xref: /titanic_51/usr/src/uts/common/disp/sysdc.c (revision c39526b769298791ff5b0b6c5e761f49aabaeb4e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * The System Duty Cycle (SDC) scheduling class
28  * --------------------------------------------
29  *
30  * Background
31  *
32  * Kernel threads in Solaris have traditionally not been large consumers
33  * of CPU time.  They typically wake up, perform a small amount of
34  * work, then go back to sleep waiting for either a timeout or another
35  * signal.  On the assumption that the small amount of work that they do
36  * is important for the behavior of the whole system, these threads are
37  * treated kindly by the dispatcher and the SYS scheduling class: they run
38  * without preemption from anything other than real-time and interrupt
39  * threads; when preempted, they are put at the front of the queue, so they
40  * generally do not migrate between CPUs; and they are allowed to stay
41  * running until they voluntarily give up the CPU.
42  *
43  * As Solaris has evolved, new workloads have emerged which require the
44  * kernel to perform significant amounts of CPU-intensive work.  One
45  * example of such a workload is ZFS's transaction group sync processing.
46  * Each sync operation generates a large batch of I/Os, and each I/O
47  * may need to be compressed and/or checksummed before it is written to
48  * storage.  The taskq threads which perform the compression and checksums
49  * will run nonstop as long as they have work to do; a large sync operation
50  * on a compression-heavy dataset can keep them busy for seconds on end.
51  * This causes human-time-scale dispatch latency bubbles for any other
52  * threads which have the misfortune to share a CPU with the taskq threads.
53  *
54  * The SDC scheduling class is a solution to this problem.
55  *
56  *
57  * Overview
58  *
59  * SDC is centered around the concept of a thread's duty cycle (DC):
60  *
61  *			      ONPROC time
62  *	Duty Cycle =	----------------------
63  *			ONPROC + Runnable time
64  *
65  * This is the ratio of the time that the thread spent running on a CPU
66  * divided by the time it spent running or trying to run.  It is unaffected
67  * by any time the thread spent sleeping, stopped, etc.
68  *
69  * A thread joining the SDC class specifies a "target" DC that it wants
70  * to run at.  To implement this policy, the routine sysdc_update() scans
71  * the list of active SDC threads every few ticks and uses each thread's
72  * microstate data to compute the actual duty cycle that that thread
73  * has experienced recently.  If the thread is under its target DC, its
74  * priority is increased to the maximum available (sysdc_maxpri, which is
75  * 99 by default).  If the thread is over its target DC, its priority is
76  * reduced to the minimum available (sysdc_minpri, 0 by default).  This
77  * is a fairly primitive approach, in that it doesn't use any of the
78  * intermediate priorities, but it's not completely inappropriate.  Even
79  * though threads in the SDC class might take a while to do their job, they
80  * are by some definition important if they're running inside the kernel,
81  * so it is reasonable that they should get to run at priority 99.
82  *
83  * If a thread is running when sysdc_update() calculates its actual duty
84  * cycle, and there are other threads of equal or greater priority on its
85  * CPU's dispatch queue, sysdc_update() preempts that thread.  The thread
86  * acknowledges the preemption by calling sysdc_preempt(), which calls
87  * setbackdq(), which gives other threads with the same priority a chance
88  * to run.  This creates a de facto time quantum for threads in the SDC
89  * scheduling class.
90  *
91  * An SDC thread which is assigned priority 0 can continue to run if
92  * nothing else needs to use the CPU that it's running on.  Similarly, an
93  * SDC thread at priority 99 might not get to run as much as it wants to
94  * if there are other priority-99 or higher threads on its CPU.  These
95  * situations would cause the thread to get ahead of or behind its target
96  * DC; the longer the situations lasted, the further ahead or behind the
97  * thread would get.  Rather than condemning a thread to a lifetime of
98  * paying for its youthful indiscretions, SDC keeps "base" values for
99  * ONPROC and Runnable times in each thread's sysdc data, and updates these
100  * values periodically.  The duty cycle is then computed using the elapsed
101  * amount of ONPROC and Runnable times since those base times.
102  *
103  * Since sysdc_update() scans SDC threads fairly frequently, it tries to
104  * keep the list of "active" threads small by pruning out threads which
105  * have been asleep for a brief time.  They are not pruned immediately upon
106  * going to sleep, since some threads may bounce back and forth between
107  * sleeping and being runnable.
108  *
109  *
110  * Interfaces
111  *
112  * void sysdc_thread_enter(t, dc, flags)
113  *
114  *	Moves a kernel thread from the SYS scheduling class to the
115  *	SDC class. t must have an associated LWP (created by calling
116  *	lwp_kernel_create()).  The thread will have a target DC of dc.
117  *	Flags should be either 0 or SYSDC_THREAD_BATCH.  If
118  *	SYSDC_THREAD_BATCH is specified, the thread is expected to be
119  *	doing large amounts of processing.
120  *
121  *
122  * Complications
123  *
124  * - Run queue balancing
125  *
126  *	The Solaris dispatcher is biased towards letting a thread run
127  *	on the same CPU which it last ran on, if no more than 3 ticks
128  *	(i.e. rechoose_interval) have passed since the thread last ran.
129  *	This helps to preserve cache warmth.  On the other hand, it also
130  *	tries to keep the per-CPU run queues fairly balanced; if the CPU
131  *	chosen for a runnable thread has a run queue which is three or
132  *	more threads longer than a neighboring CPU's queue, the runnable
133  *	thread is dispatched onto the neighboring CPU instead.
134  *
135  *	These policies work well for some workloads, but not for many SDC
136  *	threads.  The taskq client of SDC, for example, has many discrete
137  *	units of work to do.  The work units are largely independent, so
138  *	cache warmth is not an important consideration.  It is important
139  *	that the threads fan out quickly to different CPUs, since the
140  *	amount of work these threads have to do (a few seconds worth at a
141  *	time) doesn't leave much time to correct thread placement errors
142  *	(i.e. two SDC threads being dispatched to the same CPU).
143  *
144  *	To fix this, SDC uses the TS_RUNQMATCH flag introduced for FSS.
145  *	This tells the dispatcher to keep neighboring run queues' lengths
146  *	more evenly matched, which allows SDC threads to migrate more
147  *	easily.
148  *
149  * - LWPs and system processes
150  *
151  *	SDC can only be used for kernel threads.  Since SDC uses microstate
152  *	accounting data to compute each thread's actual duty cycle, all
153  *	threads entering the SDC class must have associated LWPs (which
154  *	store the microstate data).  This means that the threads have to
155  *	be associated with an SSYS process, i.e. one created by newproc().
