1fb2f18f8Sesaxe /* 2fb2f18f8Sesaxe * CDDL HEADER START 3fb2f18f8Sesaxe * 4fb2f18f8Sesaxe * The contents of this file are subject to the terms of the 5fb2f18f8Sesaxe * Common Development and Distribution License (the "License"). 6fb2f18f8Sesaxe * You may not use this file except in compliance with the License. 7fb2f18f8Sesaxe * 8fb2f18f8Sesaxe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9fb2f18f8Sesaxe * or http://www.opensolaris.org/os/licensing. 10fb2f18f8Sesaxe * See the License for the specific language governing permissions 11fb2f18f8Sesaxe * and limitations under the License. 12fb2f18f8Sesaxe * 13fb2f18f8Sesaxe * When distributing Covered Code, include this CDDL HEADER in each 14fb2f18f8Sesaxe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15fb2f18f8Sesaxe * If applicable, add the following below this CDDL HEADER, with the 16fb2f18f8Sesaxe * fields enclosed by brackets "[]" replaced with your own identifying 17fb2f18f8Sesaxe * information: Portions Copyright [yyyy] [name of copyright owner] 18fb2f18f8Sesaxe * 19fb2f18f8Sesaxe * CDDL HEADER END 20fb2f18f8Sesaxe */ 21fb2f18f8Sesaxe /* 223e81cacfSEric Saxe * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23fb2f18f8Sesaxe * Use is subject to license terms. 24fb2f18f8Sesaxe */ 25fb2f18f8Sesaxe 26fb2f18f8Sesaxe #include <sys/systm.h> 27fb2f18f8Sesaxe #include <sys/types.h> 28fb2f18f8Sesaxe #include <sys/param.h> 29fb2f18f8Sesaxe #include <sys/thread.h> 30fb2f18f8Sesaxe #include <sys/cpuvar.h> 31fb2f18f8Sesaxe #include <sys/cpupart.h> 32fb2f18f8Sesaxe #include <sys/kmem.h> 33fb2f18f8Sesaxe #include <sys/cmn_err.h> 34fb2f18f8Sesaxe #include <sys/kstat.h> 35fb2f18f8Sesaxe #include <sys/processor.h> 36fb2f18f8Sesaxe #include <sys/disp.h> 37fb2f18f8Sesaxe #include <sys/group.h> 38fb2f18f8Sesaxe #include <sys/pghw.h> 39fb2f18f8Sesaxe #include <sys/bitset.h> 40fb2f18f8Sesaxe #include <sys/lgrp.h> 41fb2f18f8Sesaxe #include <sys/cmt.h> 420e751525SEric Saxe #include <sys/cpu_pm.h> 43fb2f18f8Sesaxe 44fb2f18f8Sesaxe /* 45fb2f18f8Sesaxe * CMT scheduler / dispatcher support 46fb2f18f8Sesaxe * 47fb2f18f8Sesaxe * This file implements CMT scheduler support using Processor Groups. 48fb2f18f8Sesaxe * The CMT processor group class creates and maintains the CMT class 49fb2f18f8Sesaxe * specific processor group pg_cmt_t. 50fb2f18f8Sesaxe * 51fb2f18f8Sesaxe * ---------------------------- <-- pg_cmt_t * 52fb2f18f8Sesaxe * | pghw_t | 53fb2f18f8Sesaxe * ---------------------------- 54fb2f18f8Sesaxe * | CMT class specific data | 55fb2f18f8Sesaxe * | - hierarchy linkage | 56fb2f18f8Sesaxe * | - CMT load balancing data| 57fb2f18f8Sesaxe * | - active CPU group/bitset| 58fb2f18f8Sesaxe * ---------------------------- 59fb2f18f8Sesaxe * 60fb2f18f8Sesaxe * The scheduler/dispatcher leverages knowledge of the performance 61fb2f18f8Sesaxe * relevant CMT sharing relationships existing between cpus to implement 620e751525SEric Saxe * optimized affinity, load balancing, and coalescence policies. 63fb2f18f8Sesaxe * 64fb2f18f8Sesaxe * Load balancing policy seeks to improve performance by minimizing 650e751525SEric Saxe * contention over shared processor resources / facilities, Affinity 660e751525SEric Saxe * policies seek to improve cache and TLB utilization. Coalescence 670e751525SEric Saxe * policies improve resource utilization and ultimately power efficiency. 68fb2f18f8Sesaxe * 69fb2f18f8Sesaxe * The CMT PGs created by this class are already arranged into a 70fb2f18f8Sesaxe * hierarchy (which is done in the pghw layer). To implement the top-down 71fb2f18f8Sesaxe * CMT load balancing algorithm, the CMT PGs additionally maintain 72fb2f18f8Sesaxe * parent, child and sibling hierarchy relationships. 73fb2f18f8Sesaxe * Parent PGs always contain a superset of their children(s) resources, 74fb2f18f8Sesaxe * each PG can have at most one parent, and siblings are the group of PGs 75fb2f18f8Sesaxe * sharing the same parent. 76fb2f18f8Sesaxe * 77*d0e93b69SEric Saxe * On UMA based systems, the CMT load balancing algorithm begins by balancing 78*d0e93b69SEric Saxe * load across the group of top level PGs in the system hierarchy. 79*d0e93b69SEric Saxe * On NUMA systems, the CMT load balancing algorithm balances load across the 80*d0e93b69SEric Saxe * group of top level PGs in each leaf lgroup...but for root homed threads, 81*d0e93b69SEric Saxe * is willing to balance against all the top level PGs in the system. 82*d0e93b69SEric Saxe * 83*d0e93b69SEric Saxe * Groups of top level PGs are maintained to implement the above, one for each 84*d0e93b69SEric Saxe * leaf lgroup (containing the top level PGs in that lgroup), and one (for the 85*d0e93b69SEric Saxe * root lgroup) that contains all the top level PGs in the system. 86fb2f18f8Sesaxe */ 87a6604450Sesaxe static cmt_lgrp_t *cmt_lgrps = NULL; /* cmt_lgrps list head */ 88a6604450Sesaxe static cmt_lgrp_t *cpu0_lgrp = NULL; /* boot CPU's initial lgrp */ 89a6604450Sesaxe /* used for null_proc_lpa */ 900e751525SEric Saxe cmt_lgrp_t *cmt_root = NULL; /* Reference to root cmt pg */ 91fb2f18f8Sesaxe 92a6604450Sesaxe static int is_cpu0 = 1; /* true if this is boot CPU context */ 93a6604450Sesaxe 94a6604450Sesaxe /* 950e751525SEric Saxe * Array of hardware sharing relationships that are blacklisted. 96*d0e93b69SEric Saxe * CMT scheduling optimizations won't be performed for blacklisted sharing 97*d0e93b69SEric Saxe * relationships. 980e751525SEric Saxe */ 990e751525SEric Saxe static int cmt_hw_blacklisted[PGHW_NUM_COMPONENTS]; 1000e751525SEric Saxe 1010e751525SEric Saxe /* 102a6604450Sesaxe * Set this to non-zero to disable CMT scheduling 103a6604450Sesaxe * This must be done via kmdb -d, as /etc/system will be too late 104a6604450Sesaxe */ 1050e751525SEric Saxe int cmt_sched_disabled = 0; 106fb2f18f8Sesaxe 107ef4f35d8SEric Saxe /* 108ef4f35d8SEric Saxe * Status codes for CMT lineage validation 109ef4f35d8SEric Saxe * See pg_cmt_lineage_validate() below 110ef4f35d8SEric Saxe */ 111ef4f35d8SEric Saxe typedef enum cmt_lineage_validation { 112ef4f35d8SEric Saxe CMT_LINEAGE_VALID, 113ef4f35d8SEric Saxe CMT_LINEAGE_NON_CONCENTRIC, 114ef4f35d8SEric Saxe CMT_LINEAGE_PG_SPANS_LGRPS, 115ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE, 116ef4f35d8SEric Saxe CMT_LINEAGE_REPAIRED, 117ef4f35d8SEric Saxe CMT_LINEAGE_UNRECOVERABLE 118ef4f35d8SEric Saxe } cmt_lineage_validation_t; 119ef4f35d8SEric Saxe 120ef4f35d8SEric Saxe /* 121ef4f35d8SEric Saxe * Status of the current lineage under construction. 122ef4f35d8SEric Saxe * One must be holding cpu_lock to change this. 123ef4f35d8SEric Saxe */ 124ef4f35d8SEric Saxe cmt_lineage_validation_t cmt_lineage_status = CMT_LINEAGE_VALID; 125ef4f35d8SEric Saxe 126ef4f35d8SEric Saxe /* 127ef4f35d8SEric Saxe * Power domain definitions (on x86) are defined by ACPI, and 128ef4f35d8SEric Saxe * therefore may be subject to BIOS bugs. 129ef4f35d8SEric Saxe */ 130ef4f35d8SEric Saxe #define PG_CMT_HW_SUSPECT(hw) PGHW_IS_PM_DOMAIN(hw) 131ef4f35d8SEric Saxe 132ef4f35d8SEric Saxe /* 133ef4f35d8SEric Saxe * Macro to test if PG is managed by the CMT PG class 134ef4f35d8SEric Saxe */ 135ef4f35d8SEric Saxe #define IS_CMT_PG(pg) (((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id) 136ef4f35d8SEric Saxe 137fb2f18f8Sesaxe static pg_cid_t pg_cmt_class_id; /* PG class id */ 138fb2f18f8Sesaxe 139fb2f18f8Sesaxe static pg_t *pg_cmt_alloc(); 140fb2f18f8Sesaxe static void pg_cmt_free(pg_t *); 14147ab0c7cSEric Saxe static void pg_cmt_cpu_init(cpu_t *, cpu_pg_t *); 14247ab0c7cSEric Saxe static void pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *); 143fb2f18f8Sesaxe static void pg_cmt_cpu_active(cpu_t *); 144fb2f18f8Sesaxe static void pg_cmt_cpu_inactive(cpu_t *); 145fb2f18f8Sesaxe static void pg_cmt_cpupart_in(cpu_t *, cpupart_t *); 146fb2f18f8Sesaxe static void pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *); 1470e751525SEric Saxe static char *pg_cmt_policy_name(pg_t *); 1480e751525SEric Saxe static void pg_cmt_hier_sort(pg_cmt_t **, int); 1490e751525SEric Saxe static pg_cmt_t *pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *); 150fb2f18f8Sesaxe static int pg_cmt_cpu_belongs(pg_t *, cpu_t *); 151fb2f18f8Sesaxe static int pg_cmt_hw(pghw_type_t); 152fb2f18f8Sesaxe static cmt_lgrp_t *pg_cmt_find_lgrp(lgrp_handle_t); 153a6604450Sesaxe static cmt_lgrp_t *pg_cmt_lgrp_create(lgrp_handle_t); 1540e751525SEric Saxe static void cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t, 1550e751525SEric Saxe kthread_t *, kthread_t *); 1560e751525SEric Saxe static void cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t, 1570e751525SEric Saxe kthread_t *, kthread_t *); 1580e751525SEric Saxe static void cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *); 1591a77c24bSEric Saxe static cmt_lineage_validation_t pg_cmt_lineage_validate(pg_cmt_t **, int *, 1601a77c24bSEric Saxe cpu_pg_t *); 161fb2f18f8Sesaxe 1620e751525SEric Saxe 1630e751525SEric Saxe /* 164fb2f18f8Sesaxe * CMT PG ops 165fb2f18f8Sesaxe */ 166fb2f18f8Sesaxe struct pg_ops pg_ops_cmt = { 167fb2f18f8Sesaxe pg_cmt_alloc, 168fb2f18f8Sesaxe pg_cmt_free, 169fb2f18f8Sesaxe pg_cmt_cpu_init, 170fb2f18f8Sesaxe pg_cmt_cpu_fini, 171fb2f18f8Sesaxe pg_cmt_cpu_active, 172fb2f18f8Sesaxe pg_cmt_cpu_inactive, 173fb2f18f8Sesaxe pg_cmt_cpupart_in, 174fb2f18f8Sesaxe NULL, /* cpupart_out */ 175fb2f18f8Sesaxe pg_cmt_cpupart_move, 176fb2f18f8Sesaxe pg_cmt_cpu_belongs, 1770e751525SEric Saxe pg_cmt_policy_name, 178fb2f18f8Sesaxe }; 179fb2f18f8Sesaxe 180fb2f18f8Sesaxe /* 181fb2f18f8Sesaxe * Initialize the CMT PG class 182fb2f18f8Sesaxe */ 183fb2f18f8Sesaxe void 184fb2f18f8Sesaxe pg_cmt_class_init(void) 185fb2f18f8Sesaxe { 186fb2f18f8Sesaxe if (cmt_sched_disabled) 187fb2f18f8Sesaxe return; 188fb2f18f8Sesaxe 189fb2f18f8Sesaxe pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL); 190fb2f18f8Sesaxe } 191fb2f18f8Sesaxe 192fb2f18f8Sesaxe /* 193fb2f18f8Sesaxe * Called to indicate a new CPU has started up so 194fb2f18f8Sesaxe * that either t0 or the slave startup thread can 195fb2f18f8Sesaxe * be accounted for. 196fb2f18f8Sesaxe */ 197fb2f18f8Sesaxe void 198fb2f18f8Sesaxe pg_cmt_cpu_startup(cpu_t *cp) 199fb2f18f8Sesaxe { 2000e751525SEric Saxe pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread, 2010e751525SEric Saxe cp->cpu_thread); 202fb2f18f8Sesaxe } 203fb2f18f8Sesaxe 204fb2f18f8Sesaxe /* 205fb2f18f8Sesaxe * Return non-zero if thread can migrate between "from" and "to" 206fb2f18f8Sesaxe * without a performance penalty 207fb2f18f8Sesaxe */ 208fb2f18f8Sesaxe int 209fb2f18f8Sesaxe pg_cmt_can_migrate(cpu_t *from, cpu_t *to) 210fb2f18f8Sesaxe { 211fb2f18f8Sesaxe if (from->cpu_physid->cpu_cacheid == 212fb2f18f8Sesaxe to->cpu_physid->cpu_cacheid) 213fb2f18f8Sesaxe return (1); 214fb2f18f8Sesaxe return (0); 215fb2f18f8Sesaxe } 216fb2f18f8Sesaxe 217fb2f18f8Sesaxe /* 218fb2f18f8Sesaxe * CMT