xref: /titanic_51/usr/src/lib/libzfs/common/libzfs_import.c (revision ead9bb4b1be81d7bbf8ed86ee41d6c1e58b069a3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Pool import support functions.
27  *
28  * To import a pool, we rely on reading the configuration information from the
29  * ZFS label of each device.  If we successfully read the label, then we
30  * organize the configuration information in the following hierarchy:
31  *
32  * 	pool guid -> toplevel vdev guid -> label txg
33  *
34  * Duplicate entries matching this same tuple will be discarded.  Once we have
35  * examined every device, we pick the best label txg config for each toplevel
36  * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
37  * update any paths that have changed.  Finally, we attempt to import the pool
38  * using our derived config, and record the results.
39  */
40 
41 #include <ctype.h>
42 #include <devid.h>
43 #include <dirent.h>
44 #include <errno.h>
45 #include <libintl.h>
46 #include <stddef.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <sys/stat.h>
50 #include <unistd.h>
51 #include <fcntl.h>
52 #include <sys/vtoc.h>
53 #include <sys/dktp/fdisk.h>
54 #include <sys/efi_partition.h>
55 #include <thread_pool.h>
56 
57 #include <sys/vdev_impl.h>
58 
59 #include "libzfs.h"
60 #include "libzfs_impl.h"
61 
62 /*
63  * Intermediate structures used to gather configuration information.
64  */
65 typedef struct config_entry {
66 	uint64_t		ce_txg;
67 	nvlist_t		*ce_config;
68 	struct config_entry	*ce_next;
69 } config_entry_t;
70 
71 typedef struct vdev_entry {
72 	uint64_t		ve_guid;
73 	config_entry_t		*ve_configs;
74 	struct vdev_entry	*ve_next;
75 } vdev_entry_t;
76 
77 typedef struct pool_entry {
78 	uint64_t		pe_guid;
79 	vdev_entry_t		*pe_vdevs;
80 	struct pool_entry	*pe_next;
81 } pool_entry_t;
82 
83 typedef struct name_entry {
84 	char			*ne_name;
85 	uint64_t		ne_guid;
86 	struct name_entry	*ne_next;
87 } name_entry_t;
88 
89 typedef struct pool_list {
90 	pool_entry_t		*pools;
91 	name_entry_t		*names;
92 } pool_list_t;
93 
94 static char *
95 get_devid(const char *path)
96 {
97 	int fd;
98 	ddi_devid_t devid;
99 	char *minor, *ret;
100 
101 	if ((fd = open(path, O_RDONLY)) < 0)
102 		return (NULL);
103 
104 	minor = NULL;
105 	ret = NULL;
106 	if (devid_get(fd, &devid) == 0) {
107 		if (devid_get_minor_name(fd, &minor) == 0)
108 			ret = devid_str_encode(devid, minor);
109 		if (minor != NULL)
110 			devid_str_free(minor);
111 		devid_free(devid);
112 	}
113 	(void) close(fd);
114 
115 	return (ret);
116 }
117 
118 
119 /*
120  * Go through and fix up any path and/or devid information for the given vdev
121  * configuration.
122  */
123 static int
124 fix_paths(nvlist_t *nv, name_entry_t *names)
125 {
126 	nvlist_t **child;
127 	uint_t c, children;
128 	uint64_t guid;
129 	name_entry_t *ne, *best;
130 	char *path, *devid;
131 	int matched;
132 
133 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
134 	    &child, &children) == 0) {
135 		for (c = 0; c < children; c++)
136 			if (fix_paths(child[c], names) != 0)
137 				return (-1);
138 		return (0);
139 	}
140 
141 	/*
142 	 * This is a leaf (file or disk) vdev.  In either case, go through
143 	 * the name list and see if we find a matching guid.  If so, replace
144 	 * the path and see if we can calculate a new devid.
145 	 *
146 	 * There may be multiple names associated with a particular guid, in
147 	 * which case we have overlapping slices or multiple paths to the same
148 	 * disk.  If this is the case, then we want to pick the path that is
149 	 * the most similar to the original, where "most similar" is the number
150 	 * of matching characters starting from the end of the path.  This will
151 	 * preserve slice numbers even if the disks have been reorganized, and
152 	 * will also catch preferred disk names if multiple paths exist.
153 	 */
154 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
155 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
156 		path = NULL;
157 
158 	matched = 0;
159 	best = NULL;
160 	for (ne = names; ne != NULL; ne = ne->ne_next) {
161 		if (ne->ne_guid == guid) {
162 			const char *src, *dst;
163 			int count;
164 
165 			if (path == NULL) {
166 				best = ne;
167 				break;
168 			}
169 
170 			src = ne->ne_name + strlen(ne->ne_name) - 1;
171 			dst = path + strlen(path) - 1;
172 			for (count = 0; src >= ne->ne_name && dst >= path;
173 			    src--, dst--, count++)
174 				if (*src != *dst)
175 					break;
176 
177 			/*
178 			 * At this point, 'count' is the number of characters
179 			 * matched from the end.
180 			 */
181 			if (count > matched || best == NULL) {
182 				best = ne;
183 				matched = count;
184 			}
185 		}
186 	}
187 
188 	if (best == NULL)
189 		return (0);
190 
191 	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
192 		return (-1);
193 
194 	if ((devid = get_devid(best->ne_name)) == NULL) {
195 		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
196 	} else {
197 		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
198 			return (-1);
199 		devid_str_free(devid);
200 	}
201 
202 	return (0);
203 }
204 
205 /*
206  * Add the given configuration to the list of known devices.
207  */
208 static int
209 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
210     nvlist_t *config)
211 {
212 	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
213 	pool_entry_t *pe;
214 	vdev_entry_t *ve;
215 	config_entry_t *ce;
216 	name_entry_t *ne;
217 
218 	/*
219 	 * If this is a hot spare not currently in use or level 2 cache
220 	 * device, add it to the list of names to translate, but don't do
221 	 * anything else.
222 	 */
223 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
224 	    &state) == 0 &&
225 	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
226 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
227 		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
228 			return (-1);
229 
230 		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
231 			free(ne);
232 			return (-1);
233 		}
234 		ne->ne_guid = vdev_guid;
235 		ne->ne_next = pl->names;
236 		pl->names = ne;
237 		return (0);
238 	}
239 
240 	/*
241 	 * If we have a valid config but cannot read any of these fields, then
242 	 * it means we have a half-initialized label.  In vdev_label_init()
243 	 * we write a label with txg == 0 so that we can identify the device
244 	 * in case the user refers to the same disk later on.  If we fail to
245 	 * create the pool, we'll be left with a label in this state
246 	 * which should not be considered part of a valid pool.
