xref: /titanic_51/usr/src/uts/common/crypto/spi/kcf_spi.c (revision 29493bd8e037cbaea9095b34172305abb589cb6b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file is part of the core Kernel Cryptographic Framework.
30  * It implements the SPI functions exported to cryptographic
31  * providers.
32  */
33 
34 #include <sys/ksynch.h>
35 #include <sys/cmn_err.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/modctl.h>
39 #include <sys/crypto/common.h>
40 #include <sys/crypto/impl.h>
41 #include <sys/crypto/sched_impl.h>
42 #include <sys/crypto/spi.h>
43 #include <sys/taskq.h>
44 #include <sys/disp.h>
45 #include <sys/kstat.h>
46 #include <sys/policy.h>
47 #include <sys/cpuvar.h>
48 
49 /*
50  * minalloc and maxalloc values to be used for taskq_create().
51  */
52 int crypto_taskq_threads = CRYPTO_TASKQ_THREADS;
53 int crypto_taskq_minalloc = CYRPTO_TASKQ_MIN;
54 int crypto_taskq_maxalloc = CRYPTO_TASKQ_MAX;
55 
56 static void free_provider_list(kcf_provider_list_t *);
57 static void remove_provider(kcf_provider_desc_t *);
58 static void process_logical_providers(crypto_provider_info_t *,
59     kcf_provider_desc_t *);
60 static int init_prov_mechs(crypto_provider_info_t *, kcf_provider_desc_t *);
61 static int kcf_prov_kstat_update(kstat_t *, int);
62 static void undo_register_provider_extra(kcf_provider_desc_t *);
63 static void delete_kstat(kcf_provider_desc_t *);
64 
65 static kcf_prov_stats_t kcf_stats_ks_data_template = {
66 	{ "kcf_ops_total",		KSTAT_DATA_UINT64 },
67 	{ "kcf_ops_passed",		KSTAT_DATA_UINT64 },
68 	{ "kcf_ops_failed",		KSTAT_DATA_UINT64 },
69 	{ "kcf_ops_returned_busy",	KSTAT_DATA_UINT64 }
70 };
71 
72 #define	KCF_SPI_COPY_OPS(src, dst, ops) if ((src)->ops != NULL) \
73 	*((dst)->ops) = *((src)->ops);
74 
75 /*
76  * Copy an ops vector from src to dst. Used during provider registration
77  * to copy the ops vector from the provider info structure to the
78  * provider descriptor maintained by KCF.
79  * Copying the ops vector specified by the provider is needed since the
80  * framework does not require the provider info structure to be
81  * persistent.
82  */
83 static void
84 copy_ops_vector_v1(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
85 {
86 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_control_ops);
87 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_digest_ops);
88 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_cipher_ops);
89 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mac_ops);
90 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_sign_ops);
91 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_verify_ops);
92 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_ops);
93 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_cipher_mac_ops);
94 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_random_ops);
95 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_session_ops);
96 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_object_ops);
97 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_key_ops);
98 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_provider_ops);
99 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_ctx_ops);
100 }
101 
102 static void
103 copy_ops_vector_v2(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
104 {
105 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mech_ops);
106 }
107 
108 static void
109 copy_ops_vector_v3(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
110 {
111 	KCF_SPI_COPY_OPS(src_ops, dst_ops, co_nostore_key_ops);
112 }
113 
114 /*
115  * This routine is used to add cryptographic providers to the KEF framework.
116  * Providers pass a crypto_provider_info structure to crypto_register_provider()
117  * and get back a handle.  The crypto_provider_info structure contains a
118  * list of mechanisms supported by the provider and an ops vector containing
119  * provider entry points.  Hardware providers call this routine in their attach
120  * routines.  Software providers call this routine in their _init() routine.
121  */
122 int
123 crypto_register_provider(crypto_provider_info_t *info,
124     crypto_kcf_provider_handle_t *handle)
125 {
126 	int need_verify;
127 	struct modctl *mcp;
128 	char *name;
129 	char ks_name[KSTAT_STRLEN];
130 
131 	kcf_provider_desc_t *prov_desc = NULL;
132 	int ret = CRYPTO_ARGUMENTS_BAD;
133 
134 	if (info->pi_interface_version > CRYPTO_SPI_VERSION_3)
135 		return (CRYPTO_VERSION_MISMATCH);
136 
137 	/*
138 	 * Check provider type, must be software, hardware, or logical.
139 	 */
140 	if (info->pi_provider_type != CRYPTO_HW_PROVIDER &&
141 	    info->pi_provider_type != CRYPTO_SW_PROVIDER &&
142 	    info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER)
143 		return (CRYPTO_ARGUMENTS_BAD);
144 
145 	/*
146 	 * Allocate and initialize a new provider descriptor. We also
147 	 * hold it and release it when done.