class specific PG allocation 219fb2f18f8Sesaxe */ 220fb2f18f8Sesaxe static pg_t * 221fb2f18f8Sesaxe pg_cmt_alloc(void) 222fb2f18f8Sesaxe { 223fb2f18f8Sesaxe return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP)); 224fb2f18f8Sesaxe } 225fb2f18f8Sesaxe 226fb2f18f8Sesaxe /* 227fb2f18f8Sesaxe * Class specific PG de-allocation 228fb2f18f8Sesaxe */ 229fb2f18f8Sesaxe static void 230fb2f18f8Sesaxe pg_cmt_free(pg_t *pg) 231fb2f18f8Sesaxe { 232fb2f18f8Sesaxe ASSERT(pg != NULL); 233fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 234fb2f18f8Sesaxe 235fb2f18f8Sesaxe kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t)); 236fb2f18f8Sesaxe } 237fb2f18f8Sesaxe 238fb2f18f8Sesaxe /* 2390e751525SEric Saxe * Given a hardware sharing relationship, return which dispatcher 2400e751525SEric Saxe * policies should be implemented to optimize performance and efficiency 241fb2f18f8Sesaxe */ 2420e751525SEric Saxe static pg_cmt_policy_t 2430e751525SEric Saxe pg_cmt_policy(pghw_type_t hw) 244fb2f18f8Sesaxe { 2450e751525SEric Saxe pg_cmt_policy_t p; 2460e751525SEric Saxe 2470e751525SEric Saxe /* 2480e751525SEric Saxe * Give the platform a chance to override the default 2490e751525SEric Saxe */ 2500e751525SEric Saxe if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY) 2510e751525SEric Saxe return (p); 2520e751525SEric Saxe 2530e751525SEric Saxe switch (hw) { 2540e751525SEric Saxe case PGHW_IPIPE: 2550e751525SEric Saxe case PGHW_FPU: 2560e751525SEric Saxe case PGHW_CHIP: 2570e751525SEric Saxe return (CMT_BALANCE); 2580e751525SEric Saxe case PGHW_CACHE: 2590e751525SEric Saxe return (CMT_AFFINITY); 2600e751525SEric Saxe case PGHW_POW_ACTIVE: 2610e751525SEric Saxe case PGHW_POW_IDLE: 2620e751525SEric Saxe return (CMT_BALANCE); 2630e751525SEric Saxe default: 2640e751525SEric Saxe return (CMT_NO_POLICY); 2650e751525SEric Saxe } 2660e751525SEric Saxe } 2670e751525SEric Saxe 2680e751525SEric Saxe /* 2690e751525SEric Saxe * Rank the importance of optimizing for the pg1 relationship vs. 2700e751525SEric Saxe * the pg2 relationship. 2710e751525SEric Saxe */ 2720e751525SEric Saxe static pg_cmt_t * 2730e751525SEric Saxe pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2) 2740e751525SEric Saxe { 2750e751525SEric Saxe pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw; 2760e751525SEric Saxe pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw; 2770e751525SEric Saxe 2780e751525SEric Saxe /* 2790e751525SEric Saxe * A power domain is only important if CPUPM is enabled. 2800e751525SEric Saxe */ 2810e751525SEric Saxe if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) { 2820e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2)) 2830e751525SEric Saxe return (pg2); 2840e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1)) 2850e751525SEric Saxe return (pg1); 2860e751525SEric Saxe } 2870e751525SEric Saxe 2880e751525SEric Saxe /* 2890e751525SEric Saxe * Otherwise, ask the platform 2900e751525SEric Saxe */ 2910e751525SEric Saxe if (pg_plat_hw_rank(hw1, hw2) == hw1) 2920e751525SEric Saxe return (pg1); 2930e751525SEric Saxe else 2940e751525SEric Saxe return (pg2); 2950e751525SEric Saxe } 2960e751525SEric Saxe 2970e751525SEric Saxe /* 2980e751525SEric Saxe * Initialize CMT callbacks for the given PG 2990e751525SEric Saxe */ 3000e751525SEric Saxe static void 3010e751525SEric Saxe cmt_callback_init(pg_t *pg) 3020e751525SEric Saxe { 303*d0e93b69SEric Saxe /* 304*d0e93b69SEric Saxe * Stick with the default callbacks if there isn't going to be 305*d0e93b69SEric Saxe * any CMT thread placement optimizations implemented. 306*d0e93b69SEric Saxe */ 307*d0e93b69SEric Saxe if (((pg_cmt_t *)pg)->cmt_policy == CMT_NO_POLICY) 308*d0e93b69SEric Saxe return; 309*d0e93b69SEric Saxe 3100e751525SEric Saxe switch (((pghw_t *)pg)->pghw_hw) { 3110e751525SEric Saxe case PGHW_POW_ACTIVE: 3120e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr; 3130e751525SEric Saxe pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr; 3140e751525SEric Saxe break; 3150e751525SEric Saxe default: 3160e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch; 3170e751525SEric Saxe 3180e751525SEric Saxe } 3190e751525SEric Saxe } 3200e751525SEric Saxe 3210e751525SEric Saxe /* 3220e751525SEric Saxe * Promote PG above it's current parent. 3231a77c24bSEric Saxe * This is only legal if PG has an equal or greater number of CPUs than its 3241a77c24bSEric Saxe * parent. 3251a77c24bSEric Saxe * 3261a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 3271a77c24bSEric Saxe * in the PG being promoted), and may be invoked from a context where one CPU's 3281a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 3291a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 3300e751525SEric Saxe */ 3310e751525SEric Saxe static void 3321a77c24bSEric Saxe cmt_hier_promote(pg_cmt_t *pg, cpu_pg_t *pgdata) 3330e751525SEric Saxe { 3340e751525SEric Saxe pg_cmt_t *parent; 3350e751525SEric Saxe group_t *children; 3360e751525SEric Saxe cpu_t *cpu; 3370e751525SEric Saxe group_iter_t iter; 3380e751525SEric Saxe pg_cpu_itr_t cpu_iter; 3390e751525SEric Saxe int r; 3400e751525SEric Saxe int err; 3410e751525SEric Saxe 3420e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 3430e751525SEric Saxe 3440e751525SEric Saxe parent = pg->cmt_parent; 3450e751525SEric Saxe if (parent == NULL) { 3460e751525SEric Saxe /* 3470e751525SEric Saxe * Nothing to do 3480e751525SEric Saxe */ 3490e751525SEric Saxe return; 3500e751525SEric Saxe } 3510e751525SEric Saxe 3520e751525SEric Saxe ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent)); 3530e751525SEric Saxe 3540e751525SEric Saxe /* 3550e751525SEric Saxe * We're changing around the hierarchy, which is actively traversed 3560e751525SEric Saxe * by the dispatcher. Pause CPUS to ensure exclusivity. 3570e751525SEric Saxe */ 3580e751525SEric Saxe pause_cpus(NULL); 3590e751525SEric Saxe 3600e751525SEric Saxe /* 3610e751525SEric Saxe * If necessary, update the parent's sibling set, replacing parent 3620e751525SEric Saxe * with PG. 3630e751525SEric Saxe */ 3640e751525SEric Saxe if (parent->cmt_siblings) { 3650e751525SEric Saxe if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE) 3660e751525SEric Saxe != -1) { 3670e751525SEric Saxe r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE); 3680e751525SEric Saxe ASSERT(r != -1); 3690e751525SEric Saxe } 3700e751525SEric Saxe } 3710e751525SEric Saxe 3720e751525SEric Saxe /* 3730e751525SEric Saxe * If the parent is at the top of the hierarchy, replace it's entry 3740e751525SEric Saxe * in the root lgroup's group of top level PGs. 3750e751525SEric Saxe */ 3760e751525SEric Saxe if (parent->cmt_parent == NULL && 3770e751525SEric Saxe parent->cmt_siblings != &cmt_root->cl_pgs) { 3780e751525SEric Saxe if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE) 3790e751525SEric Saxe != -1) { 3800e751525SEric Saxe r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE); 3810e751525SEric Saxe ASSERT(r != -1); 3820e751525SEric Saxe } 3830e751525SEric Saxe } 3840e751525SEric Saxe 3850e751525SEric Saxe /* 3860e751525SEric Saxe * We assume (and therefore assert) that the PG being promoted is an 3870e751525SEric Saxe * only child of it's parent. Update the parent's children set 3880e751525SEric Saxe * replacing PG's entry with the parent (since the parent is becoming 3890e751525SEric Saxe * the child). Then have PG and the parent swap children sets. 3900e751525SEric Saxe */ 3910e751525SEric Saxe ASSERT(GROUP_SIZE(parent->cmt_children) <= 1); 3920e751525SEric Saxe if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) { 3930e751525SEric Saxe r = group_add(parent->cmt_children, parent, GRP_NORESIZE); 3940e751525SEric Saxe ASSERT(r != -1); 3950e751525SEric Saxe } 3960e751525SEric Saxe 3970e751525SEric Saxe children = pg->cmt_children; 3980e751525SEric Saxe pg->cmt_children = parent->cmt_children; 3990e751525SEric Saxe parent->cmt_children = children; 4000e751525SEric Saxe 4010e751525SEric Saxe /* 4020e751525SEric Saxe * Update the sibling references for PG and it's parent 4030e751525SEric Saxe */ 4040e751525SEric Saxe pg->cmt_siblings = parent->cmt_siblings; 4050e751525SEric Saxe parent->cmt_siblings = pg->cmt_children; 4060e751525SEric Saxe 4070e751525SEric Saxe /* 4080e751525SEric Saxe * Update any cached lineages in the per CPU pg data. 4090e751525SEric Saxe */ 4100e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 4110e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 4120e751525SEric Saxe int idx; 4130e751525SEric Saxe pg_cmt_t *cpu_pg; 4141a77c24bSEric Saxe cpu_pg_t *pgd; /* CPU's PG data */ 4151a77c24bSEric Saxe 4161a77c24bSEric Saxe /* 4171a77c24bSEric Saxe * The CPU's whose lineage is under construction still 4181a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 4191a77c24bSEric Saxe */ 4201a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 4211a77c24bSEric Saxe pgd = pgdata; 4221a77c24bSEric Saxe else 4231a77c24bSEric Saxe pgd = cpu->cpu_pg; 4240e751525SEric Saxe 4250e751525SEric Saxe /* 4260e751525SEric Saxe * Iterate over the CPU's PGs updating the children 4270e751525SEric Saxe * of the PG being promoted, since they have a new parent. 4280e751525SEric Saxe */ 4290e751525SEric Saxe group_iter_init(&iter); 4301a77c24bSEric Saxe while ((cpu_pg = group_iterate(&pgd->cmt_pgs, &iter)) != NULL) { 4310e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 4320e751525SEric Saxe cpu_pg->cmt_parent = parent; 4330e751525SEric Saxe } 4340e751525SEric Saxe } 4350e751525SEric Saxe 4360e751525SEric Saxe /* 4370e751525SEric Saxe * Update the CMT load balancing lineage 4380e751525SEric Saxe */ 4391a77c24bSEric Saxe if ((idx = group_find(&pgd->cmt_pgs, (void *)pg)) == -1) { 4400e751525SEric Saxe /* 4410e751525SEric Saxe * Unless this is the CPU who's lineage is being 4420e751525SEric Saxe * constructed, the PG being promoted should be 4430e751525SEric Saxe * in the lineage. 4440e751525SEric Saxe */ 4451a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cpu)); 4460e751525SEric Saxe continue; 4470e751525SEric Saxe } 4480e751525SEric Saxe 4491a77c24bSEric Saxe ASSERT(GROUP_ACCESS(&pgd->cmt_pgs, idx - 1) == parent); 4500e751525SEric Saxe ASSERT(idx > 0); 4510e751525SEric Saxe 4520e751525SEric Saxe /* 4530e751525SEric Saxe * Have the child and the parent swap places in the CPU's 4540e751525SEric Saxe * lineage 4550e751525SEric Saxe */ 4561a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx); 4571a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx - 1); 4581a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, parent, idx); 4590e751525SEric Saxe ASSERT(err == 0); 4601a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, pg, idx - 1); 4610e751525SEric Saxe ASSERT(err == 0); 4620e751525SEric Saxe } 4630e751525SEric Saxe 4640e751525SEric Saxe /* 4650e751525SEric Saxe * Update the parent references for PG and it's parent 4660e751525SEric Saxe */ 4670e751525SEric Saxe pg->cmt_parent = parent->cmt_parent; 4680e751525SEric Saxe parent->cmt_parent = pg; 4690e751525SEric Saxe 4700e751525SEric Saxe start_cpus(); 471fb2f18f8Sesaxe } 472fb2f18f8Sesaxe 473fb2f18f8Sesaxe /* 474fb2f18f8Sesaxe * CMT class callback for a new CPU entering the system 4751a77c24bSEric Saxe * 4761a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 4771a77c24bSEric Saxe * being initialized). The argument "pgdata" is a reference to the CPU's PG 4781a77c24bSEric Saxe * data to be constructed. 