xref: /titanic_51/usr/src/uts/common/contract/device.c (revision a29e56d91db891741f1af9f6bbd3e3c3cac5f19b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/mutex.h>
26 #include <sys/debug.h>
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/kmem.h>
30 #include <sys/thread.h>
31 #include <sys/id_space.h>
32 #include <sys/avl.h>
33 #include <sys/list.h>
34 #include <sys/sysmacros.h>
35 #include <sys/proc.h>
36 #include <sys/contract.h>
37 #include <sys/contract_impl.h>
38 #include <sys/contract/device.h>
39 #include <sys/contract/device_impl.h>
40 #include <sys/cmn_err.h>
41 #include <sys/nvpair.h>
42 #include <sys/policy.h>
43 #include <sys/ddi_impldefs.h>
44 #include <sys/ddi_implfuncs.h>
45 #include <sys/systm.h>
46 #include <sys/stat.h>
47 #include <sys/sunddi.h>
48 #include <sys/esunddi.h>
49 #include <sys/ddi.h>
50 #include <sys/fs/dv_node.h>
51 #include <sys/sunndi.h>
52 #undef ct_lock	/* needed because clnt.h defines ct_lock as a macro */
53 
54 /*
55  * Device Contracts
56  * -----------------
57  * This file contains the core code for the device contracts framework.
58  * A device contract is an agreement or a contract between a process and
59  * the kernel regarding the state of the device. A device contract may be
60  * created when a relationship is formed between a device and a process
61  * i.e. at open(2) time, or it may be created at some point after the device
62  * has been opened. A device contract once formed may be broken by either party.
63  * A device contract can be broken by the process by an explicit abandon of the
64  * contract or by an implicit abandon when the process exits. A device contract
65  * can be broken by the kernel either asynchronously (without negotiation) or
66  * synchronously (with negotiation). Exactly which happens depends on the device
67  * state transition. The following state diagram shows the transitions between
68  * device states. Only device state transitions currently supported by device
69  * contracts is shown.
70  *
71  *                              <-- A -->
72  *                       /-----------------> DEGRADED
73  *                       |                      |
74  *                       |                      |
75  *                       |                      | S
76  *                       |                      | |
77  *                       |                      | v
78  *                       v       S -->          v
79  *                      ONLINE ------------> OFFLINE
80  *
81  *
82  * In the figure above, the arrows indicate the direction of transition. The
83  * letter S refers to transitions which are inherently synchronous i.e.
84  * require negotiation and the letter A indicates transitions which are
85  * asynchronous i.e. are done without contract negotiations. A good example
86  * of a synchronous transition is the ONLINE -> OFFLINE transition. This
87  * transition cannot happen as long as there are consumers which have the
88  * device open. Thus some form of negotiation needs to happen between the
89  * consumers and the kernel to ensure that consumers either close devices
90  * or disallow the move to OFFLINE. Certain other transitions such as
91  * ONLINE --> DEGRADED for example, are inherently asynchronous i.e.
92  * non-negotiable. A device that suffers a fault that degrades its
93  * capabilities will become degraded irrespective of what consumers it has,
94  * so a negotiation in this case is pointless.
95  *
96  * The following device states are currently defined for device contracts:
97  *
98  *      CT_DEV_EV_ONLINE
99  *              The device is online and functioning normally
100  *      CT_DEV_EV_DEGRADED
101  *              The device is online but is functioning in a degraded capacity
102  *      CT_DEV_EV_OFFLINE
103  *              The device is offline and is no longer configured
104  *
105  * A typical consumer of device contracts starts out with a contract
106  * template and adds terms to that template. These include the
107  * "acceptable set" (A-set) term, which is a bitset of device states which
108  * are guaranteed by the contract. If the device moves out of a state in
109  * the A-set, the contract is broken. The breaking of the contract can
110  * be asynchronous in which case a critical contract event is sent to the
111  * contract holder but no negotiations take place. If the breaking of the
112  * contract is synchronous, negotations are opened between the affected
113  * consumer and the kernel. The kernel does this by sending a critical
114  * event to the consumer with the CTE_NEG flag set indicating that this
115  * is a negotiation event. The consumer can accept this change by sending
116  * a ACK message to the kernel. Alternatively, if it has the necessary
117  * privileges, it can send a NACK message to the kernel which will block
118  * the device state change. To NACK a negotiable event, a process must
119  * have the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
120  *
121  * Other terms include the "minor path" term, specified explicitly if the
122  * contract is not being created at open(2) time or specified implicitly
123  * if the contract is being created at open time via an activated template.
124  *
125  * A contract event is sent on any state change to which the contract
126  * owner has subscribed via the informative or critical event sets. Only
127  * critical events are guaranteed to be delivered. Since all device state
128  * changes are controlled by the kernel and cannot be arbitrarily generated
129  * by a non-privileged user, the {PRIV_CONTRACT_EVENT} privilege does not
130  * need to be asserted in a process's effective set to designate an event as
131  * critical. To ensure privacy, a process must either have the same effective
132  * userid as the contract holder or have the {PRIV_CONTRACT_OBSERVER} privilege
133  * asserted in its effective set in order to observe device contract events
134  * off the device contract type specific endpoint.
135  *
136  * Yet another term available with device contracts is the "non-negotiable"
137  * term. This term is used to pre-specify a NACK to any contract negotiation.
138  * This term is ignored for asynchronous state changes. For example, a
139  * provcess may have the A-set {ONLINE|DEGRADED} and make the contract
140  * non-negotiable. In this case, the device contract framework assumes a
141  * NACK for any transition to OFFLINE and blocks the offline. If the A-set
142  * is {ONLINE} and the non-negotiable term is set, transitions to OFFLINE
143  * are NACKed but transitions to DEGRADE succeed.
144  *
145  * The OFFLINE negotiation (if OFFLINE state is not in the A-set for a contract)
146  * happens just before the I/O framework attempts to offline a device
147  * (i.e. detach a device and set the offline flag so that it cannot be
148  * reattached). A device contract holder is expected to either NACK the offline
149  * (if privileged) or release the device and allow the offline to proceed.
150  *
151  * The DEGRADE contract event (if DEGRADE is not in the A-set for a contract)
152  * is generated just before the I/O framework transitions the device state
153  * to "degraded" (i.e. DEVI_DEVICE_DEGRADED in I/O framework terminology).
154  *
155  * The contract holder is expected to ACK or NACK a negotiation event
156  * within a certain period of time. If the ACK/NACK is not received
157  * within the timeout period, the device contract framework will behave
158  * as if the contract does not exist and will proceed with the event.
159  *
160  * Unlike a process contract a device contract does not need to exist
161  * once it is abandoned, since it does not define a fault boundary. It
162  * merely represents an agreement between a process and the kernel
163  * regarding the state of the device. Once the process has abandoned
164  * the contract (either implicitly via a process exit or explicitly)
165  * the kernel has no reason to retain the contract. As a result
166  * device contracts are neither inheritable nor need to exist in an
167  * orphan state.
168  *
169  * A device unlike a process may exist in multiple contracts and has
170  * a "life" outside a device contract. A device unlike a process
171  * may exist without an associated contract. Unlike a process contract
172  * a device contract may be formed after a binding relationship is
173  * formed between a process and a device.
174  *
175  *	IMPLEMENTATION NOTES
176  *	====================
177  * DATA STRUCTURES
178  * ----------------
179  * 	The heart of the device contracts implementation is the device contract
180  * 	private cont_device_t (or ctd for short) data structure. It encapsulates
181  * 	the generic contract_t data structure and has a number of private
182  *	fields.
183  * 	These include:
184  *		cond_minor: The minor device that is the subject of the contract
185  *		cond_aset:  The bitset of states which are guaranteed by the
186  *			   contract
187  *		cond_noneg: If set, indicates that the result of negotiation has
188  *			    been predefined to be a NACK
189  * 	In addition, there are other device identifiers such the devinfo node,
190  * 	dev_t and spec_type of the minor node. There are also a few fields that
191  * 	are used during negotiation to maintain state. See
192  *		uts/common/sys/contract/device_impl.h
193  * 	for details.
194  * 	The ctd structure represents the device private part of a contract of
195  * 	type "device"
196  *
197  * 	Another data structure used by device contracts is ctmpl_device. It is
198  * 	the device contracts private part of the contract template structure. It
199  *	encapsulates the generic template structure "ct_template_t" and includes
200  *	the following device contract specific fields
201  *		ctd_aset:   The bitset of states that should be guaranteed by a
202  *			    contract
203  *		ctd_noneg:  If set, indicates that contract should NACK a
204  *			    negotiation
205  *		ctd_minor:  The devfs_path (without the /devices prefix) of the
206  *			    minor node that is the subject of the contract.
207  *
208  * ALGORITHMS
209  * ---------
210  * There are three sets of routines in this file
211  * 	Template related routines
212  * 	-------------------------
213  *	These routines provide support for template related operations initated
214  *	via the generic template operations. These include routines that dup
215  *	a template, free it, and set various terms in the template
216  *	(such as the minor node path, the acceptable state set (or A-set)
217  *	and the non-negotiable term) as well as a routine to query the
218  *	device specific portion of the template for the abovementioned terms.
219  *	There is also a routine to create (ctmpl_device_create) that is used to
220  *	create a contract from a template. This routine calls (after initial
221  *	setup) the common function used to create a device contract
222  *	(contract_device_create).
223  *
224  *	core device contract implementation
225  *	----------------------------------
226  *	These routines support the generic contract framework to provide
227  *	functionality that allows contracts to be created, managed and
228  *	destroyed. The contract_device_create() routine is a routine used
229  *	to create a contract from a template (either via an explicit create
230  *	operation on a template or implicitly via an open with an
231  *	activated template.). The contract_device_free() routine assists
232  *	in freeing the device contract specific parts. There are routines
233  *	used to abandon (contract_device_abandon) a device contract as well
234  *	as a routine to destroy (which despite its name does not destroy,
235  *	it only moves a contract to a dead state) a contract.
236  *	There is also a routine to return status information about a
237  *	contract - the level of detail depends on what is requested by the
238  *	user. A value of CTD_FIXED only returns fixed length fields such
239  *	as the A-set, state of device and value of the "noneg" term. If
240  *	CTD_ALL is specified, the minor node path is returned as well.
241  *
242  *	In addition there are interfaces (contract_device_ack/nack) which
243  *	are used to support negotiation between userland processes and
244  *	device contracts. These interfaces record the acknowledgement
245  *	or lack thereof for negotiation events and help determine if the
246  *	negotiated event should occur.
247  *
248  *	"backend routines"
249  *	-----------------
250  *	The backend routines form the interface between the I/O framework
251  *	and the device contract subsystem. These routines, allow the I/O
252  *	framework to call into the device contract subsystem to notify it of
253  *	impending changes to a device state as well as to inform of the
254  *	final disposition of such attempted state changes. Routines in this
255  *	class include contract_device_offline() that indicates an attempt to
256  *	offline a device, contract_device_degrade() that indicates that
257  *	a device is moving to the degraded state and contract_device_negend()
258  *	that is used by the I/O framework to inform the contracts subsystem of
259  *	the final disposition of an attempted operation.
