xref: /titanic_51/usr/src/uts/common/disp/thread.c (revision 9dd77bc84fd62eb844d67cc7311833ea3ea6c889)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/stack.h>
32 #include <sys/pcb.h>
33 #include <sys/user.h>
34 #include <sys/systm.h>
35 #include <sys/sysinfo.h>
36 #include <sys/errno.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cred.h>
39 #include <sys/resource.h>
40 #include <sys/task.h>
41 #include <sys/project.h>
42 #include <sys/proc.h>
43 #include <sys/debug.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kp.h>
48 #include <sys/machlock.h>
49 #include <sys/kmem.h>
50 #include <sys/varargs.h>
51 #include <sys/turnstile.h>
52 #include <sys/poll.h>
53 #include <sys/vtrace.h>
54 #include <sys/callb.h>
55 #include <c2/audit.h>
56 #include <sys/tnf.h>
57 #include <sys/sobject.h>
58 #include <sys/cpupart.h>
59 #include <sys/pset.h>
60 #include <sys/door.h>
61 #include <sys/spl.h>
62 #include <sys/copyops.h>
63 #include <sys/rctl.h>
64 #include <sys/brand.h>
65 #include <sys/pool.h>
66 #include <sys/zone.h>
67 #include <sys/tsol/label.h>
68 #include <sys/tsol/tndb.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/sdt.h>
71 #include <sys/reboot.h>
72 #include <sys/kdi.h>
73 #include <sys/schedctl.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77 
78 struct kmem_cache *thread_cache;	/* cache of free threads */
79 struct kmem_cache *lwp_cache;		/* cache of free lwps */
80 struct kmem_cache *turnstile_cache;	/* cache of free turnstiles */
81 
82 /*
83  * allthreads is only for use by kmem_readers.  All kernel loops can use
84  * the current thread as a start/end point.
85  */
86 static kthread_t *allthreads = &t0;	/* circular list of all threads */
87 
88 static kcondvar_t reaper_cv;		/* synchronization var */
89 kthread_t	*thread_deathrow;	/* circular list of reapable threads */
90 kthread_t	*lwp_deathrow;		/* circular list of reapable threads */
91 kmutex_t	reaplock;		/* protects lwp and thread deathrows */
92 int	thread_reapcnt = 0;		/* number of threads on deathrow */
93 int	lwp_reapcnt = 0;		/* number of lwps on deathrow */
94 int	reaplimit = 16;			/* delay reaping until reaplimit */
95 
96 thread_free_lock_t	*thread_free_lock;
97 					/* protects tick thread from reaper */
98 
99 extern int nthread;
100 
101 /* System Scheduling classes. */
102 id_t	syscid;				/* system scheduling class ID */
103 id_t	sysdccid = CLASS_UNUSED;	/* reset when SDC loads */
104 
105 void	*segkp_thread;			/* cookie for segkp pool */
106 
107 int lwp_cache_sz = 32;
108 int t_cache_sz = 8;
109 static kt_did_t next_t_id = 1;
110 
111 /* Default mode for thread binding to CPUs and processor sets */
112 int default_binding_mode = TB_ALLHARD;
113 
114 /*
115  * Min/Max stack sizes for stack size parameters
116  */
117 #define	MAX_STKSIZE	(32 * DEFAULTSTKSZ)
118 #define	MIN_STKSIZE	DEFAULTSTKSZ
119 
120 /*
121  * default_stksize overrides lwp_default_stksize if it is set.
122  */
123 int	default_stksize;
124 int	lwp_default_stksize;
125 
126 static zone_key_t zone_thread_key;
127 
128 unsigned int kmem_stackinfo;		/* stackinfo feature on-off */
129 kmem_stkinfo_t *kmem_stkinfo_log;	/* stackinfo circular log */
130 static kmutex_t kmem_stkinfo_lock;	/* protects kmem_stkinfo_log */
131 
132 /*
133  * forward declarations for internal thread specific data (tsd)
134  */
135 static void *tsd_realloc(void *, size_t, size_t);
136 
137 void thread_reaper(void);
138 
139 /* forward declarations for stackinfo feature */
140 static void stkinfo_begin(kthread_t *);
141 static void stkinfo_end(kthread_t *);
142 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
143 
144 /*ARGSUSED*/
145 static int
146 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
147 {
148 	bzero(buf, sizeof (turnstile_t));
149 	return (0);
150 }
151 
152 /*ARGSUSED*/
153 static void
154 turnstile_destructor(void *buf, void *cdrarg)
155 {
156 	turnstile_t *ts = buf;
157 
158 	ASSERT(ts->ts_free == NULL);
159 	ASSERT(ts->ts_waiters == 0);
160 	ASSERT(ts->ts_inheritor == NULL);
161 	ASSERT(ts->ts_sleepq[0].sq_first == NULL);
162 	ASSERT(ts->ts_sleepq[1].sq_first == NULL);
163 }
164 
165 void
166 thread_init(void)
167 {
168 	kthread_t *tp;
169 	extern char sys_name[];
170 	extern void idle();
171 	struct cpu *cpu = CPU;
172 	int i;
173 	kmutex_t *lp;
174 
175 	mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
176 	thread_free_lock =
177 	    kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
178 	for (i = 0; i < THREAD_FREE_NUM; i++) {
179 		lp = &thread_free_lock[i].tf_lock;
180 		mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
181 	}
182 
183 #if defined(__i386) || defined(__amd64)
184 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
185 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
186 
187 	/*
188 	 * "struct _klwp" includes a "struct pcb", which includes a
189 	 * "struct fpu", which needs to be 16-byte aligned on amd64
190 	 * (and even on i386 for fxsave/fxrstor).
191 	 */
192 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
193 	    16, NULL, NULL, NULL, NULL, NULL, 0);
194 #else
195 	/*
196 	 * Allocate thread structures from static_arena.  This prevents
197 	 * issues where a thread tries to relocate its own thread
198 	 * structure and touches it after the mapping has been suspended.
199 	 */
200 	thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
201 	    PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
202 
203 	lwp_stk_cache_init();
204 
205 	lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
206 	    0, NULL, NULL, NULL, NULL, NULL, 0);
207 #endif
208 
209 	turnstile_cache = kmem_cache_create("turnstile_cache",
210 	    sizeof (turnstile_t), 0,
211 	    turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
212 
213 	label_init();
214 	cred_init();
215 
216 	/*
217 	 * Initialize various resource management facilities.
218 	 */
219 	rctl_init();
220 	cpucaps_init();
221 	/*
222 	 * Zone_init() should be called before project_init() so that project ID
223 	 * for the first project is initialized correctly.
224 	 */
225 	zone_init();
226 	project_init();
227 	brand_init();
228 	kiconv_init();
229 	task_init();
230 	tcache_init();
231 	pool_init();
232 
233 	curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
234 
235 	/*
236 	 * Originally, we had two parameters to set default stack
237 	 * size: one for lwp's (lwp_default_stksize), and one for
238 	 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
239 	 * Now we have a third parameter that overrides both if it is
240 	 * set to a legal stack size, called default_stksize.
241 	 */
242 
243 	if (default_stksize == 0) {
244 		default_stksize = DEFAULTSTKSZ;
245 	} else if (default_stksize % PAGESIZE != 0 ||
246 	    default_stksize > MAX_STKSIZE ||
247 	    default_stksize < MIN_STKSIZE) {
248 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
249 		    (int)DEFAULTSTKSZ);
250 		default_stksize = DEFAULTSTKSZ;
251 	} else {
252 		lwp_default_stksize = default_stksize;
253 	}
254 
255 	if (lwp_default_stksize == 0) {
256 		lwp_default_stksize = default_stksize;
257 	} else if (lwp_default_stksize % PAGESIZE != 0 ||
258 	    lwp_default_stksize > MAX_STKSIZE ||
259 	    lwp_default_stksize < MIN_STKSIZE) {
260 		cmn_err(CE_WARN, "Illegal stack size. Using %d",
261 		    default_stksize);
262 		lwp_default_stksize = default_stksize;
263 	}
264 
265 	segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
266 	    lwp_default_stksize,
267 	    (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
268 
269 	segkp_thread = segkp_cache_init(segkp, t_cache_sz,
270 	    default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
271 
272 	(void) getcid(sys_name, &syscid);
273 	curthread->t_cid = syscid;	/* current thread is t0 */
274 
275 	/*
276 	 * Set up the first CPU's idle thread.
277 	 * It runs whenever the CPU has nothing worthwhile to do.
278 	 */
279 	tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
280 	cpu->cpu_idle_thread = tp;
281 	tp->t_preempt = 1;
282 	tp->t_disp_queue = cpu->cpu_disp;
283 	ASSERT(tp->t_disp_queue != NULL);
284 	tp->t_bound_cpu = cpu;
285 	tp->t_affinitycnt = 1;
286 
287 	/*
288 	 * Registering a thread in the callback table is usually
289 	 * done in the initialization code of the thread. In this
290 	 * case, we do it right after thread creation to avoid
291 	 * blocking idle thread while registering itself. It also
292 	 * avoids the possibility of reregistration in case a CPU
293 	 * restarts its idle thread.
