xref: /titanic_51/usr/src/uts/common/disp/ts.c (revision 67dbe2be0c0f1e2eb428b89088bb5667e8f0b9f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/cred.h>
34 #include <sys/proc.h>
35 #include <sys/session.h>
36 #include <sys/strsubr.h>
37 #include <sys/signal.h>
38 #include <sys/user.h>
39 #include <sys/priocntl.h>
40 #include <sys/class.h>
41 #include <sys/disp.h>
42 #include <sys/procset.h>
43 #include <sys/debug.h>
44 #include <sys/ts.h>
45 #include <sys/tspriocntl.h>
46 #include <sys/iapriocntl.h>
47 #include <sys/kmem.h>
48 #include <sys/errno.h>
49 #include <sys/cpuvar.h>
50 #include <sys/systm.h>		/* for lbolt */
51 #include <sys/vtrace.h>
52 #include <sys/vmsystm.h>
53 #include <sys/schedctl.h>
54 #include <sys/tnf_probe.h>
55 #include <sys/atomic.h>
56 #include <sys/policy.h>
57 #include <sys/sdt.h>
58 #include <sys/cpupart.h>
59 #include <vm/rm.h>
60 #include <vm/seg_kmem.h>
61 #include <sys/modctl.h>
62 #include <sys/cpucaps.h>
63 
64 static pri_t ts_init(id_t, int, classfuncs_t **);
65 
66 static struct sclass csw = {
67 	"TS",
68 	ts_init,
69 	0
70 };
71 
72 static struct modlsched modlsched = {
73 	&mod_schedops, "time sharing sched class", &csw
74 };
75 
76 static struct modlinkage modlinkage = {
77 	MODREV_1, (void *)&modlsched, NULL
78 };
79 
80 int
81 _init()
82 {
83 	return (mod_install(&modlinkage));
84 }
85 
86 int
87 _fini()
88 {
89 	return (EBUSY);		/* don't remove TS for now */
90 }
91 
92 int
93 _info(struct modinfo *modinfop)
94 {
95 	return (mod_info(&modlinkage, modinfop));
96 }
97 
98 /*
99  * Class specific code for the time-sharing class
100  */
101 
102 
103 /*
104  * Extern declarations for variables defined in the ts master file
105  */
106 #define	TSMAXUPRI 60
107 
108 pri_t	ts_maxupri = TSMAXUPRI;	/* max time-sharing user priority */
109 pri_t	ts_maxumdpri;		/* maximum user mode ts priority */
110 
111 pri_t	ia_maxupri = IAMAXUPRI;	/* max interactive user priority */
112 pri_t	ia_boost = IA_BOOST;	/* boost value for interactive */
113 
114 tsdpent_t  *ts_dptbl;	/* time-sharing disp parameter table */
115 pri_t	*ts_kmdpris;	/* array of global pris used by ts procs when */
116 			/*  sleeping or running in kernel after sleep */
117 
118 static id_t ia_cid;
119 
120 int ts_sleep_promote = 1;
121 
122 #define	tsmedumdpri	(ts_maxumdpri >> 1)
123 
124 #define	TS_NEWUMDPRI(tspp) \
125 { \
126 	pri_t pri; \
127 	pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \
128 	if (pri > ts_maxumdpri) \
129 		(tspp)->ts_umdpri = ts_maxumdpri; \
130 	else if (pri < 0) \
131 		(tspp)->ts_umdpri = 0; \
132 	else \
133 		(tspp)->ts_umdpri = pri; \
134 	ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \
135 }
136 
137 /*
138  * The tsproc_t structures are kept in an array of circular doubly linked
139  * lists.  A hash on the thread pointer is used to determine which list
140  * each thread should be placed.  Each list has a dummy "head" which is
141  * never removed, so the list is never empty.  ts_update traverses these
142  * lists to update the priorities of threads that have been waiting on
143  * the run queue.
144  */
145 
146 #define	TS_LISTS 16		/* number of lists, must be power of 2 */
147 
148 /* hash function, argument is a thread pointer */
149 #define	TS_LIST_HASH(tp)	(((uintptr_t)(tp) >> 9) & (TS_LISTS - 1))
150 
151 /* iterate to the next list */
152 #define	TS_LIST_NEXT(i)		(((i) + 1) & (TS_LISTS - 1))
153 
154 /*
155  * Insert thread into the appropriate tsproc list.
156  */
157 #define	TS_LIST_INSERT(tspp)				\
158 {							\
159 	int index = TS_LIST_HASH(tspp->ts_tp);		\
160 	kmutex_t *lockp = &ts_list_lock[index];		\
161 	tsproc_t *headp = &ts_plisthead[index];		\
162 	mutex_enter(lockp);				\
163 	tspp->ts_next = headp->ts_next;			\
164 	tspp->ts_prev = headp;				\
165 	headp->ts_next->ts_prev = tspp;			\
166 	headp->ts_next = tspp;				\
167 	mutex_exit(lockp);				\
168 }
169 
170 /*
171  * Remove thread from tsproc list.
172  */
173 #define	TS_LIST_DELETE(tspp)				\
174 {							\
175 	int index = TS_LIST_HASH(tspp->ts_tp);		\
176 	kmutex_t *lockp = &ts_list_lock[index];		\
177 	mutex_enter(lockp);				\
178 	tspp->ts_prev->ts_next = tspp->ts_next;		\
179 	tspp->ts_next->ts_prev = tspp->ts_prev;		\
180 	mutex_exit(lockp);				\
181 }
182 
183 
184 static int	ts_admin(caddr_t, cred_t *);
185 static int	ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
186 static int	ts_fork(kthread_t *, kthread_t *, void *);
187 static int	ts_getclinfo(void *);
188 static int	ts_getclpri(pcpri_t *);
189 static int	ts_parmsin(void *);
190 static int	ts_parmsout(void *, pc_vaparms_t *);
191 static int	ts_vaparmsin(void *, pc_vaparms_t *);
192 static int	ts_vaparmsout(void *, pc_vaparms_t *);
193 static int	ts_parmsset(kthread_t *, void *, id_t, cred_t *);
194 static void	ts_exit(kthread_t *);
195 static int	ts_donice(kthread_t *, cred_t *, int, int *);
196 static int	ts_doprio(kthread_t *, cred_t *, int, int *);
197 static void	ts_exitclass(void *);
198 static int	ts_canexit(kthread_t *, cred_t *);
199 static void	ts_forkret(kthread_t *, kthread_t *);
200 static void	ts_nullsys();
201 static void	ts_parmsget(kthread_t *, void *);
202 static void	ts_preempt(kthread_t *);
203 static void	ts_setrun(kthread_t *);
204 static void	ts_sleep(kthread_t *);
205 static pri_t	ts_swapin(kthread_t *, int);
206 static pri_t	ts_swapout(kthread_t *, int);
207 static void	ts_tick(kthread_t *);
208 static void	ts_trapret(kthread_t *);
209 static void	ts_update(void *);
210 static int	ts_update_list(int);
211 static void	ts_wakeup(kthread_t *);
212 static pri_t	ts_globpri(kthread_t *);
213 static void	ts_yield(kthread_t *);
214 extern tsdpent_t *ts_getdptbl(void);
215 extern pri_t	*ts_getkmdpris(void);
216 extern pri_t	td_getmaxumdpri(void);
217 static int	ts_alloc(void **, int);
218 static void	ts_free(void *);
219 
220 pri_t		ia_init(id_t, int, classfuncs_t **);
221 static int	ia_getclinfo(void *);
222 static int	ia_getclpri(pcpri_t *);
223 static int	ia_parmsin(void *);
224 static int	ia_vaparmsin(void *, pc_vaparms_t *);
225 static int	ia_vaparmsout(void *, pc_vaparms_t *);
226 static int	ia_parmsset(kthread_t *, void *, id_t, cred_t *);
227 static void	ia_parmsget(kthread_t *, void *);
228 static void	ia_set_process_group(pid_t, pid_t, pid_t);
229 
230 static void	ts_change_priority(kthread_t *, tsproc_t *);
231 
232 extern pri_t	ts_maxkmdpri;	/* maximum kernel mode ts priority */
233 static pri_t	ts_maxglobpri;	/* maximum global priority used by ts class */
234 static kmutex_t	ts_dptblock;	/* protects time sharing dispatch table */
235 static kmutex_t	ts_list_lock[TS_LISTS];	/* protects tsproc lists */
236 static tsproc_t	ts_plisthead[TS_LISTS];	/* dummy tsproc at head of lists */
237 
238 static gid_t	IA_gid = 0;
239 
240 static struct classfuncs ts_classfuncs = {
241 	/* class functions */
242 	ts_admin,
243 	ts_getclinfo,
244 	ts_parmsin,
245 	ts_parmsout,
246 	ts_vaparmsin,
247 	ts_vaparmsout,
248 	ts_getclpri,
249 	ts_alloc,
250 	ts_free,
251 
252 	/* thread functions */
253 	ts_enterclass,
254 	ts_exitclass,
255 	ts_canexit,
256 	ts_fork,
257 	ts_forkret,
258 	ts_parmsget,
259 	ts_parmsset,
260 	ts_nullsys,	/* stop */
261 	ts_exit,
262 	ts_nullsys,	/* active */
263 	ts_nullsys,	/* inactive */
264 	ts_swapin,
265 	ts_swapout,
266 	ts_trapret,
267 	ts_preempt,
268 	ts_setrun,
269 	ts_sleep,
270 	ts_tick,
271 	ts_wakeup,
272 	ts_donice,
273 	ts_globpri,
274 	ts_nullsys,	/* set_process_group */
275 	ts_yield,
276 	ts_doprio,
277 };
278 
279 /*
280  * ia_classfuncs is used for interactive class threads; IA threads are stored
281  * on the same class list as TS threads, and most of the class functions are
282  * identical, but a few have different enough functionality to require their
283  * own functions.
284  */
285 static struct classfuncs ia_classfuncs = {
286 	/* class functions */
287 	ts_admin,
288 	ia_getclinfo,
289 	ia_parmsin,
290 	ts_parmsout,
291 	ia_vaparmsin,
292 	ia_vaparmsout,
293 	ia_getclpri,
294 	ts_alloc,
295 	ts_free,
296 
297 	/* thread functions */
298 	ts_enterclass,
299 	ts_exitclass,
300 	ts_canexit,
301 	ts_fork,
302 	ts_forkret,
303 	ia_parmsget,
304 	ia_parmsset,
305 	ts_nullsys,	/* stop */
306 	ts_exit,
307 	ts_nullsys,	/* active */
308 	ts_nullsys,	/* inactive */
309 	ts_swapin,
310 	ts_swapout,
311 	ts_trapret,
312 	ts_preempt,
313 	ts_setrun,
314 	ts_sleep,
315 	ts_tick,
316 	ts_wakeup,
317 	ts_donice,
318 	ts_globpri,
319 	ia_set_process_group,
320 	ts_yield,
321 	ts_doprio,
322 };
323 
324 
325 /*
326  * Time sharing class initialization.  Called by dispinit() at boot time.
