xref: /titanic_51/usr/src/uts/common/disp/disp.c (revision 5699897cfc22a71e1441854892e3659f179ee0bc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/signal.h>
34 #include <sys/user.h>
35 #include <sys/systm.h>
36 #include <sys/sysinfo.h>
37 #include <sys/var.h>
38 #include <sys/errno.h>
39 #include <sys/cmn_err.h>
40 #include <sys/debug.h>
41 #include <sys/inline.h>
42 #include <sys/disp.h>
43 #include <sys/class.h>
44 #include <sys/bitmap.h>
45 #include <sys/kmem.h>
46 #include <sys/cpuvar.h>
47 #include <sys/vtrace.h>
48 #include <sys/tnf.h>
49 #include <sys/cpupart.h>
50 #include <sys/lgrp.h>
51 #include <sys/pg.h>
52 #include <sys/cmt.h>
53 #include <sys/bitset.h>
54 #include <sys/schedctl.h>
55 #include <sys/atomic.h>
56 #include <sys/dtrace.h>
57 #include <sys/sdt.h>
58 #include <sys/archsystm.h>
59 
60 #include <vm/as.h>
61 
62 #define	BOUND_CPU	0x1
63 #define	BOUND_PARTITION	0x2
64 #define	BOUND_INTR	0x4
65 
66 /* Dispatch queue allocation structure and functions */
67 struct disp_queue_info {
68 	disp_t	*dp;
69 	dispq_t *olddispq;
70 	dispq_t *newdispq;
71 	ulong_t	*olddqactmap;
72 	ulong_t	*newdqactmap;
73 	int	oldnglobpris;
74 };
75 static void	disp_dq_alloc(struct disp_queue_info *dptr, int numpris,
76     disp_t *dp);
77 static void	disp_dq_assign(struct disp_queue_info *dptr, int numpris);
78 static void	disp_dq_free(struct disp_queue_info *dptr);
79 
80 /* platform-specific routine to call when processor is idle */
81 static void	generic_idle_cpu();
82 void		(*idle_cpu)() = generic_idle_cpu;
83 
84 /* routines invoked when a CPU enters/exits the idle loop */
85 static void	idle_enter();
86 static void	idle_exit();
87 
88 /* platform-specific routine to call when thread is enqueued */
89 static void	generic_enq_thread(cpu_t *, int);
90 void		(*disp_enq_thread)(cpu_t *, int) = generic_enq_thread;
91 
92 pri_t	kpreemptpri;		/* priority where kernel preemption applies */
93 pri_t	upreemptpri = 0; 	/* priority where normal preemption applies */
94 pri_t	intr_pri;		/* interrupt thread priority base level */
95 
96 #define	KPQPRI	-1 		/* pri where cpu affinity is dropped for kpq */
97 pri_t	kpqpri = KPQPRI; 	/* can be set in /etc/system */
98 disp_t	cpu0_disp;		/* boot CPU's dispatch queue */
99 disp_lock_t	swapped_lock;	/* lock swapped threads and swap queue */
100 int	nswapped;		/* total number of swapped threads */
101 void	disp_swapped_enq(kthread_t *tp);
102 static void	disp_swapped_setrun(kthread_t *tp);
103 static void	cpu_resched(cpu_t *cp, pri_t tpri);
104 
105 /*
106  * If this is set, only interrupt threads will cause kernel preemptions.
107  * This is done by changing the value of kpreemptpri.  kpreemptpri
108  * will either be the max sysclass pri + 1 or the min interrupt pri.
109  */
110 int	only_intr_kpreempt;
111 
112 extern void set_idle_cpu(int cpun);
113 extern void unset_idle_cpu(int cpun);
114 static void setkpdq(kthread_t *tp, int borf);
115 #define	SETKP_BACK	0
116 #define	SETKP_FRONT	1
117 /*
118  * Parameter that determines how recently a thread must have run
119  * on the CPU to be considered loosely-bound to that CPU to reduce
120  * cold cache effects.  The interval is in hertz.
121  */
122 #define	RECHOOSE_INTERVAL 3
123 int	rechoose_interval = RECHOOSE_INTERVAL;
124 
125 /*
126  * Parameter that determines how long (in nanoseconds) a thread must
127  * be sitting on a run queue before it can be stolen by another CPU
128  * to reduce migrations.  The interval is in nanoseconds.
129  *
130  * The nosteal_nsec should be set by platform code cmp_set_nosteal_interval()
131  * to an appropriate value.  nosteal_nsec is set to NOSTEAL_UNINITIALIZED
132  * here indicating it is uninitiallized.
133  * Setting nosteal_nsec to 0 effectively disables the nosteal 'protection'.
134  *
135  */
136 #define	NOSTEAL_UNINITIALIZED	(-1)
137 hrtime_t nosteal_nsec = NOSTEAL_UNINITIALIZED;
138 extern void cmp_set_nosteal_interval(void);
139 
140 id_t	defaultcid;	/* system "default" class; see dispadmin(1M) */
141 
142 disp_lock_t	transition_lock;	/* lock on transitioning threads */
143 disp_lock_t	stop_lock;		/* lock on stopped threads */
144 
145 static void	cpu_dispqalloc(int numpris);
146 
147 /*
148  * This gets returned by disp_getwork/disp_getbest if we couldn't steal
149  * a thread because it was sitting on its run queue for a very short
150  * period of time.
151  */
152 #define	T_DONTSTEAL	(kthread_t *)(-1) /* returned by disp_getwork/getbest */
153 
154 static kthread_t	*disp_getwork(cpu_t *to);
155 static kthread_t	*disp_getbest(disp_t *from);
156 static kthread_t	*disp_ratify(kthread_t *tp, disp_t *kpq);
157 
158 void	swtch_to(kthread_t *);
159 
160 /*
161  * dispatcher and scheduler initialization
162  */
163 
164 /*
165  * disp_setup - Common code to calculate and allocate dispatcher
166  *		variables and structures based on the maximum priority.
167  */
168 static void
169 disp_setup(pri_t maxglobpri, pri_t oldnglobpris)
170 {
171 	pri_t	newnglobpris;
172 
173 	ASSERT(MUTEX_HELD(&cpu_lock));
174 
175 	newnglobpris = maxglobpri + 1 + LOCK_LEVEL;
176 
177 	if (newnglobpris > oldnglobpris) {
178 		/*
179 		 * Allocate new kp queues for each CPU partition.
180 		 */
181 		cpupart_kpqalloc(newnglobpris);
182 
183 		/*
184 		 * Allocate new dispatch queues for each CPU.
185 		 */
186 		cpu_dispqalloc(newnglobpris);
187 
188 		/*
189 		 * compute new interrupt thread base priority
190 		 */
191 		intr_pri = maxglobpri;
192 		if (only_intr_kpreempt) {
193 			kpreemptpri = intr_pri + 1;
194 			if (kpqpri == KPQPRI)
195 				kpqpri = kpreemptpri;
196 		}
197 		v.v_nglobpris = newnglobpris;
198 	}
199 }
200 
201 /*
202  * dispinit - Called to initialize all loaded classes and the
203  *	      dispatcher framework.
204  */
205 void
206 dispinit(void)
207 {
208 	id_t	cid;
209 	pri_t	maxglobpri;
210 	pri_t	cl_maxglobpri;
211 
212 	maxglobpri = -1;
213 
214 	/*
215 	 * Initialize transition lock, which will always be set.
216 	 */
217 	DISP_LOCK_INIT(&transition_lock);
218 	disp_lock_enter_high(&transition_lock);
219 	DISP_LOCK_INIT(&stop_lock);
220 
221 	mutex_enter(&cpu_lock);
222 	CPU->cpu_disp->disp_maxrunpri = -1;
223 	CPU->cpu_disp->disp_max_unbound_pri = -1;
224 
225 	/*
226 	 * Initialize the default CPU partition.
227 	 */
228 	cpupart_initialize_default();
229 	/*
230 	 * Call the class specific initialization functions for
231 	 * all pre-installed schedulers.
232 	 *
233 	 * We pass the size of a class specific parameter
234 	 * buffer to each of the initialization functions
235 	 * to try to catch problems with backward compatibility
236 	 * of class modules.
237 	 *
238 	 * For example a new class module running on an old system
239 	 * which didn't provide sufficiently large parameter buffers
240 	 * would be bad news. Class initialization modules can check for
241 	 * this and take action if they detect a problem.
242 	 */
243 
244 	for (cid = 0; cid < nclass; cid++) {
245 		sclass_t	*sc;
246 
247 		sc = &sclass[cid];
248 		if (SCHED_INSTALLED(sc)) {
249 			cl_maxglobpri = sc->cl_init(cid, PC_CLPARMSZ,
250 			    &sc->cl_funcs);
251 			if (cl_maxglobpri > maxglobpri)
252 				maxglobpri = cl_maxglobpri;
253 		}
254 	}
255 	kpreemptpri = (pri_t)v.v_maxsyspri + 1;
256 	if (kpqpri == KPQPRI)
257 		kpqpri = kpreemptpri;
258 
259 	ASSERT(maxglobpri >= 0);
260 	disp_setup(maxglobpri, 0);
261 
262 	mutex_exit(&cpu_lock);
263 
264 	/*
265 	 * Platform specific sticky scheduler setup.
266 	 */
267 	if (nosteal_nsec == NOSTEAL_UNINITIALIZED)
268 		cmp_set_nosteal_interval();
269 
270 	/*
271 	 * Get the default class ID; this may be later modified via
272 	 * dispadmin(1M).  This will load the class (normally TS) and that will
273 	 * call disp_add(), which is why we had to drop cpu_lock first.
274 	 */
275 	if (getcid(defaultclass, &defaultcid) != 0) {
276 		cmn_err(CE_PANIC, "Couldn't load default scheduling class '%s'",
277 		    defaultclass);
278 	}
279 }
280 
281 /*
282  * disp_add - Called with class pointer to initialize the dispatcher
283  *	      for a newly loaded class.
284  */
285 void
286 disp_add(sclass_t *clp)
287 {
288 	pri_t	maxglobpri;
289 	pri_t	cl_maxglobpri;
290 
291 	mutex_enter(&cpu_lock);
292 	/*
293 	 * Initialize the scheduler class.
294 	 */
295 	maxglobpri = (pri_t)(v.v_nglobpris - LOCK_LEVEL - 1);
296 	cl_maxglobpri = clp->cl_init(clp - sclass, PC_CLPARMSZ, &clp->cl_funcs);
297 	if (cl_maxglobpri > maxglobpri)
298 		maxglobpri = cl_maxglobpri;
299 
300 	/*
301 	 * Save old queue information.  Since we're initializing a
302 	 * new scheduling class which has just been loaded, then
303 	 * the size of the dispq may have changed.  We need to handle
304 	 * that here.
305 	 */
306 	disp_setup(maxglobpri, v.v_nglobpris);
307 
308 	mutex_exit(&cpu_lock);
309 }
310 
311 
312 /*
313  * For each CPU, allocate new dispatch queues
314  * with the stated number of priorities.
315  */
316 static void
317 cpu_dispqalloc(int numpris)
318 {
319 	cpu_t	*cpup;
320 	struct disp_queue_info	*disp_mem;
321 	int i, num;
322 
323 	ASSERT(MUTEX_HELD(&cpu_lock));
324 
325 	disp_mem = kmem_zalloc(NCPU *
326 	    sizeof (struct disp_queue_info), KM_SLEEP);
327 
328 	/*
329 	 * This routine must allocate all of the memory before stopping
330 	 * the cpus because it must not sleep in kmem_alloc while the
331 	 * CPUs are stopped.  Locks they hold will not be freed until they
332 	 * are restarted.
333 	 */
334 	i = 0;
335 	cpup = cpu_list;
336 	do {
337 		disp_dq_alloc(&disp_mem[i], numpris, cpup->cpu_disp);
338 		i++;
339 		cpup = cpup->cpu_next;
340 	} while (cpup != cpu_list);
341 	num = i;
342 
343 	pause_cpus(NULL);
344 	for (i = 0; i < num; i++)
345 		disp_dq_assign(&disp_mem[i], numpris);
346 	start_cpus();
347 
348 	/*
349 	 * I must free all of the memory after starting the cpus because
350 	 * I can not risk sleeping in kmem_free while the cpus are stopped.
