xref: /titanic_51/usr/src/tools/ctf/cvt/ctfmerge.c (revision 672986541be54a7a471bb088e60780c37e371d7e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Given several files containing CTF data, merge and uniquify that data into
30  * a single CTF section in an output file.
31  *
32  * Merges can proceed independently.  As such, we perform the merges in parallel
33  * using a worker thread model.  A given glob of CTF data (either all of the CTF
34  * data from a single input file, or the result of one or more merges) can only
35  * be involved in a single merge at any given time, so the process decreases in
36  * parallelism, especially towards the end, as more and more files are
37  * consolidated, finally resulting in a single merge of two large CTF graphs.
38  * Unfortunately, the last merge is also the slowest, as the two graphs being
39  * merged are each the product of merges of half of the input files.
40  *
41  * The algorithm consists of two phases, described in detail below.  The first
42  * phase entails the merging of CTF data in groups of eight.  The second phase
43  * takes the results of Phase I, and merges them two at a time.  This disparity
44  * is due to an observation that the merge time increases at least quadratically
45  * with the size of the CTF data being merged.  As such, merges of CTF graphs
46  * newly read from input files are much faster than merges of CTF graphs that
47  * are themselves the results of prior merges.
48  *
49  * A further complication is the need to ensure the repeatability of CTF merges.
50  * That is, a merge should produce the same output every time, given the same
51  * input.  In both phases, this consistency requirement is met by imposing an
52  * ordering on the merge process, thus ensuring that a given set of input files
53  * are merged in the same order every time.
54  *
55  *   Phase I
56  *
57  *   The main thread reads the input files one by one, transforming the CTF
58  *   data they contain into tdata structures.  When a given file has been read
59  *   and parsed, it is placed on the work queue for retrieval by worker threads.
60  *
61  *   Central to Phase I is the Work In Progress (wip) array, which is used to
62  *   merge batches of files in a predictable order.  Files are read by the main
63  *   thread, and are merged into wip array elements in round-robin order.  When
64  *   the number of files merged into a given array slot equals the batch size,
65  *   the merged CTF graph in that array is added to the done slot in order by
66  *   array slot.
67  *
68  *   For example, consider a case where we have five input files, a batch size
69  *   of two, a wip array size of two, and two worker threads (T1 and T2).
70  *
71  *    1. The wip array elements are assigned initial batch numbers 0 and 1.
72  *    2. T1 reads an input file from the input queue (wq_queue).  This is the
73  *       first input file, so it is placed into wip[0].  The second file is
74  *       similarly read and placed into wip[1].  The wip array slots now contain
75  *       one file each (wip_nmerged == 1).
76  *    3. T1 reads the third input file, which it merges into wip[0].  The
77  *       number of files in wip[0] is equal to the batch size.
78  *    4. T2 reads the fourth input file, which it merges into wip[1].  wip[1]
79  *       is now full too.
80  *    5. T2 attempts to place the contents of wip[1] on the done queue
81  *       (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
82  *       Batch 0 needs to be on the done queue before batch 1 can be added, so
83  *       T2 blocks on wip[1]'s cv.
84  *    6. T1 attempts to place the contents of wip[0] on the done queue, and
85  *       succeeds, updating wq_lastdonebatch to 0.  It clears wip[0], and sets
86  *       its batch ID to 2.  T1 then signals wip[1]'s cv to awaken T2.
87  *    7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
88  *       batch 1 can now be added.  It adds wip[1] to the done queue, clears
89  *       wip[1], and sets its batch ID to 3.  It signals wip[0]'s cv, and
90  *       restarts.
91  *
92  *   The above process continues until all input files have been consumed.  At
93  *   this point, a pair of barriers are used to allow a single thread to move
94  *   any partial batches from the wip array to the done array in batch ID order.
95  *   When this is complete, wq_done_queue is moved to wq_queue, and Phase II
96  *   begins.
97  *
98  *	Locking Semantics (Phase I)
99  *
100  *	The input queue (wq_queue) and the done queue (wq_done_queue) are
101  *	protected by separate mutexes - wq_queue_lock and wq_done_queue.  wip
102  *	array slots are protected by their own mutexes, which must be grabbed
103  *	before releasing the input queue lock.  The wip array lock is dropped
104  *	when the thread restarts the loop.  If the array slot was full, the
105  *	array lock will be held while the slot contents are added to the done
106  *	queue.  The done queue lock is used to protect the wip slot cv's.
