xref: /titanic_51/usr/src/lib/libzpool/common/taskq.c (revision f16a0f4cde3ff2f7a495def818cbdce2d570ea33)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 
31 int taskq_now;
32 taskq_t *system_taskq;
33 
34 #define	TASKQ_ACTIVE	0x00010000
35 
36 struct taskq {
37 	kmutex_t	tq_lock;
38 	krwlock_t	tq_threadlock;
39 	kcondvar_t	tq_dispatch_cv;
40 	kcondvar_t	tq_wait_cv;
41 	thread_t	*tq_threadlist;
42 	int		tq_flags;
43 	int		tq_active;
44 	int		tq_nthreads;
45 	int		tq_nalloc;
46 	int		tq_minalloc;
47 	int		tq_maxalloc;
48 	kcondvar_t	tq_maxalloc_cv;
49 	int		tq_maxalloc_wait;
50 	taskq_ent_t	*tq_freelist;
51 	taskq_ent_t	tq_task;
52 };
53 
54 static taskq_ent_t *
55 task_alloc(taskq_t *tq, int tqflags)
56 {
57 	taskq_ent_t *t;
58 	int rv;
59 
60 again:	if ((t = tq->tq_freelist) != NULL && tq->tq_nalloc >= tq->tq_minalloc) {
61 		tq->tq_freelist = t->tqent_next;
62 	} else {
63 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
64 			if (!(tqflags & KM_SLEEP))
65 				return (NULL);
66 
67 			/*
68 			 * We don't want to exceed tq_maxalloc, but we can't
69 			 * wait for other tasks to complete (and thus free up
70 			 * task structures) without risking deadlock with
71 			 * the caller.  So, we just delay for one second
72 			 * to throttle the allocation rate. If we have tasks
73 			 * complete before one second timeout expires then
74 			 * taskq_ent_free will signal us and we will
75 			 * immediately retry the allocation.
76 			 */
77 			tq->tq_maxalloc_wait++;
78 			rv = cv_timedwait(&tq->tq_maxalloc_cv,
79 			    &tq->tq_lock, ddi_get_lbolt() + hz);
80 			tq->tq_maxalloc_wait--;
81 			if (rv > 0)
82 				goto again;		/* signaled */
83 		}
84 		mutex_exit(&tq->tq_lock);
85 
86 		t = kmem_alloc(sizeof (taskq_ent_t), tqflags);
87 
88 		mutex_enter(&tq->tq_lock);
89 		if (t != NULL)
90 			tq->tq_nalloc++;
91 	}
92 	return (t);
93 }
94 
95 static void
96 task_free(taskq_t *tq, taskq_ent_t *t)
97 {
98 	if (tq->tq_nalloc <= tq->tq_minalloc) {
99 		t->tqent_next = tq->tq_freelist;
100 		tq->tq_freelist = t;
101 	} else {
102 		tq->tq_nalloc--;
103 		mutex_exit(&tq->tq_lock);
104 		kmem_free(t, sizeof (taskq_ent_t));
105 		mutex_enter(&tq->tq_lock);
106 	}
107 
108 	if (tq->tq_maxalloc_wait)
109 		cv_signal(&tq->tq_maxalloc_cv);
110 }
111 
112 taskqid_t
113 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t tqflags)
114 {
115 	taskq_ent_t *t;
116 
117 	if (taskq_now) {
118 		func(arg);
119 		return (1);
120 	}
121 
122 	mutex_enter(&tq->tq_lock);
123 	ASSERT(tq->tq_flags & TASKQ_ACTIVE);
124 	if ((t = task_alloc(tq, tqflags)) == NULL) {
125 		mutex_exit(&tq->tq_lock);
126 		return (0);
127 	}
128 	if (tqflags & TQ_FRONT) {
129 		t->tqent_next = tq->tq_task.tqent_next;
130 		t->tqent_prev = &tq->tq_task;
131 	} else {
132 		t->tqent_next = &tq->tq_task;
133 		t->tqent_prev = tq->tq_task.tqent_prev;
134 	}
135 	t->tqent_next->tqent_prev = t;
136 	t->tqent_prev->tqent_next = t;
137 	t->tqent_func = func;
138 	t->tqent_arg = arg;
139 	cv_signal(&tq->tq_dispatch_cv);
140 	mutex_exit(&tq->tq_lock);
141 	return (1);
142 }
143 
144 void
145 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
146     taskq_ent_t *t)
147 {
148 	ASSERT(func != NULL);
149 	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
150 
151 	/*
152 	 * Mark it as a prealloc'd task.  This is important
153 	 * to ensure that we don't free it later.
154 	 */
155 	t->tqent_flags |= TQENT_FLAG_PREALLOC;
156 	/*
157 	 * Enqueue the task to the underlying queue.
