xref: /titanic_51/usr/src/lib/libproc/common/Psymtab.c (revision 9e26e16f703d2dfcc0689de957c21efcb72473e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <assert.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <stddef.h>
33 #include <unistd.h>
34 #include <ctype.h>
35 #include <fcntl.h>
36 #include <string.h>
37 #include <strings.h>
38 #include <memory.h>
39 #include <errno.h>
40 #include <dirent.h>
41 #include <signal.h>
42 #include <limits.h>
43 #include <libgen.h>
44 #include <zone.h>
45 #include <sys/types.h>
46 #include <sys/stat.h>
47 #include <sys/systeminfo.h>
48 #include <sys/sysmacros.h>
49 
50 #include "libproc.h"
51 #include "Pcontrol.h"
52 #include "Putil.h"
53 
54 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
55 static map_info_t *exec_map(struct ps_prochandle *);
56 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
57 static map_info_t *object_name_to_map(struct ps_prochandle *,
58 	Lmid_t, const char *);
59 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
60 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
61     uintptr_t);
62 #ifdef _LP64
63 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
64     uintptr_t);
65 #endif
66 
67 #define	DATA_TYPES	\
68 	((1 << STT_OBJECT) | (1 << STT_FUNC) | \
69 	(1 << STT_COMMON) | (1 << STT_TLS))
70 #define	IS_DATA_TYPE(tp)	(((1 << (tp)) & DATA_TYPES) != 0)
71 
72 #define	MA_RWX	(MA_READ | MA_WRITE | MA_EXEC)
73 
74 typedef enum {
75 	PRO_NATURAL,
76 	PRO_BYADDR,
77 	PRO_BYNAME
78 } pr_order_t;
79 
80 static int
81 addr_cmp(const void *aa, const void *bb)
82 {
83 	uintptr_t a = *((uintptr_t *)aa);
84 	uintptr_t b = *((uintptr_t *)bb);
85 
86 	if (a > b)
87 		return (1);
88 	if (a < b)
89 		return (-1);
90 	return (0);
91 }
92 
93 /*
94  * This function creates a list of addresses for a load object's sections.
95  * The list is in ascending address order and alternates start address
96  * then end address for each section we're interested in. The function
97  * returns a pointer to the list, which must be freed by the caller.
98  */
99 static uintptr_t *
100 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
101 {
102 	uintptr_t a, addr, *addrs, last = 0;
103 	uint_t i, naddrs = 0, unordered = 0;
104 
105 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
106 		Elf32_Ehdr ehdr;
107 		Elf32_Phdr phdr;
108 		uint_t phnum;
109 
110 		if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
111 			return (NULL);
112 
113 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
114 		a = ehdr_start + ehdr.e_phoff;
115 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
116 			if (Pread(P, &phdr, sizeof (phdr), a) !=
117 			    sizeof (phdr)) {
118 				free(addrs);
119 				return (NULL);
120 			}
121 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
122 				continue;
123 
124 			addr = phdr.p_vaddr;
125 			if (ehdr.e_type == ET_DYN)
126 				addr += ehdr_start;
127 			if (last > addr)
128 				unordered = 1;
129 			addrs[naddrs++] = addr;
130 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
131 		}
132 #ifdef _LP64
133 	} else {
134 		Elf64_Ehdr ehdr;
135 		Elf64_Phdr phdr;
136 		uint_t phnum;
137 
138 		if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
139 			return (NULL);
140 
141 		addrs = malloc(sizeof (uintptr_t) * phnum * 2);
142 		a = ehdr_start + ehdr.e_phoff;
143 		for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
144 			if (Pread(P, &phdr, sizeof (phdr), a) !=
145 			    sizeof (phdr)) {
146 				free(addrs);
147 				return (NULL);
148 			}
149 			if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
150 				continue;
151 
152 			addr = phdr.p_vaddr;
153 			if (ehdr.e_type == ET_DYN)
154 				addr += ehdr_start;
155 			if (last > addr)
156 				unordered = 1;
157 			addrs[naddrs++] = addr;
158 			addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
159 		}
160 #endif
161 	}
162 
163 	if (unordered)
164 		qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
165 
166 	*n = naddrs;
167 	return (addrs);
168 }
169 
170 /*
171  * Allocation function for a new file_info_t
172  */
173 static file_info_t *
174 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
175 {
176 	file_info_t *fptr;
177 	map_info_t *mp;
178 	uintptr_t addr;
179 	uint_t i, j;
180 
181 	if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
182 		return (NULL);
183 
184 	list_link(fptr, &P->file_head);
185 	(void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
186 	mptr->map_file = fptr;
187 	fptr->file_ref = 1;
188 	fptr->file_fd = -1;
189 	P->num_files++;
190 
191 	/*
192 	 * To figure out which map_info_t instances correspond to the mappings
193 	 * for this load object we try to obtain the start and end address
194 	 * for each section of our in-memory ELF image. If successful, we
195 	 * walk down the list of addresses and the list of map_info_t
196 	 * instances in lock step to correctly find the mappings that
197 	 * correspond to this load object.
