1fb2f18f8Sesaxe /* 2fb2f18f8Sesaxe * CDDL HEADER START 3fb2f18f8Sesaxe * 4fb2f18f8Sesaxe * The contents of this file are subject to the terms of the 5fb2f18f8Sesaxe * Common Development and Distribution License (the "License"). 6fb2f18f8Sesaxe * You may not use this file except in compliance with the License. 7fb2f18f8Sesaxe * 8fb2f18f8Sesaxe * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9fb2f18f8Sesaxe * or http://www.opensolaris.org/os/licensing. 10fb2f18f8Sesaxe * See the License for the specific language governing permissions 11fb2f18f8Sesaxe * and limitations under the License. 12fb2f18f8Sesaxe * 13fb2f18f8Sesaxe * When distributing Covered Code, include this CDDL HEADER in each 14fb2f18f8Sesaxe * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15fb2f18f8Sesaxe * If applicable, add the following below this CDDL HEADER, with the 16fb2f18f8Sesaxe * fields enclosed by brackets "[]" replaced with your own identifying 17fb2f18f8Sesaxe * information: Portions Copyright [yyyy] [name of copyright owner] 18fb2f18f8Sesaxe * 19fb2f18f8Sesaxe * CDDL HEADER END 20fb2f18f8Sesaxe */ 21fb2f18f8Sesaxe /* 223e81cacfSEric Saxe * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23fb2f18f8Sesaxe * Use is subject to license terms. 24fb2f18f8Sesaxe */ 25fb2f18f8Sesaxe 26fb2f18f8Sesaxe #include <sys/systm.h> 27fb2f18f8Sesaxe #include <sys/types.h> 28fb2f18f8Sesaxe #include <sys/param.h> 29fb2f18f8Sesaxe #include <sys/thread.h> 30fb2f18f8Sesaxe #include <sys/cpuvar.h> 31fb2f18f8Sesaxe #include <sys/cpupart.h> 32fb2f18f8Sesaxe #include <sys/kmem.h> 33fb2f18f8Sesaxe #include <sys/cmn_err.h> 34fb2f18f8Sesaxe #include <sys/kstat.h> 35fb2f18f8Sesaxe #include <sys/processor.h> 36fb2f18f8Sesaxe #include <sys/disp.h> 37fb2f18f8Sesaxe #include <sys/group.h> 38fb2f18f8Sesaxe #include <sys/pghw.h> 39fb2f18f8Sesaxe #include <sys/bitset.h> 40fb2f18f8Sesaxe #include <sys/lgrp.h> 41fb2f18f8Sesaxe #include <sys/cmt.h> 420e751525SEric Saxe #include <sys/cpu_pm.h> 43fb2f18f8Sesaxe 44fb2f18f8Sesaxe /* 45fb2f18f8Sesaxe * CMT scheduler / dispatcher support 46fb2f18f8Sesaxe * 47fb2f18f8Sesaxe * This file implements CMT scheduler support using Processor Groups. 48fb2f18f8Sesaxe * The CMT processor group class creates and maintains the CMT class 49fb2f18f8Sesaxe * specific processor group pg_cmt_t. 50fb2f18f8Sesaxe * 51fb2f18f8Sesaxe * ---------------------------- <-- pg_cmt_t * 52fb2f18f8Sesaxe * | pghw_t | 53fb2f18f8Sesaxe * ---------------------------- 54fb2f18f8Sesaxe * | CMT class specific data | 55fb2f18f8Sesaxe * | - hierarchy linkage | 56fb2f18f8Sesaxe * | - CMT load balancing data| 57fb2f18f8Sesaxe * | - active CPU group/bitset| 58fb2f18f8Sesaxe * ---------------------------- 59fb2f18f8Sesaxe * 60fb2f18f8Sesaxe * The scheduler/dispatcher leverages knowledge of the performance 61fb2f18f8Sesaxe * relevant CMT sharing relationships existing between cpus to implement 620e751525SEric Saxe * optimized affinity, load balancing, and coalescence policies. 63fb2f18f8Sesaxe * 64fb2f18f8Sesaxe * Load balancing policy seeks to improve performance by minimizing 650e751525SEric Saxe * contention over shared processor resources / facilities, Affinity 660e751525SEric Saxe * policies seek to improve cache and TLB utilization. Coalescence 670e751525SEric Saxe * policies improve resource utilization and ultimately power efficiency. 68fb2f18f8Sesaxe * 69fb2f18f8Sesaxe * The CMT PGs created by this class are already arranged into a 70fb2f18f8Sesaxe * hierarchy (which is done in the pghw layer). To implement the top-down 71fb2f18f8Sesaxe * CMT load balancing algorithm, the CMT PGs additionally maintain 72fb2f18f8Sesaxe * parent, child and sibling hierarchy relationships. 73fb2f18f8Sesaxe * Parent PGs always contain a superset of their children(s) resources, 74fb2f18f8Sesaxe * each PG can have at most one parent, and siblings are the group of PGs 75fb2f18f8Sesaxe * sharing the same parent. 76fb2f18f8Sesaxe * 77d0e93b69SEric Saxe * On UMA based systems, the CMT load balancing algorithm begins by balancing 78d0e93b69SEric Saxe * load across the group of top level PGs in the system hierarchy. 79d0e93b69SEric Saxe * On NUMA systems, the CMT load balancing algorithm balances load across the 80d0e93b69SEric Saxe * group of top level PGs in each leaf lgroup...but for root homed threads, 81d0e93b69SEric Saxe * is willing to balance against all the top level PGs in the system. 82d0e93b69SEric Saxe * 83d0e93b69SEric Saxe * Groups of top level PGs are maintained to implement the above, one for each 84d0e93b69SEric Saxe * leaf lgroup (containing the top level PGs in that lgroup), and one (for the 85d0e93b69SEric Saxe * root lgroup) that contains all the top level PGs in the system. 86fb2f18f8Sesaxe */ 87a6604450Sesaxe static cmt_lgrp_t *cmt_lgrps = NULL; /* cmt_lgrps list head */ 88a6604450Sesaxe static cmt_lgrp_t *cpu0_lgrp = NULL; /* boot CPU's initial lgrp */ 89a6604450Sesaxe /* used for null_proc_lpa */ 900e751525SEric Saxe cmt_lgrp_t *cmt_root = NULL; /* Reference to root cmt pg */ 91fb2f18f8Sesaxe 92a6604450Sesaxe static int is_cpu0 = 1; /* true if this is boot CPU context */ 93a6604450Sesaxe 94a6604450Sesaxe /* 950e751525SEric Saxe * Array of hardware sharing relationships that are blacklisted. 96d0e93b69SEric Saxe * CMT scheduling optimizations won't be performed for blacklisted sharing 97d0e93b69SEric Saxe * relationships. 980e751525SEric Saxe */ 990e751525SEric Saxe static int cmt_hw_blacklisted[PGHW_NUM_COMPONENTS]; 1000e751525SEric Saxe 1010e751525SEric Saxe /* 102a6604450Sesaxe * Set this to non-zero to disable CMT scheduling 103a6604450Sesaxe * This must be done via kmdb -d, as /etc/system will be too late 104a6604450Sesaxe */ 1050e751525SEric Saxe int cmt_sched_disabled = 0; 106fb2f18f8Sesaxe 107ef4f35d8SEric Saxe /* 108ef4f35d8SEric Saxe * Status codes for CMT lineage validation 109ef4f35d8SEric Saxe * See pg_cmt_lineage_validate() below 110ef4f35d8SEric Saxe */ 111ef4f35d8SEric Saxe typedef enum cmt_lineage_validation { 112ef4f35d8SEric Saxe CMT_LINEAGE_VALID, 113ef4f35d8SEric Saxe CMT_LINEAGE_NON_CONCENTRIC, 114ef4f35d8SEric Saxe CMT_LINEAGE_PG_SPANS_LGRPS, 115ef4f35d8SEric Saxe CMT_LINEAGE_NON_PROMOTABLE, 116ef4f35d8SEric Saxe CMT_LINEAGE_REPAIRED, 117ef4f35d8SEric Saxe CMT_LINEAGE_UNRECOVERABLE 118ef4f35d8SEric Saxe } cmt_lineage_validation_t; 119ef4f35d8SEric Saxe 120ef4f35d8SEric Saxe /* 121ef4f35d8SEric Saxe * Status of the current lineage under construction. 122ef4f35d8SEric Saxe * One must be holding cpu_lock to change this. 123ef4f35d8SEric Saxe */ 124ef4f35d8SEric Saxe cmt_lineage_validation_t cmt_lineage_status = CMT_LINEAGE_VALID; 125ef4f35d8SEric Saxe 126ef4f35d8SEric Saxe /* 127ef4f35d8SEric Saxe * Power domain definitions (on x86) are defined by ACPI, and 128ef4f35d8SEric Saxe * therefore may be subject to BIOS bugs. 129ef4f35d8SEric Saxe */ 130ef4f35d8SEric Saxe #define PG_CMT_HW_SUSPECT(hw) PGHW_IS_PM_DOMAIN(hw) 131ef4f35d8SEric Saxe 132ef4f35d8SEric Saxe /* 133ef4f35d8SEric Saxe * Macro to test if PG is managed by the CMT PG class 134ef4f35d8SEric Saxe */ 135ef4f35d8SEric Saxe #define IS_CMT_PG(pg) (((pg_t *)(pg))->pg_class->pgc_id == pg_cmt_class_id) 136ef4f35d8SEric Saxe 137fb2f18f8Sesaxe static pg_cid_t pg_cmt_class_id; /* PG class id */ 138fb2f18f8Sesaxe 139fb2f18f8Sesaxe static pg_t *pg_cmt_alloc(); 140fb2f18f8Sesaxe static void pg_cmt_free(pg_t *); 14147ab0c7cSEric Saxe static void pg_cmt_cpu_init(cpu_t *, cpu_pg_t *); 14247ab0c7cSEric Saxe static void pg_cmt_cpu_fini(cpu_t *, cpu_pg_t *); 143fb2f18f8Sesaxe static void pg_cmt_cpu_active(cpu_t *); 144fb2f18f8Sesaxe static void pg_cmt_cpu_inactive(cpu_t *); 145fb2f18f8Sesaxe static void pg_cmt_cpupart_in(cpu_t *, cpupart_t *); 146fb2f18f8Sesaxe static void pg_cmt_cpupart_move(cpu_t *, cpupart_t *, cpupart_t *); 1470e751525SEric Saxe static char *pg_cmt_policy_name(pg_t *); 1480e751525SEric Saxe static void pg_cmt_hier_sort(pg_cmt_t **, int); 1490e751525SEric Saxe static pg_cmt_t *pg_cmt_hier_rank(pg_cmt_t *, pg_cmt_t *); 150fb2f18f8Sesaxe static int pg_cmt_cpu_belongs(pg_t *, cpu_t *); 151fb2f18f8Sesaxe static int pg_cmt_hw(pghw_type_t); 152fb2f18f8Sesaxe static cmt_lgrp_t *pg_cmt_find_lgrp(lgrp_handle_t); 153a6604450Sesaxe static cmt_lgrp_t *pg_cmt_lgrp_create(lgrp_handle_t); 1540e751525SEric Saxe static void cmt_ev_thread_swtch(pg_t *, cpu_t *, hrtime_t, 1550e751525SEric Saxe kthread_t *, kthread_t *); 1560e751525SEric Saxe static void cmt_ev_thread_swtch_pwr(pg_t *, cpu_t *, hrtime_t, 1570e751525SEric Saxe kthread_t *, kthread_t *); 1580e751525SEric Saxe static void cmt_ev_thread_remain_pwr(pg_t *, cpu_t *, kthread_t *); 1591a77c24bSEric Saxe static cmt_lineage_validation_t pg_cmt_lineage_validate(pg_cmt_t **, int *, 1601a77c24bSEric Saxe cpu_pg_t *); 161fb2f18f8Sesaxe 1620e751525SEric Saxe /* 163fb2f18f8Sesaxe * CMT PG ops 164fb2f18f8Sesaxe */ 165fb2f18f8Sesaxe struct pg_ops pg_ops_cmt = { 166fb2f18f8Sesaxe pg_cmt_alloc, 167fb2f18f8Sesaxe pg_cmt_free, 168fb2f18f8Sesaxe pg_cmt_cpu_init, 169fb2f18f8Sesaxe pg_cmt_cpu_fini, 170fb2f18f8Sesaxe pg_cmt_cpu_active, 171fb2f18f8Sesaxe pg_cmt_cpu_inactive, 172fb2f18f8Sesaxe pg_cmt_cpupart_in, 173fb2f18f8Sesaxe NULL, /* cpupart_out */ 174fb2f18f8Sesaxe pg_cmt_cpupart_move, 175fb2f18f8Sesaxe pg_cmt_cpu_belongs, 1760e751525SEric Saxe pg_cmt_policy_name, 177fb2f18f8Sesaxe }; 178fb2f18f8Sesaxe 179fb2f18f8Sesaxe /* 180fb2f18f8Sesaxe * Initialize the CMT PG class 181fb2f18f8Sesaxe */ 182fb2f18f8Sesaxe void 183fb2f18f8Sesaxe pg_cmt_class_init(void) 184fb2f18f8Sesaxe { 185fb2f18f8Sesaxe if (cmt_sched_disabled) 186fb2f18f8Sesaxe return; 187fb2f18f8Sesaxe 188fb2f18f8Sesaxe pg_cmt_class_id = pg_class_register("cmt", &pg_ops_cmt, PGR_PHYSICAL); 189fb2f18f8Sesaxe } 190fb2f18f8Sesaxe 191fb2f18f8Sesaxe /* 192fb2f18f8Sesaxe * Called to indicate a new CPU has started up so 193fb2f18f8Sesaxe * that either t0 or the slave startup thread can 194fb2f18f8Sesaxe * be accounted for. 195fb2f18f8Sesaxe */ 196fb2f18f8Sesaxe void 197fb2f18f8Sesaxe pg_cmt_cpu_startup(cpu_t *cp) 198fb2f18f8Sesaxe { 1990e751525SEric Saxe pg_ev_thread_swtch(cp, gethrtime_unscaled(), cp->cpu_idle_thread, 2000e751525SEric Saxe cp->cpu_thread); 201fb2f18f8Sesaxe } 202fb2f18f8Sesaxe 203fb2f18f8Sesaxe /* 204fb2f18f8Sesaxe * Return non-zero if thread can migrate between "from" and "to" 205fb2f18f8Sesaxe * without a performance penalty 206fb2f18f8Sesaxe */ 207fb2f18f8Sesaxe int 208fb2f18f8Sesaxe pg_cmt_can_migrate(cpu_t *from, cpu_t *to) 209fb2f18f8Sesaxe { 210fb2f18f8Sesaxe if (from->cpu_physid->cpu_cacheid == 211fb2f18f8Sesaxe to->cpu_physid->cpu_cacheid) 212fb2f18f8Sesaxe return (1); 213fb2f18f8Sesaxe return (0); 214fb2f18f8Sesaxe } 215fb2f18f8Sesaxe 216fb2f18f8Sesaxe /* 217fb2f18f8Sesaxe * CMT class specific PG allocation 218fb2f18f8Sesaxe */ 219fb2f18f8Sesaxe static pg_t * 220fb2f18f8Sesaxe pg_cmt_alloc(void) 221fb2f18f8Sesaxe { 222fb2f18f8Sesaxe return (kmem_zalloc(sizeof (pg_cmt_t), KM_NOSLEEP)); 223fb2f18f8Sesaxe } 224fb2f18f8Sesaxe 225fb2f18f8Sesaxe /* 226fb2f18f8Sesaxe * Class specific PG de-allocation 227fb2f18f8Sesaxe */ 228fb2f18f8Sesaxe static void 229fb2f18f8Sesaxe pg_cmt_free(pg_t *pg) 230fb2f18f8Sesaxe { 231fb2f18f8Sesaxe ASSERT(pg != NULL); 232fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 233fb2f18f8Sesaxe 234fb2f18f8Sesaxe kmem_free((pg_cmt_t *)pg, sizeof (pg_cmt_t)); 235fb2f18f8Sesaxe } 236fb2f18f8Sesaxe 237fb2f18f8Sesaxe /* 2380e751525SEric Saxe * Given a hardware sharing relationship, return which dispatcher 2390e751525SEric Saxe * policies should be implemented to optimize performance and efficiency 240fb2f18f8Sesaxe */ 2410e751525SEric Saxe static pg_cmt_policy_t 2420e751525SEric Saxe pg_cmt_policy(pghw_type_t hw) 243fb2f18f8Sesaxe { 2440e751525SEric Saxe pg_cmt_policy_t p; 2450e751525SEric Saxe 2460e751525SEric Saxe /* 2470e751525SEric Saxe * Give the platform a chance to override the default 2480e751525SEric Saxe */ 2490e751525SEric Saxe if ((p = pg_plat_cmt_policy(hw)) != CMT_NO_POLICY) 2500e751525SEric Saxe return (p); 2510e751525SEric Saxe 2520e751525SEric Saxe switch (hw) { 2530e751525SEric Saxe case PGHW_IPIPE: 2540e751525SEric Saxe case PGHW_FPU: 2558031591dSSrihari Venkatesan case PGHW_PROCNODE: 2560e751525SEric Saxe case PGHW_CHIP: 2570e751525SEric Saxe return (CMT_BALANCE); 2580e751525SEric Saxe case PGHW_CACHE: 2590e751525SEric Saxe return (CMT_AFFINITY); 2600e751525SEric Saxe case PGHW_POW_ACTIVE: 2610e751525SEric Saxe case PGHW_POW_IDLE: 2620e751525SEric Saxe return (CMT_BALANCE); 2630e751525SEric Saxe default: 2640e751525SEric Saxe return (CMT_NO_POLICY); 2650e751525SEric Saxe } 2660e751525SEric Saxe } 2670e751525SEric Saxe 2680e751525SEric Saxe /* 2690e751525SEric Saxe * Rank the importance of optimizing for the pg1 relationship vs. 2700e751525SEric Saxe * the pg2 relationship. 