107  *
108  *	The pow number is protected by the queue lock.  The master batch ID
109  *	and last completed batch (wq_lastdonebatch) counters are protected *in
110  *	Phase I* by the done queue lock.
111  *
112  *   Phase II
113  *
114  *   When Phase II begins, the queue consists of the merged batches from the
115  *   first phase.  Assume we have five batches:
116  *
117  *	Q:	a b c d e
118  *
119  *   Using the same batch ID mechanism we used in Phase I, but without the wip
120  *   array, worker threads remove two entries at a time from the beginning of
121  *   the queue.  These two entries are merged, and are added back to the tail
122  *   of the queue, as follows:
123  *
124  *	Q:	a b c d e	# start
125  *	Q:	c d e ab	# a, b removed, merged, added to end
126  *	Q:	e ab cd		# c, d removed, merged, added to end
127  *	Q:	cd eab		# e, ab removed, merged, added to end
128  *	Q:	cdeab		# cd, eab removed, merged, added to end
129  *
130  *   When one entry remains on the queue, with no merges outstanding, Phase II
131  *   finishes.  We pre-determine the stopping point by pre-calculating the
132  *   number of nodes that will appear on the list.  In the example above, the
133  *   number (wq_ninqueue) is 9.  When ninqueue is 1, we conclude Phase II by
134  *   signaling the main thread via wq_done_cv.
135  *
136  *	Locking Semantics (Phase II)
137  *
138  *	The queue (wq_queue), ninqueue, and the master batch ID and last
139  *	completed batch counters are protected by wq_queue_lock.  The done
140  *	queue and corresponding lock are unused in Phase II as is the wip array.
141  *
142  *   Uniquification
143  *
144  *   We want the CTF data that goes into a given module to be as small as
145  *   possible.  For example, we don't want it to contain any type data that may
146  *   be present in another common module.  As such, after creating the master
147  *   tdata_t for a given module, we can, if requested by the user, uniquify it
148  *   against the tdata_t from another module (genunix in the case of the SunOS
149  *   kernel).  We perform a merge between the tdata_t for this module and the
150  *   tdata_t from genunix.  Nodes found in this module that are not present in
151  *   genunix are added to a third tdata_t - the uniquified tdata_t.
152  *
153  *   Additive Merges
154  *
155  *   In some cases, for example if we are issuing a new version of a common
156  *   module in a patch, we need to make sure that the CTF data already present
157  *   in that module does not change.  Changes to this data would void the CTF
158  *   data in any module that uniquified against the common module.  To preserve
159  *   the existing data, we can perform what is known as an additive merge.  In
160  *   this case, a final uniquification is performed against the CTF data in the
161  *   previous version of the module.  The result will be the placement of new
162  *   and changed data after the existing data, thus preserving the existing type
163  *   ID space.
164  *
165  *   Saving the result
166  *
167  *   When the merges are complete, the resulting tdata_t is placed into the
168  *   output file, replacing the .SUNW_ctf section (if any) already in that file.
169  *
170  * The person who changes the merging thread code in this file without updating
171  * this comment will not live to see the stock hit five.
172  */
173 
174 #include <stdio.h>
175 #include <stdlib.h>
176 #include <unistd.h>
177 #include <pthread.h>
178 #include <assert.h>
179 #include <synch.h>
180 #include <signal.h>
181 #include <libgen.h>
182 #include <string.h>
183 #include <errno.h>
184 #include <alloca.h>
185 #include <sys/param.h>
186 #include <sys/types.h>
187 #include <sys/mman.h>
188 #include <sys/sysconf.h>
189 
190 #include "ctf_headers.h"
191 #include "ctftools.h"
192 #include "ctfmerge.h"
193 #include "traverse.h"
194 #include "memory.h"
195 #include "fifo.h"
196 #include "barrier.h"
197 
198 #pragma init(bigheap)
199 
200 #define	MERGE_PHASE1_BATCH_SIZE		8
201 #define	MERGE_PHASE1_MAX_SLOTS		5
202 #define	MERGE_INPUT_THROTTLE_LEN	10
203 
204 const char *progname;
205 static char *outfile = NULL;
206 static char *tmpname = NULL;
207 static int dynsym;
208 int debug_level = DEBUG_LEVEL;
209 
210 void
211 usage(void)
212 {
213 	(void) fprintf(stderr,
214 	    "Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
215 	    "       %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
216 	    "       %*s [-g] [-D uniqlabel] file ...\n"
217 	    "       %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
218 	    "file ...\n"
219 	    "       %s [-g] -c srcfile destfile\n"
220 	    "\n"
221 	    "  Note: if -L labelenv is specified and labelenv is not set in\n"
222 	    "  the environment, a default value is used.\n",
223 	    progname, progname, strlen(progname), " ",
224 	    progname, progname);
225 }
226 
227 static void
228 bigheap(void)
229 {
230 	size_t big, *size;
231 	int sizes, i;
232 	struct memcntl_mha mha;
233 
234 	/*
235 	 * First, get the available pagesizes.