198 	 */
199 	if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
200 	    &fptr->file_nsaddrs)) == NULL)
201 		return (fptr);
202 
203 	i = j = 0;
204 	mp = P->mappings;
205 	while (j < P->map_count && i < fptr->file_nsaddrs) {
206 		addr = fptr->file_saddrs[i];
207 		if (addr >= mp->map_pmap.pr_vaddr &&
208 		    addr < mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size &&
209 		    mp->map_file == NULL) {
210 			mp->map_file = fptr;
211 			fptr->file_ref++;
212 		}
213 
214 		if (addr < mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size) {
215 			i++;
216 		} else {
217 			mp++;
218 			j++;
219 		}
220 	}
221 
222 	return (fptr);
223 }
224 
225 /*
226  * Deallocation function for a file_info_t
227  */
228 static void
229 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
230 {
231 	if (--fptr->file_ref == 0) {
232 		list_unlink(fptr);
233 		if (fptr->file_symtab.sym_elf) {
234 			(void) elf_end(fptr->file_symtab.sym_elf);
235 			free(fptr->file_symtab.sym_elfmem);
236 		}
237 		if (fptr->file_symtab.sym_byname)
238 			free(fptr->file_symtab.sym_byname);
239 		if (fptr->file_symtab.sym_byaddr)
240 			free(fptr->file_symtab.sym_byaddr);
241 
242 		if (fptr->file_dynsym.sym_elf) {
243 			(void) elf_end(fptr->file_dynsym.sym_elf);
244 			free(fptr->file_dynsym.sym_elfmem);
245 		}
246 		if (fptr->file_dynsym.sym_byname)
247 			free(fptr->file_dynsym.sym_byname);
248 		if (fptr->file_dynsym.sym_byaddr)
249 			free(fptr->file_dynsym.sym_byaddr);
250 
251 		if (fptr->file_lo)
252 			free(fptr->file_lo);
253 		if (fptr->file_lname)
254 			free(fptr->file_lname);
255 		if (fptr->file_elf)
256 			(void) elf_end(fptr->file_elf);
257 		if (fptr->file_elfmem != NULL)
258 			free(fptr->file_elfmem);
259 		if (fptr->file_fd >= 0)
260 			(void) close(fptr->file_fd);
261 		if (fptr->file_ctfp) {
262 			ctf_close(fptr->file_ctfp);
263 			free(fptr->file_ctf_buf);
264 		}
265 		if (fptr->file_saddrs)
266 			free(fptr->file_saddrs);
267 		free(fptr);
268 		P->num_files--;
269 	}
270 }
271 
272 /*
273  * Deallocation function for a map_info_t
274  */
275 static void
276 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
277 {
278 	file_info_t *fptr;
279 
280 	if ((fptr = mptr->map_file) != NULL) {
281 		if (fptr->file_map == mptr)
282 			fptr->file_map = NULL;
283 		file_info_free(P, fptr);
284 	}
285 	if (P->execname && mptr == P->map_exec) {
286 		free(P->execname);
287 		P->execname = NULL;
288 	}
289 	if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
290 		free(P->auxv);
291 		P->auxv = NULL;
292 		P->nauxv = 0;
293 	}
294 	if (mptr == P->map_exec)
295 		P->map_exec = NULL;
296 	if (mptr == P->map_ldso)
297 		P->map_ldso = NULL;
298 }
299 
300 /*
301  * Call-back function for librtld_db to iterate through all of its shared
302  * libraries.  We use this to get the load object names for the mappings.
303  */
304 static int
305 map_iter(const rd_loadobj_t *lop, void *cd)
306 {
307 	char buf[PATH_MAX];
308 	struct ps_prochandle *P = cd;
309 	map_info_t *mptr;
310 	file_info_t *fptr;
311 
312 	dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
313 
314 	if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
315 		dprintf("map_iter: base address doesn't match any mapping\n");
316 		return (1); /* Base address does not match any mapping */
317 	}
318 
319 	if ((fptr = mptr->map_file) == NULL &&
320 	    (fptr = file_info_new(P, mptr)) == NULL) {
321 		dprintf("map_iter: failed to allocate a new file_info_t\n");
322 		return (1); /* Failed to allocate a new file_info_t */
323 	}
324 
325 	if ((fptr->file_lo == NULL) &&
326 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
327 		dprintf("map_iter: failed to allocate rd_loadobj_t\n");
328 		file_info_free(P, fptr);
329 		return (1); /* Failed to allocate rd_loadobj_t */
330 	}
331 
332 	fptr->file_map = mptr;
333 	*fptr->file_lo = *lop;
334 
335 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
336 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
337 
338 	if (fptr->file_lname) {
339 		free(fptr->file_lname);
340 		fptr->file_lname = NULL;
341 	}
342 
343 	if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
344 		if ((fptr->file_lname = strdup(buf)) != NULL)
345 			fptr->file_lbase = basename(fptr->file_lname);
346 	} else {
347 		dprintf("map_iter: failed to read string at %p\n",
348 		    (void *)lop->rl_nameaddr);
349 	}
350 
351 	dprintf("loaded rd object %s lmid %lx\n",
352 	    fptr->file_lname ? fptr->file_lname : "<NULL>", lop->rl_lmident);
353 	return (1);
354 }
355 
356 static void
357 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
358 {
359 	file_info_t *fptr;
360 
361 	if ((fptr = mptr->map_file) == NULL &&
362 	    (fptr = file_info_new(P, mptr)) == NULL)
363 		return; /* Failed to allocate a new file_info_t */
364 
365 	fptr->file_map = mptr;
366 
367 	if ((fptr->file_lo == NULL) &&
368 	    (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
369 		file_info_free(P, fptr);
370 		return; /* Failed to allocate rd_loadobj_t */
371 	}
372 
373 	(void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
374 	fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
375 	fptr->file_lo->rl_bend =
376 	    mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
377 
378 	fptr->file_lo->rl_plt_base = fptr->file_plt_base;
379 	fptr->file_lo->rl_plt_size = fptr->file_plt_size;
380 
381 	if (fptr->file_lname == NULL &&
382 	    (fptr->file_lname = strdup(lname)) != NULL)
383 		fptr->file_lbase = basename(fptr->file_lname);
384 }
385 
386 static void
387 load_static_maps(struct ps_prochandle *P)
388 {
389 	map_info_t *mptr;
390 
391 	/*
392 	 * Construct the map for the a.out.