247 	 */
248 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
249 	    &pool_guid) != 0 ||
250 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
251 	    &vdev_guid) != 0 ||
252 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
253 	    &top_guid) != 0 ||
254 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
255 	    &txg) != 0 || txg == 0) {
256 		nvlist_free(config);
257 		return (0);
258 	}
259 
260 	/*
261 	 * First, see if we know about this pool.  If not, then add it to the
262 	 * list of known pools.
263 	 */
264 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
265 		if (pe->pe_guid == pool_guid)
266 			break;
267 	}
268 
269 	if (pe == NULL) {
270 		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
271 			nvlist_free(config);
272 			return (-1);
273 		}
274 		pe->pe_guid = pool_guid;
275 		pe->pe_next = pl->pools;
276 		pl->pools = pe;
277 	}
278 
279 	/*
280 	 * Second, see if we know about this toplevel vdev.  Add it if its
281 	 * missing.
282 	 */
283 	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
284 		if (ve->ve_guid == top_guid)
285 			break;
286 	}
287 
288 	if (ve == NULL) {
289 		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
290 			nvlist_free(config);
291 			return (-1);
292 		}
293 		ve->ve_guid = top_guid;
294 		ve->ve_next = pe->pe_vdevs;
295 		pe->pe_vdevs = ve;
296 	}
297 
298 	/*
299 	 * Third, see if we have a config with a matching transaction group.  If
300 	 * so, then we do nothing.  Otherwise, add it to the list of known
301 	 * configs.
302 	 */
303 	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
304 		if (ce->ce_txg == txg)
305 			break;
306 	}
307 
308 	if (ce == NULL) {
309 		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
310 			nvlist_free(config);
311 			return (-1);
312 		}
313 		ce->ce_txg = txg;
314 		ce->ce_config = config;
315 		ce->ce_next = ve->ve_configs;
316 		ve->ve_configs = ce;
317 	} else {
318 		nvlist_free(config);
319 	}
320 
321 	/*
322 	 * At this point we've successfully added our config to the list of
323 	 * known configs.  The last thing to do is add the vdev guid -> path
324 	 * mappings so that we can fix up the configuration as necessary before
325 	 * doing the import.
326 	 */
327 	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
328 		return (-1);
329 
330 	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
331 		free(ne);
332 		return (-1);
333 	}
334 
335 	ne->ne_guid = vdev_guid;
336 	ne->ne_next = pl->names;
337 	pl->names = ne;
338 
339 	return (0);
340 }
341 
342 /*
343  * Returns true if the named pool matches the given GUID.
344  */
345 static int
346 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
347     boolean_t *isactive)
348 {
349 	zpool_handle_t *zhp;
350 	uint64_t theguid;
351 
352 	if (zpool_open_silent(hdl, name, &zhp) != 0)
353 		return (-1);
354 
355 	if (zhp == NULL) {
356 		*isactive = B_FALSE;
357 		return (0);
358 	}
359 
360 	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
361 	    &theguid) == 0);
362 
363 	zpool_close(zhp);
364 
365 	*isactive = (theguid == guid);
366 	return (0);
367 }
368 
369 static nvlist_t *
370 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
371 {
372 	nvlist_t *nvl;
373 	zfs_cmd_t zc = { 0 };
374 	int err;
375 
376 	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
377 		return (NULL);
378 
379 	if (zcmd_alloc_dst_nvlist(hdl, &zc,
380 	    zc.zc_nvlist_conf_size * 2) != 0) {
381 		zcmd_free_nvlists(&zc);
382 		return (NULL);
383 	}
384 
385 	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
386 	    &zc)) != 0 && errno == ENOMEM) {
387 		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
388 			zcmd_free_nvlists(&zc);
389 			return (NULL);
390 		}
391 	}
392 
393 	if (err) {
394 		zcmd_free_nvlists(&zc);
395 		return (NULL);
396 	}
397 
398 	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
399 		zcmd_free_nvlists(&zc);
400 		return (NULL);
401 	}
402 
403 	zcmd_free_nvlists(&zc);
404 	return (nvl);
405 }
406 
407 /*
408  * Determine if the vdev id is a hole in the namespace.
409  */
410 boolean_t
411 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
412 {
413 	for (int c = 0; c < holes; c++) {
414 
415 		/* Top-level is a hole */
416 		if (hole_array[c] == id)
417 			return (B_TRUE);
418 	}
419 	return (B_FALSE);
420 }
421 
422 /*
423  * Convert our list of pools into the definitive set of configurations.  We
424  * start by picking the best config for each toplevel vdev.  Once that's done,
425  * we assemble the toplevel vdevs into a full config for the pool.  We make a
426  * pass to fix up any incorrect paths, and then add it to the main list to
427  * return to the user.
428  */
429 static nvlist_t *
430 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
431 {
432 	pool_entry_t *pe;
433 	vdev_entry_t *ve;
434 	config_entry_t *ce;
435 	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
436 	nvlist_t **spares, **l2cache;
437 	uint_t i, nspares, nl2cache;
438 	boolean_t config_seen;
439 	uint64_t best_txg;
440 	char *name, *hostname;
441 	uint64_t version, guid;
442 	uint_t children = 0;
443 	nvlist_t **child = NULL;
444 	uint_t holes;
445 	uint64_t *hole_array, max_id;
446 	uint_t c;
447 	boolean_t isactive;
448 	uint64_t hostid;
449 	nvlist_t *nvl;
450 	boolean_t found_one = B_FALSE;
451 	boolean_t valid_top_config = B_FALSE;
452 
453 	if (nvlist_alloc(&ret, 0, 0) != 0)
454 		goto nomem;
455 
456 	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
457 		uint64_t id, max_txg = 0;
458 
459 		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
460 			goto nomem;
461 		config_seen = B_FALSE;
462 
463 		/*
464 		 * Iterate over all toplevel vdevs.  Grab the pool configuration
465 		 * from the first one we find, and then go through the rest and
466 		 * add them as necessary to the 'vdevs' member of the config.