294 	 */
295 	CALLB_CPR_INIT_SAFE(tp, "idle");
296 
297 	/*
298 	 * Create the thread_reaper daemon. From this point on, exited
299 	 * threads will get reaped.
300 	 */
301 	(void) thread_create(NULL, 0, (void (*)())thread_reaper,
302 	    NULL, 0, &p0, TS_RUN, minclsyspri);
303 
304 	/*
305 	 * Finish initializing the kernel memory allocator now that
306 	 * thread_create() is available.
307 	 */
308 	kmem_thread_init();
309 
310 	if (boothowto & RB_DEBUG)
311 		kdi_dvec_thravail();
312 }
313 
314 /*
315  * Create a thread.
316  *
317  * thread_create() blocks for memory if necessary.  It never fails.
318  *
319  * If stk is NULL, the thread is created at the base of the stack
320  * and cannot be swapped.
321  */
322 kthread_t *
323 thread_create(
324 	caddr_t	stk,
325 	size_t	stksize,
326 	void	(*proc)(),
327 	void	*arg,
328 	size_t	len,
329 	proc_t	 *pp,
330 	int	state,
331 	pri_t	pri)
332 {
333 	kthread_t *t;
334 	extern struct classfuncs sys_classfuncs;
335 	turnstile_t *ts;
336 
337 	/*
338 	 * Every thread keeps a turnstile around in case it needs to block.
339 	 * The only reason the turnstile is not simply part of the thread
340 	 * structure is that we may have to break the association whenever
341 	 * more than one thread blocks on a given synchronization object.
342 	 * From a memory-management standpoint, turnstiles are like the
343 	 * "attached mblks" that hang off dblks in the streams allocator.
344 	 */
345 	ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
346 
347 	if (stk == NULL) {
348 		/*
349 		 * alloc both thread and stack in segkp chunk
350 		 */
351 
352 		if (stksize < default_stksize)
353 			stksize = default_stksize;
354 
355 		if (stksize == default_stksize) {
356 			stk = (caddr_t)segkp_cache_get(segkp_thread);
357 		} else {
358 			stksize = roundup(stksize, PAGESIZE);
359 			stk = (caddr_t)segkp_get(segkp, stksize,
360 			    (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
361 		}
362 
363 		ASSERT(stk != NULL);
364 
365 		/*
366 		 * The machine-dependent mutex code may require that
367 		 * thread pointers (since they may be used for mutex owner
368 		 * fields) have certain alignment requirements.
369 		 * PTR24_ALIGN is the size of the alignment quanta.
370 		 * XXX - assumes stack grows toward low addresses.
371 		 */
372 		if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
373 			cmn_err(CE_PANIC, "thread_create: proposed stack size"
374 			    " too small to hold thread.");
375 #ifdef STACK_GROWTH_DOWN
376 		stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
377 		stksize &= -PTR24_ALIGN;	/* make thread aligned */
378 		t = (kthread_t *)(stk + stksize);
379 		bzero(t, sizeof (kthread_t));
380 		if (audit_active)
381 			audit_thread_create(t);
382 		t->t_stk = stk + stksize;
383 		t->t_stkbase = stk;
384 #else	/* stack grows to larger addresses */
385 		stksize -= SA(sizeof (kthread_t));
386 		t = (kthread_t *)(stk);
387 		bzero(t, sizeof (kthread_t));
388 		t->t_stk = stk + sizeof (kthread_t);
389 		t->t_stkbase = stk + stksize + sizeof (kthread_t);
390 #endif	/* STACK_GROWTH_DOWN */
391 		t->t_flag |= T_TALLOCSTK;
392 		t->t_swap = stk;
393 	} else {
394 		t = kmem_cache_alloc(thread_cache, KM_SLEEP);
395 		bzero(t, sizeof (kthread_t));
396 		ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
397 		if (audit_active)
398 			audit_thread_create(t);
399 		/*
400 		 * Initialize t_stk to the kernel stack pointer to use
401 		 * upon entry to the kernel
402 		 */
403 #ifdef STACK_GROWTH_DOWN
404 		t->t_stk = stk + stksize;
405 		t->t_stkbase = stk;
406 #else
407 		t->t_stk = stk;			/* 3b2-like */
408 		t->t_stkbase = stk + stksize;
409 #endif /* STACK_GROWTH_DOWN */
410 	}
411 
412 	if (kmem_stackinfo != 0) {
413 		stkinfo_begin(t);
414 	}
415 
416 	/* set default stack flag */
417 	if (stksize == lwp_default_stksize)
418 		t->t_flag |= T_DFLTSTK;
419 
420 	t->t_ts = ts;
421 
422 	/*
423 	 * p_cred could be NULL if it thread_create is called before cred_init
424 	 * is called in main.
425 	 */
426 	mutex_enter(&pp->p_crlock);
427 	if (pp->p_cred)
428 		crhold(t->t_cred = pp->p_cred);
429 	mutex_exit(&pp->p_crlock);
430 	t->t_start = gethrestime_sec();
431 	t->t_startpc = proc;
432 	t->t_procp = pp;
433 	t->t_clfuncs = &sys_classfuncs.thread;
434 	t->t_cid = syscid;
435 	t->t_pri = pri;
436 	t->t_stime = ddi_get_lbolt();
437 	t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
438 	t->t_bind_cpu = PBIND_NONE;
439 	t->t_bindflag = (uchar_t)default_binding_mode;
440 	t->t_bind_pset = PS_NONE;
441 	t->t_plockp = &pp->p_lock;
442 	t->t_copyops = NULL;
443 	t->t_taskq = NULL;
444 	t->t_anttime = 0;
445 	t->t_hatdepth = 0;
446 
447 	t->t_dtrace_vtime = 1;	/* assure vtimestamp is always non-zero */
448 
449 	CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
450 #ifndef NPROBE
451 	/* Kernel probe */
452 	tnf_thread_create(t);
453 #endif /* NPROBE */
454 	LOCK_INIT_CLEAR(&t->t_lock);
455 
456 	/*
457 	 * Callers who give us a NULL proc must do their own
458 	 * stack initialization.  e.g. lwp_create()
459 	 */
460 	if (proc != NULL) {
461 		t->t_stk = thread_stk_init(t->t_stk);
462 		thread_load(t, proc, arg, len);
463 	}
464 
465 	/*
466 	 * Put a hold on project0. If this thread is actually in a
467 	 * different project, then t_proj will be changed later in
468 	 * lwp_create().  All kernel-only threads must be in project 0.
469 	 */
470 	t->t_proj = project_hold(proj0p);
471 
472 	lgrp_affinity_init(&t->t_lgrp_affinity);
473 
474 	mutex_enter(&pidlock);
475 	nthread++;
476 	t->t_did = next_t_id++;
477 	t->t_prev = curthread->t_prev;
478 	t->t_next = curthread;
479 
480 	/*
481 	 * Add the thread to the list of all threads, and initialize
482 	 * its t_cpu pointer.  We need to block preemption since
483 	 * cpu_offline walks the thread list looking for threads
484 	 * with t_cpu pointing to the CPU being offlined.  We want
485 	 * to make sure that the list is consistent and that if t_cpu
486 	 * is set, the thread is on the list.
487 	 */
488 	kpreempt_disable();
489 	curthread->t_prev->t_next = t;
490 	curthread->t_prev = t;
491 
492 	/*
493 	 * Threads should never have a NULL t_cpu pointer so assign it
494 	 * here.  If the thread is being created with state TS_RUN a
495 	 * better CPU may be chosen when it is placed on the run queue.
496 	 *
497 	 * We need to keep kernel preemption disabled when setting all
498 	 * three fields to keep them in sync.  Also, always create in
499 	 * the default partition since that's where kernel threads go
500 	 * (if this isn't a kernel thread, t_cpupart will be changed
501 	 * in lwp_create before setting the thread runnable).
502 	 */
503 	t->t_cpupart = &cp_default;
504 
505 	/*
506 	 * For now, affiliate this thread with the root lgroup.
507 	 * Since the kernel does not (presently) allocate its memory
508 	 * in a locality aware fashion, the root is an appropriate home.
509 	 * If this thread is later associated with an lwp, it will have
510 	 * it's lgroup re-assigned at that time.
511 	 */
512 	lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
513 
514 	/*
515 	 * Inherit the current cpu.  If this cpu isn't part of the chosen
516 	 * lgroup, a new cpu will be chosen by cpu_choose when the thread
517 	 * is ready to run.
518 	 */
519 	if (CPU->cpu_part == &cp_default)
520 		t->t_cpu = CPU;
521 	else
522 		t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
523 		    t->t_pri, NULL);
524 
525 	t->t_disp_queue = t->t_cpu->cpu_disp;
526 	kpreempt_enable();
527 
528 	/*
529 	 * Initialize thread state and the dispatcher lock pointer.