393 	 */
394 	if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
395 		map_set(P, mptr, "a.out");
396 
397 	/*
398 	 * If the dynamic linker exists for this process,
399 	 * construct the map for it.
400 	 */
401 	if (Pgetauxval(P, AT_BASE) != -1L &&
402 	    (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
403 		map_set(P, mptr, "ld.so.1");
404 }
405 
406 /*
407  * Go through all the address space mappings, validating or updating
408  * the information already gathered, or gathering new information.
409  *
410  * This function is only called when we suspect that the mappings have changed
411  * because this is the first time we're calling it or because of rtld activity.
412  */
413 void
414 Pupdate_maps(struct ps_prochandle *P)
415 {
416 	char mapfile[PATH_MAX];
417 	int mapfd;
418 	struct stat statb;
419 	prmap_t *Pmap = NULL;
420 	prmap_t *pmap;
421 	ssize_t nmap;
422 	int i;
423 	uint_t oldmapcount;
424 	map_info_t *newmap, *newp;
425 	map_info_t *mptr;
426 
427 	if (P->info_valid || P->state == PS_UNDEAD)
428 		return;
429 
430 	Preadauxvec(P);
431 
432 	(void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map",
433 	    procfs_path, (int)P->pid);
434 	if ((mapfd = open(mapfile, O_RDONLY)) < 0 ||
435 	    fstat(mapfd, &statb) != 0 ||
436 	    statb.st_size < sizeof (prmap_t) ||
437 	    (Pmap = malloc(statb.st_size)) == NULL ||
438 	    (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 ||
439 	    (nmap /= sizeof (prmap_t)) == 0) {
440 		if (Pmap != NULL)
441 			free(Pmap);
442 		if (mapfd >= 0)
443 			(void) close(mapfd);
444 		Preset_maps(P);	/* utter failure; destroy tables */
445 		return;
446 	}
447 	(void) close(mapfd);
448 
449 	if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
450 		return;
451 
452 	/*
453 	 * We try to merge any file information we may have for existing
454 	 * mappings, to avoid having to rebuild the file info.
455 	 */
456 	mptr = P->mappings;
457 	pmap = Pmap;
458 	newp = newmap;
459 	oldmapcount = P->map_count;
460 	for (i = 0; i < nmap; i++, pmap++, newp++) {
461 
462 		if (oldmapcount == 0) {
463 			/*
464 			 * We've exhausted all the old mappings.  Every new
465 			 * mapping should be added.
466 			 */
467 			newp->map_pmap = *pmap;
468 
469 		} else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
470 		    pmap->pr_size == mptr->map_pmap.pr_size &&
471 		    pmap->pr_offset == mptr->map_pmap.pr_offset &&
472 		    (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
473 		    (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
474 		    pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
475 		    pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
476 		    strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
477 
478 			/*
479 			 * This mapping matches exactly.  Copy over the old
480 			 * mapping, taking care to get the latest flags.
481 			 * Make sure the associated file_info_t is updated
482 			 * appropriately.
483 			 */
484 			*newp = *mptr;
485 			if (P->map_exec == mptr)
486 				P->map_exec = newp;
487 			if (P->map_ldso == mptr)
488 				P->map_ldso = newp;
489 			newp->map_pmap.pr_mflags = pmap->pr_mflags;
490 			if (mptr->map_file != NULL &&
491 			    mptr->map_file->file_map == mptr)
492 				mptr->map_file->file_map = newp;
493 			oldmapcount--;
494 			mptr++;
495 
496 		} else if (pmap->pr_vaddr + pmap->pr_size >
497 		    mptr->map_pmap.pr_vaddr) {
498 
499 			/*
500 			 * The old mapping doesn't exist any more, remove it
501 			 * from the list.
502 			 */
503 			map_info_free(P, mptr);
504 			oldmapcount--;
505 			i--;
506 			newp--;
507 			pmap--;
508 			mptr++;
509 
510 		} else {
511 
512 			/*
513 			 * This is a new mapping, add it directly.
514 			 */
515 			newp->map_pmap = *pmap;
516 		}
517 	}
518 
519 	/*
520 	 * Free any old maps
521 	 */
522 	while (oldmapcount) {
523 		map_info_free(P, mptr);
524 		oldmapcount--;
525 		mptr++;
526 	}
527 
528 	free(Pmap);
529 	if (P->mappings != NULL)
530 		free(P->mappings);
531 	P->mappings = newmap;
532 	P->map_count = P->map_alloc = nmap;
533 	P->info_valid = 1;
534 
535 	/*
536 	 * Consult librtld_db to get the load object
537 	 * names for all of the shared libraries.
538 	 */
539 	if (P->rap != NULL)
540 		(void) rd_loadobj_iter(P->rap, map_iter, P);
541 }
542 
543 /*
544  * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
545  * forcibly cache all of the symbol tables associated with all object files.
546  */
547 void
548 Pupdate_syms(struct ps_prochandle *P)
549 {
550 	file_info_t *fptr = list_next(&P->file_head);
551 	int i;
552 
553 	Pupdate_maps(P);
554 
555 	for (i = 0; i < P->num_files; i++, fptr = list_next(fptr)) {
556 		Pbuild_file_symtab(P, fptr);
557 		(void) Pbuild_file_ctf(P, fptr);
558 	}
559 }
560 
561 /*
562  * Return the librtld_db agent handle for the victim process.
563  * The handle will become invalid at the next successful exec() and the
564  * client (caller of proc_rd_agent()) must not use it beyond that point.