351 	 */
352 	for (i = 0; i < num; i++)
353 		disp_dq_free(&disp_mem[i]);
354 
355 	kmem_free(disp_mem, NCPU * sizeof (struct disp_queue_info));
356 }
357 
358 static void
359 disp_dq_alloc(struct disp_queue_info *dptr, int numpris, disp_t	*dp)
360 {
361 	dptr->newdispq = kmem_zalloc(numpris * sizeof (dispq_t), KM_SLEEP);
362 	dptr->newdqactmap = kmem_zalloc(((numpris / BT_NBIPUL) + 1) *
363 	    sizeof (long), KM_SLEEP);
364 	dptr->dp = dp;
365 }
366 
367 static void
368 disp_dq_assign(struct disp_queue_info *dptr, int numpris)
369 {
370 	disp_t	*dp;
371 
372 	dp = dptr->dp;
373 	dptr->olddispq = dp->disp_q;
374 	dptr->olddqactmap = dp->disp_qactmap;
375 	dptr->oldnglobpris = dp->disp_npri;
376 
377 	ASSERT(dptr->oldnglobpris < numpris);
378 
379 	if (dptr->olddispq != NULL) {
380 		/*
381 		 * Use kcopy because bcopy is platform-specific
382 		 * and could block while we might have paused the cpus.
383 		 */
384 		(void) kcopy(dptr->olddispq, dptr->newdispq,
385 		    dptr->oldnglobpris * sizeof (dispq_t));
386 		(void) kcopy(dptr->olddqactmap, dptr->newdqactmap,
387 		    ((dptr->oldnglobpris / BT_NBIPUL) + 1) *
388 		    sizeof (long));
389 	}
390 	dp->disp_q = dptr->newdispq;
391 	dp->disp_qactmap = dptr->newdqactmap;
392 	dp->disp_q_limit = &dptr->newdispq[numpris];
393 	dp->disp_npri = numpris;
394 }
395 
396 static void
397 disp_dq_free(struct disp_queue_info *dptr)
398 {
399 	if (dptr->olddispq != NULL)
400 		kmem_free(dptr->olddispq,
401 		    dptr->oldnglobpris * sizeof (dispq_t));
402 	if (dptr->olddqactmap != NULL)
403 		kmem_free(dptr->olddqactmap,
404 		    ((dptr->oldnglobpris / BT_NBIPUL) + 1) * sizeof (long));
405 }
406 
407 /*
408  * For a newly created CPU, initialize the dispatch queue.
409  * This is called before the CPU is known through cpu[] or on any lists.
410  */
411 void
412 disp_cpu_init(cpu_t *cp)
413 {
414 	disp_t	*dp;
415 	dispq_t	*newdispq;
416 	ulong_t	*newdqactmap;
417 
418 	ASSERT(MUTEX_HELD(&cpu_lock));	/* protect dispatcher queue sizes */
419 
420 	if (cp == cpu0_disp.disp_cpu)
421 		dp = &cpu0_disp;
422 	else
423 		dp = kmem_alloc(sizeof (disp_t), KM_SLEEP);
424 	bzero(dp, sizeof (disp_t));
425 	cp->cpu_disp = dp;
426 	dp->disp_cpu = cp;
427 	dp->disp_maxrunpri = -1;
428 	dp->disp_max_unbound_pri = -1;
429 	DISP_LOCK_INIT(&cp->cpu_thread_lock);
430 	/*
431 	 * Allocate memory for the dispatcher queue headers
432 	 * and the active queue bitmap.
433 	 */
434 	newdispq = kmem_zalloc(v.v_nglobpris * sizeof (dispq_t), KM_SLEEP);
435 	newdqactmap = kmem_zalloc(((v.v_nglobpris / BT_NBIPUL) + 1) *
436 	    sizeof (long), KM_SLEEP);
437 	dp->disp_q = newdispq;
438 	dp->disp_qactmap = newdqactmap;
439 	dp->disp_q_limit = &newdispq[v.v_nglobpris];
440 	dp->disp_npri = v.v_nglobpris;
441 }
442 
443 void
444 disp_cpu_fini(cpu_t *cp)
445 {
446 	ASSERT(MUTEX_HELD(&cpu_lock));
447 
448 	disp_kp_free(cp->cpu_disp);
449 	if (cp->cpu_disp != &cpu0_disp)
450 		kmem_free(cp->cpu_disp, sizeof (disp_t));
451 }
452 
453 /*
454  * Allocate new, larger kpreempt dispatch queue to replace the old one.
455  */
456 void
457 disp_kp_alloc(disp_t *dq, pri_t npri)
458 {
459 	struct disp_queue_info	mem_info;
460 
461 	if (npri > dq->disp_npri) {
462 		/*
463 		 * Allocate memory for the new array.
464 		 */
465 		disp_dq_alloc(&mem_info, npri, dq);
466 
467 		/*
468 		 * We need to copy the old structures to the new
469 		 * and free the old.
470 		 */
471 		disp_dq_assign(&mem_info, npri);
472 		disp_dq_free(&mem_info);
473 	}
474 }
475 
476 /*
477  * Free dispatch queue.
478  * Used for the kpreempt queues for a removed CPU partition and
479  * for the per-CPU queues of deleted CPUs.
480  */
481 void
482 disp_kp_free(disp_t *dq)
483 {
484 	struct disp_queue_info	mem_info;
485 
486 	mem_info.olddispq = dq->disp_q;
487 	mem_info.olddqactmap = dq->disp_qactmap;
488 	mem_info.oldnglobpris = dq->disp_npri;
489 	disp_dq_free(&mem_info);
490 }
491 
492 /*
493  * End dispatcher and scheduler initialization.
494  */
495 
496 /*
497  * See if there's anything to do other than remain idle.
498  * Return non-zero if there is.
499  *
500  * This function must be called with high spl, or with
501  * kernel preemption disabled to prevent the partition's
502  * active cpu list from changing while being traversed.
503  *
504  * This is essentially a simpler version of disp_getwork()
505  * to be called by CPUs preparing to "halt".
506  */
507 int
508 disp_anywork(void)
509 {
510 	cpu_t		*cp = CPU;
511 	cpu_t		*ocp;
512 	volatile int	*local_nrunnable = &cp->cpu_disp->disp_nrunnable;
513 
514 	if (!(cp->cpu_flags & CPU_OFFLINE)) {
515 		if (CP_MAXRUNPRI(cp->cpu_part) >= 0)
516 			return (1);
517 
518 		for (ocp = cp->cpu_next_part; ocp != cp;
519 		    ocp = ocp->cpu_next_part) {
520 			ASSERT(CPU_ACTIVE(ocp));
521 
522 			/*
523 			 * Something has appeared on the local run queue.
524 			 */
525 			if (*local_nrunnable > 0)
526 				return (1);
527 			/*
528 			 * If we encounter another idle CPU that will
529 			 * soon be trolling around through disp_anywork()
530 			 * terminate our walk here and let this other CPU
531 			 * patrol the next part of the list.
532 			 */
533 			if (ocp->cpu_dispatch_pri == -1 &&
534 			    (ocp->cpu_disp_flags & CPU_DISP_HALTED) == 0)
535 				return (0);
536 			/*
537 			 * Work can be taken from another CPU if:
538 			 *	- There is unbound work on the run queue
539 			 *	- That work isn't a thread undergoing a
540 			 *	- context switch on an otherwise empty queue.
541 			 *	- The CPU isn't running the idle loop.
542 			 */
543 			if (ocp->cpu_disp->disp_max_unbound_pri != -1 &&
544 			    !((ocp->cpu_disp_flags & CPU_DISP_DONTSTEAL) &&
545 			    ocp->cpu_disp->disp_nrunnable == 1) &&
546 			    ocp->cpu_dispatch_pri != -1)
547 				return (1);
548 		}
549 	}
550 	return (0);
551 }
552 
553 /*
554  * Called when CPU enters the idle loop
555  */
556 static void
557 idle_enter()
558 {
559 	cpu_t		*cp = CPU;
560 
561 	new_cpu_mstate(CMS_IDLE, gethrtime_unscaled());
562 	CPU_STATS_ADDQ(cp, sys, idlethread, 1);
563 	set_idle_cpu(cp->cpu_id);	/* arch-dependent hook */
564 }
565 
566 /*
567  * Called when CPU exits the idle loop
568  */
569 static void
570 idle_exit()
571 {
572 	cpu_t		*cp = CPU;
573 
574 	new_cpu_mstate(CMS_SYSTEM, gethrtime_unscaled());
575 	unset_idle_cpu(cp->cpu_id);	/* arch-dependent hook */
576 }
577 
578 /*
579  * Idle loop.
580  */
581 void
582 idle()
583 {
584 	struct cpu	*cp = CPU;		/* pointer to this CPU */
585 	kthread_t	*t;			/* taken thread */
586 
587 	idle_enter();
588 
589 	/*
590 	 * Uniprocessor version of idle loop.
591 	 * Do this until notified that we're on an actual multiprocessor.
592 	 */
593 	while (ncpus == 1) {
594 		if (cp->cpu_disp->disp_nrunnable == 0) {
595 			(*idle_cpu)();
596 			continue;
597 		}
598 		idle_exit();
599 		swtch();
600 
601 		idle_enter(); /* returned from swtch */
602 	}
603 
604 	/*
605 	 * Multiprocessor idle loop.
606 	 */
607 	for (;;) {
608 		/*
609 		 * If CPU is completely quiesced by p_online(2), just wait
610 		 * here with minimal bus traffic until put online.
611 		 */
612 		while (cp->cpu_flags & CPU_QUIESCED)
613 			(*idle_cpu)();
614 
615 		if (cp->cpu_disp->disp_nrunnable != 0) {
616 			idle_exit();
617 			swtch();
618 		} else {
619 			if (cp->cpu_flags & CPU_OFFLINE)
620 				continue;
621 			if ((t = disp_getwork(cp)) == NULL) {
622 				if (cp->cpu_chosen_level != -1) {
623 					disp_t *dp = cp->cpu_disp;
624 					disp_t *kpq;
625 
626 					disp_lock_enter(&dp->disp_lock);
627 					/*
628 					 * Set kpq under lock to prevent
629 					 * migration between partitions.
630 					 */
631 					kpq = &cp->cpu_part->cp_kp_queue;
632 					if (kpq->disp_maxrunpri == -1)
633 						cp->cpu_chosen_level = -1;
634 					disp_lock_exit(&dp->disp_lock);
635 				}
636 				(*idle_cpu)();
637 				continue;
638 			}
639 			/*
640 			 * If there was a thread but we couldn't steal
641 			 * it, then keep trying.
642 			 */
643 			if (t == T_DONTSTEAL)
644 				continue;
645 			idle_exit();
646 			swtch_to(t);
647 		}
648 		idle_enter(); /* returned from swtch/swtch_to */
649 	}
650 }
651 
652 
653 /*
654  * Preempt the currently running thread in favor of the highest
655  * priority thread.  The class of the current thread controls
656  * where it goes on the dispatcher queues. If panicking, turn
657  * preemption off.
658  */
659 void
660 preempt()
661 {
662 	kthread_t 	*t = curthread;
663 	klwp_t 		*lwp = ttolwp(curthread);
664 
665 	if (panicstr)
666 		return;
667 
668 	TRACE_0(TR_FAC_DISP, TR_PREEMPT_START, "preempt_start");
669 
670 	thread_lock(t);
671 
672 	if (t->t_state != TS_ONPROC || t->t_disp_queue != CPU->cpu_disp) {
673 		/*
674 		 * this thread has already been chosen to be run on
675 		 * another CPU. Clear kprunrun on this CPU since we're
676 		 * already headed for swtch().
677 		 */
678 		CPU->cpu_kprunrun = 0;
679 		thread_unlock_nopreempt(t);
680 		TRACE_0(TR_FAC_DISP, TR_PREEMPT_END, "preempt_end");
681 	} else {
682 		if (lwp != NULL)
683 			lwp->lwp_ru.nivcsw++;
684 		CPU_STATS_ADDQ(CPU, sys, inv_swtch, 1);
685 		THREAD_TRANSITION(t);
686 		CL_PREEMPT(t);
687 		DTRACE_SCHED(preempt);
688 		thread_unlock_nopreempt(t);
689 
690 		TRACE_0(TR_FAC_DISP, TR_PREEMPT_END, "preempt_end");
691 
692 		swtch();		/* clears CPU->cpu_runrun via disp() */
693 	}
694 }
695 
696 extern kthread_t *thread_unpin();
697 
698 /*
699  * disp() - find the highest priority thread for this processor to run, and
700  * set it in TS_ONPROC state so that resume() can be called to run it.
701  */
702 static kthread_t *
703 disp()
704 {
705 	cpu_t		*cpup;
706 	disp_t		*dp;
707 	kthread_t	*tp;
708 	dispq_t		*dq;
709 	int		maxrunword;
710 	pri_t		pri;
711 	disp_t		*kpq;
712 
713 	TRACE_0(TR_FAC_DISP, TR_DISP_START, "disp_start");
714 
715 	cpup = CPU;
716 	/*
717 	 * Find the highest priority loaded, runnable thread.
718 	 */
719 	dp = cpup->cpu_disp;
720 
721 reschedule:
722 	/*
723 	 * If there is more important work on the global queue with a better
724 	 * priority than the maximum on this CPU, take it now.
