xref: /titanic_51/usr/src/uts/common/crypto/spi/kcf_spi.c (revision f9ead4a57883f3ef04ef20d83cc47987d98c0687)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file is part of the core Kernel Cryptographic Framework.
28  * It implements the SPI functions exported to cryptographic
29  * providers.
30  */
31 
32 #include <sys/ksynch.h>
33 #include <sys/cmn_err.h>
34 #include <sys/ddi.h>
35 #include <sys/sunddi.h>
36 #include <sys/modctl.h>
37 #include <sys/crypto/common.h>
38 #include <sys/crypto/impl.h>
39 #include <sys/crypto/sched_impl.h>
40 #include <sys/crypto/spi.h>
41 #include <sys/crypto/ioctladmin.h>
42 #include <sys/taskq.h>
43 #include <sys/disp.h>
44 #include <sys/kstat.h>
45 #include <sys/policy.h>
46 #include <sys/cpuvar.h>
47 
48 /*
49  * minalloc and maxalloc values to be used for taskq_create().
50  */
51 int crypto_taskq_threads = CRYPTO_TASKQ_THREADS;
52 int crypto_taskq_minalloc = CYRPTO_TASKQ_MIN;
53 int crypto_taskq_maxalloc = CRYPTO_TASKQ_MAX;
54 
55 static void remove_provider(kcf_provider_desc_t *);
56 static void process_logical_providers(crypto_provider_info_t *,
57     kcf_provider_desc_t *);
58 static int init_prov_mechs(crypto_provider_info_t *, kcf_provider_desc_t *);
59 static int kcf_prov_kstat_update(kstat_t *, int);
60 static void undo_register_provider_extra(kcf_provider_desc_t *);
61 static void delete_kstat(kcf_provider_desc_t *);
62 
63 static kcf_prov_stats_t kcf_stats_ks_data_template = {
64 	{ "kcf_ops_total",		KSTAT_DATA_UINT64 },
65 	{ "kcf_ops_passed",		KSTAT_DATA_UINT64 },
66 	{ "kcf_ops_failed",		KSTAT_DATA_UINT64 },
67 	{ "kcf_ops_returned_busy",	KSTAT_DATA_UINT64 }
68 };
69 
70 #define	KCF_SPI_COPY_OPS(src, dst, ops) if ((src)->ops != NULL) \
71 	*((dst)->ops) = *((src)->ops);
72 
73 /*
74  * Copy an ops vector from src to dst. Used during provider registration
75  * to copy the ops vector from the provider info structure to the
76  * provider descriptor maintained by KCF.
77  * Copying the ops vector specified by the provider is needed since the
78  * framework does not require the provider info structure to be
79  * persistent.
80  */
81 static void
82 copy_ops_vector_v1(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
83 {
84 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_control_ops);
85 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_digest_ops);
86 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_cipher_ops);
87 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mac_ops);
88 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_sign_ops);
89 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_verify_ops);
90 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_ops);
91 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_cipher_mac_ops);
92 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_random_ops);
93 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_session_ops);
94 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_object_ops);
95 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_key_ops);
96 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_provider_ops);
97 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_ctx_ops);
98 }
99 
100 static void
101 copy_ops_vector_v2(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
102 {
103 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mech_ops);
104 }
105 
106 static void
107 copy_ops_vector_v3(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
108 {
109 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_nostore_key_ops);
110 }
111 
112 static void
113 copy_ops_vector_v4(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
114 {
115 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_fips140_ops);
116 }
117 
118 /*
119  * This routine is used to add cryptographic providers to the KEF framework.
120  * Providers pass a crypto_provider_info structure to crypto_register_provider()
121  * and get back a handle.  The crypto_provider_info structure contains a
122  * list of mechanisms supported by the provider and an ops vector containing
123  * provider entry points.  Hardware providers call this routine in their attach
124  * routines.  Software providers call this routine in their _init() routine.
125  */
126 int
127 crypto_register_provider(crypto_provider_info_t *info,
128     crypto_kcf_provider_handle_t *handle)
129 {
130 	int need_fips140_verify, need_verify = 1;
131 	struct modctl *mcp;
132 	char *name;
133 	char ks_name[KSTAT_STRLEN];
134 	kcf_provider_desc_t *prov_desc = NULL;
135 	int ret = CRYPTO_ARGUMENTS_BAD;
136 
137 	if (info->pi_interface_version > CRYPTO_SPI_VERSION_4)
138 		return (CRYPTO_VERSION_MISMATCH);
139 
140 	/*
141 	 * Check provider type, must be software, hardware, or logical.
142 	 */
143 	if (info->pi_provider_type != CRYPTO_HW_PROVIDER &&
144 	    info->pi_provider_type != CRYPTO_SW_PROVIDER &&
145 	    info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER)
146 		return (CRYPTO_ARGUMENTS_BAD);
147 
148 	/*
149 	 * Allocate and initialize a new provider descriptor. We also
150 	 * hold it and release it when done.