530 	 * Need to hold onto pidlock to block allthreads walkers until
531 	 * the state is set.
532 	 */
533 	switch (state) {
534 	case TS_RUN:
535 		curthread->t_oldspl = splhigh();	/* get dispatcher spl */
536 		THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
537 		CL_SETRUN(t);
538 		thread_unlock(t);
539 		break;
540 
541 	case TS_ONPROC:
542 		THREAD_ONPROC(t, t->t_cpu);
543 		break;
544 
545 	case TS_FREE:
546 		/*
547 		 * Free state will be used for intr threads.
548 		 * The interrupt routine must set the thread dispatcher
549 		 * lock pointer (t_lockp) if starting on a CPU
550 		 * other than the current one.
551 		 */
552 		THREAD_FREEINTR(t, CPU);
553 		break;
554 
555 	case TS_STOPPED:
556 		THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
557 		break;
558 
559 	default:			/* TS_SLEEP, TS_ZOMB or TS_TRANS */
560 		cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
561 	}
562 	mutex_exit(&pidlock);
563 	return (t);
564 }
565 
566 /*
567  * Move thread to project0 and take care of project reference counters.
568  */
569 void
570 thread_rele(kthread_t *t)
571 {
572 	kproject_t *kpj;
573 
574 	thread_lock(t);
575 
576 	ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
577 	kpj = ttoproj(t);
578 	t->t_proj = proj0p;
579 
580 	thread_unlock(t);
581 
582 	if (kpj != proj0p) {
583 		project_rele(kpj);
584 		(void) project_hold(proj0p);
585 	}
586 }
587 
588 void
589 thread_exit(void)
590 {
591 	kthread_t *t = curthread;
592 
593 	if ((t->t_proc_flag & TP_ZTHREAD) != 0)
594 		cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
595 
596 	tsd_exit();		/* Clean up this thread's TSD */
597 
598 	kcpc_passivate();	/* clean up performance counter state */
599 
600 	/*
601 	 * No kernel thread should have called poll() without arranging
602 	 * calling pollcleanup() here.
603 	 */
604 	ASSERT(t->t_pollstate == NULL);
605 	ASSERT(t->t_schedctl == NULL);
606 	if (t->t_door)
607 		door_slam();	/* in case thread did an upcall */
608 
609 #ifndef NPROBE
610 	/* Kernel probe */
611 	if (t->t_tnf_tpdp)
612 		tnf_thread_exit();
613 #endif /* NPROBE */
614 
615 	thread_rele(t);
616 	t->t_preempt++;
617 
618 	/*
619 	 * remove thread from the all threads list so that
620 	 * death-row can use the same pointers.
621 	 */
622 	mutex_enter(&pidlock);
623 	t->t_next->t_prev = t->t_prev;
624 	t->t_prev->t_next = t->t_next;
625 	ASSERT(allthreads != t);	/* t0 never exits */
626 	cv_broadcast(&t->t_joincv);	/* wake up anyone in thread_join */
627 	mutex_exit(&pidlock);
628 
629 	if (t->t_ctx != NULL)
630 		exitctx(t);
631 	if (t->t_procp->p_pctx != NULL)
632 		exitpctx(t->t_procp);
633 
634 	if (kmem_stackinfo != 0) {
635 		stkinfo_end(t);
636 	}
637 
638 	t->t_state = TS_ZOMB;	/* set zombie thread */
639 
640 	swtch_from_zombie();	/* give up the CPU */
641 	/* NOTREACHED */
642 }
643 
644 /*
645  * Check to see if the specified thread is active (defined as being on
646  * the thread list).  This is certainly a slow way to do this; if there's
647  * ever a reason to speed it up, we could maintain a hash table of active
648  * threads indexed by their t_did.
649  */
650 static kthread_t *
651 did_to_thread(kt_did_t tid)
652 {
653 	kthread_t *t;
654 
655 	ASSERT(MUTEX_HELD(&pidlock));
656 	for (t = curthread->t_next; t != curthread; t = t->t_next) {
657 		if (t->t_did == tid)
658 			break;
659 	}
660 	if (t->t_did == tid)
661 		return (t);
662 	else
663 		return (NULL);
664 }
665 
666 /*
667  * Wait for specified thread to exit.  Returns immediately if the thread
668  * could not be found, meaning that it has either already exited or never
669  * existed.
670  */
671 void
672 thread_join(kt_did_t tid)
673 {
674 	kthread_t *t;
675 
676 	ASSERT(tid != curthread->t_did);
677 	ASSERT(tid != t0.t_did);
678 
679 	mutex_enter(&pidlock);
680 	/*
681 	 * Make sure we check that the thread is on the thread list
682 	 * before blocking on it; otherwise we could end up blocking on
683 	 * a cv that's already been freed.  In other words, don't cache
684 	 * the thread pointer across calls to cv_wait.
685 	 *
686 	 * The choice of loop invariant means that whenever a thread
687 	 * is taken off the allthreads list, a cv_broadcast must be
688 	 * performed on that thread's t_joincv to wake up any waiters.
689 	 * The broadcast doesn't have to happen right away, but it
690 	 * shouldn't be postponed indefinitely (e.g., by doing it in
691 	 * thread_free which may only be executed when the deathrow
692 	 * queue is processed.
693 	 */
694 	while (t = did_to_thread(tid))
695 		cv_wait(&t->t_joincv, &pidlock);
696 	mutex_exit(&pidlock);
697 }
698 
699 void
700 thread_free_prevent(kthread_t *t)
701 {
702 	kmutex_t *lp;
703 
704 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
705 	mutex_enter(lp);
706 }
707 
708 void
709 thread_free_allow(kthread_t *t)
710 {
711 	kmutex_t *lp;
712 
713 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
714 	mutex_exit(lp);
715 }
716 
717 static void
718 thread_free_barrier(kthread_t *t)
719 {
720 	kmutex_t *lp;
721 
722 	lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
723 	mutex_enter(lp);
724 	mutex_exit(lp);
725 }
726 
727 void
728 thread_free(kthread_t *t)
729 {
730 	ASSERT(t != &t0 && t->t_state == TS_FREE);
731 	ASSERT(t->t_door == NULL);
732 	ASSERT(t->t_schedctl == NULL);
733 	ASSERT(t->t_pollstate == NULL);
734 
735 	t->t_pri = 0;
736 	t->t_pc = 0;
737 	t->t_sp = 0;
738 	t->t_wchan0 = NULL;
739 	t->t_wchan = NULL;
740 	if (t->t_cred != NULL) {
741 		crfree(t->t_cred);
742 		t->t_cred = 0;
743 	}
744 	if (t->t_pdmsg) {
745 		kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
746 		t->t_pdmsg = NULL;
747 	}
748 	if (audit_active)
749 		audit_thread_free(t);
750 #ifndef NPROBE
751 	if (t->t_tnf_tpdp)
752 		tnf_thread_free(t);
753 #endif /* NPROBE */
754 	if (t->t_cldata) {
755 		CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
756 	}
757 	if (t->t_rprof != NULL) {
758 		kmem_free(t->t_rprof, sizeof (*t->t_rprof));
759 		t->t_rprof = NULL;
760 	}
761 	t->t_lockp = NULL;	/* nothing should try to lock this thread now */
762 	if (t->t_lwp)
763 		lwp_freeregs(t->t_lwp, 0);
764 	if (t->t_ctx)
765 		freectx(t, 0);
766 	t->t_stk = NULL;
767 	if (t->t_lwp)
768 		lwp_stk_fini(t->t_lwp);
769 	lock_clear(&t->t_lock);
770 
771 	if (t->t_ts->ts_waiters > 0)
772 		panic("thread_free: turnstile still active");
773 
774 	kmem_cache_free(turnstile_cache, t->t_ts);
775 
776 	free_afd(&t->t_activefd);
777 
778 	/*
779 	 * Barrier for the tick accounting code.  The tick accounting code
780 	 * holds this lock to keep the thread from going away while it's
781 	 * looking at it.
782 	 */
783 	thread_free_barrier(t);
784 
785 	ASSERT(ttoproj(t) == proj0p);
786 	project_rele(ttoproj(t));
787 
788 	lgrp_affinity_free(&t->t_lgrp_affinity);
789 
790 	/*
791 	 * Free thread struct and its stack.
792 	 */
793 	if (t->t_flag & T_TALLOCSTK) {
794 		/* thread struct is embedded in stack */
795 		segkp_release(segkp, t->t_swap);
796 		mutex_enter(&pidlock);
797 		nthread--;
798 		mutex_exit(&pidlock);
799 	} else {
800 		if (t->t_swap) {
801 			segkp_release(segkp, t->t_swap);
802 			t->t_swap = NULL;
803 		}
804 		if (t->t_lwp) {
805 			kmem_cache_free(lwp_cache, t->t_lwp);
806 			t->t_lwp = NULL;
807 		}
808 		mutex_enter(&pidlock);
809 		nthread--;
810 		mutex_exit(&pidlock);
811 		kmem_cache_free(thread_cache, t);
812 	}
813 }
814 
815 /*
816  * Removes threads associated with the given zone from a deathrow queue.