725 	 */
726 	kpq = &cpup->cpu_part->cp_kp_queue;
727 	while ((pri = kpq->disp_maxrunpri) >= 0 &&
728 	    pri >= dp->disp_maxrunpri &&
729 	    (cpup->cpu_flags & CPU_OFFLINE) == 0 &&
730 	    (tp = disp_getbest(kpq)) != NULL) {
731 		if (disp_ratify(tp, kpq) != NULL) {
732 			TRACE_1(TR_FAC_DISP, TR_DISP_END,
733 			    "disp_end:tid %p", tp);
734 			return (tp);
735 		}
736 	}
737 
738 	disp_lock_enter(&dp->disp_lock);
739 	pri = dp->disp_maxrunpri;
740 
741 	/*
742 	 * If there is nothing to run, look at what's runnable on other queues.
743 	 * Choose the idle thread if the CPU is quiesced.
744 	 * Note that CPUs that have the CPU_OFFLINE flag set can still run
745 	 * interrupt threads, which will be the only threads on the CPU's own
746 	 * queue, but cannot run threads from other queues.
747 	 */
748 	if (pri == -1) {
749 		if (!(cpup->cpu_flags & CPU_OFFLINE)) {
750 			disp_lock_exit(&dp->disp_lock);
751 			if ((tp = disp_getwork(cpup)) == NULL ||
752 			    tp == T_DONTSTEAL) {
753 				tp = cpup->cpu_idle_thread;
754 				(void) splhigh();
755 				THREAD_ONPROC(tp, cpup);
756 				cpup->cpu_dispthread = tp;
757 				cpup->cpu_dispatch_pri = -1;
758 				cpup->cpu_runrun = cpup->cpu_kprunrun = 0;
759 				cpup->cpu_chosen_level = -1;
760 			}
761 		} else {
762 			disp_lock_exit_high(&dp->disp_lock);
763 			tp = cpup->cpu_idle_thread;
764 			THREAD_ONPROC(tp, cpup);
765 			cpup->cpu_dispthread = tp;
766 			cpup->cpu_dispatch_pri = -1;
767 			cpup->cpu_runrun = cpup->cpu_kprunrun = 0;
768 			cpup->cpu_chosen_level = -1;
769 		}
770 		TRACE_1(TR_FAC_DISP, TR_DISP_END,
771 		    "disp_end:tid %p", tp);
772 		return (tp);
773 	}
774 
775 	dq = &dp->disp_q[pri];
776 	tp = dq->dq_first;
777 
778 	ASSERT(tp != NULL);
779 	ASSERT(tp->t_schedflag & TS_LOAD);	/* thread must be swapped in */
780 
781 	DTRACE_SCHED2(dequeue, kthread_t *, tp, disp_t *, dp);
782 
783 	/*
784 	 * Found it so remove it from queue.
785 	 */
786 	dp->disp_nrunnable--;
787 	dq->dq_sruncnt--;
788 	if ((dq->dq_first = tp->t_link) == NULL) {
789 		ulong_t	*dqactmap = dp->disp_qactmap;
790 
791 		ASSERT(dq->dq_sruncnt == 0);
792 		dq->dq_last = NULL;
793 
794 		/*
795 		 * The queue is empty, so the corresponding bit needs to be
796 		 * turned off in dqactmap.   If nrunnable != 0 just took the
797 		 * last runnable thread off the
798 		 * highest queue, so recompute disp_maxrunpri.
799 		 */
800 		maxrunword = pri >> BT_ULSHIFT;
801 		dqactmap[maxrunword] &= ~BT_BIW(pri);
802 
803 		if (dp->disp_nrunnable == 0) {
804 			dp->disp_max_unbound_pri = -1;
805 			dp->disp_maxrunpri = -1;
806 		} else {
807 			int ipri;
808 
809 			ipri = bt_gethighbit(dqactmap, maxrunword);
810 			dp->disp_maxrunpri = ipri;
811 			if (ipri < dp->disp_max_unbound_pri)
812 				dp->disp_max_unbound_pri = ipri;
813 		}
814 	} else {
815 		tp->t_link = NULL;
816 	}
817 
818 	/*
819 	 * Set TS_DONT_SWAP flag to prevent another processor from swapping
820 	 * out this thread before we have a chance to run it.
821 	 * While running, it is protected against swapping by t_lock.
822 	 */
823 	tp->t_schedflag |= TS_DONT_SWAP;
824 	cpup->cpu_dispthread = tp;		/* protected by spl only */
825 	cpup->cpu_dispatch_pri = pri;
826 	ASSERT(pri == DISP_PRIO(tp));
827 	thread_onproc(tp, cpup);  		/* set t_state to TS_ONPROC */
828 	disp_lock_exit_high(&dp->disp_lock);	/* drop run queue lock */
829 
830 	ASSERT(tp != NULL);
831 	TRACE_1(TR_FAC_DISP, TR_DISP_END,
832 	    "disp_end:tid %p", tp);
833 
834 	if (disp_ratify(tp, kpq) == NULL)
835 		goto reschedule;
836 
837 	return (tp);
838 }
839 
840 /*
841  * swtch()
842  *	Find best runnable thread and run it.
843  *	Called with the current thread already switched to a new state,
844  *	on a sleep queue, run queue, stopped, and not zombied.
845  *	May be called at any spl level less than or equal to LOCK_LEVEL.
846  *	Always drops spl to the base level (spl0()).
847  */
848 void
849 swtch()
850 {
851 	kthread_t	*t = curthread;
852 	kthread_t	*next;
853 	cpu_t		*cp;
854 
855 	TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start");
856 
857 	if (t->t_flag & T_INTR_THREAD)
858 		cpu_intr_swtch_enter(t);
859 
860 	if (t->t_intr != NULL) {
861 		/*
862 		 * We are an interrupt thread.  Setup and return
863 		 * the interrupted thread to be resumed.
864 		 */
865 		(void) splhigh();	/* block other scheduler action */
866 		cp = CPU;		/* now protected against migration */
867 		ASSERT(CPU_ON_INTR(cp) == 0);	/* not called with PIL > 10 */
868 		CPU_STATS_ADDQ(cp, sys, pswitch, 1);
869 		CPU_STATS_ADDQ(cp, sys, intrblk, 1);
870 		next = thread_unpin();
871 		TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start");
872 		resume_from_intr(next);
873 	} else {
874 #ifdef	DEBUG
875 		if (t->t_state == TS_ONPROC &&
876 		    t->t_disp_queue->disp_cpu == CPU &&
877 		    t->t_preempt == 0) {
878 			thread_lock(t);
879 			ASSERT(t->t_state != TS_ONPROC ||
880 			    t->t_disp_queue->disp_cpu != CPU ||
881 			    t->t_preempt != 0);	/* cannot migrate */
882 			thread_unlock_nopreempt(t);
883 		}
884 #endif	/* DEBUG */
885 		cp = CPU;
886 		next = disp();		/* returns with spl high */
887 		ASSERT(CPU_ON_INTR(cp) == 0);	/* not called with PIL > 10 */
888 
889 		/* OK to steal anything left on run queue */
890 		cp->cpu_disp_flags &= ~CPU_DISP_DONTSTEAL;
891 
892 		if (next != t) {
893 			if (t == cp->cpu_idle_thread) {
894 				PG_NRUN_UPDATE(cp, 1);
895 			} else if (next == cp->cpu_idle_thread) {
896 				PG_NRUN_UPDATE(cp, -1);
897 			}
898 
899 			/*
900 			 * If t was previously in the TS_ONPROC state,
901 			 * setfrontdq and setbackdq won't have set its t_waitrq.
902 			 * Since we now finally know that we're switching away
903 			 * from this thread, set its t_waitrq if it is on a run
904 			 * queue.
905 			 */
906 			if ((t->t_state == TS_RUN) && (t->t_waitrq == 0)) {
907 				t->t_waitrq = gethrtime_unscaled();
908 			}
909 
910 			/*
911 			 * restore mstate of thread that we are switching to
912 			 */
913 			restore_mstate(next);
914 
915 			CPU_STATS_ADDQ(cp, sys, pswitch, 1);
916 			cp->cpu_last_swtch = t->t_disp_time = lbolt;
917 			TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start");
918 
919 			if (dtrace_vtime_active)
920 				dtrace_vtime_switch(next);
921 
922 			resume(next);
923 			/*
924 			 * The TR_RESUME_END and TR_SWTCH_END trace points
925 			 * appear at the end of resume(), because we may not
926 			 * return here
927 			 */
928 		} else {
929 			if (t->t_flag & T_INTR_THREAD)
930 				cpu_intr_swtch_exit(t);
931 
932 			DTRACE_SCHED(remain__cpu);
933 			TRACE_0(TR_FAC_DISP, TR_SWTCH_END, "swtch_end");
934 			(void) spl0();
935 		}
936 	}
937 }
938 
939 /*
940  * swtch_from_zombie()
941  *	Special case of swtch(), which allows checks for TS_ZOMB to be
942  *	eliminated from normal resume.
943  *	Find best runnable thread and run it.
944  *	Called with the current thread zombied.
945  *	Zombies cannot migrate, so CPU references are safe.
946  */
947 void
948 swtch_from_zombie()
949 {
950 	kthread_t	*next;
951 	cpu_t		*cpu = CPU;
952 
953 	TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start");
954 
955 	ASSERT(curthread->t_state == TS_ZOMB);
956 
957 	next = disp();			/* returns with spl high */
958 	ASSERT(CPU_ON_INTR(CPU) == 0);	/* not called with PIL > 10 */
959 	CPU_STATS_ADDQ(CPU, sys, pswitch, 1);
960 	ASSERT(next != curthread);
961 	TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start");
962 
963 	if (next == cpu->cpu_idle_thread)
964 		PG_NRUN_UPDATE(cpu, -1);
965 
966 	restore_mstate(next);
967 
968 	if (dtrace_vtime_active)
969 		dtrace_vtime_switch(next);
970 
971 	resume_from_zombie(next);
972 	/*
973 	 * The TR_RESUME_END and TR_SWTCH_END trace points
974 	 * appear at the end of resume(), because we certainly will not
975 	 * return here
976 	 */
977 }
978 
979 #if defined(DEBUG) && (defined(DISP_DEBUG) || defined(lint))
980 
981 /*
982  * search_disp_queues()
983  *	Search the given dispatch queues for thread tp.
984  *	Return 1 if tp is found, otherwise return 0.
985  */
986 static int
987 search_disp_queues(disp_t *dp, kthread_t *tp)
988 {
989 	dispq_t		*dq;
990 	dispq_t		*eq;
991 
992 	disp_lock_enter_high(&dp->disp_lock);
993 
994 	for (dq = dp->disp_q, eq = dp->disp_q_limit; dq < eq; ++dq) {
995 		kthread_t	*rp;
996 
997 		ASSERT(dq->dq_last == NULL || dq->dq_last->t_link == NULL);
998 
999 		for (rp = dq->dq_first; rp; rp = rp->t_link)
1000 			if (tp == rp) {
1001 				disp_lock_exit_high(&dp->disp_lock);
1002 				return (1);
1003 			}
1004 	}
1005 	disp_lock_exit_high(&dp->disp_lock);
1006 
1007 	return (0);
1008 }
1009 
1010 /*
1011  * thread_on_queue()
1012  *	Search all per-CPU dispatch queues and all partition-wide kpreempt
1013  *	queues for thread tp. Return 1 if tp is found, otherwise return 0.
1014  */
1015 static int
1016 thread_on_queue(kthread_t *tp)
1017 {
1018 	cpu_t		*cp;
1019 	struct cpupart	*part;
1020 
1021 	ASSERT(getpil() >= DISP_LEVEL);
1022 
1023 	/*
1024 	 * Search the per-CPU dispatch queues for tp.
1025 	 */
1026 	cp = CPU;
1027 	do {
1028 		if (search_disp_queues(cp->cpu_disp, tp))
1029 			return (1);
1030 	} while ((cp = cp->cpu_next_onln) != CPU);
1031 
1032 	/*
1033 	 * Search the partition-wide kpreempt queues for tp.
1034 	 */
1035 	part = CPU->cpu_part;
1036 	do {
1037 		if (search_disp_queues(&part->cp_kp_queue, tp))
1038 			return (1);
1039 	} while ((part = part->cp_next) != CPU->cpu_part);
1040 
1041 	return (0);
1042 }
1043 
1044 #else
1045 
1046 #define	thread_on_queue(tp)	0	/* ASSERT must be !thread_on_queue */
1047 
1048 #endif  /* DEBUG */
1049 
1050 /*
1051  * like swtch(), but switch to a specified thread taken from another CPU.
1052  *	called with spl high..
1053  */
1054 void
1055 swtch_to(kthread_t *next)
1056 {
1057 	cpu_t			*cp = CPU;
1058 
1059 	TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start");
1060 
1061 	/*
1062 	 * Update context switch statistics.