260  *
261  *	SUMMARY
262  *	-------
263  *      A contract starts its life as a template. A process allocates a device
264  *	contract template and sets various terms:
265  *		The A-set
266  *		The device minor node
267  *		Critical and informative events
268  *		The noneg i.e. no negotition term
269  *	Setting of these terms in the template is done via the
270  *	ctmpl_device_set() entry point in this file. A process can query a
271  *	template to determine the terms already set in the template - this is
272  *	facilitated by the ctmpl_device_get() routine.
273  *
274  *	Once all the appropriate terms are set, the contract is instantiated via
275  *	one of two methods
276  *	- via an explicit create operation - this is facilitated by the
277  *	  ctmpl_device_create() entry point
278  *	- synchronously with the open(2) system call - this is achieved via the
279  *	  contract_device_open() routine.
280  *	The core work for both these above functions is done by
281  *	contract_device_create()
282  *
283  *	A contract once created can be queried for its status. Support for
284  *	status info is provided by both the common contracts framework and by
285  *	the "device" contract type. If the level of detail requested is
286  *	CTD_COMMON, only the common contract framework data is used. Higher
287  *	levels of detail result in calls to contract_device_status() to supply
288  *	device contract type specific status information.
289  *
290  *	A contract once created may be abandoned either explicitly or implictly.
291  *	In either case, the contract_device_abandon() function is invoked. This
292  * 	function merely calls contract_destroy() which moves the contract to
293  *	the DEAD state. The device contract portion of destroy processing is
294  *	provided by contract_device_destroy() which merely disassociates the
295  *	contract from its device devinfo node. A contract in the DEAD state is
296  *	not freed. It hanbgs around until all references to the contract are
297  *	gone. When that happens, the contract is finally deallocated. The
298  *	device contract specific portion of the free is done by
299  *	contract_device_free() which finally frees the device contract specific
300  *	data structure (cont_device_t).
301  *
302  *	When a device undergoes a state change, the I/O framework calls the
303  *	corresponding device contract entry point. For example, when a device
304  *	is about to go OFFLINE, the routine contract_device_offline() is
305  *	invoked. Similarly if a device moves to DEGRADED state, the routine
306  *	contract_device_degrade() function is called. These functions call the
307  *	core routine contract_device_publish(). This function determines via
308  *	the function is_sync_neg() whether an event is a synchronous (i.e.
309  *	negotiable) event or not. In the former case contract_device_publish()
310  *	publishes a CTE_NEG event and then waits in wait_for_acks() for ACKs
311  *	and/or NACKs from contract holders. In the latter case, it simply
312  *	publishes the event and does not wait. In the negotiation case, ACKs or
313  *	NACKs from userland consumers results in contract_device_ack_nack()
314  *	being called where the result of the negotiation is recorded in the
315  *	contract data structure. Once all outstanding contract owners have
316  *	responded, the device contract code in wait_for_acks() determines the
317  *	final result of the negotiation. A single NACK overrides all other ACKs
318  *	If there is no NACK, then a single ACK will result in an overall ACK
319  *	result. If there are no ACKs or NACKs, then the result CT_NONE is
320  *	returned back to the I/O framework. Once the event is permitted or
321  *	blocked, the I/O framework proceeds or aborts the state change. The
322  *	I/O framework then calls contract_device_negend() with a result code
323  *	indicating final disposition of the event. This call releases the
324  *	barrier and other state associated with the previous negotiation,
325  *	which permits the next event (if any) to come into the device contract
326  *	framework.
327  *
328  *	Finally, a device that has outstanding contracts may be removed from
329  *	the system which results in its devinfo node being freed. The devinfo
330  *	free routine in the I/O framework, calls into the device contract
331  *	function - contract_device_remove_dip(). This routine, disassociates
332  *	the dip from all contracts associated with the contract being freed,
333  *	allowing the devinfo node to be freed.
334  *
335  * LOCKING
336  * ---------
337  * 	There are four sets of data that need to be protected by locks
338  *
339  *	i) device contract specific portion of the contract template - This data
340  *	is protected by the template lock ctmpl_lock.
341  *
342  *	ii) device contract specific portion of the contract - This data is
343  *	protected by the contract lock ct_lock
344  *
345  *	iii) The linked list of contracts hanging off a devinfo node - This
346  *	list is protected by the per-devinfo node lock devi_ct_lock
347  *
348  *	iv) Finally there is a barrier, controlled by devi_ct_lock, devi_ct_cv
349  *	and devi_ct_count that controls state changes to a dip
350  *
351  *	The template lock is independent in that none of the other locks in this
352  *	file may be taken while holding the template lock (and vice versa).
353  *
354  *	The remaining three locks have the following lock order
355  *
356  *	devi_ct_lock  -> ct_count barrier ->  ct_lock
357  *
358  */
359 
360 static cont_device_t *contract_device_create(ctmpl_device_t *dtmpl, dev_t dev,
361     int spec_type, proc_t *owner, int *errorp);
362 
363 /* barrier routines */
364 static void ct_barrier_acquire(dev_info_t *dip);
365 static void ct_barrier_release(dev_info_t *dip);
366 static int ct_barrier_held(dev_info_t *dip);
367 static int ct_barrier_empty(dev_info_t *dip);
368 static void ct_barrier_wait_for_release(dev_info_t *dip);
369 static int ct_barrier_wait_for_empty(dev_info_t *dip, int secs);
370 static void ct_barrier_decr(dev_info_t *dip);
371 static void ct_barrier_incr(dev_info_t *dip);
372 
373 ct_type_t *device_type;
374 
375 /*
376  * Macro predicates for determining when events should be sent and how.
377  */
378 #define	EVSENDP(ctd, flag) \
379 	((ctd->cond_contract.ct_ev_info | ctd->cond_contract.ct_ev_crit) & flag)
380 
381 #define	EVINFOP(ctd, flag) \
382 	((ctd->cond_contract.ct_ev_crit & flag) == 0)
383 
384 /*
385  * State transition table showing which transitions are synchronous and which
386  * are not.
387  */
388 struct ct_dev_negtable {
389 	uint_t	st_old;
390 	uint_t	st_new;
391 	uint_t	st_neg;
392 } ct_dev_negtable[] = {
393 	{CT_DEV_EV_ONLINE, CT_DEV_EV_OFFLINE,	1},
394 	{CT_DEV_EV_ONLINE, CT_DEV_EV_DEGRADED,	0},
395 	{CT_DEV_EV_DEGRADED, CT_DEV_EV_ONLINE,	0},
396 	{CT_DEV_EV_DEGRADED, CT_DEV_EV_OFFLINE,	1},
397 	{0}
398 };
399 
400 /*
401  * Device contract template implementation
402  */
403 
404 /*
405  * ctmpl_device_dup
406  *
407  * The device contract template dup entry point.
408  * This simply copies all the fields (generic as well as device contract
409  * specific) fields of the original.
410  */
411 static struct ct_template *
412 ctmpl_device_dup(struct ct_template *template)
413 {
414 	ctmpl_device_t *new;
415 	ctmpl_device_t *old = template->ctmpl_data;
416 	char *buf;
417 	char *minor;
418 
419 	new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
420 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
421 
422 	/*
423 	 * copy generic fields.
424 	 * ctmpl_copy returns with old template lock held
425 	 */
426 	ctmpl_copy(&new->ctd_ctmpl, template);
427 
428 	new->ctd_ctmpl.ctmpl_data = new;
429 	new->ctd_aset = old->ctd_aset;
430 	new->ctd_minor = NULL;
431 	new->ctd_noneg = old->ctd_noneg;
432 
433 	if (old->ctd_minor) {
434 		ASSERT(strlen(old->ctd_minor) + 1 <= MAXPATHLEN);
435 		bcopy(old->ctd_minor, buf, strlen(old->ctd_minor) + 1);
436 	} else {
437 		kmem_free(buf, MAXPATHLEN);
438 		buf = NULL;
439 	}
440 
441 	mutex_exit(&template->ctmpl_lock);
442 	if (buf) {
443 		minor = i_ddi_strdup(buf, KM_SLEEP);
444 		kmem_free(buf, MAXPATHLEN);
445 		buf = NULL;
446 	} else {
447 		minor = NULL;
448 	}
449 	mutex_enter(&template->ctmpl_lock);
450 
451 	if (minor) {
452 		new->ctd_minor = minor;
453 	}
454 
455 	ASSERT(buf == NULL);
456 	return (&new->ctd_ctmpl);
457 }
458 
459 /*
460  * ctmpl_device_free
461  *
462  * The device contract template free entry point.  Just
463  * frees the template.
464  */
465 static void
466 ctmpl_device_free(struct ct_template *template)
467 {
468 	ctmpl_device_t *dtmpl = template->ctmpl_data;
469 
470 	if (dtmpl->ctd_minor)
471 		kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
472 
473 	kmem_free(dtmpl, sizeof (ctmpl_device_t));
474 }
475 
476 /*
477  * SAFE_EV is the set of events which a non-privileged process is
478  * allowed to make critical. An unprivileged device contract owner has
479  * no control over when a device changes state, so all device events
480  * can be in the critical set.
481  *
482  * EXCESS tells us if "value", a critical event set, requires
483  * additional privilege. For device contracts EXCESS currently
484  * evaluates to 0.
485  */
486 #define	SAFE_EV		(CT_DEV_ALLEVENT)
487 #define	EXCESS(value)	((value) & ~SAFE_EV)
488 
489 
490 /*
491  * ctmpl_device_set
492  *
493  * The device contract template set entry point. Sets various terms in the
494  * template. The non-negotiable  term can only be set if the process has
495  * the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
496  */
497 static int
498 ctmpl_device_set(struct ct_template *tmpl, ct_kparam_t *kparam,
499     const cred_t *cr)
500 {
501 	ctmpl_device_t *dtmpl = tmpl->ctmpl_data;
502 	ct_param_t *param = &kparam->param;
503 	int error;
504 	dev_info_t *dip;
505 	int spec_type;
506 	uint64_t param_value;
507 	char *str_value;
508 
509 	ASSERT(MUTEX_HELD(&tmpl->ctmpl_lock));
510 
511 	if (param->ctpm_id == CTDP_MINOR) {
512 		str_value = (char *)kparam->ctpm_kbuf;
513 		str_value[param->ctpm_size - 1] = '\0';
514 	} else {
515 		if (param->ctpm_size < sizeof (uint64_t))
516 			return (EINVAL);
517 		param_value = *(uint64_t *)kparam->ctpm_kbuf;
518 	}
519 
520 	switch (param->ctpm_id) {
521 	case CTDP_ACCEPT:
522 		if (param_value & ~CT_DEV_ALLEVENT)
523 			return (EINVAL);
524 		if (param_value == 0)
525 			return (EINVAL);
526 		if (param_value == CT_DEV_ALLEVENT)
527 			return (EINVAL);
528 
529 		dtmpl->ctd_aset = param_value;
530 		break;
531 	case CTDP_NONEG:
532 		if (param_value != CTDP_NONEG_SET &&
533 		    param_value != CTDP_NONEG_CLEAR)
534 			return (EINVAL);
535 
536 		/*
537 		 * only privileged processes can designate a contract
538 		 * non-negotiatble.