151 	 */
152 	prov_desc = kcf_alloc_provider_desc(info);
153 	KCF_PROV_REFHOLD(prov_desc);
154 
155 	prov_desc->pd_prov_type = info->pi_provider_type;
156 
157 	/* provider-private handle, opaque to KCF */
158 	prov_desc->pd_prov_handle = info->pi_provider_handle;
159 
160 	/* copy provider description string */
161 	if (info->pi_provider_description != NULL) {
162 		/*
163 		 * pi_provider_descriptor is a string that can contain
164 		 * up to CRYPTO_PROVIDER_DESCR_MAX_LEN + 1 characters
165 		 * INCLUDING the terminating null character. A bcopy()
166 		 * is necessary here as pd_description should not have
167 		 * a null character. See comments in kcf_alloc_provider_desc()
168 		 * for details on pd_description field.
169 		 */
170 		bcopy(info->pi_provider_description, prov_desc->pd_description,
171 		    min(strlen(info->pi_provider_description),
172 		    CRYPTO_PROVIDER_DESCR_MAX_LEN));
173 	}
174 
175 	if (info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) {
176 		if (info->pi_ops_vector == NULL) {
177 			goto bail;
178 		}
179 		copy_ops_vector_v1(info->pi_ops_vector,
180 		    prov_desc->pd_ops_vector);
181 		if (info->pi_interface_version >= CRYPTO_SPI_VERSION_2) {
182 			copy_ops_vector_v2(info->pi_ops_vector,
183 			    prov_desc->pd_ops_vector);
184 			prov_desc->pd_flags = info->pi_flags;
185 		}
186 		if (info->pi_interface_version >= CRYPTO_SPI_VERSION_3) {
187 			copy_ops_vector_v3(info->pi_ops_vector,
188 			    prov_desc->pd_ops_vector);
189 		}
190 		if (info->pi_interface_version == CRYPTO_SPI_VERSION_4) {
191 			copy_ops_vector_v4(info->pi_ops_vector,
192 			    prov_desc->pd_ops_vector);
193 		}
194 	}
195 
196 	/* object_ops and nostore_key_ops are mutually exclusive */
197 	if (prov_desc->pd_ops_vector->co_object_ops &&
198 	    prov_desc->pd_ops_vector->co_nostore_key_ops) {
199 		goto bail;
200 	}
201 	/*
202 	 * For software providers, copy the module name and module ID.
203 	 * For hardware providers, copy the driver name and instance.
204 	 */
205 	switch (info->pi_provider_type) {
206 	case  CRYPTO_SW_PROVIDER:
207 		if (info->pi_provider_dev.pd_sw == NULL)
208 			goto bail;
209 
210 		if ((mcp = mod_getctl(info->pi_provider_dev.pd_sw)) == NULL)
211 			goto bail;
212 
213 		prov_desc->pd_module_id = mcp->mod_id;
214 		name = mcp->mod_modname;
215 		break;
216 
217 	case CRYPTO_HW_PROVIDER:
218 	case CRYPTO_LOGICAL_PROVIDER:
219 		if (info->pi_provider_dev.pd_hw == NULL)
220 			goto bail;
221 
222 		prov_desc->pd_instance =
223 		    ddi_get_instance(info->pi_provider_dev.pd_hw);
224 		name = (char *)ddi_driver_name(info->pi_provider_dev.pd_hw);
225 		break;
226 	}
227 	if (name == NULL)
228 		goto bail;
229 
230 	prov_desc->pd_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
231 	(void) strcpy(prov_desc->pd_name, name);
232 
233 	if ((prov_desc->pd_mctlp = kcf_get_modctl(info)) == NULL)
234 		goto bail;
235 
236 	/* process the mechanisms supported by the provider */
237 	if ((ret = init_prov_mechs(info, prov_desc)) != CRYPTO_SUCCESS)
238 		goto bail;
239 
240 	/*
241 	 * Add provider to providers tables, also sets the descriptor
242 	 * pd_prov_id field.
243 	 */
244 	if ((ret = kcf_prov_tab_add_provider(prov_desc)) != CRYPTO_SUCCESS) {
245 		undo_register_provider(prov_desc, B_FALSE);
246 		goto bail;
247 	}
248 
249 	if ((need_verify = kcf_need_signature_verification(prov_desc)) == -1) {
250 		undo_register_provider(prov_desc, B_TRUE);
251 		ret = CRYPTO_MODVERIFICATION_FAILED;
252 		goto bail;
253 	}
254 
255 	if ((need_fips140_verify =
256 	    kcf_need_fips140_verification(prov_desc)) == -1) {
257 		mutex_enter(&prov_desc->pd_lock);
258 		prov_desc->pd_state = KCF_PROV_VERIFICATION_FAILED;
259 		mutex_exit(&prov_desc->pd_lock);
260 		ret = CRYPTO_FIPS140_ERROR;
261 		goto bail;
262 	}
263 
264 	/*
265 	 * We create a taskq only for a hardware provider. The global
266 	 * software queue is used for software providers. We handle ordering
267 	 * of multi-part requests in the taskq routine. So, it is safe to
268 	 * have multiple threads for the taskq. We pass TASKQ_PREPOPULATE flag
269 	 * to keep some entries cached to improve performance.