1063 	 */
1064 	CPU_STATS_ADDQ(cp, sys, pswitch, 1);
1065 
1066 	TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start");
1067 
1068 	if (curthread == cp->cpu_idle_thread)
1069 		PG_NRUN_UPDATE(cp, 1);
1070 
1071 	/* OK to steal anything left on run queue */
1072 	cp->cpu_disp_flags &= ~CPU_DISP_DONTSTEAL;
1073 
1074 	/* record last execution time */
1075 	cp->cpu_last_swtch = curthread->t_disp_time = lbolt;
1076 
1077 	/*
1078 	 * If t was previously in the TS_ONPROC state, setfrontdq and setbackdq
1079 	 * won't have set its t_waitrq.  Since we now finally know that we're
1080 	 * switching away from this thread, set its t_waitrq if it is on a run
1081 	 * queue.
1082 	 */
1083 	if ((curthread->t_state == TS_RUN) && (curthread->t_waitrq == 0)) {
1084 		curthread->t_waitrq = gethrtime_unscaled();
1085 	}
1086 
1087 	/* restore next thread to previously running microstate */
1088 	restore_mstate(next);
1089 
1090 	if (dtrace_vtime_active)
1091 		dtrace_vtime_switch(next);
1092 
1093 	resume(next);
1094 	/*
1095 	 * The TR_RESUME_END and TR_SWTCH_END trace points
1096 	 * appear at the end of resume(), because we may not
1097 	 * return here
1098 	 */
1099 }
1100 
1101 
1102 
1103 #define	CPU_IDLING(pri)	((pri) == -1)
1104 
1105 static void
1106 cpu_resched(cpu_t *cp, pri_t tpri)
1107 {
1108 	int	call_poke_cpu = 0;
1109 	pri_t   cpupri = cp->cpu_dispatch_pri;
1110 
1111 	if (!CPU_IDLING(cpupri) && (cpupri < tpri)) {
1112 		TRACE_2(TR_FAC_DISP, TR_CPU_RESCHED,
1113 		    "CPU_RESCHED:Tpri %d Cpupri %d", tpri, cpupri);
1114 		if (tpri >= upreemptpri && cp->cpu_runrun == 0) {
1115 			cp->cpu_runrun = 1;
1116 			aston(cp->cpu_dispthread);
1117 			if (tpri < kpreemptpri && cp != CPU)
1118 				call_poke_cpu = 1;
1119 		}
1120 		if (tpri >= kpreemptpri && cp->cpu_kprunrun == 0) {
1121 			cp->cpu_kprunrun = 1;
1122 			if (cp != CPU)
1123 				call_poke_cpu = 1;
1124 		}
1125 	}
1126 
1127 	/*
1128 	 * Propagate cpu_runrun, and cpu_kprunrun to global visibility.
1129 	 */
1130 	membar_enter();
1131 
1132 	if (call_poke_cpu)
1133 		poke_cpu(cp->cpu_id);
1134 }
1135 
1136 /*
1137  * setbackdq() keeps runqs balanced such that the difference in length
1138  * between the chosen runq and the next one is no more than RUNQ_MAX_DIFF.
1139  * For threads with priorities below RUNQ_MATCH_PRI levels, the runq's lengths
1140  * must match.  When per-thread TS_RUNQMATCH flag is set, setbackdq() will
1141  * try to keep runqs perfectly balanced regardless of the thread priority.
1142  */
1143 #define	RUNQ_MATCH_PRI	16	/* pri below which queue lengths must match */
1144 #define	RUNQ_MAX_DIFF	2	/* maximum runq length difference */
1145 #define	RUNQ_LEN(cp, pri)	((cp)->cpu_disp->disp_q[pri].dq_sruncnt)
1146 
1147 /*
1148  * Macro that evaluates to true if it is likely that the thread has cache
1149  * warmth. This is based on the amount of time that has elapsed since the
1150  * thread last ran. If that amount of time is less than "rechoose_interval"
1151  * ticks, then we decide that the thread has enough cache warmth to warrant
1152  * some affinity for t->t_cpu.
1153  */
1154 #define	THREAD_HAS_CACHE_WARMTH(thread)	\
1155 	((thread == curthread) ||	\
1156 	((lbolt - thread->t_disp_time) <= rechoose_interval))
1157 /*
1158  * Put the specified thread on the back of the dispatcher
1159  * queue corresponding to its current priority.
1160  *
1161  * Called with the thread in transition, onproc or stopped state
1162  * and locked (transition implies locked) and at high spl.
1163  * Returns with the thread in TS_RUN state and still locked.
1164  */
1165 void
1166 setbackdq(kthread_t *tp)
1167 {
1168 	dispq_t	*dq;
1169 	disp_t		*dp;
1170 	cpu_t		*cp;
1171 	pri_t		tpri;
1172 	int		bound;
1173 	boolean_t	self;
1174 
1175 	ASSERT(THREAD_LOCK_HELD(tp));
1176 	ASSERT((tp->t_schedflag & TS_ALLSTART) == 0);
1177 	ASSERT(!thread_on_queue(tp));	/* make sure tp isn't on a runq */
1178 
1179 	/*
1180 	 * If thread is "swapped" or on the swap queue don't
1181 	 * queue it, but wake sched.
1182 	 */
1183 	if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) {
1184 		disp_swapped_setrun(tp);
1185 		return;
1186 	}
1187 
1188 	self = (tp == curthread);
1189 
1190 	if (tp->t_bound_cpu || tp->t_weakbound_cpu)
1191 		bound = 1;
1192 	else
1193 		bound = 0;
1194 
1195 	tpri = DISP_PRIO(tp);
1196 	if (ncpus == 1)
1197 		cp = tp->t_cpu;
1198 	else if (!bound) {
1199 		if (tpri >= kpqpri) {
1200 			setkpdq(tp, SETKP_BACK);
1201 			return;
1202 		}
1203 
1204 		/*
1205 		 * We'll generally let this thread continue to run where
1206 		 * it last ran...but will consider migration if:
1207 		 * - We thread probably doesn't have much cache warmth.
1208 		 * - The CPU where it last ran is the target of an offline
1209 		 *   request.
1210 		 * - The thread last ran outside it's home lgroup.
1211 		 */
1212 		if ((!THREAD_HAS_CACHE_WARMTH(tp)) ||
1213 		    (tp->t_cpu == cpu_inmotion)) {
1214 			cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri, NULL);
1215 		} else if (!LGRP_CONTAINS_CPU(tp->t_lpl->lpl_lgrp, tp->t_cpu)) {
1216 			cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri,
1217 			    self ? tp->t_cpu : NULL);
1218 		} else {
1219 			cp = tp->t_cpu;
1220 		}
1221 
1222 		if (tp->t_cpupart == cp->cpu_part) {
1223 			int	qlen;
1224 
1225 			/*
1226 			 * Perform any CMT load balancing
1227 			 */
1228 			cp = cmt_balance(tp, cp);
1229 
1230 			/*
1231 			 * Balance across the run queues
1232 			 */
1233 			qlen = RUNQ_LEN(cp, tpri);
1234 			if (tpri >= RUNQ_MATCH_PRI &&
1235 			    !(tp->t_schedflag & TS_RUNQMATCH))
1236 				qlen -= RUNQ_MAX_DIFF;
1237 			if (qlen > 0) {
1238 				cpu_t *newcp;
1239 
1240 				if (tp->t_lpl->lpl_lgrpid == LGRP_ROOTID) {
1241 					newcp = cp->cpu_next_part;
1242 				} else if ((newcp = cp->cpu_next_lpl) == cp) {
1243 					newcp = cp->cpu_next_part;
1244 				}
1245 
1246 				if (RUNQ_LEN(newcp, tpri) < qlen) {
1247 					DTRACE_PROBE3(runq__balance,
1248 					    kthread_t *, tp,
1249 					    cpu_t *, cp, cpu_t *, newcp);
1250 					cp = newcp;
1251 				}
1252 			}
1253 		} else {
1254 			/*
1255 			 * Migrate to a cpu in the new partition.
1256 			 */
1257 			cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist,
1258 			    tp->t_lpl, tp->t_pri, NULL);
1259 		}
1260 		ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0);
1261 	} else {
1262 		/*
1263 		 * It is possible that t_weakbound_cpu != t_bound_cpu (for
1264 		 * a short time until weak binding that existed when the
1265 		 * strong binding was established has dropped) so we must
1266 		 * favour weak binding over strong.
1267 		 */
1268 		cp = tp->t_weakbound_cpu ?
1269 		    tp->t_weakbound_cpu : tp->t_bound_cpu;
1270 	}
1271 	/*
1272 	 * A thread that is ONPROC may be temporarily placed on the run queue
1273 	 * but then chosen to run again by disp.  If the thread we're placing on
1274 	 * the queue is in TS_ONPROC state, don't set its t_waitrq until a
1275 	 * replacement process is actually scheduled in swtch().  In this
1276 	 * situation, curthread is the only thread that could be in the ONPROC
1277 	 * state.
1278 	 */
1279 	if ((!self) && (tp->t_waitrq == 0)) {
1280 		hrtime_t curtime;
1281 
1282 		curtime = gethrtime_unscaled();
1283 		(void) cpu_update_pct(tp, curtime);
1284 		tp->t_waitrq = curtime;
1285 	} else {
1286 		(void) cpu_update_pct(tp, gethrtime_unscaled());
1287 	}
1288 
1289 	dp = cp->cpu_disp;
1290 	disp_lock_enter_high(&dp->disp_lock);
1291 
1292 	DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, 0);
1293 	TRACE_3(TR_FAC_DISP, TR_BACKQ, "setbackdq:pri %d cpu %p tid %p",
1294 	    tpri, cp, tp);
1295 
1296 #ifndef NPROBE
1297 	/* Kernel probe */
1298 	if (tnf_tracing_active)
1299 		tnf_thread_queue(tp, cp, tpri);
1300 #endif /* NPROBE */
1301 
1302 	ASSERT(tpri >= 0 && tpri < dp->disp_npri);
1303 
1304 	THREAD_RUN(tp, &dp->disp_lock);		/* set t_state to TS_RUN */
1305 	tp->t_disp_queue = dp;
1306 	tp->t_link = NULL;
1307 
1308 	dq = &dp->disp_q[tpri];
1309 	dp->disp_nrunnable++;
1310 	if (!bound)
1311 		dp->disp_steal = 0;
1312 	membar_enter();
1313 
1314 	if (dq->dq_sruncnt++ != 0) {
1315 		ASSERT(dq->dq_first != NULL);
1316 		dq->dq_last->t_link = tp;
1317 		dq->dq_last = tp;
1318 	} else {
1319 		ASSERT(dq->dq_first == NULL);
1320 		ASSERT(dq->dq_last == NULL);
1321 		dq->dq_first = dq->dq_last = tp;
1322 		BT_SET(dp->disp_qactmap, tpri);
1323 		if (tpri > dp->disp_maxrunpri) {
1324 			dp->disp_maxrunpri = tpri;
1325 			membar_enter();
1326 			cpu_resched(cp, tpri);
1327 		}
1328 	}
1329 
1330 	if (!bound && tpri > dp->disp_max_unbound_pri) {
1331 		if (self && dp->disp_max_unbound_pri == -1 && cp == CPU) {
1332 			/*
1333 			 * If there are no other unbound threads on the
1334 			 * run queue, don't allow other CPUs to steal
1335 			 * this thread while we are in the middle of a
1336 			 * context switch. We may just switch to it
1337 			 * again right away. CPU_DISP_DONTSTEAL is cleared
1338 			 * in swtch and swtch_to.
1339 			 */
1340 			cp->cpu_disp_flags |= CPU_DISP_DONTSTEAL;
1341 		}
1342 		dp->disp_max_unbound_pri = tpri;
1343 	}
1344 	(*disp_enq_thread)(cp, bound);
1345 }
1346 
1347 /*
1348  * Put the specified thread on the front of the dispatcher
1349  * queue corresponding to its current priority.
1350  *
1351  * Called with the thread in transition, onproc or stopped state
1352  * and locked (transition implies locked) and at high spl.
1353  * Returns with the thread in TS_RUN state and still locked.
1354  */
1355 void
1356 setfrontdq(kthread_t *tp)
1357 {
1358 	disp_t		*dp;
1359 	dispq_t		*dq;
1360 	cpu_t		*cp;
1361 	pri_t		tpri;
1362 	int		bound;
1363 
1364 	ASSERT(THREAD_LOCK_HELD(tp));
1365 	ASSERT((tp->t_schedflag & TS_ALLSTART) == 0);
1366 	ASSERT(!thread_on_queue(tp));	/* make sure tp isn't on a runq */
1367 
1368 	/*
1369 	 * If thread is "swapped" or on the swap queue don't
1370 	 * queue it, but wake sched.