539 		 */
540 		if (param_value == CTDP_NONEG_SET &&
541 		    (error = secpolicy_sys_devices(cr)) != 0) {
542 			return (error);
543 		}
544 
545 		dtmpl->ctd_noneg = param_value;
546 		break;
547 
548 	case CTDP_MINOR:
549 		if (*str_value != '/' ||
550 		    strncmp(str_value, "/devices/",
551 		    strlen("/devices/")) == 0 ||
552 		    strstr(str_value, "../devices/") != NULL ||
553 		    strchr(str_value, ':') == NULL) {
554 			return (EINVAL);
555 		}
556 
557 		spec_type = 0;
558 		dip = NULL;
559 		if (resolve_pathname(str_value, &dip, NULL, &spec_type) != 0) {
560 			return (ERANGE);
561 		}
562 		ddi_release_devi(dip);
563 
564 		if (spec_type != S_IFCHR && spec_type != S_IFBLK) {
565 			return (EINVAL);
566 		}
567 
568 		if (dtmpl->ctd_minor != NULL) {
569 			kmem_free(dtmpl->ctd_minor,
570 			    strlen(dtmpl->ctd_minor) + 1);
571 		}
572 		dtmpl->ctd_minor = i_ddi_strdup(str_value, KM_SLEEP);
573 		break;
574 	case CTP_EV_CRITICAL:
575 		/*
576 		 * Currently for device contracts, any event
577 		 * may be added to the critical set. We retain the
578 		 * following code however for future enhancements.
579 		 */
580 		if (EXCESS(param_value) &&
581 		    (error = secpolicy_contract_event(cr)) != 0)
582 			return (error);
583 		tmpl->ctmpl_ev_crit = param_value;
584 		break;
585 	default:
586 		return (EINVAL);
587 	}
588 
589 	return (0);
590 }
591 
592 /*
593  * ctmpl_device_get
594  *
595  * The device contract template get entry point.  Simply fetches and
596  * returns the value of the requested term.
597  */
598 static int
599 ctmpl_device_get(struct ct_template *template, ct_kparam_t *kparam)
600 {
601 	ctmpl_device_t *dtmpl = template->ctmpl_data;
602 	ct_param_t *param = &kparam->param;
603 	uint64_t *param_value = kparam->ctpm_kbuf;
604 
605 	ASSERT(MUTEX_HELD(&template->ctmpl_lock));
606 
607 	if (param->ctpm_id == CTDP_ACCEPT ||
608 	    param->ctpm_id == CTDP_NONEG) {
609 		if (param->ctpm_size < sizeof (uint64_t))
610 			return (EINVAL);
611 		kparam->ret_size = sizeof (uint64_t);
612 	}
613 
614 	switch (param->ctpm_id) {
615 	case CTDP_ACCEPT:
616 		*param_value = dtmpl->ctd_aset;
617 		break;
618 	case CTDP_NONEG:
619 		*param_value = dtmpl->ctd_noneg;
620 		break;
621 	case CTDP_MINOR:
622 		if (dtmpl->ctd_minor) {
623 			kparam->ret_size = strlcpy((char *)kparam->ctpm_kbuf,
624 			    dtmpl->ctd_minor, param->ctpm_size);
625 			kparam->ret_size++;
626 		} else {
627 			return (ENOENT);
628 		}
629 		break;
630 	default:
631 		return (EINVAL);
632 	}
633 
634 	return (0);
635 }
636 
637 /*
638  * Device contract type specific portion of creating a contract using
639  * a specified template
640  */
641 /*ARGSUSED*/
642 int
643 ctmpl_device_create(ct_template_t *template, ctid_t *ctidp)
644 {
645 	ctmpl_device_t *dtmpl;
646 	char *buf;
647 	dev_t dev;
648 	int spec_type;
649 	int error;
650 	cont_device_t *ctd;
651 
652 	if (ctidp == NULL)
653 		return (EINVAL);
654 
655 	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
656 
657 	dtmpl = template->ctmpl_data;
658 
659 	mutex_enter(&template->ctmpl_lock);
660 	if (dtmpl->ctd_minor == NULL) {
661 		/* incomplete template */
662 		mutex_exit(&template->ctmpl_lock);
663 		kmem_free(buf, MAXPATHLEN);
664 		return (EINVAL);
665 	} else {
666 		ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
667 		bcopy(dtmpl->ctd_minor, buf, strlen(dtmpl->ctd_minor) + 1);
668 	}
669 	mutex_exit(&template->ctmpl_lock);
670 
671 	spec_type = 0;
672 	dev = NODEV;
673 	if (resolve_pathname(buf, NULL, &dev, &spec_type) != 0 ||
674 	    dev == NODEV || dev == DDI_DEV_T_ANY || dev == DDI_DEV_T_NONE ||
675 	    (spec_type != S_IFCHR && spec_type != S_IFBLK)) {
676 		CT_DEBUG((CE_WARN,
677 		    "tmpl_create: failed to find device: %s", buf));
678 		kmem_free(buf, MAXPATHLEN);
679 		return (ERANGE);
680 	}
681 	kmem_free(buf, MAXPATHLEN);
682 
683 	ctd = contract_device_create(template->ctmpl_data,
684 	    dev, spec_type, curproc, &error);
685 
686 	if (ctd == NULL) {
687 		CT_DEBUG((CE_WARN, "Failed to create device contract for "
688 		    "process (%d) with device (devt = %lu, spec_type = %s)",
689 		    curproc->p_pid, dev,
690 		    spec_type == S_IFCHR ? "S_IFCHR" : "S_IFBLK"));
691 		return (error);
692 	}
693 
694 	mutex_enter(&ctd->cond_contract.ct_lock);
695 	*ctidp = ctd->cond_contract.ct_id;
696 	mutex_exit(&ctd->cond_contract.ct_lock);
697 
698 	return (0);
699 }
700 
701 /*
702  * Device contract specific template entry points
703  */
704 static ctmplops_t ctmpl_device_ops = {
705 	ctmpl_device_dup,		/* ctop_dup */
706 	ctmpl_device_free,		/* ctop_free */
707 	ctmpl_device_set,		/* ctop_set */
708 	ctmpl_device_get,		/* ctop_get */
709 	ctmpl_device_create,		/* ctop_create */
710 	CT_DEV_ALLEVENT			/* all device events bitmask */
711 };
712 
713 
714 /*
715  * Device contract implementation
716  */
717 
718 /*
719  * contract_device_default
720  *
721  * The device contract default template entry point.  Creates a
722  * device contract template with a default A-set and no "noneg" ,
723  * with informative degrade events and critical offline events.
724  * There is no default minor path.
725  */
726 static ct_template_t *
727 contract_device_default(void)
728 {
729 	ctmpl_device_t *new;
730 
731 	new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
732 	ctmpl_init(&new->ctd_ctmpl, &ctmpl_device_ops, device_type, new);
733 
734 	new->ctd_aset = CT_DEV_EV_ONLINE | CT_DEV_EV_DEGRADED;
735 	new->ctd_noneg = 0;
736 	new->ctd_ctmpl.ctmpl_ev_info = CT_DEV_EV_DEGRADED;
737 	new->ctd_ctmpl.ctmpl_ev_crit = CT_DEV_EV_OFFLINE;
738 
739 	return (&new->ctd_ctmpl);
740 }
741 
742 /*
743  * contract_device_free
744  *
745  * Destroys the device contract specific portion of a contract and
746  * frees the contract.
747  */
748 static void
749 contract_device_free(contract_t *ct)
750 {
751 	cont_device_t *ctd = ct->ct_data;
752 
753 	ASSERT(ctd->cond_minor);
754 	ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
755 	kmem_free(ctd->cond_minor, strlen(ctd->cond_minor) + 1);
756 
757 	ASSERT(ctd->cond_devt != DDI_DEV_T_ANY &&
758 	    ctd->cond_devt != DDI_DEV_T_NONE && ctd->cond_devt != NODEV);
759 
760 	ASSERT(ctd->cond_spec == S_IFBLK || ctd->cond_spec == S_IFCHR);
761 
762 	ASSERT(!(ctd->cond_aset & ~CT_DEV_ALLEVENT));
763 	ASSERT(ctd->cond_noneg == 0 || ctd->cond_noneg == 1);
764 
765 	ASSERT(!(ctd->cond_currev_type & ~CT_DEV_ALLEVENT));
766 	ASSERT(!(ctd->cond_currev_ack & ~(CT_ACK | CT_NACK)));
767 
768 	ASSERT((ctd->cond_currev_id > 0) ^ (ctd->cond_currev_type == 0));
769 	ASSERT((ctd->cond_currev_id > 0) || (ctd->cond_currev_ack == 0));
770 
771 	ASSERT(!list_link_active(&ctd->cond_next));
772 
773 	kmem_free(ctd, sizeof (cont_device_t));
774 }
775 
776 /*
777  * contract_device_abandon
778  *
779  * The device contract abandon entry point.
780  */
781 static void
782 contract_device_abandon(contract_t *ct)
783 {
784 	ASSERT(MUTEX_HELD(&ct->ct_lock));
785 
786 	/*
787 	 * device contracts cannot be inherited or orphaned.
788 	 * Move the contract to the DEAD_STATE. It will be freed
789 	 * once all references to it are gone.
790 	 */
791 	contract_destroy(ct);
792 }
793 
794 /*
795  * contract_device_destroy
796  *
797  * The device contract destroy entry point.
798  * Called from contract_destroy() to do any type specific destroy. Note
799  * that destroy is a misnomer - this does not free the contract, it only
800  * moves it to the dead state. A contract is actually freed via
801  * 	contract_rele() -> contract_dtor(), contop_free()
802  */
803 static void
804 contract_device_destroy(contract_t *ct)
805 {
806 	cont_device_t	*ctd;
807 	dev_info_t	*dip;
808 
809 	ASSERT(MUTEX_HELD(&ct->ct_lock));
810 
811 	for (;;) {
812 		ctd = ct->ct_data;
813 		dip = ctd->cond_dip;
814 		if (dip == NULL) {
815 			/*
816 			 * The dip has been removed, this is a dangling contract
817 			 * Check that dip linkages are NULL
818 			 */
819 			ASSERT(!list_link_active(&ctd->cond_next));
820 			CT_DEBUG((CE_NOTE, "contract_device_destroy:"
821 			    " contract has no devinfo node. contract ctid : %d",
822 			    ct->ct_id));
823 			return;
824 		}
825 
826 		/*
827 		 * The intended lock order is : devi_ct_lock -> ct_count
828 		 * barrier -> ct_lock.
829 		 * However we can't do this here as dropping the ct_lock allows
830 		 * a race condition with i_ddi_free_node()/
831 		 * contract_device_remove_dip() which may free off dip before
832 		 * we can take devi_ct_lock. So use mutex_tryenter to avoid
833 		 * dropping ct_lock until we have acquired devi_ct_lock.