148 	 */
149 	prov_desc = kcf_alloc_provider_desc(info);
150 	KCF_PROV_REFHOLD(prov_desc);
151 
152 	prov_desc->pd_prov_type = info->pi_provider_type;
153 
154 	/* provider-private handle, opaque to KCF */
155 	prov_desc->pd_prov_handle = info->pi_provider_handle;
156 
157 	/* copy provider description string */
158 	if (info->pi_provider_description != NULL) {
159 		/*
160 		 * pi_provider_descriptor is a string that can contain
161 		 * up to CRYPTO_PROVIDER_DESCR_MAX_LEN + 1 characters
162 		 * INCLUDING the terminating null character. A bcopy()
163 		 * is necessary here as pd_description should not have
164 		 * a null character. See comments in kcf_alloc_provider_desc()
165 		 * for details on pd_description field.
166 		 */
167 		bcopy(info->pi_provider_description, prov_desc->pd_description,
168 		    min(strlen(info->pi_provider_description),
169 		    CRYPTO_PROVIDER_DESCR_MAX_LEN));
170 	}
171 
172 	if (info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) {
173 		if (info->pi_ops_vector == NULL) {
174 			goto bail;
175 		}
176 		copy_ops_vector_v1(info->pi_ops_vector,
177 		    prov_desc->pd_ops_vector);
178 		if (info->pi_interface_version >= CRYPTO_SPI_VERSION_2) {
179 			copy_ops_vector_v2(info->pi_ops_vector,
180 			    prov_desc->pd_ops_vector);
181 			prov_desc->pd_flags = info->pi_flags;
182 		}
183 		if (info->pi_interface_version == CRYPTO_SPI_VERSION_3) {
184 			copy_ops_vector_v3(info->pi_ops_vector,
185 			    prov_desc->pd_ops_vector);
186 		}
187 	}
188 
189 	/* object_ops and nostore_key_ops are mutually exclusive */
190 	if (prov_desc->pd_ops_vector->co_object_ops &&
191 	    prov_desc->pd_ops_vector->co_nostore_key_ops) {
192 		goto bail;
193 	}
194 	/*
195 	 * For software providers, copy the module name and module ID.
196 	 * For hardware providers, copy the driver name and instance.
197 	 */
198 	switch (info->pi_provider_type) {
199 	case  CRYPTO_SW_PROVIDER:
200 		if (info->pi_provider_dev.pd_sw == NULL)
201 			goto bail;
202 
203 		if ((mcp = mod_getctl(info->pi_provider_dev.pd_sw)) == NULL)
204 			goto bail;
205 
206 		prov_desc->pd_module_id = mcp->mod_id;
207 		name = mcp->mod_modname;
208 		break;
209 
210 	case CRYPTO_HW_PROVIDER:
211 	case CRYPTO_LOGICAL_PROVIDER:
212 		if (info->pi_provider_dev.pd_hw == NULL)
213 			goto bail;
214 
215 		prov_desc->pd_instance =
216 		    ddi_get_instance(info->pi_provider_dev.pd_hw);
217 		name = (char *)ddi_driver_name(info->pi_provider_dev.pd_hw);
218 		break;
219 	}
220 	if (name == NULL)
221 		goto bail;
222 
223 	prov_desc->pd_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
224 	(void) strcpy(prov_desc->pd_name, name);
225 
226 	if ((prov_desc->pd_mctlp = kcf_get_modctl(info)) == NULL)
227 		goto bail;
228 
229 	/* process the mechanisms supported by the provider */
230 	if ((ret = init_prov_mechs(info, prov_desc)) != CRYPTO_SUCCESS)
231 		goto bail;
232 
233 	/*
234 	 * Add provider to providers tables, also sets the descriptor
235 	 * pd_prov_id field.
236 	 */
237 	if ((ret = kcf_prov_tab_add_provider(prov_desc)) != CRYPTO_SUCCESS) {
238 		undo_register_provider(prov_desc, B_FALSE);
239 		goto bail;
240 	}
241 
242 	if ((need_verify = kcf_need_signature_verification(prov_desc)) == -1) {
243 		undo_register_provider(prov_desc, B_TRUE);
244 		ret = CRYPTO_MODVERIFICATION_FAILED;
245 		goto bail;
246 	}
247 
248 	/*
249 	 * We create a taskq only for a hardware provider. The global
250 	 * software queue is used for software providers. We handle ordering
251 	 * of multi-part requests in the taskq routine. So, it is safe to
252 	 * have multiple threads for the taskq. We pass TASKQ_PREPOPULATE flag
253 	 * to keep some entries cached to improve performance.
254 	 */
255 	if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
256 		prov_desc->pd_sched_info.ks_taskq = taskq_create("kcf_taskq",
257 		    crypto_taskq_threads, minclsyspri,
258 		    crypto_taskq_minalloc, crypto_taskq_maxalloc,
259 		    TASKQ_PREPOPULATE);
260 	else
261 		prov_desc->pd_sched_info.ks_taskq = NULL;
262 
263 	/* no kernel session to logical providers */
264 	if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
265 		/*
266 		 * Open a session for session-oriented providers. This session
267 		 * is used for all kernel consumers. This is fine as a provider
268 		 * is required to support multiple thread access to a session.