156  *	If the microstate accounting information is ever moved into the
157  *	kthread_t, this restriction could be lifted.
158  *
159  * - Dealing with oversubscription
160  *
161  *	Since SDC duty cycles are per-thread, it is possible that the
162  *	aggregate requested duty cycle of all SDC threads in a processor
163  *	set could be greater than the total CPU time available in that set.
164  *	The FSS scheduling class has an analogous situation, which it deals
165  *	with by reducing each thread's allotted CPU time proportionally.
166  *	Since SDC doesn't need to be as precise as FSS, it uses a simpler
167  *	solution to the oversubscription problem.
168  *
169  *	sysdc_update() accumulates the amount of time that max-priority SDC
170  *	threads have spent on-CPU in each processor set, and uses that sum
171  *	to create an implied duty cycle for that processor set:
172  *
173  *				accumulated CPU time
174  *	   pset DC =	-----------------------------------
175  *			 (# CPUs) * time since last update
176  *
177  *	If this implied duty cycle is above a maximum pset duty cycle (90%
178  *	by default), sysdc_update() sets the priority of all SDC threads
179  *	in that processor set to sysdc_minpri for a "break" period.  After
180  *	the break period, it waits for a "nobreak" period before trying to
181  *	enforce the pset duty cycle limit again.
182  *
183  * - Processor sets
184  *
185  *	As the above implies, SDC is processor set aware, but it does not
186  *	currently allow threads to change processor sets while in the SDC
187  *	class.  Instead, those threads must join the desired processor set
188  *	before entering SDC. [1]
189  *
190  * - Batch threads
191  *
192  *	A thread joining the SDC class can specify the SDC_THREAD_BATCH
193  *	flag.  This flag currently has no effect, but marks threads which
194  *	do bulk processing.
195  *
196  * - t_kpri_req
197  *
198  *	The TS and FSS scheduling classes pay attention to t_kpri_req,
199  *	which provides a simple form of priority inheritance for
200  *	synchronization primitives (such as rwlocks held as READER) which
201  *	cannot be traced to a unique thread.  The SDC class does not honor
202  *	t_kpri_req, for a few reasons:
203  *
204  *	1.  t_kpri_req is notoriously inaccurate.  A measure of its
205  *	    inaccuracy is that it needs to be cleared every time a thread
206  *	    returns to user mode, because it is frequently non-zero at that
207  *	    point.  This can happen because "ownership" of synchronization
208  *	    primitives that use t_kpri_req can be silently handed off,
209  *	    leaving no opportunity to will the t_kpri_req inheritance.
210  *
211  *	2.  Unlike in TS and FSS, threads in SDC *will* eventually run at
212  *	    kernel priority.  This means that even if an SDC thread
213  *	    is holding a synchronization primitive and running at low
214  *	    priority, its priority will eventually be raised above 60,
215  *	    allowing it to drive on and release the resource.
216  *
217  *	3.  The first consumer of SDC uses the taskq subsystem, which holds
218  *	    a reader lock for the duration of the task's execution.  This
219  *	    would mean that SDC threads would never drop below kernel
220  *	    priority in practice, which defeats one of the purposes of SDC.
221  *
222  * - Why not FSS?
223  *
224  *	It might seem that the existing FSS scheduling class could solve
225  *	the problems that SDC is attempting to solve.  FSS's more precise
226  *	solution to the oversubscription problem would hardly cause
227  *	trouble, as long as it performed well.  SDC is implemented as
228  *	a separate scheduling class for two main reasons: the initial
229  *	consumer of SDC does not map well onto the "project" abstraction
230  *	that is central to FSS, and FSS does not expect to run at kernel
231  *	priorities.
232  *
233  *
234  * Tunables
235  *
236  * - sysdc_update_interval_msec:  Number of milliseconds between
237  *	consecutive thread priority updates.
238  *
239  * - sysdc_reset_interval_msec:  Number of milliseconds between
240  *	consecutive resets of a thread's base ONPROC and Runnable
241  *	times.
242  *
243  * - sysdc_prune_interval_msec:  Number of milliseconds of sleeping
244  *	before a thread is pruned from the active list.
245  *
246  * - sysdc_max_pset_DC:  Allowable percentage of a processor set's
247  *	CPU time which SDC can give to its high-priority threads.
248  *
249  * - sysdc_break_msec:  Number of milliseconds of "break" taken when
250  *	sysdc_max_pset_DC is exceeded.
251  *
252  *
253  * Future work (in SDC and related subsystems)
254  *
255  * - Per-thread rechoose interval (0 for SDC)
256  *
257  *	Allow each thread to specify its own rechoose interval.  SDC
258  *	threads would specify an interval of zero, which would rechoose
259  *	the CPU with the lowest priority once per update.
260  *
261  * - Allow threads to change processor sets after joining the SDC class
262  *
263  * - Thread groups and per-group DC
264  *
265  *	It might be nice to be able to specify a duty cycle which applies
266  *	to a group of threads in aggregate.
267  *
268  * - Per-group DC callback to allow dynamic DC tuning
269  *
270  *	Currently, DCs are assigned when the thread joins SDC.  Some
271  *	workloads could benefit from being able to tune their DC using
272  *	subsystem-specific knowledge about the workload.
273  *
274  * - Finer-grained priority updates
275  *
276  * - More nuanced management of oversubscription
277  *
278  * - Moving other CPU-intensive threads into SDC
279  *
280  * - Move msacct data into kthread_t
281  *
282  *	This would allow kernel threads without LWPs to join SDC.
283  *
284  *
285  * Footnotes
286  *
287  * [1] The details of doing so are left as an exercise for the reader.