236 	 */
237 	if ((sizes = getpagesizes(NULL, 0)) == -1)
238 		return;
239 
240 	if ((size = alloca(sizeof (size_t) * sizes)) == NULL)
241 		return;
242 
243 	if (getpagesizes(size, sizes) == -1 || sizes == 1)
244 		return;
245 
246 	big = size[sizes - 1];
247 	if (big & (big - 1)) {
248 		/*
249 		 * The largest page size is not a power of two for some
250 		 * inexplicable reason; return.
251 		 */
252 		return;
253 	}
254 
255 	/*
256 	 * Now, align our break to the largest page size.
257 	 */
258 	if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
259 		return;
260 
261 	/*
262 	 * Finally, set our heap to use the largest page size for which the
263 	 * MC_HAT_ADVISE doesn't return EAGAIN.
264 	 */
265 	mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
266 	mha.mha_flags = 0;
267 
268 	for (i = sizes - 1; i >= 0; i--) {
269 		mha.mha_pagesize = size[i];
270 
271 		if (memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0) != -1)
272 			break;
273 
274 		if (errno != EAGAIN)
275 			break;
276 	}
277 }
278 
279 static void
280 finalize_phase_one(workqueue_t *wq)
281 {
282 	int startslot, i;
283 
284 	/*
285 	 * wip slots are cleared out only when maxbatchsz td's have been merged
286 	 * into them.  We're not guaranteed that the number of files we're
287 	 * merging is a multiple of maxbatchsz, so there will be some partial
288 	 * groups in the wip array.  Move them to the done queue in batch ID
289 	 * order, starting with the slot containing the next batch that would
290 	 * have been placed on the done queue, followed by the others.
291 	 * One thread will be doing this while the others wait at the barrier
292 	 * back in worker_thread(), so we don't need to worry about pesky things
293 	 * like locks.
294 	 */
295 
296 	for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
297 		if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
298 			startslot = i;
299 			break;
300 		}
301 	}
302 
303 	assert(startslot != -1);
304 
305 	for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
306 		int slotnum = i % wq->wq_nwipslots;
307 		wip_t *wipslot = &wq->wq_wip[slotnum];
308 
309 		if (wipslot->wip_td != NULL) {
310 			debug(2, "clearing slot %d (%d) (saving %d)\n",
311 			    slotnum, i, wipslot->wip_nmerged);
312 		} else
313 			debug(2, "clearing slot %d (%d)\n", slotnum, i);
314 
315 		if (wipslot->wip_td != NULL) {
316 			fifo_add(wq->wq_donequeue, wipslot->wip_td);
317 			wq->wq_wip[slotnum].wip_td = NULL;
318 		}
319 	}
320 
321 	wq->wq_lastdonebatch = wq->wq_next_batchid++;
322 
323 	debug(2, "phase one done: donequeue has %d items\n",
324 	    fifo_len(wq->wq_donequeue));
325 }
326 
327 static void
328 init_phase_two(workqueue_t *wq)
329 {
330 	int num;
331 
332 	/*
333 	 * We're going to continually merge the first two entries on the queue,
334 	 * placing the result on the end, until there's nothing left to merge.
335 	 * At that point, everything will have been merged into one.  The
336 	 * initial value of ninqueue needs to be equal to the total number of
337 	 * entries that will show up on the queue, both at the start of the
338 	 * phase and as generated by merges during the phase.
339 	 */
340 	wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
341 	while (num != 1) {
342 		wq->wq_ninqueue += num / 2;
343 		num = num / 2 + num % 2;
344 	}
345 
346 	/*
347 	 * Move the done queue to the work queue.  We won't be using the done
348 	 * queue in phase 2.