269 		 * We can do this only after the taskq has been created as we
270 		 * do a kcf_submit_request() to open the session.
271 		 */
272 		if (KCF_PROV_SESSION_OPS(prov_desc) != NULL) {
273 			kcf_req_params_t params;
274 
275 			KCF_WRAP_SESSION_OPS_PARAMS(&params,
276 			    KCF_OP_SESSION_OPEN, &prov_desc->pd_sid, 0,
277 			    CRYPTO_USER, NULL, 0, prov_desc);
278 			ret = kcf_submit_request(prov_desc, NULL, NULL, &params,
279 			    B_FALSE);
280 
281 			if (ret != CRYPTO_SUCCESS) {
282 				undo_register_provider(prov_desc, B_TRUE);
283 				ret = CRYPTO_FAILED;
284 				goto bail;
285 			}
286 		}
287 	}
288 
289 	if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
290 		/*
291 		 * Create the kstat for this provider. There is a kstat
292 		 * installed for each successfully registered provider.
293 		 * This kstat is deleted, when the provider unregisters.
294 		 */
295 		if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
296 			(void) snprintf(ks_name, KSTAT_STRLEN, "%s_%s",
297 			    prov_desc->pd_name, "provider_stats");
298 		} else {
299 			(void) snprintf(ks_name, KSTAT_STRLEN, "%s_%d_%u_%s",
300 			    prov_desc->pd_name, prov_desc->pd_instance,
301 			    prov_desc->pd_prov_id, "provider_stats");
302 		}
303 
304 		prov_desc->pd_kstat = kstat_create("kcf", 0, ks_name, "crypto",
305 		    KSTAT_TYPE_NAMED, sizeof (kcf_prov_stats_t) /
306 		    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
307 
308 		if (prov_desc->pd_kstat != NULL) {
309 			bcopy(&kcf_stats_ks_data_template,
310 			    &prov_desc->pd_ks_data,
311 			    sizeof (kcf_stats_ks_data_template));
312 			prov_desc->pd_kstat->ks_data = &prov_desc->pd_ks_data;
313 			KCF_PROV_REFHOLD(prov_desc);
314 			KCF_PROV_IREFHOLD(prov_desc);
315 			prov_desc->pd_kstat->ks_private = prov_desc;
316 			prov_desc->pd_kstat->ks_update = kcf_prov_kstat_update;
317 			kstat_install(prov_desc->pd_kstat);
318 		}
319 	}
320 
321 	if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
322 		process_logical_providers(info, prov_desc);
323 
324 	if (need_verify == 1) {
325 		/* kcf_verify_signature routine will release these holds */
326 		KCF_PROV_REFHOLD(prov_desc);
327 		KCF_PROV_IREFHOLD(prov_desc);
328 
329 		if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) {
330 			/*
331 			 * It is not safe to make the door upcall to kcfd from
332 			 * this context since the kcfd thread could reenter
333 			 * devfs. So, we dispatch a taskq job to do the
334 			 * verification and return to the provider.
335 			 */
336 			(void) taskq_dispatch(system_taskq,
337 			    kcf_verify_signature, (void *)prov_desc, TQ_SLEEP);
338 		} else if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
339 			kcf_verify_signature(prov_desc);
340 			if (prov_desc->pd_state ==
341 			    KCF_PROV_VERIFICATION_FAILED) {
342 				undo_register_provider_extra(prov_desc);
343 				ret = CRYPTO_MODVERIFICATION_FAILED;
344 				goto bail;
345 			}
346 		}
347 	} else {
348 		mutex_enter(&prov_desc->pd_lock);
349 		prov_desc->pd_state = KCF_PROV_READY;
350 		mutex_exit(&prov_desc->pd_lock);
351 		kcf_do_notify(prov_desc, B_TRUE);
352 	}
353 
354 	*handle = prov_desc->pd_kcf_prov_handle;
355 	ret = CRYPTO_SUCCESS;
356 
357 bail:
358 	KCF_PROV_REFRELE(prov_desc);
359 	return (ret);
360 }
361 
362 /*
363  * This routine is used to notify the framework when a provider is being
364  * removed.  Hardware providers call this routine in their detach routines.
365  * Software providers call this routine in their _fini() routine.
366  */
367 int
368 crypto_unregister_provider(crypto_kcf_provider_handle_t handle)
369 {
370 	uint_t mech_idx;
371 	kcf_provider_desc_t *desc;
372 	kcf_prov_state_t saved_state;
373 
374 	/* lookup provider descriptor */
375 	if ((desc = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL)
376 		return (CRYPTO_UNKNOWN_PROVIDER);
377 
378 	mutex_enter(&desc->pd_lock);
379 	/*
380 	 * Check if any other thread is disabling or removing
381 	 * this provider. We return if this is the case.