288  */
289 
290 #include <sys/types.h>
291 #include <sys/sysdc.h>
292 #include <sys/sysdc_impl.h>
293 
294 #include <sys/class.h>
295 #include <sys/cmn_err.h>
296 #include <sys/cpuvar.h>
297 #include <sys/cpupart.h>
298 #include <sys/debug.h>
299 #include <sys/disp.h>
300 #include <sys/errno.h>
301 #include <sys/inline.h>
302 #include <sys/kmem.h>
303 #include <sys/modctl.h>
304 #include <sys/schedctl.h>
305 #include <sys/sdt.h>
306 #include <sys/sunddi.h>
307 #include <sys/sysmacros.h>
308 #include <sys/systm.h>
309 #include <sys/var.h>
310 
311 /*
312  * Tunables - loaded into the internal state at module load time
313  */
314 uint_t		sysdc_update_interval_msec = 20;
315 uint_t		sysdc_reset_interval_msec = 400;
316 uint_t		sysdc_prune_interval_msec = 100;
317 uint_t		sysdc_max_pset_DC = 90;
318 uint_t		sysdc_break_msec = 80;
319 
320 /*
321  * Internal state - constants set up by sysdc_initparam()
322  */
323 static clock_t	sysdc_update_ticks;	/* ticks between updates */
324 static uint_t	sysdc_prune_updates;	/* updates asleep before pruning */
325 static uint_t	sysdc_reset_updates;	/* # of updates before reset */
326 static uint_t	sysdc_break_updates;	/* updates to break */
327 static uint_t	sysdc_nobreak_updates;	/* updates to not check */
328 static uint_t	sysdc_minDC;		/* minimum allowed DC */
329 static uint_t	sysdc_maxDC;		/* maximum allowed DC */
330 static pri_t	sysdc_minpri;		/* minimum allowed priority */
331 static pri_t	sysdc_maxpri;		/* maximum allowed priority */
332 
333 /*
334  * Internal state
335  */
336 static kmutex_t	sysdc_pset_lock;	/* lock protecting pset data */
337 static list_t	sysdc_psets;		/* list of psets with SDC threads */
338 static uint_t	sysdc_param_init;	/* sysdc_initparam() has been called */
339 static uint_t	sysdc_update_timeout_started; /* update timeout is active */
340 static hrtime_t	sysdc_last_update;	/* time of last sysdc_update() */
341 static sysdc_t	sysdc_dummy;		/* used to terminate active lists */
342 
343 /*
344  * Internal state - active hash table
345  */
346 #define	SYSDC_NLISTS	8
347 #define	SYSDC_HASH(sdc)	(((uintptr_t)(sdc) >> 6) & (SYSDC_NLISTS - 1))
348 static sysdc_list_t	sysdc_active[SYSDC_NLISTS];
349 #define	SYSDC_LIST(sdc)		(&sysdc_active[SYSDC_HASH(sdc)])
350 
351 #ifdef DEBUG
352 static struct {
353 	uint64_t	sysdc_update_times_asleep;
354 	uint64_t	sysdc_update_times_base_ran_backwards;
355 	uint64_t	sysdc_update_times_already_done;
356 	uint64_t	sysdc_update_times_cur_ran_backwards;
357 	uint64_t	sysdc_compute_pri_breaking;
358 	uint64_t	sysdc_activate_enter;
359 	uint64_t	sysdc_update_enter;
360 	uint64_t	sysdc_update_exited;
361 	uint64_t	sysdc_update_not_sdc;
362 	uint64_t	sysdc_update_idle;
363 	uint64_t	sysdc_update_take_break;
364 	uint64_t	sysdc_update_no_psets;
365 	uint64_t	sysdc_tick_not_sdc;
366 	uint64_t	sysdc_tick_quantum_expired;
367 	uint64_t	sysdc_thread_enter_enter;
368 } sysdc_stats;
369 
370 #define	SYSDC_INC_STAT(x)	(sysdc_stats.x++)
371 #else
372 #define	SYSDC_INC_STAT(x)	((void)0)
373 #endif
374 
375 /* macros are UPPER CASE */
376 #define	HOWMANY(a, b)	howmany((a), (b))
377 #define	MSECTOTICKS(a)	HOWMANY((a) * 1000, usec_per_tick)
378 
379 static void
380 sysdc_initparam(void)
381 {
382 	uint_t sysdc_break_ticks;
383 
384 	/* update / prune intervals */
385 	sysdc_update_ticks = MSECTOTICKS(sysdc_update_interval_msec);
386 
387 	sysdc_prune_updates = HOWMANY(sysdc_prune_interval_msec,
388 	    sysdc_update_interval_msec);
389 	sysdc_reset_updates = HOWMANY(sysdc_reset_interval_msec,
390 	    sysdc_update_interval_msec);
391 
392 	/* We must get at least a little time on CPU. */
393 	sysdc_minDC = 1;
394 	sysdc_maxDC = SYSDC_DC_MAX;
395 	sysdc_minpri = 0;
396 	sysdc_maxpri = maxclsyspri;
397 
398 	/* break parameters */
399 	if (sysdc_max_pset_DC > SYSDC_DC_MAX) {
400 		sysdc_max_pset_DC = SYSDC_DC_MAX;
401 	}
402 	sysdc_break_ticks = MSECTOTICKS(sysdc_break_msec);
403 	sysdc_break_updates = HOWMANY(sysdc_break_ticks, sysdc_update_ticks);
404 
405 	/*
406 	 * We want:
407 	 *
408 	 *	sysdc_max_pset_DC = (nobreak / (break + nobreak))
409 	 *
410 	 *	==>	  nobreak = sysdc_max_pset_DC * (break + nobreak)
411 	 *
412 	 *			    sysdc_max_pset_DC * break
413 	 *	==>	  nobreak = -------------------------
414 	 *			    1 - sysdc_max_pset_DC
415 	 */
416 	sysdc_nobreak_updates =
417 	    HOWMANY((uint64_t)sysdc_break_updates * sysdc_max_pset_DC,
418 	    (SYSDC_DC_MAX - sysdc_max_pset_DC));
419 
420 	sysdc_param_init = 1;
421 }
422 
423 #undef HOWMANY
424 #undef MSECTOTICKS
425 
426 #define	SDC_UPDATE_INITIAL	0x1	/* for the initial update */
427 #define	SDC_UPDATE_TIMEOUT	0x2	/* from sysdc_update() */
428 #define	SDC_UPDATE_TICK		0x4	/* from sysdc_tick(), on expiry */
429 
430 /*
431  * Updates the recorded times in the sdc, and returns the elapsed ONPROC
432  * and Runnable times since the last reset.
433  *
434  * newO is the thread's actual ONPROC time; it's used during sysdc_update()
435  * to track processor set usage.
436  */
437 static void
438 sysdc_update_times(sysdc_t *sdc, uint_t flags,
439     hrtime_t *O, hrtime_t *R, hrtime_t *newO)
440 {
441 	kthread_t *const t = sdc->sdc_thread;
442 	const uint_t	initial = (flags & SDC_UPDATE_INITIAL);
443 	const uint_t	update = (flags & SDC_UPDATE_TIMEOUT);
444 	const clock_t	now = ddi_get_lbolt();
445 	uint_t		do_reset;
446 
447 	ASSERT(THREAD_LOCK_HELD(t));
448 
449 	*O = *R = 0;
450 
451 	/* If we've been sleeping, we know we haven't had any ONPROC time. */
452 	if (sdc->sdc_sleep_updates != 0 &&
453 	    sdc->sdc_sleep_updates != sdc->sdc_nupdates) {
454 		*newO = sdc->sdc_last_base_O;
455 		SYSDC_INC_STAT(sysdc_update_times_asleep);
456 		return;
457 	}
458 
459 	/*
460 	 * If this is our first update, or we've hit the reset point,
461 	 * we need to reset our base_{O,R}.  Once we've updated them, we
462 	 * report O and R for the entire prior interval.