565  * If the process is already dead, we've already tried our best to
566  * create the agent during core file initialization.
567  */
568 rd_agent_t *
569 Prd_agent(struct ps_prochandle *P)
570 {
571 	if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
572 		Pupdate_maps(P);
573 		if (P->num_files == 0)
574 			load_static_maps(P);
575 		rd_log(_libproc_debug);
576 		if ((P->rap = rd_new(P)) != NULL)
577 			(void) rd_loadobj_iter(P->rap, map_iter, P);
578 	}
579 	return (P->rap);
580 }
581 
582 /*
583  * Return the prmap_t structure containing 'addr', but only if it
584  * is in the dynamic linker's link map and is the text section.
585  */
586 const prmap_t *
587 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
588 {
589 	map_info_t *mptr;
590 
591 	if (!P->info_valid)
592 		Pupdate_maps(P);
593 
594 	if ((mptr = Paddr2mptr(P, addr)) != NULL) {
595 		file_info_t *fptr = build_map_symtab(P, mptr);
596 		const prmap_t *pmp = &mptr->map_pmap;
597 
598 		if (fptr != NULL && fptr->file_lo != NULL &&
599 		    fptr->file_lo->rl_base >= pmp->pr_vaddr &&
600 		    fptr->file_lo->rl_base < pmp->pr_vaddr + pmp->pr_size)
601 			return (pmp);
602 	}
603 
604 	return (NULL);
605 }
606 
607 /*
608  * Return the prmap_t structure containing 'addr' (no restrictions on
609  * the type of mapping).
610  */
611 const prmap_t *
612 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
613 {
614 	map_info_t *mptr;
615 
616 	if (!P->info_valid)
617 		Pupdate_maps(P);
618 
619 	if ((mptr = Paddr2mptr(P, addr)) != NULL)
620 		return (&mptr->map_pmap);
621 
622 	return (NULL);
623 }
624 
625 /*
626  * Convert a full or partial load object name to the prmap_t for its
627  * corresponding primary text mapping.
628  */
629 const prmap_t *
630 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
631 {
632 	map_info_t *mptr;
633 
634 	if (name == PR_OBJ_EVERY)
635 		return (NULL); /* A reasonable mistake */
636 
637 	if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
638 		return (&mptr->map_pmap);
639 
640 	return (NULL);
641 }
642 
643 const prmap_t *
644 Pname_to_map(struct ps_prochandle *P, const char *name)
645 {
646 	return (Plmid_to_map(P, PR_LMID_EVERY, name));
647 }
648 
649 const rd_loadobj_t *
650 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
651 {
652 	map_info_t *mptr;
653 
654 	if (!P->info_valid)
655 		Pupdate_maps(P);
656 
657 	if ((mptr = Paddr2mptr(P, addr)) == NULL)
658 		return (NULL);
659 
660 	/*
661 	 * By building the symbol table, we implicitly bring the PLT
662 	 * information up to date in the load object.
663 	 */
664 	(void) build_map_symtab(P, mptr);
665 
666 	return (mptr->map_file->file_lo);
667 }
668 
669 const rd_loadobj_t *
670 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
671 {
672 	map_info_t *mptr;
673 
674 	if (name == PR_OBJ_EVERY)
675 		return (NULL);
676 
677 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
678 		return (NULL);
679 
680 	/*
681 	 * By building the symbol table, we implicitly bring the PLT
682 	 * information up to date in the load object.
683 	 */
684 	(void) build_map_symtab(P, mptr);
685 
686 	return (mptr->map_file->file_lo);
687 }
688 
689 const rd_loadobj_t *
690 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
691 {
692 	return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
693 }
694 
695 ctf_file_t *
696 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
697 {
698 	ctf_sect_t ctdata, symtab, strtab;
699 	sym_tbl_t *symp;
700 	int err;
701 
702 	if (fptr->file_ctfp != NULL)
703 		return (fptr->file_ctfp);
704 
705 	Pbuild_file_symtab(P, fptr);
706 
707 	if (fptr->file_ctf_size == 0)
708 		return (NULL);
709 
710 	symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
711 	if (symp->sym_data == NULL)
712 		return (NULL);
713 
714 	/*
715 	 * The buffer may alread be allocated if this is a core file that
716 	 * contained CTF data for this file.