467 		 */
468 		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
469 
470 			/*
471 			 * Determine the best configuration for this vdev by
472 			 * selecting the config with the latest transaction
473 			 * group.
474 			 */
475 			best_txg = 0;
476 			for (ce = ve->ve_configs; ce != NULL;
477 			    ce = ce->ce_next) {
478 
479 				if (ce->ce_txg > best_txg) {
480 					tmp = ce->ce_config;
481 					best_txg = ce->ce_txg;
482 				}
483 			}
484 
485 			/*
486 			 * We rely on the fact that the max txg for the
487 			 * pool will contain the most up-to-date information
488 			 * about the valid top-levels in the vdev namespace.
489 			 */
490 			if (best_txg > max_txg) {
491 				(void) nvlist_remove(config,
492 				    ZPOOL_CONFIG_VDEV_CHILDREN,
493 				    DATA_TYPE_UINT64);
494 				(void) nvlist_remove(config,
495 				    ZPOOL_CONFIG_HOLE_ARRAY,
496 				    DATA_TYPE_UINT64_ARRAY);
497 
498 				max_txg = best_txg;
499 				hole_array = NULL;
500 				holes = 0;
501 				max_id = 0;
502 				valid_top_config = B_FALSE;
503 
504 				if (nvlist_lookup_uint64(tmp,
505 				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
506 					verify(nvlist_add_uint64(config,
507 					    ZPOOL_CONFIG_VDEV_CHILDREN,
508 					    max_id) == 0);
509 					valid_top_config = B_TRUE;
510 				}
511 
512 				if (nvlist_lookup_uint64_array(tmp,
513 				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
514 				    &holes) == 0) {
515 					verify(nvlist_add_uint64_array(config,
516 					    ZPOOL_CONFIG_HOLE_ARRAY,
517 					    hole_array, holes) == 0);
518 				}
519 			}
520 
521 			if (!config_seen) {
522 				/*
523 				 * Copy the relevant pieces of data to the pool
524 				 * configuration:
525 				 *
526 				 *	version
527 				 * 	pool guid
528 				 * 	name
529 				 * 	pool state
530 				 *	hostid (if available)
531 				 *	hostname (if available)
532 				 */
533 				uint64_t state;
534 
535 				verify(nvlist_lookup_uint64(tmp,
536 				    ZPOOL_CONFIG_VERSION, &version) == 0);
537 				if (nvlist_add_uint64(config,
538 				    ZPOOL_CONFIG_VERSION, version) != 0)
539 					goto nomem;
540 				verify(nvlist_lookup_uint64(tmp,
541 				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
542 				if (nvlist_add_uint64(config,
543 				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
544 					goto nomem;
545 				verify(nvlist_lookup_string(tmp,
546 				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
547 				if (nvlist_add_string(config,
548 				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
549 					goto nomem;
550 				verify(nvlist_lookup_uint64(tmp,
551 				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
552 				if (nvlist_add_uint64(config,
553 				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
554 					goto nomem;
555 				hostid = 0;
556 				if (nvlist_lookup_uint64(tmp,
557 				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
558 					if (nvlist_add_uint64(config,
559 					    ZPOOL_CONFIG_HOSTID, hostid) != 0)
560 						goto nomem;
561 					verify(nvlist_lookup_string(tmp,
562 					    ZPOOL_CONFIG_HOSTNAME,
563 					    &hostname) == 0);
564 					if (nvlist_add_string(config,
565 					    ZPOOL_CONFIG_HOSTNAME,
566 					    hostname) != 0)
567 						goto nomem;
568 				}
569 
570 				config_seen = B_TRUE;
571 			}
572 
573 			/*
574 			 * Add this top-level vdev to the child array.
575 			 */
576 			verify(nvlist_lookup_nvlist(tmp,
577 			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
578 			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
579 			    &id) == 0);
580 
581 			if (id >= children) {
582 				nvlist_t **newchild;
583 
584 				newchild = zfs_alloc(hdl, (id + 1) *
585 				    sizeof (nvlist_t *));
586 				if (newchild == NULL)
587 					goto nomem;
588 
589 				for (c = 0; c < children; c++)
590 					newchild[c] = child[c];
591 
592 				free(child);
593 				child = newchild;
594 				children = id + 1;
595 			}
596 			if (nvlist_dup(nvtop, &child[id], 0) != 0)
597 				goto nomem;
598 
599 		}
600 
601 		/*
602 		 * If we have information about all the top-levels then
603 		 * clean up the nvlist which we've constructed. This
604 		 * means removing any extraneous devices that are
605 		 * beyond the valid range or adding devices to the end
606 		 * of our array which appear to be missing.
607 		 */
608 		if (valid_top_config) {
609 			if (max_id < children) {
610 				for (c = max_id; c < children; c++)
611 					nvlist_free(child[c]);
612 				children = max_id;
613 			} else if (max_id > children) {
614 				nvlist_t **newchild;
615 
616 				newchild = zfs_alloc(hdl, (max_id) *
617 				    sizeof (nvlist_t *));
618 				if (newchild == NULL)
619 					goto nomem;
620 
621 				for (c = 0; c < children; c++)
622 					newchild[c] = child[c];
623 
624 				free(child);
625 				child = newchild;
626 				children = max_id;
627 			}
628 		}
629 
630 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
631 		    &guid) == 0);
632 
633 		/*
634 		 * The vdev namespace may contain holes as a result of
635 		 * device removal. We must add them back into the vdev
636 		 * tree before we process any missing devices.
637 		 */
638 		if (holes > 0) {
639 			ASSERT(valid_top_config);
640 
641 			for (c = 0; c < children; c++) {
642 				nvlist_t *holey;
643 
644 				if (child[c] != NULL ||
645 				    !vdev_is_hole(hole_array, holes, c))
646 					continue;
647 
648 				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
649 				    0) != 0)
650 					goto nomem;
651 
652 				/*
653 				 * Holes in the namespace are treated as
654 				 * "hole" top-level vdevs and have a
655 				 * special flag set on them.
656 				 */
657 				if (nvlist_add_string(holey,
658 				    ZPOOL_CONFIG_TYPE,
659 				    VDEV_TYPE_HOLE) != 0 ||
660 				    nvlist_add_uint64(holey,
661 				    ZPOOL_CONFIG_ID, c) != 0 ||
662 				    nvlist_add_uint64(holey,
663 				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
664 					goto nomem;
665 				child[c] = holey;
666 			}
667 		}
668 
669 		/*
670 		 * Look for any missing top-level vdevs.  If this is the case,
671 		 * create a faked up 'missing' vdev as a placeholder.  We cannot
672 		 * simply compress the child array, because the kernel performs
673 		 * certain checks to make sure the vdev IDs match their location
674 		 * in the configuration.