349 	 */
350 	assert(fifo_len(wq->wq_queue) == 0);
351 	fifo_free(wq->wq_queue, NULL);
352 	wq->wq_queue = wq->wq_donequeue;
353 }
354 
355 static void
356 wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
357 {
358 	pthread_mutex_lock(&wq->wq_donequeue_lock);
359 
360 	while (wq->wq_lastdonebatch + 1 < slot->wip_batchid)
361 		pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock);
362 	assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);
363 
364 	fifo_add(wq->wq_donequeue, slot->wip_td);
365 	wq->wq_lastdonebatch++;
366 	pthread_cond_signal(&wq->wq_wip[(slotnum + 1) %
367 	    wq->wq_nwipslots].wip_cv);
368 
369 	/* reset the slot for next use */
370 	slot->wip_td = NULL;
371 	slot->wip_batchid = wq->wq_next_batchid++;
372 
373 	pthread_mutex_unlock(&wq->wq_donequeue_lock);
374 }
375 
376 static void
377 wip_add_work(wip_t *slot, tdata_t *pow)
378 {
379 	if (slot->wip_td == NULL) {
380 		slot->wip_td = pow;
381 		slot->wip_nmerged = 1;
382 	} else {
383 		debug(2, "%d: merging %p into %p\n", pthread_self(),
384 		    (void *)pow, (void *)slot->wip_td);
385 
386 		merge_into_master(pow, slot->wip_td, NULL, 0);
387 		tdata_free(pow);
388 
389 		slot->wip_nmerged++;
390 	}
391 }
392 
393 static void
394 worker_runphase1(workqueue_t *wq)
395 {
396 	wip_t *wipslot;
397 	tdata_t *pow;
398 	int wipslotnum, pownum;
399 
400 	for (;;) {
401 		pthread_mutex_lock(&wq->wq_queue_lock);
402 
403 		while (fifo_empty(wq->wq_queue)) {
404 			if (wq->wq_nomorefiles == 1) {
405 				pthread_cond_broadcast(&wq->wq_work_avail);
406 				pthread_mutex_unlock(&wq->wq_queue_lock);
407 
408 				/* on to phase 2 ... */
409 				return;
410 			}
411 
412 			pthread_cond_wait(&wq->wq_work_avail,
413 			    &wq->wq_queue_lock);
414 		}
415 
416 		/* there's work to be done! */
417 		pow = fifo_remove(wq->wq_queue);
418 		pownum = wq->wq_nextpownum++;
419 		pthread_cond_broadcast(&wq->wq_work_removed);
420 
421 		assert(pow != NULL);
422 
423 		/* merge it into the right slot */
424 		wipslotnum = pownum % wq->wq_nwipslots;
425 		wipslot = &wq->wq_wip[wipslotnum];
426 
427 		pthread_mutex_lock(&wipslot->wip_lock);
428 
429 		pthread_mutex_unlock(&wq->wq_queue_lock);
430 
431 		wip_add_work(wipslot, pow);
432 
433 		if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
434 			wip_save_work(wq, wipslot, wipslotnum);
435 
436 		pthread_mutex_unlock(&wipslot->wip_lock);
437 	}
438 }
439 
440 static void
441 worker_runphase2(workqueue_t *wq)
442 {
443 	tdata_t *pow1, *pow2;
444 	int batchid;
445 
446 	for (;;) {
447 		pthread_mutex_lock(&wq->wq_queue_lock);
448 
449 		if (wq->wq_ninqueue == 1) {
450 			pthread_cond_broadcast(&wq->wq_work_avail);
451 			pthread_mutex_unlock(&wq->wq_queue_lock);
452 
453 			debug(2, "%d: entering p2 completion barrier\n",
454 			    pthread_self());
455 			if (barrier_wait(&wq->wq_bar1)) {
456 				pthread_mutex_lock(&wq->wq_queue_lock);
457 				wq->wq_alldone = 1;
458 				pthread_cond_signal(&wq->wq_alldone_cv);
459 				pthread_mutex_unlock(&wq->wq_queue_lock);
460 			}
461 
462 			return;
463 		}
464 
465 		if (fifo_len(wq->wq_queue) < 2) {
466 			pthread_cond_wait(&wq->wq_work_avail,
467 			    &wq->wq_queue_lock);
468 			pthread_mutex_unlock(&wq->wq_queue_lock);
469 			continue;
470 		}
471 
472 		/* there's work to be done! */
473 		pow1 = fifo_remove(wq->wq_queue);
474 		pow2 = fifo_remove(wq->wq_queue);
475 		wq->wq_ninqueue -= 2;
476 
477 		batchid = wq->wq_next_batchid++;
478 
479 		pthread_mutex_unlock(&wq->wq_queue_lock);
480 
481 		debug(2, "%d: merging %p into %p\n", pthread_self(),
482 		    (void *)pow1, (void *)pow2);
483 		merge_into_master(pow1, pow2, NULL, 0);
484 		tdata_free(pow1);
485 
486 		/*
487 		 * merging is complete.  place at the tail of the queue in
488 		 * proper order.