1371 	 */
1372 	if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) {
1373 		disp_swapped_setrun(tp);
1374 		return;
1375 	}
1376 
1377 	if (tp->t_bound_cpu || tp->t_weakbound_cpu)
1378 		bound = 1;
1379 	else
1380 		bound = 0;
1381 
1382 	tpri = DISP_PRIO(tp);
1383 	if (ncpus == 1)
1384 		cp = tp->t_cpu;
1385 	else if (!bound) {
1386 		if (tpri >= kpqpri) {
1387 			setkpdq(tp, SETKP_FRONT);
1388 			return;
1389 		}
1390 		cp = tp->t_cpu;
1391 		if (tp->t_cpupart == cp->cpu_part) {
1392 			/*
1393 			 * We'll generally let this thread continue to run
1394 			 * where it last ran, but will consider migration if:
1395 			 * - The thread last ran outside it's home lgroup.
1396 			 * - The CPU where it last ran is the target of an
1397 			 *   offline request (a thread_nomigrate() on the in
1398 			 *   motion CPU relies on this when forcing a preempt).
1399 			 * - The thread isn't the highest priority thread where
1400 			 *   it last ran, and it is considered not likely to
1401 			 *   have significant cache warmth.
1402 			 */
1403 			if ((!LGRP_CONTAINS_CPU(tp->t_lpl->lpl_lgrp, cp)) ||
1404 			    (cp == cpu_inmotion)) {
1405 				cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri,
1406 				    (tp == curthread) ? cp : NULL);
1407 			} else if ((tpri < cp->cpu_disp->disp_maxrunpri) &&
1408 			    (!THREAD_HAS_CACHE_WARMTH(tp))) {
1409 				cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri,
1410 				    NULL);
1411 			}
1412 		} else {
1413 			/*
1414 			 * Migrate to a cpu in the new partition.
1415 			 */
1416 			cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist,
1417 			    tp->t_lpl, tp->t_pri, NULL);
1418 		}
1419 		ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0);
1420 	} else {
1421 		/*
1422 		 * It is possible that t_weakbound_cpu != t_bound_cpu (for
1423 		 * a short time until weak binding that existed when the
1424 		 * strong binding was established has dropped) so we must
1425 		 * favour weak binding over strong.
1426 		 */
1427 		cp = tp->t_weakbound_cpu ?
1428 		    tp->t_weakbound_cpu : tp->t_bound_cpu;
1429 	}
1430 
1431 	/*
1432 	 * A thread that is ONPROC may be temporarily placed on the run queue
1433 	 * but then chosen to run again by disp.  If the thread we're placing on
1434 	 * the queue is in TS_ONPROC state, don't set its t_waitrq until a
1435 	 * replacement process is actually scheduled in swtch().  In this
1436 	 * situation, curthread is the only thread that could be in the ONPROC
1437 	 * state.
1438 	 */
1439 	if ((tp != curthread) && (tp->t_waitrq == 0)) {
1440 		hrtime_t curtime;
1441 
1442 		curtime = gethrtime_unscaled();
1443 		(void) cpu_update_pct(tp, curtime);
1444 		tp->t_waitrq = curtime;
1445 	} else {
1446 		(void) cpu_update_pct(tp, gethrtime_unscaled());
1447 	}
1448 
1449 	dp = cp->cpu_disp;
1450 	disp_lock_enter_high(&dp->disp_lock);
1451 
1452 	TRACE_2(TR_FAC_DISP, TR_FRONTQ, "frontq:pri %d tid %p", tpri, tp);
1453 	DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, 1);
1454 
1455 #ifndef NPROBE
1456 	/* Kernel probe */
1457 	if (tnf_tracing_active)
1458 		tnf_thread_queue(tp, cp, tpri);
1459 #endif /* NPROBE */
1460 
1461 	ASSERT(tpri >= 0 && tpri < dp->disp_npri);
1462 
1463 	THREAD_RUN(tp, &dp->disp_lock);		/* set TS_RUN state and lock */
1464 	tp->t_disp_queue = dp;
1465 
1466 	dq = &dp->disp_q[tpri];
1467 	dp->disp_nrunnable++;
1468 	if (!bound)
1469 		dp->disp_steal = 0;
1470 	membar_enter();
1471 
1472 	if (dq->dq_sruncnt++ != 0) {
1473 		ASSERT(dq->dq_last != NULL);
1474 		tp->t_link = dq->dq_first;
1475 		dq->dq_first = tp;
1476 	} else {
1477 		ASSERT(dq->dq_last == NULL);
1478 		ASSERT(dq->dq_first == NULL);
1479 		tp->t_link = NULL;
1480 		dq->dq_first = dq->dq_last = tp;
1481 		BT_SET(dp->disp_qactmap, tpri);
1482 		if (tpri > dp->disp_maxrunpri) {
1483 			dp->disp_maxrunpri = tpri;
1484 			membar_enter();
1485 			cpu_resched(cp, tpri);
1486 		}
1487 	}
1488 
1489 	if (!bound && tpri > dp->disp_max_unbound_pri) {
1490 		if (tp == curthread && dp->disp_max_unbound_pri == -1 &&
1491 		    cp == CPU) {
1492 			/*
1493 			 * If there are no other unbound threads on the
1494 			 * run queue, don't allow other CPUs to steal
1495 			 * this thread while we are in the middle of a
1496 			 * context switch. We may just switch to it
1497 			 * again right away. CPU_DISP_DONTSTEAL is cleared
1498 			 * in swtch and swtch_to.
1499 			 */
1500 			cp->cpu_disp_flags |= CPU_DISP_DONTSTEAL;
1501 		}
1502 		dp->disp_max_unbound_pri = tpri;
1503 	}
1504 	(*disp_enq_thread)(cp, bound);
1505 }
1506 
1507 /*
1508  * Put a high-priority unbound thread on the kp queue
1509  */
1510 static void
1511 setkpdq(kthread_t *tp, int borf)
1512 {
1513 	dispq_t	*dq;
1514 	disp_t	*dp;
1515 	cpu_t	*cp;
1516 	pri_t	tpri;
1517 
1518 	tpri = DISP_PRIO(tp);
1519 
1520 	dp = &tp->t_cpupart->cp_kp_queue;
1521 	disp_lock_enter_high(&dp->disp_lock);
1522 
1523 	TRACE_2(TR_FAC_DISP, TR_FRONTQ, "frontq:pri %d tid %p", tpri, tp);
1524 
1525 	ASSERT(tpri >= 0 && tpri < dp->disp_npri);
1526 	DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, borf);
1527 	THREAD_RUN(tp, &dp->disp_lock);		/* set t_state to TS_RUN */
1528 	tp->t_disp_queue = dp;
1529 	dp->disp_nrunnable++;
1530 	dq = &dp->disp_q[tpri];
1531 
1532 	if (dq->dq_sruncnt++ != 0) {
1533 		if (borf == SETKP_BACK) {
1534 			ASSERT(dq->dq_first != NULL);
1535 			tp->t_link = NULL;
1536 			dq->dq_last->t_link = tp;
1537 			dq->dq_last = tp;
1538 		} else {
1539 			ASSERT(dq->dq_last != NULL);
1540 			tp->t_link = dq->dq_first;
1541 			dq->dq_first = tp;
1542 		}
1543 	} else {
1544 		if (borf == SETKP_BACK) {
1545 			ASSERT(dq->dq_first == NULL);
1546 			ASSERT(dq->dq_last == NULL);
1547 			dq->dq_first = dq->dq_last = tp;
1548 		} else {
1549 			ASSERT(dq->dq_last == NULL);
1550 			ASSERT(dq->dq_first == NULL);
1551 			tp->t_link = NULL;
1552 			dq->dq_first = dq->dq_last = tp;
1553 		}
1554 		BT_SET(dp->disp_qactmap, tpri);
1555 		if (tpri > dp->disp_max_unbound_pri)
1556 			dp->disp_max_unbound_pri = tpri;
1557 		if (tpri > dp->disp_maxrunpri) {
1558 			dp->disp_maxrunpri = tpri;
1559 			membar_enter();
1560 		}
1561 	}
1562 
1563 	cp = tp->t_cpu;
1564 	if (tp->t_cpupart != cp->cpu_part) {
1565 		/* migrate to a cpu in the new partition */
1566 		cp = tp->t_cpupart->cp_cpulist;
1567 	}
1568 	cp = disp_lowpri_cpu(cp, tp->t_lpl, tp->t_pri, NULL);
1569 	disp_lock_enter_high(&cp->cpu_disp->disp_lock);
1570 	ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0);
1571 
1572 #ifndef NPROBE
1573 	/* Kernel probe */
1574 	if (tnf_tracing_active)
1575 		tnf_thread_queue(tp, cp, tpri);
1576 #endif /* NPROBE */
1577 
1578 	if (cp->cpu_chosen_level < tpri)
1579 		cp->cpu_chosen_level = tpri;
1580 	cpu_resched(cp, tpri);
1581 	disp_lock_exit_high(&cp->cpu_disp->disp_lock);
1582 	(*disp_enq_thread)(cp, 0);
1583 }
1584 
1585 /*
1586  * Remove a thread from the dispatcher queue if it is on it.
1587  * It is not an error if it is not found but we return whether
1588  * or not it was found in case the caller wants to check.
1589  */
1590 int
1591 dispdeq(kthread_t *tp)
1592 {
1593 	disp_t		*dp;
1594 	dispq_t		*dq;
1595 	kthread_t	*rp;
1596 	kthread_t	*trp;
1597 	kthread_t	**ptp;
1598 	int		tpri;
1599 
1600 	ASSERT(THREAD_LOCK_HELD(tp));
1601 
1602 	if (tp->t_state != TS_RUN)
1603 		return (0);
1604 
1605 	/*
1606 	 * The thread is "swapped" or is on the swap queue and
1607 	 * hence no longer on the run queue, so return true.
1608 	 */
1609 	if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD)
1610 		return (1);
1611 
1612 	tpri = DISP_PRIO(tp);
1613 	dp = tp->t_disp_queue;
1614 	ASSERT(tpri < dp->disp_npri);
1615 	dq = &dp->disp_q[tpri];
1616 	ptp = &dq->dq_first;
1617 	rp = *ptp;
1618 	trp = NULL;
1619 
1620 	ASSERT(dq->dq_last == NULL || dq->dq_last->t_link == NULL);
1621 
1622 	/*
1623 	 * Search for thread in queue.
1624 	 * Double links would simplify this at the expense of disp/setrun.
1625 	 */
1626 	while (rp != tp && rp != NULL) {
1627 		trp = rp;
1628 		ptp = &trp->t_link;
1629 		rp = trp->t_link;
1630 	}
1631 
1632 	if (rp == NULL) {
1633 		panic("dispdeq: thread not on queue");
1634 	}
1635 
1636 	DTRACE_SCHED2(dequeue, kthread_t *, tp, disp_t *, dp);
1637 
1638 	/*
1639 	 * Found it so remove it from queue.
1640 	 */
1641 	if ((*ptp = rp->t_link) == NULL)
1642 		dq->dq_last = trp;
1643 
1644 	dp->disp_nrunnable--;
1645 	if (--dq->dq_sruncnt == 0) {
1646 		dp->disp_qactmap[tpri >> BT_ULSHIFT] &= ~BT_BIW(tpri);
1647 		if (dp->disp_nrunnable == 0) {
1648 			dp->disp_max_unbound_pri = -1;
1649 			dp->disp_maxrunpri = -1;
1650 		} else if (tpri == dp->disp_maxrunpri) {
1651 			int ipri;
1652 
1653 			ipri = bt_gethighbit(dp->disp_qactmap,
1654 			    dp->disp_maxrunpri >> BT_ULSHIFT);
1655 			if (ipri < dp->disp_max_unbound_pri)
1656 				dp->disp_max_unbound_pri = ipri;
1657 			dp->disp_maxrunpri = ipri;
1658 		}
1659 	}
1660 	tp->t_link = NULL;
1661 	THREAD_TRANSITION(tp);		/* put in intermediate state */
1662 	return (1);
1663 }
1664 
1665 
1666 /*
1667  * dq_sruninc and dq_srundec are public functions for
1668  * incrementing/decrementing the sruncnts when a thread on
1669  * a dispatcher queue is made schedulable/unschedulable by
1670  * resetting the TS_LOAD flag.
1671  *
1672  * The caller MUST have the thread lock and therefore the dispatcher
1673  * queue lock so that the operation which changes
1674  * the flag, the operation that checks the status of the thread to
1675  * determine if it's on a disp queue AND the call to this function
1676  * are one atomic operation with respect to interrupts.
1677  */
1678 
1679 /*
1680  * Called by sched AFTER TS_LOAD flag is set on a swapped, runnable thread.
1681  */
1682 void
1683 dq_sruninc(kthread_t *t)
1684 {
1685 	ASSERT(t->t_state == TS_RUN);
1686 	ASSERT(t->t_schedflag & TS_LOAD);
1687 
1688 	THREAD_TRANSITION(t);
1689 	setfrontdq(t);
1690 }
1691 
1692 /*
1693  * See comment on calling conventions above.