382 	 */
383 	if (desc->pd_state >= KCF_PROV_DISABLED) {
384 		mutex_exit(&desc->pd_lock);
385 		/* Release reference held by kcf_prov_tab_lookup(). */
386 		KCF_PROV_REFRELE(desc);
387 		return (CRYPTO_BUSY);
388 	}
389 
390 	saved_state = desc->pd_state;
391 	desc->pd_state = KCF_PROV_REMOVED;
392 
393 	if (saved_state == KCF_PROV_BUSY) {
394 		/*
395 		 * The per-provider taskq threads may be waiting. We
396 		 * signal them so that they can start failing requests.
397 		 */
398 		cv_broadcast(&desc->pd_resume_cv);
399 	}
400 
401 	if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
402 		/*
403 		 * Check if this provider is currently being used.
404 		 * pd_irefcnt is the number of holds from the internal
405 		 * structures. We add one to account for the above lookup.
406 		 */
407 		if (desc->pd_refcnt > desc->pd_irefcnt + 1) {
408 			desc->pd_state = saved_state;
409 			mutex_exit(&desc->pd_lock);
410 			/* Release reference held by kcf_prov_tab_lookup(). */
411 			KCF_PROV_REFRELE(desc);
412 			/*
413 			 * The administrator presumably will stop the clients
414 			 * thus removing the holds, when they get the busy
415 			 * return value.  Any retry will succeed then.
416 			 */
417 			return (CRYPTO_BUSY);
418 		}
419 	}
420 	mutex_exit(&desc->pd_lock);
421 
422 	if (desc->pd_prov_type != CRYPTO_SW_PROVIDER) {
423 		remove_provider(desc);
424 	}
425 
426 	if (desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
427 		/* remove the provider from the mechanisms tables */
428 		for (mech_idx = 0; mech_idx < desc->pd_mech_list_count;
429 		    mech_idx++) {
430 			kcf_remove_mech_provider(
431 			    desc->pd_mechanisms[mech_idx].cm_mech_name, desc);
432 		}
433 	}
434 
435 	/* remove provider from providers table */
436 	if (kcf_prov_tab_rem_provider((crypto_provider_id_t)handle) !=
437 	    CRYPTO_SUCCESS) {
438 		/* Release reference held by kcf_prov_tab_lookup(). */
439 		KCF_PROV_REFRELE(desc);
440 		return (CRYPTO_UNKNOWN_PROVIDER);
441 	}
442 
443 	delete_kstat(desc);
444 
445 	if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
446 		/* Release reference held by kcf_prov_tab_lookup(). */
447 		KCF_PROV_REFRELE(desc);
448 
449 		/*
450 		 * Wait till the existing requests complete.
451 		 */
452 		mutex_enter(&desc->pd_lock);
453 		while (desc->pd_state != KCF_PROV_FREED)
454 			cv_wait(&desc->pd_remove_cv, &desc->pd_lock);
455 		mutex_exit(&desc->pd_lock);
456 	} else {
457 		/*
458 		 * Wait until requests that have been sent to the provider
459 		 * complete.
460 		 */
461 		mutex_enter(&desc->pd_lock);
462 		while (desc->pd_irefcnt > 0)
463 			cv_wait(&desc->pd_remove_cv, &desc->pd_lock);
464 		mutex_exit(&desc->pd_lock);
465 	}
466 
467 	kcf_do_notify(desc, B_FALSE);
468 
469 	if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
470 		/*
471 		 * This is the only place where kcf_free_provider_desc()
472 		 * is called directly. KCF_PROV_REFRELE() should free the
473 		 * structure in all other places.
474 		 */
475 		ASSERT(desc->pd_state == KCF_PROV_FREED &&
476 		    desc->pd_refcnt == 0);
477 		kcf_free_provider_desc(desc);
478 	} else {
479 		KCF_PROV_REFRELE(desc);
480 	}
481 
482 	return (CRYPTO_SUCCESS);
483 }
484 
485 /*
486  * This routine is used to notify the framework that the state of
487  * a cryptographic provider has changed. Valid state codes are:
488  *
489  * CRYPTO_PROVIDER_READY
490  * 	The provider indicates that it can process more requests. A provider
491  *	will notify with this event if it previously has notified us with a
492  *	CRYPTO_PROVIDER_BUSY.
493  *
494  * CRYPTO_PROVIDER_BUSY
495  * 	The provider can not take more requests.
496  *
497  * CRYPTO_PROVIDER_FAILED
498  *	The provider encountered an internal error. The framework will not
499  * 	be sending any more requests to the provider. The provider may notify
500  *	with a CRYPTO_PROVIDER_READY, if it is able to recover from the error.
501  *
502  * This routine can be called from user or interrupt context.