327  * We can ignore the clparmsz argument since we know that the smallest
328  * possible parameter buffer is big enough for us.
329  */
330 /* ARGSUSED */
331 static pri_t
332 ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
333 {
334 	int i;
335 	extern pri_t ts_getmaxumdpri(void);
336 
337 	ts_dptbl = ts_getdptbl();
338 	ts_kmdpris = ts_getkmdpris();
339 	ts_maxumdpri = ts_getmaxumdpri();
340 	ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri);
341 
342 	/*
343 	 * Initialize the tsproc lists.
344 	 */
345 	for (i = 0; i < TS_LISTS; i++) {
346 		ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev =
347 		    &ts_plisthead[i];
348 	}
349 
350 	/*
351 	 * We're required to return a pointer to our classfuncs
352 	 * structure and the highest global priority value we use.
353 	 */
354 	*clfuncspp = &ts_classfuncs;
355 	return (ts_maxglobpri);
356 }
357 
358 
359 /*
360  * Interactive class scheduler initialization
361  */
362 /* ARGSUSED */
363 pri_t
364 ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
365 {
366 	/*
367 	 * We're required to return a pointer to our classfuncs
368 	 * structure and the highest global priority value we use.
369 	 */
370 	ia_cid = cid;
371 	*clfuncspp = &ia_classfuncs;
372 	return (ts_maxglobpri);
373 }
374 
375 
376 /*
377  * Get or reset the ts_dptbl values per the user's request.
378  */
379 static int
380 ts_admin(caddr_t uaddr, cred_t *reqpcredp)
381 {
382 	tsadmin_t	tsadmin;
383 	tsdpent_t	*tmpdpp;
384 	int		userdpsz;
385 	int		i;
386 	size_t		tsdpsz;
387 
388 	if (get_udatamodel() == DATAMODEL_NATIVE) {
389 		if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t)))
390 			return (EFAULT);
391 	}
392 #ifdef _SYSCALL32_IMPL
393 	else {
394 		/* get tsadmin struct from ILP32 caller */
395 		tsadmin32_t tsadmin32;
396 		if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t)))
397 			return (EFAULT);
398 		tsadmin.ts_dpents =
399 		    (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents;
400 		tsadmin.ts_ndpents = tsadmin32.ts_ndpents;
401 		tsadmin.ts_cmd = tsadmin32.ts_cmd;
402 	}
403 #endif /* _SYSCALL32_IMPL */
404 
405 	tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t);
406 
407 	switch (tsadmin.ts_cmd) {
408 	case TS_GETDPSIZE:
409 		tsadmin.ts_ndpents = ts_maxumdpri + 1;
410 
411 		if (get_udatamodel() == DATAMODEL_NATIVE) {
412 			if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
413 				return (EFAULT);
414 		}
415 #ifdef _SYSCALL32_IMPL
416 		else {
417 			/* return tsadmin struct to ILP32 caller */
418 			tsadmin32_t tsadmin32;
419 			tsadmin32.ts_dpents =
420 			    (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
421 			tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
422 			tsadmin32.ts_cmd = tsadmin.ts_cmd;
423 			if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
424 				return (EFAULT);
425 		}
426 #endif /* _SYSCALL32_IMPL */
427 		break;
428 
429 	case TS_GETDPTBL:
430 		userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t),
431 		    tsdpsz);
432 		if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz))
433 			return (EFAULT);
434 
435 		tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t);
436 
437 		if (get_udatamodel() == DATAMODEL_NATIVE) {
438 			if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
439 				return (EFAULT);
440 		}
441 #ifdef _SYSCALL32_IMPL
442 		else {
443 			/* return tsadmin struct to ILP32 callers */
444 			tsadmin32_t tsadmin32;
445 			tsadmin32.ts_dpents =
446 			    (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
447 			tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
448 			tsadmin32.ts_cmd = tsadmin.ts_cmd;
449 			if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
450 				return (EFAULT);
451 		}
452 #endif /* _SYSCALL32_IMPL */
453 		break;
454 
455 	case TS_SETDPTBL:
456 		/*
457 		 * We require that the requesting process has sufficient
458 		 * priveleges.  We also require that the table supplied by
459 		 * the user exactly match the current ts_dptbl in size.
460 		 */
461 		if (secpolicy_dispadm(reqpcredp) != 0)
462 			return (EPERM);
463 
464 		if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) {
465 			return (EINVAL);
466 		}
467 
468 		/*
469 		 * We read the user supplied table into a temporary buffer
470 		 * where it is validated before being copied over the
471 		 * ts_dptbl.
472 		 */
473 		tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP);
474 		if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp,
475 		    tsdpsz)) {
476 			kmem_free(tmpdpp, tsdpsz);
477 			return (EFAULT);
478 		}
479 		for (i = 0; i < tsadmin.ts_ndpents; i++) {
480 
481 			/*
482 			 * Validate the user supplied values.  All we are doing
483 			 * here is verifying that the values are within their
484 			 * allowable ranges and will not panic the system.  We
485 			 * make no attempt to ensure that the resulting
486 			 * configuration makes sense or results in reasonable
487 			 * performance.
488 			 */
489 			if (tmpdpp[i].ts_quantum <= 0) {
490 				kmem_free(tmpdpp, tsdpsz);
491 				return (EINVAL);
492 			}
493 			if (tmpdpp[i].ts_tqexp > ts_maxumdpri ||
494 			    tmpdpp[i].ts_tqexp < 0) {
495 				kmem_free(tmpdpp, tsdpsz);
496 				return (EINVAL);
497 			}
498 			if (tmpdpp[i].ts_slpret > ts_maxumdpri ||
499 			    tmpdpp[i].ts_slpret < 0) {
500 				kmem_free(tmpdpp, tsdpsz);
501 				return (EINVAL);
502 			}
503 			if (tmpdpp[i].ts_maxwait < 0) {
504 				kmem_free(tmpdpp, tsdpsz);
505 				return (EINVAL);
506 			}
507 			if (tmpdpp[i].ts_lwait > ts_maxumdpri ||
508 			    tmpdpp[i].ts_lwait < 0) {
509 				kmem_free(tmpdpp, tsdpsz);
510 				return (EINVAL);
511 			}
512 		}
513 
514 		/*
515 		 * Copy the user supplied values over the current ts_dptbl
516 		 * values.  The ts_globpri member is read-only so we don't
517 		 * overwrite it.
518 		 */
519 		mutex_enter(&ts_dptblock);
520 		for (i = 0; i < tsadmin.ts_ndpents; i++) {
521 			ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum;
522 			ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp;
523 			ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret;
524 			ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait;
525 			ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait;
526 		}
527 		mutex_exit(&ts_dptblock);
528 		kmem_free(tmpdpp, tsdpsz);
529 		break;
530 
531 	default:
532 		return (EINVAL);
533 	}
534 	return (0);
535 }
536 
537 
538 /*
539  * Allocate a time-sharing class specific thread structure and
540  * initialize it with the parameters supplied. Also move the thread
541  * to specified time-sharing priority.
542  */
543 static int
544 ts_enterclass(kthread_t *t, id_t cid, void *parmsp,
545 	cred_t *reqpcredp, void *bufp)
546 {
547 	tsparms_t	*tsparmsp = (tsparms_t *)parmsp;
548 	tsproc_t	*tspp;
549 	pri_t		reqtsuprilim;
550 	pri_t		reqtsupri;
551 	static uint32_t	tspexists = 0;	/* set on first occurrence of */
552 					/*   a time-sharing process */
553 
554 	tspp = (tsproc_t *)bufp;
555 	ASSERT(tspp != NULL);
556 
557 	/*
558 	 * Initialize the tsproc structure.
559 	 */
560 	tspp->ts_cpupri = tsmedumdpri;
561 	if (cid == ia_cid) {
562 		/*
563 		 * Check to make sure caller is either privileged or the
564 		 * window system.  When the window system is converted
565 		 * to using privileges, the second check can go away.
566 		 */
567 		if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
568 		    secpolicy_setpriority(reqpcredp) != 0)
569 			return (EPERM);
570 		/*
571 		 * Belongs to IA "class", so set appropriate flags.
572 		 * Mark as 'on' so it will not be a swap victim
573 		 * while forking.
574 		 */
575 		tspp->ts_flags = TSIA | TSIASET;
576 		tspp->ts_boost = ia_boost;
577 	} else {
578 		tspp->ts_flags = 0;
579 		tspp->ts_boost = 0;
580 	}
581 
582 	if (tsparmsp == NULL) {
583 		/*
584 		 * Use default values.
585 		 */
586 		tspp->ts_uprilim = tspp->ts_upri = 0;
587 		tspp->ts_nice = NZERO;
588 	} else {
589 		/*
590 		 * Use supplied values.
591 		 */
592 		if (tsparmsp->ts_uprilim == TS_NOCHANGE)
593 			reqtsuprilim = 0;
594 		else {
595 			if (tsparmsp->ts_uprilim > 0 &&
596 			    secpolicy_setpriority(reqpcredp) != 0)
597 				return (EPERM);
598 			reqtsuprilim = tsparmsp->ts_uprilim;
599 		}
600 
601 		if (tsparmsp->ts_upri == TS_NOCHANGE) {
602 			reqtsupri = reqtsuprilim;
603 		} else {
604 			if (tsparmsp->ts_upri > 0 &&
605 			    secpolicy_setpriority(reqpcredp) != 0)
606 				return (EPERM);
607 			/*
608 			 * Set the user priority to the requested value
609 			 * or the upri limit, whichever is lower.
610 			 */
611 			reqtsupri = tsparmsp->ts_upri;
612 			if (reqtsupri > reqtsuprilim)
613 				reqtsupri = reqtsuprilim;
614 		}
615 
616 
617 		tspp->ts_uprilim = reqtsuprilim;
618 		tspp->ts_upri = reqtsupri;
619 		tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri;
620 	}
621 	TS_NEWUMDPRI(tspp);
622 
623 	tspp->ts_dispwait = 0;
624 	tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
625 	tspp->ts_tp = t;
626 	cpucaps_sc_init(&tspp->ts_caps);
627 
628 	/*
629 	 * Reset priority. Process goes to a "user mode" priority
630 	 * here regardless of whether or not it has slept since
631 	 * entering the kernel.