270 	 */
271 	if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
272 		prov_desc->pd_taskq = taskq_create("kcf_taskq",
273 		    crypto_taskq_threads, minclsyspri,
274 		    crypto_taskq_minalloc, crypto_taskq_maxalloc,
275 		    TASKQ_PREPOPULATE);
276 	else
277 		prov_desc->pd_taskq = NULL;
278 
279 	/* no kernel session to logical providers */
280 	if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
281 		/*
282 		 * Open a session for session-oriented providers. This session
283 		 * is used for all kernel consumers. This is fine as a provider
284 		 * is required to support multiple thread access to a session.
285 		 * We can do this only after the taskq has been created as we
286 		 * do a kcf_submit_request() to open the session.
287 		 */
288 		if (KCF_PROV_SESSION_OPS(prov_desc) != NULL) {
289 			kcf_req_params_t params;
290 
291 			KCF_WRAP_SESSION_OPS_PARAMS(&params,
292 			    KCF_OP_SESSION_OPEN, &prov_desc->pd_sid, 0,
293 			    CRYPTO_USER, NULL, 0, prov_desc);
294 			ret = kcf_submit_request(prov_desc, NULL, NULL, &params,
295 			    B_FALSE);
296 
297 			if (ret != CRYPTO_SUCCESS) {
298 				undo_register_provider(prov_desc, B_TRUE);
299 				ret = CRYPTO_FAILED;
300 				goto bail;
301 			}
302 		}
303 	}
304 
305 	if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
306 		/*
307 		 * Create the kstat for this provider. There is a kstat
308 		 * installed for each successfully registered provider.
309 		 * This kstat is deleted, when the provider unregisters.
310 		 */
311 		if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
312 			(void) snprintf(ks_name, KSTAT_STRLEN, "%s_%s",
313 			    prov_desc->pd_name, "provider_stats");
314 		} else {
315 			(void) snprintf(ks_name, KSTAT_STRLEN, "%s_%d_%u_%s",
316 			    prov_desc->pd_name, prov_desc->pd_instance,
317 			    prov_desc->pd_prov_id, "provider_stats");
318 		}
319 
320 		prov_desc->pd_kstat = kstat_create("kcf", 0, ks_name, "crypto",
321 		    KSTAT_TYPE_NAMED, sizeof (kcf_prov_stats_t) /
322 		    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
323 
324 		if (prov_desc->pd_kstat != NULL) {
325 			bcopy(&kcf_stats_ks_data_template,
326 			    &prov_desc->pd_ks_data,
327 			    sizeof (kcf_stats_ks_data_template));
328 			prov_desc->pd_kstat->ks_data = &prov_desc->pd_ks_data;
329 			KCF_PROV_REFHOLD(prov_desc);
330 			prov_desc->pd_kstat->ks_private = prov_desc;
331 			prov_desc->pd_kstat->ks_update = kcf_prov_kstat_update;
332 			kstat_install(prov_desc->pd_kstat);
333 		}
334 	}
335 
336 	if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
337 		process_logical_providers(info, prov_desc);
338 
339 	/* This provider needs to wait until we know the FIPS 140 status */
340 	if (need_fips140_verify == 1) {
341 		mutex_enter(&prov_desc->pd_lock);
342 		prov_desc->pd_state = KCF_PROV_UNVERIFIED_FIPS140;
343 		mutex_exit(&prov_desc->pd_lock);
344 		goto exit;
345 	}
346 
347 	/* This provider needs to have the signature verified */
348 	if (need_verify == 1) {
349 		mutex_enter(&prov_desc->pd_lock);
350 		prov_desc->pd_state = KCF_PROV_UNVERIFIED;
351 		mutex_exit(&prov_desc->pd_lock);
352 
353 		/* kcf_verify_signature routine will release this hold */
354 		KCF_PROV_REFHOLD(prov_desc);
355 
356 		if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) {
357 			/*
358 			 * It is not safe to make the door upcall to kcfd from
359 			 * this context since the kcfd thread could reenter
360 			 * devfs. So, we dispatch a taskq job to do the
361 			 * verification and return to the provider.
362 			 */
363 			(void) taskq_dispatch(system_taskq,
364 			    kcf_verify_signature, (void *)prov_desc, TQ_SLEEP);
365 		} else if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
366 			kcf_verify_signature(prov_desc);
367 			if (prov_desc->pd_state ==
368 			    KCF_PROV_VERIFICATION_FAILED) {
369 				undo_register_provider_extra(prov_desc);
370 				ret = CRYPTO_MODVERIFICATION_FAILED;
371 				goto bail;
372 			}
373 		}
374 	} else {
375 		mutex_enter(&prov_desc->pd_lock);
376 		prov_desc->pd_state = KCF_PROV_READY;
377 		mutex_exit(&prov_desc->pd_lock);
378 		kcf_do_notify(prov_desc, B_TRUE);
379 	}
380 
381 exit:
382 	*handle = prov_desc->pd_kcf_prov_handle;
383 	ret = CRYPTO_SUCCESS;
384 
385 bail:
386 	KCF_PROV_REFRELE(prov_desc);
387 	return (ret);
388 }
389 
390 /* Return the number of holds on a provider. */
391 int
392 kcf_get_refcnt(kcf_provider_desc_t *pd, boolean_t do_lock)
393 {
394 	int i;
395 	int refcnt = 0;
396 
397 	if (do_lock)
398 		for (i = 0; i < pd->pd_nbins; i++)
399 			mutex_enter(&(pd->pd_percpu_bins[i].kp_lock));
400 
401 	for (i = 0; i < pd->pd_nbins; i++)
402 		refcnt += pd->pd_percpu_bins[i].kp_holdcnt;
403 
404 	if (do_lock)
405 		for (i = 0; i < pd->pd_nbins; i++)
406 			mutex_exit(&(pd->pd_percpu_bins[i].kp_lock));
407 
408 	return (refcnt);
409 }
410 
411 /*
412  * This routine is used to notify the framework when a provider is being
413  * removed.  Hardware providers call this routine in their detach routines.