834 		 */
835 		if (mutex_tryenter(&(DEVI(dip)->devi_ct_lock)) != 0)
836 			break;
837 		mutex_exit(&ct->ct_lock);
838 		delay(drv_usectohz(1000));
839 		mutex_enter(&ct->ct_lock);
840 	}
841 	mutex_exit(&ct->ct_lock);
842 
843 	/*
844 	 * Waiting for the barrier to be released is strictly speaking not
845 	 * necessary. But it simplifies the implementation of
846 	 * contract_device_publish() by establishing the invariant that
847 	 * device contracts cannot go away during negotiation.
848 	 */
849 	ct_barrier_wait_for_release(dip);
850 	mutex_enter(&ct->ct_lock);
851 
852 	list_remove(&(DEVI(dip)->devi_ct), ctd);
853 	ctd->cond_dip = NULL; /* no longer linked to dip */
854 	contract_rele(ct);	/* remove hold for dip linkage */
855 
856 	mutex_exit(&ct->ct_lock);
857 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
858 	mutex_enter(&ct->ct_lock);
859 }
860 
861 /*
862  * contract_device_status
863  *
864  * The device contract status entry point. Called when level of "detail"
865  * is either CTD_FIXED or CTD_ALL
866  *
867  */
868 static void
869 contract_device_status(contract_t *ct, zone_t *zone, int detail, nvlist_t *nvl,
870     void *status, model_t model)
871 {
872 	cont_device_t *ctd = ct->ct_data;
873 
874 	ASSERT(detail == CTD_FIXED || detail == CTD_ALL);
875 
876 	mutex_enter(&ct->ct_lock);
877 	contract_status_common(ct, zone, status, model);
878 
879 	/*
880 	 * There's no need to hold the contract lock while accessing static
881 	 * data like aset or noneg. But since we need the lock to access other
882 	 * data like state, we hold it anyway.
883 	 */
884 	VERIFY(nvlist_add_uint32(nvl, CTDS_STATE, ctd->cond_state) == 0);
885 	VERIFY(nvlist_add_uint32(nvl, CTDS_ASET, ctd->cond_aset) == 0);
886 	VERIFY(nvlist_add_uint32(nvl, CTDS_NONEG, ctd->cond_noneg) == 0);
887 
888 	if (detail == CTD_FIXED) {
889 		mutex_exit(&ct->ct_lock);
890 		return;
891 	}
892 
893 	ASSERT(ctd->cond_minor);
894 	VERIFY(nvlist_add_string(nvl, CTDS_MINOR, ctd->cond_minor) == 0);
895 
896 	mutex_exit(&ct->ct_lock);
897 }
898 
899 /*
900  * Converts a result integer into the corresponding string. Used for printing
901  * messages
902  */
903 static char *
904 result_str(uint_t result)
905 {
906 	switch (result) {
907 	case CT_ACK:
908 		return ("CT_ACK");
909 	case CT_NACK:
910 		return ("CT_NACK");
911 	case CT_NONE:
912 		return ("CT_NONE");
913 	default:
914 		return ("UNKNOWN");
915 	}
916 }
917 
918 /*
919  * Converts a device state integer constant into the corresponding string.
920  * Used to print messages.
921  */
922 static char *
923 state_str(uint_t state)
924 {
925 	switch (state) {
926 	case CT_DEV_EV_ONLINE:
927 		return ("ONLINE");
928 	case CT_DEV_EV_DEGRADED:
929 		return ("DEGRADED");
930 	case CT_DEV_EV_OFFLINE:
931 		return ("OFFLINE");
932 	default:
933 		return ("UNKNOWN");
934 	}
935 }
936 
937 /*
938  * Routine that determines if a particular CT_DEV_EV_? event corresponds to a
939  * synchronous state change or not.
940  */
941 static int
942 is_sync_neg(uint_t old, uint_t new)
943 {
944 	int	i;
945 
946 	ASSERT(old & CT_DEV_ALLEVENT);
947 	ASSERT(new & CT_DEV_ALLEVENT);
948 
949 	if (old == new) {
950 		CT_DEBUG((CE_WARN, "is_sync_neg: transition to same state: %s",
951 		    state_str(new)));
952 		return (-2);
953 	}
954 
955 	for (i = 0; ct_dev_negtable[i].st_new != 0; i++) {
956 		if (old == ct_dev_negtable[i].st_old &&
957 		    new == ct_dev_negtable[i].st_new) {
958 			return (ct_dev_negtable[i].st_neg);
959 		}
960 	}
961 
962 	CT_DEBUG((CE_WARN, "is_sync_neg: Unsupported state transition: "
963 	    "old = %s -> new = %s", state_str(old), state_str(new)));
964 
965 	return (-1);
966 }
967 
968 /*
969  * Used to cleanup cached dv_nodes so that when a device is released by
970  * a contract holder, its devinfo node can be successfully detached.
971  */
972 static int
973 contract_device_dvclean(dev_info_t *dip)
974 {
975 	char		*devnm;
976 	dev_info_t	*pdip;
977 
978 	ASSERT(dip);
979 
980 	/* pdip can be NULL if we have contracts against the root dip */
981 	pdip = ddi_get_parent(dip);
982 
983 	if (pdip && DEVI_BUSY_OWNED(pdip) || !pdip && DEVI_BUSY_OWNED(dip)) {
984 		char		*path;
985 
986 		path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
987 		(void) ddi_pathname(dip, path);
988 		CT_DEBUG((CE_WARN, "ct_dv_clean: Parent node is busy owned, "
989 		    "device=%s", path));
990 		kmem_free(path, MAXPATHLEN);
991 		return (EDEADLOCK);
992 	}
993 
994 	if (pdip) {
995 		devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
996 		(void) ddi_deviname(dip, devnm);
997 		(void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
998 		kmem_free(devnm, MAXNAMELEN + 1);
999 	} else {
1000 		(void) devfs_clean(dip, NULL, DV_CLEAN_FORCE);
1001 	}
1002 
1003 	return (0);
1004 }
1005 
1006 /*
1007  * Endpoint of a ct_ctl_ack() or ct_ctl_nack() call from userland.
1008  * Results in the ACK or NACK being recorded on the dip for one particular
1009  * contract. The device contracts framework evaluates the ACK/NACKs for all
1010  * contracts against a device to determine if a particular device state change
1011  * should be allowed.
1012  */
1013 static int
1014 contract_device_ack_nack(contract_t *ct, uint_t evtype, uint64_t evid,
1015     uint_t cmd)
1016 {
1017 	cont_device_t *ctd = ct->ct_data;
1018 	dev_info_t *dip;
1019 	ctid_t	ctid;
1020 	int error;
1021 
1022 	ctid = ct->ct_id;
1023 
1024 	CT_DEBUG((CE_NOTE, "ack_nack: entered: ctid %d", ctid));
1025 
1026 	mutex_enter(&ct->ct_lock);
1027 	CT_DEBUG((CE_NOTE, "ack_nack: contract lock acquired: %d", ctid));
1028 
1029 	dip = ctd->cond_dip;
1030 
1031 	ASSERT(ctd->cond_minor);
1032 	ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
1033 
1034 	/*
1035 	 * Negotiation only if new state is not in A-set
1036 	 */
1037 	ASSERT(!(ctd->cond_aset & evtype));
1038 
1039 	/*
1040 	 * Negotiation only if transition is synchronous
1041 	 */
1042 	ASSERT(is_sync_neg(ctd->cond_state, evtype));
1043 
1044 	/*
1045 	 * We shouldn't be negotiating if the "noneg" flag is set
1046 	 */
1047 	ASSERT(!ctd->cond_noneg);
1048 
1049 	if (dip)
1050 		ndi_hold_devi(dip);
1051 
1052 	mutex_exit(&ct->ct_lock);
1053 
1054 	/*
1055 	 * dv_clean only if !NACK and offline state change
1056 	 */
1057 	if (cmd != CT_NACK && evtype == CT_DEV_EV_OFFLINE && dip) {
1058 		CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: %d", ctid));
1059 		error = contract_device_dvclean(dip);
1060 		if (error != 0) {
1061 			CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: failed: %d",
1062 			    ctid));
1063 			ddi_release_devi(dip);
1064 		}
1065 	}
1066 
1067 	mutex_enter(&ct->ct_lock);
1068 
1069 	if (dip)
1070 		ddi_release_devi(dip);
1071 
1072 	if (dip == NULL) {
1073 		if (ctd->cond_currev_id != evid) {
1074 			CT_DEBUG((CE_WARN, "%sACK for non-current event "
1075 			    "(type=%s, id=%llu) on removed device",
1076 			    cmd == CT_NACK ? "N" : "",
1077 			    state_str(evtype), (unsigned long long)evid));
1078 			CT_DEBUG((CE_NOTE, "ack_nack: error: ESRCH, ctid: %d",
1079 			    ctid));
1080 		} else {
1081 			ASSERT(ctd->cond_currev_type == evtype);
1082 			CT_DEBUG((CE_WARN, "contract_ack: no such device: "
1083 			    "ctid: %d", ctid));
1084 		}
1085 		error = (ct->ct_state == CTS_DEAD) ? ESRCH :
1086 		    ((cmd == CT_NACK) ? ETIMEDOUT : 0);
1087 		mutex_exit(&ct->ct_lock);
1088 		return (error);
1089 	}
1090 
1091 	/*
1092 	 * Must follow lock order: devi_ct_lock -> ct_count barrier - >ct_lock
1093 	 */
1094 	mutex_exit(&ct->ct_lock);
1095 
1096 	mutex_enter(&DEVI(dip)->devi_ct_lock);
1097 	mutex_enter(&ct->ct_lock);
1098 	if (ctd->cond_currev_id != evid) {
1099 		char *buf;
1100 		mutex_exit(&ct->ct_lock);
1101 		mutex_exit(&DEVI(dip)->devi_ct_lock);
1102 		ndi_hold_devi(dip);
1103 		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1104 		(void) ddi_pathname(dip, buf);
1105 		ddi_release_devi(dip);
1106 		CT_DEBUG((CE_WARN, "%sACK for non-current event"
1107 		    "(type=%s, id=%llu) on device %s",
1108 		    cmd == CT_NACK ? "N" : "",
1109 		    state_str(evtype), (unsigned long long)evid, buf));
1110 		kmem_free(buf, MAXPATHLEN);
1111 		CT_DEBUG((CE_NOTE, "ack_nack: error: %d, ctid: %d",
1112 		    cmd == CT_NACK ? ETIMEDOUT : 0, ctid));
1113 		return (cmd == CT_ACK ? 0 : ETIMEDOUT);
1114 	}
1115 
1116 	ASSERT(ctd->cond_currev_type == evtype);
1117 	ASSERT(cmd == CT_ACK || cmd == CT_NACK);
1118 
1119 	CT_DEBUG((CE_NOTE, "ack_nack: setting %sACK for ctid: %d",
1120 	    cmd == CT_NACK ? "N" : "", ctid));
1121 
1122 	ctd->cond_currev_ack = cmd;
1123 	mutex_exit(&ct->ct_lock);
1124 
1125 	ct_barrier_decr(dip);
1126 	mutex_exit(&DEVI(dip)->devi_ct_lock);
1127 
1128 	CT_DEBUG((CE_NOTE, "ack_nack: normal exit: ctid: %d", ctid));
1129 
1130 	return (0);
1131 }
1132 
1133 /*
1134  * Invoked when a userland contract holder approves (i.e. ACKs) a state change
1135  */
1136 static int
1137 contract_device_ack(contract_t *ct, uint_t evtype, uint64_t evid)
1138 {
1139 	return (contract_device_ack_nack(ct, evtype, evid, CT_ACK));
1140 }
1141 
1142 /*
1143  * Invoked when a userland contract holder blocks (i.e. NACKs) a state change
1144  */
1145 static int
1146 contract_device_nack(contract_t *ct, uint_t evtype, uint64_t evid)
1147 {
1148 	return (contract_device_ack_nack(ct, evtype, evid, CT_NACK));
1149 }
1150 
1151 /*
1152  * Creates a new contract synchronously with the breaking of an existing
1153  * contract. Currently not supported.