632 	 */
633 	thread_lock(t);			/* get dispatcher lock on thread */
634 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
635 	t->t_cid = cid;
636 	t->t_cldata = (void *)tspp;
637 	t->t_schedflag &= ~TS_RUNQMATCH;
638 	ts_change_priority(t, tspp);
639 	thread_unlock(t);
640 
641 	/*
642 	 * Link new structure into tsproc list.
643 	 */
644 	TS_LIST_INSERT(tspp);
645 
646 	/*
647 	 * If this is the first time-sharing thread to occur since
648 	 * boot we set up the initial call to ts_update() here.
649 	 * Use an atomic compare-and-swap since that's easier and
650 	 * faster than a mutex (but check with an ordinary load first
651 	 * since most of the time this will already be done).
652 	 */
653 	if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0)
654 		(void) timeout(ts_update, NULL, hz);
655 
656 	return (0);
657 }
658 
659 
660 /*
661  * Free tsproc structure of thread.
662  */
663 static void
664 ts_exitclass(void *procp)
665 {
666 	tsproc_t *tspp = (tsproc_t *)procp;
667 
668 	/* Remove tsproc_t structure from list */
669 	TS_LIST_DELETE(tspp);
670 	kmem_free(tspp, sizeof (tsproc_t));
671 }
672 
673 /* ARGSUSED */
674 static int
675 ts_canexit(kthread_t *t, cred_t *cred)
676 {
677 	/*
678 	 * A thread can always leave a TS/IA class
679 	 */
680 	return (0);
681 }
682 
683 static int
684 ts_fork(kthread_t *t, kthread_t *ct, void *bufp)
685 {
686 	tsproc_t	*ptspp;		/* ptr to parent's tsproc structure */
687 	tsproc_t	*ctspp;		/* ptr to child's tsproc structure */
688 
689 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
690 
691 	ctspp = (tsproc_t *)bufp;
692 	ASSERT(ctspp != NULL);
693 	ptspp = (tsproc_t *)t->t_cldata;
694 	/*
695 	 * Initialize child's tsproc structure.
696 	 */
697 	thread_lock(t);
698 	ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum;
699 	ctspp->ts_cpupri = ptspp->ts_cpupri;
700 	ctspp->ts_boost = ptspp->ts_boost;
701 	ctspp->ts_uprilim = ptspp->ts_uprilim;
702 	ctspp->ts_upri = ptspp->ts_upri;
703 	TS_NEWUMDPRI(ctspp);
704 	ctspp->ts_nice = ptspp->ts_nice;
705 	ctspp->ts_dispwait = 0;
706 	ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE);
707 	ctspp->ts_tp = ct;
708 	cpucaps_sc_init(&ctspp->ts_caps);
709 	thread_unlock(t);
710 
711 	/*
712 	 * Link new structure into tsproc list.
713 	 */
714 	ct->t_cldata = (void *)ctspp;
715 	TS_LIST_INSERT(ctspp);
716 	return (0);
717 }
718 
719 
720 /*
721  * Child is placed at back of dispatcher queue and parent gives
722  * up processor so that the child runs first after the fork.
723  * This allows the child immediately execing to break the multiple
724  * use of copy on write pages with no disk home. The parent will
725  * get to steal them back rather than uselessly copying them.
726  */
727 static void
728 ts_forkret(kthread_t *t, kthread_t *ct)
729 {
730 	proc_t	*pp = ttoproc(t);
731 	proc_t	*cp = ttoproc(ct);
732 	tsproc_t *tspp;
733 
734 	ASSERT(t == curthread);
735 	ASSERT(MUTEX_HELD(&pidlock));
736 
737 	/*
738 	 * Grab the child's p_lock before dropping pidlock to ensure
739 	 * the process does not disappear before we set it running.
740 	 */
741 	mutex_enter(&cp->p_lock);
742 	mutex_exit(&pidlock);
743 	continuelwps(cp);
744 	mutex_exit(&cp->p_lock);
745 
746 	mutex_enter(&pp->p_lock);
747 	continuelwps(pp);
748 	mutex_exit(&pp->p_lock);
749 
750 	thread_lock(t);
751 	tspp = (tsproc_t *)(t->t_cldata);
752 	tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
753 	TS_NEWUMDPRI(tspp);
754 	tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
755 	tspp->ts_dispwait = 0;
756 	t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
757 	ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
758 	tspp->ts_flags &= ~TSKPRI;
759 	THREAD_TRANSITION(t);
760 	ts_setrun(t);
761 	thread_unlock(t);
762 
763 	swtch();
764 }
765 
766 
767 /*
768  * Get information about the time-sharing class into the buffer
769  * pointed to by tsinfop. The maximum configured user priority
770  * is the only information we supply.  ts_getclinfo() is called
771  * for TS threads, and ia_getclinfo() is called for IA threads.
772  */
773 static int
774 ts_getclinfo(void *infop)
775 {
776 	tsinfo_t *tsinfop = (tsinfo_t *)infop;
777 	tsinfop->ts_maxupri = ts_maxupri;
778 	return (0);
779 }
780 
781 static int
782 ia_getclinfo(void *infop)
783 {
784 	iainfo_t *iainfop = (iainfo_t *)infop;
785 	iainfop->ia_maxupri = ia_maxupri;
786 	return (0);
787 }
788 
789 
790 /*
791  * Return the user mode scheduling priority range.
792  */
793 static int
794 ts_getclpri(pcpri_t *pcprip)
795 {
796 	pcprip->pc_clpmax = ts_maxupri;
797 	pcprip->pc_clpmin = -ts_maxupri;
798 	return (0);
799 }
800 
801 
802 static int
803 ia_getclpri(pcpri_t *pcprip)
804 {
805 	pcprip->pc_clpmax = ia_maxupri;
806 	pcprip->pc_clpmin = -ia_maxupri;
807 	return (0);
808 }
809 
810 
811 static void
812 ts_nullsys()
813 {}
814 
815 
816 /*
817  * Get the time-sharing parameters of the thread pointed to by
818  * tsprocp into the buffer pointed to by tsparmsp.  ts_parmsget()
819  * is called for TS threads, and ia_parmsget() is called for IA
820  * threads.
821  */
822 static void
823 ts_parmsget(kthread_t *t, void *parmsp)
824 {
825 	tsproc_t *tspp = (tsproc_t *)t->t_cldata;
826 	tsparms_t *tsparmsp = (tsparms_t *)parmsp;
827 
828 	tsparmsp->ts_uprilim = tspp->ts_uprilim;
829 	tsparmsp->ts_upri = tspp->ts_upri;
830 }
831 
832 static void
833 ia_parmsget(kthread_t *t, void *parmsp)
834 {
835 	tsproc_t *tspp = (tsproc_t *)t->t_cldata;
836 	iaparms_t *iaparmsp = (iaparms_t *)parmsp;
837 
838 	iaparmsp->ia_uprilim = tspp->ts_uprilim;
839 	iaparmsp->ia_upri = tspp->ts_upri;
840 	if (tspp->ts_flags & TSIASET)
841 		iaparmsp->ia_mode = IA_SET_INTERACTIVE;
842 	else
843 		iaparmsp->ia_mode = IA_INTERACTIVE_OFF;
844 }
845 
846 
847 /*
848  * Check the validity of the time-sharing parameters in the buffer
849  * pointed to by tsparmsp.
850  * ts_parmsin() is called for TS threads, and ia_parmsin() is called
851  * for IA threads.
852  */
853 static int
854 ts_parmsin(void *parmsp)
855 {
856 	tsparms_t	*tsparmsp = (tsparms_t *)parmsp;
857 	/*
858 	 * Check validity of parameters.
859 	 */
860 	if ((tsparmsp->ts_uprilim > ts_maxupri ||
861 	    tsparmsp->ts_uprilim < -ts_maxupri) &&
862 	    tsparmsp->ts_uprilim != TS_NOCHANGE)
863 		return (EINVAL);
864 
865 	if ((tsparmsp->ts_upri > ts_maxupri ||
866 	    tsparmsp->ts_upri < -ts_maxupri) &&
867 	    tsparmsp->ts_upri != TS_NOCHANGE)
868 		return (EINVAL);
869 
870 	return (0);
871 }
872 
873 static int
874 ia_parmsin(void *parmsp)
875 {
876 	iaparms_t	*iaparmsp = (iaparms_t *)parmsp;
877 
878 	if ((iaparmsp->ia_uprilim > ia_maxupri ||
879 	    iaparmsp->ia_uprilim < -ia_maxupri) &&
880 	    iaparmsp->ia_uprilim != IA_NOCHANGE) {
881 		return (EINVAL);
882 	}
883 
884 	if ((iaparmsp->ia_upri > ia_maxupri ||
885 	    iaparmsp->ia_upri < -ia_maxupri) &&
886 	    iaparmsp->ia_upri != IA_NOCHANGE) {
887 		return (EINVAL);
888 	}
889 
890 	return (0);
891 }
892 
893 
894 /*
895  * Check the validity of the time-sharing parameters in the pc_vaparms_t
896  * structure vaparmsp and put them in the buffer pointed to by tsparmsp.
897  * pc_vaparms_t contains (key, value) pairs of parameter.
898  * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called
899  * for IA threads. ts_vaparmsin() is the variable parameter version of
900  * ts_parmsin() and ia_vaparmsin() is the variable parameter version of
901  * ia_parmsin().
902  */
903 static int
904 ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
905 {
906 	tsparms_t	*tsparmsp = (tsparms_t *)parmsp;
907 	int		priflag = 0;
908 	int		limflag = 0;
909 	uint_t		cnt;
910 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
911 
912 
913 	/*
914 	 * TS_NOCHANGE (-32768) is outside of the range of values for
915 	 * ts_uprilim and ts_upri. If the structure tsparms_t is changed,
916 	 * TS_NOCHANGE should be replaced by a flag word (in the same manner
917 	 * as in rt.c).
918 	 */
919 	tsparmsp->ts_uprilim = TS_NOCHANGE;
920 	tsparmsp->ts_upri = TS_NOCHANGE;
921 
922 	/*
923 	 * Get the varargs parameter and check validity of parameters.