414  * Software providers call this routine in their _fini() routine.
415  */
416 int
417 crypto_unregister_provider(crypto_kcf_provider_handle_t handle)
418 {
419 	uint_t mech_idx;
420 	kcf_provider_desc_t *desc;
421 	kcf_prov_state_t saved_state;
422 
423 	/* lookup provider descriptor */
424 	if ((desc = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL)
425 		return (CRYPTO_UNKNOWN_PROVIDER);
426 
427 	mutex_enter(&desc->pd_lock);
428 	/*
429 	 * Check if any other thread is disabling or removing
430 	 * this provider. We return if this is the case.
431 	 */
432 	if (desc->pd_state >= KCF_PROV_DISABLED) {
433 		mutex_exit(&desc->pd_lock);
434 		/* Release reference held by kcf_prov_tab_lookup(). */
435 		KCF_PROV_REFRELE(desc);
436 		return (CRYPTO_BUSY);
437 	}
438 
439 	saved_state = desc->pd_state;
440 	desc->pd_state = KCF_PROV_UNREGISTERING;
441 
442 	if (saved_state == KCF_PROV_BUSY) {
443 		/*
444 		 * The per-provider taskq threads may be waiting. We
445 		 * signal them so that they can start failing requests.
446 		 */
447 		cv_broadcast(&desc->pd_resume_cv);
448 	}
449 
450 	mutex_exit(&desc->pd_lock);
451 
452 	if (desc->pd_prov_type != CRYPTO_SW_PROVIDER) {
453 		remove_provider(desc);
454 	}
455 
456 	if (desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
457 		/* remove the provider from the mechanisms tables */
458 		for (mech_idx = 0; mech_idx < desc->pd_mech_list_count;
459 		    mech_idx++) {
460 			kcf_remove_mech_provider(
461 			    desc->pd_mechanisms[mech_idx].cm_mech_name, desc);
462 		}
463 	}
464 
465 	/* remove provider from providers table */
466 	if (kcf_prov_tab_rem_provider((crypto_provider_id_t)handle) !=
467 	    CRYPTO_SUCCESS) {
468 		/* Release reference held by kcf_prov_tab_lookup(). */
469 		KCF_PROV_REFRELE(desc);
470 		return (CRYPTO_UNKNOWN_PROVIDER);
471 	}
472 
473 	delete_kstat(desc);
474 
475 	if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
476 		/*
477 		 * Wait till the existing requests with the provider complete
478 		 * and all the holds are released. All the holds on a software
479 		 * provider are from kernel clients and the hold time
480 		 * is expected to be short. So, we won't be stuck here forever.
481 		 */
482 		while (kcf_get_refcnt(desc, B_TRUE) > 1) {
483 			/* wait 1 second and try again. */
484 			delay(1 * drv_usectohz(1000000));
485 		}
486 	} else {
487 		int i;
488 		kcf_prov_cpu_t *mp;
489 
490 		/*
491 		 * Wait until requests that have been sent to the provider
492 		 * complete.
493 		 */
494 		for (i = 0; i < desc->pd_nbins; i++) {
495 			mp = &(desc->pd_percpu_bins[i]);
496 
497 			mutex_enter(&mp->kp_lock);
498 			while (mp->kp_jobcnt > 0) {
499 				cv_wait(&mp->kp_cv, &mp->kp_lock);
500 			}
501 			mutex_exit(&mp->kp_lock);
502 		}
503 	}
504 
505 	mutex_enter(&desc->pd_lock);
506 	desc->pd_state = KCF_PROV_UNREGISTERED;
507 	mutex_exit(&desc->pd_lock);
508 
509 	kcf_do_notify(desc, B_FALSE);
510 
511 	mutex_enter(&prov_tab_mutex);
512 	/* Release reference held by kcf_prov_tab_lookup(). */
513 	KCF_PROV_REFRELE(desc);
514 
515 	if (kcf_get_refcnt(desc, B_TRUE) == 0) {
516 		/* kcf_free_provider_desc drops prov_tab_mutex */
517 		kcf_free_provider_desc(desc);
518 	} else {
519 		ASSERT(desc->pd_prov_type != CRYPTO_SW_PROVIDER);
520 		/*
521 		 * We could avoid this if /dev/crypto can proactively
522 		 * remove any holds on us from a dormant PKCS #11 app.
523 		 * For now, we check the provider table for
524 		 * KCF_PROV_UNREGISTERED entries when a provider is
525 		 * added to the table or when a provider is removed from it
526 		 * and free them when refcnt reaches zero.