463 	 */
464 	do_reset = initial;
465 	if (update) {
466 		++sdc->sdc_nupdates;
467 		if ((sdc->sdc_nupdates % sysdc_reset_updates) == 0)
468 			do_reset = 1;
469 	}
470 	if (do_reset) {
471 		hrtime_t baseO, baseR;
472 		if (initial) {
473 			/*
474 			 * Start off our cycle count somewhere in the middle,
475 			 * to keep the resets from all happening at once.
476 			 *
477 			 * 4999 is a handy prime much larger than
478 			 * sysdc_reset_updates, so that we don't run into
479 			 * trouble if the resolution is a multiple of
480 			 * sysdc_reset_updates.
481 			 */
482 			sdc->sdc_nupdates = (uint_t)((gethrtime() % 4999) %
483 			    sysdc_reset_updates);
484 			baseO = baseR = 0;
485 		} else {
486 			baseO = sdc->sdc_base_O;
487 			baseR = sdc->sdc_base_R;
488 		}
489 
490 		mstate_systhread_times(t, &sdc->sdc_base_O, &sdc->sdc_base_R);
491 		*newO = sdc->sdc_base_O;
492 
493 		sdc->sdc_reset = now;
494 		sdc->sdc_pri_check = -1; /* force mismatch below */
495 
496 		/*
497 		 * See below for rationale.
498 		 */
499 		if (baseO > sdc->sdc_base_O || baseR > sdc->sdc_base_R) {
500 			SYSDC_INC_STAT(sysdc_update_times_base_ran_backwards);
501 			baseO = sdc->sdc_base_O;
502 			baseR = sdc->sdc_base_R;
503 		}
504 
505 		/* compute based on the entire interval */
506 		*O = (sdc->sdc_base_O - baseO);
507 		*R = (sdc->sdc_base_R - baseR);
508 		return;
509 	}
510 
511 	/*
512 	 * If we're called from sysdc_update(), we *must* return a value
513 	 * for newO, so we always call mstate_systhread_times().
514 	 *
515 	 * Otherwise, if we've already done a pri check this tick,
516 	 * we can skip it.
517 	 */
518 	if (!update && sdc->sdc_pri_check == now) {
519 		SYSDC_INC_STAT(sysdc_update_times_already_done);
520 		return;
521 	}
522 
523 	/* Get the current times from the thread */
524 	sdc->sdc_pri_check = now;
525 	mstate_systhread_times(t, &sdc->sdc_cur_O, &sdc->sdc_cur_R);
526 	*newO = sdc->sdc_cur_O;
527 
528 	/*
529 	 * The updating of microstate accounting is not done under a
530 	 * consistent set of locks, particularly the t_waitrq field.  This
531 	 * can lead to narrow windows in which we account for time in the
532 	 * wrong bucket, which on the next read will be accounted for
533 	 * correctly.
534 	 *
535 	 * If our sdc_base_* fields were affected by one of these blips, we
536 	 * throw away the old data, and pretend this tick didn't happen.
537 	 */
538 	if (sdc->sdc_cur_O < sdc->sdc_base_O ||
539 	    sdc->sdc_cur_R < sdc->sdc_base_R) {
540 
541 		sdc->sdc_base_O = sdc->sdc_cur_O;
542 		sdc->sdc_base_R = sdc->sdc_cur_R;
543 
544 		SYSDC_INC_STAT(sysdc_update_times_cur_ran_backwards);
545 		return;
546 	}
547 
548 	*O = sdc->sdc_cur_O - sdc->sdc_base_O;
549 	*R = sdc->sdc_cur_R - sdc->sdc_base_R;
550 }
551 
552 /*
553  * sysdc_compute_pri()
554  *
555  *	Recomputes the priority of the thread, leaving the result in
556  *	sdc->sdc_epri.  Returns 1 if a priority update should occur
557  *	(which will also trigger a cpu_surrender()), otherwise
558  *	returns 0.
559  */
560 static uint_t
561 sysdc_compute_pri(sysdc_t *sdc, uint_t flags)
562 {
563 	kthread_t *const t = sdc->sdc_thread;
564 	const uint_t	update = (flags & SDC_UPDATE_TIMEOUT);
565 	const uint_t	tick = (flags & SDC_UPDATE_TICK);
566 
567 	hrtime_t	O, R;
568 	hrtime_t	newO = -1;
569 
570 	ASSERT(THREAD_LOCK_HELD(t));
571 
572 	sysdc_update_times(sdc, flags, &O, &R, &newO);
573 	ASSERT(!update || newO != -1);
574 
575 	/* If we have new data, recompute our priority. */
576 	if ((O + R) != 0) {
577 		sdc->sdc_cur_DC = (O * SYSDC_DC_MAX) / (O + R);
578 
579 		/* Adjust our priority to move our DC closer to the target. */
580 		if (sdc->sdc_cur_DC < sdc->sdc_target_DC)
581 			sdc->sdc_pri = sdc->sdc_maxpri;
582 		else
583 			sdc->sdc_pri = sdc->sdc_minpri;
584 	}
585 
586 	/*
587 	 * If our per-pset duty cycle goes over the max, we will take a break.
588 	 * This forces all sysdc threads in the pset to minimum priority, in
589 	 * order to let everyone else have a chance at the CPU.
590 	 */
591 	if (sdc->sdc_pset->sdp_need_break) {
592 		SYSDC_INC_STAT(sysdc_compute_pri_breaking);
593 		sdc->sdc_epri = sdc->sdc_minpri;
594 	} else {
595 		sdc->sdc_epri = sdc->sdc_pri;
596 	}
597 
598 	DTRACE_PROBE4(sysdc__compute__pri,
599 	    kthread_t *, t, pri_t, sdc->sdc_epri, uint_t, sdc->sdc_cur_DC,
600 	    uint_t, sdc->sdc_target_DC);
601 
602 	/*
603 	 * For sysdc_update(), we compute the ONPROC time for high-priority
604 	 * threads, which is used to calculate the per-pset duty cycle.  We
605 	 * will always tell our callers to update the thread's priority,
606 	 * since we want to force a cpu_surrender().
607 	 *
608 	 * We reset sdc_update_ticks so that sysdc_tick() will only update
609 	 * the thread's priority if our timeout is delayed by a tick or
610 	 * more.
