1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/signal.h> 32 #include <sys/stack.h> 33 #include <sys/pcb.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/errno.h> 38 #include <sys/cmn_err.h> 39 #include <sys/cred.h> 40 #include <sys/resource.h> 41 #include <sys/task.h> 42 #include <sys/project.h> 43 #include <sys/proc.h> 44 #include <sys/debug.h> 45 #include <sys/disp.h> 46 #include <sys/class.h> 47 #include <vm/seg_kmem.h> 48 #include <vm/seg_kp.h> 49 #include <sys/machlock.h> 50 #include <sys/kmem.h> 51 #include <sys/varargs.h> 52 #include <sys/turnstile.h> 53 #include <sys/poll.h> 54 #include <sys/vtrace.h> 55 #include <sys/callb.h> 56 #include <c2/audit.h> 57 #include <sys/tnf.h> 58 #include <sys/sobject.h> 59 #include <sys/cpupart.h> 60 #include <sys/pset.h> 61 #include <sys/door.h> 62 #include <sys/spl.h> 63 #include <sys/copyops.h> 64 #include <sys/rctl.h> 65 #include <sys/brand.h> 66 #include <sys/pool.h> 67 #include <sys/zone.h> 68 #include <sys/tsol/label.h> 69 #include <sys/tsol/tndb.h> 70 #include <sys/cpc_impl.h> 71 #include <sys/sdt.h> 72 #include <sys/reboot.h> 73 #include <sys/kdi.h> 74 #include <sys/waitq.h> 75 #include <sys/cpucaps.h> 76 77 struct kmem_cache *thread_cache; /* cache of free threads */ 78 struct kmem_cache *lwp_cache; /* cache of free lwps */ 79 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */ 80 81 /* 82 * allthreads is only for use by kmem_readers. All kernel loops can use 83 * the current thread as a start/end point. 84 */ 85 static kthread_t *allthreads = &t0; /* circular list of all threads */ 86 87 static kcondvar_t reaper_cv; /* synchronization var */ 88 kthread_t *thread_deathrow; /* circular list of reapable threads */ 89 kthread_t *lwp_deathrow; /* circular list of reapable threads */ 90 kmutex_t reaplock; /* protects lwp and thread deathrows */ 91 kmutex_t thread_free_lock; /* protects clock from reaper */ 92 int thread_reapcnt = 0; /* number of threads on deathrow */ 93 int lwp_reapcnt = 0; /* number of lwps on deathrow */ 94 int reaplimit = 16; /* delay reaping until reaplimit */ 95 96 extern int nthread; 97 98 id_t syscid; /* system scheduling class ID */ 99 void *segkp_thread; /* cookie for segkp pool */ 100 101 int lwp_cache_sz = 32; 102 int t_cache_sz = 8; 103 static kt_did_t next_t_id = 1; 104 105 /* 106 * Min/Max stack sizes for stack size parameters 107 */ 108 #define MAX_STKSIZE (32 * DEFAULTSTKSZ) 109 #define MIN_STKSIZE DEFAULTSTKSZ 110 111 /* 112 * default_stksize overrides lwp_default_stksize if it is set. 113 */ 114 int default_stksize; 115 int lwp_default_stksize; 116 117 static zone_key_t zone_thread_key; 118 119 /* 120 * forward declarations for internal thread specific data (tsd) 121 */ 122 static void *tsd_realloc(void *, size_t, size_t); 123 124 void thread_reaper(void); 125 126 /*ARGSUSED*/ 127 static int 128 turnstile_constructor(void *buf, void *cdrarg, int kmflags) 129 { 130 bzero(buf, sizeof (turnstile_t)); 131 return (0); 132 } 133 134 /*ARGSUSED*/ 135 static void 136 turnstile_destructor(void *buf, void *cdrarg) 137 { 138 turnstile_t *ts = buf; 139 140 ASSERT(ts->ts_free == NULL); 141 ASSERT(ts->ts_waiters == 0); 142 ASSERT(ts->ts_inheritor == NULL); 143 ASSERT(ts->ts_sleepq[0].sq_first == NULL); 144 ASSERT(ts->ts_sleepq[1].sq_first == NULL); 145 } 146 147 void 148 thread_init(void) 149 { 150 kthread_t *tp; 151 extern char sys_name[]; 152 extern void idle(); 153 struct cpu *cpu = CPU; 154 155 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL)); 156 157 #if defined(__i386) || defined(__amd64) 158 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 159 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0); 160 161 /* 162 * "struct _klwp" includes a "struct pcb", which includes a 163 * "struct fpu", which needs to be 16-byte aligned on amd64 164 * (and even on i386 for fxsave/fxrstor). 165 */ 166 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 167 16, NULL, NULL, NULL, NULL, NULL, 0); 168 #else 169 /* 170 * Allocate thread structures from static_arena. This prevents 171 * issues where a thread tries to relocate its own thread 172 * structure and touches it after the mapping has been suspended. 173 */ 174 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t), 175 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0); 176 177 lwp_stk_cache_init(); 178 179 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t), 180 0, NULL, NULL, NULL, NULL, NULL, 0); 181 #endif 182 183 turnstile_cache = kmem_cache_create("turnstile_cache", 184 sizeof (turnstile_t), 0, 185 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0); 186 187 label_init(); 188 cred_init(); 189 190 /* 191 * Initialize various resource management facilities. 192 */ 193 rctl_init(); 194 cpucaps_init(); 195 /* 196 * Zone_init() should be called before project_init() so that project ID 197 * for the first project is initialized correctly. 198 */ 199 zone_init(); 200 project_init(); 201 brand_init(); 202 task_init(); 203 tcache_init(); 204 pool_init(); 205 206 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 207 208 /* 209 * Originally, we had two parameters to set default stack 210 * size: one for lwp's (lwp_default_stksize), and one for 211 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz). 212 * Now we have a third parameter that overrides both if it is 213 * set to a legal stack size, called default_stksize. 214 */ 215 216 if (default_stksize == 0) { 217 default_stksize = DEFAULTSTKSZ; 218 } else if (default_stksize % PAGESIZE != 0 || 219 default_stksize > MAX_STKSIZE || 220 default_stksize < MIN_STKSIZE) { 221 cmn_err(CE_WARN, "Illegal stack size. Using %d", 222 (int)DEFAULTSTKSZ); 223 default_stksize = DEFAULTSTKSZ; 224 } else { 225 lwp_default_stksize = default_stksize; 226 } 227 228 if (lwp_default_stksize == 0) { 229 lwp_default_stksize = default_stksize; 230 } else if (lwp_default_stksize % PAGESIZE != 0 || 231 lwp_default_stksize > MAX_STKSIZE || 232 lwp_default_stksize < MIN_STKSIZE) { 233 cmn_err(CE_WARN, "Illegal stack size. Using %d", 234 default_stksize); 235 lwp_default_stksize = default_stksize; 236 } 237 238 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz, 239 lwp_default_stksize, 240 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED)); 241 242 segkp_thread = segkp_cache_init(segkp, t_cache_sz, 243 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON); 244 245 (void) getcid(sys_name, &syscid); 246 curthread->t_cid = syscid; /* current thread is t0 */ 247 248 /* 249 * Set up the first CPU's idle thread. 