527 		 */
528 		kcf_need_provtab_walk = B_TRUE;
529 		mutex_exit(&prov_tab_mutex);
530 	}
531 
532 	return (CRYPTO_SUCCESS);
533 }
534 
535 /*
536  * This routine is used to notify the framework that the state of
537  * a cryptographic provider has changed. Valid state codes are:
538  *
539  * CRYPTO_PROVIDER_READY
540  * 	The provider indicates that it can process more requests. A provider
541  *	will notify with this event if it previously has notified us with a
542  *	CRYPTO_PROVIDER_BUSY.
543  *
544  * CRYPTO_PROVIDER_BUSY
545  * 	The provider can not take more requests.
546  *
547  * CRYPTO_PROVIDER_FAILED
548  *	The provider encountered an internal error. The framework will not
549  * 	be sending any more requests to the provider. The provider may notify
550  *	with a CRYPTO_PROVIDER_READY, if it is able to recover from the error.
551  *
552  * This routine can be called from user or interrupt context.
553  */
554 void
555 crypto_provider_notification(crypto_kcf_provider_handle_t handle, uint_t state)
556 {
557 	kcf_provider_desc_t *pd;
558 
559 	/* lookup the provider from the given handle */
560 	if ((pd = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL)
561 		return;
562 
563 	mutex_enter(&pd->pd_lock);
564 
565 	if (pd->pd_state <= KCF_PROV_VERIFICATION_FAILED)
566 		goto out;
567 
568 	if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
569 		cmn_err(CE_WARN, "crypto_provider_notification: "
570 		    "logical provider (%x) ignored\n", handle);
571 		goto out;
572 	}
573 	switch (state) {
574 	case CRYPTO_PROVIDER_READY:
575 		switch (pd->pd_state) {
576 		case KCF_PROV_BUSY:
577 			pd->pd_state = KCF_PROV_READY;
578 			/*
579 			 * Signal the per-provider taskq threads that they
580 			 * can start submitting requests.
581 			 */
582 			cv_broadcast(&pd->pd_resume_cv);
583 			break;
584 
585 		case KCF_PROV_FAILED:
586 			/*
587 			 * The provider recovered from the error. Let us
588 			 * use it now.
589 			 */
590 			pd->pd_state = KCF_PROV_READY;
591 			break;
592 		}
593 		break;
594 
595 	case CRYPTO_PROVIDER_BUSY:
596 		switch (pd->pd_state) {
597 		case KCF_PROV_READY:
598 			pd->pd_state = KCF_PROV_BUSY;
599 			break;
600 		}
601 		break;
602 
603 	case CRYPTO_PROVIDER_FAILED:
604 		/*
605 		 * We note the failure and return. The per-provider taskq
606 		 * threads check this flag and start failing the
607 		 * requests, if it is set. See process_req_hwp() for details.
608 		 */
609 		switch (pd->pd_state) {
610 		case KCF_PROV_READY:
611 			pd->pd_state = KCF_PROV_FAILED;
612 			break;
613 
614 		case KCF_PROV_BUSY:
615 			pd->pd_state = KCF_PROV_FAILED;
616 			/*
617 			 * The per-provider taskq threads may be waiting. We
618 			 * signal them so that they can start failing requests.
619 			 */
620 			cv_broadcast(&pd->pd_resume_cv);
621 			break;
622 		}
623 		break;
624 	}
625 out:
626 	mutex_exit(&pd->pd_lock);
627 	KCF_PROV_REFRELE(pd);
628 }
629 
630 /*
631  * This routine is used to notify the framework the result of
632  * an asynchronous request handled by a provider. Valid error
633  * codes are the same as the CRYPTO_* errors defined in common.h.
634  *
635  * This routine can be called from user or interrupt context.
636  */
637 void
638 crypto_op_notification(crypto_req_handle_t handle, int error)
639 {
640 	kcf_call_type_t ctype;
641 
642 	if (handle == NULL)
643 		return;
644 
645 	if ((ctype = GET_REQ_TYPE(handle)) == CRYPTO_SYNCH) {
646 		kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)handle;
647 
648 		KCF_PROV_JOB_RELE_STAT(sreq->sn_mp, (error != CRYPTO_SUCCESS));
649 		kcf_sop_done(sreq, error);
650 	} else {
651 		kcf_areq_node_t *areq = (kcf_areq_node_t *)handle;
652 
653 		ASSERT(ctype == CRYPTO_ASYNCH);
654 		KCF_PROV_JOB_RELE_STAT(areq->an_mp, (error != CRYPTO_SUCCESS));
655 		kcf_aop_done(areq, error);
656 	}
657 }
658 
659 /*
660  * This routine is used by software providers to determine
661  * whether to use KM_SLEEP or KM_NOSLEEP during memory allocation.
662  * Note that hardware providers can always use KM_SLEEP. So,
663  * they do not need to call this routine.
664  *
665  * This routine can be called from user or interrupt context.
666  */
667 int
668 crypto_kmflag(crypto_req_handle_t handle)
669 {
670 	return (REQHNDL2_KMFLAG(handle));
671 }
672 
673 /*
674  * Process the mechanism info structures specified by the provider
675  * during registration. A NULL crypto_provider_info_t indicates
676  * an already initialized provider descriptor.