158 	 */
159 	mutex_enter(&tq->tq_lock);
160 
161 	if (flags & TQ_FRONT) {
162 		t->tqent_next = tq->tq_task.tqent_next;
163 		t->tqent_prev = &tq->tq_task;
164 	} else {
165 		t->tqent_next = &tq->tq_task;
166 		t->tqent_prev = tq->tq_task.tqent_prev;
167 	}
168 	t->tqent_next->tqent_prev = t;
169 	t->tqent_prev->tqent_next = t;
170 	t->tqent_func = func;
171 	t->tqent_arg = arg;
172 	cv_signal(&tq->tq_dispatch_cv);
173 	mutex_exit(&tq->tq_lock);
174 }
175 
176 void
177 taskq_wait(taskq_t *tq)
178 {
179 	mutex_enter(&tq->tq_lock);
180 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
181 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
182 	mutex_exit(&tq->tq_lock);
183 }
184 
185 static void *
186 taskq_thread(void *arg)
187 {
188 	taskq_t *tq = arg;
189 	taskq_ent_t *t;
190 	boolean_t prealloc;
191 
192 	mutex_enter(&tq->tq_lock);
193 	while (tq->tq_flags & TASKQ_ACTIVE) {
194 		if ((t = tq->tq_task.tqent_next) == &tq->tq_task) {
195 			if (--tq->tq_active == 0)
196 				cv_broadcast(&tq->tq_wait_cv);
197 			cv_wait(&tq->tq_dispatch_cv, &tq->tq_lock);
198 			tq->tq_active++;
199 			continue;
200 		}
201 		t->tqent_prev->tqent_next = t->tqent_next;
202 		t->tqent_next->tqent_prev = t->tqent_prev;
203 		t->tqent_next = NULL;
204 		t->tqent_prev = NULL;
205 		prealloc = t->tqent_flags & TQENT_FLAG_PREALLOC;
206 		mutex_exit(&tq->tq_lock);
207 
208 		rw_enter(&tq->tq_threadlock, RW_READER);
209 		t->tqent_func(t->tqent_arg);
210 		rw_exit(&tq->tq_threadlock);
211 
212 		mutex_enter(&tq->tq_lock);
213 		if (!prealloc)
214 			task_free(tq, t);
215 	}
216 	tq->tq_nthreads--;
217 	cv_broadcast(&tq->tq_wait_cv);
218 	mutex_exit(&tq->tq_lock);
219 	return (NULL);
220 }
221 
222 /*ARGSUSED*/
223 taskq_t *
224 taskq_create(const char *name, int nthreads, pri_t pri,
225 	int minalloc, int maxalloc, uint_t flags)
226 {
227 	taskq_t *tq = kmem_zalloc(sizeof (taskq_t), KM_SLEEP);
228 	int t;
229 
230 	if (flags & TASKQ_THREADS_CPU_PCT) {
231 		int pct;
232 		ASSERT3S(nthreads, >=, 0);
233 		ASSERT3S(nthreads, <=, 100);
234 		pct = MIN(nthreads, 100);
235 		pct = MAX(pct, 0);
236 
237 		nthreads = (sysconf(_SC_NPROCESSORS_ONLN) * pct) / 100;
238 		nthreads = MAX(nthreads, 1);	/* need at least 1 thread */
239 	} else {
240 		ASSERT3S(nthreads, >=, 1);
241 	}
242 
243 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
244 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
245 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
246 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
247 	cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
248 	tq->tq_flags = flags | TASKQ_ACTIVE;
249 	tq->tq_active = nthreads;
250 	tq->tq_nthreads = nthreads;
251 	tq->tq_minalloc = minalloc;
252 	tq->tq_maxalloc = maxalloc;
253 	tq->tq_task.tqent_next = &tq->tq_task;
254 	tq->tq_task.tqent_prev = &tq->tq_task;
255 	tq->tq_threadlist = kmem_alloc(nthreads * sizeof (thread_t), KM_SLEEP);
256 
257 	if (flags & TASKQ_PREPOPULATE) {
258 		mutex_enter(&tq->tq_lock);
259 		while (minalloc-- > 0)
260 			task_free(tq, task_alloc(tq, KM_SLEEP));
261 		mutex_exit(&tq->tq_lock);
262 	}
263 
264 	for (t = 0; t < nthreads; t++)
265 		(void) thr_create(0, 0, taskq_thread,
266 		    tq, THR_BOUND, &tq->tq_threadlist[t]);
267 
268 	return (tq);
269 }
270 
271 void
272 taskq_destroy(taskq_t *tq)
273 {
274 	int t;
275 	int nthreads = tq->tq_nthreads;
276 
277 	taskq_wait(tq);
278 
279 	mutex_enter(&tq->tq_lock);
280 
281 	tq->tq_flags &= ~TASKQ_ACTIVE;
282 	cv_broadcast(&tq->tq_dispatch_cv);
283 
284 	while (tq->tq_nthreads != 0)
285 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
286 
287 	tq->tq_minalloc = 0;
288 	while (tq->tq_nalloc != 0) {
289 		ASSERT(tq->tq_freelist != NULL);
290 		task_free(tq, task_alloc(tq, KM_SLEEP));
291 	}
292 
293 	mutex_exit(&tq->tq_lock);
294 
295 	for (t = 0; t < nthreads; t++)
296 		(void) thr_join(tq->tq_threadlist[t], NULL, NULL);
297 
298 	kmem_free(tq->tq_threadlist, nthreads * sizeof (thread_t));
299 
300 	rw_destroy(&tq->tq_threadlock);
301 	mutex_destroy(&tq->tq_lock);
302 	cv_destroy(&tq->tq_dispatch_cv);
303 	cv_destroy(&tq->tq_wait_cv);
304 	cv_destroy(&tq->tq_maxalloc_cv);
305 
306 	kmem_free(tq, sizeof (taskq_t));
307 }
308 
309 int
310 taskq_member(taskq_t *tq, void *t)
311 {
312 	int i;
313 
314 	if (taskq_now)
315 		return (1);
316 
317 	for (i = 0; i < tq->tq_nthreads; i++)
318 		if (tq->tq_threadlist[i] == (thread_t)(uintptr_t)t)
319 			return (1);
320 
321 	return (0);
322 }
323 
324 void
325 system_taskq_init(void)
326 {
327 	system_taskq = taskq_create("system_taskq", 64, minclsyspri, 4, 512,
328 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
329 }
330 
331 void
332 system_taskq_fini(void)
333 {
334 	taskq_destroy(system_taskq);
335 	system_taskq = NULL; /* defensive */
336 }
337