2710e751525SEric Saxe */ 2720e751525SEric Saxe static pg_cmt_t * 2730e751525SEric Saxe pg_cmt_hier_rank(pg_cmt_t *pg1, pg_cmt_t *pg2) 2740e751525SEric Saxe { 2750e751525SEric Saxe pghw_type_t hw1 = ((pghw_t *)pg1)->pghw_hw; 2760e751525SEric Saxe pghw_type_t hw2 = ((pghw_t *)pg2)->pghw_hw; 2770e751525SEric Saxe 2780e751525SEric Saxe /* 2790e751525SEric Saxe * A power domain is only important if CPUPM is enabled. 2800e751525SEric Saxe */ 2810e751525SEric Saxe if (cpupm_get_policy() == CPUPM_POLICY_DISABLED) { 2820e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw1) && !PGHW_IS_PM_DOMAIN(hw2)) 2830e751525SEric Saxe return (pg2); 2840e751525SEric Saxe if (PGHW_IS_PM_DOMAIN(hw2) && !PGHW_IS_PM_DOMAIN(hw1)) 2850e751525SEric Saxe return (pg1); 2860e751525SEric Saxe } 2870e751525SEric Saxe 2880e751525SEric Saxe /* 2890e751525SEric Saxe * Otherwise, ask the platform 2900e751525SEric Saxe */ 2910e751525SEric Saxe if (pg_plat_hw_rank(hw1, hw2) == hw1) 2920e751525SEric Saxe return (pg1); 2930e751525SEric Saxe else 2940e751525SEric Saxe return (pg2); 2950e751525SEric Saxe } 2960e751525SEric Saxe 2970e751525SEric Saxe /* 2980e751525SEric Saxe * Initialize CMT callbacks for the given PG 2990e751525SEric Saxe */ 3000e751525SEric Saxe static void 3010e751525SEric Saxe cmt_callback_init(pg_t *pg) 3020e751525SEric Saxe { 303d0e93b69SEric Saxe /* 304d0e93b69SEric Saxe * Stick with the default callbacks if there isn't going to be 305d0e93b69SEric Saxe * any CMT thread placement optimizations implemented. 306d0e93b69SEric Saxe */ 307d0e93b69SEric Saxe if (((pg_cmt_t *)pg)->cmt_policy == CMT_NO_POLICY) 308d0e93b69SEric Saxe return; 309d0e93b69SEric Saxe 3100e751525SEric Saxe switch (((pghw_t *)pg)->pghw_hw) { 3110e751525SEric Saxe case PGHW_POW_ACTIVE: 3120e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch_pwr; 3130e751525SEric Saxe pg->pg_cb.thread_remain = cmt_ev_thread_remain_pwr; 3140e751525SEric Saxe break; 3150e751525SEric Saxe default: 3160e751525SEric Saxe pg->pg_cb.thread_swtch = cmt_ev_thread_swtch; 3170e751525SEric Saxe 3180e751525SEric Saxe } 3190e751525SEric Saxe } 3200e751525SEric Saxe 3210e751525SEric Saxe /* 3220e751525SEric Saxe * Promote PG above it's current parent. 3231a77c24bSEric Saxe * This is only legal if PG has an equal or greater number of CPUs than its 3241a77c24bSEric Saxe * parent. 3251a77c24bSEric Saxe * 3261a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 3271a77c24bSEric Saxe * in the PG being promoted), and may be invoked from a context where one CPU's 3281a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 3291a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 3300e751525SEric Saxe */ 3310e751525SEric Saxe static void 3321a77c24bSEric Saxe cmt_hier_promote(pg_cmt_t *pg, cpu_pg_t *pgdata) 3330e751525SEric Saxe { 3340e751525SEric Saxe pg_cmt_t *parent; 3350e751525SEric Saxe group_t *children; 3360e751525SEric Saxe cpu_t *cpu; 3370e751525SEric Saxe group_iter_t iter; 3380e751525SEric Saxe pg_cpu_itr_t cpu_iter; 3390e751525SEric Saxe int r; 3400e751525SEric Saxe int err; 341b025faeeSEric Saxe int nchildren; 3420e751525SEric Saxe 3430e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 3440e751525SEric Saxe 3450e751525SEric Saxe parent = pg->cmt_parent; 3460e751525SEric Saxe if (parent == NULL) { 3470e751525SEric Saxe /* 3480e751525SEric Saxe * Nothing to do 3490e751525SEric Saxe */ 3500e751525SEric Saxe return; 3510e751525SEric Saxe } 3520e751525SEric Saxe 3530e751525SEric Saxe ASSERT(PG_NUM_CPUS((pg_t *)pg) >= PG_NUM_CPUS((pg_t *)parent)); 3540e751525SEric Saxe 3550e751525SEric Saxe /* 3560e751525SEric Saxe * We're changing around the hierarchy, which is actively traversed 3570e751525SEric Saxe * by the dispatcher. Pause CPUS to ensure exclusivity. 3580e751525SEric Saxe */ 3590e751525SEric Saxe pause_cpus(NULL); 3600e751525SEric Saxe 3610e751525SEric Saxe /* 3620e751525SEric Saxe * If necessary, update the parent's sibling set, replacing parent 3630e751525SEric Saxe * with PG. 3640e751525SEric Saxe */ 3650e751525SEric Saxe if (parent->cmt_siblings) { 3660e751525SEric Saxe if (group_remove(parent->cmt_siblings, parent, GRP_NORESIZE) 3670e751525SEric Saxe != -1) { 3680e751525SEric Saxe r = group_add(parent->cmt_siblings, pg, GRP_NORESIZE); 3690e751525SEric Saxe ASSERT(r != -1); 3700e751525SEric Saxe } 3710e751525SEric Saxe } 3720e751525SEric Saxe 3730e751525SEric Saxe /* 3740e751525SEric Saxe * If the parent is at the top of the hierarchy, replace it's entry 3750e751525SEric Saxe * in the root lgroup's group of top level PGs. 3760e751525SEric Saxe */ 3770e751525SEric Saxe if (parent->cmt_parent == NULL && 3780e751525SEric Saxe parent->cmt_siblings != &cmt_root->cl_pgs) { 3790e751525SEric Saxe if (group_remove(&cmt_root->cl_pgs, parent, GRP_NORESIZE) 3800e751525SEric Saxe != -1) { 3810e751525SEric Saxe r = group_add(&cmt_root->cl_pgs, pg, GRP_NORESIZE); 3820e751525SEric Saxe ASSERT(r != -1); 3830e751525SEric Saxe } 3840e751525SEric Saxe } 3850e751525SEric Saxe 3860e751525SEric Saxe /* 3870e751525SEric Saxe * We assume (and therefore assert) that the PG being promoted is an 3880e751525SEric Saxe * only child of it's parent. Update the parent's children set 3890e751525SEric Saxe * replacing PG's entry with the parent (since the parent is becoming 390b025faeeSEric Saxe * the child). Then have PG and the parent swap children sets and 391b025faeeSEric Saxe * children counts. 3920e751525SEric Saxe */ 3930e751525SEric Saxe ASSERT(GROUP_SIZE(parent->cmt_children) <= 1); 3940e751525SEric Saxe if (group_remove(parent->cmt_children, pg, GRP_NORESIZE) != -1) { 3950e751525SEric Saxe r = group_add(parent->cmt_children, parent, GRP_NORESIZE); 3960e751525SEric Saxe ASSERT(r != -1); 3970e751525SEric Saxe } 3980e751525SEric Saxe 3990e751525SEric Saxe children = pg->cmt_children; 4000e751525SEric Saxe pg->cmt_children = parent->cmt_children; 4010e751525SEric Saxe parent->cmt_children = children; 4020e751525SEric Saxe 403b025faeeSEric Saxe nchildren = pg->cmt_nchildren; 404b025faeeSEric Saxe pg->cmt_nchildren = parent->cmt_nchildren; 405b025faeeSEric Saxe parent->cmt_nchildren = nchildren; 406b025faeeSEric Saxe 4070e751525SEric Saxe /* 4080e751525SEric Saxe * Update the sibling references for PG and it's parent 4090e751525SEric Saxe */ 4100e751525SEric Saxe pg->cmt_siblings = parent->cmt_siblings; 4110e751525SEric Saxe parent->cmt_siblings = pg->cmt_children; 4120e751525SEric Saxe 4130e751525SEric Saxe /* 4140e751525SEric Saxe * Update any cached lineages in the per CPU pg data. 4150e751525SEric Saxe */ 4160e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 4170e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 4180e751525SEric Saxe int idx; 419b025faeeSEric Saxe int sz; 4200e751525SEric Saxe pg_cmt_t *cpu_pg; 4211a77c24bSEric Saxe cpu_pg_t *pgd; /* CPU's PG data */ 4221a77c24bSEric Saxe 4231a77c24bSEric Saxe /* 4241a77c24bSEric Saxe * The CPU's whose lineage is under construction still 4251a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 4261a77c24bSEric Saxe */ 4271a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 4281a77c24bSEric Saxe pgd = pgdata; 4291a77c24bSEric Saxe else 4301a77c24bSEric Saxe pgd = cpu->cpu_pg; 4310e751525SEric Saxe 4320e751525SEric Saxe /* 4330e751525SEric Saxe * Iterate over the CPU's PGs updating the children 4340e751525SEric Saxe * of the PG being promoted, since they have a new parent. 4350e751525SEric Saxe */ 4360e751525SEric Saxe group_iter_init(&iter); 4371a77c24bSEric Saxe while ((cpu_pg = group_iterate(&pgd->cmt_pgs, &iter)) != NULL) { 4380e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 4390e751525SEric Saxe cpu_pg->cmt_parent = parent; 4400e751525SEric Saxe } 4410e751525SEric Saxe } 4420e751525SEric Saxe 4430e751525SEric Saxe /* 4440e751525SEric Saxe * Update the CMT load balancing lineage 4450e751525SEric Saxe */ 4461a77c24bSEric Saxe if ((idx = group_find(&pgd->cmt_pgs, (void *)pg)) == -1) { 4470e751525SEric Saxe /* 4480e751525SEric Saxe * Unless this is the CPU who's lineage is being 4490e751525SEric Saxe * constructed, the PG being promoted should be 4500e751525SEric Saxe * in the lineage. 4510e751525SEric Saxe */ 4521a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cpu)); 4530e751525SEric Saxe continue; 4540e751525SEric Saxe } 4550e751525SEric Saxe 4560e751525SEric Saxe ASSERT(idx > 0); 457b025faeeSEric Saxe ASSERT(GROUP_ACCESS(&pgd->cmt_pgs, idx - 1) == parent); 4580e751525SEric Saxe 4590e751525SEric Saxe /* 4600e751525SEric Saxe * Have the child and the parent swap places in the CPU's 4610e751525SEric Saxe * lineage 4620e751525SEric Saxe */ 4631a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx); 4641a77c24bSEric Saxe group_remove_at(&pgd->cmt_pgs, idx - 1); 4651a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, parent, idx); 4660e751525SEric Saxe ASSERT(err == 0); 4671a77c24bSEric Saxe err = group_add_at(&pgd->cmt_pgs, pg, idx - 1); 4680e751525SEric Saxe ASSERT(err == 0); 469b025faeeSEric Saxe 470b025faeeSEric Saxe /* 471b025faeeSEric Saxe * Ensure cmt_lineage references CPU's leaf PG. 472b025faeeSEric Saxe * Since cmt_pgs is top-down ordered, the bottom is the last 473b025faeeSEric Saxe * element. 474b025faeeSEric Saxe */ 475b025faeeSEric Saxe if ((sz = GROUP_SIZE(&pgd->cmt_pgs)) > 0) 476b025faeeSEric Saxe pgd->cmt_lineage = GROUP_ACCESS(&pgd->cmt_pgs, sz - 1); 4770e751525SEric Saxe } 4780e751525SEric Saxe 4790e751525SEric Saxe /* 4800e751525SEric Saxe * Update the parent references for PG and it's parent 4810e751525SEric Saxe */ 4820e751525SEric Saxe pg->cmt_parent = parent->cmt_parent; 4830e751525SEric Saxe parent->cmt_parent = pg; 4840e751525SEric Saxe 4850e751525SEric Saxe start_cpus(); 486fb2f18f8Sesaxe } 487fb2f18f8Sesaxe 488fb2f18f8Sesaxe /* 489fb2f18f8Sesaxe * CMT class callback for a new CPU entering the system 4901a77c24bSEric Saxe * 4911a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 4921a77c24bSEric Saxe * being initialized). The argument "pgdata" is a reference to the CPU's PG 4931a77c24bSEric Saxe * data to be constructed. 