924 	 */
925 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
926 		return (EINVAL);
927 
928 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
929 
930 		switch (vpp->pc_key) {
931 		case TS_KY_UPRILIM:
932 			if (limflag++)
933 				return (EINVAL);
934 			tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm;
935 			if (tsparmsp->ts_uprilim > ts_maxupri ||
936 			    tsparmsp->ts_uprilim < -ts_maxupri)
937 				return (EINVAL);
938 			break;
939 
940 		case TS_KY_UPRI:
941 			if (priflag++)
942 				return (EINVAL);
943 			tsparmsp->ts_upri = (pri_t)vpp->pc_parm;
944 			if (tsparmsp->ts_upri > ts_maxupri ||
945 			    tsparmsp->ts_upri < -ts_maxupri)
946 				return (EINVAL);
947 			break;
948 
949 		default:
950 			return (EINVAL);
951 		}
952 	}
953 
954 	if (vaparmsp->pc_vaparmscnt == 0) {
955 		/*
956 		 * Use default parameters.
957 		 */
958 		tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0;
959 	}
960 
961 	return (0);
962 }
963 
964 static int
965 ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
966 {
967 	iaparms_t	*iaparmsp = (iaparms_t *)parmsp;
968 	int		priflag = 0;
969 	int		limflag = 0;
970 	int		mflag = 0;
971 	uint_t		cnt;
972 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
973 
974 	/*
975 	 * IA_NOCHANGE (-32768) is outside of the range of values for
976 	 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is
977 	 * changed, IA_NOCHANGE should be replaced by a flag word (in the
978 	 * same manner as in rt.c).
979 	 */
980 	iaparmsp->ia_uprilim = IA_NOCHANGE;
981 	iaparmsp->ia_upri = IA_NOCHANGE;
982 	iaparmsp->ia_mode = IA_NOCHANGE;
983 
984 	/*
985 	 * Get the varargs parameter and check validity of parameters.
986 	 */
987 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
988 		return (EINVAL);
989 
990 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
991 
992 		switch (vpp->pc_key) {
993 		case IA_KY_UPRILIM:
994 			if (limflag++)
995 				return (EINVAL);
996 			iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm;
997 			if (iaparmsp->ia_uprilim > ia_maxupri ||
998 			    iaparmsp->ia_uprilim < -ia_maxupri)
999 				return (EINVAL);
1000 			break;
1001 
1002 		case IA_KY_UPRI:
1003 			if (priflag++)
1004 				return (EINVAL);
1005 			iaparmsp->ia_upri = (pri_t)vpp->pc_parm;
1006 			if (iaparmsp->ia_upri > ia_maxupri ||
1007 			    iaparmsp->ia_upri < -ia_maxupri)
1008 				return (EINVAL);
1009 			break;
1010 
1011 		case IA_KY_MODE:
1012 			if (mflag++)
1013 				return (EINVAL);
1014 			iaparmsp->ia_mode = (int)vpp->pc_parm;
1015 			if (iaparmsp->ia_mode != IA_SET_INTERACTIVE &&
1016 			    iaparmsp->ia_mode != IA_INTERACTIVE_OFF)
1017 				return (EINVAL);
1018 			break;
1019 
1020 		default:
1021 			return (EINVAL);
1022 		}
1023 	}
1024 
1025 	if (vaparmsp->pc_vaparmscnt == 0) {
1026 		/*
1027 		 * Use default parameters.
1028 		 */
1029 		iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0;
1030 		iaparmsp->ia_mode = IA_SET_INTERACTIVE;
1031 	}
1032 
1033 	return (0);
1034 }
1035 
1036 /*
1037  * Nothing to do here but return success.
1038  */
1039 /* ARGSUSED */
1040 static int
1041 ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1042 {
1043 	return (0);
1044 }
1045 
1046 
1047 /*
1048  * Copy all selected time-sharing class parameters to the user.
1049  * The parameters are specified by a key.
1050  */
1051 static int
1052 ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1053 {
1054 	tsparms_t	*tsprmsp = (tsparms_t *)prmsp;
1055 	int		priflag = 0;
1056 	int		limflag = 0;
1057 	uint_t		cnt;
1058 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
1059 
1060 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1061 
1062 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1063 		return (EINVAL);
1064 
1065 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1066 
1067 		switch (vpp->pc_key) {
1068 		case TS_KY_UPRILIM:
1069 			if (limflag++)
1070 				return (EINVAL);
1071 			if (copyout(&tsprmsp->ts_uprilim,
1072 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1073 				return (EFAULT);
1074 			break;
1075 
1076 		case TS_KY_UPRI:
1077 			if (priflag++)
1078 				return (EINVAL);
1079 			if (copyout(&tsprmsp->ts_upri,
1080 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1081 				return (EFAULT);
1082 			break;
1083 
1084 		default:
1085 			return (EINVAL);
1086 		}
1087 	}
1088 
1089 	return (0);
1090 }
1091 
1092 
1093 /*
1094  * Copy all selected interactive class parameters to the user.
1095  * The parameters are specified by a key.
1096  */
1097 static int
1098 ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1099 {
1100 	iaparms_t	*iaprmsp = (iaparms_t *)prmsp;
1101 	int		priflag = 0;
1102 	int		limflag = 0;
1103 	int		mflag = 0;
1104 	uint_t		cnt;
1105 	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
1106 
1107 	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1108 
1109 	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1110 		return (EINVAL);
1111 
1112 	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1113 
1114 		switch (vpp->pc_key) {
1115 		case IA_KY_UPRILIM:
1116 			if (limflag++)
1117 				return (EINVAL);
1118 			if (copyout(&iaprmsp->ia_uprilim,
1119 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1120 				return (EFAULT);
1121 			break;
1122 
1123 		case IA_KY_UPRI:
1124 			if (priflag++)
1125 				return (EINVAL);
1126 			if (copyout(&iaprmsp->ia_upri,
1127 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1128 				return (EFAULT);
1129 			break;
1130 
1131 		case IA_KY_MODE:
1132 			if (mflag++)
1133 				return (EINVAL);
1134 			if (copyout(&iaprmsp->ia_mode,
1135 			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int)))
1136 				return (EFAULT);
1137 			break;
1138 
1139 		default:
1140 			return (EINVAL);
1141 		}
1142 	}
1143 	return (0);
1144 }
1145 
1146 
1147 /*
1148  * Set the scheduling parameters of the thread pointed to by tsprocp
1149  * to those specified in the buffer pointed to by tsparmsp.
1150  * ts_parmsset() is called for TS threads, and ia_parmsset() is
1151  * called for IA threads.
1152  */
1153 /* ARGSUSED */
1154 static int
1155 ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1156 {
1157 	char		nice;
1158 	pri_t		reqtsuprilim;
1159 	pri_t		reqtsupri;
1160 	tsparms_t	*tsparmsp = (tsparms_t *)parmsp;
1161 	tsproc_t	*tspp = (tsproc_t *)tx->t_cldata;
1162 
1163 	ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1164 
1165 	if (tsparmsp->ts_uprilim == TS_NOCHANGE)
1166 		reqtsuprilim = tspp->ts_uprilim;
1167 	else
1168 		reqtsuprilim = tsparmsp->ts_uprilim;
1169 
1170 	if (tsparmsp->ts_upri == TS_NOCHANGE)
1171 		reqtsupri = tspp->ts_upri;
1172 	else
1173 		reqtsupri = tsparmsp->ts_upri;
1174 
1175 	/*
1176 	 * Make sure the user priority doesn't exceed the upri limit.
1177 	 */
1178 	if (reqtsupri > reqtsuprilim)
1179 		reqtsupri = reqtsuprilim;
1180 
1181 	/*
1182 	 * Basic permissions enforced by generic kernel code
1183 	 * for all classes require that a thread attempting
1184 	 * to change the scheduling parameters of a target
1185 	 * thread be privileged or have a real or effective
1186 	 * UID matching that of the target thread. We are not
1187 	 * called unless these basic permission checks have
1188 	 * already passed. The time-sharing class requires in
1189 	 * addition that the calling thread be privileged if it
1190 	 * is attempting to raise the upri limit above its current
1191 	 * value This may have been checked previously but if our
1192 	 * caller passed us a non-NULL credential pointer we assume
1193 	 * it hasn't and we check it here.
1194 	 */
1195 	if (reqpcredp != NULL &&
1196 	    reqtsuprilim > tspp->ts_uprilim &&
1197 	    secpolicy_setpriority(reqpcredp) != 0)
1198 		return (EPERM);
1199 
1200 	/*
1201 	 * Set ts_nice to the nice value corresponding to the user
1202 	 * priority we are setting.  Note that setting the nice field
1203 	 * of the parameter struct won't affect upri or nice.
1204 	 */
1205 	nice = NZERO - (reqtsupri * NZERO) / ts_maxupri;
1206 	if (nice >= 2 * NZERO)
1207 		nice = 2 * NZERO - 1;
1208 
1209 	thread_lock(tx);
1210 
1211 	tspp->ts_uprilim = reqtsuprilim;
1212 	tspp->ts_upri = reqtsupri;
1213 	TS_NEWUMDPRI(tspp);
1214 	tspp->ts_nice = nice;
1215 
1216 	if ((tspp->ts_flags & TSKPRI) != 0) {
1217 		thread_unlock(tx);
1218 		return (0);
1219 	}
1220 
1221 	tspp->ts_dispwait = 0;
1222 	ts_change_priority(tx, tspp);
1223 	thread_unlock(tx);
1224 	return (0);
1225 }
1226 
1227 
1228 static int
1229 ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1230 {
1231 	tsproc_t	*tspp = (tsproc_t *)tx->t_cldata;
1232 	iaparms_t	*iaparmsp = (iaparms_t *)parmsp;
1233 	proc_t		*p;
1234 	pid_t		pid, pgid, sid;
1235 	pid_t		on, off;
1236 	struct stdata 	*stp;
1237 	int		sess_held;
1238 
1239 	/*
1240 	 * Handle user priority changes
1241 	 */
1242 	if (iaparmsp->ia_mode == IA_NOCHANGE)
1243 		return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1244 
1245 	/*
1246 	 * Check permissions for changing modes.
1247 	 */
1248 
1249 	if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
1250 	    secpolicy_setpriority(reqpcredp) != 0) {
1251 		/*
1252 		 * Silently fail in case this is just a priocntl
1253 		 * call with upri and uprilim set to IA_NOCHANGE.
