 	 * We've removed all of the module's probes from the hash chains and
12732 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
12733 	 * everyone has cleared out from any probe array processing.
12734 	 */
12735 	dtrace_sync();
12736 
12737 	for (probe = first; probe != NULL; probe = first) {
12738 		first = probe->dtpr_nextmod;
12739 		prov = probe->dtpr_provider;
12740 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
12741 		    probe->dtpr_arg);
12742 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
12743 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
12744 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
12745 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
12746 		kmem_free(probe, sizeof (dtrace_probe_t));
12747 	}
12748 
12749 	mutex_exit(&dtrace_lock);
12750 	mutex_exit(&mod_lock);
12751 	mutex_exit(&dtrace_provider_lock);
12752 }
12753 
12754 void
12755 dtrace_suspend(void)
12756 {
12757 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
12758 }
12759 
12760 void
12761 dtrace_resume(void)
12762 {
12763 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
12764 }
12765 
12766 static int
12767 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
12768 {
12769 	ASSERT(MUTEX_HELD(&cpu_lock));
12770 	mutex_enter(&dtrace_lock);
12771 
12772 	switch (what) {
12773 	case CPU_CONFIG: {
12774 		dtrace_state_t *state;
12775 		dtrace_optval_t *opt, rs, c;
12776 
12777 		/*
12778 		 * For now, we only allocate a new buffer for anonymous state.
12779 		 */
12780 		if ((state = dtrace_anon.dta_state) == NULL)
12781 			break;
12782 
12783 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
12784 			break;
12785 
12786 		opt = state->dts_options;
12787 		c = opt[DTRACEOPT_CPU];
12788 
12789 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
12790 			break;
12791 
12792 		/*
12793 		 * Regardless of what the actual policy is, we're going to
12794 		 * temporarily set our resize policy to be manual.  We're
12795 		 * also going to temporarily set our CPU option to denote
12796 		 * the newly configured CPU.
12797 		 */
12798 		rs = opt[DTRACEOPT_BUFRESIZE];
12799 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
12800 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
12801 
12802 		(void) dtrace_state_buffers(state);
12803 
12804 		opt[DTRACEOPT_BUFRESIZE] = rs;
12805 		opt[DTRACEOPT_CPU] = c;
12806 
12807 		break;
12808 	}
12809 
12810 	case CPU_UNCONFIG:
12811 		/*
12812 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
12813 		 * buffer will be freed when the consumer exits.)
12814 		 */
12815 		break;
12816 
12817 	default:
12818 		break;
12819 	}
12820 
12821 	mutex_exit(&dtrace_lock);
12822 	return (0);
12823 }
12824 
12825 static void
12826 dtrace_cpu_setup_initial(processorid_t cpu)
12827 {
12828 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
12829 }
12830 
12831 static void
12832 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
12833 {
12834 	if (dtrace_toxranges >= dtrace_toxranges_max) {
12835 		int osize, nsize;
12836 		dtrace_toxrange_t *range;
12837 
12838 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
12839 
12840 		if (osize == 0) {
12841 			ASSERT(dtrace_toxrange == NULL);
12842 			ASSERT(dtrace_toxranges_max == 0);
12843 			dtrace_toxranges_max = 1;
12844 		} else {
12845 			dtrace_toxranges_max <<= 1;
12846 		}
12847 
12848 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
12849 		range = kmem_zalloc(nsize, KM_SLEEP);
12850 
12851 		if (dtrace_toxrange != NULL) {
12852 			ASSERT(osize != 0);
12853 			bcopy(dtrace_toxrange, range, osize);
12854 			kmem_free(dtrace_toxrange, osize);
12855 		}
12856 
12857 		dtrace_toxrange = range;
12858 	}
12859 
12860 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
12861 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
12862 
12863 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
12864 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
12865 	dtrace_toxranges++;
12866 }
12867 
12868 /*
12869  * DTrace Driver Cookbook Functions
12870  */
12871 /*ARGSUSED*/
12872 static int
12873 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
12874 {
12875 	dtrace_provider_id_t id;
12876 	dtrace_state_t *state = NULL;
12877 	dtrace_enabling_t *enab;
12878 
12879 	mutex_enter(&cpu_lock);
12880 	mutex_enter(&dtrace_provider_lock);
12881 	mutex_enter(&dtrace_lock);
12882 
12883 	if (ddi_soft_state_init(&dtrace_softstate, sizeof (dtrace_state_t) +
12884 	    NCPU * sizeof (dtrace_buffer_t), 0) != 0) {
12885 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
12886 		mutex_exit(&cpu_lock);
12887 		mutex_exit(&dtrace_provider_lock);
12888 		mutex_exit(&dtrace_lock);
12889 		return (DDI_FAILURE);
12890 	}
12891 
12892 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
12893 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
12894 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
12895 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
12896 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
12897 		ddi_remove_minor_node(devi, NULL);
12898 		ddi_soft_state_fini(&dtrace_softstate);
12899 		mutex_exit(&cpu_lock);
12900 		mutex_exit(&dtrace_provider_lock);
12901 		mutex_exit(&dtrace_lock);
12902 		return (DDI_FAILURE);
12903 	}
12904 
12905 	ddi_report_dev(devi);
12906 	dtrace_devi = devi;
12907 
12908 	dtrace_modload = dtrace_module_loaded;
12909 	dtrace_modunload = dtrace_module_unloaded;
12910 	dtrace_cpu_init = dtrace_cpu_setup_initial;
12911 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
12912 	dtrace_helpers_fork = dtrace_helpers_duplicate;
12913 	dtrace_cpustart_init = dtrace_suspend;
12914 	dtrace_cpustart_fini = dtrace_resume;
12915 	dtrace_debugger_init = dtrace_suspend;
12916 	dtrace_debugger_fini = dtrace_resume;
12917 	dtrace_kreloc_init = dtrace_suspend;
12918 	dtrace_kreloc_fini = dtrace_resume;
12919 
12920 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
12921 
12922 	ASSERT(MUTEX_HELD(&cpu_lock));
12923 
12924 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
12925 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
12926 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
12927 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
12928 	    VM_SLEEP | VMC_IDENTIFIER);
12929 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
12930 	    1, INT_MAX, 0);
12931 
12932 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
12933 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
12934 	    NULL, NULL, NULL, NULL, NULL, 0);
12935 
12936 	ASSERT(MUTEX_HELD(&cpu_lock));
12937 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
12938 	    offsetof(dtrace_probe_t, dtpr_nextmod),
12939 	    offsetof(dtrace_probe_t, dtpr_prevmod));
12940 
12941 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
12942 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
12943 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
12944 
12945 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
12946 	    offsetof(dtrace_probe_t, dtpr_nextname),
12947 	    offsetof(dtrace_probe_t, dtpr_prevname));
12948 
12949 	if (dtrace_retain_max < 1) {
12950 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
12951 		    "setting to 1", dtrace_retain_max);
12952 		dtrace_retain_max = 1;
12953 	}
12954 
12955 	/*
12956 	 * Now discover our toxic ranges.