4791a77c24bSEric Saxe * 4801a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 4811a77c24bSEric Saxe * references a "bootstrap" structure. pg_cmt_cpu_init() and the routines it 4821a77c24bSEric Saxe * calls must be careful to operate only on the "pgdata" argument, and not 4831a77c24bSEric Saxe * cp->cpu_pg. 484fb2f18f8Sesaxe */ 485fb2f18f8Sesaxe static void 4861a77c24bSEric Saxe pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *pgdata) 487fb2f18f8Sesaxe { 488fb2f18f8Sesaxe pg_cmt_t *pg; 489fb2f18f8Sesaxe group_t *cmt_pgs; 4900e751525SEric Saxe int levels, level; 491fb2f18f8Sesaxe pghw_type_t hw; 492fb2f18f8Sesaxe pg_t *pg_cache = NULL; 493fb2f18f8Sesaxe pg_cmt_t *cpu_cmt_hier[PGHW_NUM_COMPONENTS]; 494fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 495fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 496ef4f35d8SEric Saxe cmt_lineage_validation_t lineage_status; 497fb2f18f8Sesaxe 498fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 4991a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 500fb2f18f8Sesaxe 5010e751525SEric Saxe if (cmt_sched_disabled) 5020e751525SEric Saxe return; 5030e751525SEric Saxe 504fb2f18f8Sesaxe /* 505fb2f18f8Sesaxe * A new CPU is coming into the system. 506fb2f18f8Sesaxe * Interrogate the platform to see if the CPU 5070e751525SEric Saxe * has any performance or efficiency relevant 5080e751525SEric Saxe * sharing relationships 509fb2f18f8Sesaxe */ 5101a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 5111a77c24bSEric Saxe pgdata->cmt_lineage = NULL; 512fb2f18f8Sesaxe 513fb2f18f8Sesaxe bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier)); 5140e751525SEric Saxe levels = 0; 515fb2f18f8Sesaxe for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) { 516fb2f18f8Sesaxe 5170e751525SEric Saxe pg_cmt_policy_t policy; 5180e751525SEric Saxe 519fb2f18f8Sesaxe /* 5200e751525SEric Saxe * We're only interested in the hw sharing relationships 5210e751525SEric Saxe * for which we know how to optimize. 522fb2f18f8Sesaxe */ 5230e751525SEric Saxe policy = pg_cmt_policy(hw); 5240e751525SEric Saxe if (policy == CMT_NO_POLICY || 5250e751525SEric Saxe pg_plat_hw_shared(cp, hw) == 0) 526fb2f18f8Sesaxe continue; 527fb2f18f8Sesaxe 528fb2f18f8Sesaxe /* 529*d0e93b69SEric Saxe * We will still create the PGs for hardware sharing 530*d0e93b69SEric Saxe * relationships that have been blacklisted, but won't 531*d0e93b69SEric Saxe * implement CMT thread placement optimizations against them. 5320e751525SEric Saxe */ 533*d0e93b69SEric Saxe if (cmt_hw_blacklisted[hw] == 1) 534*d0e93b69SEric Saxe policy = CMT_NO_POLICY; 5350e751525SEric Saxe 5360e751525SEric Saxe /* 537fb2f18f8Sesaxe * Find (or create) the PG associated with 538fb2f18f8Sesaxe * the hw sharing relationship in which cp 539fb2f18f8Sesaxe * belongs. 540fb2f18f8Sesaxe * 541fb2f18f8Sesaxe * Determine if a suitable PG already 542fb2f18f8Sesaxe * exists, or if one needs to be created. 543fb2f18f8Sesaxe */ 544fb2f18f8Sesaxe pg = (pg_cmt_t *)pghw_place_cpu(cp, hw); 545fb2f18f8Sesaxe if (pg == NULL) { 546fb2f18f8Sesaxe /* 547fb2f18f8Sesaxe * Create a new one. 548fb2f18f8Sesaxe * Initialize the common... 549fb2f18f8Sesaxe */ 550fb2f18f8Sesaxe pg = (pg_cmt_t *)pg_create(pg_cmt_class_id); 551fb2f18f8Sesaxe 552fb2f18f8Sesaxe /* ... physical ... */ 553fb2f18f8Sesaxe pghw_init((pghw_t *)pg, cp, hw); 554fb2f18f8Sesaxe 555fb2f18f8Sesaxe /* 556fb2f18f8Sesaxe * ... and CMT specific portions of the 557fb2f18f8Sesaxe * structure. 558fb2f18f8Sesaxe */ 5590e751525SEric Saxe pg->cmt_policy = policy; 5600e751525SEric Saxe 5610e751525SEric Saxe /* CMT event callbacks */ 5620e751525SEric Saxe cmt_callback_init((pg_t *)pg); 5630e751525SEric Saxe 564fb2f18f8Sesaxe bitset_init(&pg->cmt_cpus_actv_set); 565fb2f18f8Sesaxe group_create(&pg->cmt_cpus_actv); 566fb2f18f8Sesaxe } else { 567fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 568fb2f18f8Sesaxe } 569fb2f18f8Sesaxe 570fb2f18f8Sesaxe /* Add the CPU to the PG */ 5711a77c24bSEric Saxe pg_cpu_add((pg_t *)pg, cp, pgdata); 572fb2f18f8Sesaxe 573fb2f18f8Sesaxe /* 5746890d023SEric Saxe * Ensure capacity of the active CPU group/bitset 575fb2f18f8Sesaxe */ 576fb2f18f8Sesaxe group_expand(&pg->cmt_cpus_actv, 577fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 578fb2f18f8Sesaxe 579fb2f18f8Sesaxe if (cp->cpu_seqid >= 580fb2f18f8Sesaxe bitset_capacity(&pg->cmt_cpus_actv_set)) { 581fb2f18f8Sesaxe bitset_resize(&pg->cmt_cpus_actv_set, 582fb2f18f8Sesaxe cp->cpu_seqid + 1); 583fb2f18f8Sesaxe } 584fb2f18f8Sesaxe 585fb2f18f8Sesaxe /* 5860e751525SEric Saxe * Build a lineage of CMT PGs for load balancing / coalescence 587fb2f18f8Sesaxe */ 5880e751525SEric Saxe if (policy & (CMT_BALANCE | CMT_COALESCE)) { 5890e751525SEric Saxe cpu_cmt_hier[levels++] = pg; 590fb2f18f8Sesaxe } 591fb2f18f8Sesaxe 592fb2f18f8Sesaxe /* Cache this for later */ 593fb2f18f8Sesaxe if (hw == PGHW_CACHE) 594fb2f18f8Sesaxe pg_cache = (pg_t *)pg; 595fb2f18f8Sesaxe } 596fb2f18f8Sesaxe 5970e751525SEric Saxe group_expand(cmt_pgs, levels); 5986890d023SEric Saxe 5996890d023SEric Saxe if (cmt_root == NULL) 6006890d023SEric Saxe cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand()); 601fb2f18f8Sesaxe 602fb2f18f8Sesaxe /* 6030e751525SEric Saxe * Find the lgrp that encapsulates this CPU's CMT hierarchy 6046890d023SEric Saxe */ 6056890d023SEric Saxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 6066890d023SEric Saxe if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL) 6076890d023SEric Saxe lgrp = pg_cmt_lgrp_create(lgrp_handle); 6086890d023SEric Saxe 6096890d023SEric Saxe /* 6100e751525SEric Saxe * Ascendingly sort the PGs in the lineage by number of CPUs 6110e751525SEric Saxe */ 6120e751525SEric Saxe pg_cmt_hier_sort(cpu_cmt_hier, levels); 6130e751525SEric Saxe 6140e751525SEric Saxe /* 6150e751525SEric Saxe * Examine the lineage and validate it. 6160e751525SEric Saxe * This routine will also try to fix the lineage along with the 6170e751525SEric Saxe * rest of the PG hierarchy should it detect an issue. 6180e751525SEric Saxe * 619ef4f35d8SEric Saxe * If it returns anything other than VALID or REPAIRED, an 620ef4f35d8SEric Saxe * unrecoverable error has occurred, and we cannot proceed. 6210e751525SEric Saxe */ 6221a77c24bSEric Saxe lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels, pgdata); 623ef4f35d8SEric Saxe if ((lineage_status != CMT_LINEAGE_VALID) && 6241a77c24bSEric Saxe (lineage_status != CMT_LINEAGE_REPAIRED)) { 6251a77c24bSEric Saxe /* 6261a77c24bSEric Saxe * In the case of an unrecoverable error where CMT scheduling 6271a77c24bSEric Saxe * has been disabled, assert that the under construction CPU's 6281a77c24bSEric Saxe * PG data has an empty CMT load balancing lineage. 6291a77c24bSEric Saxe */ 6301a77c24bSEric Saxe ASSERT((cmt_sched_disabled == 0) || 6311a77c24bSEric Saxe (GROUP_SIZE(&(pgdata->cmt_pgs)) == 0)); 6320e751525SEric Saxe return; 6331a77c24bSEric Saxe } 6340e751525SEric Saxe 6350e751525SEric Saxe /* 6360e751525SEric Saxe * For existing PGs in the lineage, verify that the parent is 6370e751525SEric Saxe * correct, as the generation in the lineage may have changed 6380e751525SEric Saxe * as a result of the sorting. Start the traversal at the top 6390e751525SEric Saxe * of the lineage, moving down. 6400e751525SEric Saxe */ 6410e751525SEric Saxe for (level = levels - 1; level >= 0; ) { 6420e751525SEric Saxe int reorg; 6430e751525SEric Saxe 6440e751525SEric Saxe reorg = 0; 6450e751525SEric Saxe pg = cpu_cmt_hier[level]; 6460e751525SEric Saxe 6470e751525SEric Saxe /* 6480e751525SEric Saxe * Promote PGs at an incorrect generation into place. 6490e751525SEric Saxe */ 6500e751525SEric Saxe while (pg->cmt_parent && 6510e751525SEric Saxe pg->cmt_parent != cpu_cmt_hier[level + 1]) { 6521a77c24bSEric Saxe cmt_hier_promote(pg, pgdata); 6530e751525SEric Saxe reorg++; 6540e751525SEric Saxe } 6550e751525SEric Saxe if (reorg > 0) 6560e751525SEric Saxe level = levels - 1; 6570e751525SEric Saxe else 6580e751525SEric Saxe level--; 6590e751525SEric Saxe } 6600e751525SEric Saxe 6610e751525SEric Saxe /* 6626890d023SEric Saxe * For each of the PGs in the CPU's lineage: 6630e751525SEric Saxe * - Add an entry in the CPU sorted CMT PG group 6640e751525SEric Saxe * which is used for top down CMT load balancing 665fb2f18f8Sesaxe * - Tie the PG into the CMT hierarchy by connecting 666fb2f18f8Sesaxe * it to it's parent and siblings. 667fb2f18f8Sesaxe */ 6680e751525SEric Saxe for (level = 0; level < levels; level++) { 669fb2f18f8Sesaxe uint_t children; 670fb2f18f8Sesaxe int err; 671fb2f18f8Sesaxe 672fb2f18f8Sesaxe pg = cpu_cmt_hier[level]; 6730e751525SEric Saxe err = group_add_at(cmt_pgs, pg, levels - level - 1); 674fb2f18f8Sesaxe ASSERT(err == 0); 675fb2f18f8Sesaxe 676fb2f18f8Sesaxe if (level == 0) 6771a77c24bSEric Saxe pgdata->cmt_lineage = (pg_t *)pg; 678fb2f18f8Sesaxe 679fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 680fb2f18f8Sesaxe /* Already initialized */ 681fb2f18f8Sesaxe ASSERT(pg->cmt_parent == NULL || 682fb2f18f8Sesaxe pg->cmt_parent == cpu_cmt_hier[level + 1]); 683fb2f18f8Sesaxe ASSERT(pg->cmt_siblings == &lgrp->cl_pgs || 684c416da2dSjb145095 ((pg->cmt_parent != NULL) && 685c416da2dSjb145095 pg->cmt_siblings == pg->cmt_parent->cmt_children)); 686fb2f18f8Sesaxe continue; 687fb2f18f8Sesaxe } 688fb2f18f8Sesaxe 6890e751525SEric Saxe if ((level + 1) == levels) { 690fb2f18f8Sesaxe pg->cmt_parent = NULL; 6916890d023SEric Saxe 692fb2f18f8Sesaxe pg->cmt_siblings = &lgrp->cl_pgs; 693fb2f18f8Sesaxe children = ++lgrp->cl_npgs; 6940e751525SEric Saxe if (cmt_root != lgrp) 6956890d023SEric Saxe cmt_root->cl_npgs++; 696fb2f18f8Sesaxe } else { 697fb2f18f8Sesaxe pg->cmt_parent = cpu_cmt_hier[level + 1]; 698fb2f18f8Sesaxe 699fb2f18f8Sesaxe /* 700fb2f18f8Sesaxe * A good parent keeps track of their children. 701fb2f18f8Sesaxe * The parent's children group is also the PG's 702fb2f18f8Sesaxe * siblings. 