1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * Pool import support functions. 29 * 30 * To import a pool, we rely on reading the configuration information from the 31 * ZFS label of each device. If we successfully read the label, then we 32 * organize the configuration information in the following hierarchy: 33 * 34 * pool guid -> toplevel vdev guid -> label txg 35 * 36 * Duplicate entries matching this same tuple will be discarded. Once we have 37 * examined every device, we pick the best label txg config for each toplevel 38 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 39 * update any paths that have changed. Finally, we attempt to import the pool 40 * using our derived config, and record the results. 41 */ 42 43 #include <ctype.h> 44 #include <devid.h> 45 #include <dirent.h> 46 #include <errno.h> 47 #include <libintl.h> 48 #include <stddef.h> 49 #include <stdlib.h> 50 #include <string.h> 51 #include <sys/stat.h> 52 #include <unistd.h> 53 #include <fcntl.h> 54 #include <sys/vtoc.h> 55 #include <sys/dktp/fdisk.h> 56 #include <sys/efi_partition.h> 57 #include <thread_pool.h> 58 59 #include <sys/vdev_impl.h> 60 61 #include "libzfs.h" 62 #include "libzfs_impl.h" 63 64 /* 65 * Intermediate structures used to gather configuration information. 66 */ 67 typedef struct config_entry { 68 uint64_t ce_txg; 69 nvlist_t *ce_config; 70 struct config_entry *ce_next; 71 } config_entry_t; 72 73 typedef struct vdev_entry { 74 uint64_t ve_guid; 75 config_entry_t *ve_configs; 76 struct vdev_entry *ve_next; 77 } vdev_entry_t; 78 79 typedef struct pool_entry { 80 uint64_t pe_guid; 81 vdev_entry_t *pe_vdevs; 82 struct pool_entry *pe_next; 83 } pool_entry_t; 84 85 typedef struct name_entry { 86 char *ne_name; 87 uint64_t ne_guid; 88 struct name_entry *ne_next; 89 } name_entry_t; 90 91 typedef struct pool_list { 92 pool_entry_t *pools; 93 name_entry_t *names; 94 } pool_list_t; 95 96 static char * 97 get_devid(const char *path) 98 { 99 int fd; 100 ddi_devid_t devid; 101 char *minor, *ret; 102 103 if ((fd = open(path, O_RDONLY)) < 0) 104 return (NULL); 105 106 minor = NULL; 107 ret = NULL; 108 if (devid_get(fd, &devid) == 0) { 109 if (devid_get_minor_name(fd, &minor) == 0) 110 ret = devid_str_encode(devid, minor); 111 if (minor != NULL) 112 devid_str_free(minor); 113 devid_free(devid); 114 } 115 (void) close(fd); 116 117 return (ret); 118 } 119 120 121 /* 122 * Go through and fix up any path and/or devid information for the given vdev 123 * configuration. 124 */ 125 static int 126 fix_paths(nvlist_t *nv, name_entry_t *names) 127 { 128 nvlist_t **child; 129 uint_t c, children; 130 uint64_t guid; 131 name_entry_t *ne, *best; 132 char *path, *devid; 133 int matched; 134 135 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 136 &child, &children) == 0) { 137 for (c = 0; c < children; c++) 138 if (fix_paths(child[c], names) != 0) 139 return (-1); 140 return (0); 141 } 142 143 /* 144 * This is a leaf (file or disk) vdev. In either case, go through 145 * the name list and see if we find a matching guid. If so, replace 146 * the path and see if we can calculate a new devid. 147 * 148 * There may be multiple names associated with a particular guid, in 149 * which case we have overlapping slices or multiple paths to the same 150 * disk. If this is the case, then we want to pick the path that is 151 * the most similar to the original, where "most similar" is the number 152 * of matching characters starting from the end of the path. This will 153 * preserve slice numbers even if the disks have been reorganized, and 154 * will also catch preferred disk names if multiple paths exist. 155 */ 156 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 157 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 158 path = NULL; 159 160 matched = 0; 161 best = NULL; 162 for (ne = names; ne != NULL; ne = ne->ne_next) { 163 if (ne->ne_guid == guid) { 164 const char *src, *dst; 165 int count; 166 167 if (path == NULL) { 168 best = ne; 169 break; 170 } 171 172 src = ne->ne_name + strlen(ne->ne_name) - 1; 173 dst = path + strlen(path) - 1; 174 for (count = 0; src >= ne->ne_name && dst >= path; 175 src--, dst--, count++) 176 if (*src != *dst) 177 break; 178 179 /* 180 * At this point, 'count' is the number of characters 181 * matched from the end. 182 */ 183 if (count > matched || best == NULL) { 184 best = ne; 185 matched = count; 186 } 187 } 188 } 189 190 if (best == NULL) 191 return (0); 192 193 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 194 return (-1); 195 196 if ((devid = get_devid(best->ne_name)) == NULL) { 197 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 198 } else { 199 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 200 return (-1); 201 devid_str_free(devid); 202 } 203 204 return (0); 205 } 206 207 /* 208 * Add the given configuration to the list of known devices. 