717 	 */
718 	if (fptr->file_ctf_buf == NULL) {
719 		fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
720 		if (fptr->file_ctf_buf == NULL) {
721 			dprintf("failed to allocate ctf buffer\n");
722 			return (NULL);
723 		}
724 
725 		if (pread(fptr->file_fd, fptr->file_ctf_buf,
726 		    fptr->file_ctf_size, fptr->file_ctf_off) !=
727 		    fptr->file_ctf_size) {
728 			free(fptr->file_ctf_buf);
729 			fptr->file_ctf_buf = NULL;
730 			dprintf("failed to read ctf data\n");
731 			return (NULL);
732 		}
733 	}
734 
735 	ctdata.cts_name = ".SUNW_ctf";
736 	ctdata.cts_type = SHT_PROGBITS;
737 	ctdata.cts_flags = 0;
738 	ctdata.cts_data = fptr->file_ctf_buf;
739 	ctdata.cts_size = fptr->file_ctf_size;
740 	ctdata.cts_entsize = 1;
741 	ctdata.cts_offset = 0;
742 
743 	symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
744 	symtab.cts_type = symp->sym_hdr.sh_type;
745 	symtab.cts_flags = symp->sym_hdr.sh_flags;
746 	symtab.cts_data = symp->sym_data->d_buf;
747 	symtab.cts_size = symp->sym_hdr.sh_size;
748 	symtab.cts_entsize = symp->sym_hdr.sh_entsize;
749 	symtab.cts_offset = symp->sym_hdr.sh_offset;
750 
751 	strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
752 	strtab.cts_type = symp->sym_strhdr.sh_type;
753 	strtab.cts_flags = symp->sym_strhdr.sh_flags;
754 	strtab.cts_data = symp->sym_strs;
755 	strtab.cts_size = symp->sym_strhdr.sh_size;
756 	strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
757 	strtab.cts_offset = symp->sym_strhdr.sh_offset;
758 
759 	fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
760 	if (fptr->file_ctfp == NULL) {
761 		free(fptr->file_ctf_buf);
762 		fptr->file_ctf_buf = NULL;
763 		return (NULL);
764 	}
765 
766 	dprintf("loaded %lu bytes of CTF data for %s\n",
767 	    (ulong_t)fptr->file_ctf_size, fptr->file_pname);
768 
769 	return (fptr->file_ctfp);
770 }
771 
772 ctf_file_t *
773 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
774 {
775 	map_info_t *mptr;
776 	file_info_t *fptr;
777 
778 	if (!P->info_valid)
779 		Pupdate_maps(P);
780 
781 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||
782 	    (fptr = mptr->map_file) == NULL)
783 		return (NULL);
784 
785 	return (Pbuild_file_ctf(P, fptr));
786 }
787 
788 ctf_file_t *
789 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
790 {
791 	map_info_t *mptr;
792 	file_info_t *fptr;
793 
794 	if (name == PR_OBJ_EVERY)
795 		return (NULL);
796 
797 	if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
798 	    (fptr = mptr->map_file) == NULL)
799 		return (NULL);
800 
801 	return (Pbuild_file_ctf(P, fptr));
802 }
803 
804 ctf_file_t *
805 Pname_to_ctf(struct ps_prochandle *P, const char *name)
806 {
807 	return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
808 }
809 
810 /*
811  * If we're not a core file, re-read the /proc/<pid>/auxv file and store
812  * its contents in P->auxv.  In the case of a core file, we either
813  * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an
814  * auxv because the note was missing.
815  */
816 void
817 Preadauxvec(struct ps_prochandle *P)
818 {
819 	char auxfile[64];
820 	struct stat statb;
821 	ssize_t naux;
822 	int fd;
823 
824 	if (P->state == PS_DEAD)
825 		return; /* Already read during Pgrab_core() */
826 	if (P->state == PS_IDLE)
827 		return; /* No aux vec for Pgrab_file() */
828 
829 	if (P->auxv != NULL) {
830 		free(P->auxv);
831 		P->auxv = NULL;
832 		P->nauxv = 0;
833 	}
834 
835 	(void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv",
836 	    procfs_path, (int)P->pid);
837 	if ((fd = open(auxfile, O_RDONLY)) < 0)
838 		return;
839 
840 	if (fstat(fd, &statb) == 0 &&
841 	    statb.st_size >= sizeof (auxv_t) &&
842 	    (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) {
843 		if ((naux = read(fd, P->auxv, statb.st_size)) < 0 ||
844 		    (naux /= sizeof (auxv_t)) < 1) {
845 			free(P->auxv);
846 			P->auxv = NULL;
847 		} else {
848 			P->auxv[naux].a_type = AT_NULL;
849 			P->auxv[naux].a_un.a_val = 0L;
850 			P->nauxv = (int)naux;
851 		}
852 	}
853 
854 	(void) close(fd);
855 }
856 
857 /*
858  * Return a requested element from the process's aux vector.
859  * Return -1 on failure (this is adequate for our purposes).
860  */
861 long
862 Pgetauxval(struct ps_prochandle *P, int type)
863 {
864 	auxv_t *auxv;
865 
866 	if (P->auxv == NULL)
867 		Preadauxvec(P);
868 
869 	if (P->auxv == NULL)
870 		return (-1);
871 
872 	for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
873 		if (auxv->a_type == type)
874 			return (auxv->a_un.a_val);
875 	}
876 
877 	return (-1);
878 }
879 
880 /*
881  * Return a pointer to our internal copy of the process's aux vector.
882  * The caller should not hold on to this pointer across any libproc calls.
883  */
884 const auxv_t *
885 Pgetauxvec(struct ps_prochandle *P)
886 {
887 	static const auxv_t empty = { AT_NULL, 0L };
888 
889 	if (P->auxv == NULL)
890 		Preadauxvec(P);
891 
892 	if (P->auxv == NULL)
893 		return (&empty);
894 
895 	return (P->auxv);
896 }
897 
898 /*
899  * Return 1 if the given mapping corresponds to the given file_info_t's
900  * load object; return 0 otherwise.
901  */
902 static int
903 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
904 {
905 	prmap_t *pmap = &mptr->map_pmap;
906 	rd_loadobj_t *lop = fptr->file_lo;
907 	uint_t i;
908 
909 	/*
910 	 * We can get for free the start address of the text and data
911 	 * sections of the load object. Start by seeing if the mapping
912 	 * encloses either of these.
913 	 */
914 	if ((pmap->pr_vaddr <= lop->rl_base &&
915 	    lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
916 	    (pmap->pr_vaddr <= lop->rl_data_base &&
917 	    lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
918 		return (1);
919 
920 	/*
921 	 * It's still possible that this mapping correponds to the load
922 	 * object. Consider the example of a mapping whose start and end
923 	 * addresses correspond to those of the load object's text section.
924 	 * If the mapping splits, e.g. as a result of a segment demotion,
925 	 * then although both mappings are still backed by the same section,
926 	 * only one will be seen to enclose that section's start address.