1254 		 */
1255 		return (0);
1256 	}
1257 
1258 	ASSERT(MUTEX_HELD(&pidlock));
1259 	if ((p = ttoproc(tx)) == NULL) {
1260 		return (0);
1261 	}
1262 	ASSERT(MUTEX_HELD(&p->p_lock));
1263 	if (p->p_stat == SIDL) {
1264 		return (0);
1265 	}
1266 	pid = p->p_pid;
1267 	sid = p->p_sessp->s_sid;
1268 	pgid = p->p_pgrp;
1269 	if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1270 		/*
1271 		 * session leaders must be turned on now so all processes
1272 		 * in the group controlling the tty will be turned on or off.
1273 		 * if the ia_mode is off for the session leader,
1274 		 * ia_set_process_group will return without setting the
1275 		 * processes in the group controlling the tty on.
1276 		 */
1277 		thread_lock(tx);
1278 		tspp->ts_flags |= TSIASET;
1279 		thread_unlock(tx);
1280 	}
1281 	mutex_enter(&p->p_sessp->s_lock);
1282 	sess_held = 1;
1283 	if ((pid == sid) && (p->p_sessp->s_vp != NULL) &&
1284 	    ((stp = p->p_sessp->s_vp->v_stream) != NULL)) {
1285 		if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) {
1286 			pgid = stp->sd_pgidp->pid_id;
1287 			sess_held = 0;
1288 			mutex_exit(&p->p_sessp->s_lock);
1289 			if (iaparmsp->ia_mode ==
1290 			    IA_SET_INTERACTIVE) {
1291 				off = 0;
1292 				on = pgid;
1293 			} else {
1294 				off = pgid;
1295 				on = 0;
1296 			}
1297 			TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN,
1298 			    "active chain:pid %d gid %d %p",
1299 			    pid, pgid, p);
1300 			ia_set_process_group(sid, off, on);
1301 		}
1302 	}
1303 	if (sess_held)
1304 		mutex_exit(&p->p_sessp->s_lock);
1305 
1306 	thread_lock(tx);
1307 
1308 	if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1309 		tspp->ts_flags |= TSIASET;
1310 		tspp->ts_boost = ia_boost;
1311 	} else {
1312 		tspp->ts_flags &= ~TSIASET;
1313 		tspp->ts_boost = -ia_boost;
1314 	}
1315 	thread_unlock(tx);
1316 
1317 	return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1318 }
1319 
1320 static void
1321 ts_exit(kthread_t *t)
1322 {
1323 	tsproc_t *tspp;
1324 
1325 	if (CPUCAPS_ON()) {
1326 		/*
1327 		 * A thread could be exiting in between clock ticks,
1328 		 * so we need to calculate how much CPU time it used
1329 		 * since it was charged last time.
1330 		 *
1331 		 * CPU caps are not enforced on exiting processes - it is
1332 		 * usually desirable to exit as soon as possible to free
1333 		 * resources.
1334 		 */
1335 		thread_lock(t);
1336 		tspp = (tsproc_t *)t->t_cldata;
1337 		(void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY);
1338 		thread_unlock(t);
1339 	}
1340 }
1341 
1342 /*
1343  * Return the global scheduling priority that would be assigned
1344  * to a thread entering the time-sharing class with the ts_upri.
1345  */
1346 static pri_t
1347 ts_globpri(kthread_t *t)
1348 {
1349 	tsproc_t *tspp;
1350 	pri_t	tspri;
1351 
1352 	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1353 	tspp = (tsproc_t *)t->t_cldata;
1354 	tspri = tsmedumdpri + tspp->ts_upri;
1355 	if (tspri > ts_maxumdpri)
1356 		tspri = ts_maxumdpri;
1357 	else if (tspri < 0)
1358 		tspri = 0;
1359 	return (ts_dptbl[tspri].ts_globpri);
1360 }
1361 
1362 /*
1363  * Arrange for thread to be placed in appropriate location
1364  * on dispatcher queue.
1365  *
1366  * This is called with the current thread in TS_ONPROC and locked.
1367  */
1368 static void
1369 ts_preempt(kthread_t *t)
1370 {
1371 	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1372 	klwp_t		*lwp = curthread->t_lwp;
1373 	pri_t		oldpri = t->t_pri;
1374 
1375 	ASSERT(t == curthread);
1376 	ASSERT(THREAD_LOCK_HELD(curthread));
1377 
1378 	/*
1379 	 * If preempted in the kernel, make sure the thread has
1380 	 * a kernel priority if needed.
1381 	 */
1382 	if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) {
1383 		tspp->ts_flags |= TSKPRI;
1384 		THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1385 		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1386 		t->t_trapret = 1;		/* so ts_trapret will run */
1387 		aston(t);
1388 	}
1389 
1390 	/*
1391 	 * This thread may be placed on wait queue by CPU Caps. In this case we
1392 	 * do not need to do anything until it is removed from the wait queue.
1393 	 * Do not enforce CPU caps on threads running at a kernel priority
1394 	 */
1395 	if (CPUCAPS_ON()) {
1396 		(void) cpucaps_charge(t, &tspp->ts_caps,
1397 		    CPUCAPS_CHARGE_ENFORCE);
1398 		if (!(tspp->ts_flags & TSKPRI) && CPUCAPS_ENFORCE(t))
1399 			return;
1400 	}
1401 
1402 	/*
1403 	 * If thread got preempted in the user-land then we know
1404 	 * it isn't holding any locks.  Mark it as swappable.
1405 	 */
1406 	ASSERT(t->t_schedflag & TS_DONT_SWAP);
1407 	if (lwp != NULL && lwp->lwp_state == LWP_USER)
1408 		t->t_schedflag &= ~TS_DONT_SWAP;
1409 
1410 	/*
1411 	 * Check to see if we're doing "preemption control" here.  If
1412 	 * we are, and if the user has requested that this thread not
1413 	 * be preempted, and if preemptions haven't been put off for
1414 	 * too long, let the preemption happen here but try to make
1415 	 * sure the thread is rescheduled as soon as possible.  We do
1416 	 * this by putting it on the front of the highest priority run
1417 	 * queue in the TS class.  If the preemption has been put off
1418 	 * for too long, clear the "nopreempt" bit and let the thread
1419 	 * be preempted.
1420 	 */
1421 	if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1422 		if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1423 			DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1424 			if (!(tspp->ts_flags & TSKPRI)) {
1425 				/*
1426 				 * If not already remembered, remember current
1427 				 * priority for restoration in ts_yield().
1428 				 */
1429 				if (!(tspp->ts_flags & TSRESTORE)) {
1430 					tspp->ts_scpri = t->t_pri;
1431 					tspp->ts_flags |= TSRESTORE;
1432 				}
1433 				THREAD_CHANGE_PRI(t, ts_maxumdpri);
1434 				t->t_schedflag |= TS_DONT_SWAP;
1435 			}
1436 			schedctl_set_yield(t, 1);
1437 			setfrontdq(t);
1438 			goto done;
1439 		} else {
1440 			if (tspp->ts_flags & TSRESTORE) {
1441 				THREAD_CHANGE_PRI(t, tspp->ts_scpri);
1442 				tspp->ts_flags &= ~TSRESTORE;
1443 			}
1444 			schedctl_set_nopreempt(t, 0);
1445 			DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1446 			TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt",
1447 			    /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1448 			    tnf_lwpid, lwpid, t->t_tid);
1449 			/*
1450 			 * Fall through and be preempted below.
1451 			 */
1452 		}
1453 	}
1454 
1455 	if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) {
1456 		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1457 		tspp->ts_dispwait = 0;
1458 		tspp->ts_flags &= ~TSBACKQ;
1459 		setbackdq(t);
1460 	} else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) {
1461 		tspp->ts_flags &= ~TSBACKQ;
1462 		setbackdq(t);
1463 	} else {
1464 		setfrontdq(t);
1465 	}
1466 
1467 done:
1468 	TRACE_2(TR_FAC_DISP, TR_PREEMPT,
1469 	    "preempt:tid %p old pri %d", t, oldpri);
1470 }
1471 
1472 static void
1473 ts_setrun(kthread_t *t)
1474 {
1475 	tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1476 
1477 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
1478 
1479 	if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1480 		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1481 		TS_NEWUMDPRI(tspp);
1482 		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1483 		tspp->ts_dispwait = 0;
1484 		if ((tspp->ts_flags & TSKPRI) == 0) {
1485 			THREAD_CHANGE_PRI(t,
1486 			    ts_dptbl[tspp->ts_umdpri].ts_globpri);
1487 			ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1488 		}
1489 	}
1490 
1491 	tspp->ts_flags &= ~TSBACKQ;
1492 
1493 	if (tspp->ts_flags & TSIA) {
1494 		if (tspp->ts_flags & TSIASET)
1495 			setfrontdq(t);
1496 		else
1497 			setbackdq(t);
1498 	} else {
1499 		if (t->t_disp_time != ddi_get_lbolt())
1500 			setbackdq(t);
1501 		else
1502 			setfrontdq(t);
1503 	}
1504 }
1505 
1506 
1507 /*
1508  * Prepare thread for sleep. We reset the thread priority so it will
1509  * run at the kernel priority level when it wakes up.
1510  */
1511 static void
1512 ts_sleep(kthread_t *t)
1513 {
1514 	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1515 	int		flags;
1516 	pri_t		old_pri = t->t_pri;
1517 
1518 	ASSERT(t == curthread);
1519 	ASSERT(THREAD_LOCK_HELD(t));
1520 
1521 	/*
1522 	 * Account for time spent on CPU before going to sleep.
1523 	 */
1524 	(void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
1525 
1526 	flags = tspp->ts_flags;
1527 	if (t->t_kpri_req) {
1528 		tspp->ts_flags = flags | TSKPRI;
1529 		THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1530 		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1531 		t->t_trapret = 1;		/* so ts_trapret will run */
1532 		aston(t);
1533 	} else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1534 		/*
1535 		 * If thread has blocked in the kernel (as opposed to
1536 		 * being merely preempted), recompute the user mode priority.