675 		 */
676 		for (c = 0; c < children; c++) {
677 			if (child[c] == NULL) {
678 				nvlist_t *missing;
679 				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
680 				    0) != 0)
681 					goto nomem;
682 				if (nvlist_add_string(missing,
683 				    ZPOOL_CONFIG_TYPE,
684 				    VDEV_TYPE_MISSING) != 0 ||
685 				    nvlist_add_uint64(missing,
686 				    ZPOOL_CONFIG_ID, c) != 0 ||
687 				    nvlist_add_uint64(missing,
688 				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
689 					nvlist_free(missing);
690 					goto nomem;
691 				}
692 				child[c] = missing;
693 			}
694 		}
695 
696 		/*
697 		 * Put all of this pool's top-level vdevs into a root vdev.
698 		 */
699 		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
700 			goto nomem;
701 		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
702 		    VDEV_TYPE_ROOT) != 0 ||
703 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
704 		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
705 		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
706 		    child, children) != 0) {
707 			nvlist_free(nvroot);
708 			goto nomem;
709 		}
710 
711 		for (c = 0; c < children; c++)
712 			nvlist_free(child[c]);
713 		free(child);
714 		children = 0;
715 		child = NULL;
716 
717 		/*
718 		 * Go through and fix up any paths and/or devids based on our
719 		 * known list of vdev GUID -> path mappings.
720 		 */
721 		if (fix_paths(nvroot, pl->names) != 0) {
722 			nvlist_free(nvroot);
723 			goto nomem;
724 		}
725 
726 		/*
727 		 * Add the root vdev to this pool's configuration.
728 		 */
729 		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
730 		    nvroot) != 0) {
731 			nvlist_free(nvroot);
732 			goto nomem;
733 		}
734 		nvlist_free(nvroot);
735 
736 		/*
737 		 * zdb uses this path to report on active pools that were
738 		 * imported or created using -R.
739 		 */
740 		if (active_ok)
741 			goto add_pool;
742 
743 		/*
744 		 * Determine if this pool is currently active, in which case we
745 		 * can't actually import it.
746 		 */
747 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
748 		    &name) == 0);
749 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
750 		    &guid) == 0);
751 
752 		if (pool_active(hdl, name, guid, &isactive) != 0)
753 			goto error;
754 
755 		if (isactive) {
756 			nvlist_free(config);
757 			config = NULL;
758 			continue;
759 		}
760 
761 		if ((nvl = refresh_config(hdl, config)) == NULL) {
762 			nvlist_free(config);
763 			config = NULL;
764 			continue;
765 		}
766 
767 		nvlist_free(config);
768 		config = nvl;
769 
770 		/*
771 		 * Go through and update the paths for spares, now that we have
772 		 * them.
773 		 */
774 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
775 		    &nvroot) == 0);
776 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
777 		    &spares, &nspares) == 0) {
778 			for (i = 0; i < nspares; i++) {
779 				if (fix_paths(spares[i], pl->names) != 0)
780 					goto nomem;
781 			}
782 		}
783 
784 		/*
785 		 * Update the paths for l2cache devices.
786 		 */
787 		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
788 		    &l2cache, &nl2cache) == 0) {
789 			for (i = 0; i < nl2cache; i++) {
790 				if (fix_paths(l2cache[i], pl->names) != 0)
791 					goto nomem;
792 			}
793 		}
794 
795 		/*
796 		 * Restore the original information read from the actual label.
797 		 */
798 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
799 		    DATA_TYPE_UINT64);
800 		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
801 		    DATA_TYPE_STRING);
802 		if (hostid != 0) {
803 			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
804 			    hostid) == 0);
805 			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
806 			    hostname) == 0);
807 		}
808 
809 add_pool:
810 		/*
811 		 * Add this pool to the list of configs.
812 		 */
813 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
814 		    &name) == 0);
815 		if (nvlist_add_nvlist(ret, name, config) != 0)
816 			goto nomem;
817 
818 		found_one = B_TRUE;
819 		nvlist_free(config);
820 		config = NULL;
821 	}
822 
823 	if (!found_one) {
824 		nvlist_free(ret);
825 		ret = NULL;
826 	}
827 
828 	return (ret);
829 
830 nomem:
831 	(void) no_memory(hdl);
832 error:
833 	nvlist_free(config);
834 	nvlist_free(ret);
835 	for (c = 0; c < children; c++)
836 		nvlist_free(child[c]);
837 	free(child);
838 
839 	return (NULL);
840 }
841 
842 /*
843  * Return the offset of the given label.
844  */
845 static uint64_t
846 label_offset(uint64_t size, int l)
847 {
848 	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
849 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
850 	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
851 }
852 
853 /*
854  * Given a file descriptor, read the label information and return an nvlist
855  * describing the configuration, if there is one.