611 	 */
612 	if (update) {
613 		/* SDC threads are not allowed to change cpupart bindings. */
614 		ASSERT(t->t_cpupart == sdc->sdc_pset->sdp_cpupart);
615 
616 		/* If we were at MAXPRI, account for our onproc time. */
617 		if (t->t_pri == sdc->sdc_maxpri &&
618 		    sdc->sdc_last_base_O != 0 &&
619 		    sdc->sdc_last_base_O < newO) {
620 			sdc->sdc_last_O = newO - sdc->sdc_last_base_O;
621 			sdc->sdc_pset->sdp_onproc_time +=
622 			    (uint64_t)sdc->sdc_last_O;
623 			sdc->sdc_pset->sdp_onproc_threads++;
624 		} else {
625 			sdc->sdc_last_O = 0;
626 		}
627 		sdc->sdc_last_base_O = newO;
628 
629 		sdc->sdc_update_ticks = sdc->sdc_ticks + sysdc_update_ticks + 1;
630 		return (1);
631 	}
632 
633 	/*
634 	 * Like sysdc_update(), sysdc_tick() always wants to update the
635 	 * thread's priority, so that the CPU is surrendered if necessary.
636 	 * We reset sdc_update_ticks so that if the timeout continues to be
637 	 * delayed, we'll update at the regular interval.
638 	 */
639 	if (tick) {
640 		ASSERT(sdc->sdc_ticks == sdc->sdc_update_ticks);
641 		sdc->sdc_update_ticks = sdc->sdc_ticks + sysdc_update_ticks;
642 		return (1);
643 	}
644 
645 	/*
646 	 * Otherwise, only tell our callers to update the priority if it has
647 	 * changed.
648 	 */
649 	return (sdc->sdc_epri != t->t_pri);
650 }
651 
652 static void
653 sysdc_update_pri(sysdc_t *sdc, uint_t flags)
654 {
655 	kthread_t *t = sdc->sdc_thread;
656 
657 	ASSERT(THREAD_LOCK_HELD(t));
658 
659 	if (sysdc_compute_pri(sdc, flags)) {
660 		if (!thread_change_pri(t, sdc->sdc_epri, 0)) {
661 			cpu_surrender(t);
662 		}
663 	}
664 }
665 
666 /*
667  * Add a thread onto the active list.  It will only be removed by
668  * sysdc_update().
669  */
670 static void
671 sysdc_activate(sysdc_t *sdc)
672 {
673 	sysdc_t *volatile *headp = &SYSDC_LIST(sdc)->sdl_list;
674 	sysdc_t		*head;
675 	kthread_t	*t = sdc->sdc_thread;
676 
677 	SYSDC_INC_STAT(sysdc_activate_enter);
678 
679 	ASSERT(sdc->sdc_next == NULL);
680 	ASSERT(THREAD_LOCK_HELD(t));
681 
682 	do {
683 		head = *headp;
684 		sdc->sdc_next = head;
685 	} while (atomic_cas_ptr(headp, head, sdc) != head);
686 }
687 
688 /*
689  * sysdc_update() has two jobs:
690  *
691  *	1. It updates the priorities of all active SDC threads on the system.
692  *	2. It measures pset CPU usage and enforces sysdc_max_pset_DC.
693  */
694 static void
695 sysdc_update(void *arg)
696 {
697 	int		idx;
698 	sysdc_t		*freelist = NULL;
699 	sysdc_pset_t	*cur;
700 	hrtime_t	now, diff;
701 	uint_t		redeploy = 1;
702 
703 	SYSDC_INC_STAT(sysdc_update_enter);
704 
705 	ASSERT(sysdc_update_timeout_started);
706 
707 	/*
708 	 * If this is our first time through, diff will be gigantic, and
709 	 * no breaks will be necessary.
710 	 */
711 	now = gethrtime();
712 	diff = now - sysdc_last_update;
713 	sysdc_last_update = now;
714 
715 	mutex_enter(&sysdc_pset_lock);
716 	for (cur = list_head(&sysdc_psets); cur != NULL;
717 	    cur = list_next(&sysdc_psets, cur)) {
718 		boolean_t breaking = (cur->sdp_should_break != 0);
719 
720 		if (cur->sdp_need_break != breaking) {
721 			DTRACE_PROBE2(sdc__pset__break, sysdc_pset_t *, cur,
722 			    boolean_t, breaking);
723 		}
724 		cur->sdp_onproc_time = 0;
725 		cur->sdp_onproc_threads = 0;
726 		cur->sdp_need_break = breaking;
727 	}
728 	mutex_exit(&sysdc_pset_lock);
729 
730 	for (idx = 0; idx < SYSDC_NLISTS; idx++) {
731 		sysdc_list_t		*sdl = &sysdc_active[idx];
732 		sysdc_t *volatile	*headp = &sdl->sdl_list;
733 		sysdc_t			*head, *tail;
734 		sysdc_t			**prevptr;
735 
736 		if (*headp == &sysdc_dummy)
737 			continue;
738 
739 		/* Prevent any threads from exiting while we're poking them. */
740 		mutex_enter(&sdl->sdl_lock);
741 
742 		/*
743 		 * Each sdl_list contains a singly-linked list of active
744 		 * threads. Threads which become active while we are
745 		 * processing the list will be added to sdl_list.  Since we
746 		 * don't want that to interfere with our own processing, we
747 		 * swap in an empty list.  Any newly active threads will
748 		 * go on to this empty list.  When finished, we'll put any
749 		 * such threads at the end of the processed list.
750 		 */
751 		head = atomic_swap_ptr(headp, &sysdc_dummy);
752 		prevptr = &head;
753 		while (*prevptr != &sysdc_dummy) {
754 			sysdc_t		*const	sdc = *prevptr;
755 			kthread_t	*const	t = sdc->sdc_thread;
756 
757 			/*
758 			 * If the thread has exited, move its sysdc_t onto
759 			 * freelist, to be freed later.
760 			 */
761 			if (t == NULL) {
762 				*prevptr = sdc->sdc_next;
763 				SYSDC_INC_STAT(sysdc_update_exited);
764 				sdc->sdc_next = freelist;
765 				freelist = sdc;
766 				continue;
767 			}
768 
769 			thread_lock(t);
770 			if (t->t_cid != sysdccid) {
771 				thread_unlock(t);
772 				prevptr = &sdc->sdc_next;
773 				SYSDC_INC_STAT(sysdc_update_not_sdc);
774 				continue;
775 			}
776 			ASSERT(t->t_cldata == sdc);
777 
778 			/*
779 			 * If the thread has been sleeping for longer
780 			 * than sysdc_prune_interval, make it inactive by
781 			 * removing it from the list.