703fb2f18f8Sesaxe */ 704fb2f18f8Sesaxe if (pg->cmt_parent->cmt_children == NULL) { 705fb2f18f8Sesaxe pg->cmt_parent->cmt_children = 706fb2f18f8Sesaxe kmem_zalloc(sizeof (group_t), KM_SLEEP); 707fb2f18f8Sesaxe group_create(pg->cmt_parent->cmt_children); 708fb2f18f8Sesaxe } 709fb2f18f8Sesaxe pg->cmt_siblings = pg->cmt_parent->cmt_children; 710fb2f18f8Sesaxe children = ++pg->cmt_parent->cmt_nchildren; 711fb2f18f8Sesaxe } 7126890d023SEric Saxe 713fb2f18f8Sesaxe group_expand(pg->cmt_siblings, children); 7146890d023SEric Saxe group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs); 715fb2f18f8Sesaxe } 716fb2f18f8Sesaxe 717fb2f18f8Sesaxe /* 718fb2f18f8Sesaxe * Cache the chip and core IDs in the cpu_t->cpu_physid structure 719fb2f18f8Sesaxe * for fast lookups later. 720fb2f18f8Sesaxe */ 721fb2f18f8Sesaxe if (cp->cpu_physid) { 722fb2f18f8Sesaxe cp->cpu_physid->cpu_chipid = 723fb2f18f8Sesaxe pg_plat_hw_instance_id(cp, PGHW_CHIP); 724fb2f18f8Sesaxe cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp); 725fb2f18f8Sesaxe 726fb2f18f8Sesaxe /* 727fb2f18f8Sesaxe * If this cpu has a PG representing shared cache, then set 728fb2f18f8Sesaxe * cpu_cacheid to that PG's logical id 729fb2f18f8Sesaxe */ 730fb2f18f8Sesaxe if (pg_cache) 731fb2f18f8Sesaxe cp->cpu_physid->cpu_cacheid = pg_cache->pg_id; 732fb2f18f8Sesaxe } 733fb2f18f8Sesaxe 734fb2f18f8Sesaxe /* CPU0 only initialization */ 735fb2f18f8Sesaxe if (is_cpu0) { 736fb2f18f8Sesaxe is_cpu0 = 0; 737a6604450Sesaxe cpu0_lgrp = lgrp; 738fb2f18f8Sesaxe } 739fb2f18f8Sesaxe 740fb2f18f8Sesaxe } 741fb2f18f8Sesaxe 742fb2f18f8Sesaxe /* 743fb2f18f8Sesaxe * Class callback when a CPU is leaving the system (deletion) 7441a77c24bSEric Saxe * 7451a77c24bSEric Saxe * "pgdata" is a reference to the CPU's PG data to be deconstructed. 7461a77c24bSEric Saxe * 7471a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 7481a77c24bSEric Saxe * references a "bootstrap" structure across this function's invocation. 7491a77c24bSEric Saxe * pg_cmt_cpu_init() and the routines it calls must be careful to operate only 7501a77c24bSEric Saxe * on the "pgdata" argument, and not cp->cpu_pg. 751fb2f18f8Sesaxe */ 752fb2f18f8Sesaxe static void 7531a77c24bSEric Saxe pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *pgdata) 754fb2f18f8Sesaxe { 755fb2f18f8Sesaxe group_iter_t i; 756fb2f18f8Sesaxe pg_cmt_t *pg; 757fb2f18f8Sesaxe group_t *pgs, *cmt_pgs; 758fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 759fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 760fb2f18f8Sesaxe 7610e751525SEric Saxe if (cmt_sched_disabled) 7620e751525SEric Saxe return; 7630e751525SEric Saxe 7641a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 7651a77c24bSEric Saxe 7661a77c24bSEric Saxe pgs = &pgdata->pgs; 7671a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 768fb2f18f8Sesaxe 769fb2f18f8Sesaxe /* 770fb2f18f8Sesaxe * Find the lgroup that encapsulates this CPU's CMT hierarchy 771fb2f18f8Sesaxe */ 772fb2f18f8Sesaxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 773a6604450Sesaxe 774fb2f18f8Sesaxe lgrp = pg_cmt_find_lgrp(lgrp_handle); 7753e81cacfSEric Saxe if (ncpus == 1 && lgrp != cpu0_lgrp) { 776a6604450Sesaxe /* 7773e81cacfSEric Saxe * One might wonder how we could be deconfiguring the 7783e81cacfSEric Saxe * only CPU in the system. 779a6604450Sesaxe * 7803e81cacfSEric Saxe * On Starcat systems when null_proc_lpa is detected, 7813e81cacfSEric Saxe * the boot CPU (which is already configured into a leaf 7823e81cacfSEric Saxe * lgroup), is moved into the root lgroup. This is done by 7833e81cacfSEric Saxe * deconfiguring it from both lgroups and processor 7843e81cacfSEric Saxe * groups), and then later reconfiguring it back in. This 7853e81cacfSEric Saxe * call to pg_cmt_cpu_fini() is part of that deconfiguration. 7863e81cacfSEric Saxe * 7873e81cacfSEric Saxe * This special case is detected by noting that the platform 7883e81cacfSEric Saxe * has changed the CPU's lgrp affiliation (since it now 7893e81cacfSEric Saxe * belongs in the root). In this case, use the cmt_lgrp_t 7903e81cacfSEric Saxe * cached for the boot CPU, since this is what needs to be 7913e81cacfSEric Saxe * torn down. 792a6604450Sesaxe */ 793a6604450Sesaxe lgrp = cpu0_lgrp; 794a6604450Sesaxe } 795fb2f18f8Sesaxe 7963e81cacfSEric Saxe ASSERT(lgrp != NULL); 7973e81cacfSEric Saxe 798fb2f18f8Sesaxe /* 799fb2f18f8Sesaxe * First, clean up anything load balancing specific for each of 800fb2f18f8Sesaxe * the CPU's PGs that participated in CMT load balancing 801fb2f18f8Sesaxe */ 8021a77c24bSEric Saxe pg = (pg_cmt_t *)pgdata->cmt_lineage; 803fb2f18f8Sesaxe while (pg != NULL) { 804fb2f18f8Sesaxe 805fb2f18f8Sesaxe /* 806fb2f18f8Sesaxe * Remove the PG from the CPU's load balancing lineage 807fb2f18f8Sesaxe */ 808fb2f18f8Sesaxe (void) group_remove(cmt_pgs, pg, GRP_RESIZE); 809fb2f18f8Sesaxe 810fb2f18f8Sesaxe /* 811fb2f18f8Sesaxe * If it's about to become empty, destroy it's children 812fb2f18f8Sesaxe * group, and remove it's reference from it's siblings. 813fb2f18f8Sesaxe * This is done here (rather than below) to avoid removing 814fb2f18f8Sesaxe * our reference from a PG that we just eliminated. 815fb2f18f8Sesaxe */ 816fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) { 817fb2f18f8Sesaxe if (pg->cmt_children != NULL) 818fb2f18f8Sesaxe group_destroy(pg->cmt_children); 819fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 820fb2f18f8Sesaxe if (pg->cmt_siblings == &lgrp->cl_pgs) 821fb2f18f8Sesaxe lgrp->cl_npgs--; 822fb2f18f8Sesaxe else 823fb2f18f8Sesaxe pg->cmt_parent->cmt_nchildren--; 824fb2f18f8Sesaxe } 825fb2f18f8Sesaxe } 826fb2f18f8Sesaxe pg = pg->cmt_parent; 827fb2f18f8Sesaxe } 828fb2f18f8Sesaxe ASSERT(GROUP_SIZE(cmt_pgs) == 0); 829fb2f18f8Sesaxe 830fb2f18f8Sesaxe /* 831fb2f18f8Sesaxe * Now that the load balancing lineage updates have happened, 832fb2f18f8Sesaxe * remove the CPU from all it's PGs (destroying any that become 833fb2f18f8Sesaxe * empty). 834fb2f18f8Sesaxe */ 835fb2f18f8Sesaxe group_iter_init(&i); 836fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 837fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 838fb2f18f8Sesaxe continue; 839fb2f18f8Sesaxe 8401a77c24bSEric Saxe pg_cpu_delete((pg_t *)pg, cp, pgdata); 841fb2f18f8Sesaxe /* 842fb2f18f8Sesaxe * Deleting the CPU from the PG changes the CPU's 843fb2f18f8Sesaxe * PG group over which we are actively iterating 844fb2f18f8Sesaxe * Re-initialize the iteration 845fb2f18f8Sesaxe */ 846fb2f18f8Sesaxe group_iter_init(&i); 847fb2f18f8Sesaxe 848fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) { 849fb2f18f8Sesaxe 850fb2f18f8Sesaxe /* 851fb2f18f8Sesaxe * The PG has become zero sized, so destroy it. 852fb2f18f8Sesaxe */ 853fb2f18f8Sesaxe group_destroy(&pg->cmt_cpus_actv); 854fb2f18f8Sesaxe bitset_fini(&pg->cmt_cpus_actv_set); 855fb2f18f8Sesaxe pghw_fini((pghw_t *)pg); 856fb2f18f8Sesaxe 857fb2f18f8Sesaxe pg_destroy((pg_t *)pg); 858fb2f18f8Sesaxe } 859fb2f18f8Sesaxe } 860fb2f18f8Sesaxe } 861fb2f18f8Sesaxe 862fb2f18f8Sesaxe /* 863fb2f18f8Sesaxe * Class callback when a CPU is entering a cpu partition 864fb2f18f8Sesaxe */ 865fb2f18f8Sesaxe static void 866fb2f18f8Sesaxe pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp) 867fb2f18f8Sesaxe { 868fb2f18f8Sesaxe group_t *pgs; 869fb2f18f8Sesaxe pg_t *pg; 870fb2f18f8Sesaxe group_iter_t i; 871fb2f18f8Sesaxe 872fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 873fb2f18f8Sesaxe 8740e751525SEric Saxe if (cmt_sched_disabled) 8750e751525SEric Saxe return; 8760e751525SEric Saxe 877fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 878fb2f18f8Sesaxe 879fb2f18f8Sesaxe /* 880fb2f18f8Sesaxe * Ensure that the new partition's PG bitset 881fb2f18f8Sesaxe * is large enough for all CMT PG's to which cp 882fb2f18f8Sesaxe * belongs 883fb2f18f8Sesaxe */ 884fb2f18f8Sesaxe group_iter_init(&i); 885fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 886fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 887fb2f18f8Sesaxe continue; 888fb2f18f8Sesaxe 889fb2f18f8Sesaxe if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id) 890fb2f18f8Sesaxe bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1); 891fb2f18f8Sesaxe } 892fb2f18f8Sesaxe } 893fb2f18f8Sesaxe 894fb2f18f8Sesaxe /* 895fb2f18f8Sesaxe * Class callback when a CPU is actually moving partitions 896fb2f18f8Sesaxe */ 897fb2f18f8Sesaxe static void 898fb2f18f8Sesaxe pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp) 899fb2f18f8Sesaxe { 900fb2f18f8Sesaxe cpu_t *cpp; 901fb2f18f8Sesaxe group_t *pgs; 902fb2f18f8Sesaxe pg_t *pg; 903fb2f18f8Sesaxe group_iter_t pg_iter; 904fb2f18f8Sesaxe pg_cpu_itr_t cpu_iter; 905fb2f18f8Sesaxe boolean_t found; 906fb2f18f8Sesaxe 907fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 908fb2f18f8Sesaxe 9090e751525SEric Saxe if (cmt_sched_disabled) 9100e751525SEric Saxe return; 9110e751525SEric Saxe 912fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 913fb2f18f8Sesaxe group_iter_init(&pg_iter); 914fb2f18f8Sesaxe 915fb2f18f8Sesaxe /* 916fb2f18f8Sesaxe * Iterate over the CPUs CMT PGs 917fb2f18f8Sesaxe */ 918fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &pg_iter)) != NULL) { 919fb2f18f8Sesaxe 920fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 921fb2f18f8Sesaxe continue; 922fb2f18f8Sesaxe 923fb2f18f8Sesaxe /* 924fb2f18f8Sesaxe * Add the PG to the bitset in the new partition. 925fb2f18f8Sesaxe */ 926fb2f18f8Sesaxe bitset_add(&newpp->cp_cmt_pgs, pg->pg_id); 927fb2f18f8Sesaxe 928fb2f18f8Sesaxe /* 929fb2f18f8Sesaxe * Remove the PG from the bitset in the old partition 930fb2f18f8Sesaxe * if the last of the PG's CPUs have left. 931fb2f18f8Sesaxe */ 932fb2f18f8Sesaxe found = B_FALSE; 933fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_iter); 934fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) { 935fb2f18f8Sesaxe if (cpp == cp) 936fb2f18f8Sesaxe continue; 937a6604450Sesaxe if (CPU_ACTIVE(cpp) && 938a6604450Sesaxe cpp->cpu_part->cp_id == oldpp->cp_id) { 939fb2f18f8Sesaxe found = B_TRUE; 940fb2f18f8Sesaxe break; 941fb2f18f8Sesaxe } 942fb2f18f8Sesaxe } 943fb2f18f8Sesaxe if (!found) 944fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id); 945fb2f18f8Sesaxe } 946fb2f18f8Sesaxe } 947fb2f18f8Sesaxe 948fb2f18f8Sesaxe /* 949fb2f18f8Sesaxe * Class callback when a CPU becomes active (online) 950fb2f18f8Sesaxe * 951fb2f18f8Sesaxe * This is called in a context where CPUs are paused 952fb2f18f8Sesaxe */ 953fb2f18f8Sesaxe static void 954fb2f18f8Sesaxe pg_cmt_cpu_active(cpu_t *cp) 955fb2f18f8Sesaxe { 956fb2f18f8Sesaxe int err; 957fb2f18f8Sesaxe group_iter_t i; 958fb2f18f8Sesaxe pg_cmt_t *pg; 959fb2f18f8Sesaxe group_t *pgs; 960fb2f18f8Sesaxe 961fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 962fb2f18f8Sesaxe 9630e751525SEric Saxe if (cmt_sched_disabled) 9640e751525SEric Saxe return; 9650e751525SEric Saxe 966fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 967fb2f18f8Sesaxe group_iter_init(&i); 968fb2f18f8Sesaxe 969fb2f18f8Sesaxe /* 970fb2f18f8Sesaxe * Iterate over the CPU's PGs 971fb2f18f8Sesaxe */ 972fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 973fb2f18f8Sesaxe 974fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 975fb2f18f8Sesaxe continue; 976fb2f18f8Sesaxe 977fb2f18f8Sesaxe err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 978fb2f18f8Sesaxe ASSERT(err == 0); 979fb2f18f8Sesaxe 980fb2f18f8Sesaxe /* 981fb2f18f8Sesaxe * If this is the first active CPU in the PG, and it 982fb2f18f8Sesaxe * represents a hardware sharing relationship over which 983fb2f18f8Sesaxe * CMT load balancing is performed, add it as a candidate 984fb2f18f8Sesaxe * for balancing with it's siblings. 