1154  */
1155 /*ARGSUSED*/
1156 static int
1157 contract_device_newct(contract_t *ct)
1158 {
1159 	return (ENOTSUP);
1160 }
1161 
1162 /*
1163  * Core device contract implementation entry points
1164  */
1165 static contops_t contract_device_ops = {
1166 	contract_device_free,		/* contop_free */
1167 	contract_device_abandon,	/* contop_abandon */
1168 	contract_device_destroy,	/* contop_destroy */
1169 	contract_device_status,		/* contop_status */
1170 	contract_device_ack,		/* contop_ack */
1171 	contract_device_nack,		/* contop_nack */
1172 	contract_qack_notsup,		/* contop_qack */
1173 	contract_device_newct		/* contop_newct */
1174 };
1175 
1176 /*
1177  * contract_device_init
1178  *
1179  * Initializes the device contract type.
1180  */
1181 void
1182 contract_device_init(void)
1183 {
1184 	device_type = contract_type_init(CTT_DEVICE, "device",
1185 	    &contract_device_ops, contract_device_default);
1186 }
1187 
1188 /*
1189  * contract_device_create
1190  *
1191  * create a device contract given template "tmpl" and the "owner" process.
1192  * May fail and return NULL if project.max-contracts would have been exceeded.
1193  *
1194  * Common device contract creation routine called for both open-time and
1195  * non-open time device contract creation
1196  */
1197 static cont_device_t *
1198 contract_device_create(ctmpl_device_t *dtmpl, dev_t dev, int spec_type,
1199     proc_t *owner, int *errorp)
1200 {
1201 	cont_device_t *ctd;
1202 	char *minor;
1203 	char *path;
1204 	dev_info_t *dip;
1205 
1206 	ASSERT(dtmpl != NULL);
1207 	ASSERT(dev != NODEV && dev != DDI_DEV_T_ANY && dev != DDI_DEV_T_NONE);
1208 	ASSERT(spec_type == S_IFCHR || spec_type == S_IFBLK);
1209 	ASSERT(errorp);
1210 
1211 	*errorp = 0;
1212 
1213 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1214 
1215 	mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
1216 	ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
1217 	bcopy(dtmpl->ctd_minor, path, strlen(dtmpl->ctd_minor) + 1);
1218 	mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1219 
1220 	dip = e_ddi_hold_devi_by_path(path, 0);
1221 	if (dip == NULL) {
1222 		cmn_err(CE_WARN, "contract_create: Cannot find devinfo node "
1223 		    "for device path (%s)", path);
1224 		kmem_free(path, MAXPATHLEN);
1225 		*errorp = ERANGE;
1226 		return (NULL);
1227 	}
1228 
1229 	/*
1230 	 * Lock out any parallel contract negotiations
1231 	 */
1232 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1233 	ct_barrier_acquire(dip);
1234 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1235 
1236 	minor = i_ddi_strdup(path, KM_SLEEP);
1237 	kmem_free(path, MAXPATHLEN);
1238 
1239 	(void) contract_type_pbundle(device_type, owner);
1240 
1241 	ctd = kmem_zalloc(sizeof (cont_device_t), KM_SLEEP);
1242 
1243 	/*
1244 	 * Only we hold a refernce to this contract. Safe to access
1245 	 * the fields without a ct_lock
1246 	 */
1247 	ctd->cond_minor = minor;
1248 	/*
1249 	 * It is safe to set the dip pointer in the contract
1250 	 * as the contract will always be destroyed before the dip
1251 	 * is released
1252 	 */
1253 	ctd->cond_dip = dip;
1254 	ctd->cond_devt = dev;
1255 	ctd->cond_spec = spec_type;
1256 
1257 	/*
1258 	 * Since we are able to lookup the device, it is either
1259 	 * online or degraded
1260 	 */
1261 	ctd->cond_state = DEVI_IS_DEVICE_DEGRADED(dip) ?
1262 	    CT_DEV_EV_DEGRADED : CT_DEV_EV_ONLINE;
1263 
1264 	mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
1265 	ctd->cond_aset = dtmpl->ctd_aset;
1266 	ctd->cond_noneg = dtmpl->ctd_noneg;
1267 
1268 	/*
1269 	 * contract_ctor() initailizes the common portion of a contract
1270 	 * contract_dtor() destroys the common portion of a contract
1271 	 */
1272 	if (contract_ctor(&ctd->cond_contract, device_type, &dtmpl->ctd_ctmpl,
1273 	    ctd, 0, owner, B_TRUE)) {
1274 		mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1275 		/*
1276 		 * contract_device_free() destroys the type specific
1277 		 * portion of a contract and frees the contract.
1278 		 * The "minor" path and "cred" is a part of the type specific
1279 		 * portion of the contract and will be freed by
1280 		 * contract_device_free()
1281 		 */
1282 		contract_device_free(&ctd->cond_contract);
1283 
1284 		/* release barrier */
1285 		mutex_enter(&(DEVI(dip)->devi_ct_lock));
1286 		ct_barrier_release(dip);
1287 		mutex_exit(&(DEVI(dip)->devi_ct_lock));
1288 
1289 		ddi_release_devi(dip);
1290 		*errorp = EAGAIN;
1291 		return (NULL);
1292 	}
1293 	mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
1294 
1295 	mutex_enter(&ctd->cond_contract.ct_lock);
1296 	ctd->cond_contract.ct_ntime.ctm_total = CT_DEV_ACKTIME;
1297 	ctd->cond_contract.ct_qtime.ctm_total = CT_DEV_ACKTIME;
1298 	ctd->cond_contract.ct_ntime.ctm_start = -1;
1299 	ctd->cond_contract.ct_qtime.ctm_start = -1;
1300 	mutex_exit(&ctd->cond_contract.ct_lock);
1301 
1302 	/*
1303 	 * Insert device contract into list hanging off the dip
1304 	 * Bump up the ref-count on the contract to reflect this
1305 	 */
1306 	contract_hold(&ctd->cond_contract);
1307 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1308 	list_insert_tail(&(DEVI(dip)->devi_ct), ctd);
1309 
1310 	/* release barrier */
1311 	ct_barrier_release(dip);
1312 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1313 
1314 	ddi_release_devi(dip);
1315 
1316 	return (ctd);
1317 }
1318 
1319 /*
1320  * Called when a device is successfully opened to create an open-time contract
1321  * i.e. synchronously with a device open.
1322  */
1323 int
1324 contract_device_open(dev_t dev, int spec_type, contract_t **ctpp)
1325 {
1326 	ctmpl_device_t *dtmpl;
1327 	ct_template_t  *tmpl;
1328 	cont_device_t *ctd;
1329 	char *path;
1330 	klwp_t *lwp;
1331 	int error;
1332 
1333 	if (ctpp)
1334 		*ctpp = NULL;
1335 
1336 	/*
1337 	 * Check if we are in user-context i.e. if we have an lwp
1338 	 */
1339 	lwp = ttolwp(curthread);
1340 	if (lwp == NULL) {
1341 		CT_DEBUG((CE_NOTE, "contract_open: Not user-context"));
1342 		return (0);
1343 	}
1344 
1345 	tmpl = ctmpl_dup(lwp->lwp_ct_active[device_type->ct_type_index]);
1346 	if (tmpl == NULL) {
1347 		return (0);
1348 	}
1349 	dtmpl = tmpl->ctmpl_data;
1350 
1351 	/*
1352 	 * If the user set a minor path in the template before an open,
1353 	 * ignore it. We use the minor path of the actual minor opened.
1354 	 */
1355 	mutex_enter(&tmpl->ctmpl_lock);
1356 	if (dtmpl->ctd_minor != NULL) {
1357 		CT_DEBUG((CE_NOTE, "contract_device_open(): Process %d: "
1358 		    "ignoring device minor path in active template: %s",
1359 		    curproc->p_pid, dtmpl->ctd_minor));
1360 		/*
1361 		 * This is a copy of the actual activated template.
1362 		 * Safe to make changes such as freeing the minor
1363 		 * path in the template.
1364 		 */
1365 		kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
1366 		dtmpl->ctd_minor = NULL;
1367 	}
1368 	mutex_exit(&tmpl->ctmpl_lock);
1369 
1370 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1371 
1372 	if (ddi_dev_pathname(dev, spec_type, path) != DDI_SUCCESS) {
1373 		CT_DEBUG((CE_NOTE, "contract_device_open(): Failed to derive "
1374 		    "minor path from dev_t,spec {%lu, %d} for process (%d)",
1375 		    dev, spec_type, curproc->p_pid));
1376 		ctmpl_free(tmpl);
1377 		kmem_free(path, MAXPATHLEN);
1378 		return (1);
1379 	}
1380 
1381 	mutex_enter(&tmpl->ctmpl_lock);
1382 	ASSERT(dtmpl->ctd_minor == NULL);
1383 	dtmpl->ctd_minor = path;
1384 	mutex_exit(&tmpl->ctmpl_lock);
1385 
1386 	ctd = contract_device_create(dtmpl, dev, spec_type, curproc, &error);
1387 
1388 	mutex_enter(&tmpl->ctmpl_lock);
1389 	ASSERT(dtmpl->ctd_minor);
1390 	dtmpl->ctd_minor = NULL;
1391 	mutex_exit(&tmpl->ctmpl_lock);
1392 	ctmpl_free(tmpl);
1393 	kmem_free(path, MAXPATHLEN);
1394 
1395 	if (ctd == NULL) {
1396 		cmn_err(CE_NOTE, "contract_device_open(): Failed to "
1397 		    "create device contract for process (%d) holding "
1398 		    "device (devt = %lu, spec_type = %d)",
1399 		    curproc->p_pid, dev, spec_type);
1400 		return (1);
1401 	}
1402 
1403 	if (ctpp) {
1404 		mutex_enter(&ctd->cond_contract.ct_lock);
1405 		*ctpp = &ctd->cond_contract;
1406 		mutex_exit(&ctd->cond_contract.ct_lock);
1407 	}
1408 	return (0);
1409 }
1410 
1411 /*
1412  * Called during contract negotiation by the device contract framework to wait
1413  * for ACKs or NACKs from contract holders. If all responses are not received
1414  * before a specified timeout, this routine times out.