503  */
504 void
505 crypto_provider_notification(crypto_kcf_provider_handle_t handle, uint_t state)
506 {
507 	kcf_provider_desc_t *pd;
508 
509 	/* lookup the provider from the given handle */
510 	if ((pd = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL)
511 		return;
512 
513 	mutex_enter(&pd->pd_lock);
514 
515 	if (pd->pd_state <= KCF_PROV_VERIFICATION_FAILED)
516 		goto out;
517 
518 	if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
519 		cmn_err(CE_WARN, "crypto_provider_notification: "
520 		    "logical provider (%x) ignored\n", handle);
521 		goto out;
522 	}
523 	switch (state) {
524 	case CRYPTO_PROVIDER_READY:
525 		switch (pd->pd_state) {
526 		case KCF_PROV_BUSY:
527 			pd->pd_state = KCF_PROV_READY;
528 			/*
529 			 * Signal the per-provider taskq threads that they
530 			 * can start submitting requests.
531 			 */
532 			cv_broadcast(&pd->pd_resume_cv);
533 			break;
534 
535 		case KCF_PROV_FAILED:
536 			/*
537 			 * The provider recovered from the error. Let us
538 			 * use it now.
539 			 */
540 			pd->pd_state = KCF_PROV_READY;
541 			break;
542 		}
543 		break;
544 
545 	case CRYPTO_PROVIDER_BUSY:
546 		switch (pd->pd_state) {
547 		case KCF_PROV_READY:
548 			pd->pd_state = KCF_PROV_BUSY;
549 			break;
550 		}
551 		break;
552 
553 	case CRYPTO_PROVIDER_FAILED:
554 		/*
555 		 * We note the failure and return. The per-provider taskq
556 		 * threads check this flag and start failing the
557 		 * requests, if it is set. See process_req_hwp() for details.
558 		 */
559 		switch (pd->pd_state) {
560 		case KCF_PROV_READY:
561 			pd->pd_state = KCF_PROV_FAILED;
562 			break;
563 
564 		case KCF_PROV_BUSY:
565 			pd->pd_state = KCF_PROV_FAILED;
566 			/*
567 			 * The per-provider taskq threads may be waiting. We
568 			 * signal them so that they can start failing requests.
569 			 */
570 			cv_broadcast(&pd->pd_resume_cv);
571 			break;
572 		}
573 		break;
574 	}
575 out:
576 	mutex_exit(&pd->pd_lock);
577 	KCF_PROV_REFRELE(pd);
578 }
579 
580 /*
581  * This routine is used to notify the framework the result of
582  * an asynchronous request handled by a provider. Valid error
583  * codes are the same as the CRYPTO_* errors defined in common.h.
584  *
585  * This routine can be called from user or interrupt context.
586  */
587 void
588 crypto_op_notification(crypto_req_handle_t handle, int error)
589 {
590 	kcf_call_type_t ctype;
591 
592 	if ((ctype = GET_REQ_TYPE(handle)) == CRYPTO_SYNCH) {
593 		kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)handle;
594 
595 		if (error != CRYPTO_SUCCESS)
596 			sreq->sn_provider->pd_sched_info.ks_nfails++;
597 		KCF_PROV_IREFRELE(sreq->sn_provider);
598 		kcf_sop_done(sreq, error);
599 	} else {
600 		kcf_areq_node_t *areq = (kcf_areq_node_t *)handle;
601 
602 		ASSERT(ctype == CRYPTO_ASYNCH);
603 		if (error != CRYPTO_SUCCESS)
604 			areq->an_provider->pd_sched_info.ks_nfails++;
605 		KCF_PROV_IREFRELE(areq->an_provider);
606 		kcf_aop_done(areq, error);
607 	}
608 }
609 
610 /*
611  * This routine is used by software providers to determine
612  * whether to use KM_SLEEP or KM_NOSLEEP during memory allocation.
613  * Note that hardware providers can always use KM_SLEEP. So,
614  * they do not need to call this routine.
615  *
616  * This routine can be called from user or interrupt context.
617  */
618 int
619 crypto_kmflag(crypto_req_handle_t handle)
620 {
621 	return (REQHNDL2_KMFLAG(handle));
622 }
623 
624 /*
625  * Process the mechanism info structures specified by the provider
626  * during registration. A NULL crypto_provider_info_t indicates
627  * an already initialized provider descriptor.
628  *
629  * Mechanisms are not added to the kernel's mechanism table if the
630  * provider is a logical provider.
631  *
632  * Returns CRYPTO_SUCCESS on success, CRYPTO_ARGUMENTS if one
633  * of the specified mechanisms was malformed, or CRYPTO_HOST_MEMORY
634  * if the table of mechanisms is full.
