xref: /titanic_51/usr/src/man/man4/core.4 (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
te
Copyright (C) 2008, Sun Microsystems, Inc. All Rights Reserved.
Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
Copyright (c) 2013, Joyent, Inc. All rights reserved.
Copyright 1989 AT&T
The contents of this file are subject to the terms of the Common Development and Distribution License (the "License"). You may not use this file except in compliance with the License.
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing. See the License for the specific language governing permissions and limitations under the License.
When distributing Covered Code, include this CDDL HEADER in each file and include the License file at usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your own identifying information: Portions Copyright [yyyy] [name of copyright owner]
CORE 4 "Mar 31, 2013"
NAME
core - process core file
DESCRIPTION

The operating system writes out a core file for a process when the process is terminated due to receiving certain signals. A core file is a disk copy of the contents of the process address space at the time the process received the signal, along with additional information about the state of the process. This information can be consumed by a debugger. Core files can also be generated by applying the gcore(1) utility to a running process.

Typically, core files are produced following abnormal termination of a process resulting from a bug in the corresponding application. Whatever the cause, the core file itself provides invaluable information to the programmer or support engineer to aid in diagnosing the problem. The core file can be inspected using a debugger such as dbx(1) or mdb(1) or by applying one of the proc(1) tools.

The operating system attempts to create up to two core files for each abnormally terminating process, using a global core file name pattern and a per-process core file name pattern. These patterns are expanded to determine the pathname of the resulting core files, and can be configured by coreadm(1M). By default, the global core file pattern is disabled and not used, and the per-process core file pattern is set to core. Therefore, by default, the operating system attempts to create a core file named core in the process's current working directory.

A process terminates and produces a core file whenever it receives one of the signals whose default disposition is to cause a core dump. The list of signals that result in generating a core file is shown in signal.h(3HEAD). Therefore, a process might not produce a core file if it has blocked or modified the behavior of the corresponding signal. Additionally, no core dump can be created under the following conditions:

If normal file and directory access permissions prevent the creation or modification of the per-process core file pathname by the current process user and group ID. This test does not apply to the global core file pathname because, regardless of the UID of the process dumping core, the attempt to write the global core file is made as the superuser.

Core files owned by the user nobody will not be produced. For example, core files generated for the superuser on an NFS directory are owned by nobody and are, therefore, not written.

If the core file pattern expands to a pathname that contains intermediate directory components that do not exist. For example, if the global pattern is set to /var/core/%n/core.%p, and no directory /var/core/`uname -n` has been created, no global core files are produced.

If the destination directory is part of a filesystem that is mounted read-only.

If the resource limit RLIMIT_CORE has been set to 0 for the process, no per-process core file is produced. Refer to setrlimit(2) and ulimit(1) for more information on resource limits.

If the core file name already exists in the destination directory and is not a regular file (that is, is a symlink, block or character special-file, and so forth).

If the kernel cannot open the destination file O_EXCL, which can occur if same file is being created by another process simultaneously.

If the process's effective user ID is different from its real user ID or if its effective group ID is different from its real group ID. Similarly, set-user-ID and set-group-ID programs do not produce core files as this could potentially compromise system security. These processes can be explicitly granted permission to produce core files using coreadm(1M), at the risk of exposing secure information.

The core file contains all the process information pertinent to debugging: contents of hardware registers, process status, and process data. The format of a core file is object file specific.

For ELF executable programs (see a.out(4)), the core file generated is also an ELF file, containing ELF program and file headers. The e_type field in the file header has type ET_CORE. The program header contains an entry for every segment that was part of the process address space, including shared library segments. The contents of the mappings specified by coreadm(1M) are also part of the core image. Each program header has its p_memsz field set to the size of the mapping. The program headers that represent mappings whose data is included in the core file have their p_filesz field set the same as p_memsz, otherwise p_filesz is zero.

A mapping's data can be excluded due to the core file content settings (see coreadm(1M)), due to a failure, or due to a signal received after core dump initiation but before its completion. If the data is excluded because of a failure, the program header entry will have the PF_SUNW_FAILURE flag set in its p_flags field; if the data is excluded because of a signal, the segment's p_flags field will have the PF_SUNW_KILLED flag set.

The program headers of an ELF core file also contain entries for two NOTE segments, each containing several note entries as described below. The note entry header and core file note type (n_type) definitions are contained in <sys/elf.h>. The first NOTE segment exists for binary compatibility with old programs that deal with core files. It contains structures defined in <sys/old_procfs.h>. New programs should recognize and skip this NOTE segment, advancing instead to the new NOTE segment. The old NOTE segment is deleted from core files in a future release.

The old NOTE segment contains the following entries. Each has entry name "CORE" and presents the contents of a system structure: prpsinfo_t

n_type: NT_PRPSINFO. This entry contains information of interest to the ps(1) command, such as process status, CPU usage, nice value, controlling terminal, user-ID, process-ID, the name of the executable, and so forth. The prpsinfo_t structure is defined in <sys/old_procfs.h>.

char array

n_type: NT_PLATFORM. This entry contains a string describing the specific model of the hardware platform on which this core file was created. This information is the same as provided by sysinfo(2) when invoked with the command SI_PLATFORM.

auxv_t array

n_type: NT_AUXV. This entry contains the array of auxv_t structures that was passed by the operating system as startup information to the dynamic linker. Auxiliary vector information is defined in <sys/auxv.h>.