250 * It runs whenever the CPU has nothing worthwhile to do. 251 */ 252 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1); 253 cpu->cpu_idle_thread = tp; 254 tp->t_preempt = 1; 255 tp->t_disp_queue = cpu->cpu_disp; 256 ASSERT(tp->t_disp_queue != NULL); 257 tp->t_bound_cpu = cpu; 258 tp->t_affinitycnt = 1; 259 260 /* 261 * Registering a thread in the callback table is usually 262 * done in the initialization code of the thread. In this 263 * case, we do it right after thread creation to avoid 264 * blocking idle thread while registering itself. It also 265 * avoids the possibility of reregistration in case a CPU 266 * restarts its idle thread. 267 */ 268 CALLB_CPR_INIT_SAFE(tp, "idle"); 269 270 /* 271 * Create the thread_reaper daemon. From this point on, exited 272 * threads will get reaped. 273 */ 274 (void) thread_create(NULL, 0, (void (*)())thread_reaper, 275 NULL, 0, &p0, TS_RUN, minclsyspri); 276 277 /* 278 * Finish initializing the kernel memory allocator now that 279 * thread_create() is available. 280 */ 281 kmem_thread_init(); 282 283 if (boothowto & RB_DEBUG) 284 kdi_dvec_thravail(); 285 } 286 287 /* 288 * Create a thread. 289 * 290 * thread_create() blocks for memory if necessary. It never fails. 291 * 292 * If stk is NULL, the thread is created at the base of the stack 293 * and cannot be swapped. 294 */ 295 kthread_t * 296 thread_create( 297 caddr_t stk, 298 size_t stksize, 299 void (*proc)(), 300 void *arg, 301 size_t len, 302 proc_t *pp, 303 int state, 304 pri_t pri) 305 { 306 kthread_t *t; 307 extern struct classfuncs sys_classfuncs; 308 turnstile_t *ts; 309 310 /* 311 * Every thread keeps a turnstile around in case it needs to block. 312 * The only reason the turnstile is not simply part of the thread 313 * structure is that we may have to break the association whenever 314 * more than one thread blocks on a given synchronization object. 315 * From a memory-management standpoint, turnstiles are like the 316 * "attached mblks" that hang off dblks in the streams allocator. 317 */ 318 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP); 319 320 if (stk == NULL) { 321 /* 322 * alloc both thread and stack in segkp chunk 323 */ 324 325 if (stksize < default_stksize) 326 stksize = default_stksize; 327 328 if (stksize == default_stksize) { 329 stk = (caddr_t)segkp_cache_get(segkp_thread); 330 } else { 331 stksize = roundup(stksize, PAGESIZE); 332 stk = (caddr_t)segkp_get(segkp, stksize, 333 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED)); 334 } 335 336 ASSERT(stk != NULL); 337 338 /* 339 * The machine-dependent mutex code may require that 340 * thread pointers (since they may be used for mutex owner 341 * fields) have certain alignment requirements. 342 * PTR24_ALIGN is the size of the alignment quanta. 343 * XXX - assumes stack grows toward low addresses. 344 */ 345 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN) 346 cmn_err(CE_PANIC, "thread_create: proposed stack size" 347 " too small to hold thread."); 348 #ifdef STACK_GROWTH_DOWN 349 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1); 350 stksize &= -PTR24_ALIGN; /* make thread aligned */ 351 t = (kthread_t *)(stk + stksize); 352 bzero(t, sizeof (kthread_t)); 353 #ifdef C2_AUDIT 354 if (audit_active) 355 audit_thread_create(t); 356 #endif 357 t->t_stk = stk + stksize; 358 t->t_stkbase = stk; 359 #else /* stack grows to larger addresses */ 360 stksize -= SA(sizeof (kthread_t)); 361 t = (kthread_t *)(stk); 362 bzero(t, sizeof (kthread_t)); 363 t->t_stk = stk + sizeof (kthread_t); 364 t->t_stkbase = stk + stksize + sizeof (kthread_t); 365 #endif /* STACK_GROWTH_DOWN */ 366 t->t_flag |= T_TALLOCSTK; 367 t->t_swap = stk; 368 } else { 369 t = kmem_cache_alloc(thread_cache, KM_SLEEP); 370 bzero(t, sizeof (kthread_t)); 371 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0); 372 #ifdef C2_AUDIT 373 if (audit_active) 374 audit_thread_create(t); 375 #endif 376 /* 377 * Initialize t_stk to the kernel stack pointer to use 378 * upon entry to the kernel 379 */ 380 #ifdef STACK_GROWTH_DOWN 381 t->t_stk = stk + stksize; 382 t->t_stkbase = stk; 383 #else 384 t->t_stk = stk; /* 3b2-like */ 385 t->t_stkbase = stk + stksize; 386 #endif /* STACK_GROWTH_DOWN */ 387 } 388 389 /* set default stack flag */ 390 if (stksize == lwp_default_stksize) 391 t->t_flag |= T_DFLTSTK; 392 393 t->t_ts = ts; 394 395 /* 396 * p_cred could be NULL if it thread_create is called before cred_init 397 * is called in main. 398 */ 399 mutex_enter(&pp->p_crlock); 400 if (pp->p_cred) 401 crhold(t->t_cred = pp->p_cred); 402 mutex_exit(&pp->p_crlock); 403 t->t_start = gethrestime_sec(); 404 t->t_startpc = proc; 405 t->t_procp = pp; 406 t->t_clfuncs = &sys_classfuncs.thread; 407 t->t_cid = syscid; 408 t->t_pri = pri; 409 t->t_stime = lbolt; 410 t->t_schedflag = TS_LOAD | TS_DONT_SWAP; 411 t->t_bind_cpu = PBIND_NONE; 412 t->t_bind_pset = PS_NONE; 413 t->t_plockp = &pp->p_lock; 414 t->t_copyops = NULL; 415 t->t_taskq = NULL; 416 t->t_anttime = 0; 417 t->t_hatdepth = 0; 418 419 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */ 420 421 CPU_STATS_ADDQ(CPU, sys, nthreads, 1); 422 #ifndef NPROBE 423 /* Kernel probe */ 424 tnf_thread_create(t); 425 #endif /* NPROBE */ 426 LOCK_INIT_CLEAR(&t->t_lock); 427 428 /* 429 * Callers who give us a NULL proc must do their own 430 * stack initialization. e.g. lwp_create() 431 */ 432 if (proc != NULL) { 433 t->t_stk = thread_stk_init(t->t_stk); 434 thread_load(t, proc, arg, len); 435 } 436 437 /* 438 * Put a hold on project0. If this thread is actually in a 439 * different project, then t_proj will be changed later in 440 * lwp_create(). All kernel-only threads must be in project 0. 