209 */ 210 static int 211 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 212 nvlist_t *config) 213 { 214 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 215 pool_entry_t *pe; 216 vdev_entry_t *ve; 217 config_entry_t *ce; 218 name_entry_t *ne; 219 220 /* 221 * If this is a hot spare not currently in use or level 2 cache 222 * device, add it to the list of names to translate, but don't do 223 * anything else. 224 */ 225 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 226 &state) == 0 && 227 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 228 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 229 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 230 return (-1); 231 232 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 233 free(ne); 234 return (-1); 235 } 236 ne->ne_guid = vdev_guid; 237 ne->ne_next = pl->names; 238 pl->names = ne; 239 return (0); 240 } 241 242 /* 243 * If we have a valid config but cannot read any of these fields, then 244 * it means we have a half-initialized label. In vdev_label_init() 245 * we write a label with txg == 0 so that we can identify the device 246 * in case the user refers to the same disk later on. If we fail to 247 * create the pool, we'll be left with a label in this state 248 * which should not be considered part of a valid pool. 249 */ 250 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 251 &pool_guid) != 0 || 252 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 253 &vdev_guid) != 0 || 254 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 255 &top_guid) != 0 || 256 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 257 &txg) != 0 || txg == 0) { 258 nvlist_free(config); 259 return (0); 260 } 261 262 /* 263 * First, see if we know about this pool. If not, then add it to the 264 * list of known pools. 265 */ 266 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 267 if (pe->pe_guid == pool_guid) 268 break; 269 } 270 271 if (pe == NULL) { 272 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 273 nvlist_free(config); 274 return (-1); 275 } 276 pe->pe_guid = pool_guid; 277 pe->pe_next = pl->pools; 278 pl->pools = pe; 279 } 280 281 /* 282 * Second, see if we know about this toplevel vdev. Add it if its 283 * missing. 284 */ 285 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 286 if (ve->ve_guid == top_guid) 287 break; 288 } 289 290 if (ve == NULL) { 291 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 292 nvlist_free(config); 293 return (-1); 294 } 295 ve->ve_guid = top_guid; 296 ve->ve_next = pe->pe_vdevs; 297 pe->pe_vdevs = ve; 298 } 299 300 /* 301 * Third, see if we have a config with a matching transaction group. If 302 * so, then we do nothing. Otherwise, add it to the list of known 303 * configs. 304 */ 305 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 306 if (ce->ce_txg == txg) 307 break; 308 } 309 310 if (ce == NULL) { 311 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 312 nvlist_free(config); 313 return (-1); 314 } 315 ce->ce_txg = txg; 316 ce->ce_config = config; 317 ce->ce_next = ve->ve_configs; 318 ve->ve_configs = ce; 319 } else { 320 nvlist_free(config); 321 } 322 323 /* 324 * At this point we've successfully added our config to the list of 325 * known configs. The last thing to do is add the vdev guid -> path 326 * mappings so that we can fix up the configuration as necessary before 327 * doing the import. 328 */ 329 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 330 return (-1); 331 332 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 333 free(ne); 334 return (-1); 335 } 336 337 ne->ne_guid = vdev_guid; 338 ne->ne_next = pl->names; 339 pl->names = ne; 340 341 return (0); 342 } 343 344 /* 345 * Returns true if the named pool matches the given GUID. 346 */ 347 static int 348 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 349 boolean_t *isactive) 350 { 351 zpool_handle_t *zhp; 352 uint64_t theguid; 353 354 if (zpool_open_silent(hdl, name, &zhp) != 0) 355 return (-1); 356 357 if (zhp == NULL) { 358 *isactive = B_FALSE; 359 return (0); 360 } 361 362 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 363 &theguid) == 0); 364 365 zpool_close(zhp); 366 367 *isactive = (theguid == guid); 368 return (0); 369 } 370 371 static nvlist_t * 372 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 373 { 374 nvlist_t *nvl; 375 zfs_cmd_t zc = { 0 }; 376 int err; 377 378 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 379 return (NULL); 380 381 if (zcmd_alloc_dst_nvlist(hdl, &zc, 382 zc.zc_nvlist_conf_size * 2) != 0) { 383 zcmd_free_nvlists(&zc); 384 return (NULL); 385 } 386 387 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 388 &zc)) != 0 && errno == ENOMEM) { 389 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 390 zcmd_free_nvlists(&zc); 391 return (NULL); 392 } 393 } 394 395 if (err) { 396 zcmd_free_nvlists(&zc); 397 return (NULL); 398 } 399 400 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 401 zcmd_free_nvlists(&zc); 402 return (NULL); 403 } 404 405 zcmd_free_nvlists(&zc); 406 return (nvl); 407 } 408 409 /* 410 * Determine if the vdev id is a hole in the namespace. 411 */ 412 boolean_t 413 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 414 { 415 for (int c = 0; c < holes; c++) { 416 417 /* Top-level is a hole */ 418 if (hole_array[c] == id) 419 return (B_TRUE); 420 } 421 return (B_FALSE); 422 } 423 424 /* 425 * Convert our list of pools into the definitive set of configurations. We 426 * start by picking the best config for each toplevel vdev. Once that's done, 427 * we assemble the toplevel vdevs into a full config for the pool. We make a 428 * pass to fix up any incorrect paths, and then add it to the main list to 429 * return to the user. 430 */ 431 static nvlist_t * 432 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 433 { 434 pool_entry_t *pe; 435 vdev_entry_t *ve; 436 config_entry_t *ce; 437 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot; 438 nvlist_t **spares, **l2cache; 439 uint_t i, nspares, nl2cache; 440 boolean_t config_seen; 441 uint64_t best_txg; 442 char *name, *hostname, *comment; 443 uint64_t version, guid; 444 uint_t children = 0; 445 nvlist_t **child = NULL; 446 uint_t holes; 447 uint64_t *hole_array, max_id; 448 uint_t c; 449 boolean_t isactive; 450 uint64_t hostid; 451 nvlist_t *nvl; 452 boolean_t found_one = B_FALSE; 453 boolean_t valid_top_config = B_FALSE; 454 455 if (nvlist_alloc(&ret, 0, 0) != 0) 456 goto nomem; 457 458 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 459 uint64_t id, max_txg = 0; 460 461 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 462 goto nomem; 463 config_seen = B_FALSE; 464 465 /* 466 * Iterate over all toplevel vdevs. Grab the pool configuration 467 * from the first one we find, and then go through the rest and 468 * add them as necessary to the 'vdevs' member of the config. 