12957 	 */
12958 	dtrace_toxic_ranges(dtrace_toxrange_add);
12959 
12960 	/*
12961 	 * Before we register ourselves as a provider to our own framework,
12962 	 * we would like to assert that dtrace_provider is NULL -- but that's
12963 	 * not true if we were loaded as a dependency of a DTrace provider.
12964 	 * Once we've registered, we can assert that dtrace_provider is our
12965 	 * pseudo provider.
12966 	 */
12967 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
12968 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
12969 
12970 	ASSERT(dtrace_provider != NULL);
12971 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
12972 
12973 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
12974 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
12975 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
12976 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
12977 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
12978 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
12979 
12980 	dtrace_anon_property();
12981 	mutex_exit(&cpu_lock);
12982 
12983 	/*
12984 	 * If DTrace helper tracing is enabled, we need to allocate the
12985 	 * trace buffer and initialize the values.
12986 	 */
12987 	if (dtrace_helptrace_enabled) {
12988 		ASSERT(dtrace_helptrace_buffer == NULL);
12989 		dtrace_helptrace_buffer =
12990 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
12991 		dtrace_helptrace_next = 0;
12992 	}
12993 
12994 	/*
12995 	 * If there are already providers, we must ask them to provide their
12996 	 * probes, and then match any anonymous enabling against them.  Note
12997 	 * that there should be no other retained enablings at this time:
12998 	 * the only retained enablings at this time should be the anonymous
12999 	 * enabling.
13000 	 */
13001 	if (dtrace_anon.dta_enabling != NULL) {
13002 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
13003 
13004 		dtrace_enabling_provide(NULL);
13005 		state = dtrace_anon.dta_state;
13006 
13007 		/*
13008 		 * We couldn't hold cpu_lock across the above call to
13009 		 * dtrace_enabling_provide(), but we must hold it to actually
13010 		 * enable the probes.  We have to drop all of our locks, pick
13011 		 * up cpu_lock, and regain our locks before matching the
13012 		 * retained anonymous enabling.
13013 		 */
13014 		mutex_exit(&dtrace_lock);
13015 		mutex_exit(&dtrace_provider_lock);
13016 
13017 		mutex_enter(&cpu_lock);
13018 		mutex_enter(&dtrace_provider_lock);
13019 		mutex_enter(&dtrace_lock);
13020 
13021 		if ((enab = dtrace_anon.dta_enabling) != NULL)
13022 			(void) dtrace_enabling_match(enab, NULL);
13023 
13024 		mutex_exit(&cpu_lock);
13025 	}
13026 
13027 	mutex_exit(&dtrace_lock);
13028 	mutex_exit(&dtrace_provider_lock);
13029 
13030 	if (state != NULL) {
13031 		/*
13032 		 * If we created any anonymous state, set it going now.
13033 		 */
13034 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
13035 	}
13036 
13037 	return (DDI_SUCCESS);
13038 }
13039 
13040 /*ARGSUSED*/
13041 static int
13042 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
13043 {
13044 	dtrace_state_t *state;
13045 	uint32_t priv;
13046 	uid_t uid;
13047 
13048 	if (getminor(*devp) == DTRACEMNRN_HELPER)
13049 		return (0);
13050 
13051 	/*
13052 	 * If this wasn't an open with the "helper" minor, then it must be
13053 	 * the "dtrace" minor.
13054 	 */
13055 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
13056 
13057 	/*
13058 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
13059 	 * caller lacks sufficient permission to do anything with DTrace.
13060 	 */
13061 	dtrace_cred2priv(cred_p, &priv, &uid);
13062 	if (priv == DTRACE_PRIV_NONE)
13063 		return (EACCES);
13064 
13065 	/*
13066 	 * Ask all providers to provide all their probes.
13067 	 */
13068 	mutex_enter(&dtrace_provider_lock);
13069 	dtrace_probe_provide(NULL, NULL);
13070 	mutex_exit(&dtrace_provider_lock);
13071 
13072 	mutex_enter(&cpu_lock);
13073 	mutex_enter(&dtrace_lock);
13074 	dtrace_opens++;
13075 	dtrace_membar_producer();
13076 
13077 	/*
13078 	 * If the kernel debugger is active (that is, if the kernel debugger
13079 	 * modified text in some way), we won't allow the open.