441 */ 442 t->t_proj = project_hold(proj0p); 443 444 lgrp_affinity_init(&t->t_lgrp_affinity); 445 446 mutex_enter(&pidlock); 447 nthread++; 448 t->t_did = next_t_id++; 449 t->t_prev = curthread->t_prev; 450 t->t_next = curthread; 451 452 /* 453 * Add the thread to the list of all threads, and initialize 454 * its t_cpu pointer. We need to block preemption since 455 * cpu_offline walks the thread list looking for threads 456 * with t_cpu pointing to the CPU being offlined. We want 457 * to make sure that the list is consistent and that if t_cpu 458 * is set, the thread is on the list. 459 */ 460 kpreempt_disable(); 461 curthread->t_prev->t_next = t; 462 curthread->t_prev = t; 463 464 /* 465 * Threads should never have a NULL t_cpu pointer so assign it 466 * here. If the thread is being created with state TS_RUN a 467 * better CPU may be chosen when it is placed on the run queue. 468 * 469 * We need to keep kernel preemption disabled when setting all 470 * three fields to keep them in sync. Also, always create in 471 * the default partition since that's where kernel threads go 472 * (if this isn't a kernel thread, t_cpupart will be changed 473 * in lwp_create before setting the thread runnable). 474 */ 475 t->t_cpupart = &cp_default; 476 477 /* 478 * For now, affiliate this thread with the root lgroup. 479 * Since the kernel does not (presently) allocate its memory 480 * in a locality aware fashion, the root is an appropriate home. 481 * If this thread is later associated with an lwp, it will have 482 * it's lgroup re-assigned at that time. 483 */ 484 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1); 485 486 /* 487 * Inherit the current cpu. If this cpu isn't part of the chosen 488 * lgroup, a new cpu will be chosen by cpu_choose when the thread 489 * is ready to run. 490 */ 491 if (CPU->cpu_part == &cp_default) 492 t->t_cpu = CPU; 493 else 494 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl, 495 t->t_pri, NULL); 496 497 t->t_disp_queue = t->t_cpu->cpu_disp; 498 kpreempt_enable(); 499 500 /* 501 * Initialize thread state and the dispatcher lock pointer. 502 * Need to hold onto pidlock to block allthreads walkers until 503 * the state is set. 504 */ 505 switch (state) { 506 case TS_RUN: 507 curthread->t_oldspl = splhigh(); /* get dispatcher spl */ 508 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock); 509 CL_SETRUN(t); 510 thread_unlock(t); 511 break; 512 513 case TS_ONPROC: 514 THREAD_ONPROC(t, t->t_cpu); 515 break; 516 517 case TS_FREE: 518 /* 519 * Free state will be used for intr threads. 520 * The interrupt routine must set the thread dispatcher 521 * lock pointer (t_lockp) if starting on a CPU 522 * other than the current one. 523 */ 524 THREAD_FREEINTR(t, CPU); 525 break; 526 527 case TS_STOPPED: 528 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock); 529 break; 530 531 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */ 532 cmn_err(CE_PANIC, "thread_create: invalid state %d", state); 533 } 534 mutex_exit(&pidlock); 535 return (t); 536 } 537 538 /* 539 * Move thread to project0 and take care of project reference counters. 540 */ 541 void 542 thread_rele(kthread_t *t) 543 { 544 kproject_t *kpj; 545 546 thread_lock(t); 547 548 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0); 549 kpj = ttoproj(t); 550 t->t_proj = proj0p; 551 552 thread_unlock(t); 553 554 if (kpj != proj0p) { 555 project_rele(kpj); 556 (void) project_hold(proj0p); 557 } 558 } 559 560 void 561 thread_exit(void) 562 { 563 kthread_t *t = curthread; 564 565 if ((t->t_proc_flag & TP_ZTHREAD) != 0) 566 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called"); 567 568 tsd_exit(); /* Clean up this thread's TSD */ 569 570 kcpc_passivate(); /* clean up performance counter state */ 571 572 /* 573 * No kernel thread should have called poll() without arranging 574 * calling pollcleanup() here. 575 */ 576 ASSERT(t->t_pollstate == NULL); 577 ASSERT(t->t_schedctl == NULL); 578 if (t->t_door) 579 door_slam(); /* in case thread did an upcall */ 580 581 #ifndef NPROBE 582 /* Kernel probe */ 583 if (t->t_tnf_tpdp) 584 tnf_thread_exit(); 585 #endif /* NPROBE */ 586 587 thread_rele(t); 588 t->t_preempt++; 589 590 /* 591 * remove thread from the all threads list so that 592 * death-row can use the same pointers. 593 */ 594 mutex_enter(&pidlock); 595 t->t_next->t_prev = t->t_prev; 596 t->t_prev->t_next = t->t_next; 597 ASSERT(allthreads != t); /* t0 never exits */ 598 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */ 599 mutex_exit(&pidlock); 600 601 if (t->t_ctx != NULL) 602 exitctx(t); 603 if (t->t_procp->p_pctx != NULL) 604 exitpctx(t->t_procp); 605 606 t->t_state = TS_ZOMB; /* set zombie thread */ 607 608 swtch_from_zombie(); /* give up the CPU */ 609 /* NOTREACHED */ 610 } 611 612 /* 613 * Check to see if the specified thread is active (defined as being on 614 * the thread list). This is certainly a slow way to do this; if there's 615 * ever a reason to speed it up, we could maintain a hash table of active 616 * threads indexed by their t_did. 617 */ 618 static kthread_t * 619 did_to_thread(kt_did_t tid) 620 { 621 kthread_t *t; 622 623 ASSERT(MUTEX_HELD(&pidlock)); 624 for (t = curthread->t_next; t != curthread; t = t->t_next) { 625 if (t->t_did == tid) 626 break; 627 } 628 if (t->t_did == tid) 629 return (t); 630 else 631 return (NULL); 632 } 633 634 /* 635 * Wait for specified thread to exit. Returns immediately if the thread 636 * could not be found, meaning that it has either already exited or never 637 * existed. 638 */ 639 void 640 thread_join(kt_did_t tid) 641 { 642 kthread_t *t; 643 644 ASSERT(tid != curthread->t_did); 645 ASSERT(tid != t0.t_did); 646 647 mutex_enter(&pidlock); 648 /* 649 * Make sure we check that the thread is on the thread list 650 * before blocking on it; otherwise we could end up blocking on 651 * a cv that's already been freed. In other words, don't cache 652 * the thread pointer across calls to cv_wait. 653 * 654 * The choice of loop invariant means that whenever a thread 655 * is taken off the allthreads list, a cv_broadcast must be 656 * performed on that thread's t_joincv to wake up any waiters. 