1694  * Called by sched BEFORE TS_LOAD flag is cleared on a runnable thread.
1695  */
1696 void
1697 dq_srundec(kthread_t *t)
1698 {
1699 	ASSERT(t->t_schedflag & TS_LOAD);
1700 
1701 	(void) dispdeq(t);
1702 	disp_swapped_enq(t);
1703 }
1704 
1705 /*
1706  * Change the dispatcher lock of thread to the "swapped_lock"
1707  * and return with thread lock still held.
1708  *
1709  * Called with thread_lock held, in transition state, and at high spl.
1710  */
1711 void
1712 disp_swapped_enq(kthread_t *tp)
1713 {
1714 	ASSERT(THREAD_LOCK_HELD(tp));
1715 	ASSERT(tp->t_schedflag & TS_LOAD);
1716 
1717 	switch (tp->t_state) {
1718 	case TS_RUN:
1719 		disp_lock_enter_high(&swapped_lock);
1720 		THREAD_SWAP(tp, &swapped_lock);	/* set TS_RUN state and lock */
1721 		break;
1722 	case TS_ONPROC:
1723 		disp_lock_enter_high(&swapped_lock);
1724 		THREAD_TRANSITION(tp);
1725 		wake_sched_sec = 1;		/* tell clock to wake sched */
1726 		THREAD_SWAP(tp, &swapped_lock);	/* set TS_RUN state and lock */
1727 		break;
1728 	default:
1729 		panic("disp_swapped: tp: %p bad t_state", (void *)tp);
1730 	}
1731 }
1732 
1733 /*
1734  * This routine is called by setbackdq/setfrontdq if the thread is
1735  * not loaded or loaded and on the swap queue.
1736  *
1737  * Thread state TS_SLEEP implies that a swapped thread
1738  * has been woken up and needs to be swapped in by the swapper.
1739  *
1740  * Thread state TS_RUN, it implies that the priority of a swapped
1741  * thread is being increased by scheduling class (e.g. ts_update).
1742  */
1743 static void
1744 disp_swapped_setrun(kthread_t *tp)
1745 {
1746 	ASSERT(THREAD_LOCK_HELD(tp));
1747 	ASSERT((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD);
1748 
1749 	switch (tp->t_state) {
1750 	case TS_SLEEP:
1751 		disp_lock_enter_high(&swapped_lock);
1752 		/*
1753 		 * Wakeup sched immediately (i.e., next tick) if the
1754 		 * thread priority is above maxclsyspri.
1755 		 */
1756 		if (DISP_PRIO(tp) > maxclsyspri)
1757 			wake_sched = 1;
1758 		else
1759 			wake_sched_sec = 1;
1760 		THREAD_RUN(tp, &swapped_lock); /* set TS_RUN state and lock */
1761 		break;
1762 	case TS_RUN:				/* called from ts_update */
1763 		break;
1764 	default:
1765 		panic("disp_swapped_setrun: tp: %p bad t_state", (void *)tp);
1766 	}
1767 }
1768 
1769 
1770 /*
1771  *	Make a thread give up its processor.  Find the processor on
1772  *	which this thread is executing, and have that processor
1773  *	preempt.
1774  */
1775 void
1776 cpu_surrender(kthread_t *tp)
1777 {
1778 	cpu_t	*cpup;
1779 	int	max_pri;
1780 	int	max_run_pri;
1781 	klwp_t	*lwp;
1782 
1783 	ASSERT(THREAD_LOCK_HELD(tp));
1784 
1785 	if (tp->t_state != TS_ONPROC)
1786 		return;
1787 	cpup = tp->t_disp_queue->disp_cpu;	/* CPU thread dispatched to */
1788 	max_pri = cpup->cpu_disp->disp_maxrunpri; /* best pri of that CPU */
1789 	max_run_pri = CP_MAXRUNPRI(cpup->cpu_part);
1790 	if (max_pri < max_run_pri)
1791 		max_pri = max_run_pri;
1792 
1793 	cpup->cpu_runrun = 1;
1794 	if (max_pri >= kpreemptpri && cpup->cpu_kprunrun == 0) {
1795 		cpup->cpu_kprunrun = 1;
1796 	}
1797 
1798 	/*
1799 	 * Propagate cpu_runrun, and cpu_kprunrun to global visibility.
1800 	 */
1801 	membar_enter();
1802 
1803 	DTRACE_SCHED1(surrender, kthread_t *, tp);
1804 
1805 	/*
1806 	 * Make the target thread take an excursion through trap()
1807 	 * to do preempt() (unless we're already in trap or post_syscall,
1808 	 * calling cpu_surrender via CL_TRAPRET).
1809 	 */
1810 	if (tp != curthread || (lwp = tp->t_lwp) == NULL ||
1811 	    lwp->lwp_state != LWP_USER) {
1812 		aston(tp);
1813 		if (cpup != CPU)
1814 			poke_cpu(cpup->cpu_id);
1815 	}
1816 	TRACE_2(TR_FAC_DISP, TR_CPU_SURRENDER,
1817 	    "cpu_surrender:tid %p cpu %p", tp, cpup);
1818 }
1819 
1820 
1821 /*
1822  * Commit to and ratify a scheduling decision
1823  */
1824 /*ARGSUSED*/
1825 static kthread_t *
1826 disp_ratify(kthread_t *tp, disp_t *kpq)
1827 {
1828 	pri_t	tpri, maxpri;
1829 	pri_t	maxkpri;
1830 	cpu_t	*cpup;
1831 
1832 	ASSERT(tp != NULL);
1833 	/*
1834 	 * Commit to, then ratify scheduling decision
1835 	 */
1836 	cpup = CPU;
1837 	if (cpup->cpu_runrun != 0)
1838 		cpup->cpu_runrun = 0;
1839 	if (cpup->cpu_kprunrun != 0)
1840 		cpup->cpu_kprunrun = 0;
1841 	if (cpup->cpu_chosen_level != -1)
1842 		cpup->cpu_chosen_level = -1;
1843 	membar_enter();
1844 	tpri = DISP_PRIO(tp);
1845 	maxpri = cpup->cpu_disp->disp_maxrunpri;
1846 	maxkpri = kpq->disp_maxrunpri;
1847 	if (maxpri < maxkpri)
1848 		maxpri = maxkpri;
1849 	if (tpri < maxpri) {
1850 		/*
1851 		 * should have done better
1852 		 * put this one back and indicate to try again
1853 		 */
1854 		cpup->cpu_dispthread = curthread;	/* fixup dispthread */
1855 		cpup->cpu_dispatch_pri = DISP_PRIO(curthread);
1856 		thread_lock_high(tp);
1857 		THREAD_TRANSITION(tp);
1858 		setfrontdq(tp);
1859 		thread_unlock_nopreempt(tp);
1860 
1861 		tp = NULL;
1862 	}
1863 	return (tp);
1864 }
1865 
1866 /*
1867  * See if there is any work on the dispatcher queue for other CPUs.
1868  * If there is, dequeue the best thread and return.
1869  */
1870 static kthread_t *
1871 disp_getwork(cpu_t *cp)
1872 {
1873 	cpu_t		*ocp;		/* other CPU */
1874 	cpu_t		*ocp_start;
1875 	cpu_t		*tcp;		/* target local CPU */
1876 	kthread_t	*tp;
1877 	kthread_t	*retval = NULL;
1878 	pri_t		maxpri;
1879 	disp_t		*kpq;		/* kp queue for this partition */
1880 	lpl_t		*lpl, *lpl_leaf;
1881 	int		leafidx, startidx;
1882 	hrtime_t	stealtime;
1883 	lgrp_id_t	local_id;
1884 
1885 	maxpri = -1;
1886 	tcp = NULL;
1887 
1888 	kpq = &cp->cpu_part->cp_kp_queue;
1889 	while (kpq->disp_maxrunpri >= 0) {
1890 		/*
1891 		 * Try to take a thread from the kp_queue.
1892 		 */
1893 		tp = (disp_getbest(kpq));
1894 		if (tp)
1895 			return (disp_ratify(tp, kpq));
1896 	}
1897 
1898 	kpreempt_disable();		/* protect the cpu_active list */
1899 
1900 	/*
1901 	 * Try to find something to do on another CPU's run queue.
1902 	 * Loop through all other CPUs looking for the one with the highest
1903 	 * priority unbound thread.
1904 	 *
1905 	 * On NUMA machines, the partition's CPUs are consulted in order of
1906 	 * distance from the current CPU. This way, the first available
1907 	 * work found is also the closest, and will suffer the least
1908 	 * from being migrated.
1909 	 */
1910 	lpl = lpl_leaf = cp->cpu_lpl;
1911 	local_id = lpl_leaf->lpl_lgrpid;
1912 	leafidx = startidx = 0;
1913 
1914 	/*
1915 	 * This loop traverses the lpl hierarchy. Higher level lpls represent
1916 	 * broader levels of locality
1917 	 */
1918 	do {
1919 		/* This loop iterates over the lpl's leaves */
1920 		do {
1921 			if (lpl_leaf != cp->cpu_lpl)
1922 				ocp = lpl_leaf->lpl_cpus;
1923 			else
1924 				ocp = cp->cpu_next_lpl;
1925 
1926 			/* This loop iterates over the CPUs in the leaf */
1927 			ocp_start = ocp;
1928 			do {
1929 				pri_t pri;
1930 
1931 				ASSERT(CPU_ACTIVE(ocp));
1932 
1933 				/*
1934 				 * End our stroll around this lpl if:
1935 				 *
1936 				 * - Something became runnable on the local
1937 				 *   queue...which also ends our stroll around
1938 				 *   the partition.
1939 				 *
1940 				 * - We happen across another idle CPU.
1941 				 *   Since it is patrolling the next portion
1942 				 *   of the lpl's list (assuming it's not
1943 				 *   halted, or busy servicing an interrupt),
1944 				 *   move to the next higher level of locality.
1945 				 */
1946 				if (cp->cpu_disp->disp_nrunnable != 0) {
1947 					kpreempt_enable();
1948 					return (NULL);
1949 				}
1950 				if (ocp->cpu_dispatch_pri == -1) {
1951 					if (ocp->cpu_disp_flags &
1952 					    CPU_DISP_HALTED ||
1953 					    ocp->cpu_intr_actv != 0)
1954 						continue;
1955 					else
1956 						goto next_level;
1957 				}
1958 
1959 				/*
1960 				 * If there's only one thread and the CPU
1961 				 * is in the middle of a context switch,
1962 				 * or it's currently running the idle thread,
1963 				 * don't steal it.
1964 				 */
1965 				if ((ocp->cpu_disp_flags &
1966 				    CPU_DISP_DONTSTEAL) &&
1967 				    ocp->cpu_disp->disp_nrunnable == 1)
1968 					continue;
1969 
1970 				pri = ocp->cpu_disp->disp_max_unbound_pri;
1971 				if (pri > maxpri) {
1972 					/*
1973 					 * Don't steal threads that we attempted
1974 					 * to steal recently until they're ready
1975 					 * to be stolen again.
1976 					 */
1977 					stealtime = ocp->cpu_disp->disp_steal;
1978 					if (stealtime == 0 ||
1979 					    stealtime - gethrtime() <= 0) {
1980 						maxpri = pri;
1981 						tcp = ocp;
1982 					} else {
1983 						/*
1984 						 * Don't update tcp, just set
1985 						 * the retval to T_DONTSTEAL, so
1986 						 * that if no acceptable CPUs
1987 						 * are found the return value
1988 						 * will be T_DONTSTEAL rather
1989 						 * then NULL.
1990 						 */
1991 						retval = T_DONTSTEAL;
1992 					}
1993 				}
1994 			} while ((ocp = ocp->cpu_next_lpl) != ocp_start);
1995 
1996 			/*
1997 			 * Iterate to the next leaf lpl in the resource set
1998 			 * at this level of locality. If we hit the end of
1999 			 * the set, wrap back around to the beginning.
2000 			 *
2001 			 * Note: This iteration is NULL terminated for a reason
2002 			 * see lpl_topo_bootstrap() in lgrp.c for details.
2003 			 */
2004 			if ((lpl_leaf = lpl->lpl_rset[++leafidx]) == NULL) {
2005 				leafidx = 0;
2006 				lpl_leaf = lpl->lpl_rset[leafidx];
2007 			}
2008 		} while (leafidx != startidx);
2009 
2010 next_level:
2011 		/*
2012 		 * Expand the search to include farther away CPUs (next
2013 		 * locality level). The closer CPUs that have already been
2014 		 * checked will be checked again. In doing so, idle CPUs
2015 		 * will tend to be more aggresive about stealing from CPUs
2016 		 * that are closer (since the closer CPUs will be considered
2017 		 * more often).
2018 		 * Begin at this level with the CPUs local leaf lpl.