782 			 */
783 			if (!(t->t_state & (TS_RUN | TS_ONPROC)) &&
784 			    sdc->sdc_sleep_updates != 0 &&
785 			    (sdc->sdc_sleep_updates - sdc->sdc_nupdates) >
786 			    sysdc_prune_updates) {
787 				*prevptr = sdc->sdc_next;
788 				SYSDC_INC_STAT(sysdc_update_idle);
789 				sdc->sdc_next = NULL;
790 				thread_unlock(t);
791 				continue;
792 			}
793 			sysdc_update_pri(sdc, SDC_UPDATE_TIMEOUT);
794 			thread_unlock(t);
795 
796 			prevptr = &sdc->sdc_next;
797 		}
798 
799 		/*
800 		 * Add our list to the bucket, putting any new entries
801 		 * added while we were working at the tail of the list.
802 		 */
803 		do {
804 			tail = *headp;
805 			*prevptr = tail;
806 		} while (atomic_cas_ptr(headp, tail, head) != tail);
807 
808 		mutex_exit(&sdl->sdl_lock);
809 	}
810 
811 	mutex_enter(&sysdc_pset_lock);
812 	for (cur = list_head(&sysdc_psets); cur != NULL;
813 	    cur = list_next(&sysdc_psets, cur)) {
814 
815 		cur->sdp_vtime_last_interval =
816 		    diff * cur->sdp_cpupart->cp_ncpus;
817 		cur->sdp_DC_last_interval =
818 		    (cur->sdp_onproc_time * SYSDC_DC_MAX) /
819 		    cur->sdp_vtime_last_interval;
820 
821 		if (cur->sdp_should_break > 0) {
822 			cur->sdp_should_break--;	/* breaking */
823 			continue;
824 		}
825 		if (cur->sdp_dont_break > 0) {
826 			cur->sdp_dont_break--;	/* waiting before checking */
827 			continue;
828 		}
829 		if (cur->sdp_DC_last_interval > sysdc_max_pset_DC) {
830 			cur->sdp_should_break = sysdc_break_updates;
831 			cur->sdp_dont_break = sysdc_nobreak_updates;
832 			SYSDC_INC_STAT(sysdc_update_take_break);
833 		}
834 	}
835 
836 	/*
837 	 * If there are no sysdc_psets, there can be no threads, so
838 	 * we can stop doing our timeout.  Since we're holding the
839 	 * sysdc_pset_lock, no new sysdc_psets can come in, which will
840 	 * prevent anyone from racing with this and dropping our timeout
841 	 * on the floor.
842 	 */
843 	if (list_is_empty(&sysdc_psets)) {
844 		SYSDC_INC_STAT(sysdc_update_no_psets);
845 		ASSERT(sysdc_update_timeout_started);
846 		sysdc_update_timeout_started = 0;
847 
848 		redeploy = 0;
849 	}
850 	mutex_exit(&sysdc_pset_lock);
851 
852 	while (freelist != NULL) {
853 		sysdc_t *cur = freelist;
854 		freelist = cur->sdc_next;
855 		kmem_free(cur, sizeof (*cur));
856 	}
857 
858 	if (redeploy) {
859 		(void) timeout(sysdc_update, arg, sysdc_update_ticks);
860 	}
861 }
862 
863 static void
864 sysdc_preempt(kthread_t *t)
865 {
866 	ASSERT(t == curthread);
867 	ASSERT(THREAD_LOCK_HELD(t));
868 
869 	setbackdq(t);		/* give others a chance to run */
870 }
871 
872 static void
873 sysdc_tick(kthread_t *t)
874 {
875 	sysdc_t *sdc;
876 
877 	thread_lock(t);
878 	if (t->t_cid != sysdccid) {
879 		SYSDC_INC_STAT(sysdc_tick_not_sdc);
880 		thread_unlock(t);
881 		return;
882 	}
883 	sdc = t->t_cldata;
884 	if (t->t_state == TS_ONPROC &&
885 	    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
886 		cpu_surrender(t);
887 	}
888 
889 	if (t->t_state == TS_ONPROC || t->t_state == TS_RUN) {
890 		ASSERT(sdc->sdc_sleep_updates == 0);
891 	}
892 
893 	ASSERT(sdc->sdc_ticks != sdc->sdc_update_ticks);
894 	sdc->sdc_ticks++;
895 	if (sdc->sdc_ticks == sdc->sdc_update_ticks) {
896 		SYSDC_INC_STAT(sysdc_tick_quantum_expired);
897 		sysdc_update_pri(sdc, SDC_UPDATE_TICK);
898 		ASSERT(sdc->sdc_ticks != sdc->sdc_update_ticks);
899 	}
900 	thread_unlock(t);
901 }
902 
903 static void
904 sysdc_setrun(kthread_t *t)
905 {
906 	sysdc_t *sdc = t->t_cldata;
907 
908 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
909 
910 	sdc->sdc_sleep_updates = 0;
911 
912 	if (sdc->sdc_next == NULL) {
913 		/*
914 		 * Since we're in transition, we don't want to use the
915 		 * full thread_update_pri().