469 */ 470 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 471 472 /* 473 * Determine the best configuration for this vdev by 474 * selecting the config with the latest transaction 475 * group. 476 */ 477 best_txg = 0; 478 for (ce = ve->ve_configs; ce != NULL; 479 ce = ce->ce_next) { 480 481 if (ce->ce_txg > best_txg) { 482 tmp = ce->ce_config; 483 best_txg = ce->ce_txg; 484 } 485 } 486 487 /* 488 * We rely on the fact that the max txg for the 489 * pool will contain the most up-to-date information 490 * about the valid top-levels in the vdev namespace. 491 */ 492 if (best_txg > max_txg) { 493 (void) nvlist_remove(config, 494 ZPOOL_CONFIG_VDEV_CHILDREN, 495 DATA_TYPE_UINT64); 496 (void) nvlist_remove(config, 497 ZPOOL_CONFIG_HOLE_ARRAY, 498 DATA_TYPE_UINT64_ARRAY); 499 500 max_txg = best_txg; 501 hole_array = NULL; 502 holes = 0; 503 max_id = 0; 504 valid_top_config = B_FALSE; 505 506 if (nvlist_lookup_uint64(tmp, 507 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 508 verify(nvlist_add_uint64(config, 509 ZPOOL_CONFIG_VDEV_CHILDREN, 510 max_id) == 0); 511 valid_top_config = B_TRUE; 512 } 513 514 if (nvlist_lookup_uint64_array(tmp, 515 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 516 &holes) == 0) { 517 verify(nvlist_add_uint64_array(config, 518 ZPOOL_CONFIG_HOLE_ARRAY, 519 hole_array, holes) == 0); 520 } 521 } 522 523 if (!config_seen) { 524 /* 525 * Copy the relevant pieces of data to the pool 526 * configuration: 527 * 528 * version 529 * pool guid 530 * name 531 * comment (if available) 532 * pool state 533 * hostid (if available) 534 * hostname (if available) 535 */ 536 uint64_t state; 537 538 verify(nvlist_lookup_uint64(tmp, 539 ZPOOL_CONFIG_VERSION, &version) == 0); 540 if (nvlist_add_uint64(config, 541 ZPOOL_CONFIG_VERSION, version) != 0) 542 goto nomem; 543 verify(nvlist_lookup_uint64(tmp, 544 ZPOOL_CONFIG_POOL_GUID, &guid) == 0); 545 if (nvlist_add_uint64(config, 546 ZPOOL_CONFIG_POOL_GUID, guid) != 0) 547 goto nomem; 548 verify(nvlist_lookup_string(tmp, 549 ZPOOL_CONFIG_POOL_NAME, &name) == 0); 550 if (nvlist_add_string(config, 551 ZPOOL_CONFIG_POOL_NAME, name) != 0) 552 goto nomem; 553 554 /* 555 * COMMENT is optional, don't bail if it's not 556 * there, instead, set it to NULL. 557 */ 558 if (nvlist_lookup_string(tmp, 559 ZPOOL_CONFIG_COMMENT, &comment) != 0) 560 comment = NULL; 561 else if (nvlist_add_string(config, 562 ZPOOL_CONFIG_COMMENT, comment) != 0) 563 goto nomem; 564 565 verify(nvlist_lookup_uint64(tmp, 566 ZPOOL_CONFIG_POOL_STATE, &state) == 0); 567 if (nvlist_add_uint64(config, 568 ZPOOL_CONFIG_POOL_STATE, state) != 0) 569 goto nomem; 570 571 hostid = 0; 572 if (nvlist_lookup_uint64(tmp, 573 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 574 if (nvlist_add_uint64(config, 575 ZPOOL_CONFIG_HOSTID, hostid) != 0) 576 goto nomem; 577 verify(nvlist_lookup_string(tmp, 578 ZPOOL_CONFIG_HOSTNAME, 579 &hostname) == 0); 580 if (nvlist_add_string(config, 581 ZPOOL_CONFIG_HOSTNAME, 582 hostname) != 0) 583 goto nomem; 584 } 585 586 config_seen = B_TRUE; 587 } 588 589 /* 590 * Add this top-level vdev to the child array. 591 */ 592 verify(nvlist_lookup_nvlist(tmp, 593 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 594 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 595 &id) == 0); 596 597 if (id >= children) { 598 nvlist_t **newchild; 599 600 newchild = zfs_alloc(hdl, (id + 1) * 601 sizeof (nvlist_t *)); 602 if (newchild == NULL) 603 goto nomem; 604 605 for (c = 0; c < children; c++) 606 newchild[c] = child[c]; 607 608 free(child); 609 child = newchild; 610 children = id + 1; 611 } 612 if (nvlist_dup(nvtop, &child[id], 0) != 0) 613 goto nomem; 614 615 } 616 617 /* 618 * If we have information about all the top-levels then 619 * clean up the nvlist which we've constructed. This 620 * means removing any extraneous devices that are 621 * beyond the valid range or adding devices to the end 622 * of our array which appear to be missing. 623 */ 624 if (valid_top_config) { 625 if (max_id < children) { 626 for (c = max_id; c < children; c++) 627 nvlist_free(child[c]); 628 children = max_id; 629 } else if (max_id > children) { 630 nvlist_t **newchild; 631 632 newchild = zfs_alloc(hdl, (max_id) * 633 sizeof (nvlist_t *)); 634 if (newchild == NULL) 635 goto nomem; 636 637 for (c = 0; c < children; c++) 638 newchild[c] = child[c]; 639 640 free(child); 641 child = newchild; 642 children = max_id; 643 } 644 } 645 646 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 647 &guid) == 0); 648 649 /* 650 * The vdev namespace may contain holes as a result of 651 * device removal. We must add them back into the vdev 652 * tree before we process any missing devices. 