489 		 */
490 		pthread_mutex_lock(&wq->wq_queue_lock);
491 		while (wq->wq_lastdonebatch + 1 != batchid) {
492 			pthread_cond_wait(&wq->wq_done_cv,
493 			    &wq->wq_queue_lock);
494 		}
495 
496 		wq->wq_lastdonebatch = batchid;
497 
498 		fifo_add(wq->wq_queue, pow2);
499 		debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n",
500 		    pthread_self(), (void *)pow2, fifo_len(wq->wq_queue),
501 		    wq->wq_ninqueue);
502 		pthread_cond_broadcast(&wq->wq_done_cv);
503 		pthread_cond_signal(&wq->wq_work_avail);
504 		pthread_mutex_unlock(&wq->wq_queue_lock);
505 	}
506 }
507 
508 /*
509  * Main loop for worker threads.
510  */
511 static void
512 worker_thread(workqueue_t *wq)
513 {
514 	worker_runphase1(wq);
515 
516 	debug(2, "%d: entering first barrier\n", pthread_self());
517 
518 	if (barrier_wait(&wq->wq_bar1)) {
519 
520 		debug(2, "%d: doing work in first barrier\n", pthread_self());
521 
522 		finalize_phase_one(wq);
523 
524 		init_phase_two(wq);
525 
526 		debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(),
527 		    wq->wq_ninqueue, fifo_len(wq->wq_queue));
528 	}
529 
530 	debug(2, "%d: entering second barrier\n", pthread_self());
531 
532 	(void) barrier_wait(&wq->wq_bar2);
533 
534 	debug(2, "%d: phase 1 complete\n", pthread_self());
535 
536 	worker_runphase2(wq);
537 }
538 
539 /*
540  * Pass a tdata_t tree, built from an input file, off to the work queue for
541  * consumption by worker threads.
542  */
543 static int
544 merge_ctf_cb(tdata_t *td, char *name, void *arg)
545 {
546 	workqueue_t *wq = arg;
547 
548 	debug(3, "Adding tdata %p for processing\n", (void *)td);
549 
550 	pthread_mutex_lock(&wq->wq_queue_lock);
551 	while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
552 		debug(2, "Throttling input (len = %d, throttle = %d)\n",
553 		    fifo_len(wq->wq_queue), wq->wq_ithrottle);
554 		pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock);
555 	}
556 
557 	fifo_add(wq->wq_queue, td);
558 	debug(1, "Thread %d announcing %s\n", pthread_self(), name);
559 	pthread_cond_broadcast(&wq->wq_work_avail);
560 	pthread_mutex_unlock(&wq->wq_queue_lock);
561 
562 	return (1);
563 }
564 
565 /*
566  * This program is intended to be invoked from a Makefile, as part of the build.
567  * As such, in the event of a failure or user-initiated interrupt (^C), we need
568  * to ensure that a subsequent re-make will cause ctfmerge to be executed again.
569  * Unfortunately, ctfmerge will usually be invoked directly after (and as part
570  * of the same Makefile rule as) a link, and will operate on the linked file
571  * in place.  If we merely exit upon receipt of a SIGINT, a subsequent make
572  * will notice that the *linked* file is newer than the object files, and thus
573  * will not reinvoke ctfmerge.  The only way to ensure that a subsequent make
574  * reinvokes ctfmerge, is to remove the file to which we are adding CTF
575  * data (confusingly named the output file).  This means that the link will need
576  * to happen again, but links are generally fast, and we can't allow the merge
577  * to be skipped.
578  *
579  * Another possibility would be to block SIGINT entirely - to always run to
580  * completion.  The run time of ctfmerge can, however, be measured in minutes
581  * in some cases, so this is not a valid option.