927 	 * Thus, to be rigorous, we ask not whether this mapping encloses
928 	 * the start of a section, but whether there exists a section that
929 	 * encloses the start of this mapping.
930 	 *
931 	 * If we don't already have the section addresses, and we successfully
932 	 * get them, then we cache them in case we come here again.
933 	 */
934 	if (fptr->file_saddrs == NULL &&
935 	    (fptr->file_saddrs = get_saddrs(P,
936 	    fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
937 		return (0);
938 	for (i = 0; i < fptr->file_nsaddrs; i += 2) {
939 		/* Does this section enclose the start of the mapping? */
940 		if (fptr->file_saddrs[i] <= pmap->pr_vaddr &&
941 		    fptr->file_saddrs[i + 1] > pmap->pr_vaddr)
942 			return (1);
943 	}
944 
945 	return (0);
946 }
947 
948 /*
949  * Find or build the symbol table for the given mapping.
950  */
951 static file_info_t *
952 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
953 {
954 	prmap_t *pmap = &mptr->map_pmap;
955 	file_info_t *fptr;
956 	uint_t i;
957 
958 	if ((fptr = mptr->map_file) != NULL) {
959 		Pbuild_file_symtab(P, fptr);
960 		return (fptr);
961 	}
962 
963 	if (pmap->pr_mapname[0] == '\0')
964 		return (NULL);
965 
966 	/*
967 	 * Attempt to find a matching file.
968 	 * (A file can be mapped at several different addresses.)
969 	 */
970 	for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
971 	    i++, fptr = list_next(fptr)) {
972 		if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
973 		    fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
974 			mptr->map_file = fptr;
975 			fptr->file_ref++;
976 			Pbuild_file_symtab(P, fptr);
977 			return (fptr);
978 		}
979 	}
980 
981 	/*
982 	 * If we need to create a new file_info structure, iterate
983 	 * through the load objects in order to attempt to connect
984 	 * this new file with its primary text mapping.  We again
985 	 * need to handle ld.so as a special case because we need
986 	 * to be able to bootstrap librtld_db.
987 	 */
988 	if ((fptr = file_info_new(P, mptr)) == NULL)
989 		return (NULL);
990 
991 	if (P->map_ldso != mptr) {
992 		if (P->rap != NULL)
993 			(void) rd_loadobj_iter(P->rap, map_iter, P);
994 		else
995 			(void) Prd_agent(P);
996 	} else {
997 		fptr->file_map = mptr;
998 	}
999 
1000 	/*
1001 	 * If librtld_db wasn't able to help us connect the file to a primary
1002 	 * text mapping, set file_map to the current mapping because we require
1003 	 * fptr->file_map to be set in Pbuild_file_symtab.  librtld_db may be
1004 	 * unaware of what's going on in the rare case that a legitimate ELF
1005 	 * file has been mmap(2)ed into the process address space *without*
1006 	 * the use of dlopen(3x).
1007 	 */
1008 	if (fptr->file_map == NULL)
1009 		fptr->file_map = mptr;
1010 
1011 	Pbuild_file_symtab(P, fptr);
1012 
1013 	return (fptr);
1014 }
1015 
1016 static int
1017 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1018     uintptr_t addr)
1019 {
1020 	if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1021 		return (-1);
1022 
1023 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1024 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1025 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1026 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1027 	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1028 #ifdef _BIG_ENDIAN
1029 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1030 #else
1031 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1032 #endif
1033 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1034 		return (-1);
1035 
1036 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1037 		Elf32_Shdr shdr0;
1038 
1039 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1040 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1041 		    sizeof (shdr0))
1042 			return (-1);
1043 
1044 		if (shdr0.sh_info != 0)
1045 			*phnum = shdr0.sh_info;
1046 	}
1047 
1048 	return (0);
1049 }
1050 
1051 static int
1052 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1053     uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1054 {
1055 	uint_t i;
1056 
1057 	for (i = 0; i < phnum; i++) {
1058 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1059 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1060 			return (-1);
1061 
1062 		if (phdr->p_type == PT_DYNAMIC)
1063 			return (0);
1064 	}
1065 
1066 	return (-1);
1067 }
1068 
1069 #ifdef _LP64
1070 static int
1071 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1072     uintptr_t addr)
1073 {
1074 	if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1075 		return (-1);
1076 
1077 	if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1078 	    ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1079 	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1080 	    ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1081 	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1082 #ifdef _BIG_ENDIAN
1083 	    ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1084 #else
1085 	    ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1086 #endif
1087 	    ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1088 		return (-1);
1089 
1090 	if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1091 		Elf64_Shdr shdr0;
1092 
1093 		if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1094 		    Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1095 		    sizeof (shdr0))
1096 			return (-1);
1097 
1098 		if (shdr0.sh_info != 0)
1099 			*phnum = shdr0.sh_info;
1100 	}
1101 
1102 	return (0);
1103 }
1104 
1105 static int
1106 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1107     uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1108 {
1109 	uint_t i;
1110 
1111 	for (i = 0; i < phnum; i++) {
1112 		uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1113 		if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1114 			return (-1);
1115 
1116 		if (phdr->p_type == PT_DYNAMIC)
1117 			return (0);
1118 	}
1119 
1120 	return (-1);
1121 }
1122 #endif	/* _LP64 */
1123 
1124 /*
1125  * The text segment for each load object contains the elf header and
1126  * program headers. We can use this information to determine if the
1127  * file that corresponds to the load object is the same file that
1128  * was loaded into the process's address space. There can be a discrepency
1129  * if a file is recompiled after the process is started or if the target
1130  * represents a core file from a differently configured system -- two
1131  * common examples. The DT_CHECKSUM entry in the dynamic section
1132  * provides an easy method of comparison. It is important to note that
1133  * the dynamic section usually lives in the data segment, but the meta
1134  * data we use to find the dynamic section lives in the text segment so
1135  * if either of those segments is absent we can't proceed.