13080 	 */
13081 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13082 		dtrace_opens--;
13083 		mutex_exit(&cpu_lock);
13084 		mutex_exit(&dtrace_lock);
13085 		return (EBUSY);
13086 	}
13087 
13088 	state = dtrace_state_create(devp, cred_p);
13089 	mutex_exit(&cpu_lock);
13090 
13091 	if (state == NULL) {
13092 		if (--dtrace_opens == 0)
13093 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13094 		mutex_exit(&dtrace_lock);
13095 		return (EAGAIN);
13096 	}
13097 
13098 	mutex_exit(&dtrace_lock);
13099 
13100 	return (0);
13101 }
13102 
13103 /*ARGSUSED*/
13104 static int
13105 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
13106 {
13107 	minor_t minor = getminor(dev);
13108 	dtrace_state_t *state;
13109 
13110 	if (minor == DTRACEMNRN_HELPER)
13111 		return (0);
13112 
13113 	state = ddi_get_soft_state(dtrace_softstate, minor);
13114 
13115 	mutex_enter(&cpu_lock);
13116 	mutex_enter(&dtrace_lock);
13117 
13118 	if (state->dts_anon) {
13119 		/*
13120 		 * There is anonymous state. Destroy that first.
13121 		 */
13122 		ASSERT(dtrace_anon.dta_state == NULL);
13123 		dtrace_state_destroy(state->dts_anon);
13124 	}
13125 
13126 	dtrace_state_destroy(state);
13127 	ASSERT(dtrace_opens > 0);
13128 	if (--dtrace_opens == 0)
13129 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13130 
13131 	mutex_exit(&dtrace_lock);
13132 	mutex_exit(&cpu_lock);
13133 
13134 	return (0);
13135 }
13136 
13137 /*ARGSUSED*/
13138 static int
13139 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
13140 {
13141 	int rval;
13142 	dof_helper_t help, *dhp = NULL;
13143 
13144 	switch (cmd) {
13145 	case DTRACEHIOC_ADDDOF:
13146 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
13147 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
13148 			return (EFAULT);
13149 		}
13150 
13151 		dhp = &help;
13152 		arg = (intptr_t)help.dofhp_dof;
13153 		/*FALLTHROUGH*/
13154 
13155 	case DTRACEHIOC_ADD: {
13156 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
13157 
13158 		if (dof == NULL)
13159 			return (rval);
13160 
13161 		mutex_enter(&dtrace_lock);
13162 		dtrace_err = 0;
13163 
13164 		/*
13165 		 * dtrace_helper_slurp() takes responsibility for the dof --
13166 		 * it may free it now or it may save it and free it later.
13167 		 */
13168 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
13169 			*rv = rval;
13170 			rval = 0;
13171 		} else {
13172 			rval = EINVAL;
13173 		}
13174 
13175 		mutex_exit(&dtrace_lock);
13176 		return (rval);
13177 	}
13178 
13179 	case DTRACEHIOC_REMOVE: {
13180 		mutex_enter(&dtrace_lock);
13181 		rval = dtrace_helper_destroygen(arg);
13182 		mutex_exit(&dtrace_lock);
13183 
13184 		return (rval);
13185 	}
13186 
13187 	default:
13188 		break;
13189 	}
13190 
13191 	return (ENOTTY);
13192 }
13193 
13194 /*ARGSUSED*/
13195 static int
13196 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
13197 {
13198 	minor_t minor = getminor(dev);
13199 	dtrace_state_t *state;
13200 	int rval;
13201 
13202 	if (minor == DTRACEMNRN_HELPER)
13203 		return (dtrace_ioctl_helper(cmd, arg, rv));
13204 
13205 	state = ddi_get_soft_state(dtrace_softstate, minor);
13206 
13207 	if (state->dts_anon) {
13208 		ASSERT(dtrace_anon.dta_state == NULL);
13209 		state = state->dts_anon;
13210 	}
13211 
13212 	switch (cmd) {
13213 	case DTRACEIOC_PROVIDER: {
13214 		dtrace_providerdesc_t pvd;
13215 		dtrace_provider_t *pvp;
13216 
13217 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
13218 			return (EFAULT);
13219 
13220 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
13221 		mutex_enter(&dtrace_provider_lock);
13222 
13223 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
13224 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
13225 				break;
13226 		}
13227 
13228 		mutex_exit(&dtrace_provider_lock);
13229 
13230 		if (pvp == NULL)
13231 			return (ESRCH);
13232 
13233 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
13234 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
13235 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
13236 			return (EFAULT);
13237 
13238 		return (0);
13239 	}
13240 
13241 	case DTRACEIOC_EPROBE: {
13242 		dtrace_eprobedesc_t epdesc;
13243 		dtrace_ecb_t *ecb;
13244 		dtrace_action_t *act;
13245 		void *buf;
13246 		size_t size;
13247 		uintptr_t dest;
13248 		int nrecs;
13249 
13250 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
13251 			return (EFAULT);
13252 
13253 		mutex_enter(&dtrace_lock);
13254 
13255 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
13256 			mutex_exit(&dtrace_lock);
13257 			return (EINVAL);
13258 		}
13259 
13260 		if (ecb->dte_probe == NULL) {
13261 			mutex_exit(&dtrace_lock);
13262 			return (EINVAL);
13263 		}
13264 
13265 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
13266 		epdesc.dtepd_uarg = ecb->dte_uarg;
13267 		epdesc.dtepd_size = ecb->dte_size;
13268 
13269 		nrecs = epdesc.dtepd_nrecs;
13270 		epdesc.dtepd_nrecs = 0;
13271 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13272 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13273 				continue;
13274 
13275 			epdesc.dtepd_nrecs++;
13276 		}
13277 
13278 		/*
13279 		 * Now that we have the size, we need to allocate a temporary
13280 		 * buffer in which to store the complete description.  We need
13281 		 * the temporary buffer to be able to drop dtrace_lock()
13282 		 * across the copyout(), below.