653 */ 654 if (holes > 0) { 655 ASSERT(valid_top_config); 656 657 for (c = 0; c < children; c++) { 658 nvlist_t *holey; 659 660 if (child[c] != NULL || 661 !vdev_is_hole(hole_array, holes, c)) 662 continue; 663 664 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 665 0) != 0) 666 goto nomem; 667 668 /* 669 * Holes in the namespace are treated as 670 * "hole" top-level vdevs and have a 671 * special flag set on them. 672 */ 673 if (nvlist_add_string(holey, 674 ZPOOL_CONFIG_TYPE, 675 VDEV_TYPE_HOLE) != 0 || 676 nvlist_add_uint64(holey, 677 ZPOOL_CONFIG_ID, c) != 0 || 678 nvlist_add_uint64(holey, 679 ZPOOL_CONFIG_GUID, 0ULL) != 0) 680 goto nomem; 681 child[c] = holey; 682 } 683 } 684 685 /* 686 * Look for any missing top-level vdevs. If this is the case, 687 * create a faked up 'missing' vdev as a placeholder. We cannot 688 * simply compress the child array, because the kernel performs 689 * certain checks to make sure the vdev IDs match their location 690 * in the configuration. 691 */ 692 for (c = 0; c < children; c++) { 693 if (child[c] == NULL) { 694 nvlist_t *missing; 695 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 696 0) != 0) 697 goto nomem; 698 if (nvlist_add_string(missing, 699 ZPOOL_CONFIG_TYPE, 700 VDEV_TYPE_MISSING) != 0 || 701 nvlist_add_uint64(missing, 702 ZPOOL_CONFIG_ID, c) != 0 || 703 nvlist_add_uint64(missing, 704 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 705 nvlist_free(missing); 706 goto nomem; 707 } 708 child[c] = missing; 709 } 710 } 711 712 /* 713 * Put all of this pool's top-level vdevs into a root vdev. 714 */ 715 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 716 goto nomem; 717 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 718 VDEV_TYPE_ROOT) != 0 || 719 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 720 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 721 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 722 child, children) != 0) { 723 nvlist_free(nvroot); 724 goto nomem; 725 } 726 727 for (c = 0; c < children; c++) 728 nvlist_free(child[c]); 729 free(child); 730 children = 0; 731 child = NULL; 732 733 /* 734 * Go through and fix up any paths and/or devids based on our 735 * known list of vdev GUID -> path mappings. 736 */ 737 if (fix_paths(nvroot, pl->names) != 0) { 738 nvlist_free(nvroot); 739 goto nomem; 740 } 741 742 /* 743 * Add the root vdev to this pool's configuration. 744 */ 745 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 746 nvroot) != 0) { 747 nvlist_free(nvroot); 748 goto nomem; 749 } 750 nvlist_free(nvroot); 751 752 /* 753 * zdb uses this path to report on active pools that were 754 * imported or created using -R. 755 */ 756 if (active_ok) 757 goto add_pool; 758 759 /* 760 * Determine if this pool is currently active, in which case we 761 * can't actually import it. 762 */ 763 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 764 &name) == 0); 765 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 766 &guid) == 0); 767 768 if (pool_active(hdl, name, guid, &isactive) != 0) 769 goto error; 770 771 if (isactive) { 772 nvlist_free(config); 773 config = NULL; 774 continue; 775 } 776 777 if ((nvl = refresh_config(hdl, config)) == NULL) { 778 nvlist_free(config); 779 config = NULL; 780 continue; 781 } 782 783 nvlist_free(config); 784 config = nvl; 785 786 /* 787 * Go through and update the paths for spares, now that we have 788 * them. 789 */ 790 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 791 &nvroot) == 0); 792 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 793 &spares, &nspares) == 0) { 794 for (i = 0; i < nspares; i++) { 795 if (fix_paths(spares[i], pl->names) != 0) 796 goto nomem; 797 } 798 } 799 800 /* 801 * Update the paths for l2cache devices. 802 */ 803 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 804 &l2cache, &nl2cache) == 0) { 805 for (i = 0; i < nl2cache; i++) { 806 if (fix_paths(l2cache[i], pl->names) != 0) 807 goto nomem; 808 } 809 } 810 811 /* 812 * Restore the original information read from the actual label. 813 */ 814 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 815 DATA_TYPE_UINT64); 816 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 817 DATA_TYPE_STRING); 818 if (hostid != 0) { 819 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 820 hostid) == 0); 821 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 822 hostname) == 0); 823 } 824 825 add_pool: 826 /* 827 * Add this pool to the list of configs. 828 */ 829 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 830 &name) == 0); 831 if (nvlist_add_nvlist(ret, name, config) != 0) 832 goto nomem; 833 834 found_one = B_TRUE; 835 nvlist_free(config); 836 config = NULL; 837 } 838 839 if (!found_one) { 840 nvlist_free(ret); 841 ret = NULL; 842 } 843 844 return (ret); 845 846 nomem: 847 (void) no_memory(hdl); 848 error: 849 nvlist_free(config); 850 nvlist_free(ret); 851 for (c = 0; c < children; c++) 852 nvlist_free(child[c]); 853 free(child); 854 855 return (NULL); 856 } 857 858 /* 859 * Return the offset of the given label. 