657 * The broadcast doesn't have to happen right away, but it 658 * shouldn't be postponed indefinitely (e.g., by doing it in 659 * thread_free which may only be executed when the deathrow 660 * queue is processed. 661 */ 662 while (t = did_to_thread(tid)) 663 cv_wait(&t->t_joincv, &pidlock); 664 mutex_exit(&pidlock); 665 } 666 667 void 668 thread_free(kthread_t *t) 669 { 670 ASSERT(t != &t0 && t->t_state == TS_FREE); 671 ASSERT(t->t_door == NULL); 672 ASSERT(t->t_schedctl == NULL); 673 ASSERT(t->t_pollstate == NULL); 674 675 t->t_pri = 0; 676 t->t_pc = 0; 677 t->t_sp = 0; 678 t->t_wchan0 = NULL; 679 t->t_wchan = NULL; 680 if (t->t_cred != NULL) { 681 crfree(t->t_cred); 682 t->t_cred = 0; 683 } 684 if (t->t_pdmsg) { 685 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1); 686 t->t_pdmsg = NULL; 687 } 688 #ifdef C2_AUDIT 689 if (audit_active) 690 audit_thread_free(t); 691 #endif 692 #ifndef NPROBE 693 if (t->t_tnf_tpdp) 694 tnf_thread_free(t); 695 #endif /* NPROBE */ 696 if (t->t_cldata) { 697 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata); 698 } 699 if (t->t_rprof != NULL) { 700 kmem_free(t->t_rprof, sizeof (*t->t_rprof)); 701 t->t_rprof = NULL; 702 } 703 t->t_lockp = NULL; /* nothing should try to lock this thread now */ 704 if (t->t_lwp) 705 lwp_freeregs(t->t_lwp, 0); 706 if (t->t_ctx) 707 freectx(t, 0); 708 t->t_stk = NULL; 709 if (t->t_lwp) 710 lwp_stk_fini(t->t_lwp); 711 lock_clear(&t->t_lock); 712 713 if (t->t_ts->ts_waiters > 0) 714 panic("thread_free: turnstile still active"); 715 716 kmem_cache_free(turnstile_cache, t->t_ts); 717 718 free_afd(&t->t_activefd); 719 720 /* 721 * Barrier for clock thread. The clock holds this lock to 722 * keep the thread from going away while it's looking at it. 723 */ 724 mutex_enter(&thread_free_lock); 725 mutex_exit(&thread_free_lock); 726 727 ASSERT(ttoproj(t) == proj0p); 728 project_rele(ttoproj(t)); 729 730 lgrp_affinity_free(&t->t_lgrp_affinity); 731 732 /* 733 * Free thread struct and its stack. 734 */ 735 if (t->t_flag & T_TALLOCSTK) { 736 /* thread struct is embedded in stack */ 737 segkp_release(segkp, t->t_swap); 738 mutex_enter(&pidlock); 739 nthread--; 740 mutex_exit(&pidlock); 741 } else { 742 if (t->t_swap) { 743 segkp_release(segkp, t->t_swap); 744 t->t_swap = NULL; 745 } 746 if (t->t_lwp) { 747 kmem_cache_free(lwp_cache, t->t_lwp); 748 t->t_lwp = NULL; 749 } 750 mutex_enter(&pidlock); 751 nthread--; 752 mutex_exit(&pidlock); 753 kmem_cache_free(thread_cache, t); 754 } 755 } 756 757 /* 758 * Removes threads associated with the given zone from a deathrow queue. 759 * tp is a pointer to the head of the deathrow queue, and countp is a 760 * pointer to the current deathrow count. Returns a linked list of 761 * threads removed from the list. 762 */ 763 static kthread_t * 764 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid) 765 { 766 kthread_t *tmp, *list = NULL; 767 cred_t *cr; 768 769 ASSERT(MUTEX_HELD(&reaplock)); 770 while (*tp != NULL) { 771 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) { 772 tmp = *tp; 773 *tp = tmp->t_forw; 774 tmp->t_forw = list; 775 list = tmp; 776 (*countp)--; 777 } else { 778 tp = &(*tp)->t_forw; 779 } 780 } 781 return (list); 782 } 783 784 static void 785 thread_reap_list(kthread_t *t) 786 { 787 kthread_t *next; 788 789 while (t != NULL) { 790 next = t->t_forw; 791 thread_free(t); 792 t = next; 793 } 794 } 795 796 /* ARGSUSED */ 797 static void 798 thread_zone_destroy(zoneid_t zoneid, void *unused) 799 { 800 kthread_t *t, *l; 801 802 mutex_enter(&reaplock); 803 /* 804 * Pull threads and lwps associated with zone off deathrow lists. 805 */ 806 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid); 807 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid); 808 mutex_exit(&reaplock); 809 810 /* 811 * Reap threads 812 */ 813 thread_reap_list(t); 814 815 /* 816 * Reap lwps 817 */ 818 thread_reap_list(l); 819 } 820 821 /* 822 * cleanup zombie threads that are on deathrow. 823 */ 824 void 825 thread_reaper() 826 { 827 kthread_t *t, *l; 828 callb_cpr_t cprinfo; 829 830 /* 831 * Register callback to clean up threads when zone is destroyed. 832 */ 833 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy); 834 835 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper"); 836 for (;;) { 837 mutex_enter(&reaplock); 838 while (thread_deathrow == NULL && lwp_deathrow == NULL) { 839 CALLB_CPR_SAFE_BEGIN(&cprinfo); 840 cv_wait(&reaper_cv, &reaplock); 841 CALLB_CPR_SAFE_END(&cprinfo, &reaplock); 842 } 843 t = thread_deathrow; 844 l = lwp_deathrow; 845 thread_deathrow = NULL; 846 lwp_deathrow = NULL; 847 thread_reapcnt = 0; 848 lwp_reapcnt = 0; 849 mutex_exit(&reaplock); 850 851 /* 852 * Reap threads 853 */ 854 thread_reap_list(t); 855 856 /* 857 * Reap lwps 858 */ 859 thread_reap_list(l); 860 } 861 } 862 863 /* 864 * This is called by resume() to put a zombie thread onto deathrow. 865 * The thread's state is changed to TS_FREE to indicate that is reapable. 866 * This is called from the idle thread so it must not block (just spin). 867 */ 868 void 869 reapq_add(kthread_t *t) 870 { 871 mutex_enter(&reaplock); 872 873 /* 874 * lwp_deathrow contains only threads with lwp linkage 875 * that are of the default stacksize. Anything else goes 876 * on thread_deathrow. 