4941a77c24bSEric Saxe * 4951a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 4961a77c24bSEric Saxe * references a "bootstrap" structure. pg_cmt_cpu_init() and the routines it 4971a77c24bSEric Saxe * calls must be careful to operate only on the "pgdata" argument, and not 4981a77c24bSEric Saxe * cp->cpu_pg. 499fb2f18f8Sesaxe */ 500fb2f18f8Sesaxe static void 5011a77c24bSEric Saxe pg_cmt_cpu_init(cpu_t *cp, cpu_pg_t *pgdata) 502fb2f18f8Sesaxe { 503fb2f18f8Sesaxe pg_cmt_t *pg; 504fb2f18f8Sesaxe group_t *cmt_pgs; 5050e751525SEric Saxe int levels, level; 506fb2f18f8Sesaxe pghw_type_t hw; 507fb2f18f8Sesaxe pg_t *pg_cache = NULL; 508fb2f18f8Sesaxe pg_cmt_t *cpu_cmt_hier[PGHW_NUM_COMPONENTS]; 509fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 510fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 511ef4f35d8SEric Saxe cmt_lineage_validation_t lineage_status; 512fb2f18f8Sesaxe 513fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 5141a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 515fb2f18f8Sesaxe 5160e751525SEric Saxe if (cmt_sched_disabled) 5170e751525SEric Saxe return; 5180e751525SEric Saxe 519fb2f18f8Sesaxe /* 520fb2f18f8Sesaxe * A new CPU is coming into the system. 521fb2f18f8Sesaxe * Interrogate the platform to see if the CPU 5220e751525SEric Saxe * has any performance or efficiency relevant 5230e751525SEric Saxe * sharing relationships 524fb2f18f8Sesaxe */ 5251a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 5261a77c24bSEric Saxe pgdata->cmt_lineage = NULL; 527fb2f18f8Sesaxe 528fb2f18f8Sesaxe bzero(cpu_cmt_hier, sizeof (cpu_cmt_hier)); 5290e751525SEric Saxe levels = 0; 530fb2f18f8Sesaxe for (hw = PGHW_START; hw < PGHW_NUM_COMPONENTS; hw++) { 531fb2f18f8Sesaxe 5320e751525SEric Saxe pg_cmt_policy_t policy; 5330e751525SEric Saxe 534fb2f18f8Sesaxe /* 5350e751525SEric Saxe * We're only interested in the hw sharing relationships 5360e751525SEric Saxe * for which we know how to optimize. 537fb2f18f8Sesaxe */ 5380e751525SEric Saxe policy = pg_cmt_policy(hw); 5390e751525SEric Saxe if (policy == CMT_NO_POLICY || 5400e751525SEric Saxe pg_plat_hw_shared(cp, hw) == 0) 541fb2f18f8Sesaxe continue; 542fb2f18f8Sesaxe 543fb2f18f8Sesaxe /* 544d0e93b69SEric Saxe * We will still create the PGs for hardware sharing 545d0e93b69SEric Saxe * relationships that have been blacklisted, but won't 546d0e93b69SEric Saxe * implement CMT thread placement optimizations against them. 5470e751525SEric Saxe */ 548d0e93b69SEric Saxe if (cmt_hw_blacklisted[hw] == 1) 549d0e93b69SEric Saxe policy = CMT_NO_POLICY; 5500e751525SEric Saxe 5510e751525SEric Saxe /* 552fb2f18f8Sesaxe * Find (or create) the PG associated with 553fb2f18f8Sesaxe * the hw sharing relationship in which cp 554fb2f18f8Sesaxe * belongs. 555fb2f18f8Sesaxe * 556fb2f18f8Sesaxe * Determine if a suitable PG already 557fb2f18f8Sesaxe * exists, or if one needs to be created. 558fb2f18f8Sesaxe */ 559fb2f18f8Sesaxe pg = (pg_cmt_t *)pghw_place_cpu(cp, hw); 560fb2f18f8Sesaxe if (pg == NULL) { 561fb2f18f8Sesaxe /* 562fb2f18f8Sesaxe * Create a new one. 563fb2f18f8Sesaxe * Initialize the common... 564fb2f18f8Sesaxe */ 565fb2f18f8Sesaxe pg = (pg_cmt_t *)pg_create(pg_cmt_class_id); 566fb2f18f8Sesaxe 567fb2f18f8Sesaxe /* ... physical ... */ 568fb2f18f8Sesaxe pghw_init((pghw_t *)pg, cp, hw); 569fb2f18f8Sesaxe 570fb2f18f8Sesaxe /* 571fb2f18f8Sesaxe * ... and CMT specific portions of the 572fb2f18f8Sesaxe * structure. 573fb2f18f8Sesaxe */ 5740e751525SEric Saxe pg->cmt_policy = policy; 5750e751525SEric Saxe 5760e751525SEric Saxe /* CMT event callbacks */ 5770e751525SEric Saxe cmt_callback_init((pg_t *)pg); 5780e751525SEric Saxe 579fb2f18f8Sesaxe bitset_init(&pg->cmt_cpus_actv_set); 580fb2f18f8Sesaxe group_create(&pg->cmt_cpus_actv); 581fb2f18f8Sesaxe } else { 582fb2f18f8Sesaxe ASSERT(IS_CMT_PG(pg)); 583fb2f18f8Sesaxe } 584fb2f18f8Sesaxe 585*b885580bSAlexander Kolbasov ((pghw_t *)pg)->pghw_generation++; 586*b885580bSAlexander Kolbasov 587fb2f18f8Sesaxe /* Add the CPU to the PG */ 5881a77c24bSEric Saxe pg_cpu_add((pg_t *)pg, cp, pgdata); 589fb2f18f8Sesaxe 590fb2f18f8Sesaxe /* 5916890d023SEric Saxe * Ensure capacity of the active CPU group/bitset 592fb2f18f8Sesaxe */ 593fb2f18f8Sesaxe group_expand(&pg->cmt_cpus_actv, 594fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 595fb2f18f8Sesaxe 596fb2f18f8Sesaxe if (cp->cpu_seqid >= 597fb2f18f8Sesaxe bitset_capacity(&pg->cmt_cpus_actv_set)) { 598fb2f18f8Sesaxe bitset_resize(&pg->cmt_cpus_actv_set, 599fb2f18f8Sesaxe cp->cpu_seqid + 1); 600fb2f18f8Sesaxe } 601fb2f18f8Sesaxe 602fb2f18f8Sesaxe /* 6030e751525SEric Saxe * Build a lineage of CMT PGs for load balancing / coalescence 604fb2f18f8Sesaxe */ 6050e751525SEric Saxe if (policy & (CMT_BALANCE | CMT_COALESCE)) { 6060e751525SEric Saxe cpu_cmt_hier[levels++] = pg; 607fb2f18f8Sesaxe } 608fb2f18f8Sesaxe 609fb2f18f8Sesaxe /* Cache this for later */ 610fb2f18f8Sesaxe if (hw == PGHW_CACHE) 611fb2f18f8Sesaxe pg_cache = (pg_t *)pg; 612fb2f18f8Sesaxe } 613fb2f18f8Sesaxe 6140e751525SEric Saxe group_expand(cmt_pgs, levels); 6156890d023SEric Saxe 6166890d023SEric Saxe if (cmt_root == NULL) 6176890d023SEric Saxe cmt_root = pg_cmt_lgrp_create(lgrp_plat_root_hand()); 618fb2f18f8Sesaxe 619fb2f18f8Sesaxe /* 6200e751525SEric Saxe * Find the lgrp that encapsulates this CPU's CMT hierarchy 6216890d023SEric Saxe */ 6226890d023SEric Saxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 6236890d023SEric Saxe if ((lgrp = pg_cmt_find_lgrp(lgrp_handle)) == NULL) 6246890d023SEric Saxe lgrp = pg_cmt_lgrp_create(lgrp_handle); 6256890d023SEric Saxe 6266890d023SEric Saxe /* 6270e751525SEric Saxe * Ascendingly sort the PGs in the lineage by number of CPUs 6280e751525SEric Saxe */ 6290e751525SEric Saxe pg_cmt_hier_sort(cpu_cmt_hier, levels); 6300e751525SEric Saxe 6310e751525SEric Saxe /* 6320e751525SEric Saxe * Examine the lineage and validate it. 6330e751525SEric Saxe * This routine will also try to fix the lineage along with the 6340e751525SEric Saxe * rest of the PG hierarchy should it detect an issue. 6350e751525SEric Saxe * 636ef4f35d8SEric Saxe * If it returns anything other than VALID or REPAIRED, an 637ef4f35d8SEric Saxe * unrecoverable error has occurred, and we cannot proceed. 6380e751525SEric Saxe */ 6391a77c24bSEric Saxe lineage_status = pg_cmt_lineage_validate(cpu_cmt_hier, &levels, pgdata); 640ef4f35d8SEric Saxe if ((lineage_status != CMT_LINEAGE_VALID) && 6411a77c24bSEric Saxe (lineage_status != CMT_LINEAGE_REPAIRED)) { 6421a77c24bSEric Saxe /* 6431a77c24bSEric Saxe * In the case of an unrecoverable error where CMT scheduling 6441a77c24bSEric Saxe * has been disabled, assert that the under construction CPU's 6451a77c24bSEric Saxe * PG data has an empty CMT load balancing lineage. 6461a77c24bSEric Saxe */ 6471a77c24bSEric Saxe ASSERT((cmt_sched_disabled == 0) || 6481a77c24bSEric Saxe (GROUP_SIZE(&(pgdata->cmt_pgs)) == 0)); 6490e751525SEric Saxe return; 6501a77c24bSEric Saxe } 6510e751525SEric Saxe 6520e751525SEric Saxe /* 6530e751525SEric Saxe * For existing PGs in the lineage, verify that the parent is 6540e751525SEric Saxe * correct, as the generation in the lineage may have changed 6550e751525SEric Saxe * as a result of the sorting. Start the traversal at the top 6560e751525SEric Saxe * of the lineage, moving down. 6570e751525SEric Saxe */ 6580e751525SEric Saxe for (level = levels - 1; level >= 0; ) { 6590e751525SEric Saxe int reorg; 6600e751525SEric Saxe 6610e751525SEric Saxe reorg = 0; 6620e751525SEric Saxe pg = cpu_cmt_hier[level]; 6630e751525SEric Saxe 6640e751525SEric Saxe /* 6650e751525SEric Saxe * Promote PGs at an incorrect generation into place. 6660e751525SEric Saxe */ 6670e751525SEric Saxe while (pg->cmt_parent && 6680e751525SEric Saxe pg->cmt_parent != cpu_cmt_hier[level + 1]) { 6691a77c24bSEric Saxe cmt_hier_promote(pg, pgdata); 6700e751525SEric Saxe reorg++; 6710e751525SEric Saxe } 6720e751525SEric Saxe if (reorg > 0) 6730e751525SEric Saxe level = levels - 1; 6740e751525SEric Saxe else 6750e751525SEric Saxe level--; 6760e751525SEric Saxe } 6770e751525SEric Saxe 6780e751525SEric Saxe /* 6796890d023SEric Saxe * For each of the PGs in the CPU's lineage: 6800e751525SEric Saxe * - Add an entry in the CPU sorted CMT PG group 6810e751525SEric Saxe * which is used for top down CMT load balancing 682fb2f18f8Sesaxe * - Tie the PG into the CMT hierarchy by connecting 683fb2f18f8Sesaxe * it to it's parent and siblings. 684fb2f18f8Sesaxe */ 6850e751525SEric Saxe for (level = 0; level < levels; level++) { 686fb2f18f8Sesaxe uint_t children; 687fb2f18f8Sesaxe int err; 688fb2f18f8Sesaxe 689fb2f18f8Sesaxe pg = cpu_cmt_hier[level]; 6900e751525SEric Saxe err = group_add_at(cmt_pgs, pg, levels - level - 1); 691fb2f18f8Sesaxe ASSERT(err == 0); 692fb2f18f8Sesaxe 693fb2f18f8Sesaxe if (level == 0) 6941a77c24bSEric Saxe pgdata->cmt_lineage = (pg_t *)pg; 695fb2f18f8Sesaxe 696fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 697fb2f18f8Sesaxe /* Already initialized */ 698fb2f18f8Sesaxe ASSERT(pg->cmt_parent == NULL || 699fb2f18f8Sesaxe pg->cmt_parent == cpu_cmt_hier[level + 1]); 700fb2f18f8Sesaxe ASSERT(pg->cmt_siblings == &lgrp->cl_pgs || 701c416da2dSjb145095 ((pg->cmt_parent != NULL) && 702c416da2dSjb145095 pg->cmt_siblings == pg->cmt_parent->cmt_children)); 703fb2f18f8Sesaxe continue; 704fb2f18f8Sesaxe } 705fb2f18f8Sesaxe 7060e751525SEric Saxe if ((level + 1) == levels) { 707fb2f18f8Sesaxe pg->cmt_parent = NULL; 7086890d023SEric Saxe 709fb2f18f8Sesaxe pg->cmt_siblings = &lgrp->cl_pgs; 710fb2f18f8Sesaxe children = ++lgrp->cl_npgs; 7110e751525SEric Saxe if (cmt_root != lgrp) 7126890d023SEric Saxe cmt_root->cl_npgs++; 713fb2f18f8Sesaxe } else { 714fb2f18f8Sesaxe pg->cmt_parent = cpu_cmt_hier[level + 1]; 715fb2f18f8Sesaxe 716fb2f18f8Sesaxe /* 717fb2f18f8Sesaxe * A good parent keeps track of their children. 718fb2f18f8Sesaxe * The parent's children group is also the PG's 719fb2f18f8Sesaxe * siblings. 720fb2f18f8Sesaxe */ 721fb2f18f8Sesaxe if (pg->cmt_parent->cmt_children == NULL) { 722fb2f18f8Sesaxe pg->cmt_parent->cmt_children = 723fb2f18f8Sesaxe kmem_zalloc(sizeof (group_t), KM_SLEEP); 724fb2f18f8Sesaxe group_create(pg->cmt_parent->cmt_children); 725fb2f18f8Sesaxe } 726fb2f18f8Sesaxe pg->cmt_siblings = pg->cmt_parent->cmt_children; 727fb2f18f8Sesaxe children = ++pg->cmt_parent->cmt_nchildren; 728fb2f18f8Sesaxe } 7296890d023SEric Saxe 730fb2f18f8Sesaxe group_expand(pg->cmt_siblings, children); 7316890d023SEric Saxe group_expand(&cmt_root->cl_pgs, cmt_root->cl_npgs); 732fb2f18f8Sesaxe } 733fb2f18f8Sesaxe 734fb2f18f8Sesaxe /* 735fb2f18f8Sesaxe * Cache the chip and core IDs in the cpu_t->cpu_physid structure 736fb2f18f8Sesaxe * for fast lookups later. 