635  */
636 static int
637 init_prov_mechs(crypto_provider_info_t *info, kcf_provider_desc_t *desc)
638 {
639 	uint_t mech_idx;
640 	uint_t cleanup_idx;
641 	int err = CRYPTO_SUCCESS;
642 	kcf_prov_mech_desc_t *pmd;
643 	int desc_use_count = 0;
644 	int mcount = desc->pd_mech_list_count;
645 
646 	if (desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
647 		if (info != NULL) {
648 			ASSERT(info->pi_mechanisms != NULL);
649 			bcopy(info->pi_mechanisms, desc->pd_mechanisms,
650 			    sizeof (crypto_mech_info_t) * mcount);
651 		}
652 		return (CRYPTO_SUCCESS);
653 	}
654 
655 	/*
656 	 * Copy the mechanism list from the provider info to the provider
657 	 * descriptor. desc->pd_mechanisms has an extra crypto_mech_info_t
658 	 * element if the provider has random_ops since we keep an internal
659 	 * mechanism, SUN_RANDOM, in this case.
660 	 */
661 	if (info != NULL) {
662 		if (info->pi_ops_vector->co_random_ops != NULL) {
663 			crypto_mech_info_t *rand_mi;
664 
665 			/*
666 			 * Need the following check as it is possible to have
667 			 * a provider that implements just random_ops and has
668 			 * pi_mechanisms == NULL.
669 			 */
670 			if (info->pi_mechanisms != NULL) {
671 				bcopy(info->pi_mechanisms, desc->pd_mechanisms,
672 				    sizeof (crypto_mech_info_t) * (mcount - 1));
673 			}
674 			rand_mi = &desc->pd_mechanisms[mcount - 1];
675 
676 			bzero(rand_mi, sizeof (crypto_mech_info_t));
677 			(void) strncpy(rand_mi->cm_mech_name, SUN_RANDOM,
678 			    CRYPTO_MAX_MECH_NAME);
679 			rand_mi->cm_func_group_mask = CRYPTO_FG_RANDOM;
680 		} else {
681 			ASSERT(info->pi_mechanisms != NULL);
682 			bcopy(info->pi_mechanisms, desc->pd_mechanisms,
683 			    sizeof (crypto_mech_info_t) * mcount);
684 		}
685 	}
686 
687 	/*
688 	 * For each mechanism support by the provider, add the provider
689 	 * to the corresponding KCF mechanism mech_entry chain.
690 	 */
691 	for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; mech_idx++) {
692 		crypto_mech_info_t *mi = &desc->pd_mechanisms[mech_idx];
693 
694 		if ((mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BITS) &&
695 		    (mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BYTES)) {
696 			err = CRYPTO_ARGUMENTS_BAD;
697 			break;
698 		}
699 
700 		if (desc->pd_flags & CRYPTO_HASH_NO_UPDATE &&
701 		    mi->cm_func_group_mask & CRYPTO_FG_DIGEST) {
702 			/*
703 			 * We ask the provider to specify the limit
704 			 * per hash mechanism. But, in practice, a
705 			 * hardware limitation means all hash mechanisms
706 			 * will have the same maximum size allowed for
707 			 * input data. So, we make it a per provider
708 			 * limit to keep it simple.
709 			 */
710 			if (mi->cm_max_input_length == 0) {
711 				err = CRYPTO_ARGUMENTS_BAD;
712 				break;
713 			} else {
714 				desc->pd_hash_limit = mi->cm_max_input_length;
715 			}
716 		}
717 
718 		if (kcf_add_mech_provider(mech_idx, desc, &pmd) != KCF_SUCCESS)
719 			break;
720 
721 		if (pmd == NULL)
722 			continue;
723 
724 		/* The provider will be used for this mechanism */
725 		desc_use_count++;
726 	}
727 
728 	/*
729 	 * Don't allow multiple software providers with disabled mechanisms
730 	 * to register. Subsequent enabling of mechanisms will result in
731 	 * an unsupported configuration, i.e. multiple software providers
732 	 * per mechanism.
733 	 */
734 	if (desc_use_count == 0 && desc->pd_prov_type == CRYPTO_SW_PROVIDER)
735 		return (CRYPTO_ARGUMENTS_BAD);
736 
737 	if (err == KCF_SUCCESS)
738 		return (CRYPTO_SUCCESS);
739 
740 	/*
741 	 * An error occurred while adding the mechanism, cleanup
742 	 * and bail.
743 	 */
744 	for (cleanup_idx = 0; cleanup_idx < mech_idx; cleanup_idx++) {
745 		kcf_remove_mech_provider(
746 		    desc->pd_mechanisms[cleanup_idx].cm_mech_name, desc);
747 	}
748 
749 	if (err == KCF_MECH_TAB_FULL)
750 		return (CRYPTO_HOST_MEMORY);
751 
752 	return (CRYPTO_ARGUMENTS_BAD);
753 }
754 
755 /*
756  * Update routine for kstat. Only privileged users are allowed to
757  * access this information, since this information is sensitive.
758  * There are some cryptographic attacks (e.g. traffic analysis)
759  * which can use this information.