877 */ 878 if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) { 879 t->t_forw = lwp_deathrow; 880 lwp_deathrow = t; 881 lwp_reapcnt++; 882 } else { 883 t->t_forw = thread_deathrow; 884 thread_deathrow = t; 885 thread_reapcnt++; 886 } 887 if (lwp_reapcnt + thread_reapcnt > reaplimit) 888 cv_signal(&reaper_cv); /* wake the reaper */ 889 t->t_state = TS_FREE; 890 lock_clear(&t->t_lock); 891 892 /* 893 * Before we return, we need to grab and drop the thread lock for 894 * the dead thread. At this point, the current thread is the idle 895 * thread, and the dead thread's CPU lock points to the current 896 * CPU -- and we must grab and drop the lock to synchronize with 897 * a racing thread walking a blocking chain that the zombie thread 898 * was recently in. By this point, that blocking chain is (by 899 * definition) stale: the dead thread is not holding any locks, and 900 * is therefore not in any blocking chains -- but if we do not regrab 901 * our lock before freeing the dead thread's data structures, the 902 * thread walking the (stale) blocking chain will die on memory 903 * corruption when it attempts to drop the dead thread's lock. We 904 * only need do this once because there is no way for the dead thread 905 * to ever again be on a blocking chain: once we have grabbed and 906 * dropped the thread lock, we are guaranteed that anyone that could 907 * have seen this thread in a blocking chain can no longer see it. 908 */ 909 thread_lock(t); 910 thread_unlock(t); 911 912 mutex_exit(&reaplock); 913 } 914 915 /* 916 * Install thread context ops for the current thread. 917 */ 918 void 919 installctx( 920 kthread_t *t, 921 void *arg, 922 void (*save)(void *), 923 void (*restore)(void *), 924 void (*fork)(void *, void *), 925 void (*lwp_create)(void *, void *), 926 void (*exit)(void *), 927 void (*free)(void *, int)) 928 { 929 struct ctxop *ctx; 930 931 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP); 932 ctx->save_op = save; 933 ctx->restore_op = restore; 934 ctx->fork_op = fork; 935 ctx->lwp_create_op = lwp_create; 936 ctx->exit_op = exit; 937 ctx->free_op = free; 938 ctx->arg = arg; 939 ctx->next = t->t_ctx; 940 t->t_ctx = ctx; 941 } 942 943 /* 944 * Remove the thread context ops from a thread. 945 */ 946 int 947 removectx( 948 kthread_t *t, 949 void *arg, 950 void (*save)(void *), 951 void (*restore)(void *), 952 void (*fork)(void *, void *), 953 void (*lwp_create)(void *, void *), 954 void (*exit)(void *), 955 void (*free)(void *, int)) 956 { 957 struct ctxop *ctx, *prev_ctx; 958 959 /* 960 * The incoming kthread_t (which is the thread for which the 961 * context ops will be removed) should be one of the following: 962 * 963 * a) the current thread, 964 * 965 * b) a thread of a process that's being forked (SIDL), 966 * 967 * c) a thread that belongs to the same process as the current 968 * thread and for which the current thread is the agent thread, 969 * 970 * d) a thread that is TS_STOPPED which is indicative of it 971 * being (if curthread is not an agent) a thread being created 972 * as part of an lwp creation. 973 */ 974 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL || 975 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 976 977 /* 978 * Serialize modifications to t->t_ctx to prevent the agent thread 979 * and the target thread from racing with each other during lwp exit. 980 */ 981 mutex_enter(&t->t_ctx_lock); 982 prev_ctx = NULL; 983 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) { 984 if (ctx->save_op == save && ctx->restore_op == restore && 985 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create && 986 ctx->exit_op == exit && ctx->free_op == free && 987 ctx->arg == arg) { 988 if (prev_ctx) 989 prev_ctx->next = ctx->next; 990 else 991 t->t_ctx = ctx->next; 992 mutex_exit(&t->t_ctx_lock); 993 if (ctx->free_op != NULL) 994 (ctx->free_op)(ctx->arg, 0); 995 kmem_free(ctx, sizeof (struct ctxop)); 996 return (1); 997 } 998 prev_ctx = ctx; 999 } 1000 mutex_exit(&t->t_ctx_lock); 1001 1002 return (0); 1003 } 1004 1005 void 1006 savectx(kthread_t *t) 1007 { 1008 struct ctxop *ctx; 1009 1010 ASSERT(t == curthread); 1011 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1012 if (ctx->save_op != NULL) 1013 (ctx->save_op)(ctx->arg); 1014 } 1015 1016 void 1017 restorectx(kthread_t *t) 1018 { 1019 struct ctxop *ctx; 1020 1021 ASSERT(t == curthread); 1022 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next) 1023 if (ctx->restore_op != NULL) 1024 (ctx->restore_op)(ctx->arg); 1025 } 1026 1027 void 1028 forkctx(kthread_t *t, kthread_t *ct) 1029 { 1030 struct ctxop *ctx; 1031 1032 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1033 if (ctx->fork_op != NULL) 1034 (ctx->fork_op)(t, ct); 1035 } 1036 1037 /* 1038 * Note that this operator is only invoked via the _lwp_create 1039 * system call. The system may have other reasons to create lwps 1040 * e.g. the agent lwp or the doors unreferenced lwp. 1041 */ 1042 void 1043 lwp_createctx(kthread_t *t, kthread_t *ct) 1044 { 1045 struct ctxop *ctx; 1046 1047 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1048 if (ctx->lwp_create_op != NULL) 1049 (ctx->lwp_create_op)(t, ct); 1050 } 1051 1052 /* 1053 * exitctx is called from thread_exit() and lwp_exit() to perform any actions 1054 * needed when the thread/LWP leaves the processor for the last time. This 1055 * routine is not intended to deal with freeing memory; freectx() is used for 1056 * that purpose during thread_free(). This routine is provided to allow for 1057 * clean-up that can't wait until thread_free(). 1058 */ 1059 void 1060 exitctx(kthread_t *t) 1061 { 1062 struct ctxop *ctx; 1063 1064 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) 1065 if (ctx->exit_op != NULL) 1066 (ctx->exit_op)(t); 1067 } 1068 1069 /* 1070 * freectx is called from thread_free() and exec() to get 1071 * rid of old thread context ops. 1072 */ 1073 void 1074 freectx(kthread_t *t, int isexec) 1075 { 1076 struct ctxop *ctx; 1077 1078 while ((ctx = t->t_ctx) != NULL) { 1079 t->t_ctx = ctx->next; 1080 if (ctx->free_op != NULL) 1081 (ctx->free_op)(ctx->arg, isexec); 1082 kmem_free(ctx, sizeof (struct ctxop)); 1083 } 1084 } 1085 1086 /* 1087 * Set the thread running; arrange for it to be swapped in if necessary. 1088 */ 1089 void 1090 setrun_locked(kthread_t *t) 1091 { 1092 ASSERT(THREAD_LOCK_HELD(t)); 1093 if (t->t_state == TS_SLEEP) { 1094 /* 1095 * Take off sleep queue. 1096 */ 1097 SOBJ_UNSLEEP(t->t_sobj_ops, t); 1098 } else if (t->t_state & (TS_RUN | TS_ONPROC)) { 1099 /* 1100 * Already on dispatcher queue. 