1537 		 */
1538 		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1539 		TS_NEWUMDPRI(tspp);
1540 		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1541 		tspp->ts_dispwait = 0;
1542 
1543 		THREAD_CHANGE_PRI(curthread,
1544 		    ts_dptbl[tspp->ts_umdpri].ts_globpri);
1545 		ASSERT(curthread->t_pri >= 0 &&
1546 		    curthread->t_pri <= ts_maxglobpri);
1547 		tspp->ts_flags = flags & ~TSKPRI;
1548 
1549 		if (DISP_MUST_SURRENDER(curthread))
1550 			cpu_surrender(curthread);
1551 	} else if (flags & TSKPRI) {
1552 		THREAD_CHANGE_PRI(curthread,
1553 		    ts_dptbl[tspp->ts_umdpri].ts_globpri);
1554 		ASSERT(curthread->t_pri >= 0 &&
1555 		    curthread->t_pri <= ts_maxglobpri);
1556 		tspp->ts_flags = flags & ~TSKPRI;
1557 
1558 		if (DISP_MUST_SURRENDER(curthread))
1559 			cpu_surrender(curthread);
1560 	}
1561 	t->t_stime = ddi_get_lbolt();		/* time stamp for the swapper */
1562 	TRACE_2(TR_FAC_DISP, TR_SLEEP,
1563 	    "sleep:tid %p old pri %d", t, old_pri);
1564 }
1565 
1566 
1567 /*
1568  * Return Values:
1569  *
1570  *	-1 if the thread is loaded or is not eligible to be swapped in.
1571  *
1572  *	effective priority of the specified thread based on swapout time
1573  *		and size of process (epri >= 0 , epri <= SHRT_MAX).
1574  */
1575 /* ARGSUSED */
1576 static pri_t
1577 ts_swapin(kthread_t *t, int flags)
1578 {
1579 	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1580 	long		epri = -1;
1581 	proc_t		*pp = ttoproc(t);
1582 
1583 	ASSERT(THREAD_LOCK_HELD(t));
1584 
1585 	/*
1586 	 * We know that pri_t is a short.
1587 	 * Be sure not to overrun its range.
1588 	 */
1589 	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1590 		time_t swapout_time;
1591 
1592 		swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
1593 		if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)))
1594 			epri = (long)DISP_PRIO(t) + swapout_time;
1595 		else {
1596 			/*
1597 			 * Threads which have been out for a long time,
1598 			 * have high user mode priority and are associated
1599 			 * with a small address space are more deserving
1600 			 */
1601 			epri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1602 			ASSERT(epri >= 0 && epri <= ts_maxumdpri);
1603 			epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
1604 		}
1605 		/*
1606 		 * Scale epri so SHRT_MAX/2 represents zero priority.
1607 		 */
1608 		epri += SHRT_MAX/2;
1609 		if (epri < 0)
1610 			epri = 0;
1611 		else if (epri > SHRT_MAX)
1612 			epri = SHRT_MAX;
1613 	}
1614 	return ((pri_t)epri);
1615 }
1616 
1617 /*
1618  * Return Values
1619  *	-1 if the thread isn't loaded or is not eligible to be swapped out.
1620  *
1621  *	effective priority of the specified thread based on if the swapper
1622  *		is in softswap or hardswap mode.
1623  *
1624  *		Softswap:  Return a low effective priority for threads
1625  *			   sleeping for more than maxslp secs.
1626  *
1627  *		Hardswap:  Return an effective priority such that threads
1628  *			   which have been in memory for a while and are
1629  *			   associated with a small address space are swapped
1630  *			   in before others.
1631  *
1632  *		(epri >= 0 , epri <= SHRT_MAX).
1633  */
1634 time_t	ts_minrun = 2;		/* XXX - t_pri becomes 59 within 2 secs */
1635 time_t	ts_minslp = 2;		/* min time on sleep queue for hardswap */
1636 
1637 static pri_t
1638 ts_swapout(kthread_t *t, int flags)
1639 {
1640 	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1641 	long		epri = -1;
1642 	proc_t		*pp = ttoproc(t);
1643 	time_t		swapin_time;
1644 
1645 	ASSERT(THREAD_LOCK_HELD(t));
1646 
1647 	if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) ||
1648 	    (t->t_proc_flag & TP_LWPEXIT) ||
1649 	    (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED |
1650 	    TS_ONPROC | TS_WAIT)) ||
1651 	    !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t))
1652 		return (-1);
1653 
1654 	ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
1655 
1656 	/*
1657 	 * We know that pri_t is a short.
1658 	 * Be sure not to overrun its range.
1659 	 */
1660 	swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
1661 	if (flags == SOFTSWAP) {
1662 		if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
1663 			epri = 0;
1664 		} else {
1665 			return ((pri_t)epri);
1666 		}
1667 	} else {
1668 		pri_t pri;
1669 
1670 		if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) ||
1671 		    (t->t_state == TS_RUN && swapin_time > ts_minrun)) {
1672 			pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1673 			ASSERT(pri >= 0 && pri <= ts_maxumdpri);
1674 			epri = swapin_time -
1675 			    (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
1676 		} else {
1677 			return ((pri_t)epri);
1678 		}
1679 	}
1680 
1681 	/*
1682 	 * Scale epri so SHRT_MAX/2 represents zero priority.
1683 	 */
1684 	epri += SHRT_MAX/2;
1685 	if (epri < 0)
1686 		epri = 0;
1687 	else if (epri > SHRT_MAX)
1688 		epri = SHRT_MAX;
1689 
1690 	return ((pri_t)epri);
1691 }
1692 
1693 /*
1694  * Check for time slice expiration.  If time slice has expired
1695  * move thread to priority specified in tsdptbl for time slice expiration
1696  * and set runrun to cause preemption.
1697  */
1698 static void
1699 ts_tick(kthread_t *t)
1700 {
1701 	tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1702 	klwp_t *lwp;
1703 	boolean_t call_cpu_surrender = B_FALSE;
1704 	pri_t	oldpri = t->t_pri;
1705 
1706 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1707 
1708 	thread_lock(t);
1709 
1710 	/*
1711 	 * Keep track of thread's project CPU usage.  Note that projects
1712 	 * get charged even when threads are running in the kernel.
1713 	 */
1714 	if (CPUCAPS_ON()) {
1715 		call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps,
1716 		    CPUCAPS_CHARGE_ENFORCE) && !(tspp->ts_flags & TSKPRI);
1717 	}
1718 
1719 	if ((tspp->ts_flags & TSKPRI) == 0) {
1720 		if (--tspp->ts_timeleft <= 0) {
1721 			pri_t	new_pri;
1722 
1723 			/*
1724 			 * If we're doing preemption control and trying to
1725 			 * avoid preempting this thread, just note that
1726 			 * the thread should yield soon and let it keep
1727 			 * running (unless it's been a while).
1728 			 */
1729 			if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1730 				if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1731 					DTRACE_SCHED1(schedctl__nopreempt,
1732 					    kthread_t *, t);
1733 					schedctl_set_yield(t, 1);
1734 					thread_unlock_nopreempt(t);
1735 					return;
1736 				}
1737 
1738 				TNF_PROBE_2(schedctl_failsafe,
1739 				    "schedctl TS ts_tick", /* CSTYLED */,
1740 				    tnf_pid, pid, ttoproc(t)->p_pid,
1741 				    tnf_lwpid, lwpid, t->t_tid);
1742 			}
1743 			tspp->ts_flags &= ~TSRESTORE;
1744 			tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
1745 			TS_NEWUMDPRI(tspp);
1746 			tspp->ts_dispwait = 0;
1747 			new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1748 			ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
1749 			/*
1750 			 * When the priority of a thread is changed,
1751 			 * it may be necessary to adjust its position
1752 			 * on a sleep queue or dispatch queue.
1753 			 * The function thread_change_pri accomplishes
1754 			 * this.
1755 			 */
1756 			if (thread_change_pri(t, new_pri, 0)) {
1757 				if ((t->t_schedflag & TS_LOAD) &&
1758 				    (lwp = t->t_lwp) &&
1759 				    lwp->lwp_state == LWP_USER)
1760 					t->t_schedflag &= ~TS_DONT_SWAP;
1761 				tspp->ts_timeleft =
1762 				    ts_dptbl[tspp->ts_cpupri].ts_quantum;
1763 			} else {
1764 				call_cpu_surrender = B_TRUE;
1765 			}
1766 			TRACE_2(TR_FAC_DISP, TR_TICK,
1767 			    "tick:tid %p old pri %d", t, oldpri);
1768 		} else if (t->t_state == TS_ONPROC &&
1769 		    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1770 			call_cpu_surrender = B_TRUE;
1771 		}
1772 	}
1773 
1774 	if (call_cpu_surrender) {
1775 		tspp->ts_flags |= TSBACKQ;
1776 		cpu_surrender(t);
1777 	}
1778 
1779 	thread_unlock_nopreempt(t);	/* clock thread can't be preempted */
1780 }
1781 
1782 
1783 /*
1784  * If thread is currently at a kernel mode priority (has slept)
1785  * we assign it the appropriate user mode priority and time quantum
1786  * here.  If we are lowering the thread's priority below that of
1787  * other runnable threads we will normally set runrun via cpu_surrender() to
1788  * cause preemption.
1789  */
1790 static void
1791 ts_trapret(kthread_t *t)
1792 {
1793 	tsproc_t	*tspp = (tsproc_t *)t->t_cldata;
1794 	cpu_t		*cp = CPU;
1795 	pri_t		old_pri = curthread->t_pri;
1796 
1797 	ASSERT(THREAD_LOCK_HELD(t));
1798 	ASSERT(t == curthread);
1799 	ASSERT(cp->cpu_dispthread == t);
1800 	ASSERT(t->t_state == TS_ONPROC);
1801 
1802 	t->t_kpri_req = 0;
1803 	if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1804 		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1805 		TS_NEWUMDPRI(tspp);
1806 		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1807 		tspp->ts_dispwait = 0;
1808 
1809 		/*
1810 		 * If thread has blocked in the kernel (as opposed to
1811 		 * being merely preempted), recompute the user mode priority.
1812 		 */
1813 		THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1814 		cp->cpu_dispatch_pri = DISP_PRIO(t);
1815 		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1816 		tspp->ts_flags &= ~TSKPRI;
1817 
1818 		if (DISP_MUST_SURRENDER(t))
1819 			cpu_surrender(t);
1820 	} else if (tspp->ts_flags & TSKPRI) {
1821 		/*
1822 		 * If thread has blocked in the kernel (as opposed to
1823 		 * being merely preempted), recompute the user mode priority.
1824 		 */
1825 		THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1826 		cp->cpu_dispatch_pri = DISP_PRIO(t);
1827 		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1828 		tspp->ts_flags &= ~TSKPRI;
1829 
1830 		if (DISP_MUST_SURRENDER(t))
1831 			cpu_surrender(t);
1832 	}
1833 
1834 	/*
1835 	 * Swapout lwp if the swapper is waiting for this thread to
1836 	 * reach a safe point.