860 */ 861 static uint64_t 862 label_offset(uint64_t size, int l) 863 { 864 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 865 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 866 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 867 } 868 869 /* 870 * Given a file descriptor, read the label information and return an nvlist 871 * describing the configuration, if there is one. 872 */ 873 int 874 zpool_read_label(int fd, nvlist_t **config) 875 { 876 struct stat64 statbuf; 877 int l; 878 vdev_label_t *label; 879 uint64_t state, txg, size; 880 881 *config = NULL; 882 883 if (fstat64(fd, &statbuf) == -1) 884 return (0); 885 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 886 887 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 888 return (-1); 889 890 for (l = 0; l < VDEV_LABELS; l++) { 891 if (pread64(fd, label, sizeof (vdev_label_t), 892 label_offset(size, l)) != sizeof (vdev_label_t)) 893 continue; 894 895 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 896 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 897 continue; 898 899 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 900 &state) != 0 || state > POOL_STATE_L2CACHE) { 901 nvlist_free(*config); 902 continue; 903 } 904 905 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 906 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 907 &txg) != 0 || txg == 0)) { 908 nvlist_free(*config); 909 continue; 910 } 911 912 free(label); 913 return (0); 914 } 915 916 free(label); 917 *config = NULL; 918 return (0); 919 } 920 921 typedef struct rdsk_node { 922 char *rn_name; 923 int rn_dfd; 924 libzfs_handle_t *rn_hdl; 925 nvlist_t *rn_config; 926 avl_tree_t *rn_avl; 927 avl_node_t rn_node; 928 boolean_t rn_nozpool; 929 } rdsk_node_t; 930 931 static int 932 slice_cache_compare(const void *arg1, const void *arg2) 933 { 934 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 935 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 936 char *nm1slice, *nm2slice; 937 int rv; 938 939 /* 940 * slices zero and two are the most likely to provide results, 941 * so put those first 942 */ 943 nm1slice = strstr(nm1, "s0"); 944 nm2slice = strstr(nm2, "s0"); 945 if (nm1slice && !nm2slice) { 946 return (-1); 947 } 948 if (!nm1slice && nm2slice) { 949 return (1); 950 } 951 nm1slice = strstr(nm1, "s2"); 952 nm2slice = strstr(nm2, "s2"); 953 if (nm1slice && !nm2slice) { 954 return (-1); 955 } 956 if (!nm1slice && nm2slice) { 957 return (1); 958 } 959 960 rv = strcmp(nm1, nm2); 961 if (rv == 0) 962 return (0); 963 return (rv > 0 ? 1 : -1); 964 } 965 966 static void 967 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, 968 diskaddr_t size, uint_t blksz) 969 { 970 rdsk_node_t tmpnode; 971 rdsk_node_t *node; 972 char sname[MAXNAMELEN]; 973 974 tmpnode.rn_name = &sname[0]; 975 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", 976 diskname, partno); 977 /* 978 * protect against division by zero for disk labels that 979 * contain a bogus sector size 980 */ 981 if (blksz == 0) 982 blksz = DEV_BSIZE; 983 /* too small to contain a zpool? */ 984 if ((size < (SPA_MINDEVSIZE / blksz)) && 985 (node = avl_find(r, &tmpnode, NULL))) 986 node->rn_nozpool = B_TRUE; 987 } 988 989 static void 990 nozpool_all_slices(avl_tree_t *r, const char *sname) 991 { 992 char diskname[MAXNAMELEN]; 993 char *ptr; 994 int i; 995 996 (void) strncpy(diskname, sname, MAXNAMELEN); 997 if (((ptr = strrchr(diskname, 's')) == NULL) && 998 ((ptr = strrchr(diskname, 'p')) == NULL)) 999 return; 1000 ptr[0] = 's'; 1001 ptr[1] = '\0'; 1002 for (i = 0; i < NDKMAP; i++) 1003 check_one_slice(r, diskname, i, 0, 1); 1004 ptr[0] = 'p'; 1005 for (i = 0; i <= FD_NUMPART; i++) 1006 check_one_slice(r, diskname, i, 0, 1); 1007 } 1008 1009 static void 1010 check_slices(avl_tree_t *r, int fd, const char *sname) 1011 { 1012 struct extvtoc vtoc; 1013 struct dk_gpt *gpt; 1014 char diskname[MAXNAMELEN]; 1015 char *ptr; 1016 int i; 1017 1018 (void) strncpy(diskname, sname, MAXNAMELEN); 1019 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) 1020 return; 1021 ptr[1] = '\0'; 1022 1023 if (read_extvtoc(fd, &vtoc) >= 0) { 1024 for (i = 0; i < NDKMAP; i++) 1025 check_one_slice(r, diskname, i, 1026 vtoc.v_part[i].p_size, vtoc.v_sectorsz); 1027 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 1028 /* 1029 * on x86 we'll still have leftover links that point 1030 * to slices s[9-15], so use NDKMAP instead 1031 */ 1032 for (i = 0; i < NDKMAP; i++) 1033 check_one_slice(r, diskname, i, 1034 gpt->efi_parts[i].p_size, gpt->efi_lbasize); 1035 /* nodes p[1-4] are never used with EFI labels */ 1036 ptr[0] = 'p'; 1037 for (i = 1; i <= FD_NUMPART; i++) 1038 check_one_slice(r, diskname, i, 0, 1); 1039 efi_free(gpt); 1040 } 1041 } 1042 1043 static void 1044 zpool_open_func(void *arg) 1045 { 1046 rdsk_node_t *rn = arg; 1047 struct stat64 statbuf; 1048 nvlist_t *config; 1049 int fd; 1050 1051 if (rn->rn_nozpool) 1052 return; 1053 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { 1054 /* symlink to a device that's no longer there */ 1055 if (errno == ENOENT) 1056 nozpool_all_slices(rn->rn_avl, rn->rn_name); 1057 return; 1058 } 1059 /* 1060 * Ignore failed stats. We only want regular 1061 * files, character devs and block devs. 1062 */ 1063 if (fstat64(fd, &statbuf) != 0 || 1064 (!S_ISREG(statbuf.st_mode) && 1065 !S_ISCHR(statbuf.st_mode) && 1066 !S_ISBLK(statbuf.st_mode))) { 1067 (void) close(fd); 1068 return; 1069 } 1070 /* this file is too small to hold a zpool */ 1071 if (S_ISREG(statbuf.st_mode) && 1072 statbuf.st_size < SPA_MINDEVSIZE) { 1073 (void) close(fd); 1074 return; 1075 } else if (!S_ISREG(statbuf.st_mode)) { 1076 /* 1077 * Try to read the disk label first so we don't have to 1078 * open a bunch of minor nodes that can't have a zpool. 1079 */ 1080 check_slices(rn->rn_avl, fd, rn->rn_name); 1081 } 1082 1083 if ((zpool_read_label(fd, &config)) != 0) { 1084 (void) close(fd); 1085 (void) no_memory(rn->rn_hdl); 1086 return; 1087 } 1088 (void) close(fd); 1089 1090 1091 rn->rn_config = config; 1092 if (config != NULL) { 1093 assert(rn->rn_nozpool == B_FALSE); 1094 } 1095 } 1096 1097 /* 1098 * Given a file descriptor, clear (zero) the label information. This function 1099 * is currently only used in the appliance stack as part of the ZFS sysevent 1100 * module. 