760  */
761 static int
762 kcf_prov_kstat_update(kstat_t *ksp, int rw)
763 {
764 	kcf_prov_stats_t *ks_data;
765 	kcf_provider_desc_t *pd = (kcf_provider_desc_t *)ksp->ks_private;
766 
767 	if (rw == KSTAT_WRITE)
768 		return (EACCES);
769 
770 	ks_data = ksp->ks_data;
771 
772 	if (secpolicy_sys_config(CRED(), B_TRUE) != 0) {
773 		ks_data->ps_ops_total.value.ui64 = 0;
774 		ks_data->ps_ops_passed.value.ui64 = 0;
775 		ks_data->ps_ops_failed.value.ui64 = 0;
776 		ks_data->ps_ops_busy_rval.value.ui64 = 0;
777 	} else {
778 		ks_data->ps_ops_total.value.ui64 =
779 		    pd->pd_sched_info.ks_ndispatches;
780 		ks_data->ps_ops_failed.value.ui64 =
781 		    pd->pd_sched_info.ks_nfails;
782 		ks_data->ps_ops_busy_rval.value.ui64 =
783 		    pd->pd_sched_info.ks_nbusy_rval;
784 		ks_data->ps_ops_passed.value.ui64 =
785 		    pd->pd_sched_info.ks_ndispatches -
786 		    pd->pd_sched_info.ks_nfails -
787 		    pd->pd_sched_info.ks_nbusy_rval;
788 	}
789 
790 	return (0);
791 }
792 
793 
794 /*
795  * Utility routine called from failure paths in crypto_register_provider()
796  * and from crypto_load_soft_disabled().
797  */
798 void
799 undo_register_provider(kcf_provider_desc_t *desc, boolean_t remove_prov)
800 {
801 	uint_t mech_idx;
802 
803 	/* remove the provider from the mechanisms tables */
804 	for (mech_idx = 0; mech_idx < desc->pd_mech_list_count;
805 	    mech_idx++) {
806 		kcf_remove_mech_provider(
807 		    desc->pd_mechanisms[mech_idx].cm_mech_name, desc);
808 	}
809 
810 	/* remove provider from providers table */
811 	if (remove_prov)
812 		(void) kcf_prov_tab_rem_provider(desc->pd_prov_id);
813 }
814 
815 static void
816 undo_register_provider_extra(kcf_provider_desc_t *desc)
817 {
818 	delete_kstat(desc);
819 	undo_register_provider(desc, B_TRUE);
820 }
821 
822 /*
823  * Utility routine called from crypto_load_soft_disabled(). Callers
824  * should have done a prior undo_register_provider().
825  */
826 void
827 redo_register_provider(kcf_provider_desc_t *pd)
828 {
829 	/* process the mechanisms supported by the provider */
830 	(void) init_prov_mechs(NULL, pd);
831 
832 	/*
833 	 * Hold provider in providers table. We should not call
834 	 * kcf_prov_tab_add_provider() here as the provider descriptor
835 	 * is still valid which means it has an entry in the provider
836 	 * table.
837 	 */
838 	KCF_PROV_REFHOLD(pd);
839 	KCF_PROV_IREFHOLD(pd);
840 }
841 
842 /*
843  * Add provider (p1) to another provider's array of providers (p2).
844  * Hardware and logical providers use this array to cross-reference
845  * each other.
846  */
847 static void
848 add_provider_to_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2)
849 {
850 	kcf_provider_list_t *new;
851 
852 	new = kmem_alloc(sizeof (kcf_provider_list_t), KM_SLEEP);
853 	mutex_enter(&p2->pd_lock);
854 	new->pl_next = p2->pd_provider_list;
855 	p2->pd_provider_list = new;
856 	KCF_PROV_IREFHOLD(p1);
857 	new->pl_provider = p1;
858 	mutex_exit(&p2->pd_lock);
859 }
860 
861 /*
862  * Remove provider (p1) from another provider's array of providers (p2).
863  * Hardware and logical providers use this array to cross-reference
864  * each other.
865  */
866 static void
867 remove_provider_from_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2)
868 {
869 
870 	kcf_provider_list_t *pl = NULL, **prev;
871 
872 	mutex_enter(&p2->pd_lock);
873 	for (pl = p2->pd_provider_list, prev = &p2->pd_provider_list;
874 	    pl != NULL; prev = &pl->pl_next, pl = pl->pl_next) {
875 		if (pl->pl_provider == p1) {
876 			break;
877 		}
878 	}
879 
880 	if (p1 == NULL) {
881 		mutex_exit(&p2->pd_lock);
882 		return;
883 	}
884 
885 	/* detach and free kcf_provider_list structure */
886 	KCF_PROV_IREFRELE(p1);
887 	*prev = pl->pl_next;
888 	kmem_free(pl, sizeof (*pl));
889 	mutex_exit(&p2->pd_lock);
890 }
891 
892 /*
893  * Convert an array of logical provider handles (crypto_provider_id)
894  * stored in a crypto_provider_info structure into an array of provider
895  * descriptors (kcf_provider_desc_t) attached to a logical provider.