582  */
583 static void
584 handle_sig(int sig)
585 {
586 	terminate("Caught signal %d - exiting\n", sig);
587 }
588 
589 static void
590 terminate_cleanup(void)
591 {
592 	int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;
593 
594 	if (tmpname != NULL && dounlink)
595 		unlink(tmpname);
596 
597 	if (outfile == NULL)
598 		return;
599 
600 	if (dounlink) {
601 		fprintf(stderr, "Removing %s\n", outfile);
602 		unlink(outfile);
603 	}
604 }
605 
606 static void
607 copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
608 {
609 	tdata_t *srctd;
610 
611 	if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
612 		terminate("No CTF data found in source file %s\n", srcfile);
613 
614 	tmpname = mktmpname(destfile, ".ctf");
615 	write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | keep_stabs);
616 	if (rename(tmpname, destfile) != 0) {
617 		terminate("Couldn't rename temp file %s to %s", tmpname,
618 		    destfile);
619 	}
620 	free(tmpname);
621 	tdata_free(srctd);
622 }
623 
624 static void
625 wq_init(workqueue_t *wq, int nfiles)
626 {
627 	int throttle, nslots, i;
628 
629 	if (getenv("CTFMERGE_MAX_SLOTS"))
630 		nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
631 	else
632 		nslots = MERGE_PHASE1_MAX_SLOTS;
633 
634 	if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
635 		wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
636 	else
637 		wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;
638 
639 	nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
640 	    wq->wq_maxbatchsz);
641 
642 	wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
643 	wq->wq_nwipslots = nslots;
644 	wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots);
645 
646 	if (getenv("CTFMERGE_INPUT_THROTTLE"))
647 		throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE"));
648 	else
649 		throttle = MERGE_INPUT_THROTTLE_LEN;
650 	wq->wq_ithrottle = throttle * wq->wq_nthreads;
651 
652 	debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
653 	    wq->wq_nthreads);
654 
655 	wq->wq_next_batchid = 0;
656 
657 	for (i = 0; i < nslots; i++) {
658 		pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL);
659 		wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
660 	}
661 
662 	pthread_mutex_init(&wq->wq_queue_lock, NULL);
663 	wq->wq_queue = fifo_new();
664 	pthread_cond_init(&wq->wq_work_avail, NULL);
665 	pthread_cond_init(&wq->wq_work_removed, NULL);
666 	wq->wq_ninqueue = nfiles;
667 	wq->wq_nextpownum = 0;
668 
669 	pthread_mutex_init(&wq->wq_donequeue_lock, NULL);
670 	wq->wq_donequeue = fifo_new();
671 	wq->wq_lastdonebatch = -1;
672 
673 	pthread_cond_init(&wq->wq_done_cv, NULL);
674 
675 	pthread_cond_init(&wq->wq_alldone_cv, NULL);
676 	wq->wq_alldone = 0;
677 
678 	barrier_init(&wq->wq_bar1, wq->wq_nthreads);
679 	barrier_init(&wq->wq_bar2, wq->wq_nthreads);
680 
681 	wq->wq_nomorefiles = 0;
682 }
683 
684 static void
685 start_threads(workqueue_t *wq)
686 {
687 	pthread_t thrid;
688 	sigset_t sets;
689 	int i;
690 
691 	sigemptyset(&sets);
692 	sigaddset(&sets, SIGINT);
693 	sigaddset(&sets, SIGQUIT);
694 	sigaddset(&sets, SIGTERM);
695 	pthread_sigmask(SIG_BLOCK, &sets, NULL);
696 
697 	for (i = 0; i < wq->wq_nthreads; i++) {
698 		pthread_create(&thrid, NULL, (void *(*)(void *))worker_thread,
699 		    wq);
700 	}
701 
702 	sigset(SIGINT, handle_sig);
703 	sigset(SIGQUIT, handle_sig);
704 	sigset(SIGTERM, handle_sig);
705 	pthread_sigmask(SIG_UNBLOCK, &sets, NULL);
706 }
707 
708 static int
709 strcompare(const void *p1, const void *p2)
710 {
711 	char *s1 = *((char **)p1);
712 	char *s2 = *((char **)p2);
713 
714 	return (strcmp(s1, s2));
715 }
716 
717 int
718 main(int argc, char **argv)
719 {
720 	workqueue_t wq;
721 	tdata_t *mstrtd, *savetd;
722 	char *uniqfile = NULL, *uniqlabel = NULL;
723 	char *withfile = NULL;
724 	char *label = NULL;
725 	char **ifiles, **tifiles;
726 	int verbose = 0, docopy = 0;
727 	int write_fuzzy_match = 0;
728 	int keep_stabs = 0;
729 	int require_ctf = 0;
730 	int nifiles, nielems;