856  */
857 int
858 zpool_read_label(int fd, nvlist_t **config)
859 {
860 	struct stat64 statbuf;
861 	int l;
862 	vdev_label_t *label;
863 	uint64_t state, txg, size;
864 
865 	*config = NULL;
866 
867 	if (fstat64(fd, &statbuf) == -1)
868 		return (0);
869 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
870 
871 	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
872 		return (-1);
873 
874 	for (l = 0; l < VDEV_LABELS; l++) {
875 		if (pread64(fd, label, sizeof (vdev_label_t),
876 		    label_offset(size, l)) != sizeof (vdev_label_t))
877 			continue;
878 
879 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
880 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
881 			continue;
882 
883 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
884 		    &state) != 0 || state > POOL_STATE_L2CACHE) {
885 			nvlist_free(*config);
886 			continue;
887 		}
888 
889 		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
890 		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
891 		    &txg) != 0 || txg == 0)) {
892 			nvlist_free(*config);
893 			continue;
894 		}
895 
896 		free(label);
897 		return (0);
898 	}
899 
900 	free(label);
901 	*config = NULL;
902 	return (0);
903 }
904 
905 typedef struct rdsk_node {
906 	char *rn_name;
907 	int rn_dfd;
908 	libzfs_handle_t *rn_hdl;
909 	nvlist_t *rn_config;
910 	avl_tree_t *rn_avl;
911 	avl_node_t rn_node;
912 	boolean_t rn_nozpool;
913 } rdsk_node_t;
914 
915 static int
916 slice_cache_compare(const void *arg1, const void *arg2)
917 {
918 	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
919 	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
920 	char *nm1slice, *nm2slice;
921 	int rv;
922 
923 	/*
924 	 * slices zero and two are the most likely to provide results,
925 	 * so put those first
926 	 */
927 	nm1slice = strstr(nm1, "s0");
928 	nm2slice = strstr(nm2, "s0");
929 	if (nm1slice && !nm2slice) {
930 		return (-1);
931 	}
932 	if (!nm1slice && nm2slice) {
933 		return (1);
934 	}
935 	nm1slice = strstr(nm1, "s2");
936 	nm2slice = strstr(nm2, "s2");
937 	if (nm1slice && !nm2slice) {
938 		return (-1);
939 	}
940 	if (!nm1slice && nm2slice) {
941 		return (1);
942 	}
943 
944 	rv = strcmp(nm1, nm2);
945 	if (rv == 0)
946 		return (0);
947 	return (rv > 0 ? 1 : -1);
948 }
949 
950 static void
951 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
952     diskaddr_t size, uint_t blksz)
953 {
954 	rdsk_node_t tmpnode;
955 	rdsk_node_t *node;
956 	char sname[MAXNAMELEN];
957 
958 	tmpnode.rn_name = &sname[0];
959 	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
960 	    diskname, partno);
961 	/*
962 	 * protect against division by zero for disk labels that
963 	 * contain a bogus sector size
964 	 */
965 	if (blksz == 0)
966 		blksz = DEV_BSIZE;
967 	/* too small to contain a zpool? */
968 	if ((size < (SPA_MINDEVSIZE / blksz)) &&
969 	    (node = avl_find(r, &tmpnode, NULL)))
970 		node->rn_nozpool = B_TRUE;
971 }
972 
973 static void
974 nozpool_all_slices(avl_tree_t *r, const char *sname)
975 {
976 	char diskname[MAXNAMELEN];
977 	char *ptr;
978 	int i;
979 
980 	(void) strncpy(diskname, sname, MAXNAMELEN);
981 	if (((ptr = strrchr(diskname, 's')) == NULL) &&
982 	    ((ptr = strrchr(diskname, 'p')) == NULL))
983 		return;
984 	ptr[0] = 's';
985 	ptr[1] = '\0';
986 	for (i = 0; i < NDKMAP; i++)
987 		check_one_slice(r, diskname, i, 0, 1);
988 	ptr[0] = 'p';
989 	for (i = 0; i <= FD_NUMPART; i++)
990 		check_one_slice(r, diskname, i, 0, 1);
991 }
992 
993 static void
994 check_slices(avl_tree_t *r, int fd, const char *sname)
995 {
996 	struct extvtoc vtoc;
997 	struct dk_gpt *gpt;
998 	char diskname[MAXNAMELEN];
999 	char *ptr;
1000 	int i;
1001 
1002 	(void) strncpy(diskname, sname, MAXNAMELEN);
1003 	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1004 		return;
1005 	ptr[1] = '\0';
1006 
1007 	if (read_extvtoc(fd, &vtoc) >= 0) {
1008 		for (i = 0; i < NDKMAP; i++)
1009 			check_one_slice(r, diskname, i,
1010 			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1011 	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1012 		/*
1013 		 * on x86 we'll still have leftover links that point
1014 		 * to slices s[9-15], so use NDKMAP instead
1015 		 */
1016 		for (i = 0; i < NDKMAP; i++)
1017 			check_one_slice(r, diskname, i,
1018 			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1019 		/* nodes p[1-4] are never used with EFI labels */
1020 		ptr[0] = 'p';
1021 		for (i = 1; i <= FD_NUMPART; i++)
1022 			check_one_slice(r, diskname, i, 0, 1);
1023 		efi_free(gpt);
1024 	}
1025 }
1026 
1027 static void
1028 zpool_open_func(void *arg)
1029 {
1030 	rdsk_node_t *rn = arg;
1031 	struct stat64 statbuf;
1032 	nvlist_t *config;
1033 	int fd;
1034 
1035 	if (rn->rn_nozpool)
1036 		return;
1037 	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1038 		/* symlink to a device that's no longer there */
1039 		if (errno == ENOENT)
1040 			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1041 		return;
1042 	}
1043 	/*
1044 	 * Ignore failed stats.  We only want regular
1045 	 * files, character devs and block devs.
1046 	 */
1047 	if (fstat64(fd, &statbuf) != 0 ||
1048 	    (!S_ISREG(statbuf.st_mode) &&
1049 	    !S_ISCHR(statbuf.st_mode) &&
1050 	    !S_ISBLK(statbuf.st_mode))) {
1051 		(void) close(fd);
1052 		return;
1053 	}
1054 	/* this file is too small to hold a zpool */
1055 	if (S_ISREG(statbuf.st_mode) &&
1056 	    statbuf.st_size < SPA_MINDEVSIZE) {
1057 		(void) close(fd);
1058 		return;
1059 	} else if (!S_ISREG(statbuf.st_mode)) {
1060 		/*
1061 		 * Try to read the disk label first so we don't have to
1062 		 * open a bunch of minor nodes that can't have a zpool.
1063 		 */
1064 		check_slices(rn->rn_avl, fd, rn->rn_name);
1065 	}
1066 
1067 	if ((zpool_read_label(fd, &config)) != 0) {
1068 		(void) close(fd);
1069 		(void) no_memory(rn->rn_hdl);
1070 		return;
1071 	}
1072 	(void) close(fd);
1073 
1074 
1075 	rn->rn_config = config;
1076 	if (config != NULL) {
1077 		assert(rn->rn_nozpool == B_FALSE);
1078 	}
1079 }
1080 
1081 /*
1082  * Given a file descriptor, clear (zero) the label information.  This function
1083  * is currently only used in the appliance stack as part of the ZFS sysevent
1084  * module.