13283 		 */
13284 		size = sizeof (dtrace_eprobedesc_t) +
13285 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
13286 
13287 		buf = kmem_alloc(size, KM_SLEEP);
13288 		dest = (uintptr_t)buf;
13289 
13290 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
13291 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
13292 
13293 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
13294 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
13295 				continue;
13296 
13297 			if (nrecs-- == 0)
13298 				break;
13299 
13300 			bcopy(&act->dta_rec, (void *)dest,
13301 			    sizeof (dtrace_recdesc_t));
13302 			dest += sizeof (dtrace_recdesc_t);
13303 		}
13304 
13305 		mutex_exit(&dtrace_lock);
13306 
13307 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13308 			kmem_free(buf, size);
13309 			return (EFAULT);
13310 		}
13311 
13312 		kmem_free(buf, size);
13313 		return (0);
13314 	}
13315 
13316 	case DTRACEIOC_AGGDESC: {
13317 		dtrace_aggdesc_t aggdesc;
13318 		dtrace_action_t *act;
13319 		dtrace_aggregation_t *agg;
13320 		int nrecs;
13321 		uint32_t offs;
13322 		dtrace_recdesc_t *lrec;
13323 		void *buf;
13324 		size_t size;
13325 		uintptr_t dest;
13326 
13327 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
13328 			return (EFAULT);
13329 
13330 		mutex_enter(&dtrace_lock);
13331 
13332 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
13333 			mutex_exit(&dtrace_lock);
13334 			return (EINVAL);
13335 		}
13336 
13337 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
13338 
13339 		nrecs = aggdesc.dtagd_nrecs;
13340 		aggdesc.dtagd_nrecs = 0;
13341 
13342 		offs = agg->dtag_base;
13343 		lrec = &agg->dtag_action.dta_rec;
13344 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
13345 
13346 		for (act = agg->dtag_first; ; act = act->dta_next) {
13347 			ASSERT(act->dta_intuple ||
13348 			    DTRACEACT_ISAGG(act->dta_kind));
13349 			aggdesc.dtagd_nrecs++;
13350 
13351 			if (act == &agg->dtag_action)
13352 				break;
13353 		}
13354 
13355 		/*
13356 		 * Now that we have the size, we need to allocate a temporary
13357 		 * buffer in which to store the complete description.  We need
13358 		 * the temporary buffer to be able to drop dtrace_lock()
13359 		 * across the copyout(), below.
13360 		 */
13361 		size = sizeof (dtrace_aggdesc_t) +
13362 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
13363 
13364 		buf = kmem_alloc(size, KM_SLEEP);
13365 		dest = (uintptr_t)buf;
13366 
13367 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
13368 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
13369 
13370 		for (act = agg->dtag_first; ; act = act->dta_next) {
13371 			dtrace_recdesc_t rec = act->dta_rec;
13372 
13373 			if (nrecs-- == 0)
13374 				break;
13375 
13376 			rec.dtrd_offset -= offs;
13377 			bcopy(&rec, (void *)dest, sizeof (rec));
13378 			dest += sizeof (dtrace_recdesc_t);
13379 
13380 			if (act == &agg->dtag_action)
13381 				break;
13382 		}
13383 
13384 		mutex_exit(&dtrace_lock);
13385 
13386 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
13387 			kmem_free(buf, size);
13388 			return (EFAULT);
13389 		}
13390 
13391 		kmem_free(buf, size);
13392 		return (0);
13393 	}
13394 
13395 	case DTRACEIOC_ENABLE: {
13396 		dof_hdr_t *dof;
13397 		dtrace_enabling_t *enab = NULL;
13398 		dtrace_vstate_t *vstate;
13399 		int err = 0;
13400 
13401 		*rv = 0;
13402 
13403 		/*
13404 		 * If a NULL argument has been passed, we take this as our
13405 		 * cue to reevaluate our enablings.