817  * tp is a pointer to the head of the deathrow queue, and countp is a
818  * pointer to the current deathrow count.  Returns a linked list of
819  * threads removed from the list.
820  */
821 static kthread_t *
822 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
823 {
824 	kthread_t *tmp, *list = NULL;
825 	cred_t *cr;
826 
827 	ASSERT(MUTEX_HELD(&reaplock));
828 	while (*tp != NULL) {
829 		if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
830 			tmp = *tp;
831 			*tp = tmp->t_forw;
832 			tmp->t_forw = list;
833 			list = tmp;
834 			(*countp)--;
835 		} else {
836 			tp = &(*tp)->t_forw;
837 		}
838 	}
839 	return (list);
840 }
841 
842 static void
843 thread_reap_list(kthread_t *t)
844 {
845 	kthread_t *next;
846 
847 	while (t != NULL) {
848 		next = t->t_forw;
849 		thread_free(t);
850 		t = next;
851 	}
852 }
853 
854 /* ARGSUSED */
855 static void
856 thread_zone_destroy(zoneid_t zoneid, void *unused)
857 {
858 	kthread_t *t, *l;
859 
860 	mutex_enter(&reaplock);
861 	/*
862 	 * Pull threads and lwps associated with zone off deathrow lists.
863 	 */
864 	t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
865 	l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
866 	mutex_exit(&reaplock);
867 
868 	/*
869 	 * Guard against race condition in mutex_owner_running:
870 	 * 	thread=owner(mutex)
871 	 * 	<interrupt>
872 	 * 				thread exits mutex
873 	 * 				thread exits
874 	 * 				thread reaped
875 	 * 				thread struct freed
876 	 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
877 	 * A cross call to all cpus will cause the interrupt handler
878 	 * to reset the PC if it is in mutex_owner_running, refreshing
879 	 * stale thread pointers.
880 	 */
881 	mutex_sync();   /* sync with mutex code */
882 
883 	/*
884 	 * Reap threads
885 	 */
886 	thread_reap_list(t);
887 
888 	/*
889 	 * Reap lwps
890 	 */
891 	thread_reap_list(l);
892 }
893 
894 /*
895  * cleanup zombie threads that are on deathrow.
896  */
897 void
898 thread_reaper()
899 {
900 	kthread_t *t, *l;
901 	callb_cpr_t cprinfo;
902 
903 	/*
904 	 * Register callback to clean up threads when zone is destroyed.
905 	 */
906 	zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
907 
908 	CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
909 	for (;;) {
910 		mutex_enter(&reaplock);
911 		while (thread_deathrow == NULL && lwp_deathrow == NULL) {
912 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
913 			cv_wait(&reaper_cv, &reaplock);
914 			CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
915 		}
916 		/*
917 		 * mutex_sync() needs to be called when reaping, but
918 		 * not too often.  We limit reaping rate to once
919 		 * per second.  Reaplimit is max rate at which threads can
920 		 * be freed. Does not impact thread destruction/creation.
921 		 */
922 		t = thread_deathrow;
923 		l = lwp_deathrow;
924 		thread_deathrow = NULL;
925 		lwp_deathrow = NULL;
926 		thread_reapcnt = 0;
927 		lwp_reapcnt = 0;
928 		mutex_exit(&reaplock);
929 
930 		/*
931 		 * Guard against race condition in mutex_owner_running:
932 		 * 	thread=owner(mutex)
933 		 * 	<interrupt>
934 		 * 				thread exits mutex
935 		 * 				thread exits
936 		 * 				thread reaped
937 		 * 				thread struct freed
938 		 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
939 		 * A cross call to all cpus will cause the interrupt handler
940 		 * to reset the PC if it is in mutex_owner_running, refreshing
941 		 * stale thread pointers.
942 		 */
943 		mutex_sync();   /* sync with mutex code */
944 		/*
945 		 * Reap threads
946 		 */
947 		thread_reap_list(t);
948 
949 		/*
950 		 * Reap lwps
951 		 */
952 		thread_reap_list(l);
953 		delay(hz);
954 	}
955 }
956 
957 /*
958  * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
959  * thread_deathrow. The thread's state is changed already TS_FREE to indicate
960  * that is reapable. The thread already holds the reaplock, and was already
961  * freed.
962  */
963 void
964 reapq_move_lq_to_tq(kthread_t *t)
965 {
966 	ASSERT(t->t_state == TS_FREE);
967 	ASSERT(MUTEX_HELD(&reaplock));
968 	t->t_forw = thread_deathrow;
969 	thread_deathrow = t;
970 	thread_reapcnt++;
971 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
972 		cv_signal(&reaper_cv);  /* wake the reaper */
973 }
974 
975 /*
976  * This is called by resume() to put a zombie thread onto deathrow.
977  * The thread's state is changed to TS_FREE to indicate that is reapable.
978  * This is called from the idle thread so it must not block - just spin.
979  */
980 void
981 reapq_add(kthread_t *t)
982 {
983 	mutex_enter(&reaplock);
984 
985 	/*
986 	 * lwp_deathrow contains only threads with lwp linkage
987 	 * that are of the default stacksize. Anything else goes
988 	 * on thread_deathrow.
989 	 */
990 	if (ttolwp(t) && (t->t_flag & T_DFLTSTK)) {
991 		t->t_forw = lwp_deathrow;
992 		lwp_deathrow = t;
993 		lwp_reapcnt++;
994 	} else {
995 		t->t_forw = thread_deathrow;
996 		thread_deathrow = t;
997 		thread_reapcnt++;
998 	}
999 	if (lwp_reapcnt + thread_reapcnt > reaplimit)
1000 		cv_signal(&reaper_cv);	/* wake the reaper */
1001 	t->t_state = TS_FREE;
1002 	lock_clear(&t->t_lock);
1003 
1004 	/*
1005 	 * Before we return, we need to grab and drop the thread lock for
1006 	 * the dead thread.  At this point, the current thread is the idle
1007 	 * thread, and the dead thread's CPU lock points to the current
1008 	 * CPU -- and we must grab and drop the lock to synchronize with
1009 	 * a racing thread walking a blocking chain that the zombie thread
1010 	 * was recently in.  By this point, that blocking chain is (by
1011 	 * definition) stale:  the dead thread is not holding any locks, and
1012 	 * is therefore not in any blocking chains -- but if we do not regrab
1013 	 * our lock before freeing the dead thread's data structures, the
1014 	 * thread walking the (stale) blocking chain will die on memory
1015 	 * corruption when it attempts to drop the dead thread's lock.  We
1016 	 * only need do this once because there is no way for the dead thread
1017 	 * to ever again be on a blocking chain:  once we have grabbed and
1018 	 * dropped the thread lock, we are guaranteed that anyone that could
1019 	 * have seen this thread in a blocking chain can no longer see it.
1020 	 */
1021 	thread_lock(t);
1022 	thread_unlock(t);
1023 
1024 	mutex_exit(&reaplock);
1025 }
1026 
1027 /*
1028  * Install thread context ops for the current thread.
1029  */
1030 void
1031 installctx(
1032 	kthread_t *t,
1033 	void	*arg,
1034 	void	(*save)(void *),
1035 	void	(*restore)(void *),
1036 	void	(*fork)(void *, void *),
1037 	void	(*lwp_create)(void *, void *),
1038 	void	(*exit)(void *),
1039 	void	(*free)(void *, int))
1040 {
1041 	struct ctxop *ctx;
1042 
1043 	ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1044 	ctx->save_op = save;
1045 	ctx->restore_op = restore;
1046 	ctx->fork_op = fork;
1047 	ctx->lwp_create_op = lwp_create;
1048 	ctx->exit_op = exit;
1049 	ctx->free_op = free;
1050 	ctx->arg = arg;
1051 	ctx->next = t->t_ctx;
1052 	t->t_ctx = ctx;
1053 }
1054 
1055 /*
1056  * Remove the thread context ops from a thread.
1057  */
1058 int
1059 removectx(
1060 	kthread_t *t,
1061 	void	*arg,
1062 	void	(*save)(void *),
1063 	void	(*restore)(void *),
1064 	void	(*fork)(void *, void *),
1065 	void	(*lwp_create)(void *, void *),
1066 	void	(*exit)(void *),
1067 	void	(*free)(void *, int))
1068 {
1069 	struct ctxop *ctx, *prev_ctx;
1070 
1071 	/*
1072 	 * The incoming kthread_t (which is the thread for which the
1073 	 * context ops will be removed) should be one of the following:
1074 	 *
1075 	 * a) the current thread,
1076 	 *
1077 	 * b) a thread of a process that's being forked (SIDL),
1078 	 *
1079 	 * c) a thread that belongs to the same process as the current
1080 	 *    thread and for which the current thread is the agent thread,
1081 	 *
1082 	 * d) a thread that is TS_STOPPED which is indicative of it
1083 	 *    being (if curthread is not an agent) a thread being created
1084 	 *    as part of an lwp creation.