737fb2f18f8Sesaxe */ 738fb2f18f8Sesaxe if (cp->cpu_physid) { 739fb2f18f8Sesaxe cp->cpu_physid->cpu_chipid = 740fb2f18f8Sesaxe pg_plat_hw_instance_id(cp, PGHW_CHIP); 741fb2f18f8Sesaxe cp->cpu_physid->cpu_coreid = pg_plat_get_core_id(cp); 742fb2f18f8Sesaxe 743fb2f18f8Sesaxe /* 744fb2f18f8Sesaxe * If this cpu has a PG representing shared cache, then set 745fb2f18f8Sesaxe * cpu_cacheid to that PG's logical id 746fb2f18f8Sesaxe */ 747fb2f18f8Sesaxe if (pg_cache) 748fb2f18f8Sesaxe cp->cpu_physid->cpu_cacheid = pg_cache->pg_id; 749fb2f18f8Sesaxe } 750fb2f18f8Sesaxe 751fb2f18f8Sesaxe /* CPU0 only initialization */ 752fb2f18f8Sesaxe if (is_cpu0) { 753fb2f18f8Sesaxe is_cpu0 = 0; 754a6604450Sesaxe cpu0_lgrp = lgrp; 755fb2f18f8Sesaxe } 756fb2f18f8Sesaxe 757fb2f18f8Sesaxe } 758fb2f18f8Sesaxe 759fb2f18f8Sesaxe /* 760fb2f18f8Sesaxe * Class callback when a CPU is leaving the system (deletion) 7611a77c24bSEric Saxe * 7621a77c24bSEric Saxe * "pgdata" is a reference to the CPU's PG data to be deconstructed. 7631a77c24bSEric Saxe * 7641a77c24bSEric Saxe * cp->cpu_pg is used by the dispatcher to access the CPU's PG data 7651a77c24bSEric Saxe * references a "bootstrap" structure across this function's invocation. 766*b885580bSAlexander Kolbasov * pg_cmt_cpu_fini() and the routines it calls must be careful to operate only 7671a77c24bSEric Saxe * on the "pgdata" argument, and not cp->cpu_pg. 768fb2f18f8Sesaxe */ 769fb2f18f8Sesaxe static void 7701a77c24bSEric Saxe pg_cmt_cpu_fini(cpu_t *cp, cpu_pg_t *pgdata) 771fb2f18f8Sesaxe { 772fb2f18f8Sesaxe group_iter_t i; 773fb2f18f8Sesaxe pg_cmt_t *pg; 774fb2f18f8Sesaxe group_t *pgs, *cmt_pgs; 775fb2f18f8Sesaxe lgrp_handle_t lgrp_handle; 776fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 777fb2f18f8Sesaxe 7780e751525SEric Saxe if (cmt_sched_disabled) 7790e751525SEric Saxe return; 7800e751525SEric Saxe 7811a77c24bSEric Saxe ASSERT(pg_cpu_is_bootstrapped(cp)); 7821a77c24bSEric Saxe 7831a77c24bSEric Saxe pgs = &pgdata->pgs; 7841a77c24bSEric Saxe cmt_pgs = &pgdata->cmt_pgs; 785fb2f18f8Sesaxe 786fb2f18f8Sesaxe /* 787fb2f18f8Sesaxe * Find the lgroup that encapsulates this CPU's CMT hierarchy 788fb2f18f8Sesaxe */ 789fb2f18f8Sesaxe lgrp_handle = lgrp_plat_cpu_to_hand(cp->cpu_id); 790a6604450Sesaxe 791fb2f18f8Sesaxe lgrp = pg_cmt_find_lgrp(lgrp_handle); 7923e81cacfSEric Saxe if (ncpus == 1 && lgrp != cpu0_lgrp) { 793a6604450Sesaxe /* 7943e81cacfSEric Saxe * One might wonder how we could be deconfiguring the 7953e81cacfSEric Saxe * only CPU in the system. 796a6604450Sesaxe * 7973e81cacfSEric Saxe * On Starcat systems when null_proc_lpa is detected, 7983e81cacfSEric Saxe * the boot CPU (which is already configured into a leaf 7993e81cacfSEric Saxe * lgroup), is moved into the root lgroup. This is done by 8003e81cacfSEric Saxe * deconfiguring it from both lgroups and processor 8013e81cacfSEric Saxe * groups), and then later reconfiguring it back in. This 8023e81cacfSEric Saxe * call to pg_cmt_cpu_fini() is part of that deconfiguration. 8033e81cacfSEric Saxe * 8043e81cacfSEric Saxe * This special case is detected by noting that the platform 8053e81cacfSEric Saxe * has changed the CPU's lgrp affiliation (since it now 8063e81cacfSEric Saxe * belongs in the root). In this case, use the cmt_lgrp_t 8073e81cacfSEric Saxe * cached for the boot CPU, since this is what needs to be 8083e81cacfSEric Saxe * torn down. 809a6604450Sesaxe */ 810a6604450Sesaxe lgrp = cpu0_lgrp; 811a6604450Sesaxe } 812fb2f18f8Sesaxe 8133e81cacfSEric Saxe ASSERT(lgrp != NULL); 8143e81cacfSEric Saxe 815fb2f18f8Sesaxe /* 816fb2f18f8Sesaxe * First, clean up anything load balancing specific for each of 817fb2f18f8Sesaxe * the CPU's PGs that participated in CMT load balancing 818fb2f18f8Sesaxe */ 8191a77c24bSEric Saxe pg = (pg_cmt_t *)pgdata->cmt_lineage; 820fb2f18f8Sesaxe while (pg != NULL) { 821fb2f18f8Sesaxe 822*b885580bSAlexander Kolbasov ((pghw_t *)pg)->pghw_generation++; 823*b885580bSAlexander Kolbasov 824fb2f18f8Sesaxe /* 825fb2f18f8Sesaxe * Remove the PG from the CPU's load balancing lineage 826fb2f18f8Sesaxe */ 827fb2f18f8Sesaxe (void) group_remove(cmt_pgs, pg, GRP_RESIZE); 828fb2f18f8Sesaxe 829fb2f18f8Sesaxe /* 830fb2f18f8Sesaxe * If it's about to become empty, destroy it's children 831fb2f18f8Sesaxe * group, and remove it's reference from it's siblings. 832fb2f18f8Sesaxe * This is done here (rather than below) to avoid removing 833fb2f18f8Sesaxe * our reference from a PG that we just eliminated. 834fb2f18f8Sesaxe */ 835fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 1) { 836fb2f18f8Sesaxe if (pg->cmt_children != NULL) 837fb2f18f8Sesaxe group_destroy(pg->cmt_children); 838fb2f18f8Sesaxe if (pg->cmt_siblings != NULL) { 839fb2f18f8Sesaxe if (pg->cmt_siblings == &lgrp->cl_pgs) 840fb2f18f8Sesaxe lgrp->cl_npgs--; 841fb2f18f8Sesaxe else 842fb2f18f8Sesaxe pg->cmt_parent->cmt_nchildren--; 843fb2f18f8Sesaxe } 844fb2f18f8Sesaxe } 845fb2f18f8Sesaxe pg = pg->cmt_parent; 846fb2f18f8Sesaxe } 847fb2f18f8Sesaxe ASSERT(GROUP_SIZE(cmt_pgs) == 0); 848fb2f18f8Sesaxe 849fb2f18f8Sesaxe /* 850fb2f18f8Sesaxe * Now that the load balancing lineage updates have happened, 851fb2f18f8Sesaxe * remove the CPU from all it's PGs (destroying any that become 852fb2f18f8Sesaxe * empty). 853fb2f18f8Sesaxe */ 854fb2f18f8Sesaxe group_iter_init(&i); 855fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 856fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 857fb2f18f8Sesaxe continue; 858fb2f18f8Sesaxe 8591a77c24bSEric Saxe pg_cpu_delete((pg_t *)pg, cp, pgdata); 860fb2f18f8Sesaxe /* 861fb2f18f8Sesaxe * Deleting the CPU from the PG changes the CPU's 862fb2f18f8Sesaxe * PG group over which we are actively iterating 863fb2f18f8Sesaxe * Re-initialize the iteration 864fb2f18f8Sesaxe */ 865fb2f18f8Sesaxe group_iter_init(&i); 866fb2f18f8Sesaxe 867fb2f18f8Sesaxe if (GROUP_SIZE(&((pg_t *)pg)->pg_cpus) == 0) { 868fb2f18f8Sesaxe 869fb2f18f8Sesaxe /* 870fb2f18f8Sesaxe * The PG has become zero sized, so destroy it. 871fb2f18f8Sesaxe */ 872fb2f18f8Sesaxe group_destroy(&pg->cmt_cpus_actv); 873fb2f18f8Sesaxe bitset_fini(&pg->cmt_cpus_actv_set); 874fb2f18f8Sesaxe pghw_fini((pghw_t *)pg); 875fb2f18f8Sesaxe 876fb2f18f8Sesaxe pg_destroy((pg_t *)pg); 877fb2f18f8Sesaxe } 878fb2f18f8Sesaxe } 879fb2f18f8Sesaxe } 880fb2f18f8Sesaxe 881fb2f18f8Sesaxe /* 882fb2f18f8Sesaxe * Class callback when a CPU is entering a cpu partition 883fb2f18f8Sesaxe */ 884fb2f18f8Sesaxe static void 885fb2f18f8Sesaxe pg_cmt_cpupart_in(cpu_t *cp, cpupart_t *pp) 886fb2f18f8Sesaxe { 887fb2f18f8Sesaxe group_t *pgs; 888fb2f18f8Sesaxe pg_t *pg; 889fb2f18f8Sesaxe group_iter_t i; 890fb2f18f8Sesaxe 891fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 892fb2f18f8Sesaxe 8930e751525SEric Saxe if (cmt_sched_disabled) 8940e751525SEric Saxe return; 8950e751525SEric Saxe 896fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 897fb2f18f8Sesaxe 898fb2f18f8Sesaxe /* 899fb2f18f8Sesaxe * Ensure that the new partition's PG bitset 900fb2f18f8Sesaxe * is large enough for all CMT PG's to which cp 901fb2f18f8Sesaxe * belongs 902fb2f18f8Sesaxe */ 903fb2f18f8Sesaxe group_iter_init(&i); 904fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 905fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 906fb2f18f8Sesaxe continue; 907fb2f18f8Sesaxe 908fb2f18f8Sesaxe if (bitset_capacity(&pp->cp_cmt_pgs) <= pg->pg_id) 909fb2f18f8Sesaxe bitset_resize(&pp->cp_cmt_pgs, pg->pg_id + 1); 910fb2f18f8Sesaxe } 911fb2f18f8Sesaxe } 912fb2f18f8Sesaxe 913fb2f18f8Sesaxe /* 914fb2f18f8Sesaxe * Class callback when a CPU is actually moving partitions 915fb2f18f8Sesaxe */ 916fb2f18f8Sesaxe static void 917fb2f18f8Sesaxe pg_cmt_cpupart_move(cpu_t *cp, cpupart_t *oldpp, cpupart_t *newpp) 918fb2f18f8Sesaxe { 919fb2f18f8Sesaxe cpu_t *cpp; 920fb2f18f8Sesaxe group_t *pgs; 921fb2f18f8Sesaxe pg_t *pg; 922fb2f18f8Sesaxe group_iter_t pg_iter; 923fb2f18f8Sesaxe pg_cpu_itr_t cpu_iter; 924fb2f18f8Sesaxe boolean_t found; 925fb2f18f8Sesaxe 926fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 927fb2f18f8Sesaxe 9280e751525SEric Saxe if (cmt_sched_disabled) 9290e751525SEric Saxe return; 9300e751525SEric Saxe 931fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 932fb2f18f8Sesaxe group_iter_init(&pg_iter); 933fb2f18f8Sesaxe 934fb2f18f8Sesaxe /* 935fb2f18f8Sesaxe * Iterate over the CPUs CMT PGs 936fb2f18f8Sesaxe */ 937fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &pg_iter)) != NULL) { 938fb2f18f8Sesaxe 939fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 940fb2f18f8Sesaxe continue; 941fb2f18f8Sesaxe 942fb2f18f8Sesaxe /* 943fb2f18f8Sesaxe * Add the PG to the bitset in the new partition. 944fb2f18f8Sesaxe */ 945fb2f18f8Sesaxe bitset_add(&newpp->cp_cmt_pgs, pg->pg_id); 946fb2f18f8Sesaxe 947fb2f18f8Sesaxe /* 948fb2f18f8Sesaxe * Remove the PG from the bitset in the old partition 949fb2f18f8Sesaxe * if the last of the PG's CPUs have left. 950fb2f18f8Sesaxe */ 951fb2f18f8Sesaxe found = B_FALSE; 952fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_iter); 953fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_iter)) != NULL) { 954fb2f18f8Sesaxe if (cpp == cp) 955fb2f18f8Sesaxe continue; 956a6604450Sesaxe if (CPU_ACTIVE(cpp) && 957a6604450Sesaxe cpp->cpu_part->cp_id == oldpp->cp_id) { 958fb2f18f8Sesaxe found = B_TRUE; 959fb2f18f8Sesaxe break; 960fb2f18f8Sesaxe } 961fb2f18f8Sesaxe } 962fb2f18f8Sesaxe if (!found) 963fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, pg->pg_id); 964fb2f18f8Sesaxe } 965fb2f18f8Sesaxe } 966fb2f18f8Sesaxe 967fb2f18f8Sesaxe /* 968fb2f18f8Sesaxe * Class callback when a CPU becomes active (online) 969fb2f18f8Sesaxe * 970fb2f18f8Sesaxe * This is called in a context where CPUs are paused 971fb2f18f8Sesaxe */ 972fb2f18f8Sesaxe static void 973fb2f18f8Sesaxe pg_cmt_cpu_active(cpu_t *cp) 974fb2f18f8Sesaxe { 975fb2f18f8Sesaxe int err; 976fb2f18f8Sesaxe group_iter_t i; 977fb2f18f8Sesaxe pg_cmt_t *pg; 978fb2f18f8Sesaxe group_t *pgs; 979fb2f18f8Sesaxe 980fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 981fb2f18f8Sesaxe 9820e751525SEric Saxe if (cmt_sched_disabled) 9830e751525SEric Saxe return; 9840e751525SEric Saxe 985fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 986fb2f18f8Sesaxe group_iter_init(&i); 987fb2f18f8Sesaxe 988fb2f18f8Sesaxe /* 989fb2f18f8Sesaxe * Iterate over the CPU's PGs 990fb2f18f8Sesaxe */ 991fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 992fb2f18f8Sesaxe 993fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 994fb2f18f8Sesaxe continue; 995fb2f18f8Sesaxe 996*b885580bSAlexander Kolbasov /* 997*b885580bSAlexander Kolbasov * Move to the next generation since topology is changing 998*b885580bSAlexander Kolbasov */ 999*b885580bSAlexander Kolbasov ((pghw_t *)pg)->pghw_generation++; 1000*b885580bSAlexander Kolbasov 1001fb2f18f8Sesaxe err = group_add(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 1002fb2f18f8Sesaxe ASSERT(err == 0); 1003fb2f18f8Sesaxe 1004fb2f18f8Sesaxe /* 1005fb2f18f8Sesaxe * If this is the first active CPU in the PG, and it 1006fb2f18f8Sesaxe * represents a hardware sharing relationship over which 1007fb2f18f8Sesaxe * CMT load balancing is performed, add it as a candidate 1008fb2f18f8Sesaxe * for balancing with it's siblings. 1009fb2f18f8Sesaxe */ 1010fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 1 && 10110e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 1012fb2f18f8Sesaxe err = group_add(pg->cmt_siblings, pg, GRP_NORESIZE); 1013fb2f18f8Sesaxe ASSERT(err == 0); 10146890d023SEric Saxe 10156890d023SEric Saxe /* 10166890d023SEric Saxe * If this is a top level PG, add it as a balancing 10170e751525SEric Saxe * candidate when balancing within the root lgroup. 