Following these entries, for each active (non-zombie) light-weight process (LWP) in the process, the old NOTE segment contains an entry with a prstatus_t structure, plus other optionally-present entries describing the LWP, as follows: prstatus_t

n_type: NT_PRSTATUS. This structure contains things of interest to a debugger from the operating system, such as the general registers, signal dispositions, state, reason for stopping, process-ID, and so forth. The prstatus_t structure is defined in <sys/old_procfs.h>.

prfpregset_t

n_type: NT_PRFPREG. This entry is present only if the LWP used the floating-point hardware. It contains the floating-point registers. The prfpregset_t structure is defined in <sys/procfs_isa.h>.

gwindows_t

n_type: NT_GWINDOWS. This entry is present only on a SPARC machine and only if the system was unable to flush all of the register windows to the stack. It contains all of the unspilled register windows. The gwindows_t structure is defined in <sys/regset.h>.

prxregset_t

n_type: NT_PRXREG. This entry is present only if the machine has extra register state associated with it. It contains the extra register state. The prxregset_t structure is defined in <sys/procfs_isa.h>.

The new NOTE segment contains the following entries. Each has entry name "CORE" and presents the contents of a system structure: psinfo_t

n_type: NT_PSINFO. This structure contains information of interest to the ps(1) command, such as process status, CPU usage, nice value, controlling terminal, user-ID, process-ID, the name of the executable, and so forth. The psinfo_t structure is defined in <sys/procfs.h>.

pstatus_t

n_type: NT_PSTATUS. This structure contains things of interest to a debugger from the operating system, such as pending signals, state, process-ID, and so forth. The pstatus_t structure is defined in <sys/procfs.h>.

char array

n_type: NT_PLATFORM. This entry contains a string describing the specific model of the hardware platform on which this core file was created. This information is the same as provided by sysinfo(2) when invoked with the command SI_PLATFORM.

auxv_t array

n_type: NT_AUXV. This entry contains the array of auxv_t structures that was passed by the operating system as startup information to the dynamic linker. Auxiliary vector information is defined in <sys/auxv.h>.

struct utsname

n_type: NT_UTSNAME. This structure contains the system information that would have been returned to the process if it had performed a uname(2) system call prior to dumping core. The utsname structure is defined in <sys/utsname.h>.

prcred_t

n_type: NT_PRCRED. This structure contains the process credentials, including the real, saved, and effective user and group IDs. The prcred_t structure is defined in <sys/procfs.h>. Following the structure is an optional array of supplementary group IDs. The total number of supplementary group IDs is given by the pr_ngroups member of the prcred_t structure, and the structure includes space for one supplementary group. If pr_ngroups is greater than 1, there is pr_ngroups - 1 gid_t items following the structure; otherwise, there is no additional data.

char array

n_type: NT_ZONENAME. This entry contains a string which describes the name of the zone in which the process was running. See zones(5). The information is the same as provided by getzonenamebyid(3C) when invoked with the numerical ID returned by getzoneid(3C).

prfdinfo_t

n_type: NT_FDINFO. This structure contains information about any open file descriptors, including the path, flags, and stat(2) information. The prfdinfo_t structure is defined in <sys/procfs.h>.

struct ssd array

n_type: NT_LDT. This entry is present only on an 32-bit x86 machine and only if the process has set up a Local Descriptor Table (LDT). It contains an array of structures of type struct ssd, each of which was typically used to set up the %gs segment register to be used to fetch the address of the current thread information structure in a multithreaded process. The ssd structure is defined in <sys/sysi86.h>.

core_content_t

n_type: NT_CONTENT. This optional entry indicates which parts of the process image are specified to be included in the core file. See coreadm(1M).

Following these entries, for each active and zombie LWP in the process, the new NOTE segment contains an entry with an lwpsinfo_t structure plus, for a non-zombie LWP, an entry with an lwpstatus_t structure, plus other optionally-present entries describing the LWP, as follows. A zombie LWP is a non-detached LWP that has terminated but has not yet been reaped by another LWP in the same process. lwpsinfo_t

n_type: NT_LWPSINFO. This structure contains information of interest to the ps(1) command, such as LWP status, CPU usage, nice value, LWP-ID, and so forth. The lwpsinfo_t structure is defined in <sys/procfs.h>. This is the only entry present for a zombie LWP.

lwpstatus_t

n_type: NT_LWPSTATUS. This structure contains things of interest to a debugger from the operating system, such as the general registers, the floating point registers, state, reason for stopping, LWP-ID, and so forth. The lwpstatus_t structure is defined in <sys/procfs.h>>.

gwindows_t

n_type: NT_GWINDOWS. This entry is present only on a SPARC machine and only if the system was unable to flush all of the register windows to the stack. It contains all of the unspilled register windows. The gwindows_t structure is defined in <sys/regset.h>.

prxregset_t

n_type: NT_PRXREG. This entry is present only if the machine has extra register state associated with it. It contains the extra register state. The prxregset_t structure is defined in <sys/procfs_isa.h>.

asrset_t

n_type: NT_ASRS. This entry is present only on a SPARC V9 machine and only if the process is a 64-bit process. It contains the ancillary state registers for the LWP. The asrset_t structure is defined in <sys/regset.h>.

psinfo_t

n_type: NT_SPYMASTER. This entry is present only for an agent LWP and contains the psinfo_t of the process that created the agent LWP. See the proc(4) description of the spymaster entry for more details.

Depending on the coreadm(1M) settings, the section header of an ELF core file can contain entries for CTF, symbol table, and string table sections. The sh_addr fields are set to the base address of the first mapping of the load object that they came from to. This can be used to match those sections with the corresponding load object.

The size of the core file created by a process can be controlled by the user (see getrlimit(2)).

SEE ALSO

elfdump(1), gcore(1), mdb(1), proc(1), ps(1), coreadm(1M), getrlimit(2), setrlimit(2), setuid(2), sysinfo(2), uname(2), getzonenamebyid(3C), getzoneid(3C), elf(3ELF), signal.h(3HEAD), a.out(4), proc(4), zones(5)

ANSI C Programmer's Guide