1085 	 */
1086 	ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1087 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1088 
1089 	/*
1090 	 * Serialize modifications to t->t_ctx to prevent the agent thread
1091 	 * and the target thread from racing with each other during lwp exit.
1092 	 */
1093 	mutex_enter(&t->t_ctx_lock);
1094 	prev_ctx = NULL;
1095 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1096 		if (ctx->save_op == save && ctx->restore_op == restore &&
1097 		    ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1098 		    ctx->exit_op == exit && ctx->free_op == free &&
1099 		    ctx->arg == arg) {
1100 			if (prev_ctx)
1101 				prev_ctx->next = ctx->next;
1102 			else
1103 				t->t_ctx = ctx->next;
1104 			mutex_exit(&t->t_ctx_lock);
1105 			if (ctx->free_op != NULL)
1106 				(ctx->free_op)(ctx->arg, 0);
1107 			kmem_free(ctx, sizeof (struct ctxop));
1108 			return (1);
1109 		}
1110 		prev_ctx = ctx;
1111 	}
1112 	mutex_exit(&t->t_ctx_lock);
1113 
1114 	return (0);
1115 }
1116 
1117 void
1118 savectx(kthread_t *t)
1119 {
1120 	struct ctxop *ctx;
1121 
1122 	ASSERT(t == curthread);
1123 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1124 		if (ctx->save_op != NULL)
1125 			(ctx->save_op)(ctx->arg);
1126 }
1127 
1128 void
1129 restorectx(kthread_t *t)
1130 {
1131 	struct ctxop *ctx;
1132 
1133 	ASSERT(t == curthread);
1134 	for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1135 		if (ctx->restore_op != NULL)
1136 			(ctx->restore_op)(ctx->arg);
1137 }
1138 
1139 void
1140 forkctx(kthread_t *t, kthread_t *ct)
1141 {
1142 	struct ctxop *ctx;
1143 
1144 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1145 		if (ctx->fork_op != NULL)
1146 			(ctx->fork_op)(t, ct);
1147 }
1148 
1149 /*
1150  * Note that this operator is only invoked via the _lwp_create
1151  * system call.  The system may have other reasons to create lwps
1152  * e.g. the agent lwp or the doors unreferenced lwp.
1153  */
1154 void
1155 lwp_createctx(kthread_t *t, kthread_t *ct)
1156 {
1157 	struct ctxop *ctx;
1158 
1159 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1160 		if (ctx->lwp_create_op != NULL)
1161 			(ctx->lwp_create_op)(t, ct);
1162 }
1163 
1164 /*
1165  * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1166  * needed when the thread/LWP leaves the processor for the last time. This
1167  * routine is not intended to deal with freeing memory; freectx() is used for
1168  * that purpose during thread_free(). This routine is provided to allow for
1169  * clean-up that can't wait until thread_free().
1170  */
1171 void
1172 exitctx(kthread_t *t)
1173 {
1174 	struct ctxop *ctx;
1175 
1176 	for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1177 		if (ctx->exit_op != NULL)
1178 			(ctx->exit_op)(t);
1179 }
1180 
1181 /*
1182  * freectx is called from thread_free() and exec() to get
1183  * rid of old thread context ops.
1184  */
1185 void
1186 freectx(kthread_t *t, int isexec)
1187 {
1188 	struct ctxop *ctx;
1189 
1190 	while ((ctx = t->t_ctx) != NULL) {
1191 		t->t_ctx = ctx->next;
1192 		if (ctx->free_op != NULL)
1193 			(ctx->free_op)(ctx->arg, isexec);
1194 		kmem_free(ctx, sizeof (struct ctxop));
1195 	}
1196 }
1197 
1198 /*
1199  * freectx_ctx is called from lwp_create() when lwp is reused from
1200  * lwp_deathrow and its thread structure is added to thread_deathrow.
1201  * The thread structure to which this ctx was attached may be already
1202  * freed by the thread reaper so free_op implementations shouldn't rely
1203  * on thread structure to which this ctx was attached still being around.
1204  */
1205 void
1206 freectx_ctx(struct ctxop *ctx)
1207 {
1208 	struct ctxop *nctx;
1209 
1210 	ASSERT(ctx != NULL);
1211 
1212 	do {
1213 		nctx = ctx->next;
1214 		if (ctx->free_op != NULL)
1215 			(ctx->free_op)(ctx->arg, 0);
1216 		kmem_free(ctx, sizeof (struct ctxop));
1217 	} while ((ctx = nctx) != NULL);
1218 }
1219 
1220 /*
1221  * Set the thread running; arrange for it to be swapped in if necessary.
1222  */
1223 void
1224 setrun_locked(kthread_t *t)
1225 {
1226 	ASSERT(THREAD_LOCK_HELD(t));
1227 	if (t->t_state == TS_SLEEP) {
1228 		/*
1229 		 * Take off sleep queue.
1230 		 */
1231 		SOBJ_UNSLEEP(t->t_sobj_ops, t);
1232 	} else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1233 		/*
1234 		 * Already on dispatcher queue.
1235 		 */
1236 		return;
1237 	} else if (t->t_state == TS_WAIT) {
1238 		waitq_setrun(t);
1239 	} else if (t->t_state == TS_STOPPED) {
1240 		/*
1241 		 * All of the sending of SIGCONT (TC_XSTART) and /proc
1242 		 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1243 		 * requested that the thread be run.
1244 		 * Just calling setrun() is not sufficient to set a stopped
1245 		 * thread running.  TP_TXSTART is always set if the thread
1246 		 * is not stopped by a jobcontrol stop signal.
1247 		 * TP_TPSTART is always set if /proc is not controlling it.
1248 		 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1249 		 * The thread won't be stopped unless one of these
1250 		 * three mechanisms did it.
1251 		 *
1252 		 * These flags must be set before calling setrun_locked(t).
1253 		 * They can't be passed as arguments because the streams
1254 		 * code calls setrun() indirectly and the mechanism for
1255 		 * doing so admits only one argument.  Note that the
1256 		 * thread must be locked in order to change t_schedflags.
1257 		 */
1258 		if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1259 			return;
1260 		/*
1261 		 * Process is no longer stopped (a thread is running).
1262 		 */
1263 		t->t_whystop = 0;
1264 		t->t_whatstop = 0;
1265 		/*
1266 		 * Strictly speaking, we do not have to clear these
1267 		 * flags here; they are cleared on entry to stop().
1268 		 * However, they are confusing when doing kernel
1269 		 * debugging or when they are revealed by ps(1).
1270 		 */
1271 		t->t_schedflag &= ~TS_ALLSTART;
1272 		THREAD_TRANSITION(t);	/* drop stopped-thread lock */
1273 		ASSERT(t->t_lockp == &transition_lock);
1274 		ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1275 		/*
1276 		 * Let the class put the process on the dispatcher queue.
1277 		 */
1278 		CL_SETRUN(t);
1279 	}
1280 }
1281 
1282 void
1283 setrun(kthread_t *t)
1284 {
1285 	thread_lock(t);
1286 	setrun_locked(t);
1287 	thread_unlock(t);
1288 }
1289 
1290 /*
1291  * Unpin an interrupted thread.
1292  *	When an interrupt occurs, the interrupt is handled on the stack
1293  *	of an interrupt thread, taken from a pool linked to the CPU structure.
1294  *
1295  *	When swtch() is switching away from an interrupt thread because it
1296  *	blocked or was preempted, this routine is called to complete the
1297  *	saving of the interrupted thread state, and returns the interrupted
1298  *	thread pointer so it may be resumed.
1299  *
1300  *	Called by swtch() only at high spl.
1301  */
1302 kthread_t *
1303 thread_unpin()
1304 {
1305 	kthread_t	*t = curthread;	/* current thread */
1306 	kthread_t	*itp;		/* interrupted thread */
1307 	int		i;		/* interrupt level */
1308 	extern int	intr_passivate();
1309 
1310 	ASSERT(t->t_intr != NULL);
1311 
1312 	itp = t->t_intr;		/* interrupted thread */
1313 	t->t_intr = NULL;		/* clear interrupt ptr */
1314 
1315 	/*
1316 	 * Get state from interrupt thread for the one
1317 	 * it interrupted.
1318 	 */
1319 
1320 	i = intr_passivate(t, itp);
1321 
1322 	TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1323 	    "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1324 	    i, t, t, itp, itp);
1325 
1326 	/*
1327 	 * Dissociate the current thread from the interrupted thread's LWP.