10186890d023SEric Saxe */ 10190e751525SEric Saxe if (pg->cmt_parent == NULL && 10200e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 10216890d023SEric Saxe err = group_add(&cmt_root->cl_pgs, pg, 10226890d023SEric Saxe GRP_NORESIZE); 10236890d023SEric Saxe ASSERT(err == 0); 10246890d023SEric Saxe } 1025fb2f18f8Sesaxe } 1026fb2f18f8Sesaxe 1027fb2f18f8Sesaxe /* 1028fb2f18f8Sesaxe * Notate the CPU in the PGs active CPU bitset. 1029fb2f18f8Sesaxe * Also notate the PG as being active in it's associated 1030fb2f18f8Sesaxe * partition 1031fb2f18f8Sesaxe */ 1032fb2f18f8Sesaxe bitset_add(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1033fb2f18f8Sesaxe bitset_add(&cp->cpu_part->cp_cmt_pgs, ((pg_t *)pg)->pg_id); 1034fb2f18f8Sesaxe } 1035fb2f18f8Sesaxe } 1036fb2f18f8Sesaxe 1037fb2f18f8Sesaxe /* 1038fb2f18f8Sesaxe * Class callback when a CPU goes inactive (offline) 1039fb2f18f8Sesaxe * 1040fb2f18f8Sesaxe * This is called in a context where CPUs are paused 1041fb2f18f8Sesaxe */ 1042fb2f18f8Sesaxe static void 1043fb2f18f8Sesaxe pg_cmt_cpu_inactive(cpu_t *cp) 1044fb2f18f8Sesaxe { 1045fb2f18f8Sesaxe int err; 1046fb2f18f8Sesaxe group_t *pgs; 1047fb2f18f8Sesaxe pg_cmt_t *pg; 1048fb2f18f8Sesaxe cpu_t *cpp; 1049fb2f18f8Sesaxe group_iter_t i; 1050fb2f18f8Sesaxe pg_cpu_itr_t cpu_itr; 1051fb2f18f8Sesaxe boolean_t found; 1052fb2f18f8Sesaxe 1053fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1054fb2f18f8Sesaxe 10550e751525SEric Saxe if (cmt_sched_disabled) 10560e751525SEric Saxe return; 10570e751525SEric Saxe 1058fb2f18f8Sesaxe pgs = &cp->cpu_pg->pgs; 1059fb2f18f8Sesaxe group_iter_init(&i); 1060fb2f18f8Sesaxe 1061fb2f18f8Sesaxe while ((pg = group_iterate(pgs, &i)) != NULL) { 1062fb2f18f8Sesaxe 1063fb2f18f8Sesaxe if (IS_CMT_PG(pg) == 0) 1064fb2f18f8Sesaxe continue; 1065fb2f18f8Sesaxe 1066fb2f18f8Sesaxe /* 1067*b885580bSAlexander Kolbasov * Move to the next generation since topology is changing 1068*b885580bSAlexander Kolbasov */ 1069*b885580bSAlexander Kolbasov ((pghw_t *)pg)->pghw_generation++; 1070*b885580bSAlexander Kolbasov 1071*b885580bSAlexander Kolbasov /* 1072fb2f18f8Sesaxe * Remove the CPU from the CMT PGs active CPU group 1073fb2f18f8Sesaxe * bitmap 1074fb2f18f8Sesaxe */ 1075fb2f18f8Sesaxe err = group_remove(&pg->cmt_cpus_actv, cp, GRP_NORESIZE); 1076fb2f18f8Sesaxe ASSERT(err == 0); 1077fb2f18f8Sesaxe 1078fb2f18f8Sesaxe bitset_del(&pg->cmt_cpus_actv_set, cp->cpu_seqid); 1079fb2f18f8Sesaxe 1080fb2f18f8Sesaxe /* 1081fb2f18f8Sesaxe * If there are no more active CPUs in this PG over which 1082fb2f18f8Sesaxe * load was balanced, remove it as a balancing candidate. 1083fb2f18f8Sesaxe */ 1084fb2f18f8Sesaxe if (GROUP_SIZE(&pg->cmt_cpus_actv) == 0 && 10850e751525SEric Saxe (pg->cmt_policy & (CMT_BALANCE | CMT_COALESCE))) { 1086fb2f18f8Sesaxe err = group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 1087fb2f18f8Sesaxe ASSERT(err == 0); 10886890d023SEric Saxe 10890e751525SEric Saxe if (pg->cmt_parent == NULL && 10900e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 10916890d023SEric Saxe err = group_remove(&cmt_root->cl_pgs, pg, 10926890d023SEric Saxe GRP_NORESIZE); 10936890d023SEric Saxe ASSERT(err == 0); 10946890d023SEric Saxe } 1095fb2f18f8Sesaxe } 1096fb2f18f8Sesaxe 1097fb2f18f8Sesaxe /* 1098fb2f18f8Sesaxe * Assert the number of active CPUs does not exceed 1099fb2f18f8Sesaxe * the total number of CPUs in the PG 1100fb2f18f8Sesaxe */ 1101fb2f18f8Sesaxe ASSERT(GROUP_SIZE(&pg->cmt_cpus_actv) <= 1102fb2f18f8Sesaxe GROUP_SIZE(&((pg_t *)pg)->pg_cpus)); 1103fb2f18f8Sesaxe 1104fb2f18f8Sesaxe /* 1105fb2f18f8Sesaxe * Update the PG bitset in the CPU's old partition 1106fb2f18f8Sesaxe */ 1107fb2f18f8Sesaxe found = B_FALSE; 1108fb2f18f8Sesaxe PG_CPU_ITR_INIT(pg, cpu_itr); 1109fb2f18f8Sesaxe while ((cpp = pg_cpu_next(&cpu_itr)) != NULL) { 1110fb2f18f8Sesaxe if (cpp == cp) 1111fb2f18f8Sesaxe continue; 1112a6604450Sesaxe if (CPU_ACTIVE(cpp) && 1113a6604450Sesaxe cpp->cpu_part->cp_id == cp->cpu_part->cp_id) { 1114fb2f18f8Sesaxe found = B_TRUE; 1115fb2f18f8Sesaxe break; 1116fb2f18f8Sesaxe } 1117fb2f18f8Sesaxe } 1118fb2f18f8Sesaxe if (!found) { 1119fb2f18f8Sesaxe bitset_del(&cp->cpu_part->cp_cmt_pgs, 1120fb2f18f8Sesaxe ((pg_t *)pg)->pg_id); 1121fb2f18f8Sesaxe } 1122fb2f18f8Sesaxe } 1123fb2f18f8Sesaxe } 1124fb2f18f8Sesaxe 1125fb2f18f8Sesaxe /* 1126fb2f18f8Sesaxe * Return non-zero if the CPU belongs in the given PG 1127fb2f18f8Sesaxe */ 1128fb2f18f8Sesaxe static int 1129fb2f18f8Sesaxe pg_cmt_cpu_belongs(pg_t *pg, cpu_t *cp) 1130fb2f18f8Sesaxe { 1131fb2f18f8Sesaxe cpu_t *pg_cpu; 1132fb2f18f8Sesaxe 1133fb2f18f8Sesaxe pg_cpu = GROUP_ACCESS(&pg->pg_cpus, 0); 1134fb2f18f8Sesaxe 1135fb2f18f8Sesaxe ASSERT(pg_cpu != NULL); 1136fb2f18f8Sesaxe 1137fb2f18f8Sesaxe /* 1138fb2f18f8Sesaxe * The CPU belongs if, given the nature of the hardware sharing 1139fb2f18f8Sesaxe * relationship represented by the PG, the CPU has that 1140fb2f18f8Sesaxe * relationship with some other CPU already in the PG 1141fb2f18f8Sesaxe */ 1142fb2f18f8Sesaxe if (pg_plat_cpus_share(cp, pg_cpu, ((pghw_t *)pg)->pghw_hw)) 1143fb2f18f8Sesaxe return (1); 1144fb2f18f8Sesaxe 1145fb2f18f8Sesaxe return (0); 1146fb2f18f8Sesaxe } 1147fb2f18f8Sesaxe 1148fb2f18f8Sesaxe /* 11490e751525SEric Saxe * Sort the CPUs CMT hierarchy, where "size" is the number of levels. 1150fb2f18f8Sesaxe */ 1151fb2f18f8Sesaxe static void 11520e751525SEric Saxe pg_cmt_hier_sort(pg_cmt_t **hier, int size) 1153fb2f18f8Sesaxe { 11548031591dSSrihari Venkatesan int i, j, inc, sz; 11558031591dSSrihari Venkatesan int start, end; 11560e751525SEric Saxe pg_t *tmp; 11570e751525SEric Saxe pg_t **h = (pg_t **)hier; 1158fb2f18f8Sesaxe 11590e751525SEric Saxe /* 11600e751525SEric Saxe * First sort by number of CPUs 11610e751525SEric Saxe */ 11620e751525SEric Saxe inc = size / 2; 11630e751525SEric Saxe while (inc > 0) { 11640e751525SEric Saxe for (i = inc; i < size; i++) { 11650e751525SEric Saxe j = i; 11660e751525SEric Saxe tmp = h[i]; 11670e751525SEric Saxe while ((j >= inc) && 11680e751525SEric Saxe (PG_NUM_CPUS(h[j - inc]) > PG_NUM_CPUS(tmp))) { 11690e751525SEric Saxe h[j] = h[j - inc]; 11700e751525SEric Saxe j = j - inc; 11710e751525SEric Saxe } 11720e751525SEric Saxe h[j] = tmp; 11730e751525SEric Saxe } 11740e751525SEric Saxe if (inc == 2) 11750e751525SEric Saxe inc = 1; 11760e751525SEric Saxe else 11770e751525SEric Saxe inc = (inc * 5) / 11; 11780e751525SEric Saxe } 1179fb2f18f8Sesaxe 11800e751525SEric Saxe /* 11810e751525SEric Saxe * Break ties by asking the platform. 11820e751525SEric Saxe * Determine if h[i] outranks h[i + 1] and if so, swap them. 11830e751525SEric Saxe */ 11848031591dSSrihari Venkatesan for (start = 0; start < size; start++) { 11858031591dSSrihari Venkatesan 11868031591dSSrihari Venkatesan /* 11878031591dSSrihari Venkatesan * Find various contiguous sets of elements, 11888031591dSSrihari Venkatesan * in the array, with the same number of cpus 11898031591dSSrihari Venkatesan */ 11908031591dSSrihari Venkatesan end = start; 11918031591dSSrihari Venkatesan sz = PG_NUM_CPUS(h[start]); 11928031591dSSrihari Venkatesan while ((end < size) && (sz == PG_NUM_CPUS(h[end]))) 11938031591dSSrihari Venkatesan end++; 11948031591dSSrihari Venkatesan /* 11958031591dSSrihari Venkatesan * Sort each such set of the array by rank 11968031591dSSrihari Venkatesan */ 11978031591dSSrihari Venkatesan for (i = start + 1; i < end; i++) { 11988031591dSSrihari Venkatesan j = i - 1; 11990e751525SEric Saxe tmp = h[i]; 12008031591dSSrihari Venkatesan while (j >= start && 12018031591dSSrihari Venkatesan pg_cmt_hier_rank(hier[j], 12028031591dSSrihari Venkatesan (pg_cmt_t *)tmp) == hier[j]) { 12038031591dSSrihari Venkatesan h[j + 1] = h[j]; 12048031591dSSrihari Venkatesan j--; 12058031591dSSrihari Venkatesan } 12068031591dSSrihari Venkatesan h[j + 1] = tmp; 1207fb2f18f8Sesaxe } 1208fb2f18f8Sesaxe } 1209fb2f18f8Sesaxe } 1210fb2f18f8Sesaxe 1211fb2f18f8Sesaxe /* 1212fb2f18f8Sesaxe * Return a cmt_lgrp_t * given an lgroup handle. 1213fb2f18f8Sesaxe */ 1214fb2f18f8Sesaxe static cmt_lgrp_t * 1215fb2f18f8Sesaxe pg_cmt_find_lgrp(lgrp_handle_t hand) 1216fb2f18f8Sesaxe { 1217fb2f18f8Sesaxe cmt_lgrp_t *lgrp; 1218fb2f18f8Sesaxe 1219fb2f18f8Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1220fb2f18f8Sesaxe 1221fb2f18f8Sesaxe lgrp = cmt_lgrps; 1222fb2f18f8Sesaxe while (lgrp != NULL) { 1223fb2f18f8Sesaxe if (lgrp->cl_hand == hand) 1224a6604450Sesaxe break; 1225fb2f18f8Sesaxe lgrp = lgrp->cl_next; 1226fb2f18f8Sesaxe } 1227a6604450Sesaxe return (lgrp); 1228a6604450Sesaxe } 1229fb2f18f8Sesaxe 1230fb2f18f8Sesaxe /* 1231a6604450Sesaxe * Create a cmt_lgrp_t with the specified handle. 1232fb2f18f8Sesaxe */ 1233a6604450Sesaxe static cmt_lgrp_t * 1234a6604450Sesaxe pg_cmt_lgrp_create(lgrp_handle_t hand) 1235a6604450Sesaxe { 1236a6604450Sesaxe cmt_lgrp_t *lgrp; 1237a6604450Sesaxe 1238a6604450Sesaxe ASSERT(MUTEX_HELD(&cpu_lock)); 1239a6604450Sesaxe 1240fb2f18f8Sesaxe lgrp = kmem_zalloc(sizeof (cmt_lgrp_t), KM_SLEEP); 1241fb2f18f8Sesaxe 1242fb2f18f8Sesaxe lgrp->cl_hand = hand; 1243fb2f18f8Sesaxe lgrp->cl_npgs = 0; 1244fb2f18f8Sesaxe lgrp->cl_next = cmt_lgrps; 1245fb2f18f8Sesaxe cmt_lgrps = lgrp; 1246fb2f18f8Sesaxe group_create(&lgrp->cl_pgs); 1247fb2f18f8Sesaxe 1248fb2f18f8Sesaxe return (lgrp); 1249fb2f18f8Sesaxe } 12506890d023SEric Saxe 12516890d023SEric Saxe /* 12520e751525SEric Saxe * Interfaces to enable and disable power aware dispatching 12530e751525SEric Saxe * The caller must be holding cpu_lock. 12546890d023SEric Saxe * 12550e751525SEric Saxe * Return 0 on success and -1 on failure. 12566890d023SEric Saxe */ 12570e751525SEric Saxe int 12580e751525SEric Saxe cmt_pad_enable(pghw_type_t type) 12596890d023SEric Saxe { 12600e751525SEric Saxe group_t *hwset; 12610e751525SEric Saxe group_iter_t iter; 12620e751525SEric Saxe pg_cmt_t *pg; 12636890d023SEric Saxe 12640e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 12650e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 12666890d023SEric Saxe 12670e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL || 12680e751525SEric Saxe cmt_hw_blacklisted[type]) { 12690e751525SEric Saxe /* 12700e751525SEric Saxe * Unable to find any instances of the specified type 12710e751525SEric Saxe * of power domain, or the power domains have been blacklisted. 12720e751525SEric Saxe */ 12730e751525SEric Saxe return (-1); 12740e751525SEric Saxe } 12756890d023SEric Saxe 12766890d023SEric Saxe /* 12770e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 12780e751525SEric Saxe * policy for power/performance optimization. 12790e751525SEric Saxe * 12800e751525SEric Saxe * Simply setting the policy isn't enough in the case where the power 12810e751525SEric Saxe * domain is an only child of another PG. Because the dispatcher walks 12820e751525SEric Saxe * the PG hierarchy in a top down fashion, the higher up PG's policy 12830e751525SEric Saxe * will dominate. So promote the power domain above it's parent if both 12840e751525SEric Saxe * PG and it's parent have the same CPUs to ensure it's policy 12850e751525SEric Saxe * dominates. 