13406 		 */
13407 		if (arg == NULL) {
13408 			mutex_enter(&cpu_lock);
13409 			mutex_enter(&dtrace_lock);
13410 			err = dtrace_enabling_matchstate(state, rv);
13411 			mutex_exit(&dtrace_lock);
13412 			mutex_exit(&cpu_lock);
13413 
13414 			return (err);
13415 		}
13416 
13417 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
13418 			return (rval);
13419 
13420 		mutex_enter(&cpu_lock);
13421 		mutex_enter(&dtrace_lock);
13422 		vstate = &state->dts_vstate;
13423 
13424 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13425 			mutex_exit(&dtrace_lock);
13426 			mutex_exit(&cpu_lock);
13427 			dtrace_dof_destroy(dof);
13428 			return (EBUSY);
13429 		}
13430 
13431 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
13432 			mutex_exit(&dtrace_lock);
13433 			mutex_exit(&cpu_lock);
13434 			dtrace_dof_destroy(dof);
13435 			return (EINVAL);
13436 		}
13437 
13438 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
13439 			dtrace_enabling_destroy(enab);
13440 			mutex_exit(&dtrace_lock);
13441 			mutex_exit(&cpu_lock);
13442 			dtrace_dof_destroy(dof);
13443 			return (rval);
13444 		}
13445 
13446 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
13447 			err = dtrace_enabling_retain(enab);
13448 		} else {
13449 			dtrace_enabling_destroy(enab);
13450 		}
13451 
13452 		mutex_exit(&cpu_lock);
13453 		mutex_exit(&dtrace_lock);
13454 		dtrace_dof_destroy(dof);
13455 
13456 		return (err);
13457 	}
13458 
13459 	case DTRACEIOC_REPLICATE: {
13460 		dtrace_repldesc_t desc;
13461 		dtrace_probedesc_t *match = &desc.dtrpd_match;
13462 		dtrace_probedesc_t *create = &desc.dtrpd_create;
13463 		int err;
13464 
13465 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13466 			return (EFAULT);
13467 
13468 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13469 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13470 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13471 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13472 
13473 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13474 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13475 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13476 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13477 
13478 		mutex_enter(&dtrace_lock);
13479 		err = dtrace_enabling_replicate(state, match, create);
13480 		mutex_exit(&dtrace_lock);
13481 
13482 		return (err);
13483 	}
13484 
13485 	case DTRACEIOC_PROBEMATCH:
13486 	case DTRACEIOC_PROBES: {
13487 		dtrace_probe_t *probe = NULL;
13488 		dtrace_probedesc_t desc;
13489 		dtrace_probekey_t pkey;
13490 		dtrace_id_t i;
13491 		int m = 0;
13492 		uint32_t priv;
13493 		uid_t uid;
13494 
13495 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13496 			return (EFAULT);
13497 
13498 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
13499 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
13500 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
13501 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
13502 
13503 		/*
13504 		 * Before we attempt to match this probe, we want to give
13505 		 * all providers the opportunity to provide it.
13506 		 */
13507 		if (desc.dtpd_id == DTRACE_IDNONE) {
13508 			mutex_enter(&dtrace_provider_lock);
13509 			dtrace_probe_provide(&desc, NULL);
13510 			mutex_exit(&dtrace_provider_lock);
13511 			desc.dtpd_id++;
13512 		}
13513 
13514 		if (cmd == DTRACEIOC_PROBEMATCH)  {
13515 			dtrace_probekey(&desc, &pkey);
13516 			pkey.dtpk_id = DTRACE_IDNONE;
13517 		}
13518 
13519 		uid = crgetuid(cr);
13520 		dtrace_cred2priv(cr, &priv, &uid);
13521 
13522 		mutex_enter(&dtrace_lock);
13523 
13524 		if (cmd == DTRACEIOC_PROBEMATCH) {
13525 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13526 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13527 				    (m = dtrace_match_probe(probe, &pkey,
13528 				    priv, uid)) != 0)
13529 					break;
13530 			}
13531 
13532 			if (m < 0) {
13533 				mutex_exit(&dtrace_lock);
13534 				return (EINVAL);
13535 			}
13536 
13537 		} else {
13538 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
13539 				if ((probe = dtrace_probes[i - 1]) != NULL &&
13540 				    dtrace_match_priv(probe, priv, uid))
13541 					break;
13542 			}
13543 		}
13544 
13545 		if (probe == NULL) {
13546 			mutex_exit(&dtrace_lock);
13547 			return (ESRCH);
13548 		}
13549 
13550 		dtrace_probe_description(probe, &desc);
13551 		mutex_exit(&dtrace_lock);
13552 
13553 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13554 			return (EFAULT);
13555 
13556 		return (0);
13557 	}
13558 
13559 	case DTRACEIOC_PROBEARG: {
13560 		dtrace_argdesc_t desc;
13561 		dtrace_probe_t *probe;
13562 		dtrace_provider_t *prov;
13563 
13564 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13565 			return (EFAULT);
13566 
13567 		if (desc.dtargd_id == DTRACE_IDNONE)
13568 			return (EINVAL);
13569 
13570 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
13571 			return (EINVAL);
13572 
13573 		mutex_enter(&dtrace_provider_lock);
13574 		mutex_enter(&mod_lock);
13575 		mutex_enter(&dtrace_lock);
13576 
13577 		if (desc.dtargd_id > dtrace_nprobes) {
13578 			mutex_exit(&dtrace_lock);
13579 			mutex_exit(&mod_lock);
13580 			mutex_exit(&dtrace_provider_lock);
13581 			return (EINVAL);
13582 		}
13583 
13584 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
13585 			mutex_exit(&dtrace_lock);
13586 			mutex_exit(&mod_lock);
13587 			mutex_exit(&dtrace_provider_lock);
13588 			return (EINVAL);
13589 		}
13590 
13591 		mutex_exit(&dtrace_lock);
13592 
13593 		prov = probe->dtpr_provider;
13594 
13595 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
13596 			/*
13597 			 * There isn't any typed information for this probe.
13598 			 * Set the argument number to DTRACE_ARGNONE.