2019 		 */
2020 		if ((lpl = lpl->lpl_parent) != NULL) {
2021 			leafidx = startidx = lpl->lpl_id2rset[local_id];
2022 			lpl_leaf = lpl->lpl_rset[leafidx];
2023 		}
2024 	} while (!tcp && lpl);
2025 
2026 	kpreempt_enable();
2027 
2028 	/*
2029 	 * If another queue looks good, and there is still nothing on
2030 	 * the local queue, try to transfer one or more threads
2031 	 * from it to our queue.
2032 	 */
2033 	if (tcp && cp->cpu_disp->disp_nrunnable == 0) {
2034 		tp = disp_getbest(tcp->cpu_disp);
2035 		if (tp == NULL || tp == T_DONTSTEAL)
2036 			return (tp);
2037 		return (disp_ratify(tp, kpq));
2038 	}
2039 	return (retval);
2040 }
2041 
2042 
2043 /*
2044  * disp_fix_unbound_pri()
2045  *	Determines the maximum priority of unbound threads on the queue.
2046  *	The priority is kept for the queue, but is only increased, never
2047  *	reduced unless some CPU is looking for something on that queue.
2048  *
2049  *	The priority argument is the known upper limit.
2050  *
2051  *	Perhaps this should be kept accurately, but that probably means
2052  *	separate bitmaps for bound and unbound threads.  Since only idled
2053  *	CPUs will have to do this recalculation, it seems better this way.
2054  */
2055 static void
2056 disp_fix_unbound_pri(disp_t *dp, pri_t pri)
2057 {
2058 	kthread_t	*tp;
2059 	dispq_t		*dq;
2060 	ulong_t		*dqactmap = dp->disp_qactmap;
2061 	ulong_t		mapword;
2062 	int		wx;
2063 
2064 	ASSERT(DISP_LOCK_HELD(&dp->disp_lock));
2065 
2066 	ASSERT(pri >= 0);			/* checked by caller */
2067 
2068 	/*
2069 	 * Start the search at the next lowest priority below the supplied
2070 	 * priority.  This depends on the bitmap implementation.
2071 	 */
2072 	do {
2073 		wx = pri >> BT_ULSHIFT;		/* index of word in map */
2074 
2075 		/*
2076 		 * Form mask for all lower priorities in the word.
2077 		 */
2078 		mapword = dqactmap[wx] & (BT_BIW(pri) - 1);
2079 
2080 		/*
2081 		 * Get next lower active priority.
2082 		 */
2083 		if (mapword != 0) {
2084 			pri = (wx << BT_ULSHIFT) + highbit(mapword) - 1;
2085 		} else if (wx > 0) {
2086 			pri = bt_gethighbit(dqactmap, wx - 1); /* sign extend */
2087 			if (pri < 0)
2088 				break;
2089 		} else {
2090 			pri = -1;
2091 			break;
2092 		}
2093 
2094 		/*
2095 		 * Search the queue for unbound, runnable threads.
2096 		 */
2097 		dq = &dp->disp_q[pri];
2098 		tp = dq->dq_first;
2099 
2100 		while (tp && (tp->t_bound_cpu || tp->t_weakbound_cpu)) {
2101 			tp = tp->t_link;
2102 		}
2103 
2104 		/*
2105 		 * If a thread was found, set the priority and return.
2106 		 */
2107 	} while (tp == NULL);
2108 
2109 	/*
2110 	 * pri holds the maximum unbound thread priority or -1.
2111 	 */
2112 	if (dp->disp_max_unbound_pri != pri)
2113 		dp->disp_max_unbound_pri = pri;
2114 }
2115 
2116 /*
2117  * disp_adjust_unbound_pri() - thread is becoming unbound, so we should
2118  * 	check if the CPU to which is was previously bound should have
2119  * 	its disp_max_unbound_pri increased.
2120  */
2121 void
2122 disp_adjust_unbound_pri(kthread_t *tp)
2123 {
2124 	disp_t *dp;
2125 	pri_t tpri;
2126 
2127 	ASSERT(THREAD_LOCK_HELD(tp));
2128 
2129 	/*
2130 	 * Don't do anything if the thread is not bound, or
2131 	 * currently not runnable or swapped out.
2132 	 */
2133 	if (tp->t_bound_cpu == NULL ||
2134 	    tp->t_state != TS_RUN ||
2135 	    tp->t_schedflag & TS_ON_SWAPQ)
2136 		return;
2137 
2138 	tpri = DISP_PRIO(tp);
2139 	dp = tp->t_bound_cpu->cpu_disp;
2140 	ASSERT(tpri >= 0 && tpri < dp->disp_npri);
2141 	if (tpri > dp->disp_max_unbound_pri)
2142 		dp->disp_max_unbound_pri = tpri;
2143 }
2144 
2145 /*
2146  * disp_getbest()
2147  *   De-queue the highest priority unbound runnable thread.
2148  *   Returns with the thread unlocked and onproc but at splhigh (like disp()).
2149  *   Returns NULL if nothing found.
2150  *   Returns T_DONTSTEAL if the thread was not stealable.
2151  *   so that the caller will try again later.
2152  *
2153  *   Passed a pointer to a dispatch queue not associated with this CPU, and
2154  *   its type.
2155  */
2156 static kthread_t *
2157 disp_getbest(disp_t *dp)
2158 {
2159 	kthread_t	*tp;
2160 	dispq_t		*dq;
2161 	pri_t		pri;
2162 	cpu_t		*cp, *tcp;
2163 	boolean_t	allbound;
2164 
2165 	disp_lock_enter(&dp->disp_lock);
2166 
2167 	/*
2168 	 * If there is nothing to run, or the CPU is in the middle of a
2169 	 * context switch of the only thread, return NULL.
2170 	 */
2171 	tcp = dp->disp_cpu;
2172 	cp = CPU;
2173 	pri = dp->disp_max_unbound_pri;
2174 	if (pri == -1 ||
2175 	    (tcp != NULL && (tcp->cpu_disp_flags & CPU_DISP_DONTSTEAL) &&
2176 	    tcp->cpu_disp->disp_nrunnable == 1)) {
2177 		disp_lock_exit_nopreempt(&dp->disp_lock);
2178 		return (NULL);
2179 	}
2180 
2181 	dq = &dp->disp_q[pri];
2182 
2183 
2184 	/*
2185 	 * Assume that all threads are bound on this queue, and change it
2186 	 * later when we find out that it is not the case.
2187 	 */
2188 	allbound = B_TRUE;
2189 	for (tp = dq->dq_first; tp != NULL; tp = tp->t_link) {
2190 		hrtime_t now, nosteal, rqtime;
2191 
2192 		/*
2193 		 * Skip over bound threads which could be here even
2194 		 * though disp_max_unbound_pri indicated this level.
2195 		 */
2196 		if (tp->t_bound_cpu || tp->t_weakbound_cpu)
2197 			continue;
2198 
2199 		/*
2200 		 * We've got some unbound threads on this queue, so turn
2201 		 * the allbound flag off now.
2202 		 */
2203 		allbound = B_FALSE;
2204 
2205 		/*
2206 		 * The thread is a candidate for stealing from its run queue. We
2207 		 * don't want to steal threads that became runnable just a
2208 		 * moment ago. This improves CPU affinity for threads that get
2209 		 * preempted for short periods of time and go back on the run
2210 		 * queue.
2211 		 *
2212 		 * We want to let it stay on its run queue if it was only placed
2213 		 * there recently and it was running on the same CPU before that
2214 		 * to preserve its cache investment. For the thread to remain on
2215 		 * its run queue, ALL of the following conditions must be
2216 		 * satisfied:
2217 		 *
2218 		 * - the disp queue should not be the kernel preemption queue
2219 		 * - delayed idle stealing should not be disabled
2220 		 * - nosteal_nsec should be non-zero
2221 		 * - it should run with user priority
2222 		 * - it should be on the run queue of the CPU where it was
2223 		 *   running before being placed on the run queue
2224 		 * - it should be the only thread on the run queue (to prevent
2225 		 *   extra scheduling latency for other threads)
2226 		 * - it should sit on the run queue for less than per-chip
2227 		 *   nosteal interval or global nosteal interval
2228 		 * - in case of CPUs with shared cache it should sit in a run
2229 		 *   queue of a CPU from a different chip
2230 		 *
2231 		 * The checks are arranged so that the ones that are faster are
2232 		 * placed earlier.
2233 		 */
2234 		if (tcp == NULL ||
2235 		    pri >= minclsyspri ||
2236 		    tp->t_cpu != tcp)
2237 			break;
2238 
2239 		/*
2240 		 * Steal immediately if, due to CMT processor architecture
2241 		 * migraiton between cp and tcp would incur no performance
2242 		 * penalty.
2243 		 */
2244 		if (pg_cmt_can_migrate(cp, tcp))
2245 			break;
2246 
2247 		nosteal = nosteal_nsec;
2248 		if (nosteal == 0)
2249 			break;
2250 
2251 		/*
2252 		 * Calculate time spent sitting on run queue
2253 		 */
2254 		now = gethrtime_unscaled();
2255 		rqtime = now - tp->t_waitrq;
2256 		scalehrtime(&rqtime);
2257 
2258 		/*
2259 		 * Steal immediately if the time spent on this run queue is more
2260 		 * than allowed nosteal delay.
2261 		 *
2262 		 * Negative rqtime check is needed here to avoid infinite
2263 		 * stealing delays caused by unlikely but not impossible
2264 		 * drifts between CPU times on different CPUs.
2265 		 */
2266 		if (rqtime > nosteal || rqtime < 0)
2267 			break;
2268 
2269 		DTRACE_PROBE4(nosteal, kthread_t *, tp,
2270 		    cpu_t *, tcp, cpu_t *, cp, hrtime_t, rqtime);
2271 		scalehrtime(&now);
2272 		/*
2273 		 * Calculate when this thread becomes stealable
2274 		 */
2275 		now += (nosteal - rqtime);
2276 
2277 		/*
2278 		 * Calculate time when some thread becomes stealable
2279 		 */
2280 		if (now < dp->disp_steal)
2281 			dp->disp_steal = now;
2282 	}
2283 
2284 	/*
2285 	 * If there were no unbound threads on this queue, find the queue
2286 	 * where they are and then return later. The value of
2287 	 * disp_max_unbound_pri is not always accurate because it isn't
2288 	 * reduced until another idle CPU looks for work.
2289 	 */
2290 	if (allbound)
2291 		disp_fix_unbound_pri(dp, pri);
2292 
2293 	/*
2294 	 * If we reached the end of the queue and found no unbound threads
2295 	 * then return NULL so that other CPUs will be considered.  If there
2296 	 * are unbound threads but they cannot yet be stolen, then
2297 	 * return T_DONTSTEAL and try again later.
2298 	 */
2299 	if (tp == NULL) {
2300 		disp_lock_exit_nopreempt(&dp->disp_lock);
2301 		return (allbound ? NULL : T_DONTSTEAL);
2302 	}
2303 
2304 	/*
2305 	 * Found a runnable, unbound thread, so remove it from queue.
2306 	 * dispdeq() requires that we have the thread locked, and we do,
2307 	 * by virtue of holding the dispatch queue lock.  dispdeq() will
2308 	 * put the thread in transition state, thereby dropping the dispq
2309 	 * lock.
2310 	 */
2311 
2312 #ifdef DEBUG
2313 	{
2314 		int	thread_was_on_queue;
2315 
2316 		thread_was_on_queue = dispdeq(tp);	/* drops disp_lock */
2317 		ASSERT(thread_was_on_queue);
2318 	}
2319 
2320 #else /* DEBUG */
2321 	(void) dispdeq(tp);			/* drops disp_lock */
2322 #endif /* DEBUG */
2323 
2324 	/*
2325 	 * Reset the disp_queue steal time - we do not know what is the smallest
2326 	 * value across the queue is.
2327 	 */
2328 	dp->disp_steal = 0;
2329 
2330 	tp->t_schedflag |= TS_DONT_SWAP;
2331 
2332 	/*
2333 	 * Setup thread to run on the current CPU.
2334 	 */
2335 	tp->t_disp_queue = cp->cpu_disp;
2336 
2337 	cp->cpu_dispthread = tp;		/* protected by spl only */
2338 	cp->cpu_dispatch_pri = pri;
2339 
2340 	/*
2341 	 * There can be a memory synchronization race between disp_getbest()
2342 	 * and disp_ratify() vs cpu_resched() where cpu_resched() is trying
2343 	 * to preempt the current thread to run the enqueued thread while
2344 	 * disp_getbest() and disp_ratify() are changing the current thread
2345 	 * to the stolen thread. This may lead to a situation where
2346 	 * cpu_resched() tries to preempt the wrong thread and the
2347 	 * stolen thread continues to run on the CPU which has been tagged
2348 	 * for preemption.
2349 	 * Later the clock thread gets enqueued but doesn't get to run on the
2350 	 * CPU causing the system to hang.