1085  */
1086 int
1087 zpool_clear_label(int fd)
1088 {
1089 	struct stat64 statbuf;
1090 	int l;
1091 	vdev_label_t *label;
1092 	uint64_t size;
1093 
1094 	if (fstat64(fd, &statbuf) == -1)
1095 		return (0);
1096 	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1097 
1098 	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1099 		return (-1);
1100 
1101 	for (l = 0; l < VDEV_LABELS; l++) {
1102 		if (pwrite64(fd, label, sizeof (vdev_label_t),
1103 		    label_offset(size, l)) != sizeof (vdev_label_t))
1104 			return (-1);
1105 	}
1106 
1107 	free(label);
1108 	return (0);
1109 }
1110 
1111 /*
1112  * Given a list of directories to search, find all pools stored on disk.  This
1113  * includes partial pools which are not available to import.  If no args are
1114  * given (argc is 0), then the default directory (/dev/dsk) is searched.
1115  * poolname or guid (but not both) are provided by the caller when trying
1116  * to import a specific pool.
1117  */
1118 static nvlist_t *
1119 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1120 {
1121 	int i, dirs = iarg->paths;
1122 	DIR *dirp = NULL;
1123 	struct dirent64 *dp;
1124 	char path[MAXPATHLEN];
1125 	char *end, **dir = iarg->path;
1126 	size_t pathleft;
1127 	nvlist_t *ret = NULL;
1128 	static char *default_dir = "/dev/dsk";
1129 	pool_list_t pools = { 0 };
1130 	pool_entry_t *pe, *penext;
1131 	vdev_entry_t *ve, *venext;
1132 	config_entry_t *ce, *cenext;
1133 	name_entry_t *ne, *nenext;
1134 	avl_tree_t slice_cache;
1135 	rdsk_node_t *slice;
1136 	void *cookie;
1137 
1138 	if (dirs == 0) {
1139 		dirs = 1;
1140 		dir = &default_dir;
1141 	}
1142 
1143 	/*
1144 	 * Go through and read the label configuration information from every
1145 	 * possible device, organizing the information according to pool GUID
1146 	 * and toplevel GUID.
1147 	 */
1148 	for (i = 0; i < dirs; i++) {
1149 		tpool_t *t;
1150 		char *rdsk;
1151 		int dfd;
1152 
1153 		/* use realpath to normalize the path */
1154 		if (realpath(dir[i], path) == 0) {
1155 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1156 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1157 			goto error;
1158 		}
1159 		end = &path[strlen(path)];
1160 		*end++ = '/';
1161 		*end = 0;
1162 		pathleft = &path[sizeof (path)] - end;
1163 
1164 		/*
1165 		 * Using raw devices instead of block devices when we're
1166 		 * reading the labels skips a bunch of slow operations during
1167 		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1168 		 */
1169 		if (strcmp(path, "/dev/dsk/") == 0)
1170 			rdsk = "/dev/rdsk/";
1171 		else
1172 			rdsk = path;
1173 
1174 		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1175 		    (dirp = fdopendir(dfd)) == NULL) {
1176 			zfs_error_aux(hdl, strerror(errno));
1177 			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1178 			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1179 			    rdsk);
1180 			goto error;
1181 		}
1182 
1183 		avl_create(&slice_cache, slice_cache_compare,
1184 		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1185 		/*
1186 		 * This is not MT-safe, but we have no MT consumers of libzfs
1187 		 */
1188 		while ((dp = readdir64(dirp)) != NULL) {
1189 			const char *name = dp->d_name;
1190 			if (name[0] == '.' &&
1191 			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1192 				continue;
1193 
1194 			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1195 			slice->rn_name = zfs_strdup(hdl, name);
1196 			slice->rn_avl = &slice_cache;
1197 			slice->rn_dfd = dfd;
1198 			slice->rn_hdl = hdl;
1199 			slice->rn_nozpool = B_FALSE;
1200 			avl_add(&slice_cache, slice);
1201 		}
1202 		/*
1203 		 * create a thread pool to do all of this in parallel;
1204 		 * rn_nozpool is not protected, so this is racy in that
1205 		 * multiple tasks could decide that the same slice can
1206 		 * not hold a zpool, which is benign.  Also choose
1207 		 * double the number of processors; we hold a lot of
1208 		 * locks in the kernel, so going beyond this doesn't
1209 		 * buy us much.
1210 		 */
1211 		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1212 		    0, NULL);
1213 		for (slice = avl_first(&slice_cache); slice;
1214 		    (slice = avl_walk(&slice_cache, slice,
1215 		    AVL_AFTER)))
1216 			(void) tpool_dispatch(t, zpool_open_func, slice);
1217 		tpool_wait(t);
1218 		tpool_destroy(t);
1219 
1220 		cookie = NULL;
1221 		while ((slice = avl_destroy_nodes(&slice_cache,
1222 		    &cookie)) != NULL) {
1223 			if (slice->rn_config != NULL) {
1224 				nvlist_t *config = slice->rn_config;
1225 				boolean_t matched = B_TRUE;
1226 
1227 				if (iarg->poolname != NULL) {
1228 					char *pname;
1229 
1230 					matched = nvlist_lookup_string(config,
1231 					    ZPOOL_CONFIG_POOL_NAME,
1232 					    &pname) == 0 &&
1233 					    strcmp(iarg->poolname, pname) == 0;
1234 				} else if (iarg->guid != 0) {
1235 					uint64_t this_guid;
1236 
1237 					matched = nvlist_lookup_uint64(config,
1238 					    ZPOOL_CONFIG_POOL_GUID,
1239 					    &this_guid) == 0 &&
1240 					    iarg->guid == this_guid;
1241 				}
1242 				if (!matched) {
1243 					nvlist_free(config);
1244 					config = NULL;
1245 					continue;
1246 				}
1247 				/* use the non-raw path for the config */
1248 				(void) strlcpy(end, slice->rn_name, pathleft);
1249 				if (add_config(hdl, &pools, path, config) != 0)
1250 					goto error;
1251 			}
1252 			free(slice->rn_name);
1253 			free(slice);
1254 		}
1255 		avl_destroy(&slice_cache);
1256 
1257 		(void) closedir(dirp);
1258 		dirp = NULL;
1259 	}
1260 
1261 	ret = get_configs(hdl, &pools, iarg->can_be_active);
1262 
1263 error:
1264 	for (pe = pools.pools; pe != NULL; pe = penext) {
1265 		penext = pe->pe_next;
1266 		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1267 			venext = ve->ve_next;
1268 			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1269 				cenext = ce->ce_next;
1270 				if (ce->ce_config)
1271 					nvlist_free(ce->ce_config);
1272 				free(ce);
1273 			}
1274 			free(ve);
1275 		}
1276 		free(pe);
1277 	}
1278 
1279 	for (ne = pools.names; ne != NULL; ne = nenext) {
1280 		nenext = ne->ne_next;
1281 		if (ne->ne_name)
1282 			free(ne->ne_name);
1283 		free(ne);
1284 	}
1285 
1286 	if (dirp)
1287 		(void) closedir(dirp);
1288 
1289 	return (ret);
1290 }
1291 
1292 nvlist_t *
1293 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1294 {
1295 	importargs_t iarg = { 0 };
1296 
1297 	iarg.paths = argc;
1298 	iarg.path = argv;
1299 
1300 	return (zpool_find_import_impl(hdl, &iarg));
1301 }
1302 
1303 /*
1304  * Given a cache file, return the contents as a list of importable pools.