1415  */
1416 static uint_t
1417 wait_for_acks(dev_info_t *dip, dev_t dev, int spec_type, uint_t evtype)
1418 {
1419 	cont_device_t *ctd;
1420 	int timed_out = 0;
1421 	int result = CT_NONE;
1422 	int ack;
1423 	char *f = "wait_for_acks";
1424 
1425 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
1426 	ASSERT(dip);
1427 	ASSERT(evtype & CT_DEV_ALLEVENT);
1428 	ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
1429 	ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
1430 	    (spec_type == S_IFBLK || spec_type == S_IFCHR));
1431 
1432 	CT_DEBUG((CE_NOTE, "%s: entered: dip: %p", f, (void *)dip));
1433 
1434 	if (ct_barrier_wait_for_empty(dip, CT_DEV_ACKTIME) == -1) {
1435 		/*
1436 		 * some contract owner(s) didn't respond in time
1437 		 */
1438 		CT_DEBUG((CE_NOTE, "%s: timed out: %p", f, (void *)dip));
1439 		timed_out = 1;
1440 	}
1441 
1442 	ack = 0;
1443 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1444 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1445 
1446 		mutex_enter(&ctd->cond_contract.ct_lock);
1447 
1448 		ASSERT(ctd->cond_dip == dip);
1449 
1450 		if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
1451 			mutex_exit(&ctd->cond_contract.ct_lock);
1452 			continue;
1453 		}
1454 		if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
1455 			mutex_exit(&ctd->cond_contract.ct_lock);
1456 			continue;
1457 		}
1458 
1459 		/* skip if non-negotiable contract */
1460 		if (ctd->cond_noneg) {
1461 			mutex_exit(&ctd->cond_contract.ct_lock);
1462 			continue;
1463 		}
1464 
1465 		ASSERT(ctd->cond_currev_type == evtype);
1466 		if (ctd->cond_currev_ack == CT_NACK) {
1467 			CT_DEBUG((CE_NOTE, "%s: found a NACK,result = NACK: %p",
1468 			    f, (void *)dip));
1469 			mutex_exit(&ctd->cond_contract.ct_lock);
1470 			return (CT_NACK);
1471 		} else if (ctd->cond_currev_ack == CT_ACK) {
1472 			ack = 1;
1473 			CT_DEBUG((CE_NOTE, "%s: found a ACK: %p",
1474 			    f, (void *)dip));
1475 		}
1476 		mutex_exit(&ctd->cond_contract.ct_lock);
1477 	}
1478 
1479 	if (ack) {
1480 		result = CT_ACK;
1481 		CT_DEBUG((CE_NOTE, "%s: result = ACK, dip=%p", f, (void *)dip));
1482 	} else if (timed_out) {
1483 		result = CT_NONE;
1484 		CT_DEBUG((CE_NOTE, "%s: result = NONE (timed-out), dip=%p",
1485 		    f, (void *)dip));
1486 	} else {
1487 		CT_DEBUG((CE_NOTE, "%s: result = NONE, dip=%p",
1488 		    f, (void *)dip));
1489 	}
1490 
1491 
1492 	return (result);
1493 }
1494 
1495 /*
1496  * Determines the current state of a device (i.e a devinfo node
1497  */
1498 static int
1499 get_state(dev_info_t *dip)
1500 {
1501 	if (DEVI_IS_DEVICE_OFFLINE(dip) || DEVI_IS_DEVICE_DOWN(dip))
1502 		return (CT_DEV_EV_OFFLINE);
1503 	else if (DEVI_IS_DEVICE_DEGRADED(dip))
1504 		return (CT_DEV_EV_DEGRADED);
1505 	else
1506 		return (CT_DEV_EV_ONLINE);
1507 }
1508 
1509 /*
1510  * Sets the current state of a device in a device contract
1511  */
1512 static void
1513 set_cond_state(dev_info_t *dip)
1514 {
1515 	uint_t state = get_state(dip);
1516 	cont_device_t *ctd;
1517 
1518 	/* verify that barrier is held */
1519 	ASSERT(ct_barrier_held(dip));
1520 
1521 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1522 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1523 		mutex_enter(&ctd->cond_contract.ct_lock);
1524 		ASSERT(ctd->cond_dip == dip);
1525 		ctd->cond_state = state;
1526 		mutex_exit(&ctd->cond_contract.ct_lock);
1527 	}
1528 }
1529 
1530 /*
1531  * Core routine called by event-specific routines when an event occurs.
1532  * Determines if an event should be be published, and if it is to be
1533  * published, whether a negotiation should take place. Also implements
1534  * NEGEND events which publish the final disposition of an event after
1535  * negotiations are complete.
1536  *
1537  * When an event occurs on a minor node, this routine walks the list of
1538  * contracts hanging off a devinfo node and for each contract on the affected
1539  * dip, evaluates the following cases
1540  *
1541  *	a. an event that is synchronous, breaks the contract and NONEG not set
1542  *		- bumps up the outstanding negotiation counts on the dip
1543  *		- marks the dip as undergoing negotiation (devi_ct_neg)
1544  *		- event of type CTE_NEG is published
1545  *	b. an event that is synchronous, breaks the contract and NONEG is set
1546  *		- sets the final result to CT_NACK, event is blocked
1547  *		- does not publish an event
1548  *	c. event is asynchronous and breaks the contract
1549  *		- publishes a critical event irrespect of whether the NONEG
1550  *		  flag is set, since the contract will be broken and contract
1551  *		  owner needs to be informed.
1552  *	d. No contract breakage but the owner has subscribed to the event
1553  *		- publishes the event irrespective of the NONEG event as the
1554  *		  owner has explicitly subscribed to the event.
1555  *	e. NEGEND event
1556  *		- publishes a critical event. Should only be doing this if
1557  *		  if NONEG is not set.
1558  *	f. all other events
1559  *		- Since a contract is not broken and this event has not been
1560  *		  subscribed to, this event does not need to be published for
1561  *		  for this contract.
1562  *
1563  *	Once an event is published, what happens next depends on the type of
1564  *	event:
1565  *
1566  *	a. NEGEND event
1567  *		- cleanup all state associated with the preceding negotiation
1568  *		  and return CT_ACK to the caller of contract_device_publish()
1569  *	b. NACKed event
1570  *		- One or more contracts had the NONEG term, so the event was
1571  *		  blocked. Return CT_NACK to the caller.
1572  *	c. Negotiated event
1573  *		- Call wait_for_acks() to wait for responses from contract
1574  *		holders. The end result is either CT_ACK (event is permitted),
1575  *		CT_NACK (event is blocked) or CT_NONE (no contract owner)
1576  *		responded. This result is returned back to the caller.
1577  *	d. All other events
1578  *		- If the event was asynchronous (i.e. not negotiated) or
1579  *		a contract was not broken return CT_ACK to the caller.
1580  */
1581 static uint_t
1582 contract_device_publish(dev_info_t *dip, dev_t dev, int spec_type,
1583     uint_t evtype, nvlist_t *tnvl)
1584 {
1585 	cont_device_t *ctd;
1586 	uint_t result = CT_NONE;
1587 	uint64_t evid = 0;
1588 	uint64_t nevid = 0;
1589 	char *path = NULL;
1590 	int negend;
1591 	int match;
1592 	int sync = 0;
1593 	contract_t *ct;
1594 	ct_kevent_t *event;
1595 	nvlist_t *nvl;
1596 	int broken = 0;
1597 
1598 	ASSERT(dip);
1599 	ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
1600 	ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
1601 	    (spec_type == S_IFBLK || spec_type == S_IFCHR));
1602 	ASSERT(evtype == 0 || (evtype & CT_DEV_ALLEVENT));
1603 
1604 	/* Is this a synchronous state change ? */
1605 	if (evtype != CT_EV_NEGEND) {
1606 		sync = is_sync_neg(get_state(dip), evtype);
1607 		/* NOP if unsupported transition */
1608 		if (sync == -2 || sync == -1) {
1609 			DEVI(dip)->devi_flags |= DEVI_CT_NOP;
1610 			result = (sync == -2) ? CT_ACK : CT_NONE;
1611 			goto out;
1612 		}
1613 		CT_DEBUG((CE_NOTE, "publish: is%s sync state change",
1614 		    sync ? "" : " not"));
1615 	} else if (DEVI(dip)->devi_flags & DEVI_CT_NOP) {
1616 		DEVI(dip)->devi_flags &= ~DEVI_CT_NOP;
1617 		result = CT_ACK;
1618 		goto out;
1619 	}
1620 
1621 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1622 	(void) ddi_pathname(dip, path);
1623 
1624 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
1625 
1626 	/*
1627 	 * Negotiation end - set the state of the device in the contract
1628 	 */
1629 	if (evtype == CT_EV_NEGEND) {
1630 		CT_DEBUG((CE_NOTE, "publish: negend: setting cond state"));
1631 		set_cond_state(dip);
1632 	}
1633 
1634 	/*
1635 	 * If this device didn't go through negotiation, don't publish
1636 	 * a NEGEND event - simply release the barrier to allow other
1637 	 * device events in.
1638 	 */
1639 	negend = 0;
1640 	if (evtype == CT_EV_NEGEND && !DEVI(dip)->devi_ct_neg) {
1641 		CT_DEBUG((CE_NOTE, "publish: no negend reqd. release barrier"));
1642 		ct_barrier_release(dip);
1643 		mutex_exit(&(DEVI(dip)->devi_ct_lock));
1644 		result = CT_ACK;
1645 		goto out;
1646 	} else if (evtype == CT_EV_NEGEND) {
1647 		/*
1648 		 * There are negotiated contract breakages that
1649 		 * need a NEGEND event
1650 		 */
1651 		ASSERT(ct_barrier_held(dip));
1652 		negend = 1;
1653 		CT_DEBUG((CE_NOTE, "publish: setting negend flag"));
1654 	} else {
1655 		/*
1656 		 * This is a new event, not a NEGEND event. Wait for previous
1657 		 * contract events to complete.
1658 		 */
1659 		ct_barrier_acquire(dip);
1660 	}
1661 
1662 
1663 	match = 0;
1664 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
1665 	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
1666 
1667 		ctid_t ctid;
1668 		size_t len = strlen(path);
1669 
1670 		mutex_enter(&ctd->cond_contract.ct_lock);
1671 
1672 		ASSERT(ctd->cond_dip == dip);
1673 		ASSERT(ctd->cond_minor);
1674 		ASSERT(strncmp(ctd->cond_minor, path, len) == 0 &&
1675 		    ctd->cond_minor[len] == ':');
1676 
1677 		if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
1678 			mutex_exit(&ctd->cond_contract.ct_lock);
1679 			continue;
1680 		}
1681 		if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
1682 			mutex_exit(&ctd->cond_contract.ct_lock);
1683 			continue;
1684 		}
1685 
1686 		/* We have a matching contract */
1687 		match = 1;
1688 		ctid = ctd->cond_contract.ct_id;
1689 		CT_DEBUG((CE_NOTE, "publish: found matching contract: %d",
1690 		    ctid));
1691 
1692 		/*
1693 		 * There are 4 possible cases
1694 		 * 1. A contract is broken (dev not in acceptable state) and
1695 		 *    the state change is synchronous - start negotiation
1696 		 *    by sending a CTE_NEG critical event.