1837 	 */
1838 	if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) {
1839 		thread_unlock(t);
1840 		swapout_lwp(ttolwp(t));
1841 		thread_lock(t);
1842 	}
1843 
1844 	TRACE_2(TR_FAC_DISP, TR_TRAPRET,
1845 	    "trapret:tid %p old pri %d", t, old_pri);
1846 }
1847 
1848 
1849 /*
1850  * Update the ts_dispwait values of all time sharing threads that
1851  * are currently runnable at a user mode priority and bump the priority
1852  * if ts_dispwait exceeds ts_maxwait.  Called once per second via
1853  * timeout which we reset here.
1854  *
1855  * There are several lists of time sharing threads broken up by a hash on
1856  * the thread pointer.  Each list has its own lock.  This avoids blocking
1857  * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update
1858  * runs.  ts_update traverses each list in turn.
1859  *
1860  * If multiple threads have their priorities updated to the same value,
1861  * the system implicitly favors the one that is updated first (since it
1862  * winds up first on the run queue).  To avoid this unfairness, the
1863  * traversal of threads starts at the list indicated by a marker.  When
1864  * threads in more than one list have their priorities updated, the marker
1865  * is moved.  This changes the order the threads will be placed on the run
1866  * queue the next time ts_update is called and preserves fairness over the
1867  * long run.  The marker doesn't need to be protected by a lock since it's
1868  * only accessed by ts_update, which is inherently single-threaded (only
1869  * one instance can be running at a time).
1870  */
1871 static void
1872 ts_update(void *arg)
1873 {
1874 	int		i;
1875 	int		new_marker = -1;
1876 	static int	ts_update_marker;
1877 
1878 	/*
1879 	 * Start with the ts_update_marker list, then do the rest.
1880 	 */
1881 	i = ts_update_marker;
1882 	do {
1883 		/*
1884 		 * If this is the first list after the current marker to
1885 		 * have threads with priorities updated, advance the marker
1886 		 * to this list for the next time ts_update runs.
1887 		 */
1888 		if (ts_update_list(i) && new_marker == -1 &&
1889 		    i != ts_update_marker) {
1890 			new_marker = i;
1891 		}
1892 	} while ((i = TS_LIST_NEXT(i)) != ts_update_marker);
1893 
1894 	/* advance marker for next ts_update call */
1895 	if (new_marker != -1)
1896 		ts_update_marker = new_marker;
1897 
1898 	(void) timeout(ts_update, arg, hz);
1899 }
1900 
1901 /*
1902  * Updates priority for a list of threads.  Returns 1 if the priority of
1903  * one of the threads was actually updated, 0 if none were for various
1904  * reasons (thread is no longer in the TS or IA class, isn't runnable,
1905  * hasn't waited long enough, has the preemption control no-preempt bit
1906  * set, etc.)
1907  */
1908 static int
1909 ts_update_list(int i)
1910 {
1911 	tsproc_t *tspp;
1912 	kthread_t *tx;
1913 	int updated = 0;
1914 
1915 	mutex_enter(&ts_list_lock[i]);
1916 	for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i];
1917 	    tspp = tspp->ts_next) {
1918 		tx = tspp->ts_tp;
1919 		/*
1920 		 * Lock the thread and verify state.
1921 		 */
1922 		thread_lock(tx);
1923 		/*
1924 		 * Skip the thread if it is no longer in the TS (or IA) class.
1925 		 */
1926 		if (tx->t_clfuncs != &ts_classfuncs.thread &&
1927 		    tx->t_clfuncs != &ia_classfuncs.thread)
1928 			goto next;
1929 		tspp->ts_dispwait++;
1930 		if ((tspp->ts_flags & TSKPRI) != 0)
1931 			goto next;
1932 		if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait)
1933 			goto next;
1934 		if (tx->t_schedctl && schedctl_get_nopreempt(tx))
1935 			goto next;
1936 		if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT &&
1937 		    (tx->t_state != TS_SLEEP || !ts_sleep_promote)) {
1938 			/* make next syscall/trap do CL_TRAPRET */
1939 			tx->t_trapret = 1;
1940 			aston(tx);
1941 			goto next;
1942 		}
1943 		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait;
1944 		TS_NEWUMDPRI(tspp);
1945 		tspp->ts_dispwait = 0;
1946 		updated = 1;
1947 
1948 		/*
1949 		 * Only dequeue it if needs to move; otherwise it should
1950 		 * just round-robin here.
1951 		 */
1952 		if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) {
1953 			pri_t oldpri = tx->t_pri;
1954 			ts_change_priority(tx, tspp);
1955 			TRACE_2(TR_FAC_DISP, TR_UPDATE,
1956 			    "update:tid %p old pri %d", tx, oldpri);
1957 		}
1958 next:
1959 		thread_unlock(tx);
1960 	}
1961 	mutex_exit(&ts_list_lock[i]);
1962 
1963 	return (updated);
1964 }
1965 
1966 /*
1967  * Processes waking up go to the back of their queue.  We don't
1968  * need to assign a time quantum here because thread is still
1969  * at a kernel mode priority and the time slicing is not done
1970  * for threads running in the kernel after sleeping.  The proper
1971  * time quantum will be assigned by ts_trapret before the thread
1972  * returns to user mode.
1973  */
1974 static void
1975 ts_wakeup(kthread_t *t)
1976 {
1977 	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1978 
1979 	ASSERT(THREAD_LOCK_HELD(t));
1980 
1981 	t->t_stime = ddi_get_lbolt();		/* time stamp for the swapper */
1982 
1983 	if (tspp->ts_flags & TSKPRI) {
1984 		tspp->ts_flags &= ~TSBACKQ;
1985 		if (tspp->ts_flags & TSIASET)
1986 			setfrontdq(t);
1987 		else
1988 			setbackdq(t);
1989 	} else if (t->t_kpri_req) {
1990 		/*
1991 		 * Give thread a priority boost if we were asked.
1992 		 */
1993 		tspp->ts_flags |= TSKPRI;
1994 		THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1995 		setbackdq(t);
1996 		t->t_trapret = 1;	/* so that ts_trapret will run */
1997 		aston(t);
1998 	} else {
1999 		if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
2000 			tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
2001 			TS_NEWUMDPRI(tspp);
2002 			tspp->ts_timeleft =
2003 			    ts_dptbl[tspp->ts_cpupri].ts_quantum;
2004 			tspp->ts_dispwait = 0;
2005 			THREAD_CHANGE_PRI(t,
2006 			    ts_dptbl[tspp->ts_umdpri].ts_globpri);
2007 			ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
2008 		}
2009 
2010 		tspp->ts_flags &= ~TSBACKQ;
2011 
2012 		if (tspp->ts_flags & TSIA) {
2013 			if (tspp->ts_flags & TSIASET)
2014 				setfrontdq(t);
2015 			else
2016 				setbackdq(t);
2017 		} else {
2018 			if (t->t_disp_time != ddi_get_lbolt())
2019 				setbackdq(t);
2020 			else
2021 				setfrontdq(t);
2022 		}
2023 	}
2024 }
2025 
2026 
2027 /*
2028  * When a thread yields, put it on the back of the run queue.
2029  */
2030 static void
2031 ts_yield(kthread_t *t)
2032 {
2033 	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
2034 
2035 	ASSERT(t == curthread);
2036 	ASSERT(THREAD_LOCK_HELD(t));
2037 
2038 	/*
2039 	 * Collect CPU usage spent before yielding
2040 	 */
2041 	(void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
2042 
2043 	/*
2044 	 * Clear the preemption control "yield" bit since the user is
2045 	 * doing a yield.
2046 	 */
2047 	if (t->t_schedctl)
2048 		schedctl_set_yield(t, 0);
2049 	/*
2050 	 * If ts_preempt() artifically increased the thread's priority
2051 	 * to avoid preemption, restore the original priority now.
2052 	 */
2053 	if (tspp->ts_flags & TSRESTORE) {
2054 		THREAD_CHANGE_PRI(t, tspp->ts_scpri);
2055 		tspp->ts_flags &= ~TSRESTORE;
2056 	}
2057 	if (tspp->ts_timeleft <= 0) {
2058 		/*
2059 		 * Time slice was artificially extended to avoid
2060 		 * preemption, so pretend we're preempting it now.
2061 		 */
2062 		DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft);
2063 		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
2064 		TS_NEWUMDPRI(tspp);
2065 		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
2066 		tspp->ts_dispwait = 0;
2067 		THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
2068 		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
2069 	}
2070 	tspp->ts_flags &= ~TSBACKQ;
2071 	setbackdq(t);
2072 }
2073 
2074 
2075 /*
2076  * Increment the nice value of the specified thread by incr and
2077  * return the new value in *retvalp.
2078  */
2079 static int
2080 ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2081 {
2082 	int		newnice;
2083 	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
2084 	tsparms_t	tsparms;
2085 
2086 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2087 
2088 	/* If there's no change to priority, just return current setting */
2089 	if (incr == 0) {
2090 		if (retvalp) {
2091 			*retvalp = tspp->ts_nice - NZERO;
2092 		}
2093 		return (0);
2094 	}
2095 
2096 	if ((incr < 0 || incr > 2 * NZERO) &&
2097 	    secpolicy_setpriority(cr) != 0)
2098 		return (EPERM);
2099 
2100 	/*
2101 	 * Specifying a nice increment greater than the upper limit of
2102 	 * 2 * NZERO - 1 will result in the thread's nice value being
2103 	 * set to the upper limit.  We check for this before computing
2104 	 * the new value because otherwise we could get overflow
2105 	 * if a privileged process specified some ridiculous increment.
2106 	 */
2107 	if (incr > 2 * NZERO - 1)
2108 		incr = 2 * NZERO - 1;
2109 
2110 	newnice = tspp->ts_nice + incr;
2111 	if (newnice >= 2 * NZERO)
2112 		newnice = 2 * NZERO - 1;
2113 	else if (newnice < 0)
2114 		newnice = 0;
2115 
2116 	tsparms.ts_uprilim = tsparms.ts_upri =
2117 	    -((newnice - NZERO) * ts_maxupri) / NZERO;
2118 	/*
2119 	 * Reset the uprilim and upri values of the thread.
2120 	 * Call ts_parmsset even if thread is interactive since we're
2121 	 * not changing mode.
2122 	 */
2123 	(void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL);
2124 
2125 	/*
2126 	 * Although ts_parmsset already reset ts_nice it may
2127 	 * not have been set to precisely the value calculated above
2128 	 * because ts_parmsset determines the nice value from the
2129 	 * user priority and we may have truncated during the integer
2130 	 * conversion from nice value to user priority and back.