916 		 */
917 		if (sysdc_compute_pri(sdc, 0)) {
918 			THREAD_CHANGE_PRI(t, sdc->sdc_epri);
919 		}
920 		sysdc_activate(sdc);
921 
922 		ASSERT(sdc->sdc_next != NULL);
923 	}
924 
925 	setbackdq(t);
926 }
927 
928 static void
929 sysdc_wakeup(kthread_t *t)
930 {
931 	sysdc_setrun(t);
932 }
933 
934 static void
935 sysdc_sleep(kthread_t *t)
936 {
937 	sysdc_t *sdc = t->t_cldata;
938 
939 	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
940 
941 	sdc->sdc_sleep_updates = sdc->sdc_nupdates;
942 }
943 
944 /*ARGSUSED*/
945 static int
946 sysdc_enterclass(kthread_t *t, id_t cid, void *parmsp, cred_t *reqpcredp,
947     void *bufp)
948 {
949 	cpupart_t *const cpupart = t->t_cpupart;
950 	sysdc_t *sdc = bufp;
951 	sysdc_params_t *sdpp = parmsp;
952 	sysdc_pset_t *newpset = sdc->sdc_pset;
953 	sysdc_pset_t *pset;
954 	int start_timeout;
955 
956 	if (t->t_cid != syscid)
957 		return (EPERM);
958 
959 	ASSERT(ttolwp(t) != NULL);
960 	ASSERT(sdpp != NULL);
961 	ASSERT(newpset != NULL);
962 	ASSERT(sysdc_param_init);
963 
964 	ASSERT(sdpp->sdp_minpri >= sysdc_minpri);
965 	ASSERT(sdpp->sdp_maxpri <= sysdc_maxpri);
966 	ASSERT(sdpp->sdp_DC >= sysdc_minDC);
967 	ASSERT(sdpp->sdp_DC <= sysdc_maxDC);
968 
969 	sdc->sdc_thread = t;
970 	sdc->sdc_pri = sdpp->sdp_maxpri;	/* start off maximally */
971 	sdc->sdc_minpri = sdpp->sdp_minpri;
972 	sdc->sdc_maxpri = sdpp->sdp_maxpri;
973 	sdc->sdc_target_DC = sdpp->sdp_DC;
974 	sdc->sdc_ticks = 0;
975 	sdc->sdc_update_ticks = sysdc_update_ticks + 1;
976 
977 	/* Assign ourselves to the appropriate pset. */
978 	sdc->sdc_pset = NULL;
979 	mutex_enter(&sysdc_pset_lock);
980 	for (pset = list_head(&sysdc_psets); pset != NULL;
981 	    pset = list_next(&sysdc_psets, pset)) {
982 		if (pset->sdp_cpupart == cpupart) {
983 			break;
984 		}
985 	}
986 	if (pset == NULL) {
987 		pset = newpset;
988 		newpset = NULL;
989 		pset->sdp_cpupart = cpupart;
990 		list_insert_tail(&sysdc_psets, pset);
991 	}
992 	pset->sdp_nthreads++;
993 	ASSERT(pset->sdp_nthreads > 0);
994 
995 	sdc->sdc_pset = pset;
996 
997 	start_timeout = (sysdc_update_timeout_started == 0);
998 	sysdc_update_timeout_started = 1;
999 	mutex_exit(&sysdc_pset_lock);
1000 
1001 	if (newpset != NULL)
1002 		kmem_free(newpset, sizeof (*newpset));
1003 
1004 	/* Update t's scheduling class and priority. */
1005 	thread_lock(t);
1006 	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
1007 	t->t_cid = cid;
1008 	t->t_cldata = sdc;
1009 	t->t_schedflag |= TS_RUNQMATCH;
1010 
1011 	sysdc_update_pri(sdc, SDC_UPDATE_INITIAL);
1012 	thread_unlock(t);
1013 
1014 	/* Kick off the thread timeout if we're the first one in. */
1015 	if (start_timeout) {
1016 		(void) timeout(sysdc_update, NULL, sysdc_update_ticks);
1017 	}
1018 
1019 	return (0);
1020 }
1021 
1022 static void
1023 sysdc_leave(sysdc_t *sdc)
1024 {
1025 	sysdc_pset_t *sdp = sdc->sdc_pset;
1026 	sysdc_list_t *sdl = SYSDC_LIST(sdc);
1027 	uint_t freedc;
1028 
1029 	mutex_enter(&sdl->sdl_lock);		/* block sysdc_update() */
1030 	sdc->sdc_thread = NULL;
1031 	freedc = (sdc->sdc_next == NULL);
1032 	mutex_exit(&sdl->sdl_lock);
1033 
1034 	mutex_enter(&sysdc_pset_lock);
1035 	sdp = sdc->sdc_pset;
1036 	ASSERT(sdp != NULL);
1037 	ASSERT(sdp->sdp_nthreads > 0);
1038 	--sdp->sdp_nthreads;
1039 	if (sdp->sdp_nthreads == 0) {
1040 		list_remove(&sysdc_psets, sdp);
1041 	} else {
1042 		sdp = NULL;
1043 	}
1044 	mutex_exit(&sysdc_pset_lock);
1045 
1046 	if (freedc)
1047 		kmem_free(sdc, sizeof (*sdc));
1048 	if (sdp != NULL)
1049 		kmem_free(sdp, sizeof (*sdp));
1050 }
1051 
1052 static void
1053 sysdc_exitclass(void *buf)
1054 {
1055 	sysdc_leave((sysdc_t *)buf);
1056 }
1057 
1058 /*ARGSUSED*/
1059 static int
1060 sysdc_canexit(kthread_t *t, cred_t *reqpcredp)
1061 {
1062 	/* Threads cannot exit SDC once joined, except in a body bag. */
1063 	return (EPERM);
1064 }
1065 
1066 static void
1067 sysdc_exit(kthread_t *t)
1068 {
1069 	sysdc_t *sdc;
1070 
1071 	/* We're exiting, so we just rejoin the SYS class. */
1072 	thread_lock(t);
1073 	ASSERT(t->t_cid == sysdccid);
1074 	sdc = t->t_cldata;
1075 	t->t_cid = syscid;
1076 	t->t_cldata = NULL;
1077 	t->t_clfuncs = &(sclass[syscid].cl_funcs->thread);
1078 	(void) thread_change_pri(t, maxclsyspri, 0);
1079 	t->t_schedflag &= ~TS_RUNQMATCH;
1080 	thread_unlock_nopreempt(t);
1081 
1082 	/* Unlink the sdc from everything. */
1083 	sysdc_leave(sdc);
1084 }
1085 
1086 /*ARGSUSED*/
1087 static int
1088 sysdc_fork(kthread_t *t, kthread_t *ct, void *bufp)
1089 {
1090 	/*
1091 	 * Threads cannot be created with SDC as their class; they must
1092 	 * be created as SYS and then added with sysdc_thread_enter().
1093 	 * Because of this restriction, sysdc_fork() should never be called.
1094 	 */
1095 	panic("sysdc cannot be forked");
1096 
1097 	return (ENOSYS);
1098 }
1099 
1100 /*ARGSUSED*/
1101 static void
1102 sysdc_forkret(kthread_t *t, kthread_t *ct)
1103 {
1104 	/* SDC threads are part of system processes, which never fork. */
1105 	panic("sysdc cannot be forked");
1106 }
1107 
1108 static pri_t
1109 sysdc_globpri(kthread_t *t)
1110 {
1111 	return (t->t_epri);
1112 }
1113 
1114 /*ARGSUSED*/
1115 static pri_t
1116 sysdc_no_swap(kthread_t *t, int flags)
1117 {
1118 	/* SDC threads cannot be swapped. */
1119 	return (-1);
1120 }
1121 
1122 /*
1123  * Get maximum and minimum priorities enjoyed by SDC threads.