1328 	 */
1329 	t->t_lwp = NULL;
1330 
1331 	/*
1332 	 * Interrupt handlers above the level that spinlocks block must
1333 	 * not block.
1334 	 */
1335 #if DEBUG
1336 	if (i < 0 || i > LOCK_LEVEL)
1337 		cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1338 #endif
1339 
1340 	/*
1341 	 * Compute the CPU's base interrupt level based on the active
1342 	 * interrupts.
1343 	 */
1344 	ASSERT(CPU->cpu_intr_actv & (1 << i));
1345 	set_base_spl();
1346 
1347 	return (itp);
1348 }
1349 
1350 /*
1351  * Create and initialize an interrupt thread.
1352  *	Returns non-zero on error.
1353  *	Called at spl7() or better.
1354  */
1355 void
1356 thread_create_intr(struct cpu *cp)
1357 {
1358 	kthread_t *tp;
1359 
1360 	tp = thread_create(NULL, 0,
1361 	    (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1362 
1363 	/*
1364 	 * Set the thread in the TS_FREE state.  The state will change
1365 	 * to TS_ONPROC only while the interrupt is active.  Think of these
1366 	 * as being on a private free list for the CPU.  Being TS_FREE keeps
1367 	 * inactive interrupt threads out of debugger thread lists.
1368 	 *
1369 	 * We cannot call thread_create with TS_FREE because of the current
1370 	 * checks there for ONPROC.  Fix this when thread_create takes flags.
1371 	 */
1372 	THREAD_FREEINTR(tp, cp);
1373 
1374 	/*
1375 	 * Nobody should ever reference the credentials of an interrupt
1376 	 * thread so make it NULL to catch any such references.
1377 	 */
1378 	tp->t_cred = NULL;
1379 	tp->t_flag |= T_INTR_THREAD;
1380 	tp->t_cpu = cp;
1381 	tp->t_bound_cpu = cp;
1382 	tp->t_disp_queue = cp->cpu_disp;
1383 	tp->t_affinitycnt = 1;
1384 	tp->t_preempt = 1;
1385 
1386 	/*
1387 	 * Don't make a user-requested binding on this thread so that
1388 	 * the processor can be offlined.
1389 	 */
1390 	tp->t_bind_cpu = PBIND_NONE;	/* no USER-requested binding */
1391 	tp->t_bind_pset = PS_NONE;
1392 
1393 #if defined(__i386) || defined(__amd64)
1394 	tp->t_stk -= STACK_ALIGN;
1395 	*(tp->t_stk) = 0;		/* terminate intr thread stack */
1396 #endif
1397 
1398 	/*
1399 	 * Link onto CPU's interrupt pool.
1400 	 */
1401 	tp->t_link = cp->cpu_intr_thread;
1402 	cp->cpu_intr_thread = tp;
1403 }
1404 
1405 /*
1406  * TSD -- THREAD SPECIFIC DATA
1407  */
1408 static kmutex_t		tsd_mutex;	 /* linked list spin lock */
1409 static uint_t		tsd_nkeys;	 /* size of destructor array */
1410 /* per-key destructor funcs */
1411 static void 		(**tsd_destructor)(void *);
1412 /* list of tsd_thread's */
1413 static struct tsd_thread	*tsd_list;
1414 
1415 /*
1416  * Default destructor
1417  *	Needed because NULL destructor means that the key is unused
1418  */
1419 /* ARGSUSED */
1420 void
1421 tsd_defaultdestructor(void *value)
1422 {}
1423 
1424 /*
1425  * Create a key (index into per thread array)
1426  *	Locks out tsd_create, tsd_destroy, and tsd_exit
1427  *	May allocate memory with lock held
1428  */
1429 void
1430 tsd_create(uint_t *keyp, void (*destructor)(void *))
1431 {
1432 	int	i;
1433 	uint_t	nkeys;
1434 
1435 	/*
1436 	 * if key is allocated, do nothing
1437 	 */
1438 	mutex_enter(&tsd_mutex);
1439 	if (*keyp) {
1440 		mutex_exit(&tsd_mutex);
1441 		return;
1442 	}
1443 	/*
1444 	 * find an unused key
1445 	 */
1446 	if (destructor == NULL)
1447 		destructor = tsd_defaultdestructor;
1448 
1449 	for (i = 0; i < tsd_nkeys; ++i)
1450 		if (tsd_destructor[i] == NULL)
1451 			break;
1452 
1453 	/*
1454 	 * if no unused keys, increase the size of the destructor array
1455 	 */
1456 	if (i == tsd_nkeys) {
1457 		if ((nkeys = (tsd_nkeys << 1)) == 0)
1458 			nkeys = 1;
1459 		tsd_destructor =
1460 		    (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1461 		    (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1462 		    (size_t)(nkeys * sizeof (void (*)(void *))));
1463 		tsd_nkeys = nkeys;
1464 	}
1465 
1466 	/*
1467 	 * allocate the next available unused key
1468 	 */
1469 	tsd_destructor[i] = destructor;
1470 	*keyp = i + 1;
1471 	mutex_exit(&tsd_mutex);
1472 }
1473 
1474 /*
1475  * Destroy a key -- this is for unloadable modules
1476  *
1477  * Assumes that the caller is preventing tsd_set and tsd_get
1478  * Locks out tsd_create, tsd_destroy, and tsd_exit
1479  * May free memory with lock held
1480  */
1481 void
1482 tsd_destroy(uint_t *keyp)
1483 {
1484 	uint_t key;
1485 	struct tsd_thread *tsd;
1486 
1487 	/*
1488 	 * protect the key namespace and our destructor lists
1489 	 */
1490 	mutex_enter(&tsd_mutex);
1491 	key = *keyp;
1492 	*keyp = 0;
1493 
1494 	ASSERT(key <= tsd_nkeys);
1495 
1496 	/*
1497 	 * if the key is valid
1498 	 */
1499 	if (key != 0) {
1500 		uint_t k = key - 1;
1501 		/*
1502 		 * for every thread with TSD, call key's destructor
1503 		 */
1504 		for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1505 			/*
1506 			 * no TSD for key in this thread
1507 			 */
1508 			if (key > tsd->ts_nkeys)
1509 				continue;
1510 			/*
1511 			 * call destructor for key
1512 			 */
1513 			if (tsd->ts_value[k] && tsd_destructor[k])
1514 				(*tsd_destructor[k])(tsd->ts_value[k]);
1515 			/*
1516 			 * reset value for key
1517 			 */
1518 			tsd->ts_value[k] = NULL;
1519 		}
1520 		/*
1521 		 * actually free the key (NULL destructor == unused)
1522 		 */
1523 		tsd_destructor[k] = NULL;
1524 	}
1525 
1526 	mutex_exit(&tsd_mutex);
1527 }
1528 
1529 /*
1530  * Quickly return the per thread value that was stored with the specified key
1531  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1532  */
1533 void *
1534 tsd_get(uint_t key)
1535 {
1536 	return (tsd_agent_get(curthread, key));
1537 }
1538 
1539 /*
1540  * Set a per thread value indexed with the specified key
1541  */
1542 int
1543 tsd_set(uint_t key, void *value)
1544 {
1545 	return (tsd_agent_set(curthread, key, value));
1546 }
1547 
1548 /*
1549  * Like tsd_get(), except that the agent lwp can get the tsd of
1550  * another thread in the same process (the agent thread only runs when the
1551  * process is completely stopped by /proc), or syslwp is creating a new lwp.
1552  */
1553 void *
1554 tsd_agent_get(kthread_t *t, uint_t key)
1555 {
1556 	struct tsd_thread *tsd = t->t_tsd;
1557 
1558 	ASSERT(t == curthread ||
1559 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1560 
1561 	if (key && tsd != NULL && key <= tsd->ts_nkeys)
1562 		return (tsd->ts_value[key - 1]);
1563 	return (NULL);
1564 }
1565 
1566 /*
1567  * Like tsd_set(), except that the agent lwp can set the tsd of
1568  * another thread in the same process, or syslwp can set the tsd
1569  * of a thread it's in the middle of creating.