1101 */ 1102 int 1103 zpool_clear_label(int fd) 1104 { 1105 struct stat64 statbuf; 1106 int l; 1107 vdev_label_t *label; 1108 uint64_t size; 1109 1110 if (fstat64(fd, &statbuf) == -1) 1111 return (0); 1112 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1113 1114 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1115 return (-1); 1116 1117 for (l = 0; l < VDEV_LABELS; l++) { 1118 if (pwrite64(fd, label, sizeof (vdev_label_t), 1119 label_offset(size, l)) != sizeof (vdev_label_t)) 1120 return (-1); 1121 } 1122 1123 free(label); 1124 return (0); 1125 } 1126 1127 /* 1128 * Given a list of directories to search, find all pools stored on disk. This 1129 * includes partial pools which are not available to import. If no args are 1130 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1131 * poolname or guid (but not both) are provided by the caller when trying 1132 * to import a specific pool. 1133 */ 1134 static nvlist_t * 1135 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1136 { 1137 int i, dirs = iarg->paths; 1138 DIR *dirp = NULL; 1139 struct dirent64 *dp; 1140 char path[MAXPATHLEN]; 1141 char *end, **dir = iarg->path; 1142 size_t pathleft; 1143 nvlist_t *ret = NULL; 1144 static char *default_dir = "/dev/dsk"; 1145 pool_list_t pools = { 0 }; 1146 pool_entry_t *pe, *penext; 1147 vdev_entry_t *ve, *venext; 1148 config_entry_t *ce, *cenext; 1149 name_entry_t *ne, *nenext; 1150 avl_tree_t slice_cache; 1151 rdsk_node_t *slice; 1152 void *cookie; 1153 1154 if (dirs == 0) { 1155 dirs = 1; 1156 dir = &default_dir; 1157 } 1158 1159 /* 1160 * Go through and read the label configuration information from every 1161 * possible device, organizing the information according to pool GUID 1162 * and toplevel GUID. 1163 */ 1164 for (i = 0; i < dirs; i++) { 1165 tpool_t *t; 1166 char *rdsk; 1167 int dfd; 1168 1169 /* use realpath to normalize the path */ 1170 if (realpath(dir[i], path) == 0) { 1171 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1172 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1173 goto error; 1174 } 1175 end = &path[strlen(path)]; 1176 *end++ = '/'; 1177 *end = 0; 1178 pathleft = &path[sizeof (path)] - end; 1179 1180 /* 1181 * Using raw devices instead of block devices when we're 1182 * reading the labels skips a bunch of slow operations during 1183 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1184 */ 1185 if (strcmp(path, "/dev/dsk/") == 0) 1186 rdsk = "/dev/rdsk/"; 1187 else 1188 rdsk = path; 1189 1190 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1191 (dirp = fdopendir(dfd)) == NULL) { 1192 zfs_error_aux(hdl, strerror(errno)); 1193 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1194 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1195 rdsk); 1196 goto error; 1197 } 1198 1199 avl_create(&slice_cache, slice_cache_compare, 1200 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); 1201 /* 1202 * This is not MT-safe, but we have no MT consumers of libzfs 1203 */ 1204 while ((dp = readdir64(dirp)) != NULL) { 1205 const char *name = dp->d_name; 1206 if (name[0] == '.' && 1207 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1208 continue; 1209 1210 slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); 1211 slice->rn_name = zfs_strdup(hdl, name); 1212 slice->rn_avl = &slice_cache; 1213 slice->rn_dfd = dfd; 1214 slice->rn_hdl = hdl; 1215 slice->rn_nozpool = B_FALSE; 1216 avl_add(&slice_cache, slice); 1217 } 1218 /* 1219 * create a thread pool to do all of this in parallel; 1220 * rn_nozpool is not protected, so this is racy in that 1221 * multiple tasks could decide that the same slice can 1222 * not hold a zpool, which is benign. Also choose 1223 * double the number of processors; we hold a lot of 1224 * locks in the kernel, so going beyond this doesn't 1225 * buy us much. 1226 */ 1227 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1228 0, NULL); 1229 for (slice = avl_first(&slice_cache); slice; 1230 (slice = avl_walk(&slice_cache, slice, 1231 AVL_AFTER))) 1232 (void) tpool_dispatch(t, zpool_open_func, slice); 1233 tpool_wait(t); 1234 tpool_destroy(t); 1235 1236 cookie = NULL; 1237 while ((slice = avl_destroy_nodes(&slice_cache, 1238 &cookie)) != NULL) { 1239 if (slice->rn_config != NULL) { 1240 nvlist_t *config = slice->rn_config; 1241 boolean_t matched = B_TRUE; 1242 1243 if (iarg->poolname != NULL) { 1244 char *pname; 1245 1246 matched = nvlist_lookup_string(config, 1247 ZPOOL_CONFIG_POOL_NAME, 1248 &pname) == 0 && 1249 strcmp(iarg->poolname, pname) == 0; 1250 } else if (iarg->guid != 0) { 1251 uint64_t this_guid; 1252 1253 matched = nvlist_lookup_uint64(config, 1254 ZPOOL_CONFIG_POOL_GUID, 1255 &this_guid) == 0 && 1256 iarg->guid == this_guid; 1257 } 1258 if (!matched) { 1259 nvlist_free(config); 1260 config = NULL; 1261 continue; 1262 } 1263 /* use the non-raw path for the config */ 1264 (void) strlcpy(end, slice->rn_name, pathleft); 1265 if (add_config(hdl, &pools, path, config) != 0) 1266 goto error; 1267 } 1268 free(slice->rn_name); 1269 free(slice); 1270 } 1271 avl_destroy(&slice_cache); 1272 1273 (void) closedir(dirp); 1274 dirp = NULL; 1275 } 1276 1277 ret = get_configs(hdl, &pools, iarg->can_be_active); 1278 1279 error: 1280 for (pe = pools.pools; pe != NULL; pe = penext) { 1281 penext = pe->pe_next; 1282 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1283 venext = ve->ve_next; 1284 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1285 cenext = ce->ce_next; 1286 if (ce->ce_config) 1287 nvlist_free(ce->ce_config); 1288 free(ce); 1289 } 1290 free(ve); 1291 } 1292 free(pe); 1293 } 1294 1295 for (ne = pools.names; ne != NULL; ne = nenext) { 1296 nenext = ne->ne_next; 1297 if (ne->ne_name) 1298 free(ne->ne_name); 1299 free(ne); 1300 } 1301 1302 if (dirp) 1303 (void) closedir(dirp); 1304 1305 return (ret); 1306 } 1307 1308 nvlist_t * 1309 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1310 { 1311 importargs_t iarg = { 0 }; 1312 1313 iarg.paths = argc; 1314 iarg.path = argv; 1315 1316 return (zpool_find_import_impl(hdl, &iarg)); 1317 } 1318 1319 /* 1320 * Given a cache file, return the contents as a list of importable pools. 