677  *
678  * Mechanisms are not added to the kernel's mechanism table if the
679  * provider is a logical provider.
680  *
681  * Returns CRYPTO_SUCCESS on success, CRYPTO_ARGUMENTS if one
682  * of the specified mechanisms was malformed, or CRYPTO_HOST_MEMORY
683  * if the table of mechanisms is full.
684  */
685 static int
686 init_prov_mechs(crypto_provider_info_t *info, kcf_provider_desc_t *desc)
687 {
688 	uint_t mech_idx;
689 	uint_t cleanup_idx;
690 	int err = CRYPTO_SUCCESS;
691 	kcf_prov_mech_desc_t *pmd;
692 	int desc_use_count = 0;
693 	int mcount = desc->pd_mech_list_count;
694 
695 	if (desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
696 		if (info != NULL) {
697 			ASSERT(info->pi_mechanisms != NULL);
698 			bcopy(info->pi_mechanisms, desc->pd_mechanisms,
699 			    sizeof (crypto_mech_info_t) * mcount);
700 		}
701 		return (CRYPTO_SUCCESS);
702 	}
703 
704 	/*
705 	 * Copy the mechanism list from the provider info to the provider
706 	 * descriptor. desc->pd_mechanisms has an extra crypto_mech_info_t
707 	 * element if the provider has random_ops since we keep an internal
708 	 * mechanism, SUN_RANDOM, in this case.
709 	 */
710 	if (info != NULL) {
711 		if (info->pi_ops_vector->co_random_ops != NULL) {
712 			crypto_mech_info_t *rand_mi;
713 
714 			/*
715 			 * Need the following check as it is possible to have
716 			 * a provider that implements just random_ops and has
717 			 * pi_mechanisms == NULL.
718 			 */
719 			if (info->pi_mechanisms != NULL) {
720 				bcopy(info->pi_mechanisms, desc->pd_mechanisms,
721 				    sizeof (crypto_mech_info_t) * (mcount - 1));
722 			}
723 			rand_mi = &desc->pd_mechanisms[mcount - 1];
724 
725 			bzero(rand_mi, sizeof (crypto_mech_info_t));
726 			(void) strncpy(rand_mi->cm_mech_name, SUN_RANDOM,
727 			    CRYPTO_MAX_MECH_NAME);
728 			rand_mi->cm_func_group_mask = CRYPTO_FG_RANDOM;
729 		} else {
730 			ASSERT(info->pi_mechanisms != NULL);
731 			bcopy(info->pi_mechanisms, desc->pd_mechanisms,
732 			    sizeof (crypto_mech_info_t) * mcount);
733 		}
734 	}
735 
736 	/*
737 	 * For each mechanism support by the provider, add the provider
738 	 * to the corresponding KCF mechanism mech_entry chain.
739 	 */
740 	for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; mech_idx++) {
741 		crypto_mech_info_t *mi = &desc->pd_mechanisms[mech_idx];
742 
743 		if ((mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BITS) &&
744 		    (mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BYTES)) {
745 			err = CRYPTO_ARGUMENTS_BAD;
746 			break;
747 		}
748 
749 		if (desc->pd_flags & CRYPTO_HASH_NO_UPDATE &&
750 		    mi->cm_func_group_mask & CRYPTO_FG_DIGEST) {
751 			/*
752 			 * We ask the provider to specify the limit
753 			 * per hash mechanism. But, in practice, a
754 			 * hardware limitation means all hash mechanisms
755 			 * will have the same maximum size allowed for
756 			 * input data. So, we make it a per provider
757 			 * limit to keep it simple.
758 			 */
759 			if (mi->cm_max_input_length == 0) {
760 				err = CRYPTO_ARGUMENTS_BAD;
761 				break;
762 			} else {
763 				desc->pd_hash_limit = mi->cm_max_input_length;
764 			}
765 		}
766 
767 		if ((err = kcf_add_mech_provider(mech_idx, desc, &pmd)) !=
768 		    KCF_SUCCESS)
769 			break;
770 
771 		if (pmd == NULL)
772 			continue;
773 
774 		/* The provider will be used for this mechanism */
775 		desc_use_count++;
776 	}
777 
778 	/*
779 	 * Don't allow multiple software providers with disabled mechanisms
780 	 * to register. Subsequent enabling of mechanisms will result in
781 	 * an unsupported configuration, i.e. multiple software providers
782 	 * per mechanism.
783 	 */
784 	if (desc_use_count == 0 && desc->pd_prov_type == CRYPTO_SW_PROVIDER)
785 		return (CRYPTO_ARGUMENTS_BAD);
786 
787 	if (err == KCF_SUCCESS)
788 		return (CRYPTO_SUCCESS);
789 
790 	/*
791 	 * An error occurred while adding the mechanism, cleanup
792 	 * and bail.
793 	 */
794 	for (cleanup_idx = 0; cleanup_idx < mech_idx; cleanup_idx++) {
795 		kcf_remove_mech_provider(
796 		    desc->pd_mechanisms[cleanup_idx].cm_mech_name, desc);
797 	}
798 
799 	if (err == KCF_MECH_TAB_FULL)
800 		return (CRYPTO_HOST_MEMORY);
801 
802 	return (CRYPTO_ARGUMENTS_BAD);
803 }
804 
805 /*
806  * Update routine for kstat. Only privileged users are allowed to
807  * access this information, since this information is sensitive.