1697 		 * 2. A contract is broken and the state change is
1698 		 *    asynchronous - just send a critical event and
1699 		 *    break the contract.
1700 		 * 3. Contract is not broken, but consumer has subscribed
1701 		 *    to the event as a critical or informative event
1702 		 *    - just send the appropriate event
1703 		 * 4. contract waiting for negend event - just send the critical
1704 		 *    NEGEND event.
1705 		 */
1706 		broken = 0;
1707 		if (!negend && !(evtype & ctd->cond_aset)) {
1708 			broken = 1;
1709 			CT_DEBUG((CE_NOTE, "publish: Contract broken: %d",
1710 			    ctid));
1711 		}
1712 
1713 		/*
1714 		 * Don't send event if
1715 		 *	- contract is not broken AND
1716 		 *	- contract holder has not subscribed to this event AND
1717 		 *	- contract not waiting for a NEGEND event
1718 		 */
1719 		if (!broken && !EVSENDP(ctd, evtype) &&
1720 		    !ctd->cond_neg) {
1721 			CT_DEBUG((CE_NOTE, "contract_device_publish(): "
1722 			    "contract (%d): no publish reqd: event %d",
1723 			    ctd->cond_contract.ct_id, evtype));
1724 			mutex_exit(&ctd->cond_contract.ct_lock);
1725 			continue;
1726 		}
1727 
1728 		/*
1729 		 * Note: need to kmem_zalloc() the event so mutexes are
1730 		 * initialized automatically
1731 		 */
1732 		ct = &ctd->cond_contract;
1733 		event = kmem_zalloc(sizeof (ct_kevent_t), KM_SLEEP);
1734 		event->cte_type = evtype;
1735 
1736 		if (broken && sync) {
1737 			CT_DEBUG((CE_NOTE, "publish: broken + sync: "
1738 			    "ctid: %d", ctid));
1739 			ASSERT(!negend);
1740 			ASSERT(ctd->cond_currev_id == 0);
1741 			ASSERT(ctd->cond_currev_type == 0);
1742 			ASSERT(ctd->cond_currev_ack == 0);
1743 			ASSERT(ctd->cond_neg == 0);
1744 			if (ctd->cond_noneg) {
1745 				/* Nothing to publish. Event has been blocked */
1746 				CT_DEBUG((CE_NOTE, "publish: sync and noneg:"
1747 				    "not publishing blocked ev: ctid: %d",
1748 				    ctid));
1749 				result = CT_NACK;
1750 				kmem_free(event, sizeof (ct_kevent_t));
1751 				mutex_exit(&ctd->cond_contract.ct_lock);
1752 				continue;
1753 			}
1754 			event->cte_flags = CTE_NEG; /* critical neg. event */
1755 			ctd->cond_currev_type = event->cte_type;
1756 			ct_barrier_incr(dip);
1757 			DEVI(dip)->devi_ct_neg = 1; /* waiting for negend */
1758 			ctd->cond_neg = 1;
1759 		} else if (broken && !sync) {
1760 			CT_DEBUG((CE_NOTE, "publish: broken + async: ctid: %d",
1761 			    ctid));
1762 			ASSERT(!negend);
1763 			ASSERT(ctd->cond_currev_id == 0);
1764 			ASSERT(ctd->cond_currev_type == 0);
1765 			ASSERT(ctd->cond_currev_ack == 0);
1766 			ASSERT(ctd->cond_neg == 0);
1767 			event->cte_flags = 0; /* critical event */
1768 		} else if (EVSENDP(ctd, event->cte_type)) {
1769 			CT_DEBUG((CE_NOTE, "publish: event suscrib: ctid: %d",
1770 			    ctid));
1771 			ASSERT(!negend);
1772 			ASSERT(ctd->cond_currev_id == 0);
1773 			ASSERT(ctd->cond_currev_type == 0);
1774 			ASSERT(ctd->cond_currev_ack == 0);
1775 			ASSERT(ctd->cond_neg == 0);
1776 			event->cte_flags = EVINFOP(ctd, event->cte_type) ?
1777 			    CTE_INFO : 0;
1778 		} else if (ctd->cond_neg) {
1779 			CT_DEBUG((CE_NOTE, "publish: NEGEND: ctid: %d", ctid));
1780 			ASSERT(negend);
1781 			ASSERT(ctd->cond_noneg == 0);
1782 			nevid = ctd->cond_contract.ct_nevent ?
1783 			    ctd->cond_contract.ct_nevent->cte_id : 0;
1784 			ASSERT(ctd->cond_currev_id == nevid);
1785 			event->cte_flags = 0;	/* NEGEND is always critical */
1786 			ctd->cond_currev_id = 0;
1787 			ctd->cond_currev_type = 0;
1788 			ctd->cond_currev_ack = 0;
1789 			ctd->cond_neg = 0;
1790 		} else {
1791 			CT_DEBUG((CE_NOTE, "publish: not publishing event for "
1792 			    "ctid: %d, evtype: %d",
1793 			    ctd->cond_contract.ct_id, event->cte_type));
1794 			ASSERT(!negend);
1795 			ASSERT(ctd->cond_currev_id == 0);
1796 			ASSERT(ctd->cond_currev_type == 0);
1797 			ASSERT(ctd->cond_currev_ack == 0);
1798 			ASSERT(ctd->cond_neg == 0);
1799 			kmem_free(event, sizeof (ct_kevent_t));
1800 			mutex_exit(&ctd->cond_contract.ct_lock);
1801 			continue;
1802 		}
1803 
1804 		nvl = NULL;
1805 		if (tnvl) {
1806 			VERIFY(nvlist_dup(tnvl, &nvl, 0) == 0);
1807 			if (negend) {
1808 				int32_t newct = 0;
1809 				ASSERT(ctd->cond_noneg == 0);
1810 				VERIFY(nvlist_add_uint64(nvl, CTS_NEVID, nevid)
1811 				    == 0);
1812 				VERIFY(nvlist_lookup_int32(nvl, CTS_NEWCT,
1813 				    &newct) == 0);
1814 				VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
1815 				    newct == 1 ? 0 :
1816 				    ctd->cond_contract.ct_id) == 0);
1817 				CT_DEBUG((CE_NOTE, "publish: negend: ctid: %d "
1818 				    "CTS_NEVID: %llu, CTS_NEWCT: %s",
1819 				    ctid, (unsigned long long)nevid,
1820 				    newct ? "success" : "failure"));
1821 
1822 			}
1823 		}
1824 
1825 		if (ctd->cond_neg) {
1826 			ASSERT(ctd->cond_contract.ct_ntime.ctm_start == -1);
1827 			ASSERT(ctd->cond_contract.ct_qtime.ctm_start == -1);
1828 			ctd->cond_contract.ct_ntime.ctm_start = ddi_get_lbolt();
1829 			ctd->cond_contract.ct_qtime.ctm_start =
1830 			    ctd->cond_contract.ct_ntime.ctm_start;
1831 		}
1832 
1833 		/*
1834 		 * by holding the dip's devi_ct_lock we ensure that
1835 		 * all ACK/NACKs are held up until we have finished
1836 		 * publishing to all contracts.
1837 		 */
1838 		mutex_exit(&ctd->cond_contract.ct_lock);
1839 		evid = cte_publish_all(ct, event, nvl, NULL);
1840 		mutex_enter(&ctd->cond_contract.ct_lock);
1841 
1842 		if (ctd->cond_neg) {
1843 			ASSERT(!negend);
1844 			ASSERT(broken);
1845 			ASSERT(sync);
1846 			ASSERT(!ctd->cond_noneg);
1847 			CT_DEBUG((CE_NOTE, "publish: sync break, setting evid"
1848 			    ": %d", ctid));
1849 			ctd->cond_currev_id = evid;
1850 		} else if (negend) {
1851 			ctd->cond_contract.ct_ntime.ctm_start = -1;
1852 			ctd->cond_contract.ct_qtime.ctm_start = -1;
1853 		}
1854 		mutex_exit(&ctd->cond_contract.ct_lock);
1855 	}
1856 
1857 	/*
1858 	 * If "negend" set counter back to initial state (-1) so that
1859 	 * other events can be published. Also clear the negotiation flag
1860 	 * on dip.
1861 	 *
1862 	 * 0 .. n are used for counting.
1863 	 * -1 indicates counter is available for use.
1864 	 */
1865 	if (negend) {
1866 		/*
1867 		 * devi_ct_count not necessarily 0. We may have
1868 		 * timed out in which case, count will be non-zero.
1869 		 */
1870 		ct_barrier_release(dip);
1871 		DEVI(dip)->devi_ct_neg = 0;
1872 		CT_DEBUG((CE_NOTE, "publish: negend: reset dip state: dip=%p",
1873 		    (void *)dip));
1874 	} else if (DEVI(dip)->devi_ct_neg) {
1875 		ASSERT(match);
1876 		ASSERT(!ct_barrier_empty(dip));
1877 		CT_DEBUG((CE_NOTE, "publish: sync count=%d, dip=%p",
1878 		    DEVI(dip)->devi_ct_count, (void *)dip));
1879 	} else {
1880 		/*
1881 		 * for non-negotiated events or subscribed events or no
1882 		 * matching contracts
1883 		 */
1884 		ASSERT(ct_barrier_empty(dip));
1885 		ASSERT(DEVI(dip)->devi_ct_neg == 0);
1886 		CT_DEBUG((CE_NOTE, "publish: async/non-nego/subscrib/no-match: "
1887 		    "dip=%p", (void *)dip));
1888 
1889 		/*
1890 		 * only this function when called from contract_device_negend()
1891 		 * can reset the counter to READY state i.e. -1. This function
1892 		 * is so called for every event whether a NEGEND event is needed
1893 		 * or not, but the negend event is only published if the event
1894 		 * whose end they signal is a negotiated event for the contract.
1895 		 */
1896 	}
1897 
1898 	if (!match) {
1899 		/* No matching contracts */
1900 		CT_DEBUG((CE_NOTE, "publish: No matching contract"));
1901 		result = CT_NONE;
1902 	} else if (result == CT_NACK) {
1903 		/* a non-negotiable contract exists and this is a neg. event */
1904 		CT_DEBUG((CE_NOTE, "publish: found 1 or more NONEG contract"));
1905 		(void) wait_for_acks(dip, dev, spec_type, evtype);
1906 	} else if (DEVI(dip)->devi_ct_neg) {
1907 		/* one or more contracts going through negotations  */
1908 		CT_DEBUG((CE_NOTE, "publish: sync contract: waiting"));
1909 		result = wait_for_acks(dip, dev, spec_type, evtype);
1910 	} else {
1911 		/* no negotiated contracts or no broken contracts or NEGEND */
1912 		CT_DEBUG((CE_NOTE, "publish: async/no-break/negend"));
1913 		result = CT_ACK;
1914 	}
1915 
1916 	/*
1917 	 * Release the lock only now so that the only point where we
1918 	 * drop the lock is in wait_for_acks(). This is so that we don't
1919 	 * miss cv_signal/cv_broadcast from contract holders
1920 	 */
1921 	CT_DEBUG((CE_NOTE, "publish: dropping devi_ct_lock"));
1922 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
1923 
1924 out:
1925 	nvlist_free(tnvl);
1926 	if (path)
1927 		kmem_free(path, MAXPATHLEN);
1928 
1929 
1930 	CT_DEBUG((CE_NOTE, "publish: result = %s", result_str(result)));
1931 	return (result);
1932 }
1933 
1934 
1935 /*
1936  * contract_device_offline
1937  *
1938  * Event publishing routine called by I/O framework when a device is offlined.