731 	int c, i, idx, tidx, err;
732 
733 	progname = basename(argv[0]);
734 
735 	if (getenv("CTFMERGE_DEBUG_LEVEL"))
736 		debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));
737 
738 	err = 0;
739 	while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
740 		switch (c) {
741 		case 'c':
742 			docopy = 1;
743 			break;
744 		case 'd':
745 			/* Uniquify against `uniqfile' */
746 			uniqfile = optarg;
747 			break;
748 		case 'D':
749 			/* Uniquify against label `uniqlabel' in `uniqfile' */
750 			uniqlabel = optarg;
751 			break;
752 		case 'f':
753 			write_fuzzy_match = CTF_FUZZY_MATCH;
754 			break;
755 		case 'g':
756 			keep_stabs = CTF_KEEP_STABS;
757 			break;
758 		case 'l':
759 			/* Label merged types with `label' */
760 			label = optarg;
761 			break;
762 		case 'L':
763 			/* Label merged types with getenv(`label`) */
764 			if ((label = getenv(optarg)) == NULL)
765 				label = CTF_DEFAULT_LABEL;
766 			break;
767 		case 'o':
768 			/* Place merged types in CTF section in `outfile' */
769 			outfile = optarg;
770 			break;
771 		case 't':
772 			/* Insist *all* object files built from C have CTF */
773 			require_ctf = 1;
774 			break;
775 		case 'v':
776 			/* More debugging information */
777 			verbose = 1;
778 			break;
779 		case 'w':
780 			/* Additive merge with data from `withfile' */
781 			withfile = optarg;
782 			break;
783 		case 's':
784 			/* use the dynsym rather than the symtab */
785 			dynsym = CTF_USE_DYNSYM;
786 			break;
787 		default:
788 			usage();
789 			exit(2);
790 		}
791 	}
792 
793 	/* Validate arguments */
794 	if (docopy) {
795 		if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
796 		    outfile != NULL || withfile != NULL || dynsym != 0)
797 			err++;
798 
799 		if (argc - optind != 2)
800 			err++;
801 	} else {
802 		if (uniqfile != NULL && withfile != NULL)
803 			err++;
804 
805 		if (uniqlabel != NULL && uniqfile == NULL)
806 			err++;
807 
808 		if (outfile == NULL || label == NULL)
809 			err++;
810 
811 		if (argc - optind == 0)
812 			err++;
813 	}
814 
815 	if (err) {
816 		usage();
817 		exit(2);
818 	}
819 
820 	if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
821 		keep_stabs = CTF_KEEP_STABS;
822 
823 	if (uniqfile && access(uniqfile, R_OK) != 0) {
824 		warning("Uniquification file %s couldn't be opened and "
825 		    "will be ignored.\n", uniqfile);
826 		uniqfile = NULL;
827 	}
828 	if (withfile && access(withfile, R_OK) != 0) {
829 		warning("With file %s couldn't be opened and will be "
830 		    "ignored.\n", withfile);
831 		withfile = NULL;
832 	}
833 	if (outfile && access(outfile, R_OK|W_OK) != 0)
834 		terminate("Cannot open output file %s for r/w", outfile);
835 
836 	/*
837 	 * This is ugly, but we don't want to have to have a separate tool
838 	 * (yet) just for copying an ELF section with our specific requirements,
839 	 * so we shoe-horn a copier into ctfmerge.
840 	 */
841 	if (docopy) {
842 		copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);
843 
844 		exit(0);
845 	}
846 
847 	set_terminate_cleanup(terminate_cleanup);
848 
849 	/* Sort the input files and strip out duplicates */
850 	nifiles = argc - optind;
851 	ifiles = xmalloc(sizeof (char *) * nifiles);
852 	tifiles = xmalloc(sizeof (char *) * nifiles);
853 
854 	for (i = 0; i < nifiles; i++)
855 		tifiles[i] = argv[optind + i];
856 	qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare);
857 
858 	ifiles[0] = tifiles[0];
859 	for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
860 		if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
861 			ifiles[++idx] = tifiles[tidx];
862 	}
863 	nifiles = idx + 1;
864 
865 	/* Make sure they all exist */
866 	if ((nielems = count_files(ifiles, nifiles)) < 0)
867 		terminate("Some input files were inaccessible\n");
868 
869 	/* Prepare for the merge */
870 	wq_init(&wq, nielems);
871 
872 	start_threads(&wq);
873 
874 	/*
875 	 * Start the merge
876 	 *
877 	 * We're reading everything from each of the object files, so we
878 	 * don't need to specify labels.