985fb2f18f8Sesaxe */ 986fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 && 9870e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 988fb2f18f8Sesaxe err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE); 989fb2f18f8Sesaxe ASSERT(err == 0); 9906890d023SEric Saxe 9916890d023SEric Saxe /* 9926890d023SEric Saxe * If this is a top level PG, add it as a balancing 9930e751525SEric Saxe * candidate when balancing within the root lgroup. 9946890d023SEric Saxe */ 9950e751525SEric Saxe if (pg->cmt_parent == NULL && 9960e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 9976890d023SEric Saxe err = group_add(&cmt_root->cl_pgs, pg, 9986890d023SEric Saxe GRP_NORESIZE); 9996890d023SEric Saxe ASSERT(err == 0); 10006890d023SEric Saxe } 1001fb2f18f8Sesaxe } 1002fb2f18f8Sesaxe 1003fb2f18f8Sesaxe /* 1004fb2f18f8Sesaxe * Notate the CPU in the PGs active CPU bitset. 1005fb2f18f8Sesaxe * Also notate the PG as being active in it's associated 1006fb2f18f8Sesaxe * partition 1007fb2f18f8Sesaxe */ 1008fb2f18f8Sesaxe bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1009fb2f18f8Sesaxe bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id); 1010fb2f18f8Sesaxe } 1011fb2f18f8Sesaxe } 1012fb2f18f8Sesaxe 1013fb2f18f8Sesaxe /* 1014fb2f18f8Sesaxe * Class callback when a CPU goes inactive (offline) 1015fb2f18f8Sesaxe * 1016fb2f18f8Sesaxe * This is called in a context where CPUs are paused 1017fb2f18f8Sesaxe */ 1018fb2f18f8Sesaxe static void 1019fb2f18f8Sesaxe pg_cmt_cpu_inactive(cpu_t *cp) 1020fb2f18f8Sesaxe { 1021fb2f18f8Sesaxe int err; 1022fb2f18f8Sesaxe group_t *pgs; 1023fb2f18f8Sesaxe pg_cmt_t *pg; 1024fb2f18f8Sesaxe cpu_t *cpp; 1025fb2f18f8Sesaxe group_iter_t i; 1026fb2f18f8Sesaxe pg_cpu_itr_t cpu_itr; 1027fb2f18f8Sesaxe boolean_t found; 1028fb2f18f8Sesaxe 1029fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1030fb2f18f8Sesaxe 10310e751525SEric Saxe if (cmt_sched_disabled) 10320e751525SEric Saxe return; 10330e751525SEric Saxe 1034fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 1035fb2f18f8Sesaxe group_iter_init(&i); 1036fb2f18f8Sesaxe 1037fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 1038fb2f18f8Sesaxe 1039fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 1040fb2f18f8Sesaxe continue; 1041fb2f18f8Sesaxe 1042fb2f18f8Sesaxe /* 1043fb2f18f8Sesaxe * Remove the CPU from the CMT PGs active CPU group 1044fb2f18f8Sesaxe * bitmap 1045fb2f18f8Sesaxe */ 1046fb2f18f8Sesaxe err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 1047fb2f18f8Sesaxe ASSERT(err == 0); 1048fb2f18f8Sesaxe 1049fb2f18f8Sesaxe bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1050fb2f18f8Sesaxe 1051fb2f18f8Sesaxe /* 1052fb2f18f8Sesaxe * If there are no more active CPUs in this PG over which 1053fb2f18f8Sesaxe * load was balanced, remove it as a balancing candidate. 1054fb2f18f8Sesaxe */ 1055fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 && 10560e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 1057fb2f18f8Sesaxe err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 1058fb2f18f8Sesaxe ASSERT(err == 0); 10596890d023SEric Saxe 10600e751525SEric Saxe if (pg->cmt_parent == NULL && 10610e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 10626890d023SEric Saxe err = group_remove(&cmt_root->cl_pgs, pg, 10636890d023SEric Saxe GRP_NORESIZE); 10646890d023SEric Saxe ASSERT(err == 0); 10656890d023SEric Saxe } 1066fb2f18f8Sesaxe } 1067fb2f18f8Sesaxe 1068fb2f18f8Sesaxe /* 1069fb2f18f8Sesaxe * Assert the number of active CPUs does not exceed 1070fb2f18f8Sesaxe * the total number of CPUs in the PG 1071fb2f18f8Sesaxe */ 1072fb2f18f8Sesaxe ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <= 1073fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 1074fb2f18f8Sesaxe 1075fb2f18f8Sesaxe /* 1076fb2f18f8Sesaxe * Update the PG bitset in the CPU's old partition 1077fb2f18f8Sesaxe */ 1078fb2f18f8Sesaxe found = B_FALSE; 1079fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_itr); 1080fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) { 1081fb2f18f8Sesaxe if (cpp == cp) 1082fb2f18f8Sesaxe continue; 1083a6604450Sesaxe if (CPU_ACTIVE(cpp) && 1084a6604450Sesaxe cpp->cpu_part->cp_id == cp->cpu_part->cp_id) { 1085fb2f18f8Sesaxe found = B_TRUE; 1086fb2f18f8Sesaxe break; 1087fb2f18f8Sesaxe } 1088fb2f18f8Sesaxe } 1089fb2f18f8Sesaxe if (!found) { 1090fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, 1091fb2f18f8Sesaxe ((pg_t *)pg)->pg_id); 1092fb2f18f8Sesaxe } 1093fb2f18f8Sesaxe } 1094fb2f18f8Sesaxe } 1095fb2f18f8Sesaxe 1096fb2f18f8Sesaxe /* 1097fb2f18f8Sesaxe * Return non-zero if the CPU belongs in the given PG 1098fb2f18f8Sesaxe */ 1099fb2f18f8Sesaxe static int 1100fb2f18f8Sesaxe pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp) 1101fb2f18f8Sesaxe { 1102fb2f18f8Sesaxe cpu_t *pg_cpu; 1103fb2f18f8Sesaxe 1104fb2f18f8Sesaxe pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0); 1105fb2f18f8Sesaxe 1106fb2f18f8Sesaxe ASSERT(pg_cpu != NULL); 1107fb2f18f8Sesaxe 1108fb2f18f8Sesaxe /* 1109fb2f18f8Sesaxe * The CPU belongs if, given the nature of the hardware sharing 1110fb2f18f8Sesaxe * relationship represented by the PG, the CPU has that 1111fb2f18f8Sesaxe * relationship with some other CPU already in the PG 1112fb2f18f8Sesaxe */ 1113fb2f18f8Sesaxe if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw)) 1114fb2f18f8Sesaxe return (1); 1115fb2f18f8Sesaxe 1116fb2f18f8Sesaxe return (0); 1117fb2f18f8Sesaxe } 1118fb2f18f8Sesaxe 1119fb2f18f8Sesaxe /* 11200e751525SEric Saxe * Sort the CPUs CMT hierarchy, where "size" is the number of levels. 1121fb2f18f8Sesaxe */ 1122fb2f18f8Sesaxe static void 11230e751525SEric Saxe pg_cmt_hier_sort(pg_cmt_t **hier, int size) 1124fb2f18f8Sesaxe { 11250e751525SEric Saxe int i, j, inc; 11260e751525SEric Saxe pg_t *tmp; 11270e751525SEric Saxe pg_t **h = (pg_t **)hier; 1128fb2f18f8Sesaxe 11290e751525SEric Saxe /* 11300e751525SEric Saxe * First sort by number of CPUs 11310e751525SEric Saxe */ 11320e751525SEric Saxe inc = size / 2; 11330e751525SEric Saxe while (inc > 0) { 11340e751525SEric Saxe for (i = inc; i < size; i++) { 11350e751525SEric Saxe j = i; 11360e751525SEric Saxe tmp = h[i]; 11370e751525SEric Saxe while ((j >= inc) && 11380e751525SEric Saxe (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) { 11390e751525SEric Saxe h[j] = h[j - inc]; 11400e751525SEric Saxe j = j - inc; 11410e751525SEric Saxe } 11420e751525SEric Saxe h[j] = tmp; 11430e751525SEric Saxe } 11440e751525SEric Saxe if (inc == 2) 11450e751525SEric Saxe inc = 1; 11460e751525SEric Saxe else 11470e751525SEric Saxe inc = (inc * 5) / 11; 11480e751525SEric Saxe } 1149fb2f18f8Sesaxe 11500e751525SEric Saxe /* 11510e751525SEric Saxe * Break ties by asking the platform. 11520e751525SEric Saxe * Determine if h[i] outranks h[i + 1] and if so, swap them. 11530e751525SEric Saxe */ 11540e751525SEric Saxe for (i = 0; i < size - 1; i++) { 11550e751525SEric Saxe if ((PG_NUM_CPUS(h[i]) == PG_NUM_CPUS(h[i + 1])) && 11560e751525SEric Saxe pg_cmt_hier_rank(hier[i], hier[i + 1]) == hier[i]) { 11570e751525SEric Saxe tmp = h[i]; 11580e751525SEric Saxe h[i] = h[i + 1]; 11590e751525SEric Saxe h[i + 1] = tmp; 1160fb2f18f8Sesaxe } 1161fb2f18f8Sesaxe } 1162fb2f18f8Sesaxe } 1163fb2f18f8Sesaxe 1164fb2f18f8Sesaxe /* 1165fb2f18f8Sesaxe * Return a cmt_lgrp_t * given an lgroup handle. 1166fb2f18f8Sesaxe */ 1167fb2f18f8Sesaxe static cmt_lgrp_t * 1168fb2f18f8Sesaxe pg_cmt_find_lgrp(lgrp_handle_t hand) 1169fb2f18f8Sesaxe { 1170fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 1171fb2f18f8Sesaxe 1172fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1173fb2f18f8Sesaxe 1174fb2f18f8Sesaxe lgrp = cmt_lgrps; 1175fb2f18f8Sesaxe while (lgrp != NULL) { 1176fb2f18f8Sesaxe if (lgrp->cl_hand == hand) 1177a6604450Sesaxe break; 1178fb2f18f8Sesaxe lgrp = lgrp->cl_next; 1179fb2f18f8Sesaxe } 1180a6604450Sesaxe return (lgrp); 1181a6604450Sesaxe } 1182fb2f18f8Sesaxe 1183fb2f18f8Sesaxe /* 1184a6604450Sesaxe * Create a cmt_lgrp_t with the specified handle. 1185fb2f18f8Sesaxe */ 1186a6604450Sesaxe static cmt_lgrp_t * 1187a6604450Sesaxe pg_cmt_lgrp_create(lgrp_handle_t hand) 1188a6604450Sesaxe { 1189a6604450Sesaxe cmt_lgrp_t *lgrp; 1190a6604450Sesaxe 1191a6604450Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1192a6604450Sesaxe 1193fb2f18f8Sesaxe lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP); 1194fb2f18f8Sesaxe 1195fb2f18f8Sesaxe lgrp->cl_hand = hand; 1196fb2f18f8Sesaxe lgrp->cl_npgs = 0; 1197fb2f18f8Sesaxe lgrp->cl_next = cmt_lgrps; 1198fb2f18f8Sesaxe cmt_lgrps = lgrp; 1199fb2f18f8Sesaxe group_create(&lgrp->cl_pgs); 1200fb2f18f8Sesaxe 1201fb2f18f8Sesaxe return (lgrp); 1202fb2f18f8Sesaxe } 12036890d023SEric Saxe 12046890d023SEric Saxe /* 12050e751525SEric Saxe * Interfaces to enable and disable power aware dispatching 12060e751525SEric Saxe * The caller must be holding cpu_lock. 12076890d023SEric Saxe * 12080e751525SEric Saxe * Return 0 on success and -1 on failure. 12096890d023SEric Saxe */ 12100e751525SEric Saxe int 12110e751525SEric Saxe cmt_pad_enable(pghw_type_t type) 12126890d023SEric Saxe { 12130e751525SEric Saxe group_t *hwset; 12140e751525SEric Saxe group_iter_t iter; 12150e751525SEric Saxe pg_cmt_t *pg; 12166890d023SEric Saxe 12170e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12180e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12196890d023SEric Saxe 12200e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL || 12210e751525SEric Saxe cmt_hw_blacklisted[type]) { 12220e751525SEric Saxe /* 12230e751525SEric Saxe * Unable to find any instances of the specified type 12240e751525SEric Saxe * of power domain, or the power domains have been blacklisted. 12250e751525SEric Saxe */ 12260e751525SEric Saxe return (-1); 12270e751525SEric Saxe } 12286890d023SEric Saxe 12296890d023SEric Saxe /* 12300e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12310e751525SEric Saxe * policy for power/performance optimization. 12320e751525SEric Saxe * 12330e751525SEric Saxe * Simply setting the policy isn't enough in the case where the power 12340e751525SEric Saxe * domain is an only child of another PG. Because the dispatcher walks 12350e751525SEric Saxe * the PG hierarchy in a top down fashion, the higher up PG's policy 12360e751525SEric Saxe * will dominate. So promote the power domain above it's parent if both 12370e751525SEric Saxe * PG and it's parent have the same CPUs to ensure it's policy 12380e751525SEric Saxe * dominates. 