1321 * poolname or guid (but not both) are provided by the caller when trying 1322 * to import a specific pool. 1323 */ 1324 nvlist_t * 1325 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1326 char *poolname, uint64_t guid) 1327 { 1328 char *buf; 1329 int fd; 1330 struct stat64 statbuf; 1331 nvlist_t *raw, *src, *dst; 1332 nvlist_t *pools; 1333 nvpair_t *elem; 1334 char *name; 1335 uint64_t this_guid; 1336 boolean_t active; 1337 1338 verify(poolname == NULL || guid == 0); 1339 1340 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1341 zfs_error_aux(hdl, "%s", strerror(errno)); 1342 (void) zfs_error(hdl, EZFS_BADCACHE, 1343 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1344 return (NULL); 1345 } 1346 1347 if (fstat64(fd, &statbuf) != 0) { 1348 zfs_error_aux(hdl, "%s", strerror(errno)); 1349 (void) close(fd); 1350 (void) zfs_error(hdl, EZFS_BADCACHE, 1351 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1352 return (NULL); 1353 } 1354 1355 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1356 (void) close(fd); 1357 return (NULL); 1358 } 1359 1360 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1361 (void) close(fd); 1362 free(buf); 1363 (void) zfs_error(hdl, EZFS_BADCACHE, 1364 dgettext(TEXT_DOMAIN, 1365 "failed to read cache file contents")); 1366 return (NULL); 1367 } 1368 1369 (void) close(fd); 1370 1371 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1372 free(buf); 1373 (void) zfs_error(hdl, EZFS_BADCACHE, 1374 dgettext(TEXT_DOMAIN, 1375 "invalid or corrupt cache file contents")); 1376 return (NULL); 1377 } 1378 1379 free(buf); 1380 1381 /* 1382 * Go through and get the current state of the pools and refresh their 1383 * state. 1384 */ 1385 if (nvlist_alloc(&pools, 0, 0) != 0) { 1386 (void) no_memory(hdl); 1387 nvlist_free(raw); 1388 return (NULL); 1389 } 1390 1391 elem = NULL; 1392 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1393 verify(nvpair_value_nvlist(elem, &src) == 0); 1394 1395 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME, 1396 &name) == 0); 1397 if (poolname != NULL && strcmp(poolname, name) != 0) 1398 continue; 1399 1400 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1401 &this_guid) == 0); 1402 if (guid != 0) { 1403 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1404 &this_guid) == 0); 1405 if (guid != this_guid) 1406 continue; 1407 } 1408 1409 if (pool_active(hdl, name, this_guid, &active) != 0) { 1410 nvlist_free(raw); 1411 nvlist_free(pools); 1412 return (NULL); 1413 } 1414 1415 if (active) 1416 continue; 1417 1418 if ((dst = refresh_config(hdl, src)) == NULL) { 1419 nvlist_free(raw); 1420 nvlist_free(pools); 1421 return (NULL); 1422 } 1423 1424 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1425 (void) no_memory(hdl); 1426 nvlist_free(dst); 1427 nvlist_free(raw); 1428 nvlist_free(pools); 1429 return (NULL); 1430 } 1431 nvlist_free(dst); 1432 } 1433 1434 nvlist_free(raw); 1435 return (pools); 1436 } 1437 1438 static int 1439 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1440 { 1441 importargs_t *import = data; 1442 int found = 0; 1443 1444 if (import->poolname != NULL) { 1445 char *pool_name; 1446 1447 verify(nvlist_lookup_string(zhp->zpool_config, 1448 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1449 if (strcmp(pool_name, import->poolname) == 0) 1450 found = 1; 1451 } else { 1452 uint64_t pool_guid; 1453 1454 verify(nvlist_lookup_uint64(zhp->zpool_config, 1455 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1456 if (pool_guid == import->guid) 1457 found = 1; 1458 } 1459 1460 zpool_close(zhp); 1461 return (found); 1462 } 1463 1464 nvlist_t * 1465 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1466 { 1467 verify(import->poolname == NULL || import->guid == 0); 1468 1469 if (import->unique) 1470 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1471 1472 if (import->cachefile != NULL) 1473 return (zpool_find_import_cached(hdl, import->cachefile, 1474 import->poolname, import->guid)); 1475 1476 return (zpool_find_import_impl(hdl, import)); 1477 } 1478 1479 boolean_t 1480 find_guid(nvlist_t *nv, uint64_t guid) 1481 { 1482 uint64_t tmp; 1483 nvlist_t **child; 1484 uint_t c, children; 1485 1486 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1487 if (tmp == guid) 1488 return (B_TRUE); 1489 1490 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1491 &child, &children) == 0) { 1492 for (c = 0; c < children; c++) 1493 if (find_guid(child[c], guid)) 1494 return (B_TRUE); 1495 } 1496 1497 return (B_FALSE); 1498 } 1499 1500 typedef struct aux_cbdata { 1501 const char *cb_type; 1502 uint64_t cb_guid; 1503 zpool_handle_t *cb_zhp; 1504 } aux_cbdata_t; 1505 1506 static int 1507 find_aux(zpool_handle_t *zhp, void *data) 1508 { 1509 aux_cbdata_t *cbp = data; 1510 nvlist_t **list; 1511 uint_t i, count; 1512 uint64_t guid; 1513 nvlist_t *nvroot; 1514 1515 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1516 &nvroot) == 0); 1517 1518 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1519 &list, &count) == 0) { 1520 for (i = 0; i < count; i++) { 1521 verify(nvlist_lookup_uint64(list[i], 1522 ZPOOL_CONFIG_GUID, &guid) == 0); 1523 if (guid == cbp->cb_guid) { 1524 cbp->cb_zhp = zhp; 1525 return (1); 1526 } 1527 } 1528 } 1529 1530 zpool_close(zhp); 1531 return (0); 1532 } 1533 1534 /* 1535 * Determines if the pool is in use. If so, it returns true and the state of 1536 * the pool as well as the name of the pool. Both strings are allocated and 1537 * must be freed by the caller. 