12866890d023SEric Saxe */ 12870e751525SEric Saxe group_iter_init(&iter); 12880e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 12890e751525SEric Saxe /* 12900e751525SEric Saxe * If the power domain is an only child to a parent 12910e751525SEric Saxe * not implementing the same policy, promote the child 12920e751525SEric Saxe * above the parent to activate the policy. 12930e751525SEric Saxe */ 12940e751525SEric Saxe pg->cmt_policy = pg_cmt_policy(((pghw_t *)pg)->pghw_hw); 12950e751525SEric Saxe while ((pg->cmt_parent != NULL) && 12960e751525SEric Saxe (pg->cmt_parent->cmt_policy != pg->cmt_policy) && 12970e751525SEric Saxe (PG_NUM_CPUS((pg_t *)pg) == 12980e751525SEric Saxe PG_NUM_CPUS((pg_t *)pg->cmt_parent))) { 12991a77c24bSEric Saxe cmt_hier_promote(pg, NULL); 13000e751525SEric Saxe } 13010e751525SEric Saxe } 13020e751525SEric Saxe 13030e751525SEric Saxe return (0); 13040e751525SEric Saxe } 13050e751525SEric Saxe 13060e751525SEric Saxe int 13070e751525SEric Saxe cmt_pad_disable(pghw_type_t type) 13080e751525SEric Saxe { 13090e751525SEric Saxe group_t *hwset; 13100e751525SEric Saxe group_iter_t iter; 13110e751525SEric Saxe pg_cmt_t *pg; 13120e751525SEric Saxe pg_cmt_t *child; 13130e751525SEric Saxe 13140e751525SEric Saxe ASSERT(PGHW_IS_PM_DOMAIN(type)); 13150e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 13160e751525SEric Saxe 13170e751525SEric Saxe if ((hwset = pghw_set_lookup(type)) == NULL) { 13180e751525SEric Saxe /* 13190e751525SEric Saxe * Unable to find any instances of the specified type of 13200e751525SEric Saxe * power domain. 13210e751525SEric Saxe */ 13220e751525SEric Saxe return (-1); 13230e751525SEric Saxe } 13240e751525SEric Saxe /* 13250e751525SEric Saxe * Iterate over the power domains, setting the default dispatcher 13260e751525SEric Saxe * policy for performance optimization (load balancing). 13270e751525SEric Saxe */ 13280e751525SEric Saxe group_iter_init(&iter); 13290e751525SEric Saxe while ((pg = group_iterate(hwset, &iter)) != NULL) { 13300e751525SEric Saxe 13310e751525SEric Saxe /* 13320e751525SEric Saxe * If the power domain has an only child that implements 13330e751525SEric Saxe * policy other than load balancing, promote the child 13340e751525SEric Saxe * above the power domain to ensure it's policy dominates. 13350e751525SEric Saxe */ 1336f03808b6SEric Saxe if (pg->cmt_children != NULL && 1337f03808b6SEric Saxe GROUP_SIZE(pg->cmt_children) == 1) { 13380e751525SEric Saxe child = GROUP_ACCESS(pg->cmt_children, 0); 13390e751525SEric Saxe if ((child->cmt_policy & CMT_BALANCE) == 0) { 13401a77c24bSEric Saxe cmt_hier_promote(child, NULL); 13410e751525SEric Saxe } 13420e751525SEric Saxe } 13430e751525SEric Saxe pg->cmt_policy = CMT_BALANCE; 13440e751525SEric Saxe } 13450e751525SEric Saxe return (0); 13460e751525SEric Saxe } 13470e751525SEric Saxe 13480e751525SEric Saxe /* ARGSUSED */ 13490e751525SEric Saxe static void 13500e751525SEric Saxe cmt_ev_thread_swtch(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13510e751525SEric Saxe kthread_t *new) 13520e751525SEric Saxe { 13530e751525SEric Saxe pg_cmt_t *cmt_pg = (pg_cmt_t *)pg; 13540e751525SEric Saxe 13550e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13560e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, 1); 13570e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13580e751525SEric Saxe atomic_add_32(&cmt_pg->cmt_utilization, -1); 13590e751525SEric Saxe } 13600e751525SEric Saxe } 13610e751525SEric Saxe 13620e751525SEric Saxe /* 13630e751525SEric Saxe * Macro to test whether a thread is currently runnable on a CPU in a PG. 13640e751525SEric Saxe */ 13650e751525SEric Saxe #define THREAD_RUNNABLE_IN_PG(t, pg) \ 13660e751525SEric Saxe ((t)->t_state == TS_RUN && \ 13670e751525SEric Saxe (t)->t_disp_queue->disp_cpu && \ 13680e751525SEric Saxe bitset_in_set(&(pg)->cmt_cpus_actv_set, \ 13690e751525SEric Saxe (t)->t_disp_queue->disp_cpu->cpu_seqid)) 13700e751525SEric Saxe 13710e751525SEric Saxe static void 13720e751525SEric Saxe cmt_ev_thread_swtch_pwr(pg_t *pg, cpu_t *cp, hrtime_t now, kthread_t *old, 13730e751525SEric Saxe kthread_t *new) 13740e751525SEric Saxe { 13750e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 13760e751525SEric Saxe cpupm_domain_t *dom; 13770e751525SEric Saxe uint32_t u; 13780e751525SEric Saxe 13790e751525SEric Saxe if (old == cp->cpu_idle_thread) { 13800e751525SEric Saxe ASSERT(new != cp->cpu_idle_thread); 13810e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, 1); 13820e751525SEric Saxe if (u == 1) { 13830e751525SEric Saxe /* 13840e751525SEric Saxe * Notify the CPU power manager that the domain 13850e751525SEric Saxe * is non-idle. 13860e751525SEric Saxe */ 13870e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 13880e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 13890e751525SEric Saxe CPUPM_DOM_BUSY_FROM_IDLE); 13900e751525SEric Saxe } 13910e751525SEric Saxe } else if (new == cp->cpu_idle_thread) { 13920e751525SEric Saxe ASSERT(old != cp->cpu_idle_thread); 13930e751525SEric Saxe u = atomic_add_32_nv(&cmt->cmt_utilization, -1); 13940e751525SEric Saxe if (u == 0) { 13950e751525SEric Saxe /* 13960e751525SEric Saxe * The domain is idle, notify the CPU power 13970e751525SEric Saxe * manager. 13980e751525SEric Saxe * 13990e751525SEric Saxe * Avoid notifying if the thread is simply migrating 14000e751525SEric Saxe * between CPUs in the domain. 14010e751525SEric Saxe */ 14020e751525SEric Saxe if (!THREAD_RUNNABLE_IN_PG(old, cmt)) { 14030e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 14040e751525SEric Saxe cpupm_utilization_event(cp, now, dom, 14050e751525SEric Saxe CPUPM_DOM_IDLE_FROM_BUSY); 14060e751525SEric Saxe } 14070e751525SEric Saxe } 14080e751525SEric Saxe } 14090e751525SEric Saxe } 14100e751525SEric Saxe 14110e751525SEric Saxe /* ARGSUSED */ 14120e751525SEric Saxe static void 14130e751525SEric Saxe cmt_ev_thread_remain_pwr(pg_t *pg, cpu_t *cp, kthread_t *t) 14140e751525SEric Saxe { 14150e751525SEric Saxe pg_cmt_t *cmt = (pg_cmt_t *)pg; 14160e751525SEric Saxe cpupm_domain_t *dom; 14170e751525SEric Saxe 14180e751525SEric Saxe dom = (cpupm_domain_t *)cmt->cmt_pg.pghw_handle; 14190e751525SEric Saxe cpupm_utilization_event(cp, (hrtime_t)0, dom, CPUPM_DOM_REMAIN_BUSY); 14200e751525SEric Saxe } 14210e751525SEric Saxe 14220e751525SEric Saxe /* 14230e751525SEric Saxe * Return the name of the CMT scheduling policy 14240e751525SEric Saxe * being implemented across this PG 14250e751525SEric Saxe */ 14260e751525SEric Saxe static char * 14270e751525SEric Saxe pg_cmt_policy_name(pg_t *pg) 14280e751525SEric Saxe { 14290e751525SEric Saxe pg_cmt_policy_t policy; 14300e751525SEric Saxe 14310e751525SEric Saxe policy = ((pg_cmt_t *)pg)->cmt_policy; 14320e751525SEric Saxe 14330e751525SEric Saxe if (policy & CMT_AFFINITY) { 14340e751525SEric Saxe if (policy & CMT_BALANCE) 14350e751525SEric Saxe return ("Load Balancing & Affinity"); 14360e751525SEric Saxe else if (policy & CMT_COALESCE) 14370e751525SEric Saxe return ("Load Coalescence & Affinity"); 14386890d023SEric Saxe else 14390e751525SEric Saxe return ("Affinity"); 14400e751525SEric Saxe } else { 14410e751525SEric Saxe if (policy & CMT_BALANCE) 14420e751525SEric Saxe return ("Load Balancing"); 14430e751525SEric Saxe else if (policy & CMT_COALESCE) 14440e751525SEric Saxe return ("Load Coalescence"); 14450e751525SEric Saxe else 14460e751525SEric Saxe return ("None"); 14470e751525SEric Saxe } 14480e751525SEric Saxe } 14496890d023SEric Saxe 14506890d023SEric Saxe /* 14510e751525SEric Saxe * Prune PG, and all other instances of PG's hardware sharing relationship 1452d0e93b69SEric Saxe * from the CMT PG hierarchy. 14531a77c24bSEric Saxe * 14541a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPUs 14551a77c24bSEric Saxe * in the PG being pruned), and may be invoked from a context where one CPU's 14561a77c24bSEric Saxe * PG data is under construction. In this case the argument "pgdata", if not 14571a77c24bSEric Saxe * NULL, is a reference to the CPU's under-construction PG data. 14586890d023SEric Saxe */ 14590e751525SEric Saxe static int 14601a77c24bSEric Saxe pg_cmt_prune(pg_cmt_t *pg_bad, pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 14610e751525SEric Saxe { 14620e751525SEric Saxe group_t *hwset, *children; 14630e751525SEric Saxe int i, j, r, size = *sz; 14640e751525SEric Saxe group_iter_t hw_iter, child_iter; 14650e751525SEric Saxe pg_cpu_itr_t cpu_iter; 14660e751525SEric Saxe pg_cmt_t *pg, *child; 14670e751525SEric Saxe cpu_t *cpu; 14680e751525SEric Saxe int cap_needed; 14690e751525SEric Saxe pghw_type_t hw; 14706890d023SEric Saxe 14710e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 14726890d023SEric Saxe 14730e751525SEric Saxe hw = ((pghw_t *)pg_bad)->pghw_hw; 14740e751525SEric Saxe 14750e751525SEric Saxe if (hw == PGHW_POW_ACTIVE) { 14760e751525SEric Saxe cmn_err(CE_NOTE, "!Active CPUPM domain groups look suspect. " 14770e751525SEric Saxe "Event Based CPUPM Unavailable"); 14780e751525SEric Saxe } else if (hw == PGHW_POW_IDLE) { 14790e751525SEric Saxe cmn_err(CE_NOTE, "!Idle CPUPM domain groups look suspect. " 14800e751525SEric Saxe "Dispatcher assisted CPUPM disabled."); 14810e751525SEric Saxe } 14826890d023SEric Saxe 14836890d023SEric Saxe /* 14840e751525SEric Saxe * Find and eliminate the PG from the lineage. 14856890d023SEric Saxe */ 14860e751525SEric Saxe for (i = 0; i < size; i++) { 14870e751525SEric Saxe if (lineage[i] == pg_bad) { 14880e751525SEric Saxe for (j = i; j < size - 1; j++) 14890e751525SEric Saxe lineage[j] = lineage[j + 1]; 14900e751525SEric Saxe *sz = size - 1; 14910e751525SEric Saxe break; 14920e751525SEric Saxe } 14930e751525SEric Saxe } 14940e751525SEric Saxe 14950e751525SEric Saxe /* 14960e751525SEric Saxe * We'll prune all instances of the hardware sharing relationship 14970e751525SEric Saxe * represented by pg. But before we do that (and pause CPUs) we need 14980e751525SEric Saxe * to ensure the hierarchy's groups are properly sized. 14990e751525SEric Saxe */ 15000e751525SEric Saxe hwset = pghw_set_lookup(hw); 15010e751525SEric Saxe 15020e751525SEric Saxe /* 1503d0e93b69SEric Saxe * Blacklist the hardware so future processor groups of this type won't 1504d0e93b69SEric Saxe * participate in CMT thread placement. 1505d0e93b69SEric Saxe * 1506d0e93b69SEric Saxe * XXX 1507d0e93b69SEric Saxe * For heterogeneous system configurations, this might be overkill. 1508d0e93b69SEric Saxe * We may only need to blacklist the illegal PGs, and other instances 1509d0e93b69SEric Saxe * of this hardware sharing relationship may be ok. 15100e751525SEric Saxe */ 15110e751525SEric Saxe cmt_hw_blacklisted[hw] = 1; 15120e751525SEric Saxe 15130e751525SEric Saxe /* 15140e751525SEric Saxe * For each of the PGs being pruned, ensure sufficient capacity in 15150e751525SEric Saxe * the siblings set for the PG's children 15160e751525SEric Saxe */ 15170e751525SEric Saxe group_iter_init(&hw_iter); 15180e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 15190e751525SEric Saxe /* 15200e751525SEric Saxe * PG is being pruned, but if it is bringing up more than 15210e751525SEric Saxe * one child, ask for more capacity in the siblings group. 