1136  *
1137  * We're looking through the elf file for several items: the symbol tables
1138  * (both dynsym and symtab), the procedure linkage table (PLT) base,
1139  * size, and relocation base, and the CTF information. Most of this can
1140  * be recovered from the loaded image of the file itself, the exceptions
1141  * being the symtab and CTF data.
1142  *
1143  * First we try to open the file that we think corresponds to the load
1144  * object, if the DT_CHECKSUM values match, we're all set, and can simply
1145  * recover all the information we need from the file. If the values of
1146  * DT_CHECKSUM don't match, or if we can't access the file for whatever
1147  * reasaon, we fake up a elf file to use in its stead. If we can't read
1148  * the elf data in the process's address space, we fall back to using
1149  * the file even though it may give inaccurate information.
1150  *
1151  * The elf file that we fake up has to consist of sections for the
1152  * dynsym, the PLT and the dynamic section. Note that in the case of a
1153  * core file, we'll get the CTF data in the file_info_t later on from
1154  * a section embedded the core file (if it's present).
1155  *
1156  * file_differs() conservatively looks for mismatched files, identifying
1157  * a match when there is any ambiguity (since that's the legacy behavior).
1158  */
1159 static int
1160 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1161 {
1162 	Elf_Scn *scn;
1163 	GElf_Shdr shdr;
1164 	GElf_Dyn dyn;
1165 	Elf_Data *data;
1166 	uint_t i, ndyn;
1167 	GElf_Xword cksum;
1168 	uintptr_t addr;
1169 
1170 	if (fptr->file_map == NULL)
1171 		return (0);
1172 
1173 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1174 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1175 		return (0);
1176 
1177 	/*
1178 	 * First, we find the checksum value in the elf file.
1179 	 */
1180 	scn = NULL;
1181 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
1182 		if (gelf_getshdr(scn, &shdr) != NULL &&
1183 		    shdr.sh_type == SHT_DYNAMIC)
1184 			goto found_shdr;
1185 	}
1186 	return (0);
1187 
1188 found_shdr:
1189 	if ((data = elf_getdata(scn, NULL)) == NULL)
1190 		return (0);
1191 
1192 	if (P->status.pr_dmodel == PR_MODEL_ILP32)
1193 		ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1194 #ifdef _LP64
1195 	else if (P->status.pr_dmodel == PR_MODEL_LP64)
1196 		ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1197 #endif
1198 	else
1199 		return (0);
1200 
1201 	for (i = 0; i < ndyn; i++) {
1202 		if (gelf_getdyn(data, i, &dyn) != NULL &&
1203 		    dyn.d_tag == DT_CHECKSUM)
1204 			goto found_cksum;
1205 	}
1206 
1207 	/*
1208 	 * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1209 	 * as matching the file anyhow.
1210 	 */
1211 	return (0);
1212 
1213 found_cksum:
1214 	cksum = dyn.d_un.d_val;
1215 	dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1216 
1217 	/*
1218 	 * Get the base of the text mapping that corresponds to this file.
1219 	 */
1220 	addr = fptr->file_map->map_pmap.pr_vaddr;
1221 
1222 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1223 		Elf32_Ehdr ehdr;
1224 		Elf32_Phdr phdr;
1225 		Elf32_Dyn dync, *dynp;
1226 		uint_t phnum, i;
1227 
1228 		if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1229 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1230 			return (0);
1231 
1232 		if (ehdr.e_type == ET_DYN)
1233 			phdr.p_vaddr += addr;
1234 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1235 			return (0);
1236 		dync.d_tag = DT_NULL;
1237 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1238 		    phdr.p_filesz) {
1239 			free(dynp);
1240 			return (0);
1241 		}
1242 
1243 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1244 			if (dynp[i].d_tag == DT_CHECKSUM)
1245 				dync = dynp[i];
1246 		}
1247 
1248 		free(dynp);
1249 
1250 		if (dync.d_tag != DT_CHECKSUM)
1251 			return (0);
1252 
1253 		dprintf("image cksum value is %llx\n",
1254 		    (u_longlong_t)dync.d_un.d_val);
1255 		return (dync.d_un.d_val != cksum);
1256 #ifdef _LP64
1257 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1258 		Elf64_Ehdr ehdr;
1259 		Elf64_Phdr phdr;
1260 		Elf64_Dyn dync, *dynp;
1261 		uint_t phnum, i;
1262 
1263 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1264 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1265 			return (0);
1266 
1267 		if (ehdr.e_type == ET_DYN)
1268 			phdr.p_vaddr += addr;
1269 		if ((dynp = malloc(phdr.p_filesz)) == NULL)
1270 			return (0);
1271 		dync.d_tag = DT_NULL;
1272 		if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1273 		    phdr.p_filesz) {
1274 			free(dynp);
1275 			return (0);
1276 		}
1277 
1278 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1279 			if (dynp[i].d_tag == DT_CHECKSUM)
1280 				dync = dynp[i];
1281 		}
1282 
1283 		free(dynp);
1284 
1285 		if (dync.d_tag != DT_CHECKSUM)
1286 			return (0);
1287 
1288 		dprintf("image cksum value is %llx\n",
1289 		    (u_longlong_t)dync.d_un.d_val);
1290 		return (dync.d_un.d_val != cksum);
1291 #endif	/* _LP64 */
1292 	}
1293 
1294 	return (0);
1295 }
1296 
1297 static Elf *
1298 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1299 {
1300 	enum {
1301 		DI_PLTGOT = 0,
1302 		DI_JMPREL,
1303 		DI_PLTRELSZ,
1304 		DI_PLTREL,
1305 		DI_SYMTAB,
1306 		DI_HASH,
1307 		DI_SYMENT,
1308 		DI_STRTAB,
1309 		DI_STRSZ,
1310 		DI_NENT
1311 	};
1312 	uintptr_t addr;
1313 	size_t size = 0;
1314 	caddr_t elfdata = NULL;
1315 	Elf *elf;
1316 	Elf32_Word nchain;
1317 	static char shstr[] = ".shstrtab\0.dynsym\0.dynstr\0.dynamic\0.plt";
1318 
1319 	if (fptr->file_map == NULL)
1320 		return (NULL);
1321 
1322 	if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1323 	    (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1324 		return (NULL);
1325 
1326 	addr = fptr->file_map->map_pmap.pr_vaddr;
1327 
1328 	/*
1329 	 * We're building a in memory elf file that will let us use libelf
1330 	 * for most of the work we need to later (e.g. symbol table lookups).