13599 			 */
13600 			desc.dtargd_ndx = DTRACE_ARGNONE;
13601 		} else {
13602 			desc.dtargd_native[0] = '\0';
13603 			desc.dtargd_xlate[0] = '\0';
13604 			desc.dtargd_mapping = desc.dtargd_ndx;
13605 
13606 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
13607 			    probe->dtpr_id, probe->dtpr_arg, &desc);
13608 		}
13609 
13610 		mutex_exit(&mod_lock);
13611 		mutex_exit(&dtrace_provider_lock);
13612 
13613 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13614 			return (EFAULT);
13615 
13616 		return (0);
13617 	}
13618 
13619 	case DTRACEIOC_GO: {
13620 		processorid_t cpuid;
13621 		rval = dtrace_state_go(state, &cpuid);
13622 
13623 		if (rval != 0)
13624 			return (rval);
13625 
13626 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13627 			return (EFAULT);
13628 
13629 		return (0);
13630 	}
13631 
13632 	case DTRACEIOC_STOP: {
13633 		processorid_t cpuid;
13634 
13635 		mutex_enter(&dtrace_lock);
13636 		rval = dtrace_state_stop(state, &cpuid);
13637 		mutex_exit(&dtrace_lock);
13638 
13639 		if (rval != 0)
13640 			return (rval);
13641 
13642 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
13643 			return (EFAULT);
13644 
13645 		return (0);
13646 	}
13647 
13648 	case DTRACEIOC_DOFGET: {
13649 		dof_hdr_t hdr, *dof;
13650 		uint64_t len;
13651 
13652 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
13653 			return (EFAULT);
13654 
13655 		mutex_enter(&dtrace_lock);
13656 		dof = dtrace_dof_create(state);
13657 		mutex_exit(&dtrace_lock);
13658 
13659 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
13660 		rval = copyout(dof, (void *)arg, len);
13661 		dtrace_dof_destroy(dof);
13662 
13663 		return (rval == 0 ? 0 : EFAULT);
13664 	}
13665 
13666 	case DTRACEIOC_AGGSNAP:
13667 	case DTRACEIOC_BUFSNAP: {
13668 		dtrace_bufdesc_t desc;
13669 		caddr_t cached;
13670 		dtrace_buffer_t *buf;
13671 
13672 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
13673 			return (EFAULT);
13674 
13675 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
13676 			return (EINVAL);
13677 
13678 		mutex_enter(&dtrace_lock);
13679 
13680 		if (cmd == DTRACEIOC_BUFSNAP) {
13681 			buf = &state->dts_buffer[desc.dtbd_cpu];
13682 		} else {
13683 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
13684 		}
13685 
13686 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
13687 			size_t sz = buf->dtb_offset;
13688 
13689 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
13690 				mutex_exit(&dtrace_lock);
13691 				return (EBUSY);
13692 			}
13693 
13694 			/*
13695 			 * If this buffer has already been consumed, we're
13696 			 * going to indicate that there's nothing left here
13697 			 * to consume.
13698 			 */
13699 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
13700 				mutex_exit(&dtrace_lock);
13701 
13702 				desc.dtbd_size = 0;
13703 				desc.dtbd_drops = 0;
13704 				desc.dtbd_errors = 0;
13705 				desc.dtbd_oldest = 0;
13706 				sz = sizeof (desc);
13707 
13708 				if (copyout(&desc, (void *)arg, sz) != 0)
13709 					return (EFAULT);
13710 
13711 				return (0);
13712 			}
13713 
13714 			/*
13715 			 * If this is a ring buffer that has wrapped, we want
13716 			 * to copy the whole thing out.
13717 			 */
13718 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
13719 				dtrace_buffer_polish(buf);
13720 				sz = buf->dtb_size;
13721 			}
13722 
13723 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
13724 				mutex_exit(&dtrace_lock);
13725 				return (EFAULT);
13726 			}
13727 
13728 			desc.dtbd_size = sz;
13729 			desc.dtbd_drops = buf->dtb_drops;
13730 			desc.dtbd_errors = buf->dtb_errors;
13731 			desc.dtbd_oldest = buf->dtb_xamot_offset;
13732 
13733 			mutex_exit(&dtrace_lock);
13734 
13735 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13736 				return (EFAULT);
13737 
13738 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
13739 
13740 			return (0);
13741 		}
13742 
13743 		if (buf->dtb_tomax == NULL) {
13744 			ASSERT(buf->dtb_xamot == NULL);
13745 			mutex_exit(&dtrace_lock);
13746 			return (ENOENT);
13747 		}
13748 
13749 		cached = buf->dtb_tomax;
13750 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
13751 
13752 		dtrace_xcall(desc.dtbd_cpu,
13753 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
13754 
13755 		state->dts_errors += buf->dtb_xamot_errors;
13756 
13757 		/*
13758 		 * If the buffers did not actually switch, then the cross call
13759 		 * did not take place -- presumably because the given CPU is
13760 		 * not in the ready set.  If this is the case, we'll return
13761 		 * ENOENT.
13762 		 */
13763 		if (buf->dtb_tomax == cached) {
13764 			ASSERT(buf->dtb_xamot != cached);
13765 			mutex_exit(&dtrace_lock);
13766 			return (ENOENT);
13767 		}
13768 
13769 		ASSERT(cached == buf->dtb_xamot);
13770 
13771 		/*
13772 		 * We have our snapshot; now copy it out.
13773 		 */
13774 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
13775 		    buf->dtb_xamot_offset) != 0) {
13776 			mutex_exit(&dtrace_lock);
13777 			return (EFAULT);
13778 		}
13779 
13780 		desc.dtbd_size = buf->dtb_xamot_offset;
13781 		desc.dtbd_drops = buf->dtb_xamot_drops;
13782 		desc.dtbd_errors = buf->dtb_xamot_errors;
13783 		desc.dtbd_oldest = 0;
13784 
13785 		mutex_exit(&dtrace_lock);
13786 
13787 		/*
13788 		 * Finally, copy out the buffer description.