808  * There are some cryptographic attacks (e.g. traffic analysis)
809  * which can use this information.
810  */
811 static int
812 kcf_prov_kstat_update(kstat_t *ksp, int rw)
813 {
814 	kcf_prov_stats_t *ks_data;
815 	kcf_provider_desc_t *pd = (kcf_provider_desc_t *)ksp->ks_private;
816 	int i;
817 
818 	if (rw == KSTAT_WRITE)
819 		return (EACCES);
820 
821 	ks_data = ksp->ks_data;
822 
823 	if (secpolicy_sys_config(CRED(), B_TRUE) != 0) {
824 		ks_data->ps_ops_total.value.ui64 = 0;
825 		ks_data->ps_ops_passed.value.ui64 = 0;
826 		ks_data->ps_ops_failed.value.ui64 = 0;
827 		ks_data->ps_ops_busy_rval.value.ui64 = 0;
828 	} else {
829 		uint64_t dtotal, ftotal, btotal;
830 
831 		dtotal = ftotal = btotal = 0;
832 		/* No locking done since an exact count is not required. */
833 		for (i = 0; i < pd->pd_nbins; i++) {
834 			dtotal += pd->pd_percpu_bins[i].kp_ndispatches;
835 			ftotal += pd->pd_percpu_bins[i].kp_nfails;
836 			btotal += pd->pd_percpu_bins[i].kp_nbusy_rval;
837 		}
838 
839 		ks_data->ps_ops_total.value.ui64 = dtotal;
840 		ks_data->ps_ops_failed.value.ui64 = ftotal;
841 		ks_data->ps_ops_busy_rval.value.ui64 = btotal;
842 		ks_data->ps_ops_passed.value.ui64 = dtotal - ftotal - btotal;
843 	}
844 
845 	return (0);
846 }
847 
848 
849 /*
850  * Utility routine called from failure paths in crypto_register_provider()
851  * and from crypto_load_soft_disabled().
852  */
853 void
854 undo_register_provider(kcf_provider_desc_t *desc, boolean_t remove_prov)
855 {
856 	uint_t mech_idx;
857 
858 	/* remove the provider from the mechanisms tables */
859 	for (mech_idx = 0; mech_idx < desc->pd_mech_list_count;
860 	    mech_idx++) {
861 		kcf_remove_mech_provider(
862 		    desc->pd_mechanisms[mech_idx].cm_mech_name, desc);
863 	}
864 
865 	/* remove provider from providers table */
866 	if (remove_prov)
867 		(void) kcf_prov_tab_rem_provider(desc->pd_prov_id);
868 }
869 
870 static void
871 undo_register_provider_extra(kcf_provider_desc_t *desc)
872 {
873 	delete_kstat(desc);
874 	undo_register_provider(desc, B_TRUE);
875 }
876 
877 /*
878  * Utility routine called from crypto_load_soft_disabled(). Callers
879  * should have done a prior undo_register_provider().
880  */
881 void
882 redo_register_provider(kcf_provider_desc_t *pd)
883 {
884 	/* process the mechanisms supported by the provider */
885 	(void) init_prov_mechs(NULL, pd);
886 
887 	/*
888 	 * Hold provider in providers table. We should not call
889 	 * kcf_prov_tab_add_provider() here as the provider descriptor
890 	 * is still valid which means it has an entry in the provider
891 	 * table.
892 	 */
893 	KCF_PROV_REFHOLD(pd);
894 }
895 
896 /*
897  * Add provider (p1) to another provider's array of providers (p2).
898  * Hardware and logical providers use this array to cross-reference
899  * each other.
900  */
901 static void
902 add_provider_to_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2)
903 {
904 	kcf_provider_list_t *new;
905 
906 	new = kmem_alloc(sizeof (kcf_provider_list_t), KM_SLEEP);
907 	mutex_enter(&p2->pd_lock);
908 	new->pl_next = p2->pd_provider_list;
909 	p2->pd_provider_list = new;
910 	new->pl_provider = p1;
911 	mutex_exit(&p2->pd_lock);
912 }
913 
914 /*
915  * Remove provider (p1) from another provider's array of providers (p2).
916  * Hardware and logical providers use this array to cross-reference
917  * each other.
918  */
919 static void
920 remove_provider_from_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2)
921 {
922 
923 	kcf_provider_list_t *pl = NULL, **prev;
924 
925 	mutex_enter(&p2->pd_lock);
926 	for (pl = p2->pd_provider_list, prev = &p2->pd_provider_list;
927 	    pl != NULL; prev = &pl->pl_next, pl = pl->pl_next) {
928 		if (pl->pl_provider == p1) {
929 			break;
930 		}
931 	}
932 
933 	if (p1 == NULL) {
934 		mutex_exit(&p2->pd_lock);
935 		return;
936 	}
937 
938 	/* detach and free kcf_provider_list structure */
939 	*prev = pl->pl_next;
940 	kmem_free(pl, sizeof (*pl));
941 	mutex_exit(&p2->pd_lock);
942 }
943 
944 /*
945  * Convert an array of logical provider handles (crypto_provider_id)
946  * stored in a crypto_provider_info structure into an array of provider
947  * descriptors (kcf_provider_desc_t) attached to a logical provider.