12396890d023SEric Saxe */ 12400e751525SEric Saxe group_iter_init(&iter); 12410e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 12420e751525SEric Saxe /* 12430e751525SEric Saxe * If the power domain is an only child to a parent 12440e751525SEric Saxe * not implementing the same policy, promote the child 12450e751525SEric Saxe * above the parent to activate the policy. 12460e751525SEric Saxe */ 12470e751525SEric Saxe pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw); 12480e751525SEric Saxe while ((pg->cmt_parent != NULL) && 12490e751525SEric Saxe (pg->cmt_parent->cmt_policy != pg->cmt_policy) && 12500e751525SEric Saxe (PG_NUM_CPUS((pg_t *)pg) == 12510e751525SEric Saxe PG_NUM_CPUS((pg_t *)pg->cmt_parent))) { 12521a77c24bSEric Saxe cmt_hier_promote(pg, NULL); 12530e751525SEric Saxe } 12540e751525SEric Saxe } 12550e751525SEric Saxe 12560e751525SEric Saxe return (0); 12570e751525SEric Saxe } 12580e751525SEric Saxe 12590e751525SEric Saxe int 12600e751525SEric Saxe cmt_pad_disable(pghw_type_t type) 12610e751525SEric Saxe { 12620e751525SEric Saxe group_t *hwset; 12630e751525SEric Saxe group_iter_t iter; 12640e751525SEric Saxe pg_cmt_t *pg; 12650e751525SEric Saxe pg_cmt_t *child; 12660e751525SEric Saxe 12670e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12680e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12690e751525SEric Saxe 12700e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL) { 12710e751525SEric Saxe /* 12720e751525SEric Saxe * Unable to find any instances of the specified type of 12730e751525SEric Saxe * power domain. 12740e751525SEric Saxe */ 12750e751525SEric Saxe return (-1); 12760e751525SEric Saxe } 12770e751525SEric Saxe /* 12780e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12790e751525SEric Saxe * policy for performance optimization (load balancing). 12800e751525SEric Saxe */ 12810e751525SEric Saxe group_iter_init(&iter); 12820e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 12830e751525SEric Saxe 12840e751525SEric Saxe /* 12850e751525SEric Saxe * If the power domain has an only child that implements 12860e751525SEric Saxe * policy other than load balancing, promote the child 12870e751525SEric Saxe * above the power domain to ensure it's policy dominates. 12880e751525SEric Saxe */ 1289f03808b6SEric Saxe if (pg->cmt_children != NULL && 1290f03808b6SEric Saxe GROUP_SIZE(pg->cmt_children) == 1) { 12910e751525SEric Saxe child = GROUP_ACCESS(pg->cmt_children, 0); 12920e751525SEric Saxe if ((child->cmt_policy & CMT_BALANCE) == 0) { 12931a77c24bSEric Saxe cmt_hier_promote(child, NULL); 12940e751525SEric Saxe } 12950e751525SEric Saxe } 12960e751525SEric Saxe pg->cmt_policy = CMT_BALANCE; 12970e751525SEric Saxe } 12980e751525SEric Saxe return (0); 12990e751525SEric Saxe } 13000e751525SEric Saxe 13010e751525SEric Saxe /* ARGSUSED */ 13020e751525SEric Saxe static void 13030e751525SEric Saxe cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13040e751525SEric Saxe kthread_t *new) 13050e751525SEric Saxe { 13060e751525SEric Saxe pg_cmt_t *cmt_pg = (pg_cmt_t *)pg; 13070e751525SEric Saxe 13080e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13090e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, 1); 13100e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13110e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, -1); 13120e751525SEric Saxe } 13130e751525SEric Saxe } 13140e751525SEric Saxe 13150e751525SEric Saxe /* 13160e751525SEric Saxe * Macro to test whether a thread is currently runnable on a CPU in a PG. 13170e751525SEric Saxe */ 13180e751525SEric Saxe #define THREAD_RUNNABLE_IN_PG(t, pg) \ 13190e751525SEric Saxe ((t)->t_state == TS_RUN && \ 13200e751525SEric Saxe (t)->t_disp_queue->disp_cpu && \ 13210e751525SEric Saxe bitset_in_set(&(pg)->cmt_cpus_actv_set, \ 13220e751525SEric Saxe (t)->t_disp_queue->disp_cpu->cpu_seqid)) 13230e751525SEric Saxe 13240e751525SEric Saxe static void 13250e751525SEric Saxe cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13260e751525SEric Saxe kthread_t *new) 13270e751525SEric Saxe { 13280e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13290e751525SEric Saxe cpupm_domain_t *dom; 13300e751525SEric Saxe uint32_t u; 13310e751525SEric Saxe 13320e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13330e751525SEric Saxe ASSERT(new != cp->cpu_idle_thread); 13340e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, 1); 13350e751525SEric Saxe if (u == 1) { 13360e751525SEric Saxe /* 13370e751525SEric Saxe * Notify the CPU power manager that the domain 13380e751525SEric Saxe * is non-idle. 13390e751525SEric Saxe */ 13400e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13410e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13420e751525SEric Saxe CPUPM_DOM_BUSY_FROM_IDLE); 13430e751525SEric Saxe } 13440e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13450e751525SEric Saxe ASSERT(old != cp->cpu_idle_thread); 13460e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, -1); 13470e751525SEric Saxe if (u == 0) { 13480e751525SEric Saxe /* 13490e751525SEric Saxe * The domain is idle, notify the CPU power 13500e751525SEric Saxe * manager. 13510e751525SEric Saxe * 13520e751525SEric Saxe * Avoid notifying if the thread is simply migrating 13530e751525SEric Saxe * between CPUs in the domain. 13540e751525SEric Saxe */ 13550e751525SEric Saxe if (!THREAD_RUNNABLE_IN_PG(old, cmt)) { 13560e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13570e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13580e751525SEric Saxe CPUPM_DOM_IDLE_FROM_BUSY); 13590e751525SEric Saxe } 13600e751525SEric Saxe } 13610e751525SEric Saxe } 13620e751525SEric Saxe } 13630e751525SEric Saxe 13640e751525SEric Saxe /* ARGSUSED */ 13650e751525SEric Saxe static void 13660e751525SEric Saxe cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t) 13670e751525SEric Saxe { 13680e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13690e751525SEric Saxe cpupm_domain_t *dom; 13700e751525SEric Saxe 13710e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13720e751525SEric Saxe cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY); 13730e751525SEric Saxe } 13740e751525SEric Saxe 13750e751525SEric Saxe /* 13760e751525SEric Saxe * Return the name of the CMT scheduling policy 13770e751525SEric Saxe * being implemented across this PG 13780e751525SEric Saxe */ 13790e751525SEric Saxe static char * 13800e751525SEric Saxe pg_cmt_policy_name(pg_t *pg) 13810e751525SEric Saxe { 13820e751525SEric Saxe pg_cmt_policy_t policy; 13830e751525SEric Saxe 13840e751525SEric Saxe policy = ((pg_cmt_t *)pg)->cmt_policy; 13850e751525SEric Saxe 13860e751525SEric Saxe if (policy & CMT_AFFINITY) { 13870e751525SEric Saxe if (policy & CMT_BALANCE) 13880e751525SEric Saxe return ("Load Balancing & Affinity"); 13890e751525SEric Saxe else if (policy & CMT_COALESCE) 13900e751525SEric Saxe return ("Load Coalescence & Affinity"); 13916890d023SEric Saxe else 13920e751525SEric Saxe return ("Affinity"); 13930e751525SEric Saxe } else { 13940e751525SEric Saxe if (policy & CMT_BALANCE) 13950e751525SEric Saxe return ("Load Balancing"); 13960e751525SEric Saxe else if (policy & CMT_COALESCE) 13970e751525SEric Saxe return ("Load Coalescence"); 13980e751525SEric Saxe else 13990e751525SEric Saxe return ("None"); 14000e751525SEric Saxe } 14010e751525SEric Saxe } 14026890d023SEric Saxe 14036890d023SEric Saxe /* 14040e751525SEric Saxe * Prune PG, and all other instances of PG's hardware sharing relationship 1405*d0e93b69SEric Saxe * from the CMT PG hierarchy. 14061a77c24bSEric Saxe * 14071a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 14081a77c24bSEric Saxe * in the PG being pruned), and may be invoked from a context where one CPU's 14091a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 14101a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 14116890d023SEric Saxe */ 14120e751525SEric Saxe static int 14131a77c24bSEric Saxe pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 14140e751525SEric Saxe { 14150e751525SEric Saxe group_t *hwset, *children; 14160e751525SEric Saxe int i, j, r, size = *sz; 14170e751525SEric Saxe group_iter_t hw_iter, child_iter; 14180e751525SEric Saxe pg_cpu_itr_t cpu_iter; 14190e751525SEric Saxe pg_cmt_t *pg, *child; 14200e751525SEric Saxe cpu_t *cpu; 14210e751525SEric Saxe int cap_needed; 14220e751525SEric Saxe pghw_type_t hw; 14236890d023SEric Saxe 14240e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 14256890d023SEric Saxe 14260e751525SEric Saxe hw = ((pghw_t *)pg_bad)->pghw_hw; 14270e751525SEric Saxe 14280e751525SEric Saxe if (hw == PGHW_POW_ACTIVE) { 14290e751525SEric Saxe cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. " 14300e751525SEric Saxe "Event Based CPUPM Unavailable"); 14310e751525SEric Saxe } else if (hw == PGHW_POW_IDLE) { 14320e751525SEric Saxe cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. " 14330e751525SEric Saxe "Dispatcher assisted CPUPM disabled."); 14340e751525SEric Saxe } 14356890d023SEric Saxe 14366890d023SEric Saxe /* 14370e751525SEric Saxe * Find and eliminate the PG from the lineage. 14386890d023SEric Saxe */ 14390e751525SEric Saxe for (i = 0; i < size; i++) { 14400e751525SEric Saxe if (lineage[i] == pg_bad) { 14410e751525SEric Saxe for (j = i; j < size - 1; j++) 14420e751525SEric Saxe lineage[j] = lineage[j + 1]; 14430e751525SEric Saxe *sz = size - 1; 14440e751525SEric Saxe break; 14450e751525SEric Saxe } 14460e751525SEric Saxe } 14470e751525SEric Saxe 14480e751525SEric Saxe /* 14490e751525SEric Saxe * We'll prune all instances of the hardware sharing relationship 14500e751525SEric Saxe * represented by pg. But before we do that (and pause CPUs) we need 14510e751525SEric Saxe * to ensure the hierarchy's groups are properly sized. 14520e751525SEric Saxe */ 14530e751525SEric Saxe hwset = pghw_set_lookup(hw); 14540e751525SEric Saxe 14550e751525SEric Saxe /* 1456*d0e93b69SEric Saxe * Blacklist the hardware so future processor groups of this type won't 1457*d0e93b69SEric Saxe * participate in CMT thread placement. 1458*d0e93b69SEric Saxe * 1459*d0e93b69SEric Saxe * XXX 1460*d0e93b69SEric Saxe * For heterogeneous system configurations, this might be overkill. 1461*d0e93b69SEric Saxe * We may only need to blacklist the illegal PGs, and other instances 1462*d0e93b69SEric Saxe * of this hardware sharing relationship may be ok. 14630e751525SEric Saxe */ 14640e751525SEric Saxe cmt_hw_blacklisted[hw] = 1; 14650e751525SEric Saxe 14660e751525SEric Saxe /* 14670e751525SEric Saxe * For each of the PGs being pruned, ensure sufficient capacity in 14680e751525SEric Saxe * the siblings set for the PG's children 14690e751525SEric Saxe */ 14700e751525SEric Saxe group_iter_init(&hw_iter); 14710e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 14720e751525SEric Saxe /* 14730e751525SEric Saxe * PG is being pruned, but if it is bringing up more than 14740e751525SEric Saxe * one child, ask for more capacity in the siblings group. 