1101 */ 1102 return; 1103 } else if (t->t_state == TS_WAIT) { 1104 waitq_setrun(t); 1105 } else if (t->t_state == TS_STOPPED) { 1106 /* 1107 * All of the sending of SIGCONT (TC_XSTART) and /proc 1108 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have 1109 * requested that the thread be run. 1110 * Just calling setrun() is not sufficient to set a stopped 1111 * thread running. TP_TXSTART is always set if the thread 1112 * is not stopped by a jobcontrol stop signal. 1113 * TP_TPSTART is always set if /proc is not controlling it. 1114 * TP_TCSTART is always set if lwp_suspend() didn't stop it. 1115 * The thread won't be stopped unless one of these 1116 * three mechanisms did it. 1117 * 1118 * These flags must be set before calling setrun_locked(t). 1119 * They can't be passed as arguments because the streams 1120 * code calls setrun() indirectly and the mechanism for 1121 * doing so admits only one argument. Note that the 1122 * thread must be locked in order to change t_schedflags. 1123 */ 1124 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART) 1125 return; 1126 /* 1127 * Process is no longer stopped (a thread is running). 1128 */ 1129 t->t_whystop = 0; 1130 t->t_whatstop = 0; 1131 /* 1132 * Strictly speaking, we do not have to clear these 1133 * flags here; they are cleared on entry to stop(). 1134 * However, they are confusing when doing kernel 1135 * debugging or when they are revealed by ps(1). 1136 */ 1137 t->t_schedflag &= ~TS_ALLSTART; 1138 THREAD_TRANSITION(t); /* drop stopped-thread lock */ 1139 ASSERT(t->t_lockp == &transition_lock); 1140 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL); 1141 /* 1142 * Let the class put the process on the dispatcher queue. 1143 */ 1144 CL_SETRUN(t); 1145 } 1146 } 1147 1148 void 1149 setrun(kthread_t *t) 1150 { 1151 thread_lock(t); 1152 setrun_locked(t); 1153 thread_unlock(t); 1154 } 1155 1156 /* 1157 * Unpin an interrupted thread. 1158 * When an interrupt occurs, the interrupt is handled on the stack 1159 * of an interrupt thread, taken from a pool linked to the CPU structure. 1160 * 1161 * When swtch() is switching away from an interrupt thread because it 1162 * blocked or was preempted, this routine is called to complete the 1163 * saving of the interrupted thread state, and returns the interrupted 1164 * thread pointer so it may be resumed. 1165 * 1166 * Called by swtch() only at high spl. 1167 */ 1168 kthread_t * 1169 thread_unpin() 1170 { 1171 kthread_t *t = curthread; /* current thread */ 1172 kthread_t *itp; /* interrupted thread */ 1173 int i; /* interrupt level */ 1174 extern int intr_passivate(); 1175 1176 ASSERT(t->t_intr != NULL); 1177 1178 itp = t->t_intr; /* interrupted thread */ 1179 t->t_intr = NULL; /* clear interrupt ptr */ 1180 1181 /* 1182 * Get state from interrupt thread for the one 1183 * it interrupted. 1184 */ 1185 1186 i = intr_passivate(t, itp); 1187 1188 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE, 1189 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)", 1190 i, t, t, itp, itp); 1191 1192 /* 1193 * Dissociate the current thread from the interrupted thread's LWP. 1194 */ 1195 t->t_lwp = NULL; 1196 1197 /* 1198 * Interrupt handlers above the level that spinlocks block must 1199 * not block. 1200 */ 1201 #if DEBUG 1202 if (i < 0 || i > LOCK_LEVEL) 1203 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i); 1204 #endif 1205 1206 /* 1207 * Compute the CPU's base interrupt level based on the active 1208 * interrupts. 1209 */ 1210 ASSERT(CPU->cpu_intr_actv & (1 << i)); 1211 set_base_spl(); 1212 1213 return (itp); 1214 } 1215 1216 /* 1217 * Create and initialize an interrupt thread. 1218 * Returns non-zero on error. 1219 * Called at spl7() or better. 1220 */ 1221 void 1222 thread_create_intr(struct cpu *cp) 1223 { 1224 kthread_t *tp; 1225 1226 tp = thread_create(NULL, 0, 1227 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0); 1228 1229 /* 1230 * Set the thread in the TS_FREE state. The state will change 1231 * to TS_ONPROC only while the interrupt is active. Think of these 1232 * as being on a private free list for the CPU. Being TS_FREE keeps 1233 * inactive interrupt threads out of debugger thread lists. 1234 * 1235 * We cannot call thread_create with TS_FREE because of the current 1236 * checks there for ONPROC. Fix this when thread_create takes flags. 1237 */ 1238 THREAD_FREEINTR(tp, cp); 1239 1240 /* 1241 * Nobody should ever reference the credentials of an interrupt 1242 * thread so make it NULL to catch any such references. 1243 */ 1244 tp->t_cred = NULL; 1245 tp->t_flag |= T_INTR_THREAD; 1246 tp->t_cpu = cp; 1247 tp->t_bound_cpu = cp; 1248 tp->t_disp_queue = cp->cpu_disp; 1249 tp->t_affinitycnt = 1; 1250 tp->t_preempt = 1; 1251 1252 /* 1253 * Don't make a user-requested binding on this thread so that 1254 * the processor can be offlined. 1255 */ 1256 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */ 1257 tp->t_bind_pset = PS_NONE; 1258 1259 #if defined(__i386) || defined(__amd64) 1260 tp->t_stk -= STACK_ALIGN; 1261 *(tp->t_stk) = 0; /* terminate intr thread stack */ 1262 #endif 1263 1264 /* 1265 * Link onto CPU's interrupt pool. 1266 */ 1267 tp->t_link = cp->cpu_intr_thread; 1268 cp->cpu_intr_thread = tp; 1269 } 1270 1271 /* 1272 * TSD -- THREAD SPECIFIC DATA 1273 */ 1274 static kmutex_t tsd_mutex; /* linked list spin lock */ 1275 static uint_t tsd_nkeys; /* size of destructor array */ 1276 /* per-key destructor funcs */ 1277 static void (**tsd_destructor)(void *); 1278 /* list of tsd_thread's */ 1279 static struct tsd_thread *tsd_list; 1280 1281 /* 1282 * Default destructor 1283 * Needed because NULL destructor means that the key is unused 1284 */ 1285 /* ARGSUSED */ 1286 void 1287 tsd_defaultdestructor(void *value) 1288 {} 1289 1290 /* 1291 * Create a key (index into per thread array) 1292 * Locks out tsd_create, tsd_destroy, and tsd_exit 1293 * May allocate memory with lock held 1294 */ 1295 void 1296 tsd_create(uint_t *keyp, void (*destructor)(void *)) 1297 { 1298 int i; 1299 uint_t nkeys; 1300 1301 /* 1302 * if key is allocated, do nothing 1303 */ 1304 mutex_enter(&tsd_mutex); 1305 if (*keyp) { 1306 mutex_exit(&tsd_mutex); 1307 return; 1308 } 1309 /* 1310 * find