2351 	 *
2352 	 * To avoid this, grabbing and dropping the disp_lock (which does
2353 	 * a memory barrier) is needed to synchronize the execution of
2354 	 * cpu_resched() with disp_getbest() and disp_ratify() and
2355 	 * synchronize the memory read and written by cpu_resched(),
2356 	 * disp_getbest(), and disp_ratify() with each other.
2357 	 *  (see CR#6482861 for more details).
2358 	 */
2359 	disp_lock_enter_high(&cp->cpu_disp->disp_lock);
2360 	disp_lock_exit_high(&cp->cpu_disp->disp_lock);
2361 
2362 	ASSERT(pri == DISP_PRIO(tp));
2363 
2364 	DTRACE_PROBE3(steal, kthread_t *, tp, cpu_t *, tcp, cpu_t *, cp);
2365 
2366 	thread_onproc(tp, cp);			/* set t_state to TS_ONPROC */
2367 
2368 	/*
2369 	 * Return with spl high so that swtch() won't need to raise it.
2370 	 * The disp_lock was dropped by dispdeq().
2371 	 */
2372 
2373 	return (tp);
2374 }
2375 
2376 /*
2377  * disp_bound_common() - common routine for higher level functions
2378  *	that check for bound threads under certain conditions.
2379  *	If 'threadlistsafe' is set then there is no need to acquire
2380  *	pidlock to stop the thread list from changing (eg, if
2381  *	disp_bound_* is called with cpus paused).
2382  */
2383 static int
2384 disp_bound_common(cpu_t *cp, int threadlistsafe, int flag)
2385 {
2386 	int		found = 0;
2387 	kthread_t	*tp;
2388 
2389 	ASSERT(flag);
2390 
2391 	if (!threadlistsafe)
2392 		mutex_enter(&pidlock);
2393 	tp = curthread;		/* faster than allthreads */
2394 	do {
2395 		if (tp->t_state != TS_FREE) {
2396 			/*
2397 			 * If an interrupt thread is busy, but the
2398 			 * caller doesn't care (i.e. BOUND_INTR is off),
2399 			 * then just ignore it and continue through.
2400 			 */
2401 			if ((tp->t_flag & T_INTR_THREAD) &&
2402 			    !(flag & BOUND_INTR))
2403 				continue;
2404 
2405 			/*
2406 			 * Skip the idle thread for the CPU
2407 			 * we're about to set offline.
2408 			 */
2409 			if (tp == cp->cpu_idle_thread)
2410 				continue;
2411 
2412 			/*
2413 			 * Skip the pause thread for the CPU
2414 			 * we're about to set offline.
2415 			 */
2416 			if (tp == cp->cpu_pause_thread)
2417 				continue;
2418 
2419 			if ((flag & BOUND_CPU) &&
2420 			    (tp->t_bound_cpu == cp ||
2421 			    tp->t_bind_cpu == cp->cpu_id ||
2422 			    tp->t_weakbound_cpu == cp)) {
2423 				found = 1;
2424 				break;
2425 			}
2426 
2427 			if ((flag & BOUND_PARTITION) &&
2428 			    (tp->t_cpupart == cp->cpu_part)) {
2429 				found = 1;
2430 				break;
2431 			}
2432 		}
2433 	} while ((tp = tp->t_next) != curthread && found == 0);
2434 	if (!threadlistsafe)
2435 		mutex_exit(&pidlock);
2436 	return (found);
2437 }
2438 
2439 /*
2440  * disp_bound_threads - return nonzero if threads are bound to the processor.
2441  *	Called infrequently.  Keep this simple.
2442  *	Includes threads that are asleep or stopped but not onproc.
2443  */
2444 int
2445 disp_bound_threads(cpu_t *cp, int threadlistsafe)
2446 {
2447 	return (disp_bound_common(cp, threadlistsafe, BOUND_CPU));
2448 }
2449 
2450 /*
2451  * disp_bound_anythreads - return nonzero if _any_ threads are bound
2452  * to the given processor, including interrupt threads.
2453  */
2454 int
2455 disp_bound_anythreads(cpu_t *cp, int threadlistsafe)
2456 {
2457 	return (disp_bound_common(cp, threadlistsafe, BOUND_CPU | BOUND_INTR));
2458 }
2459 
2460 /*
2461  * disp_bound_partition - return nonzero if threads are bound to the same
2462  * partition as the processor.
2463  *	Called infrequently.  Keep this simple.
2464  *	Includes threads that are asleep or stopped but not onproc.
2465  */
2466 int
2467 disp_bound_partition(cpu_t *cp, int threadlistsafe)
2468 {
2469 	return (disp_bound_common(cp, threadlistsafe, BOUND_PARTITION));
2470 }
2471 
2472 /*
2473  * disp_cpu_inactive - make a CPU inactive by moving all of its unbound
2474  * threads to other CPUs.
2475  */
2476 void
2477 disp_cpu_inactive(cpu_t *cp)
2478 {
2479 	kthread_t	*tp;
2480 	disp_t		*dp = cp->cpu_disp;
2481 	dispq_t		*dq;
2482 	pri_t		pri;
2483 	int		wasonq;
2484 
2485 	disp_lock_enter(&dp->disp_lock);
2486 	while ((pri = dp->disp_max_unbound_pri) != -1) {
2487 		dq = &dp->disp_q[pri];
2488 		tp = dq->dq_first;
2489 
2490 		/*
2491 		 * Skip over bound threads.
2492 		 */
2493 		while (tp != NULL && tp->t_bound_cpu != NULL) {
2494 			tp = tp->t_link;
2495 		}
2496 
2497 		if (tp == NULL) {
2498 			/* disp_max_unbound_pri must be inaccurate, so fix it */
2499 			disp_fix_unbound_pri(dp, pri);
2500 			continue;
2501 		}
2502 
2503 		wasonq = dispdeq(tp);		/* drops disp_lock */
2504 		ASSERT(wasonq);
2505 		ASSERT(tp->t_weakbound_cpu == NULL);
2506 
2507 		setbackdq(tp);
2508 		/*
2509 		 * Called from cpu_offline:
2510 		 *
2511 		 * cp has already been removed from the list of active cpus
2512 		 * and tp->t_cpu has been changed so there is no risk of
2513 		 * tp ending up back on cp.
2514 		 *
2515 		 * Called from cpupart_move_cpu:
2516 		 *
2517 		 * The cpu has moved to a new cpupart.  Any threads that
2518 		 * were on it's dispatch queues before the move remain
2519 		 * in the old partition and can't run in the new partition.
2520 		 */
2521 		ASSERT(tp->t_cpu != cp);
2522 		thread_unlock(tp);
2523 
2524 		disp_lock_enter(&dp->disp_lock);
2525 	}
2526 	disp_lock_exit(&dp->disp_lock);
2527 }
2528 
2529 /*
2530  * disp_lowpri_cpu - find CPU running the lowest priority thread.
2531  *	The hint passed in is used as a starting point so we don't favor
2532  *	CPU 0 or any other CPU.  The caller should pass in the most recently
2533  *	used CPU for the thread.
2534  *
2535  *	The lgroup and priority are used to determine the best CPU to run on
2536  *	in a NUMA machine.  The lgroup specifies which CPUs are closest while
2537  *	the thread priority will indicate whether the thread will actually run
2538  *	there.  To pick the best CPU, the CPUs inside and outside of the given
2539  *	lgroup which are running the lowest priority threads are found.  The
2540  *	remote CPU is chosen only if the thread will not run locally on a CPU
2541  *	within the lgroup, but will run on the remote CPU. If the thread
2542  *	cannot immediately run on any CPU, the best local CPU will be chosen.
2543  *
2544  *	The lpl specified also identifies the cpu partition from which
2545  *	disp_lowpri_cpu should select a CPU.
2546  *
2547  *	curcpu is used to indicate that disp_lowpri_cpu is being called on
2548  *      behalf of the current thread. (curthread is looking for a new cpu)
2549  *      In this case, cpu_dispatch_pri for this thread's cpu should be
2550  *      ignored.
2551  *
2552  *      If a cpu is the target of an offline request then try to avoid it.
2553  *
2554  *	This function must be called at either high SPL, or with preemption
2555  *	disabled, so that the "hint" CPU cannot be removed from the online
2556  *	CPU list while we are traversing it.
2557  */
2558 cpu_t *
2559 disp_lowpri_cpu(cpu_t *hint, lpl_t *lpl, pri_t tpri, cpu_t *curcpu)
2560 {
2561 	cpu_t	*bestcpu;
2562 	cpu_t	*besthomecpu;
2563 	cpu_t   *cp, *cpstart;
2564 
2565 	pri_t   bestpri;
2566 	pri_t   cpupri;
2567 
2568 	klgrpset_t	done;
2569 	klgrpset_t	cur_set;
2570 
2571 	lpl_t		*lpl_iter, *lpl_leaf;
2572 	int		i;
2573 
2574 	/*
2575 	 * Scan for a CPU currently running the lowest priority thread.
2576 	 * Cannot get cpu_lock here because it is adaptive.
2577 	 * We do not require lock on CPU list.
2578 	 */
2579 	ASSERT(hint != NULL);
2580 	ASSERT(lpl != NULL);
2581 	ASSERT(lpl->lpl_ncpu > 0);
2582 
2583 	/*
2584 	 * First examine local CPUs. Note that it's possible the hint CPU
2585 	 * passed in in remote to the specified home lgroup. If our priority
2586 	 * isn't sufficient enough such that we can run immediately at home,
2587 	 * then examine CPUs remote to our home lgroup.
2588 	 * We would like to give preference to CPUs closest to "home".
2589 	 * If we can't find a CPU where we'll run at a given level
2590 	 * of locality, we expand our search to include the next level.
2591 	 */
2592 	bestcpu = besthomecpu = NULL;
2593 	klgrpset_clear(done);
2594 	/* start with lpl we were passed */
2595 
2596 	lpl_iter = lpl;
2597 
2598 	do {
2599 
2600 		bestpri = SHRT_MAX;
2601 		klgrpset_clear(cur_set);
2602 
2603 		for (i = 0; i < lpl_iter->lpl_nrset; i++) {
2604 			lpl_leaf = lpl_iter->lpl_rset[i];
2605 			if (klgrpset_ismember(done, lpl_leaf->lpl_lgrpid))
2606 				continue;
2607 
2608 			klgrpset_add(cur_set, lpl_leaf->lpl_lgrpid);
2609 
2610 			if (hint->cpu_lpl == lpl_leaf)
2611 				cp = cpstart = hint;
2612 			else
2613 				cp = cpstart = lpl_leaf->lpl_cpus;
2614 
2615 			do {
2616 				if (cp == curcpu)
2617 					cpupri = -1;
2618 				else if (cp == cpu_inmotion)
2619 					cpupri = SHRT_MAX;
2620 				else
2621 					cpupri = cp->cpu_dispatch_pri;
2622 				if (cp->cpu_disp->disp_maxrunpri > cpupri)
2623 					cpupri = cp->cpu_disp->disp_maxrunpri;
2624 				if (cp->cpu_chosen_level > cpupri)
2625 					cpupri = cp->cpu_chosen_level;
2626 				if (cpupri < bestpri) {
2627 					if (CPU_IDLING(cpupri)) {
2628 						ASSERT((cp->cpu_flags &
2629 						    CPU_QUIESCED) == 0);
2630 						return (cp);
2631 					}
2632 					bestcpu = cp;
2633 					bestpri = cpupri;
2634 				}
2635 			} while ((cp = cp->cpu_next_lpl) != cpstart);
2636 		}
2637 
2638 		if (bestcpu && (tpri > bestpri)) {
2639 			ASSERT((bestcpu->cpu_flags & CPU_QUIESCED) == 0);
2640 			return (bestcpu);
2641 		}
2642 		if (besthomecpu == NULL)
2643 			besthomecpu = bestcpu;
2644 		/*
2645 		 * Add the lgrps we just considered to the "done" set
2646 		 */
2647 		klgrpset_or(done, cur_set);
2648 
2649 	} while ((lpl_iter = lpl_iter->lpl_parent) != NULL);
2650 
2651 	/*
2652 	 * The specified priority isn't high enough to run immediately
2653 	 * anywhere, so just return the best CPU from the home lgroup.
2654 	 */
2655 	ASSERT((besthomecpu->cpu_flags & CPU_QUIESCED) == 0);
2656 	return (besthomecpu);
2657 }
2658 
2659 /*
2660  * This routine provides the generic idle cpu function for all processors.
2661  * If a processor has some specific code to execute when idle (say, to stop
2662  * the pipeline and save power) then that routine should be defined in the
2663  * processors specific code (module_xx.c) and the global variable idle_cpu
2664  * set to that function.
2665  */
2666 static void
2667 generic_idle_cpu(void)
2668 {
2669 }
2670 
2671 /*ARGSUSED*/
2672 static void
2673 generic_enq_thread(cpu_t *cpu, int bound)
2674 {
2675 }
2676