1124  */
1125 static int
1126 sysdc_getclpri(pcpri_t *pcprip)
1127 {
1128 	pcprip->pc_clpmax = sysdc_maxpri;
1129 	pcprip->pc_clpmin = sysdc_minpri;
1130 	return (0);
1131 }
1132 
1133 /*ARGSUSED*/
1134 static int
1135 sysdc_getclinfo(void *arg)
1136 {
1137 	return (0);		/* no class-specific info */
1138 }
1139 
1140 /*ARGSUSED*/
1141 static int
1142 sysdc_alloc(void **p, int flag)
1143 {
1144 	sysdc_t *new;
1145 
1146 	*p = NULL;
1147 	if ((new = kmem_zalloc(sizeof (*new), flag)) == NULL) {
1148 		return (ENOMEM);
1149 	}
1150 	if ((new->sdc_pset = kmem_zalloc(sizeof (*new->sdc_pset), flag)) ==
1151 	    NULL) {
1152 		kmem_free(new, sizeof (*new));
1153 		return (ENOMEM);
1154 	}
1155 	*p = new;
1156 	return (0);
1157 }
1158 
1159 static void
1160 sysdc_free(void *p)
1161 {
1162 	sysdc_t *sdc = p;
1163 
1164 	if (sdc != NULL) {
1165 		/*
1166 		 * We must have failed CL_ENTERCLASS(), so our pset should be
1167 		 * there and unused.
1168 		 */
1169 		ASSERT(sdc->sdc_pset != NULL);
1170 		ASSERT(sdc->sdc_pset->sdp_cpupart == NULL);
1171 		kmem_free(sdc->sdc_pset, sizeof (*sdc->sdc_pset));
1172 		kmem_free(sdc, sizeof (*sdc));
1173 	}
1174 }
1175 
1176 static int sysdc_enosys();	/* Boy, ANSI-C's K&R compatibility is weird. */
1177 static int sysdc_einval();
1178 static void sysdc_nullsys();
1179 
1180 static struct classfuncs sysdc_classfuncs = {
1181 	/* messages to class manager */
1182 	{
1183 		sysdc_enosys,	/* admin */
1184 		sysdc_getclinfo,
1185 		sysdc_enosys,	/* parmsin */
1186 		sysdc_enosys,	/* parmsout */
1187 		sysdc_enosys,	/* vaparmsin */
1188 		sysdc_enosys,	/* vaparmsout */
1189 		sysdc_getclpri,
1190 		sysdc_alloc,
1191 		sysdc_free,
1192 	},
1193 	/* operations on threads */
1194 	{
1195 		sysdc_enterclass,
1196 		sysdc_exitclass,
1197 		sysdc_canexit,
1198 		sysdc_fork,
1199 		sysdc_forkret,
1200 		sysdc_nullsys,	/* parmsget */
1201 		sysdc_enosys,	/* parmsset */
1202 		sysdc_nullsys,	/* stop */
1203 		sysdc_exit,
1204 		sysdc_nullsys,	/* active */
1205 		sysdc_nullsys,	/* inactive */
1206 		sysdc_no_swap,	/* swapin */
1207 		sysdc_no_swap,	/* swapout */
1208 		sysdc_nullsys,	/* trapret */
1209 		sysdc_preempt,
1210 		sysdc_setrun,
1211 		sysdc_sleep,
1212 		sysdc_tick,
1213 		sysdc_wakeup,
1214 		sysdc_einval,	/* donice */
1215 		sysdc_globpri,
1216 		sysdc_nullsys,	/* set_process_group */
1217 		sysdc_nullsys,	/* yield */
1218 		sysdc_einval,	/* doprio */
1219 	}
1220 };
1221 
1222 static int
1223 sysdc_enosys()
1224 {
1225 	return (ENOSYS);
1226 }
1227 
1228 static int
1229 sysdc_einval()
1230 {
1231 	return (EINVAL);
1232 }
1233 
1234 static void
1235 sysdc_nullsys()
1236 {
1237 }
1238 
1239 /*ARGSUSED*/
1240 static pri_t
1241 sysdc_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
1242 {
1243 	int idx;
1244 
1245 	list_create(&sysdc_psets, sizeof (sysdc_pset_t),
1246 	    offsetof(sysdc_pset_t, sdp_node));
1247 
1248 	for (idx = 0; idx < SYSDC_NLISTS; idx++) {
1249 		sysdc_active[idx].sdl_list = &sysdc_dummy;
1250 	}
1251 
1252 	sysdc_initparam();
1253 
1254 	sysdccid = cid;
1255 	*clfuncspp = &sysdc_classfuncs;
1256 
1257 	return ((pri_t)v.v_maxsyspri);
1258 }
1259 
1260 static struct sclass csw = {
1261 	"SDC",
1262 	sysdc_init,
1263 	0
1264 };
1265 
1266 static struct modlsched modlsched = {
1267 	&mod_schedops, "system duty cycle scheduling class", &csw
1268 };
1269 
1270 static struct modlinkage modlinkage = {
1271 	MODREV_1, (void *)&modlsched, NULL
1272 };
1273 
1274 int
1275 _init()
1276 {
1277 	return (mod_install(&modlinkage));
1278 }
1279 
1280 int
1281 _fini()
1282 {
1283 	return (EBUSY);		/* can't unload for now */
1284 }
1285 
1286 int
1287 _info(struct modinfo *modinfop)
1288 {
1289 	return (mod_info(&modlinkage, modinfop));
1290 }
1291 
1292 /* --- consolidation-private interfaces --- */
1293 void
1294 sysdc_thread_enter(kthread_t *t, uint_t dc, uint_t flags)
1295 {
1296 	void *buf = NULL;
1297 	sysdc_params_t sdp;
1298 
1299 	SYSDC_INC_STAT(sysdc_thread_enter_enter);
1300 
1301 	ASSERT(sysdc_param_init);
1302 	ASSERT(sysdccid >= 0);
1303 
1304 	ASSERT((flags & ~SYSDC_THREAD_BATCH) == 0);
1305 
1306 	sdp.sdp_minpri = sysdc_minpri;
1307 	sdp.sdp_maxpri = sysdc_maxpri;
1308 	sdp.sdp_DC = MAX(MIN(dc, sysdc_maxDC), sysdc_minDC);
1309 
1310 	VERIFY3U(CL_ALLOC(&buf, sysdccid, KM_SLEEP), ==, 0);
1311 
1312 	ASSERT(t->t_lwp != NULL);
1313 	ASSERT(t->t_cid == syscid);
1314 	ASSERT(t->t_cldata == NULL);
1315 	VERIFY3U(CL_CANEXIT(t, NULL), ==, 0);
1316 	VERIFY3U(CL_ENTERCLASS(t, sysdccid, &sdp, kcred, buf), ==, 0);
1317 	CL_EXITCLASS(syscid, NULL);
1318 }
1319