1570  *
1571  * Assumes the caller is protecting key from tsd_create and tsd_destroy
1572  * May lock out tsd_destroy (and tsd_create), may allocate memory with
1573  * lock held
1574  */
1575 int
1576 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1577 {
1578 	struct tsd_thread *tsd = t->t_tsd;
1579 
1580 	ASSERT(t == curthread ||
1581 	    ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1582 
1583 	if (key == 0)
1584 		return (EINVAL);
1585 	if (tsd == NULL)
1586 		tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1587 	if (key <= tsd->ts_nkeys) {
1588 		tsd->ts_value[key - 1] = value;
1589 		return (0);
1590 	}
1591 
1592 	ASSERT(key <= tsd_nkeys);
1593 
1594 	/*
1595 	 * lock out tsd_destroy()
1596 	 */
1597 	mutex_enter(&tsd_mutex);
1598 	if (tsd->ts_nkeys == 0) {
1599 		/*
1600 		 * Link onto list of threads with TSD
1601 		 */
1602 		if ((tsd->ts_next = tsd_list) != NULL)
1603 			tsd_list->ts_prev = tsd;
1604 		tsd_list = tsd;
1605 	}
1606 
1607 	/*
1608 	 * Allocate thread local storage and set the value for key
1609 	 */
1610 	tsd->ts_value = tsd_realloc(tsd->ts_value,
1611 	    tsd->ts_nkeys * sizeof (void *),
1612 	    key * sizeof (void *));
1613 	tsd->ts_nkeys = key;
1614 	tsd->ts_value[key - 1] = value;
1615 	mutex_exit(&tsd_mutex);
1616 
1617 	return (0);
1618 }
1619 
1620 
1621 /*
1622  * Return the per thread value that was stored with the specified key
1623  *	If necessary, create the key and the value
1624  *	Assumes the caller is protecting *keyp from tsd_destroy
1625  */
1626 void *
1627 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1628 {
1629 	void *value;
1630 	uint_t key = *keyp;
1631 	struct tsd_thread *tsd = curthread->t_tsd;
1632 
1633 	if (tsd == NULL)
1634 		tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1635 	if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1636 		return (value);
1637 	if (key == 0)
1638 		tsd_create(keyp, destroy);
1639 	(void) tsd_set(*keyp, value = (*allocate)());
1640 
1641 	return (value);
1642 }
1643 
1644 /*
1645  * Called from thread_exit() to run the destructor function for each tsd
1646  *	Locks out tsd_create and tsd_destroy
1647  *	Assumes that the destructor *DOES NOT* use tsd
1648  */
1649 void
1650 tsd_exit(void)
1651 {
1652 	int i;
1653 	struct tsd_thread *tsd = curthread->t_tsd;
1654 
1655 	if (tsd == NULL)
1656 		return;
1657 
1658 	if (tsd->ts_nkeys == 0) {
1659 		kmem_free(tsd, sizeof (*tsd));
1660 		curthread->t_tsd = NULL;
1661 		return;
1662 	}
1663 
1664 	/*
1665 	 * lock out tsd_create and tsd_destroy, call
1666 	 * the destructor, and mark the value as destroyed.
1667 	 */
1668 	mutex_enter(&tsd_mutex);
1669 
1670 	for (i = 0; i < tsd->ts_nkeys; i++) {
1671 		if (tsd->ts_value[i] && tsd_destructor[i])
1672 			(*tsd_destructor[i])(tsd->ts_value[i]);
1673 		tsd->ts_value[i] = NULL;
1674 	}
1675 
1676 	/*
1677 	 * remove from linked list of threads with TSD
1678 	 */
1679 	if (tsd->ts_next)
1680 		tsd->ts_next->ts_prev = tsd->ts_prev;
1681 	if (tsd->ts_prev)
1682 		tsd->ts_prev->ts_next = tsd->ts_next;
1683 	if (tsd_list == tsd)
1684 		tsd_list = tsd->ts_next;
1685 
1686 	mutex_exit(&tsd_mutex);
1687 
1688 	/*
1689 	 * free up the TSD
1690 	 */
1691 	kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1692 	kmem_free(tsd, sizeof (struct tsd_thread));
1693 	curthread->t_tsd = NULL;
1694 }
1695 
1696 /*
1697  * realloc
1698  */
1699 static void *
1700 tsd_realloc(void *old, size_t osize, size_t nsize)
1701 {
1702 	void *new;
1703 
1704 	new = kmem_zalloc(nsize, KM_SLEEP);
1705 	if (old) {
1706 		bcopy(old, new, osize);
1707 		kmem_free(old, osize);
1708 	}
1709 	return (new);
1710 }
1711 
1712 /*
1713  * Return non-zero if an interrupt is being serviced.
1714  */
1715 int
1716 servicing_interrupt()
1717 {
1718 	int onintr = 0;
1719 
1720 	/* Are we an interrupt thread */
1721 	if (curthread->t_flag & T_INTR_THREAD)
1722 		return (1);
1723 	/* Are we servicing a high level interrupt? */
1724 	if (CPU_ON_INTR(CPU)) {
1725 		kpreempt_disable();
1726 		onintr = CPU_ON_INTR(CPU);
1727 		kpreempt_enable();
1728 	}
1729 	return (onintr);
1730 }
1731 
1732 
1733 /*
1734  * Change the dispatch priority of a thread in the system.
1735  * Used when raising or lowering a thread's priority.
1736  * (E.g., priority inheritance)
1737  *
1738  * Since threads are queued according to their priority, we
1739  * we must check the thread's state to determine whether it
1740  * is on a queue somewhere. If it is, we've got to:
1741  *
1742  *	o Dequeue the thread.
1743  *	o Change its effective priority.
1744  *	o Enqueue the thread.
1745  *
1746  * Assumptions: The thread whose priority we wish to change
1747  * must be locked before we call thread_change_(e)pri().
1748  * The thread_change(e)pri() function doesn't drop the thread
1749  * lock--that must be done by its caller.
1750  */
1751 void
1752 thread_change_epri(kthread_t *t, pri_t disp_pri)
1753 {
1754 	uint_t	state;
1755 
1756 	ASSERT(THREAD_LOCK_HELD(t));
1757 
1758 	/*
1759 	 * If the inherited priority hasn't actually changed,
1760 	 * just return.
1761 	 */
1762 	if (t->t_epri == disp_pri)
1763 		return;
1764 
1765 	state = t->t_state;
1766 
1767 	/*
1768 	 * If it's not on a queue, change the priority with impunity.
1769 	 */
1770 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1771 		t->t_epri = disp_pri;
1772 		if (state == TS_ONPROC) {
1773 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1774 
1775 			if (t == cp->cpu_dispthread)
1776 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1777 		}
1778 	} else if (state == TS_SLEEP) {
1779 		/*
1780 		 * Take the thread out of its sleep queue.
1781 		 * Change the inherited priority.
1782 		 * Re-enqueue the thread.
1783 		 * Each synchronization object exports a function
1784 		 * to do this in an appropriate manner.
1785 		 */
1786 		SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1787 	} else if (state == TS_WAIT) {
1788 		/*
1789 		 * Re-enqueue a thread on the wait queue if its
1790 		 * effective priority needs to change.
1791 		 */
1792 		if (disp_pri != t->t_epri)
1793 			waitq_change_pri(t, disp_pri);
1794 	} else {
1795 		/*
1796 		 * The thread is on a run queue.
1797 		 * Note: setbackdq() may not put the thread
1798 		 * back on the same run queue where it originally
1799 		 * resided.
1800 		 */
1801 		(void) dispdeq(t);
1802 		t->t_epri = disp_pri;
1803 		setbackdq(t);
1804 	}
1805 	schedctl_set_cidpri(t);
1806 }
1807 
1808 /*
1809  * Function: Change the t_pri field of a thread.
1810  * Side Effects: Adjust the thread ordering on a run queue
1811  *		 or sleep queue, if necessary.
1812  * Returns: 1 if the thread was on a run queue, else 0.
1813  */
1814 int
1815 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1816 {
1817 	uint_t	state;
1818 	int	on_rq = 0;
1819 
1820 	ASSERT(THREAD_LOCK_HELD(t));
1821 
1822 	state = t->t_state;
1823 	THREAD_WILLCHANGE_PRI(t, disp_pri);
1824 
1825 	/*
1826 	 * If it's not on a queue, change the priority with impunity.
1827 	 */
1828 	if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1829 		t->t_pri = disp_pri;
1830 
1831 		if (state == TS_ONPROC) {
1832 			cpu_t *cp = t->t_disp_queue->disp_cpu;
1833 
1834 			if (t == cp->cpu_dispthread)
1835 				cp->cpu_dispatch_pri = DISP_PRIO(t);
1836 		}
1837 	} else if (state == TS_SLEEP) {
1838 		/*
1839 		 * If the priority has changed, take the thread out of
1840 		 * its sleep queue and change the priority.
1841 		 * Re-enqueue the thread.
1842 		 * Each synchronization object exports a function
1843 		 * to do this in an appropriate manner.
1844 		 */
1845 		if (disp_pri != t->t_pri)
1846 			SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1847 	} else if (state == TS_WAIT) {
1848 		/*
1849 		 * Re-enqueue a thread on the wait queue if its
1850 		 * priority needs to change.
1851 		 */
1852 		if (disp_pri != t->t_pri)
1853 			waitq_change_pri(t, disp_pri);
1854 	} else {
1855 		/*
1856 		 * The thread is on a run queue.
1857 		 * Note: setbackdq() may not put the thread
1858 		 * back on the same run queue where it originally
1859 		 * resided.
1860 		 *
1861 		 * We still requeue the thread even if the priority
1862 		 * is unchanged to preserve round-robin (and other)
1863 		 * effects between threads of the same priority.