13789 		 */
13790 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
13791 			return (EFAULT);
13792 
13793 		return (0);
13794 	}
13795 
13796 	case DTRACEIOC_CONF: {
13797 		dtrace_conf_t conf;
13798 
13799 		bzero(&conf, sizeof (conf));
13800 		conf.dtc_difversion = DIF_VERSION;
13801 		conf.dtc_difintregs = DIF_DIR_NREGS;
13802 		conf.dtc_diftupregs = DIF_DTR_NREGS;
13803 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
13804 
13805 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
13806 			return (EFAULT);
13807 
13808 		return (0);
13809 	}
13810 
13811 	case DTRACEIOC_STATUS: {
13812 		dtrace_status_t stat;
13813 		dtrace_dstate_t *dstate;
13814 		int i, j;
13815 		uint64_t nerrs;
13816 
13817 		/*
13818 		 * See the comment in dtrace_state_deadman() for the reason
13819 		 * for setting dts_laststatus to INT64_MAX before setting
13820 		 * it to the correct value.
13821 		 */
13822 		state->dts_laststatus = INT64_MAX;
13823 		dtrace_membar_producer();
13824 		state->dts_laststatus = dtrace_gethrtime();
13825 
13826 		bzero(&stat, sizeof (stat));
13827 
13828 		mutex_enter(&dtrace_lock);
13829 
13830 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
13831 			mutex_exit(&dtrace_lock);
13832 			return (ENOENT);
13833 		}
13834 
13835 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
13836 			stat.dtst_exiting = 1;
13837 
13838 		nerrs = state->dts_errors;
13839 		dstate = &state->dts_vstate.dtvs_dynvars;
13840 
13841 		for (i = 0; i < NCPU; i++) {
13842 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
13843 
13844 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
13845 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
13846 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
13847 
13848 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
13849 				stat.dtst_filled++;
13850 
13851 			nerrs += state->dts_buffer[i].dtb_errors;
13852 
13853 			for (j = 0; j < state->dts_nspeculations; j++) {
13854 				dtrace_speculation_t *spec;
13855 				dtrace_buffer_t *buf;
13856 
13857 				spec = &state->dts_speculations[j];
13858 				buf = &spec->dtsp_buffer[i];
13859 				stat.dtst_specdrops += buf->dtb_xamot_drops;
13860 			}
13861 		}
13862 
13863 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
13864 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
13865 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
13866 		stat.dtst_dblerrors = state->dts_dblerrors;
13867 		stat.dtst_killed =
13868 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
13869 		stat.dtst_errors = nerrs;
13870 
13871 		mutex_exit(&dtrace_lock);
13872 
13873 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
13874 			return (EFAULT);
13875 
13876 		return (0);
13877 	}
13878 
13879 	case DTRACEIOC_FORMAT: {
13880 		dtrace_fmtdesc_t fmt;
13881 		char *str;
13882 		int len;
13883 
13884 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
13885 			return (EFAULT);
13886 
13887 		mutex_enter(&dtrace_lock);
13888 
13889 		if (fmt.dtfd_format == 0 ||
13890 		    fmt.dtfd_format > state->dts_nformats) {
13891 			mutex_exit(&dtrace_lock);
13892 			return (EINVAL);
13893 		}
13894 
13895 		/*
13896 		 * Format strings are allocated contiguously and they are
13897 		 * never freed; if a format index is less than the number
13898 		 * of formats, we can assert that the format map is non-NULL
13899 		 * and that the format for the specified index is non-NULL.
13900 		 */
13901 		ASSERT(state->dts_formats != NULL);
13902 		str = state->dts_formats[fmt.dtfd_format - 1];
13903 		ASSERT(str != NULL);
13904 
13905 		len = strlen(str) + 1;
13906 
13907 		if (len > fmt.dtfd_length) {
13908 			fmt.dtfd_length = len;
13909 
13910 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
13911 				mutex_exit(&dtrace_lock);
13912 				return (EINVAL);
13913 			}
13914 		} else {
13915 			if (copyout(str, fmt.dtfd_string, len) != 0) {
13916 				mutex_exit(&dtrace_lock);
13917 				return (EINVAL);
13918 			}
13919 		}
13920 
13921 		mutex_exit(&dtrace_lock);
13922 		return (0);
13923 	}
13924 
13925 	default:
13926 		break;
13927 	}
13928 
13929 	return (ENOTTY);
13930 }
13931 
13932 /*ARGSUSED*/
13933 static int
13934 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
13935 {
13936 	dtrace_state_t *state;
13937 
13938 	switch (cmd) {
13939 	case DDI_DETACH:
13940 		break;
13941 
13942 	case DDI_SUSPEND:
13943 		return (DDI_SUCCESS);
13944 
13945 	default:
13946 		return (DDI_FAILURE);
13947 	}
13948 
13949 	mutex_enter(&cpu_lock);
13950 	mutex_enter(&dtrace_provider_lock);
13951 	mutex_enter(&dtrace_lock);
13952 
13953 	ASSERT(dtrace_opens == 0);
13954 
13955 	if (dtrace_helpers > 0) {
13956 		mutex_exit(&dtrace_provider_lock);
13957 		mutex_exit(&dtrace_lock);
13958 		mutex_exit(&cpu_lock);
13959 		return (DDI_FAILURE);
13960 	}
13961 
13962 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
13963 		mutex_exit(&dtrace_provider_lock);
13964 		mutex_exit(&dtrace_lock);
13965 		mutex_exit(&cpu_lock);
13966 		return (DDI_FAILURE);
13967 	}
13968 
13969 	dtrace_provider = NULL;
13970 
13971 	if ((state = dtrace_anon_grab()) != NULL) {
13972 		/*
13973 		 * If there were ECBs on this state, the provider should
13974 		 * have not been allowed to detach; assert that there is
13975 		 * none.
13976 		 */
13977 		ASSERT(state->dts_necbs == 0);
13978 		dtrace_state_destroy(state);
13979 
13980 		/*
13981 		 * If we're being detached with anonymous state, we need to
13982 		 * indicate to the kernel debugger that DTrace is now inactive.