an unused key 1311 */ 1312 if (destructor == NULL) 1313 destructor = tsd_defaultdestructor; 1314 1315 for (i = 0; i < tsd_nkeys; ++i) 1316 if (tsd_destructor[i] == NULL) 1317 break; 1318 1319 /* 1320 * if no unused keys, increase the size of the destructor array 1321 */ 1322 if (i == tsd_nkeys) { 1323 if ((nkeys = (tsd_nkeys << 1)) == 0) 1324 nkeys = 1; 1325 tsd_destructor = 1326 (void (**)(void *))tsd_realloc((void *)tsd_destructor, 1327 (size_t)(tsd_nkeys * sizeof (void (*)(void *))), 1328 (size_t)(nkeys * sizeof (void (*)(void *)))); 1329 tsd_nkeys = nkeys; 1330 } 1331 1332 /* 1333 * allocate the next available unused key 1334 */ 1335 tsd_destructor[i] = destructor; 1336 *keyp = i + 1; 1337 mutex_exit(&tsd_mutex); 1338 } 1339 1340 /* 1341 * Destroy a key -- this is for unloadable modules 1342 * 1343 * Assumes that the caller is preventing tsd_set and tsd_get 1344 * Locks out tsd_create, tsd_destroy, and tsd_exit 1345 * May free memory with lock held 1346 */ 1347 void 1348 tsd_destroy(uint_t *keyp) 1349 { 1350 uint_t key; 1351 struct tsd_thread *tsd; 1352 1353 /* 1354 * protect the key namespace and our destructor lists 1355 */ 1356 mutex_enter(&tsd_mutex); 1357 key = *keyp; 1358 *keyp = 0; 1359 1360 ASSERT(key <= tsd_nkeys); 1361 1362 /* 1363 * if the key is valid 1364 */ 1365 if (key != 0) { 1366 uint_t k = key - 1; 1367 /* 1368 * for every thread with TSD, call key's destructor 1369 */ 1370 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) { 1371 /* 1372 * no TSD for key in this thread 1373 */ 1374 if (key > tsd->ts_nkeys) 1375 continue; 1376 /* 1377 * call destructor for key 1378 */ 1379 if (tsd->ts_value[k] && tsd_destructor[k]) 1380 (*tsd_destructor[k])(tsd->ts_value[k]); 1381 /* 1382 * reset value for key 1383 */ 1384 tsd->ts_value[k] = NULL; 1385 } 1386 /* 1387 * actually free the key (NULL destructor == unused) 1388 */ 1389 tsd_destructor[k] = NULL; 1390 } 1391 1392 mutex_exit(&tsd_mutex); 1393 } 1394 1395 /* 1396 * Quickly return the per thread value that was stored with the specified key 1397 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1398 */ 1399 void * 1400 tsd_get(uint_t key) 1401 { 1402 return (tsd_agent_get(curthread, key)); 1403 } 1404 1405 /* 1406 * Set a per thread value indexed with the specified key 1407 */ 1408 int 1409 tsd_set(uint_t key, void *value) 1410 { 1411 return (tsd_agent_set(curthread, key, value)); 1412 } 1413 1414 /* 1415 * Like tsd_get(), except that the agent lwp can get the tsd of 1416 * another thread in the same process (the agent thread only runs when the 1417 * process is completely stopped by /proc), or syslwp is creating a new lwp. 1418 */ 1419 void * 1420 tsd_agent_get(kthread_t *t, uint_t key) 1421 { 1422 struct tsd_thread *tsd = t->t_tsd; 1423 1424 ASSERT(t == curthread || 1425 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1426 1427 if (key && tsd != NULL && key <= tsd->ts_nkeys) 1428 return (tsd->ts_value[key - 1]); 1429 return (NULL); 1430 } 1431 1432 /* 1433 * Like tsd_set(), except that the agent lwp can set the tsd of 1434 * another thread in the same process, or syslwp can set the tsd 1435 * of a thread it's in the middle of creating. 1436 * 1437 * Assumes the caller is protecting key from tsd_create and tsd_destroy 1438 * May lock out tsd_destroy (and tsd_create), may allocate memory with 1439 * lock held 1440 */ 1441 int 1442 tsd_agent_set(kthread_t *t, uint_t key, void *value) 1443 { 1444 struct tsd_thread *tsd = t->t_tsd; 1445 1446 ASSERT(t == curthread || 1447 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED); 1448 1449 if (key == 0) 1450 return (EINVAL); 1451 if (tsd == NULL) 1452 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1453 if (key <= tsd->ts_nkeys) { 1454 tsd->ts_value[key - 1] = value; 1455 return (0); 1456 } 1457 1458 ASSERT(key <= tsd_nkeys); 1459 1460 /* 1461 * lock out tsd_destroy() 1462 */ 1463 mutex_enter(&tsd_mutex); 1464 if (tsd->ts_nkeys == 0) { 1465 /* 1466 * Link onto list of threads with TSD 1467 */ 1468 if ((tsd->ts_next = tsd_list) != NULL) 1469 tsd_list->ts_prev = tsd; 1470 tsd_list = tsd; 1471 } 1472 1473 /* 1474 * Allocate thread local storage and set the value for key 1475 */ 1476 tsd->ts_value = tsd_realloc(tsd->ts_value, 1477 tsd->ts_nkeys * sizeof (void *), 1478 key * sizeof (void *)); 1479 tsd->ts_nkeys = key; 1480 tsd->ts_value[key - 1] = value; 1481 mutex_exit(&tsd_mutex); 1482 1483 return (0); 1484 } 1485 1486 1487 /* 1488 * Return the per thread value that was stored with the specified key 1489 * If necessary, create the key and the value 1490 * Assumes the caller is protecting *keyp from tsd_destroy 1491 */ 1492 void * 1493 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void)) 1494 { 1495 void *value; 1496 uint_t key = *keyp; 1497 struct tsd_thread *tsd = curthread->t_tsd; 1498 1499 if (tsd == NULL) 1500 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP); 1501 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1])) 1502 return (value); 1503 if (key == 0) 1504 tsd_create(keyp, destroy); 1505 (void) tsd_set(*keyp, value = (*allocate)()); 1506 1507 return (value); 1508 } 1509 1510 /* 1511 * Called from thread_exit() to run the destructor function for each tsd 1512 * Locks out tsd_create and tsd_destroy 1513 * Assumes that the destructor *DOES NOT* use tsd 1514 */ 1515 void 1516 tsd_exit(void) 1517 { 1518 int i; 1519 struct tsd_thread *tsd = curthread->t_tsd; 1520 1521 if (tsd == NULL) 1522 return; 1523 1524 if (tsd->ts_nkeys == 0) { 1525 kmem_free(tsd, sizeof (*tsd)); 1526 curthread->t_tsd = NULL; 1527 return; 1528 } 1529 1530 /* 1531 * lock out tsd_create and tsd_destroy, call 1532 * the destructor, and mark the value as destroyed. 