1305  * poolname or guid (but not both) are provided by the caller when trying
1306  * to import a specific pool.
1307  */
1308 nvlist_t *
1309 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1310     char *poolname, uint64_t guid)
1311 {
1312 	char *buf;
1313 	int fd;
1314 	struct stat64 statbuf;
1315 	nvlist_t *raw, *src, *dst;
1316 	nvlist_t *pools;
1317 	nvpair_t *elem;
1318 	char *name;
1319 	uint64_t this_guid;
1320 	boolean_t active;
1321 
1322 	verify(poolname == NULL || guid == 0);
1323 
1324 	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1325 		zfs_error_aux(hdl, "%s", strerror(errno));
1326 		(void) zfs_error(hdl, EZFS_BADCACHE,
1327 		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1328 		return (NULL);
1329 	}
1330 
1331 	if (fstat64(fd, &statbuf) != 0) {
1332 		zfs_error_aux(hdl, "%s", strerror(errno));
1333 		(void) close(fd);
1334 		(void) zfs_error(hdl, EZFS_BADCACHE,
1335 		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1336 		return (NULL);
1337 	}
1338 
1339 	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1340 		(void) close(fd);
1341 		return (NULL);
1342 	}
1343 
1344 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1345 		(void) close(fd);
1346 		free(buf);
1347 		(void) zfs_error(hdl, EZFS_BADCACHE,
1348 		    dgettext(TEXT_DOMAIN,
1349 		    "failed to read cache file contents"));
1350 		return (NULL);
1351 	}
1352 
1353 	(void) close(fd);
1354 
1355 	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1356 		free(buf);
1357 		(void) zfs_error(hdl, EZFS_BADCACHE,
1358 		    dgettext(TEXT_DOMAIN,
1359 		    "invalid or corrupt cache file contents"));
1360 		return (NULL);
1361 	}
1362 
1363 	free(buf);
1364 
1365 	/*
1366 	 * Go through and get the current state of the pools and refresh their
1367 	 * state.
1368 	 */
1369 	if (nvlist_alloc(&pools, 0, 0) != 0) {
1370 		(void) no_memory(hdl);
1371 		nvlist_free(raw);
1372 		return (NULL);
1373 	}
1374 
1375 	elem = NULL;
1376 	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1377 		verify(nvpair_value_nvlist(elem, &src) == 0);
1378 
1379 		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1380 		    &name) == 0);
1381 		if (poolname != NULL && strcmp(poolname, name) != 0)
1382 			continue;
1383 
1384 		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1385 		    &this_guid) == 0);
1386 		if (guid != 0) {
1387 			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1388 			    &this_guid) == 0);
1389 			if (guid != this_guid)
1390 				continue;
1391 		}
1392 
1393 		if (pool_active(hdl, name, this_guid, &active) != 0) {
1394 			nvlist_free(raw);
1395 			nvlist_free(pools);
1396 			return (NULL);
1397 		}
1398 
1399 		if (active)
1400 			continue;
1401 
1402 		if ((dst = refresh_config(hdl, src)) == NULL) {
1403 			nvlist_free(raw);
1404 			nvlist_free(pools);
1405 			return (NULL);
1406 		}
1407 
1408 		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1409 			(void) no_memory(hdl);
1410 			nvlist_free(dst);
1411 			nvlist_free(raw);
1412 			nvlist_free(pools);
1413 			return (NULL);
1414 		}
1415 		nvlist_free(dst);
1416 	}
1417 
1418 	nvlist_free(raw);
1419 	return (pools);
1420 }
1421 
1422 static int
1423 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1424 {
1425 	importargs_t *import = data;
1426 	int found = 0;
1427 
1428 	if (import->poolname != NULL) {
1429 		char *pool_name;
1430 
1431 		verify(nvlist_lookup_string(zhp->zpool_config,
1432 		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1433 		if (strcmp(pool_name, import->poolname) == 0)
1434 			found = 1;
1435 	} else {
1436 		uint64_t pool_guid;
1437 
1438 		verify(nvlist_lookup_uint64(zhp->zpool_config,
1439 		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1440 		if (pool_guid == import->guid)
1441 			found = 1;
1442 	}
1443 
1444 	zpool_close(zhp);
1445 	return (found);
1446 }
1447 
1448 nvlist_t *
1449 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1450 {
1451 	verify(import->poolname == NULL || import->guid == 0);
1452 
1453 	if (import->unique)
1454 		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1455 
1456 	if (import->cachefile != NULL)
1457 		return (zpool_find_import_cached(hdl, import->cachefile,
1458 		    import->poolname, import->guid));
1459 
1460 	return (zpool_find_import_impl(hdl, import));
1461 }
1462 
1463 boolean_t
1464 find_guid(nvlist_t *nv, uint64_t guid)
1465 {
1466 	uint64_t tmp;
1467 	nvlist_t **child;
1468 	uint_t c, children;
1469 
1470 	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1471 	if (tmp == guid)
1472 		return (B_TRUE);
1473 
1474 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1475 	    &child, &children) == 0) {
1476 		for (c = 0; c < children; c++)
1477 			if (find_guid(child[c], guid))
1478 				return (B_TRUE);
1479 	}
1480 
1481 	return (B_FALSE);
1482 }
1483 
1484 typedef struct aux_cbdata {
1485 	const char	*cb_type;
1486 	uint64_t	cb_guid;
1487 	zpool_handle_t	*cb_zhp;
1488 } aux_cbdata_t;
1489 
1490 static int
1491 find_aux(zpool_handle_t *zhp, void *data)
1492 {
1493 	aux_cbdata_t *cbp = data;
1494 	nvlist_t **list;
1495 	uint_t i, count;
1496 	uint64_t guid;
1497 	nvlist_t *nvroot;
1498 
1499 	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1500 	    &nvroot) == 0);
1501 
1502 	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1503 	    &list, &count) == 0) {
1504 		for (i = 0; i < count; i++) {
1505 			verify(nvlist_lookup_uint64(list[i],
1506 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1507 			if (guid == cbp->cb_guid) {
1508 				cbp->cb_zhp = zhp;
1509 				return (1);
1510 			}
1511 		}
1512 	}
1513 
1514 	zpool_close(zhp);
1515 	return (0);
1516 }
1517 
1518 /*
1519  * Determines if the pool is in use.  If so, it returns true and the state of
1520  * the pool as well as the name of the pool.  Both strings are allocated and
1521  * must be freed by the caller.