1864 		 */
1865 		on_rq = dispdeq(t);
1866 		ASSERT(on_rq);
1867 		t->t_pri = disp_pri;
1868 		if (front) {
1869 			setfrontdq(t);
1870 		} else {
1871 			setbackdq(t);
1872 		}
1873 	}
1874 	schedctl_set_cidpri(t);
1875 	return (on_rq);
1876 }
1877 
1878 /*
1879  * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
1880  * specific pattern.
1881  */
1882 static void
1883 stkinfo_begin(kthread_t *t)
1884 {
1885 	caddr_t	start;	/* stack start */
1886 	caddr_t	end;	/* stack end  */
1887 	uint64_t *ptr;	/* pattern pointer */
1888 
1889 	/*
1890 	 * Stack grows up or down, see thread_create(),
1891 	 * compute stack memory area start and end (start < end).
1892 	 */
1893 	if (t->t_stk > t->t_stkbase) {
1894 		/* stack grows down */
1895 		start = t->t_stkbase;
1896 		end = t->t_stk;
1897 	} else {
1898 		/* stack grows up */
1899 		start = t->t_stk;
1900 		end = t->t_stkbase;
1901 	}
1902 
1903 	/*
1904 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1905 	 * alignement for start and end in stack area boundaries
1906 	 * (protection against corrupt t_stkbase/t_stk data).
1907 	 */
1908 	if ((((uintptr_t)start) & 0x7) != 0) {
1909 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1910 	}
1911 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1912 
1913 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1914 		/* negative or stack size > 1 meg, assume bogus */
1915 		return;
1916 	}
1917 
1918 	/* fill stack area with a pattern (instead of zeros) */
1919 	ptr = (uint64_t *)((void *)start);
1920 	while (ptr < (uint64_t *)((void *)end)) {
1921 		*ptr++ = KMEM_STKINFO_PATTERN;
1922 	}
1923 }
1924 
1925 
1926 /*
1927  * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
1928  * compute the percentage of kernel stack really used, and set in the log
1929  * if it's the latest highest percentage.
1930  */
1931 static void
1932 stkinfo_end(kthread_t *t)
1933 {
1934 	caddr_t	start;	/* stack start */
1935 	caddr_t	end;	/* stack end  */
1936 	uint64_t *ptr;	/* pattern pointer */
1937 	size_t stksz;	/* stack size */
1938 	size_t smallest = 0;
1939 	size_t percent = 0;
1940 	uint_t index = 0;
1941 	uint_t i;
1942 	static size_t smallest_percent = (size_t)-1;
1943 	static uint_t full = 0;
1944 
1945 	/* create the stackinfo log, if doesn't already exist */
1946 	mutex_enter(&kmem_stkinfo_lock);
1947 	if (kmem_stkinfo_log == NULL) {
1948 		kmem_stkinfo_log = (kmem_stkinfo_t *)
1949 		    kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
1950 		    (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
1951 		if (kmem_stkinfo_log == NULL) {
1952 			mutex_exit(&kmem_stkinfo_lock);
1953 			return;
1954 		}
1955 	}
1956 	mutex_exit(&kmem_stkinfo_lock);
1957 
1958 	/*
1959 	 * Stack grows up or down, see thread_create(),
1960 	 * compute stack memory area start and end (start < end).
1961 	 */
1962 	if (t->t_stk > t->t_stkbase) {
1963 		/* stack grows down */
1964 		start = t->t_stkbase;
1965 		end = t->t_stk;
1966 	} else {
1967 		/* stack grows up */
1968 		start = t->t_stk;
1969 		end = t->t_stkbase;
1970 	}
1971 
1972 	/* stack size as found in kthread_t */
1973 	stksz = end - start;
1974 
1975 	/*
1976 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1977 	 * alignement for start and end in stack area boundaries
1978 	 * (protection against corrupt t_stkbase/t_stk data).
1979 	 */
1980 	if ((((uintptr_t)start) & 0x7) != 0) {
1981 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1982 	}
1983 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
1984 
1985 	if ((end <= start) || (end - start) > (1024 * 1024)) {
1986 		/* negative or stack size > 1 meg, assume bogus */
1987 		return;
1988 	}
1989 
1990 	/* search until no pattern in the stack */
1991 	if (t->t_stk > t->t_stkbase) {
1992 		/* stack grows down */
1993 #if defined(__i386) || defined(__amd64)
1994 		/*
1995 		 * 6 longs are pushed on stack, see thread_load(). Skip
1996 		 * them, so if kthread has never run, percent is zero.
1997 		 * 8 bytes alignement is preserved for a 32 bit kernel,
1998 		 * 6 x 4 = 24, 24 is a multiple of 8.
1999 		 *
2000 		 */
2001 		end -= (6 * sizeof (long));
2002 #endif
2003 		ptr = (uint64_t *)((void *)start);
2004 		while (ptr < (uint64_t *)((void *)end)) {
2005 			if (*ptr != KMEM_STKINFO_PATTERN) {
2006 				percent = stkinfo_percent(end,
2007 				    start, (caddr_t)ptr);
2008 				break;
2009 			}
2010 			ptr++;
2011 		}
2012 	} else {
2013 		/* stack grows up */
2014 		ptr = (uint64_t *)((void *)end);
2015 		ptr--;
2016 		while (ptr >= (uint64_t *)((void *)start)) {
2017 			if (*ptr != KMEM_STKINFO_PATTERN) {
2018 				percent = stkinfo_percent(start,
2019 				    end, (caddr_t)ptr);
2020 				break;
2021 			}
2022 			ptr--;
2023 		}
2024 	}
2025 
2026 	DTRACE_PROBE3(stack__usage, kthread_t *, t,
2027 	    size_t, stksz, size_t, percent);
2028 
2029 	if (percent == 0) {
2030 		return;
2031 	}
2032 
2033 	mutex_enter(&kmem_stkinfo_lock);
2034 	if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2035 		/*
2036 		 * The log is full and already contains the highest values
2037 		 */
2038 		mutex_exit(&kmem_stkinfo_lock);
2039 		return;
2040 	}
2041 
2042 	/* keep a log of the highest used stack */
2043 	for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2044 		if (kmem_stkinfo_log[i].percent == 0) {
2045 			index = i;
2046 			full++;
2047 			break;
2048 		}
2049 		if (smallest == 0) {
2050 			smallest = kmem_stkinfo_log[i].percent;
2051 			index = i;
2052 			continue;
2053 		}
2054 		if (kmem_stkinfo_log[i].percent < smallest) {
2055 			smallest = kmem_stkinfo_log[i].percent;
2056 			index = i;
2057 		}
2058 	}
2059 
2060 	if (percent >= kmem_stkinfo_log[index].percent) {
2061 		kmem_stkinfo_log[index].kthread = (caddr_t)t;
2062 		kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2063 		kmem_stkinfo_log[index].start = start;
2064 		kmem_stkinfo_log[index].stksz = stksz;
2065 		kmem_stkinfo_log[index].percent = percent;
2066 		kmem_stkinfo_log[index].t_tid = t->t_tid;
2067 		kmem_stkinfo_log[index].cmd[0] = '\0';
2068 		if (t->t_tid != 0) {
2069 			stksz = strlen((t->t_procp)->p_user.u_comm);
2070 			if (stksz >= KMEM_STKINFO_STR_SIZE) {
2071 				stksz = KMEM_STKINFO_STR_SIZE - 1;
2072 				kmem_stkinfo_log[index].cmd[stksz] = '\0';
2073 			} else {
2074 				stksz += 1;
2075 			}
2076 			(void) memcpy(kmem_stkinfo_log[index].cmd,
2077 			    (t->t_procp)->p_user.u_comm, stksz);
2078 		}
2079 		if (percent < smallest_percent) {
2080 			smallest_percent = percent;
2081 		}
2082 	}
2083 	mutex_exit(&kmem_stkinfo_lock);
2084 }
2085 
2086 /*
2087  * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2088  */
2089 static size_t
2090 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2091 {
2092 	size_t percent;
2093 	size_t s;
2094 
2095 	if (t_stk > t_stkbase) {
2096 		/* stack grows down */
2097 		if (sp > t_stk) {
2098 			return (0);
2099 		}
2100 		if (sp < t_stkbase) {
2101 			return (100);
2102 		}
2103 		percent = t_stk - sp + 1;
2104 		s = t_stk - t_stkbase + 1;
2105 	} else {
2106 		/* stack grows up */
2107 		if (sp < t_stk) {
2108 			return (0);
2109 		}
2110 		if (sp > t_stkbase) {
2111 			return (100);
2112 		}
2113 		percent = sp - t_stk + 1;
2114 		s = t_stkbase - t_stk + 1;
2115 	}
2116 	percent = ((100 * percent) / s) + 1;
2117 	if (percent > 100) {
2118 		percent = 100;
2119 	}
2120 	return (percent);
2121 }
2122