1533 */ 1534 mutex_enter(&tsd_mutex); 1535 1536 for (i = 0; i < tsd->ts_nkeys; i++) { 1537 if (tsd->ts_value[i] && tsd_destructor[i]) 1538 (*tsd_destructor[i])(tsd->ts_value[i]); 1539 tsd->ts_value[i] = NULL; 1540 } 1541 1542 /* 1543 * remove from linked list of threads with TSD 1544 */ 1545 if (tsd->ts_next) 1546 tsd->ts_next->ts_prev = tsd->ts_prev; 1547 if (tsd->ts_prev) 1548 tsd->ts_prev->ts_next = tsd->ts_next; 1549 if (tsd_list == tsd) 1550 tsd_list = tsd->ts_next; 1551 1552 mutex_exit(&tsd_mutex); 1553 1554 /* 1555 * free up the TSD 1556 */ 1557 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *)); 1558 kmem_free(tsd, sizeof (struct tsd_thread)); 1559 curthread->t_tsd = NULL; 1560 } 1561 1562 /* 1563 * realloc 1564 */ 1565 static void * 1566 tsd_realloc(void *old, size_t osize, size_t nsize) 1567 { 1568 void *new; 1569 1570 new = kmem_zalloc(nsize, KM_SLEEP); 1571 if (old) { 1572 bcopy(old, new, osize); 1573 kmem_free(old, osize); 1574 } 1575 return (new); 1576 } 1577 1578 /* 1579 * Check to see if an interrupt thread might be active at a given ipl. 1580 * If so return true. 1581 * We must be conservative--it is ok to give a false yes, but a false no 1582 * will cause disaster. (But if the situation changes after we check it is 1583 * ok--the caller is trying to ensure that an interrupt routine has been 1584 * exited). 1585 * This is used when trying to remove an interrupt handler from an autovector 1586 * list in avintr.c. 1587 */ 1588 int 1589 intr_active(struct cpu *cp, int level) 1590 { 1591 if (level <= LOCK_LEVEL) 1592 return (cp->cpu_thread != cp->cpu_dispthread); 1593 else 1594 return (CPU_ON_INTR(cp)); 1595 } 1596 1597 /* 1598 * Return non-zero if an interrupt is being serviced. 1599 */ 1600 int 1601 servicing_interrupt() 1602 { 1603 int onintr = 0; 1604 1605 /* Are we an interrupt thread */ 1606 if (curthread->t_flag & T_INTR_THREAD) 1607 return (1); 1608 /* Are we servicing a high level interrupt? */ 1609 if (CPU_ON_INTR(CPU)) { 1610 kpreempt_disable(); 1611 onintr = CPU_ON_INTR(CPU); 1612 kpreempt_enable(); 1613 } 1614 return (onintr); 1615 } 1616 1617 1618 /* 1619 * Change the dispatch priority of a thread in the system. 1620 * Used when raising or lowering a thread's priority. 1621 * (E.g., priority inheritance) 1622 * 1623 * Since threads are queued according to their priority, we 1624 * we must check the thread's state to determine whether it 1625 * is on a queue somewhere. If it is, we've got to: 1626 * 1627 * o Dequeue the thread. 1628 * o Change its effective priority. 1629 * o Enqueue the thread. 1630 * 1631 * Assumptions: The thread whose priority we wish to change 1632 * must be locked before we call thread_change_(e)pri(). 1633 * The thread_change(e)pri() function doesn't drop the thread 1634 * lock--that must be done by its caller. 1635 */ 1636 void 1637 thread_change_epri(kthread_t *t, pri_t disp_pri) 1638 { 1639 uint_t state; 1640 1641 ASSERT(THREAD_LOCK_HELD(t)); 1642 1643 /* 1644 * If the inherited priority hasn't actually changed, 1645 * just return. 1646 */ 1647 if (t->t_epri == disp_pri) 1648 return; 1649 1650 state = t->t_state; 1651 1652 /* 1653 * If it's not on a queue, change the priority with 1654 * impunity. 1655 */ 1656 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1657 t->t_epri = disp_pri; 1658 1659 if (state == TS_ONPROC) { 1660 cpu_t *cp = t->t_disp_queue->disp_cpu; 1661 1662 if (t == cp->cpu_dispthread) 1663 cp->cpu_dispatch_pri = DISP_PRIO(t); 1664 } 1665 return; 1666 } 1667 1668 /* 1669 * It's either on a sleep queue or a run queue. 1670 */ 1671 if (state == TS_SLEEP) { 1672 /* 1673 * Take the thread out of its sleep queue. 1674 * Change the inherited priority. 1675 * Re-enqueue the thread. 1676 * Each synchronization object exports a function 1677 * to do this in an appropriate manner. 1678 */ 1679 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri); 1680 } else if (state == TS_WAIT) { 1681 /* 1682 * Re-enqueue a thread on the wait queue if its 1683 * effective priority needs to change. 1684 */ 1685 if (disp_pri != t->t_epri) 1686 waitq_change_pri(t, disp_pri); 1687 } else { 1688 /* 1689 * The thread is on a run queue. 1690 * Note: setbackdq() may not put the thread 1691 * back on the same run queue where it originally 1692 * resided. 1693 */ 1694 (void) dispdeq(t); 1695 t->t_epri = disp_pri; 1696 setbackdq(t); 1697 } 1698 } /* end of thread_change_epri */ 1699 1700 /* 1701 * Function: Change the t_pri field of a thread. 1702 * Side Effects: Adjust the thread ordering on a run queue 1703 * or sleep queue, if necessary. 1704 * Returns: 1 if the thread was on a run queue, else 0. 1705 */ 1706 int 1707 thread_change_pri(kthread_t *t, pri_t disp_pri, int front) 1708 { 1709 uint_t state; 1710 int on_rq = 0; 1711 1712 ASSERT(THREAD_LOCK_HELD(t)); 1713 1714 state = t->t_state; 1715 THREAD_WILLCHANGE_PRI(t, disp_pri); 1716 1717 /* 1718 * If it's not on a queue, change the priority with 1719 * impunity. 1720 */ 1721 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) { 1722 t->t_pri = disp_pri; 1723 1724 if (state == TS_ONPROC) { 1725 cpu_t *cp = t->t_disp_queue->disp_cpu; 1726 1727 if (t == cp->cpu_dispthread) 1728 cp->cpu_dispatch_pri = DISP_PRIO(t); 1729 } 1730 return (0); 1731 } 1732 1733 /* 1734 * It's either on a sleep queue or a run queue. 1735 */ 1736 if (state == TS_SLEEP) { 1737 /* 1738 * If the priority has changed, take the thread out of 1739 * its sleep queue and change the priority. 1740 * Re-enqueue the thread. 1741 * Each synchronization object exports a function 1742 * to do this in an appropriate manner. 1743 */ 1744 if (disp_pri != t->t_pri) 1745 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri); 1746 } else if (state == TS_WAIT) { 1747 /* 1748 * Re-enqueue a thread on the wait queue if its 1749 * priority needs to change. 1750 */ 1751 if (disp_pri != t->t_pri) 1752 waitq_change_pri(t, disp_pri); 1753 } else { 1754 /* 1755 * The thread is on a run queue. 1756 * Note: setbackdq() may not put the thread 1757 * back on the same run queue where it originally 1758 * resided. 1759 * 1760 * We still requeue the thread even if the priority 1761 * is unchanged to preserve round-robin (and other) 1762 * effects between threads of the same priority. 1763 */ 1764 on_rq = dispdeq(t); 1765 ASSERT(on_rq); 1766 t->t_pri = disp_pri; 1767 if (front) { 1768 setfrontdq(t); 1769 } else { 1770 setbackdq(t); 1771 } 1772 } 1773 return (on_rq); 1774 } 1775