2131 	 * We reset ts_nice to the value we calculated above.
2132 	 */
2133 	tspp->ts_nice = (char)newnice;
2134 
2135 	if (retvalp)
2136 		*retvalp = newnice - NZERO;
2137 	return (0);
2138 }
2139 
2140 /*
2141  * Increment the priority of the specified thread by incr and
2142  * return the new value in *retvalp.
2143  */
2144 static int
2145 ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2146 {
2147 	int		newpri;
2148 	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
2149 	tsparms_t	tsparms;
2150 
2151 	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2152 
2153 	/* If there's no change to the priority, just return current setting */
2154 	if (incr == 0) {
2155 		*retvalp = tspp->ts_upri;
2156 		return (0);
2157 	}
2158 
2159 	newpri = tspp->ts_upri + incr;
2160 	if (newpri > ts_maxupri || newpri < -ts_maxupri)
2161 		return (EINVAL);
2162 
2163 	*retvalp = newpri;
2164 	tsparms.ts_uprilim = tsparms.ts_upri = newpri;
2165 	/*
2166 	 * Reset the uprilim and upri values of the thread.
2167 	 * Call ts_parmsset even if thread is interactive since we're
2168 	 * not changing mode.
2169 	 */
2170 	return (ts_parmsset(t, &tsparms, 0, cr));
2171 }
2172 
2173 /*
2174  * ia_set_process_group marks foreground processes as interactive
2175  * and background processes as non-interactive iff the session
2176  * leader is interactive.  This routine is called from two places:
2177  *	strioctl:SPGRP when a new process group gets
2178  * 		control of the tty.
2179  *	ia_parmsset-when the process in question is a session leader.
2180  * ia_set_process_group assumes that pidlock is held by the caller,
2181  * either strioctl or priocntlsys.  If the caller is priocntlsys
2182  * (via ia_parmsset) then the p_lock of the session leader is held
2183  * and the code needs to be careful about acquiring other p_locks.
2184  */
2185 static void
2186 ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid)
2187 {
2188 	proc_t 		*leader, *fg, *bg;
2189 	tsproc_t	*tspp;
2190 	kthread_t	*tx;
2191 	int		plocked = 0;
2192 
2193 	ASSERT(MUTEX_HELD(&pidlock));
2194 
2195 	/*
2196 	 * see if the session leader is interactive AND
2197 	 * if it is currently "on" AND controlling a tty
2198 	 * iff it is then make the processes in the foreground
2199 	 * group interactive and the processes in the background
2200 	 * group non-interactive.
2201 	 */
2202 	if ((leader = (proc_t *)prfind(sid)) == NULL) {
2203 		return;
2204 	}
2205 	if (leader->p_stat == SIDL) {
2206 		return;
2207 	}
2208 	if ((tx = proctot(leader)) == NULL) {
2209 		return;
2210 	}
2211 	/*
2212 	 * XXX do all the threads in the leader
2213 	 */
2214 	if (tx->t_cid != ia_cid) {
2215 		return;
2216 	}
2217 	tspp = tx->t_cldata;
2218 	/*
2219 	 * session leaders that are not interactive need not have
2220 	 * any processing done for them.  They are typically shells
2221 	 * that do not have focus and are changing the process group
2222 	 * attatched to the tty, e.g. a process that is exiting
2223 	 */
2224 	mutex_enter(&leader->p_sessp->s_lock);
2225 	if (!(tspp->ts_flags & TSIASET) ||
2226 	    (leader->p_sessp->s_vp == NULL) ||
2227 	    (leader->p_sessp->s_vp->v_stream == NULL)) {
2228 		mutex_exit(&leader->p_sessp->s_lock);
2229 		return;
2230 	}
2231 	mutex_exit(&leader->p_sessp->s_lock);
2232 
2233 	/*
2234 	 * If we're already holding the leader's p_lock, we should use
2235 	 * mutex_tryenter instead of mutex_enter to avoid deadlocks from
2236 	 * lock ordering violations.
2237 	 */
2238 	if (mutex_owned(&leader->p_lock))
2239 		plocked = 1;
2240 
2241 	if (fg_pgid == 0)
2242 		goto skip;
2243 	/*
2244 	 * now look for all processes in the foreground group and
2245 	 * make them interactive
2246 	 */
2247 	for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) {
2248 		/*
2249 		 * if the process is SIDL it's begin forked, ignore it
2250 		 */
2251 		if (fg->p_stat == SIDL) {
2252 			continue;
2253 		}
2254 		/*
2255 		 * sesssion leaders must be turned on/off explicitly
2256 		 * not implicitly as happens to other members of
2257 		 * the process group.
2258 		 */
2259 		if (fg->p_pid  == fg->p_sessp->s_sid) {
2260 			continue;
2261 		}
2262 
2263 		TRACE_1(TR_FAC_IA, TR_GROUP_ON,
2264 		    "group on:proc %p", fg);
2265 
2266 		if (plocked) {
2267 			if (mutex_tryenter(&fg->p_lock) == 0)
2268 				continue;
2269 		} else {
2270 			mutex_enter(&fg->p_lock);
2271 		}
2272 
2273 		if ((tx = proctot(fg)) == NULL) {
2274 			mutex_exit(&fg->p_lock);
2275 			continue;
2276 		}
2277 		do {
2278 			thread_lock(tx);
2279 			/*
2280 			 * if this thread is not interactive continue
2281 			 */
2282 			if (tx->t_cid != ia_cid) {
2283 				thread_unlock(tx);
2284 				continue;
2285 			}
2286 			tspp = tx->t_cldata;
2287 			tspp->ts_flags |= TSIASET;
2288 			tspp->ts_boost = ia_boost;
2289 			TS_NEWUMDPRI(tspp);
2290 			if ((tspp->ts_flags & TSKPRI) != 0) {
2291 				thread_unlock(tx);
2292 				continue;
2293 			}
2294 			tspp->ts_dispwait = 0;
2295 			ts_change_priority(tx, tspp);
2296 			thread_unlock(tx);
2297 		} while ((tx = tx->t_forw) != fg->p_tlist);
2298 		mutex_exit(&fg->p_lock);
2299 	}
2300 skip:
2301 	if (bg_pgid == 0)
2302 		return;
2303 	for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) {
2304 		if (bg->p_stat == SIDL) {
2305 			continue;
2306 		}
2307 		/*
2308 		 * sesssion leaders must be turned off explicitly
2309 		 * not implicitly as happens to other members of
2310 		 * the process group.
2311 		 */
2312 		if (bg->p_pid == bg->p_sessp->s_sid) {
2313 			continue;
2314 		}
2315 
2316 		TRACE_1(TR_FAC_IA, TR_GROUP_OFF,
2317 		    "group off:proc %p", bg);
2318 
2319 		if (plocked) {
2320 			if (mutex_tryenter(&bg->p_lock) == 0)
2321 				continue;
2322 		} else {
2323 			mutex_enter(&bg->p_lock);
2324 		}
2325 
2326 		if ((tx = proctot(bg)) == NULL) {
2327 			mutex_exit(&bg->p_lock);
2328 			continue;
2329 		}
2330 		do {
2331 			thread_lock(tx);
2332 			/*
2333 			 * if this thread is not interactive continue
2334 			 */
2335 			if (tx->t_cid != ia_cid) {
2336 				thread_unlock(tx);
2337 				continue;
2338 			}
2339 			tspp = tx->t_cldata;
2340 			tspp->ts_flags &= ~TSIASET;
2341 			tspp->ts_boost = -ia_boost;
2342 			TS_NEWUMDPRI(tspp);
2343 			if ((tspp->ts_flags & TSKPRI) != 0) {
2344 				thread_unlock(tx);
2345 				continue;
2346 			}
2347 
2348 			tspp->ts_dispwait = 0;
2349 			ts_change_priority(tx, tspp);
2350 			thread_unlock(tx);
2351 		} while ((tx = tx->t_forw) != bg->p_tlist);
2352 		mutex_exit(&bg->p_lock);
2353 	}
2354 }
2355 
2356 
2357 static void
2358 ts_change_priority(kthread_t *t, tsproc_t *tspp)
2359 {
2360 	pri_t	new_pri;
2361 
2362 	ASSERT(THREAD_LOCK_HELD(t));
2363 	new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
2364 	ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
2365 	tspp->ts_flags &= ~TSRESTORE;
2366 	t->t_cpri = tspp->ts_upri;
2367 	if (t == curthread || t->t_state == TS_ONPROC) {
2368 		/* curthread is always onproc */
2369 		cpu_t	*cp = t->t_disp_queue->disp_cpu;
2370 		THREAD_CHANGE_PRI(t, new_pri);
2371 		if (t == cp->cpu_dispthread)
2372 			cp->cpu_dispatch_pri = DISP_PRIO(t);
2373 		if (DISP_MUST_SURRENDER(t)) {
2374 			tspp->ts_flags |= TSBACKQ;
2375 			cpu_surrender(t);
2376 		} else {
2377 			tspp->ts_timeleft =
2378 			    ts_dptbl[tspp->ts_cpupri].ts_quantum;
2379 		}
2380 	} else {
2381 		int	frontq;
2382 
2383 		frontq = (tspp->ts_flags & TSIASET) != 0;
2384 		/*
2385 		 * When the priority of a thread is changed,
2386 		 * it may be necessary to adjust its position
2387 		 * on a sleep queue or dispatch queue.
2388 		 * The function thread_change_pri accomplishes
2389 		 * this.
2390 		 */
2391 		if (thread_change_pri(t, new_pri, frontq)) {
2392 			/*
2393 			 * The thread was on a run queue. Reset
2394 			 * its CPU timeleft from the quantum
2395 			 * associated with the new priority.
2396 			 */
2397 			tspp->ts_timeleft =
2398 			    ts_dptbl[tspp->ts_cpupri].ts_quantum;
2399 		} else {
2400 			tspp->ts_flags |= TSBACKQ;
2401 		}
2402 	}
2403 }
2404 
2405 static int
2406 ts_alloc(void **p, int flag)
2407 {
2408 	void *bufp;
2409 	bufp = kmem_alloc(sizeof (tsproc_t), flag);
2410 	if (bufp == NULL) {
2411 		return (ENOMEM);
2412 	} else {
2413 		*p = bufp;
2414 		return (0);
2415 	}
2416 }
2417 
2418 static void
2419 ts_free(void *bufp)
2420 {
2421 	if (bufp)
2422 		kmem_free(bufp, sizeof (tsproc_t));
2423 }
2424