15220e751525SEric Saxe */ 15230e751525SEric Saxe cap_needed = 0; 15240e751525SEric Saxe if (pg->cmt_children && 15250e751525SEric Saxe GROUP_SIZE(pg->cmt_children) > 1) { 15260e751525SEric Saxe cap_needed = GROUP_SIZE(pg->cmt_children) - 1; 15270e751525SEric Saxe 15280e751525SEric Saxe group_expand(pg->cmt_siblings, 15290e751525SEric Saxe GROUP_SIZE(pg->cmt_siblings) + cap_needed); 15300e751525SEric Saxe 15310e751525SEric Saxe /* 15320e751525SEric Saxe * If this is a top level group, also ensure the 15330e751525SEric Saxe * capacity in the root lgrp level CMT grouping. 15340e751525SEric Saxe */ 15350e751525SEric Saxe if (pg->cmt_parent == NULL && 15360e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 15370e751525SEric Saxe group_expand(&cmt_root->cl_pgs, 15380e751525SEric Saxe GROUP_SIZE(&cmt_root->cl_pgs) + cap_needed); 1539d0e93b69SEric Saxe cmt_root->cl_npgs += cap_needed; 15400e751525SEric Saxe } 15410e751525SEric Saxe } 15420e751525SEric Saxe } 15430e751525SEric Saxe 15440e751525SEric Saxe /* 15450e751525SEric Saxe * We're operating on the PG hierarchy. Pause CPUs to ensure 15460e751525SEric Saxe * exclusivity with respect to the dispatcher. 15470e751525SEric Saxe */ 15480e751525SEric Saxe pause_cpus(NULL); 15490e751525SEric Saxe 15500e751525SEric Saxe /* 15510e751525SEric Saxe * Prune all PG instances of the hardware sharing relationship 15520e751525SEric Saxe * represented by pg. 15530e751525SEric Saxe */ 15540e751525SEric Saxe group_iter_init(&hw_iter); 15550e751525SEric Saxe while ((pg = group_iterate(hwset, &hw_iter)) != NULL) { 15560e751525SEric Saxe 15570e751525SEric Saxe /* 15580e751525SEric Saxe * Remove PG from it's group of siblings, if it's there. 15590e751525SEric Saxe */ 15600e751525SEric Saxe if (pg->cmt_siblings) { 15610e751525SEric Saxe (void) group_remove(pg->cmt_siblings, pg, GRP_NORESIZE); 15620e751525SEric Saxe } 15630e751525SEric Saxe if (pg->cmt_parent == NULL && 15640e751525SEric Saxe pg->cmt_siblings != &cmt_root->cl_pgs) { 15650e751525SEric Saxe (void) group_remove(&cmt_root->cl_pgs, pg, 15660e751525SEric Saxe GRP_NORESIZE); 15670e751525SEric Saxe } 1568d0e93b69SEric Saxe 1569d0e93b69SEric Saxe /* 1570d0e93b69SEric Saxe * Indicate that no CMT policy will be implemented across 1571d0e93b69SEric Saxe * this PG. 1572d0e93b69SEric Saxe */ 1573d0e93b69SEric Saxe pg->cmt_policy = CMT_NO_POLICY; 1574d0e93b69SEric Saxe 15750e751525SEric Saxe /* 1576ef4f35d8SEric Saxe * Move PG's children from it's children set to it's parent's 1577ef4f35d8SEric Saxe * children set. Note that the parent's children set, and PG's 1578ef4f35d8SEric Saxe * siblings set are the same thing. 1579ef4f35d8SEric Saxe * 1580ef4f35d8SEric Saxe * Because we are iterating over the same group that we are 1581ef4f35d8SEric Saxe * operating on (removing the children), first add all of PG's 1582ef4f35d8SEric Saxe * children to the parent's children set, and once we are done 1583ef4f35d8SEric Saxe * iterating, empty PG's children set. 15840e751525SEric Saxe */ 15850e751525SEric Saxe if (pg->cmt_children != NULL) { 15860e751525SEric Saxe children = pg->cmt_children; 15870e751525SEric Saxe 15880e751525SEric Saxe group_iter_init(&child_iter); 15890e751525SEric Saxe while ((child = group_iterate(children, &child_iter)) 15900e751525SEric Saxe != NULL) { 1591ef4f35d8SEric Saxe if (pg->cmt_siblings != NULL) { 15920e751525SEric Saxe r = group_add(pg->cmt_siblings, child, 15930e751525SEric Saxe GRP_NORESIZE); 15940e751525SEric Saxe ASSERT(r == 0); 1595d0e93b69SEric Saxe 1596d0e93b69SEric Saxe if (pg->cmt_parent == NULL && 1597d0e93b69SEric Saxe pg->cmt_siblings != 1598d0e93b69SEric Saxe &cmt_root->cl_pgs) { 1599d0e93b69SEric Saxe r = group_add(&cmt_root->cl_pgs, 1600d0e93b69SEric Saxe child, GRP_NORESIZE); 1601d0e93b69SEric Saxe ASSERT(r == 0); 1602d0e93b69SEric Saxe } 16030e751525SEric Saxe } 16040e751525SEric Saxe } 1605ef4f35d8SEric Saxe group_empty(pg->cmt_children); 16060e751525SEric Saxe } 16070e751525SEric Saxe 16080e751525SEric Saxe /* 16090e751525SEric Saxe * Reset the callbacks to the defaults 16100e751525SEric Saxe */ 16110e751525SEric Saxe pg_callback_set_defaults((pg_t *)pg); 16120e751525SEric Saxe 16130e751525SEric Saxe /* 16140e751525SEric Saxe * Update all the CPU lineages in each of PG's CPUs 16150e751525SEric Saxe */ 16160e751525SEric Saxe PG_CPU_ITR_INIT(pg, cpu_iter); 16170e751525SEric Saxe while ((cpu = pg_cpu_next(&cpu_iter)) != NULL) { 16180e751525SEric Saxe pg_cmt_t *cpu_pg; 16190e751525SEric Saxe group_iter_t liter; /* Iterator for the lineage */ 16201a77c24bSEric Saxe cpu_pg_t *cpd; /* CPU's PG data */ 16211a77c24bSEric Saxe 16221a77c24bSEric Saxe /* 16231a77c24bSEric Saxe * The CPU's lineage is under construction still 16241a77c24bSEric Saxe * references the bootstrap CPU PG data structure. 16251a77c24bSEric Saxe */ 16261a77c24bSEric Saxe if (pg_cpu_is_bootstrapped(cpu)) 16271a77c24bSEric Saxe cpd = pgdata; 16281a77c24bSEric Saxe else 16291a77c24bSEric Saxe cpd = cpu->cpu_pg; 16300e751525SEric Saxe 16310e751525SEric Saxe /* 16320e751525SEric Saxe * Iterate over the CPU's PGs updating the children 16330e751525SEric Saxe * of the PG being promoted, since they have a new 16340e751525SEric Saxe * parent and siblings set. 16350e751525SEric Saxe */ 16360e751525SEric Saxe group_iter_init(&liter); 16371a77c24bSEric Saxe while ((cpu_pg = group_iterate(&cpd->pgs, 16381a77c24bSEric Saxe &liter)) != NULL) { 16390e751525SEric Saxe if (cpu_pg->cmt_parent == pg) { 16400e751525SEric Saxe cpu_pg->cmt_parent = pg->cmt_parent; 16410e751525SEric Saxe cpu_pg->cmt_siblings = pg->cmt_siblings; 16420e751525SEric Saxe } 16430e751525SEric Saxe } 16440e751525SEric Saxe 16450e751525SEric Saxe /* 16460e751525SEric Saxe * Update the CPU's lineages 1647d0e93b69SEric Saxe * 1648d0e93b69SEric Saxe * Remove the PG from the CPU's group used for CMT 1649d0e93b69SEric Saxe * scheduling. 16500e751525SEric Saxe */ 16511a77c24bSEric Saxe (void) group_remove(&cpd->cmt_pgs, pg, GRP_NORESIZE); 16520e751525SEric Saxe } 16530e751525SEric Saxe } 16540e751525SEric Saxe start_cpus(); 16550e751525SEric Saxe return (0); 16560e751525SEric Saxe } 16570e751525SEric Saxe 16580e751525SEric Saxe /* 16590e751525SEric Saxe * Disable CMT scheduling 16600e751525SEric Saxe */ 16610e751525SEric Saxe static void 16620e751525SEric Saxe pg_cmt_disable(void) 16630e751525SEric Saxe { 16640e751525SEric Saxe cpu_t *cpu; 16650e751525SEric Saxe 16661a77c24bSEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 16671a77c24bSEric Saxe 16680e751525SEric Saxe pause_cpus(NULL); 16690e751525SEric Saxe cpu = cpu_list; 16700e751525SEric Saxe 16716890d023SEric Saxe do { 16720e751525SEric Saxe if (cpu->cpu_pg) 16730e751525SEric Saxe group_empty(&cpu->cpu_pg->cmt_pgs); 16740e751525SEric Saxe } while ((cpu = cpu->cpu_next) != cpu_list); 16750e751525SEric Saxe 16760e751525SEric Saxe cmt_sched_disabled = 1; 16770e751525SEric Saxe start_cpus(); 16780e751525SEric Saxe cmn_err(CE_NOTE, "!CMT thread placement optimizations unavailable"); 16790e751525SEric Saxe } 16800e751525SEric Saxe 1681ef4f35d8SEric Saxe /* 1682ef4f35d8SEric Saxe * CMT lineage validation 1683ef4f35d8SEric Saxe * 1684ef4f35d8SEric Saxe * This routine is invoked by pg_cmt_cpu_init() to validate the integrity 1685ef4f35d8SEric Saxe * of the PGs in a CPU's lineage. This is necessary because it's possible that 1686ef4f35d8SEric Saxe * some groupings (power domain groupings in particular) may be defined by 1687ef4f35d8SEric Saxe * sources that are buggy (e.g. BIOS bugs). In such cases, it may not be 1688ef4f35d8SEric Saxe * possible to integrate those groupings into the CMT PG hierarchy, if doing 1689ef4f35d8SEric Saxe * so would violate the subset invariant of the hierarchy, which says that 1690ef4f35d8SEric Saxe * a PG must be subset of its parent (if it has one). 1691ef4f35d8SEric Saxe * 1692ef4f35d8SEric Saxe * pg_cmt_lineage_validate()'s purpose is to detect grouping definitions that 1693ef4f35d8SEric Saxe * would result in a violation of this invariant. If a violation is found, 1694ef4f35d8SEric Saxe * and the PG is of a grouping type who's definition is known to originate from 1695ef4f35d8SEric Saxe * suspect sources (BIOS), then pg_cmt_prune() will be invoked to prune the 1696b025faeeSEric Saxe * PG (and all other instances PG's sharing relationship type) from the CMT 1697ef4f35d8SEric Saxe * hierarchy. Further, future instances of that sharing relationship type won't 1698b025faeeSEric Saxe * be added. If the grouping definition doesn't originate from suspect 1699ef4f35d8SEric Saxe * sources, then pg_cmt_disable() will be invoked to log an error, and disable 1700ef4f35d8SEric Saxe * CMT scheduling altogether. 1701ef4f35d8SEric Saxe * 1702ef4f35d8SEric Saxe * This routine is invoked after the CPU has been added to the PGs in which 1703ef4f35d8SEric Saxe * it belongs, but before those PGs have been added to (or had their place 1704ef4f35d8SEric Saxe * adjusted in) the CMT PG hierarchy. 1705ef4f35d8SEric Saxe * 1706ef4f35d8SEric Saxe * The first argument is the CPUs PG lineage (essentially an array of PGs in 1707ef4f35d8SEric Saxe * which the CPU belongs) that has already been sorted in ascending order 1708ef4f35d8SEric Saxe * by CPU count. Some of the PGs in the CPUs lineage may already have other 1709ef4f35d8SEric Saxe * CPUs in them, and have already been integrated into the CMT hierarchy. 1710ef4f35d8SEric Saxe * 1711ef4f35d8SEric Saxe * The addition of this new CPU to these pre-existing PGs means that those 1712ef4f35d8SEric Saxe * PGs may need to be promoted up in the hierarchy to satisfy the subset 1713ef4f35d8SEric Saxe * invariant. In additon to testing the subset invariant for the lineage, 1714ef4f35d8SEric Saxe * this routine also verifies that the addition of the new CPU to the 1715ef4f35d8SEric Saxe * existing PGs wouldn't cause the subset invariant to be violated in 1716ef4f35d8SEric Saxe * the exiting lineages. 1717ef4f35d8SEric Saxe * 1718ef4f35d8SEric Saxe * This routine will normally return one of the following: 1719ef4f35d8SEric Saxe * CMT_LINEAGE_VALID - There were no problems detected with the lineage. 1720ef4f35d8SEric Saxe * CMT_LINEAGE_REPAIRED - Problems were detected, but repaired via pruning. 1721ef4f35d8SEric Saxe * 1722ef4f35d8SEric Saxe * Otherwise, this routine will return a value indicating which error it 1723ef4f35d8SEric Saxe * was unable to recover from (and set cmt_lineage_status along the way). 17241a77c24bSEric Saxe * 17251a77c24bSEric Saxe * This routine operates on the CPU specific processor group data (for the CPU 17261a77c24bSEric Saxe * whose lineage is being validated), which is under-construction. 