896  */
897 static void
898 process_logical_providers(crypto_provider_info_t *info, kcf_provider_desc_t *hp)
899 {
900 	kcf_provider_desc_t *lp;
901 	crypto_provider_id_t handle;
902 	int count = info->pi_logical_provider_count;
903 	int i;
904 
905 	/* add hardware provider to each logical provider */
906 	for (i = 0; i < count; i++) {
907 		handle = info->pi_logical_providers[i];
908 		lp = kcf_prov_tab_lookup((crypto_provider_id_t)handle);
909 		if (lp == NULL) {
910 			continue;
911 		}
912 		add_provider_to_array(hp, lp);
913 		hp->pd_flags |= KCF_LPROV_MEMBER;
914 
915 		/*
916 		 * A hardware provider has to have the provider descriptor of
917 		 * every logical provider it belongs to, so it can be removed
918 		 * from the logical provider if the hardware provider
919 		 * unregisters from the framework.
920 		 */
921 		add_provider_to_array(lp, hp);
922 		KCF_PROV_REFRELE(lp);
923 	}
924 }
925 
926 /*
927  * This routine removes a provider from all of the logical or
928  * hardware providers it belongs to, and frees the provider's
929  * array of pointers to providers.
930  */
931 static void
932 remove_provider(kcf_provider_desc_t *pp)
933 {
934 	kcf_provider_desc_t *p;
935 	kcf_provider_list_t *e, *next;
936 
937 	mutex_enter(&pp->pd_lock);
938 	for (e = pp->pd_provider_list; e != NULL; e = next) {
939 		p = e->pl_provider;
940 		remove_provider_from_array(pp, p);
941 		if (p->pd_prov_type == CRYPTO_HW_PROVIDER &&
942 		    p->pd_provider_list == NULL)
943 			p->pd_flags &= ~KCF_LPROV_MEMBER;
944 		KCF_PROV_IREFRELE(p);
945 		next = e->pl_next;
946 		kmem_free(e, sizeof (*e));
947 	}
948 	pp->pd_provider_list = NULL;
949 	mutex_exit(&pp->pd_lock);
950 }
951 
952 /*
953  * Dispatch events as needed for a provider. is_added flag tells
954  * whether the provider is registering or unregistering.
955  */
956 void
957 kcf_do_notify(kcf_provider_desc_t *prov_desc, boolean_t is_added)
958 {
959 	int i;
960 	crypto_notify_event_change_t ec;
961 
962 	ASSERT(prov_desc->pd_state > KCF_PROV_VERIFICATION_FAILED);
963 
964 	/*
965 	 * Inform interested clients of the mechanisms becoming
966 	 * available/unavailable. We skip this for logical providers
967 	 * as they do not affect mechanisms.
968 	 */
969 	if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
970 		ec.ec_provider_type = prov_desc->pd_prov_type;
971 		ec.ec_change = is_added ? CRYPTO_MECH_ADDED :
972 		    CRYPTO_MECH_REMOVED;
973 		for (i = 0; i < prov_desc->pd_mech_list_count; i++) {
974 			/* Skip any mechanisms not allowed by the policy */
975 			if (is_mech_disabled(prov_desc,
976 			    prov_desc->pd_mechanisms[i].cm_mech_name))
977 				continue;
978 
979 			(void) strncpy(ec.ec_mech_name,
980 			    prov_desc->pd_mechanisms[i].cm_mech_name,
981 			    CRYPTO_MAX_MECH_NAME);
982 			kcf_walk_ntfylist(CRYPTO_EVENT_MECHS_CHANGED, &ec);
983 		}
984 
985 	}
986 
987 	/*
988 	 * Inform interested clients about the new or departing provider.
989 	 * In case of a logical provider, we need to notify the event only
990 	 * for the logical provider and not for the underlying
991 	 * providers which are known by the KCF_LPROV_MEMBER bit.
992 	 */
993 	if (prov_desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER ||
994 	    (prov_desc->pd_flags & KCF_LPROV_MEMBER) == 0) {
995 		kcf_walk_ntfylist(is_added ? CRYPTO_EVENT_PROVIDER_REGISTERED :
996 		    CRYPTO_EVENT_PROVIDER_UNREGISTERED, prov_desc);
997 	}
998 }
999 
1000 static void
1001 delete_kstat(kcf_provider_desc_t *desc)
1002 {
1003 	/* destroy the kstat created for this provider */
1004 	if (desc->pd_kstat != NULL) {
1005 		kcf_provider_desc_t *kspd = desc->pd_kstat->ks_private;
1006 
1007 		/* release reference held by desc->pd_kstat->ks_private */
1008 		ASSERT(desc == kspd);
1009 		kstat_delete(kspd->pd_kstat);
1010 		desc->pd_kstat = NULL;
1011 		KCF_PROV_REFRELE(kspd);
1012 		KCF_PROV_IREFRELE(kspd);
1013 	}
1014 }
1015