948  */
949 static void
950 process_logical_providers(crypto_provider_info_t *info, kcf_provider_desc_t *hp)
951 {
952 	kcf_provider_desc_t *lp;
953 	crypto_provider_id_t handle;
954 	int count = info->pi_logical_provider_count;
955 	int i;
956 
957 	/* add hardware provider to each logical provider */
958 	for (i = 0; i < count; i++) {
959 		handle = info->pi_logical_providers[i];
960 		lp = kcf_prov_tab_lookup((crypto_provider_id_t)handle);
961 		if (lp == NULL) {
962 			continue;
963 		}
964 		add_provider_to_array(hp, lp);
965 		hp->pd_flags |= KCF_LPROV_MEMBER;
966 
967 		/*
968 		 * A hardware provider has to have the provider descriptor of
969 		 * every logical provider it belongs to, so it can be removed
970 		 * from the logical provider if the hardware provider
971 		 * unregisters from the framework.
972 		 */
973 		add_provider_to_array(lp, hp);
974 		KCF_PROV_REFRELE(lp);
975 	}
976 }
977 
978 /*
979  * This routine removes a provider from all of the logical or
980  * hardware providers it belongs to, and frees the provider's
981  * array of pointers to providers.
982  */
983 static void
984 remove_provider(kcf_provider_desc_t *pp)
985 {
986 	kcf_provider_desc_t *p;
987 	kcf_provider_list_t *e, *next;
988 
989 	mutex_enter(&pp->pd_lock);
990 	for (e = pp->pd_provider_list; e != NULL; e = next) {
991 		p = e->pl_provider;
992 		remove_provider_from_array(pp, p);
993 		if (p->pd_prov_type == CRYPTO_HW_PROVIDER &&
994 		    p->pd_provider_list == NULL)
995 			p->pd_flags &= ~KCF_LPROV_MEMBER;
996 		next = e->pl_next;
997 		kmem_free(e, sizeof (*e));
998 	}
999 	pp->pd_provider_list = NULL;
1000 	mutex_exit(&pp->pd_lock);
1001 }
1002 
1003 /*
1004  * Dispatch events as needed for a provider. is_added flag tells
1005  * whether the provider is registering or unregistering.
1006  */
1007 void
1008 kcf_do_notify(kcf_provider_desc_t *prov_desc, boolean_t is_added)
1009 {
1010 	int i;
1011 	crypto_notify_event_change_t ec;
1012 
1013 	ASSERT(prov_desc->pd_state > KCF_PROV_VERIFICATION_FAILED);
1014 
1015 	/*
1016 	 * Inform interested clients of the mechanisms becoming
1017 	 * available/unavailable. We skip this for logical providers
1018 	 * as they do not affect mechanisms.
1019 	 */
1020 	if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
1021 		ec.ec_provider_type = prov_desc->pd_prov_type;
1022 		ec.ec_change = is_added ? CRYPTO_MECH_ADDED :
1023 		    CRYPTO_MECH_REMOVED;
1024 		for (i = 0; i < prov_desc->pd_mech_list_count; i++) {
1025 			/* Skip any mechanisms not allowed by the policy */
1026 			if (is_mech_disabled(prov_desc,
1027 			    prov_desc->pd_mechanisms[i].cm_mech_name))
1028 				continue;
1029 
1030 			(void) strncpy(ec.ec_mech_name,
1031 			    prov_desc->pd_mechanisms[i].cm_mech_name,
1032 			    CRYPTO_MAX_MECH_NAME);
1033 			kcf_walk_ntfylist(CRYPTO_EVENT_MECHS_CHANGED, &ec);
1034 		}
1035 
1036 	}
1037 
1038 	/*
1039 	 * Inform interested clients about the new or departing provider.
1040 	 * In case of a logical provider, we need to notify the event only
1041 	 * for the logical provider and not for the underlying
1042 	 * providers which are known by the KCF_LPROV_MEMBER bit.
1043 	 */
1044 	if (prov_desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER ||
1045 	    (prov_desc->pd_flags & KCF_LPROV_MEMBER) == 0) {
1046 		kcf_walk_ntfylist(is_added ? CRYPTO_EVENT_PROVIDER_REGISTERED :
1047 		    CRYPTO_EVENT_PROVIDER_UNREGISTERED, prov_desc);
1048 	}
1049 }
1050 
1051 static void
1052 delete_kstat(kcf_provider_desc_t *desc)
1053 {
1054 	/* destroy the kstat created for this provider */
1055 	if (desc->pd_kstat != NULL) {
1056 		kcf_provider_desc_t *kspd = desc->pd_kstat->ks_private;
1057 
1058 		/* release reference held by desc->pd_kstat->ks_private */
1059 		ASSERT(desc == kspd);
1060 		kstat_delete(kspd->pd_kstat);
1061 		desc->pd_kstat = NULL;
1062 		KCF_PROV_REFRELE(kspd);
1063 	}
1064 }
1065