17271a77c24bSEric Saxe * "pgdata" is a reference to the CPU's under-construction PG data. 17281a77c24bSEric Saxe * This routine must be careful to operate only on "pgdata", and not cp->cpu_pg. 1729ef4f35d8SEric Saxe */ 1730ef4f35d8SEric Saxe static cmt_lineage_validation_t 17311a77c24bSEric Saxe pg_cmt_lineage_validate(pg_cmt_t **lineage, int *sz, cpu_pg_t *pgdata) 17320e751525SEric Saxe { 1733ef4f35d8SEric Saxe int i, j, size; 1734b025faeeSEric Saxe pg_cmt_t *pg, *pg_next, *pg_bad, *pg_tmp, *parent; 17350e751525SEric Saxe cpu_t *cp; 17360e751525SEric Saxe pg_cpu_itr_t cpu_iter; 1737ef4f35d8SEric Saxe lgrp_handle_t lgrp; 17380e751525SEric Saxe 17390e751525SEric Saxe ASSERT(MUTEX_HELD(&cpu_lock)); 17400e751525SEric Saxe 17410e751525SEric Saxe revalidate: 17420e751525SEric Saxe size = *sz; 17430e751525SEric Saxe pg_bad = NULL; 1744ef4f35d8SEric Saxe lgrp = LGRP_NULL_HANDLE; 1745ef4f35d8SEric Saxe for (i = 0; i < size; i++) { 17460e751525SEric Saxe 17470e751525SEric Saxe pg = lineage[i]; 1748ef4f35d8SEric Saxe if (i < size - 1) 1749ef4f35d8SEric Saxe pg_next = lineage[i + 1]; 1750ef4f35d8SEric Saxe else 1751ef4f35d8SEric Saxe pg_next = NULL; 17526890d023SEric Saxe 17536890d023SEric Saxe /* 17540e751525SEric Saxe * We assume that the lineage has already been sorted 17550e751525SEric Saxe * by the number of CPUs. In fact, we depend on it. 17566890d023SEric Saxe */ 1757ef4f35d8SEric Saxe ASSERT(pg_next == NULL || 1758ef4f35d8SEric Saxe (PG_NUM_CPUS((pg_t *)pg) <= PG_NUM_CPUS((pg_t *)pg_next))); 17596890d023SEric Saxe 17606890d023SEric Saxe /* 1761b025faeeSEric Saxe * The CPUs PG lineage was passed as the first argument to 1762b025faeeSEric Saxe * this routine and contains the sorted list of the CPU's 1763b025faeeSEric Saxe * PGs. Ultimately, the ordering of the PGs in that list, and 1764b025faeeSEric Saxe * the ordering as traversed by the cmt_parent list must be 1765b025faeeSEric Saxe * the same. PG promotion will be used as the mechanism to 1766b025faeeSEric Saxe * achieve this, but first we need to look for cases where 1767b025faeeSEric Saxe * promotion will be necessary, and validate that will be 1768b025faeeSEric Saxe * possible without violating the subset invarient described 1769b025faeeSEric Saxe * above. 1770ef4f35d8SEric Saxe * 1771ef4f35d8SEric Saxe * Since the PG topology is in the middle of being changed, we 1772ef4f35d8SEric Saxe * need to check whether the PG's existing parent (if any) is 1773b025faeeSEric Saxe * part of this CPU's lineage (and therefore should contain 1774b025faeeSEric Saxe * the new CPU). If not, it means that the addition of the 1775b025faeeSEric Saxe * new CPU should have made this PG have more CPUs than its 1776b025faeeSEric Saxe * parent (and other ancestors not in the same lineage) and 1777b025faeeSEric Saxe * will need to be promoted into place. 1778b025faeeSEric Saxe * 1779b025faeeSEric Saxe * We need to verify all of this to defend against a buggy 1780ef4f35d8SEric Saxe * BIOS giving bad power domain CPU groupings. Sigh. 1781ef4f35d8SEric Saxe */ 1782b025faeeSEric Saxe parent = pg->cmt_parent; 1783b025faeeSEric Saxe while (parent != NULL) { 1784ef4f35d8SEric Saxe /* 1785b025faeeSEric Saxe * Determine if the parent/ancestor is in this lineage 1786ef4f35d8SEric Saxe */ 1787b025faeeSEric Saxe pg_tmp = NULL; 1788b025faeeSEric Saxe for (j = 0; (j < size) && (pg_tmp != parent); j++) { 1789ef4f35d8SEric Saxe pg_tmp = lineage[j]; 1790b025faeeSEric Saxe } 1791b025faeeSEric Saxe if (pg_tmp == parent) { 1792b025faeeSEric Saxe /* 1793b025faeeSEric Saxe * It's in the lineage. The concentricity 1794b025faeeSEric Saxe * checks will handle the rest. 1795b025faeeSEric Saxe */ 1796ef4f35d8SEric Saxe break; 1797ef4f35d8SEric Saxe } 1798ef4f35d8SEric Saxe /* 1799b025faeeSEric Saxe * If it is not in the lineage, PG will eventually 1800b025faeeSEric Saxe * need to be promoted above it. Verify the ancestor 1801b025faeeSEric Saxe * is a proper subset. There is still an error if 1802b025faeeSEric Saxe * the ancestor has the same number of CPUs as PG, 1803b025faeeSEric Saxe * since that would imply it should be in the lineage, 1804b025faeeSEric Saxe * and we already know it isn't. 1805ef4f35d8SEric Saxe */ 1806b025faeeSEric Saxe if (PG_NUM_CPUS((pg_t *)parent) >= 1807ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg)) { 1808ef4f35d8SEric Saxe /* 1809b025faeeSEric Saxe * Not a proper subset if the parent/ancestor 1810b025faeeSEric Saxe * has the same or more CPUs than PG. 1811ef4f35d8SEric Saxe */ 1812b025faeeSEric Saxe cmt_lineage_status = CMT_LINEAGE_NON_PROMOTABLE; 1813ef4f35d8SEric Saxe goto handle_error; 1814ef4f35d8SEric Saxe } 1815b025faeeSEric Saxe parent = parent->cmt_parent; 1816ef4f35d8SEric Saxe } 1817ef4f35d8SEric Saxe 1818ef4f35d8SEric Saxe /* 1819ef4f35d8SEric Saxe * Walk each of the CPUs in the PGs group and perform 1820ef4f35d8SEric Saxe * consistency checks along the way. 18216890d023SEric Saxe */ 18220e751525SEric Saxe PG_CPU_ITR_INIT((pg_t *)pg, cpu_iter); 18230e751525SEric Saxe while ((cp = pg_cpu_next(&cpu_iter)) != NULL) { 1824ef4f35d8SEric Saxe /* 1825ef4f35d8SEric Saxe * Verify that there aren't any CPUs contained in PG 1826ef4f35d8SEric Saxe * that the next PG in the lineage (which is larger 1827ef4f35d8SEric Saxe * or same size) doesn't also contain. 1828ef4f35d8SEric Saxe */ 1829ef4f35d8SEric Saxe if (pg_next != NULL && 1830ef4f35d8SEric Saxe pg_cpu_find((pg_t *)pg_next, cp) == B_FALSE) { 18310e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_NON_CONCENTRIC; 18320e751525SEric Saxe goto handle_error; 18336890d023SEric Saxe } 1834ef4f35d8SEric Saxe 1835ef4f35d8SEric Saxe /* 1836ef4f35d8SEric Saxe * Verify that all the CPUs in the PG are in the same 1837ef4f35d8SEric Saxe * lgroup. 1838ef4f35d8SEric Saxe */ 1839ef4f35d8SEric Saxe if (lgrp == LGRP_NULL_HANDLE) { 1840ef4f35d8SEric Saxe lgrp = lgrp_plat_cpu_to_hand(cp->cpu_id); 1841ef4f35d8SEric Saxe } else if (lgrp_plat_cpu_to_hand(cp->cpu_id) != lgrp) { 1842ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_PG_SPANS_LGRPS; 1843ef4f35d8SEric Saxe goto handle_error; 1844ef4f35d8SEric Saxe } 18450e751525SEric Saxe } 18466890d023SEric Saxe } 18476890d023SEric Saxe 18480e751525SEric Saxe handle_error: 1849ef4f35d8SEric Saxe /* 1850ef4f35d8SEric Saxe * Some of these validation errors can result when the CPU grouping 1851ef4f35d8SEric Saxe * information is derived from buggy sources (for example, incorrect 1852ef4f35d8SEric Saxe * ACPI tables on x86 systems). 1853ef4f35d8SEric Saxe * 1854ef4f35d8SEric Saxe * We'll try to recover in such cases by pruning out the illegal 1855ef4f35d8SEric Saxe * groupings from the PG hierarchy, which means that we won't optimize 1856ef4f35d8SEric Saxe * for those levels, but we will for the remaining ones. 1857ef4f35d8SEric Saxe */ 18580e751525SEric Saxe switch (cmt_lineage_status) { 18590e751525SEric Saxe case CMT_LINEAGE_VALID: 18600e751525SEric Saxe case CMT_LINEAGE_REPAIRED: 18610e751525SEric Saxe break; 1862ef4f35d8SEric Saxe case CMT_LINEAGE_PG_SPANS_LGRPS: 1863ef4f35d8SEric Saxe /* 1864ef4f35d8SEric Saxe * We've detected a PG whose CPUs span lgroups. 1865ef4f35d8SEric Saxe * 1866ef4f35d8SEric Saxe * This isn't supported, as the dispatcher isn't allowed to 1867ef4f35d8SEric Saxe * to do CMT thread placement across lgroups, as this would 1868ef4f35d8SEric Saxe * conflict with policies implementing MPO thread affinity. 1869ef4f35d8SEric Saxe * 1870d0e93b69SEric Saxe * If the PG is of a sharing relationship type known to 1871d0e93b69SEric Saxe * legitimately span lgroups, specify that no CMT thread 1872d0e93b69SEric Saxe * placement policy should be implemented, and prune the PG 1873d0e93b69SEric Saxe * from the existing CMT PG hierarchy. 1874d0e93b69SEric Saxe * 1875d0e93b69SEric Saxe * Otherwise, fall though to the case below for handling. 1876ef4f35d8SEric Saxe */ 1877d0e93b69SEric Saxe if (((pghw_t *)pg)->pghw_hw == PGHW_CHIP) { 1878d0e93b69SEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1879d0e93b69SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1880d0e93b69SEric Saxe goto revalidate; 1881d0e93b69SEric Saxe } 1882d0e93b69SEric Saxe } 1883d0e93b69SEric Saxe /*LINTED*/ 1884ef4f35d8SEric Saxe case CMT_LINEAGE_NON_PROMOTABLE: 1885ef4f35d8SEric Saxe /* 1886ef4f35d8SEric Saxe * We've detected a PG that already exists in another CPU's 1887ef4f35d8SEric Saxe * lineage that cannot cannot legally be promoted into place 1888ef4f35d8SEric Saxe * without breaking the invariants of the hierarchy. 1889ef4f35d8SEric Saxe */ 1890ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 18911a77c24bSEric Saxe if (pg_cmt_prune(pg, lineage, sz, pgdata) == 0) { 1892ef4f35d8SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 1893ef4f35d8SEric Saxe goto revalidate; 1894ef4f35d8SEric Saxe } 1895ef4f35d8SEric Saxe } 1896ef4f35d8SEric Saxe /* 1897ef4f35d8SEric Saxe * Something went wrong trying to prune out the bad level. 1898ef4f35d8SEric Saxe * Disable CMT scheduling altogether. 1899ef4f35d8SEric Saxe */ 1900ef4f35d8SEric Saxe pg_cmt_disable(); 1901ef4f35d8SEric Saxe break; 19020e751525SEric Saxe case CMT_LINEAGE_NON_CONCENTRIC: 19036890d023SEric Saxe /* 1904ef4f35d8SEric Saxe * We've detected a non-concentric PG lineage, which means that 1905ef4f35d8SEric Saxe * there's a PG in the lineage that has CPUs that the next PG 1906ef4f35d8SEric Saxe * over in the lineage (which is the same size or larger) 1907ef4f35d8SEric Saxe * doesn't have. 19080e751525SEric Saxe * 1909ef4f35d8SEric Saxe * In this case, we examine the two PGs to see if either 1910ef4f35d8SEric Saxe * grouping is defined by potentially buggy sources. 19110e751525SEric Saxe * 19120e751525SEric Saxe * If one has less CPUs than the other, and contains CPUs 19130e751525SEric Saxe * not found in the parent, and it is an untrusted enumeration, 19140e751525SEric Saxe * then prune it. If both have the same number of CPUs, then 19150e751525SEric Saxe * prune the one that is untrusted. 19160e751525SEric Saxe * 19170e751525SEric Saxe * This process repeats until we have a concentric lineage, 19180e751525SEric Saxe * or we would have to prune out level derived from what we 19190e751525SEric Saxe * thought was a reliable source, in which case CMT scheduling 1920ef4f35d8SEric Saxe * is disabled altogether. 19216890d023SEric Saxe */ 1922ef4f35d8SEric Saxe if ((PG_NUM_CPUS((pg_t *)pg) < PG_NUM_CPUS((pg_t *)pg_next)) && 19230e751525SEric Saxe (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw))) { 19240e751525SEric Saxe pg_bad = pg; 19250e751525SEric Saxe } else if (PG_NUM_CPUS((pg_t *)pg) == 1926ef4f35d8SEric Saxe PG_NUM_CPUS((pg_t *)pg_next)) { 1927ef4f35d8SEric Saxe if (PG_CMT_HW_SUSPECT(((pghw_t *)pg_next)->pghw_hw)) { 1928ef4f35d8SEric Saxe pg_bad = pg_next; 19290e751525SEric Saxe } else if (PG_CMT_HW_SUSPECT(((pghw_t *)pg)->pghw_hw)) { 19300e751525SEric Saxe pg_bad = pg; 19316890d023SEric Saxe } 19326890d023SEric Saxe } 19330e751525SEric Saxe if (pg_bad) { 19341a77c24bSEric Saxe if (pg_cmt_prune(pg_bad, lineage, sz, pgdata) == 0) { 19350e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_REPAIRED; 19360e751525SEric Saxe goto revalidate; 19370e751525SEric Saxe } 19380e751525SEric Saxe } 19390e751525SEric Saxe /* 1940ef4f35d8SEric Saxe * Something went wrong trying to identify and/or prune out 1941ef4f35d8SEric Saxe * the bad level. Disable CMT scheduling altogether. 19420e751525SEric Saxe */ 19430e751525SEric Saxe pg_cmt_disable(); 1944ef4f35d8SEric Saxe break; 1945ef4f35d8SEric Saxe default: 1946ef4f35d8SEric Saxe /* 1947ef4f35d8SEric Saxe * If we're here, we've encountered a validation error for 1948ef4f35d8SEric Saxe * which we don't know how to recover. In this case, disable 1949ef4f35d8SEric Saxe * CMT scheduling altogether. 1950ef4f35d8SEric Saxe */ 19510e751525SEric Saxe cmt_lineage_status = CMT_LINEAGE_UNRECOVERABLE; 1952ef4f35d8SEric Saxe pg_cmt_disable(); 19530e751525SEric Saxe } 1954ef4f35d8SEric Saxe return (cmt_lineage_status); 19556890d023SEric Saxe } 1956