1939  */
1940 ct_ack_t
1941 contract_device_offline(dev_info_t *dip, dev_t dev, int spec_type)
1942 {
1943 	nvlist_t *nvl;
1944 	uint_t result;
1945 	uint_t evtype;
1946 
1947 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1948 
1949 	evtype = CT_DEV_EV_OFFLINE;
1950 	result = contract_device_publish(dip, dev, spec_type, evtype, nvl);
1951 
1952 	/*
1953 	 * If a contract offline is NACKED, the framework expects us to call
1954 	 * NEGEND ourselves, since we know the final result
1955 	 */
1956 	if (result == CT_NACK) {
1957 		contract_device_negend(dip, dev, spec_type, CT_EV_FAILURE);
1958 	}
1959 
1960 	return (result);
1961 }
1962 
1963 /*
1964  * contract_device_degrade
1965  *
1966  * Event publishing routine called by I/O framework when a device
1967  * moves to degrade state.
1968  */
1969 /*ARGSUSED*/
1970 void
1971 contract_device_degrade(dev_info_t *dip, dev_t dev, int spec_type)
1972 {
1973 	nvlist_t *nvl;
1974 	uint_t evtype;
1975 
1976 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1977 
1978 	evtype = CT_DEV_EV_DEGRADED;
1979 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
1980 }
1981 
1982 /*
1983  * contract_device_undegrade
1984  *
1985  * Event publishing routine called by I/O framework when a device
1986  * moves from degraded state to online state.
1987  */
1988 /*ARGSUSED*/
1989 void
1990 contract_device_undegrade(dev_info_t *dip, dev_t dev, int spec_type)
1991 {
1992 	nvlist_t *nvl;
1993 	uint_t evtype;
1994 
1995 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1996 
1997 	evtype = CT_DEV_EV_ONLINE;
1998 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
1999 }
2000 
2001 /*
2002  * For all contracts which have undergone a negotiation (because the device
2003  * moved out of the acceptable state for that contract and the state
2004  * change is synchronous i.e. requires negotiation) this routine publishes
2005  * a CT_EV_NEGEND event with the final disposition of the event.
2006  *
2007  * This event is always a critical event.
2008  */
2009 void
2010 contract_device_negend(dev_info_t *dip, dev_t dev, int spec_type, int result)
2011 {
2012 	nvlist_t *nvl;
2013 	uint_t evtype;
2014 
2015 	ASSERT(result == CT_EV_SUCCESS || result == CT_EV_FAILURE);
2016 
2017 	CT_DEBUG((CE_NOTE, "contract_device_negend(): entered: result: %d, "
2018 	    "dip: %p", result, (void *)dip));
2019 
2020 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2021 	VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
2022 	    result == CT_EV_SUCCESS ? 1 : 0) == 0);
2023 
2024 	evtype = CT_EV_NEGEND;
2025 	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
2026 
2027 	CT_DEBUG((CE_NOTE, "contract_device_negend(): exit dip: %p",
2028 	    (void *)dip));
2029 }
2030 
2031 /*
2032  * Wrapper routine called by other subsystems (such as LDI) to start
2033  * negotiations when a synchronous device state change occurs.
2034  * Returns CT_ACK or CT_NACK.
2035  */
2036 ct_ack_t
2037 contract_device_negotiate(dev_info_t *dip, dev_t dev, int spec_type,
2038     uint_t evtype)
2039 {
2040 	int	result;
2041 
2042 	ASSERT(dip);
2043 	ASSERT(dev != NODEV);
2044 	ASSERT(dev != DDI_DEV_T_ANY);
2045 	ASSERT(dev != DDI_DEV_T_NONE);
2046 	ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);
2047 
2048 	switch (evtype) {
2049 	case CT_DEV_EV_OFFLINE:
2050 		result = contract_device_offline(dip, dev, spec_type);
2051 		break;
2052 	default:
2053 		cmn_err(CE_PANIC, "contract_device_negotiate(): Negotiation "
2054 		    "not supported: event (%d) for dev_t (%lu) and spec (%d), "
2055 		    "dip (%p)", evtype, dev, spec_type, (void *)dip);
2056 		result = CT_NACK;
2057 		break;
2058 	}
2059 
2060 	return (result);
2061 }
2062 
2063 /*
2064  * A wrapper routine called by other subsystems (such as the LDI) to
2065  * finalize event processing for a state change event. For synchronous
2066  * state changes, this publishes NEGEND events. For asynchronous i.e.
2067  * non-negotiable events this publishes the event.
2068  */
2069 void
2070 contract_device_finalize(dev_info_t *dip, dev_t dev, int spec_type,
2071     uint_t evtype, int ct_result)
2072 {
2073 	ASSERT(dip);
2074 	ASSERT(dev != NODEV);
2075 	ASSERT(dev != DDI_DEV_T_ANY);
2076 	ASSERT(dev != DDI_DEV_T_NONE);
2077 	ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);
2078 
2079 	switch (evtype) {
2080 	case CT_DEV_EV_OFFLINE:
2081 		contract_device_negend(dip, dev, spec_type, ct_result);
2082 		break;
2083 	case CT_DEV_EV_DEGRADED:
2084 		contract_device_degrade(dip, dev, spec_type);
2085 		contract_device_negend(dip, dev, spec_type, ct_result);
2086 		break;
2087 	case CT_DEV_EV_ONLINE:
2088 		contract_device_undegrade(dip, dev, spec_type);
2089 		contract_device_negend(dip, dev, spec_type, ct_result);
2090 		break;
2091 	default:
2092 		cmn_err(CE_PANIC, "contract_device_finalize(): Unsupported "
2093 		    "event (%d) for dev_t (%lu) and spec (%d), dip (%p)",
2094 		    evtype, dev, spec_type, (void *)dip);
2095 		break;
2096 	}
2097 }
2098 
2099 /*
2100  * Called by I/O framework when a devinfo node is freed to remove the
2101  * association between a devinfo node and its contracts.
2102  */
2103 void
2104 contract_device_remove_dip(dev_info_t *dip)
2105 {
2106 	cont_device_t *ctd;
2107 	cont_device_t *next;
2108 	contract_t *ct;
2109 
2110 	mutex_enter(&(DEVI(dip)->devi_ct_lock));
2111 	ct_barrier_wait_for_release(dip);
2112 
2113 	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL; ctd = next) {
2114 		next = list_next(&(DEVI(dip)->devi_ct), ctd);
2115 		list_remove(&(DEVI(dip)->devi_ct), ctd);
2116 		ct = &ctd->cond_contract;
2117 		/*
2118 		 * Unlink the dip associated with this contract
2119 		 */
2120 		mutex_enter(&ct->ct_lock);
2121 		ASSERT(ctd->cond_dip == dip);
2122 		ctd->cond_dip = NULL; /* no longer linked to dip */
2123 		contract_rele(ct);	/* remove hold for dip linkage */
2124 		CT_DEBUG((CE_NOTE, "ct: remove_dip: removed dip from contract: "
2125 		    "ctid: %d", ct->ct_id));
2126 		mutex_exit(&ct->ct_lock);
2127 	}
2128 	ASSERT(list_is_empty(&(DEVI(dip)->devi_ct)));
2129 	mutex_exit(&(DEVI(dip)->devi_ct_lock));
2130 }
2131 
2132 /*
2133  * Barrier related routines
2134  */
2135 static void
2136 ct_barrier_acquire(dev_info_t *dip)
2137 {
2138 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2139 	CT_DEBUG((CE_NOTE, "ct_barrier_acquire: waiting for barrier"));
2140 	while (DEVI(dip)->devi_ct_count != -1)
2141 		cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
2142 	DEVI(dip)->devi_ct_count = 0;
2143 	CT_DEBUG((CE_NOTE, "ct_barrier_acquire: thread owns barrier"));
2144 }
2145 
2146 static void
2147 ct_barrier_release(dev_info_t *dip)
2148 {
2149 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2150 	ASSERT(DEVI(dip)->devi_ct_count != -1);
2151 	DEVI(dip)->devi_ct_count = -1;
2152 	cv_broadcast(&(DEVI(dip)->devi_ct_cv));
2153 	CT_DEBUG((CE_NOTE, "ct_barrier_release: Released barrier"));
2154 }
2155 
2156 static int
2157 ct_barrier_held(dev_info_t *dip)
2158 {
2159 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2160 	return (DEVI(dip)->devi_ct_count != -1);
2161 }
2162 
2163 static int
2164 ct_barrier_empty(dev_info_t *dip)
2165 {
2166 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2167 	ASSERT(DEVI(dip)->devi_ct_count != -1);
2168 	return (DEVI(dip)->devi_ct_count == 0);
2169 }
2170 
2171 static void
2172 ct_barrier_wait_for_release(dev_info_t *dip)
2173 {
2174 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2175 	while (DEVI(dip)->devi_ct_count != -1)
2176 		cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
2177 }
2178 
2179 static void
2180 ct_barrier_decr(dev_info_t *dip)
2181 {
2182 	CT_DEBUG((CE_NOTE, "barrier_decr:  ct_count before decr: %d",
2183 	    DEVI(dip)->devi_ct_count));
2184 
2185 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2186 	ASSERT(DEVI(dip)->devi_ct_count > 0);
2187 
2188 	DEVI(dip)->devi_ct_count--;
2189 	if (DEVI(dip)->devi_ct_count == 0) {
2190 		cv_broadcast(&DEVI(dip)->devi_ct_cv);
2191 		CT_DEBUG((CE_NOTE, "barrier_decr: cv_broadcast"));
2192 	}
2193 }
2194 
2195 static void
2196 ct_barrier_incr(dev_info_t *dip)
2197 {
2198 	ASSERT(ct_barrier_held(dip));
2199 	DEVI(dip)->devi_ct_count++;
2200 }
2201 
2202 static int
2203 ct_barrier_wait_for_empty(dev_info_t *dip, int secs)
2204 {
2205 	clock_t abstime;
2206 
2207 	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
2208 
2209 	abstime = ddi_get_lbolt() + drv_usectohz(secs*1000000);
2210 	while (DEVI(dip)->devi_ct_count) {
2211 		if (cv_timedwait(&(DEVI(dip)->devi_ct_cv),
2212 		    &(DEVI(dip)->devi_ct_lock), abstime) == -1) {
2213 			return (-1);
2214 		}
2215 	}
2216 	return (0);
2217 }
2218