879 	 */
880 	if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
881 	    &wq, require_ctf) == 0) {
882 		/*
883 		 * If we're verifying that C files have CTF, it's safe to
884 		 * assume that in this case, we're building only from assembly
885 		 * inputs.
886 		 */
887 		if (require_ctf)
888 			exit(0);
889 		terminate("No ctf sections found to merge\n");
890 	}
891 
892 	pthread_mutex_lock(&wq.wq_queue_lock);
893 	wq.wq_nomorefiles = 1;
894 	pthread_cond_broadcast(&wq.wq_work_avail);
895 	pthread_mutex_unlock(&wq.wq_queue_lock);
896 
897 	pthread_mutex_lock(&wq.wq_queue_lock);
898 	while (wq.wq_alldone == 0)
899 		pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock);
900 	pthread_mutex_unlock(&wq.wq_queue_lock);
901 
902 	/*
903 	 * All requested files have been merged, with the resulting tree in
904 	 * mstrtd.  savetd is the tree that will be placed into the output file.
905 	 *
906 	 * Regardless of whether we're doing a normal uniquification or an
907 	 * additive merge, we need a type tree that has been uniquified
908 	 * against uniqfile or withfile, as appropriate.
909 	 *
910 	 * If we're doing a uniquification, we stuff the resulting tree into
911 	 * outfile.  Otherwise, we add the tree to the tree already in withfile.
912 	 */
913 	assert(fifo_len(wq.wq_queue) == 1);
914 	mstrtd = fifo_remove(wq.wq_queue);
915 
916 	if (verbose || debug_level) {
917 		debug(2, "Statistics for td %p\n", (void *)mstrtd);
918 
919 		iidesc_stats(mstrtd->td_iihash);
920 	}
921 
922 	if (uniqfile != NULL || withfile != NULL) {
923 		char *reffile, *reflabel = NULL;
924 		tdata_t *reftd;
925 
926 		if (uniqfile != NULL) {
927 			reffile = uniqfile;
928 			reflabel = uniqlabel;
929 		} else
930 			reffile = withfile;
931 
932 		if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
933 		    &reftd, require_ctf) == 0) {
934 			terminate("No CTF data found in reference file %s\n",
935 			    reffile);
936 		}
937 
938 		savetd = tdata_new();
939 
940 		if (CTF_TYPE_ISCHILD(reftd->td_nextid))
941 			terminate("No room for additional types in master\n");
942 
943 		savetd->td_nextid = withfile ? reftd->td_nextid :
944 		    CTF_INDEX_TO_TYPE(1, TRUE);
945 		merge_into_master(mstrtd, reftd, savetd, 0);
946 
947 		tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);
948 
949 		if (withfile) {
950 			/*
951 			 * savetd holds the new data to be added to the withfile
952 			 */
953 			tdata_t *withtd = reftd;
954 
955 			tdata_merge(withtd, savetd);
956 
957 			savetd = withtd;
958 		} else {
959 			char uniqname[MAXPATHLEN];
960 			labelent_t *parle;
961 
962 			parle = tdata_label_top(reftd);
963 
964 			savetd->td_parlabel = xstrdup(parle->le_name);
965 
966 			strncpy(uniqname, reffile, sizeof (uniqname));
967 			uniqname[MAXPATHLEN - 1] = '\0';
968 			savetd->td_parname = xstrdup(basename(uniqname));
969 		}
970 
971 	} else {
972 		/*
973 		 * No post processing.  Write the merged tree as-is into the
974 		 * output file.
975 		 */
976 		tdata_label_free(mstrtd);
977 		tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);
978 
979 		savetd = mstrtd;
980 	}
981 
982 	tmpname = mktmpname(outfile, ".ctf");
983 	write_ctf(savetd, outfile, tmpname,
984 	    CTF_COMPRESS | write_fuzzy_match | dynsym | keep_stabs);
985 	if (rename(tmpname, outfile) != 0)
986 		terminate("Couldn't rename output temp file %s", tmpname);
987 	free(tmpname);
988 
989 	return (0);
990 }
991