14750e751525SEric Saxe */ 14760e751525SEric Saxe cap_needed = 0; 14770e751525SEric Saxe if (pg->cmt_children && 14780e751525SEric Saxe GROUP_SIZE(pg->cmt_children) > 1) { 14790e751525SEric Saxe cap_needed = GROUP_SIZE(pg->cmt_children) - 1; 14800e751525SEric Saxe 14810e751525SEric Saxe group_expand(pg->cmt_siblings, 14820e751525SEric Saxe GROUP_SIZE(pg->cmt_siblings) + cap_needed); 14830e751525SEric Saxe 14840e751525SEric Saxe /* 14850e751525SEric Saxe * If this is a top level group, also ensure the 14860e751525SEric Saxe * capacity in the root lgrp level CMT grouping. 14870e751525SEric Saxe */ 14880e751525SEric Saxe if (pg->cmt_parent == NULL && 14890e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 14900e751525SEric Saxe group_expand(&cmt_root->cl_pgs, 14910e751525SEric Saxe GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed); 1492*d0e93b69SEric Saxe cmt_root->cl_npgs += cap_needed; 14930e751525SEric Saxe } 14940e751525SEric Saxe } 14950e751525SEric Saxe } 14960e751525SEric Saxe 14970e751525SEric Saxe /* 14980e751525SEric Saxe * We're operating on the PG hierarchy. Pause CPUs to ensure 14990e751525SEric Saxe * exclusivity with respect to the dispatcher. 15000e751525SEric Saxe */ 15010e751525SEric Saxe pause_cpus(NULL); 15020e751525SEric Saxe 15030e751525SEric Saxe /* 15040e751525SEric Saxe * Prune all PG instances of the hardware sharing relationship 15050e751525SEric Saxe * represented by pg. 15060e751525SEric Saxe */ 15070e751525SEric Saxe group_iter_init(&hw_iter); 15080e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 15090e751525SEric Saxe 15100e751525SEric Saxe /* 15110e751525SEric Saxe * Remove PG from it's group of siblings, if it's there. 15120e751525SEric Saxe */ 15130e751525SEric Saxe if (pg->cmt_siblings) { 15140e751525SEric Saxe (void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 15150e751525SEric Saxe } 15160e751525SEric Saxe if (pg->cmt_parent == NULL && 15170e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 15180e751525SEric Saxe (void) group_remove(&cmt_root->cl_pgs, pg, 15190e751525SEric Saxe GRP_NORESIZE); 15200e751525SEric Saxe } 1521*d0e93b69SEric Saxe 1522*d0e93b69SEric Saxe /* 1523*d0e93b69SEric Saxe * Indicate that no CMT policy will be implemented across 1524*d0e93b69SEric Saxe * this PG. 1525*d0e93b69SEric Saxe */ 1526*d0e93b69SEric Saxe pg->cmt_policy = CMT_NO_POLICY; 1527*d0e93b69SEric Saxe 15280e751525SEric Saxe /* 1529ef4f35d8SEric Saxe * Move PG's children from it's children set to it's parent's 1530ef4f35d8SEric Saxe * children set. Note that the parent's children set, and PG's 1531ef4f35d8SEric Saxe * siblings set are the same thing. 1532ef4f35d8SEric Saxe * 1533ef4f35d8SEric Saxe * Because we are iterating over the same group that we are 1534ef4f35d8SEric Saxe * operating on (removing the children), first add all of PG's 1535ef4f35d8SEric Saxe * children to the parent's children set, and once we are done 1536ef4f35d8SEric Saxe * iterating, empty PG's children set. 15370e751525SEric Saxe */ 15380e751525SEric Saxe if (pg->cmt_children != NULL) { 15390e751525SEric Saxe children = pg->cmt_children; 15400e751525SEric Saxe 15410e751525SEric Saxe group_iter_init(&child_iter); 15420e751525SEric Saxe while ((child = group_iterate(children, &child_iter)) 15430e751525SEric Saxe != NULL) { 1544ef4f35d8SEric Saxe if (pg->cmt_siblings != NULL) { 15450e751525SEric Saxe r = group_add(pg->cmt_siblings, child, 15460e751525SEric Saxe GRP_NORESIZE); 15470e751525SEric Saxe ASSERT(r == 0); 1548*d0e93b69SEric Saxe 1549*d0e93b69SEric Saxe if (pg->cmt_parent == NULL && 1550*d0e93b69SEric Saxe pg->cmt_siblings != 1551*d0e93b69SEric Saxe &cmt_root->cl_pgs) { 1552*d0e93b69SEric Saxe r = group_add(&cmt_root->cl_pgs, 1553*d0e93b69SEric Saxe child, GRP_NORESIZE); 1554*d0e93b69SEric Saxe ASSERT(r == 0); 1555*d0e93b69SEric Saxe } 15560e751525SEric Saxe } 15570e751525SEric Saxe } 1558ef4f35d8SEric Saxe group_empty(pg->cmt_children); 15590e751525SEric Saxe } 15600e751525SEric Saxe 15610e751525SEric Saxe /* 15620e751525SEric Saxe * Reset the callbacks to the defaults 15630e751525SEric Saxe */ 15640e751525SEric Saxe pg_callback_set_defaults((pg_t *)pg); 15650e751525SEric Saxe 15660e751525SEric Saxe /* 15670e751525SEric Saxe * Update all the CPU lineages in each of PG's CPUs 15680e751525SEric Saxe */ 15690e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 15700e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 15710e751525SEric Saxe pg_cmt_t *cpu_pg; 15720e751525SEric Saxe group_iter_t liter; /* Iterator for the lineage */ 15731a77c24bSEric Saxe cpu_pg_t *cpd; /* CPU's PG data */ 15741a77c24bSEric Saxe 15751a77c24bSEric Saxe /* 15761a77c24bSEric Saxe * The CPU's lineage is under construction still 15771a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 15781a77c24bSEric Saxe */ 15791a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 15801a77c24bSEric Saxe cpd = pgdata; 15811a77c24bSEric Saxe else 15821a77c24bSEric Saxe cpd = cpu->cpu_pg; 15830e751525SEric Saxe 15840e751525SEric Saxe /* 15850e751525SEric Saxe * Iterate over the CPU's PGs updating the children 15860e751525SEric Saxe * of the PG being promoted, since they have a new 15870e751525SEric Saxe * parent and siblings set. 15880e751525SEric Saxe */ 15890e751525SEric Saxe group_iter_init(&liter); 15901a77c24bSEric Saxe while ((cpu_pg = group_iterate(&cpd->pgs, 15911a77c24bSEric Saxe &liter)) != NULL) { 15920e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 15930e751525SEric Saxe cpu_pg->cmt_parent = pg->cmt_parent; 15940e751525SEric Saxe cpu_pg->cmt_siblings = pg->cmt_siblings; 15950e751525SEric Saxe } 15960e751525SEric Saxe } 15970e751525SEric Saxe 15980e751525SEric Saxe /* 15990e751525SEric Saxe * Update the CPU's lineages 1600*d0e93b69SEric Saxe * 1601*d0e93b69SEric Saxe * Remove the PG from the CPU's group used for CMT 1602*d0e93b69SEric Saxe * scheduling. 16030e751525SEric Saxe */ 16041a77c24bSEric Saxe (void) group_remove(&cpd->cmt_pgs, pg, GRP_NORESIZE); 16050e751525SEric Saxe } 16060e751525SEric Saxe } 16070e751525SEric Saxe start_cpus(); 16080e751525SEric Saxe return (0); 16090e751525SEric Saxe } 16100e751525SEric Saxe 16110e751525SEric Saxe /* 16120e751525SEric Saxe * Disable CMT scheduling 16130e751525SEric Saxe */ 16140e751525SEric Saxe static void 16150e751525SEric Saxe pg_cmt_disable(void) 16160e751525SEric Saxe { 16170e751525SEric Saxe cpu_t *cpu; 16180e751525SEric Saxe 16191a77c24bSEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 16201a77c24bSEric Saxe 16210e751525SEric Saxe pause_cpus(NULL); 16220e751525SEric Saxe cpu = cpu_list; 16230e751525SEric Saxe 16246890d023SEric Saxe do { 16250e751525SEric Saxe if (cpu->cpu_pg) 16260e751525SEric Saxe group_empty(&cpu->cpu_pg->cmt_pgs); 16270e751525SEric Saxe } while ((cpu = cpu->cpu_next) != cpu_list); 16280e751525SEric Saxe 16290e751525SEric Saxe cmt_sched_disabled = 1; 16300e751525SEric Saxe start_cpus(); 16310e751525SEric Saxe cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable"); 16320e751525SEric Saxe } 16330e751525SEric Saxe 1634ef4f35d8SEric Saxe /* 1635ef4f35d8SEric Saxe * CMT lineage validation 1636ef4f35d8SEric Saxe * 1637ef4f35d8SEric Saxe * This routine is invoked by pg_cmt_cpu_init() to validate the integrity 1638ef4f35d8SEric Saxe * of the PGs in a CPU's lineage. This is necessary because it's possible that 1639ef4f35d8SEric Saxe * some groupings (power domain groupings in particular) may be defined by 1640ef4f35d8SEric Saxe * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be 1641ef4f35d8SEric Saxe * possible to integrate those groupings into the CMT PG hierarchy, if doing 1642ef4f35d8SEric Saxe * so would violate the subset invariant of the hierarchy, which says that 1643ef4f35d8SEric Saxe * a PG must be subset of its parent (if it has one). 1644ef4f35d8SEric Saxe * 1645ef4f35d8SEric Saxe * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that 1646ef4f35d8SEric Saxe * would result in a violation of this invariant. If a violation is found, 1647ef4f35d8SEric Saxe * and the PG is of a grouping type who's definition is known to originate from 1648ef4f35d8SEric Saxe * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the 1649ef4f35d8SEric Saxe * PG (and all other instances PG's sharing relationship type) from the 1650ef4f35d8SEric Saxe * hierarchy. Further, future instances of that sharing relationship type won't 1651ef4f35d8SEric Saxe * be instantiated. If the grouping definition doesn't originate from suspect 1652ef4f35d8SEric Saxe * sources, then pg_cmt_disable() will be invoked to log an error, and disable 1653ef4f35d8SEric Saxe * CMT scheduling altogether. 1654ef4f35d8SEric Saxe * 1655ef4f35d8SEric Saxe * This routine is invoked after the CPU has been added to the PGs in which 1656ef4f35d8SEric Saxe * it belongs, but before those PGs have been added to (or had their place 1657ef4f35d8SEric Saxe * adjusted in) the CMT PG hierarchy. 1658ef4f35d8SEric Saxe * 1659ef4f35d8SEric Saxe * The first argument is the CPUs PG lineage (essentially an array of PGs in 1660ef4f35d8SEric Saxe * which the CPU belongs) that has already been sorted in ascending order 1661ef4f35d8SEric Saxe * by CPU count. Some of the PGs in the CPUs lineage may already have other 1662ef4f35d8SEric Saxe * CPUs in them, and have already been integrated into the CMT hierarchy. 1663ef4f35d8SEric Saxe * 1664ef4f35d8SEric Saxe * The addition of this new CPU to these pre-existing PGs means that those 1665ef4f35d8SEric Saxe * PGs may need to be promoted up in the hierarchy to satisfy the subset 1666ef4f35d8SEric Saxe * invariant. In additon to testing the subset invariant for the lineage, 1667ef4f35d8SEric Saxe * this routine also verifies that the addition of the new CPU to the 1668ef4f35d8SEric Saxe * existing PGs wouldn't cause the subset invariant to be violated in 1669ef4f35d8SEric Saxe * the exiting lineages. 1670ef4f35d8SEric Saxe * 1671ef4f35d8SEric Saxe * This routine will normally return one of the following: 1672ef4f35d8SEric Saxe * CMT_LINEAGE_VALID - There were no problems detected with the lineage. 1673ef4f35d8SEric Saxe * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning. 1674ef4f35d8SEric Saxe * 1675ef4f35d8SEric Saxe * Otherwise, this routine will return a value indicating which error it 1676ef4f35d8SEric Saxe * was unable to recover from (and set cmt_lineage_status along the way). 16771a77c24bSEric Saxe * 16781a77c24bSEric Saxe * 16791a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 16801a77c24bSEric Saxe * whose lineage is being validated), which is under-construction. 