13983 		 */
13984 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
13985 	}
13986 
13987 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
13988 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
13989 	dtrace_cpu_init = NULL;
13990 	dtrace_helpers_cleanup = NULL;
13991 	dtrace_helpers_fork = NULL;
13992 	dtrace_cpustart_init = NULL;
13993 	dtrace_cpustart_fini = NULL;
13994 	dtrace_debugger_init = NULL;
13995 	dtrace_debugger_fini = NULL;
13996 	dtrace_kreloc_init = NULL;
13997 	dtrace_kreloc_fini = NULL;
13998 	dtrace_modload = NULL;
13999 	dtrace_modunload = NULL;
14000 
14001 	mutex_exit(&cpu_lock);
14002 
14003 	if (dtrace_helptrace_enabled) {
14004 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
14005 		dtrace_helptrace_buffer = NULL;
14006 	}
14007 
14008 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
14009 	dtrace_probes = NULL;
14010 	dtrace_nprobes = 0;
14011 
14012 	dtrace_hash_destroy(dtrace_bymod);
14013 	dtrace_hash_destroy(dtrace_byfunc);
14014 	dtrace_hash_destroy(dtrace_byname);
14015 	dtrace_bymod = NULL;
14016 	dtrace_byfunc = NULL;
14017 	dtrace_byname = NULL;
14018 
14019 	kmem_cache_destroy(dtrace_state_cache);
14020 	vmem_destroy(dtrace_minor);
14021 	vmem_destroy(dtrace_arena);
14022 
14023 	if (dtrace_toxrange != NULL) {
14024 		kmem_free(dtrace_toxrange,
14025 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
14026 		dtrace_toxrange = NULL;
14027 		dtrace_toxranges = 0;
14028 		dtrace_toxranges_max = 0;
14029 	}
14030 
14031 	ddi_remove_minor_node(dtrace_devi, NULL);
14032 	dtrace_devi = NULL;
14033 
14034 	ddi_soft_state_fini(&dtrace_softstate);
14035 
14036 	ASSERT(dtrace_vtime_references == 0);
14037 	ASSERT(dtrace_opens == 0);
14038 	ASSERT(dtrace_retained == NULL);
14039 
14040 	mutex_exit(&dtrace_lock);
14041 	mutex_exit(&dtrace_provider_lock);
14042 
14043 	/*
14044 	 * We don't destroy the task queue until after we have dropped our
14045 	 * locks (taskq_destroy() may block on running tasks).  To prevent
14046 	 * attempting to do work after we have effectively detached but before
14047 	 * the task queue has been destroyed, all tasks dispatched via the
14048 	 * task queue must check that DTrace is still attached before
14049 	 * performing any operation.
14050 	 */
14051 	taskq_destroy(dtrace_taskq);
14052 	dtrace_taskq = NULL;
14053 
14054 	return (DDI_SUCCESS);
14055 }
14056 
14057 /*ARGSUSED*/
14058 static int
14059 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
14060 {
14061 	int error;
14062 
14063 	switch (infocmd) {
14064 	case DDI_INFO_DEVT2DEVINFO:
14065 		*result = (void *)dtrace_devi;
14066 		error = DDI_SUCCESS;
14067 		break;
14068 	case DDI_INFO_DEVT2INSTANCE:
14069 		*result = (void *)0;
14070 		error = DDI_SUCCESS;
14071 		break;
14072 	default:
14073 		error = DDI_FAILURE;
14074 	}
14075 	return (error);
14076 }
14077 
14078 static struct cb_ops dtrace_cb_ops = {
14079 	dtrace_open,		/* open */
14080 	dtrace_close,		/* close */
14081 	nulldev,		/* strategy */
14082 	nulldev,		/* print */
14083 	nodev,			/* dump */
14084 	nodev,			/* read */
14085 	nodev,			/* write */
14086 	dtrace_ioctl,		/* ioctl */
14087 	nodev,			/* devmap */
14088 	nodev,			/* mmap */
14089 	nodev,			/* segmap */
14090 	nochpoll,		/* poll */
14091 	ddi_prop_op,		/* cb_prop_op */
14092 	0,			/* streamtab  */
14093 	D_NEW | D_MP		/* Driver compatibility flag */
14094 };
14095 
14096 static struct dev_ops dtrace_ops = {
14097 	DEVO_REV,		/* devo_rev */
14098 	0,			/* refcnt */
14099 	dtrace_info,		/* get_dev_info */
14100 	nulldev,		/* identify */
14101 	nulldev,		/* probe */
14102 	dtrace_attach,		/* attach */
14103 	dtrace_detach,		/* detach */
14104 	nodev,			/* reset */
14105 	&dtrace_cb_ops,		/* driver operations */
14106 	NULL,			/* bus operations */
14107 	nodev			/* dev power */
14108 };
14109 
14110 static struct modldrv modldrv = {
14111 	&mod_driverops,		/* module type (this is a pseudo driver) */
14112 	"Dynamic Tracing",	/* name of module */
14113 	&dtrace_ops,		/* driver ops */
14114 };
14115 
14116 static struct modlinkage modlinkage = {
14117 	MODREV_1,
14118 	(void *)&modldrv,
14119 	NULL
14120 };
14121 
14122 int
14123 _init(void)
14124 {
14125 	return (mod_install(&modlinkage));
14126 }
14127 
14128 int
14129 _info(struct modinfo *modinfop)
14130 {
14131 	return (mod_info(&modlinkage, modinfop));
14132 }
14133 
14134 int
14135 _fini(void)
14136 {
14137 	return (mod_remove(&modlinkage));
14138 }
14139