1522  */
1523 int
1524 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1525     boolean_t *inuse)
1526 {
1527 	nvlist_t *config;
1528 	char *name;
1529 	boolean_t ret;
1530 	uint64_t guid, vdev_guid;
1531 	zpool_handle_t *zhp;
1532 	nvlist_t *pool_config;
1533 	uint64_t stateval, isspare;
1534 	aux_cbdata_t cb = { 0 };
1535 	boolean_t isactive;
1536 
1537 	*inuse = B_FALSE;
1538 
1539 	if (zpool_read_label(fd, &config) != 0) {
1540 		(void) no_memory(hdl);
1541 		return (-1);
1542 	}
1543 
1544 	if (config == NULL)
1545 		return (0);
1546 
1547 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1548 	    &stateval) == 0);
1549 	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1550 	    &vdev_guid) == 0);
1551 
1552 	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1553 		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1554 		    &name) == 0);
1555 		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1556 		    &guid) == 0);
1557 	}
1558 
1559 	switch (stateval) {
1560 	case POOL_STATE_EXPORTED:
1561 		/*
1562 		 * A pool with an exported state may in fact be imported
1563 		 * read-only, so check the in-core state to see if it's
1564 		 * active and imported read-only.  If it is, set
1565 		 * its state to active.
1566 		 */
1567 		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1568 		    (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1569 		    zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1570 			stateval = POOL_STATE_ACTIVE;
1571 
1572 		ret = B_TRUE;
1573 		break;
1574 
1575 	case POOL_STATE_ACTIVE:
1576 		/*
1577 		 * For an active pool, we have to determine if it's really part
1578 		 * of a currently active pool (in which case the pool will exist
1579 		 * and the guid will be the same), or whether it's part of an
1580 		 * active pool that was disconnected without being explicitly
1581 		 * exported.
1582 		 */
1583 		if (pool_active(hdl, name, guid, &isactive) != 0) {
1584 			nvlist_free(config);
1585 			return (-1);
1586 		}
1587 
1588 		if (isactive) {
1589 			/*
1590 			 * Because the device may have been removed while
1591 			 * offlined, we only report it as active if the vdev is
1592 			 * still present in the config.  Otherwise, pretend like
1593 			 * it's not in use.
1594 			 */
1595 			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1596 			    (pool_config = zpool_get_config(zhp, NULL))
1597 			    != NULL) {
1598 				nvlist_t *nvroot;
1599 
1600 				verify(nvlist_lookup_nvlist(pool_config,
1601 				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1602 				ret = find_guid(nvroot, vdev_guid);
1603 			} else {
1604 				ret = B_FALSE;
1605 			}
1606 
1607 			/*
1608 			 * If this is an active spare within another pool, we
1609 			 * treat it like an unused hot spare.  This allows the
1610 			 * user to create a pool with a hot spare that currently
1611 			 * in use within another pool.  Since we return B_TRUE,
1612 			 * libdiskmgt will continue to prevent generic consumers
1613 			 * from using the device.
1614 			 */
1615 			if (ret && nvlist_lookup_uint64(config,
1616 			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1617 				stateval = POOL_STATE_SPARE;
1618 
1619 			if (zhp != NULL)
1620 				zpool_close(zhp);
1621 		} else {
1622 			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1623 			ret = B_TRUE;
1624 		}
1625 		break;
1626 
1627 	case POOL_STATE_SPARE:
1628 		/*
1629 		 * For a hot spare, it can be either definitively in use, or
1630 		 * potentially active.  To determine if it's in use, we iterate
1631 		 * over all pools in the system and search for one with a spare
1632 		 * with a matching guid.
1633 		 *
1634 		 * Due to the shared nature of spares, we don't actually report
1635 		 * the potentially active case as in use.  This means the user
1636 		 * can freely create pools on the hot spares of exported pools,
1637 		 * but to do otherwise makes the resulting code complicated, and
1638 		 * we end up having to deal with this case anyway.
1639 		 */
1640 		cb.cb_zhp = NULL;
1641 		cb.cb_guid = vdev_guid;
1642 		cb.cb_type = ZPOOL_CONFIG_SPARES;
1643 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1644 			name = (char *)zpool_get_name(cb.cb_zhp);
1645 			ret = TRUE;
1646 		} else {
1647 			ret = FALSE;
1648 		}
1649 		break;
1650 
1651 	case POOL_STATE_L2CACHE:
1652 
1653 		/*
1654 		 * Check if any pool is currently using this l2cache device.
1655 		 */
1656 		cb.cb_zhp = NULL;
1657 		cb.cb_guid = vdev_guid;
1658 		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1659 		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1660 			name = (char *)zpool_get_name(cb.cb_zhp);
1661 			ret = TRUE;
1662 		} else {
1663 			ret = FALSE;
1664 		}
1665 		break;
1666 
1667 	default:
1668 		ret = B_FALSE;
1669 	}
1670 
1671 
1672 	if (ret) {
1673 		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1674 			if (cb.cb_zhp)
1675 				zpool_close(cb.cb_zhp);
1676 			nvlist_free(config);
1677 			return (-1);
1678 		}
1679 		*state = (pool_state_t)stateval;
1680 	}
1681 
1682 	if (cb.cb_zhp)
1683 		zpool_close(cb.cb_zhp);
1684 
1685 	nvlist_free(config);
1686 	*inuse = ret;
1687 	return (0);
1688 }
1689