1538 */ 1539 int 1540 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1541 boolean_t *inuse) 1542 { 1543 nvlist_t *config; 1544 char *name; 1545 boolean_t ret; 1546 uint64_t guid, vdev_guid; 1547 zpool_handle_t *zhp; 1548 nvlist_t *pool_config; 1549 uint64_t stateval, isspare; 1550 aux_cbdata_t cb = { 0 }; 1551 boolean_t isactive; 1552 1553 *inuse = B_FALSE; 1554 1555 if (zpool_read_label(fd, &config) != 0) { 1556 (void) no_memory(hdl); 1557 return (-1); 1558 } 1559 1560 if (config == NULL) 1561 return (0); 1562 1563 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1564 &stateval) == 0); 1565 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1566 &vdev_guid) == 0); 1567 1568 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1569 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1570 &name) == 0); 1571 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1572 &guid) == 0); 1573 } 1574 1575 switch (stateval) { 1576 case POOL_STATE_EXPORTED: 1577 /* 1578 * A pool with an exported state may in fact be imported 1579 * read-only, so check the in-core state to see if it's 1580 * active and imported read-only. If it is, set 1581 * its state to active. 1582 */ 1583 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1584 (zhp = zpool_open_canfail(hdl, name)) != NULL && 1585 zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1586 stateval = POOL_STATE_ACTIVE; 1587 1588 ret = B_TRUE; 1589 break; 1590 1591 case POOL_STATE_ACTIVE: 1592 /* 1593 * For an active pool, we have to determine if it's really part 1594 * of a currently active pool (in which case the pool will exist 1595 * and the guid will be the same), or whether it's part of an 1596 * active pool that was disconnected without being explicitly 1597 * exported. 1598 */ 1599 if (pool_active(hdl, name, guid, &isactive) != 0) { 1600 nvlist_free(config); 1601 return (-1); 1602 } 1603 1604 if (isactive) { 1605 /* 1606 * Because the device may have been removed while 1607 * offlined, we only report it as active if the vdev is 1608 * still present in the config. Otherwise, pretend like 1609 * it's not in use. 1610 */ 1611 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1612 (pool_config = zpool_get_config(zhp, NULL)) 1613 != NULL) { 1614 nvlist_t *nvroot; 1615 1616 verify(nvlist_lookup_nvlist(pool_config, 1617 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1618 ret = find_guid(nvroot, vdev_guid); 1619 } else { 1620 ret = B_FALSE; 1621 } 1622 1623 /* 1624 * If this is an active spare within another pool, we 1625 * treat it like an unused hot spare. This allows the 1626 * user to create a pool with a hot spare that currently 1627 * in use within another pool. Since we return B_TRUE, 1628 * libdiskmgt will continue to prevent generic consumers 1629 * from using the device. 1630 */ 1631 if (ret && nvlist_lookup_uint64(config, 1632 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1633 stateval = POOL_STATE_SPARE; 1634 1635 if (zhp != NULL) 1636 zpool_close(zhp); 1637 } else { 1638 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1639 ret = B_TRUE; 1640 } 1641 break; 1642 1643 case POOL_STATE_SPARE: 1644 /* 1645 * For a hot spare, it can be either definitively in use, or 1646 * potentially active. To determine if it's in use, we iterate 1647 * over all pools in the system and search for one with a spare 1648 * with a matching guid. 1649 * 1650 * Due to the shared nature of spares, we don't actually report 1651 * the potentially active case as in use. This means the user 1652 * can freely create pools on the hot spares of exported pools, 1653 * but to do otherwise makes the resulting code complicated, and 1654 * we end up having to deal with this case anyway. 1655 */ 1656 cb.cb_zhp = NULL; 1657 cb.cb_guid = vdev_guid; 1658 cb.cb_type = ZPOOL_CONFIG_SPARES; 1659 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1660 name = (char *)zpool_get_name(cb.cb_zhp); 1661 ret = TRUE; 1662 } else { 1663 ret = FALSE; 1664 } 1665 break; 1666 1667 case POOL_STATE_L2CACHE: 1668 1669 /* 1670 * Check if any pool is currently using this l2cache device. 1671 */ 1672 cb.cb_zhp = NULL; 1673 cb.cb_guid = vdev_guid; 1674 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1675 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1676 name = (char *)zpool_get_name(cb.cb_zhp); 1677 ret = TRUE; 1678 } else { 1679 ret = FALSE; 1680 } 1681 break; 1682 1683 default: 1684 ret = B_FALSE; 1685 } 1686 1687 1688 if (ret) { 1689 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1690 if (cb.cb_zhp) 1691 zpool_close(cb.cb_zhp); 1692 nvlist_free(config); 1693 return (-1); 1694 } 1695 *state = (pool_state_t)stateval; 1696 } 1697 1698 if (cb.cb_zhp) 1699 zpool_close(cb.cb_zhp); 1700 1701 nvlist_free(config); 1702 *inuse = ret; 1703 return (0); 1704 } 1705