16811a77c24bSEric Saxe * "pgdata" is a reference to the CPU's under-construction PG data. 16821a77c24bSEric Saxe * This routine must be careful to operate only on "pgdata", and not cp->cpu_pg. 1683ef4f35d8SEric Saxe */ 1684ef4f35d8SEric Saxe static cmt_lineage_validation_t 16851a77c24bSEric Saxe pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 16860e751525SEric Saxe { 1687ef4f35d8SEric Saxe int i, j, size; 1688ef4f35d8SEric Saxe pg_cmt_t *pg, *pg_next, *pg_bad, *pg_tmp; 16890e751525SEric Saxe cpu_t *cp; 16900e751525SEric Saxe pg_cpu_itr_t cpu_iter; 1691ef4f35d8SEric Saxe lgrp_handle_t lgrp; 16920e751525SEric Saxe 16930e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 16940e751525SEric Saxe 16950e751525SEric Saxe revalidate: 16960e751525SEric Saxe size = *sz; 16970e751525SEric Saxe pg_bad = NULL; 1698ef4f35d8SEric Saxe lgrp = LGRP_NULL_HANDLE; 1699ef4f35d8SEric Saxe for (i = 0; i < size; i++) { 17000e751525SEric Saxe 17010e751525SEric Saxe pg = lineage[i]; 1702ef4f35d8SEric Saxe if (i < size - 1) 1703ef4f35d8SEric Saxe pg_next = lineage[i + 1]; 1704ef4f35d8SEric Saxe else 1705ef4f35d8SEric Saxe pg_next = NULL; 17066890d023SEric Saxe 17076890d023SEric Saxe /* 17080e751525SEric Saxe * We assume that the lineage has already been sorted 17090e751525SEric Saxe * by the number of CPUs. In fact, we depend on it. 17106890d023SEric Saxe */ 1711ef4f35d8SEric Saxe ASSERT(pg_next == NULL || 1712ef4f35d8SEric Saxe (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next))); 17136890d023SEric Saxe 17146890d023SEric Saxe /* 1715ef4f35d8SEric Saxe * Check to make sure that the existing parent of PG (if any) 1716ef4f35d8SEric Saxe * is either in the PG's lineage, or the PG has more CPUs than 1717ef4f35d8SEric Saxe * its existing parent and can and should be promoted above its 1718ef4f35d8SEric Saxe * parent. 1719ef4f35d8SEric Saxe * 1720ef4f35d8SEric Saxe * Since the PG topology is in the middle of being changed, we 1721ef4f35d8SEric Saxe * need to check whether the PG's existing parent (if any) is 1722ef4f35d8SEric Saxe * part of its lineage (and therefore should contain the new 1723ef4f35d8SEric Saxe * CPU). If not, it means that the addition of the new CPU 1724ef4f35d8SEric Saxe * should have made this PG have more CPUs than its parent, and 1725ef4f35d8SEric Saxe * this PG should be promoted to be above its existing parent 1726ef4f35d8SEric Saxe * now. We need to verify all of this to defend against a buggy 1727ef4f35d8SEric Saxe * BIOS giving bad power domain CPU groupings. Sigh. 1728ef4f35d8SEric Saxe */ 1729ef4f35d8SEric Saxe if (pg->cmt_parent) { 1730ef4f35d8SEric Saxe /* 1731ef4f35d8SEric Saxe * Determine if cmt_parent is in this lineage 1732ef4f35d8SEric Saxe */ 1733ef4f35d8SEric Saxe for (j = 0; j < size; j++) { 1734ef4f35d8SEric Saxe pg_tmp = lineage[j]; 1735ef4f35d8SEric Saxe if (pg_tmp == pg->cmt_parent) 1736ef4f35d8SEric Saxe break; 1737ef4f35d8SEric Saxe } 1738ef4f35d8SEric Saxe if (pg_tmp != pg->cmt_parent) { 1739ef4f35d8SEric Saxe /* 1740ef4f35d8SEric Saxe * cmt_parent is not in the lineage, verify 1741ef4f35d8SEric Saxe * it is a proper subset of PG. 1742ef4f35d8SEric Saxe */ 1743ef4f35d8SEric Saxe if (PG_NUM_CPUS((pg_t *)pg->cmt_parent) >= 1744ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg)) { 1745ef4f35d8SEric Saxe /* 1746ef4f35d8SEric Saxe * Not a proper subset if pg has less 1747ef4f35d8SEric Saxe * CPUs than cmt_parent... 1748ef4f35d8SEric Saxe */ 1749ef4f35d8SEric Saxe cmt_lineage_status = 1750ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE; 1751ef4f35d8SEric Saxe goto handle_error; 1752ef4f35d8SEric Saxe } 1753ef4f35d8SEric Saxe } 1754ef4f35d8SEric Saxe } 1755ef4f35d8SEric Saxe 1756ef4f35d8SEric Saxe /* 1757ef4f35d8SEric Saxe * Walk each of the CPUs in the PGs group and perform 1758ef4f35d8SEric Saxe * consistency checks along the way. 17596890d023SEric Saxe */ 17600e751525SEric Saxe PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter); 17610e751525SEric Saxe while ((cp = pg_cpu_next(&cpu_iter)) != NULL) { 1762ef4f35d8SEric Saxe /* 1763ef4f35d8SEric Saxe * Verify that there aren't any CPUs contained in PG 1764ef4f35d8SEric Saxe * that the next PG in the lineage (which is larger 1765ef4f35d8SEric Saxe * or same size) doesn't also contain. 1766ef4f35d8SEric Saxe */ 1767ef4f35d8SEric Saxe if (pg_next != NULL && 1768ef4f35d8SEric Saxe pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) { 17690e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC; 17700e751525SEric Saxe goto handle_error; 17716890d023SEric Saxe } 1772ef4f35d8SEric Saxe 1773ef4f35d8SEric Saxe /* 1774ef4f35d8SEric Saxe * Verify that all the CPUs in the PG are in the same 1775ef4f35d8SEric Saxe * lgroup. 1776ef4f35d8SEric Saxe */ 1777ef4f35d8SEric Saxe if (lgrp == LGRP_NULL_HANDLE) { 1778ef4f35d8SEric Saxe lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id); 1779ef4f35d8SEric Saxe } else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) { 1780ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS; 1781ef4f35d8SEric Saxe goto handle_error; 1782ef4f35d8SEric Saxe } 17830e751525SEric Saxe } 17846890d023SEric Saxe } 17856890d023SEric Saxe 17860e751525SEric Saxe handle_error: 1787ef4f35d8SEric Saxe /* 1788ef4f35d8SEric Saxe * Some of these validation errors can result when the CPU grouping 1789ef4f35d8SEric Saxe * information is derived from buggy sources (for example, incorrect 1790ef4f35d8SEric Saxe * ACPI tables on x86 systems). 1791ef4f35d8SEric Saxe * 1792ef4f35d8SEric Saxe * We'll try to recover in such cases by pruning out the illegal 1793ef4f35d8SEric Saxe * groupings from the PG hierarchy, which means that we won't optimize 1794ef4f35d8SEric Saxe * for those levels, but we will for the remaining ones. 1795ef4f35d8SEric Saxe */ 17960e751525SEric Saxe switch (cmt_lineage_status) { 17970e751525SEric Saxe case CMT_LINEAGE_VALID: 17980e751525SEric Saxe case CMT_LINEAGE_REPAIRED: 17990e751525SEric Saxe break; 1800ef4f35d8SEric Saxe case CMT_LINEAGE_PG_SPANS_LGRPS: 1801ef4f35d8SEric Saxe /* 1802ef4f35d8SEric Saxe * We've detected a PG whose CPUs span lgroups. 1803ef4f35d8SEric Saxe * 1804ef4f35d8SEric Saxe * This isn't supported, as the dispatcher isn't allowed to 1805ef4f35d8SEric Saxe * to do CMT thread placement across lgroups, as this would 1806ef4f35d8SEric Saxe * conflict with policies implementing MPO thread affinity. 1807ef4f35d8SEric Saxe * 1808*d0e93b69SEric Saxe * If the PG is of a sharing relationship type known to 1809*d0e93b69SEric Saxe * legitimately span lgroups, specify that no CMT thread 1810*d0e93b69SEric Saxe * placement policy should be implemented, and prune the PG 1811*d0e93b69SEric Saxe * from the existing CMT PG hierarchy. 1812*d0e93b69SEric Saxe * 1813*d0e93b69SEric Saxe * Otherwise, fall though to the case below for handling. 1814ef4f35d8SEric Saxe */ 1815*d0e93b69SEric Saxe if (((pghw_t *)pg)->pghw_hw == PGHW_CHIP) { 1816*d0e93b69SEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1817*d0e93b69SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1818*d0e93b69SEric Saxe goto revalidate; 1819*d0e93b69SEric Saxe } 1820*d0e93b69SEric Saxe } 1821*d0e93b69SEric Saxe /*LINTED*/ 1822ef4f35d8SEric Saxe case CMT_LINEAGE_NON_PROMOTABLE: 1823ef4f35d8SEric Saxe /* 1824ef4f35d8SEric Saxe * We've detected a PG that already exists in another CPU's 1825ef4f35d8SEric Saxe * lineage that cannot cannot legally be promoted into place 1826ef4f35d8SEric Saxe * without breaking the invariants of the hierarchy. 1827ef4f35d8SEric Saxe */ 1828ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 18291a77c24bSEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1830ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1831ef4f35d8SEric Saxe goto revalidate; 1832ef4f35d8SEric Saxe } 1833ef4f35d8SEric Saxe } 1834ef4f35d8SEric Saxe /* 1835ef4f35d8SEric Saxe * Something went wrong trying to prune out the bad level. 1836ef4f35d8SEric Saxe * Disable CMT scheduling altogether. 1837ef4f35d8SEric Saxe */ 1838ef4f35d8SEric Saxe pg_cmt_disable(); 1839ef4f35d8SEric Saxe break; 18400e751525SEric Saxe case CMT_LINEAGE_NON_CONCENTRIC: 18416890d023SEric Saxe /* 1842ef4f35d8SEric Saxe * We've detected a non-concentric PG lineage, which means that 1843ef4f35d8SEric Saxe * there's a PG in the lineage that has CPUs that the next PG 1844ef4f35d8SEric Saxe * over in the lineage (which is the same size or larger) 1845ef4f35d8SEric Saxe * doesn't have. 18460e751525SEric Saxe * 1847ef4f35d8SEric Saxe * In this case, we examine the two PGs to see if either 1848ef4f35d8SEric Saxe * grouping is defined by potentially buggy sources. 18490e751525SEric Saxe * 18500e751525SEric Saxe * If one has less CPUs than the other, and contains CPUs 18510e751525SEric Saxe * not found in the parent, and it is an untrusted enumeration, 18520e751525SEric Saxe * then prune it. If both have the same number of CPUs, then 18530e751525SEric Saxe * prune the one that is untrusted. 18540e751525SEric Saxe * 18550e751525SEric Saxe * This process repeats until we have a concentric lineage, 18560e751525SEric Saxe * or we would have to prune out level derived from what we 18570e751525SEric Saxe * thought was a reliable source, in which case CMT scheduling 1858ef4f35d8SEric Saxe * is disabled altogether. 18596890d023SEric Saxe */ 1860ef4f35d8SEric Saxe if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) && 18610e751525SEric Saxe (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) { 18620e751525SEric Saxe pg_bad = pg; 18630e751525SEric Saxe } else if (PG_NUM_CPUS((pg_t *)pg) == 1864ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg_next)) { 1865ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) { 1866ef4f35d8SEric Saxe pg_bad = pg_next; 18670e751525SEric Saxe } else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 18680e751525SEric Saxe pg_bad = pg; 18696890d023SEric Saxe } 18706890d023SEric Saxe } 18710e751525SEric Saxe if (pg_bad) { 18721a77c24bSEric Saxe if (pg_cmt_prune(pg_bad, lineage, sz, pgdata) == 0) { 18730e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 18740e751525SEric Saxe goto revalidate; 18750e751525SEric Saxe } 18760e751525SEric Saxe } 18770e751525SEric Saxe /* 1878ef4f35d8SEric Saxe * Something went wrong trying to identify and/or prune out 1879ef4f35d8SEric Saxe * the bad level. Disable CMT scheduling altogether. 18800e751525SEric Saxe */ 18810e751525SEric Saxe pg_cmt_disable(); 1882ef4f35d8SEric Saxe break; 1883ef4f35d8SEric Saxe default: 1884ef4f35d8SEric Saxe /* 1885ef4f35d8SEric Saxe * If we're here, we've encountered a validation error for 1886ef4f35d8SEric Saxe * which we don't know how to recover. In this case, disable 1887ef4f35d8SEric Saxe * CMT scheduling altogether. 1888ef4f35d8SEric Saxe */ 18890e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE; 1890ef4f35d8SEric Saxe pg_cmt_disable(); 18910e751525SEric Saxe } 1892ef4f35d8SEric Saxe return (cmt_lineage_status); 18936890d023SEric Saxe } 1894