1331 	 * We need sections for the dynsym, dynstr, and plt, and we need
1332 	 * the program headers from the text section. The former is used in
1333 	 * Pbuild_file_symtab(); the latter is used in several functions in
1334 	 * Pcore.c to reconstruct the origin of each mapping from the load
1335 	 * object that spawned it.
1336 	 *
1337 	 * Here are some useful pieces of elf trivia that will help
1338 	 * to elucidate this code.
1339 	 *
1340 	 * All the information we need about the dynstr can be found in these
1341 	 * two entries in the dynamic section:
1342 	 *
1343 	 *	DT_STRTAB	base of dynstr
1344 	 *	DT_STRSZ	size of dynstr
1345 	 *
1346 	 * So deciphering the dynstr is pretty straightforward.
1347 	 *
1348 	 * The dynsym is a little trickier.
1349 	 *
1350 	 *	DT_SYMTAB	base of dynsym
1351 	 *	DT_SYMENT	size of a dynstr entry (Elf{32,64}_Sym)
1352 	 *	DT_HASH		base of hash table for dynamic lookups
1353 	 *
1354 	 * The DT_SYMTAB entry gives us any easy way of getting to the base
1355 	 * of the dynsym, but getting the size involves rooting around in the
1356 	 * dynamic lookup hash table. Here's the layout of the hash table:
1357 	 *
1358 	 *		+-------------------+
1359 	 *		|	nbucket	    |	All values are of type
1360 	 *		+-------------------+	Elf32_Word
1361 	 *		|	nchain	    |
1362 	 *		+-------------------+
1363 	 *		|	bucket[0]   |
1364 	 *		|	. . .	    |
1365 	 *		| bucket[nbucket-1] |
1366 	 *		+-------------------+
1367 	 *		|	chain[0]    |
1368 	 *		|	. . .	    |
1369 	 *		|  chain[nchain-1]  |
1370 	 *		+-------------------+
1371 	 *	(figure 5-12 from the SYS V Generic ABI)
1372 	 *
1373 	 * Symbols names are hashed into a particular bucket which contains
1374 	 * an index into the symbol table. Each entry in the symbol table
1375 	 * has a corresponding entry in the chain table which tells the
1376 	 * consumer where the next entry in the hash chain is. We can use
1377 	 * the nchain field to find out the size of the dynsym.
1378 	 *
1379 	 * We can figure out the size of the .plt section, but it takes some
1380 	 * doing. We need to use the following information:
1381 	 *
1382 	 *	DT_PLTGOT	base of the PLT
1383 	 *	DT_JMPREL	base of the PLT's relocation section
1384 	 *	DT_PLTRELSZ	size of the PLT's relocation section
1385 	 *	DT_PLTREL	type of the PLT's relocation section
1386 	 *
1387 	 * We can use the relocation section to figure out the address of the
1388 	 * last entry and subtract off the value of DT_PLTGOT to calculate
1389 	 * the size of the PLT.
1390 	 *
1391 	 * For more information, check out the System V Generic ABI.
1392 	 */
1393 
1394 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1395 		Elf32_Ehdr ehdr, *ep;
1396 		Elf32_Phdr phdr;
1397 		Elf32_Shdr *sp;
1398 		Elf32_Dyn *dp;
1399 		Elf32_Dyn *d[DI_NENT] = { 0 };
1400 		uint_t phnum, i, dcount = 0;
1401 		uint32_t off;
1402 		size_t pltsz = 0, pltentsz;
1403 
1404 		if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1405 		    read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1406 			return (NULL);
1407 
1408 		if (ehdr.e_type == ET_DYN)
1409 			phdr.p_vaddr += addr;
1410 
1411 		if ((dp = malloc(phdr.p_filesz)) == NULL)
1412 			return (NULL);
1413 
1414 		if (Pread(P, dp, phdr.p_filesz, phdr.p_vaddr) !=
1415 		    phdr.p_filesz) {
1416 			free(dp);
1417 			return (NULL);
1418 		}
1419 
1420 		/*
1421 		 * Allow librtld_db the opportunity to "fix" the program
1422 		 * headers, if it needs to, before we process them.
1423 		 */
1424 		if (P->rap != NULL && ehdr.e_type == ET_DYN) {
1425 			rd_fix_phdrs(P->rap, dp, phdr.p_filesz, addr);
1426 		}
1427 
1428 		for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1429 			switch (dp[i].d_tag) {
1430 			/*
1431 			 * For the .plt section.
1432 			 */
1433 			case DT_PLTGOT:
1434 				d[DI_PLTGOT] = &dp[i];
1435 				continue;
1436 			case DT_JMPREL:
1437 				d[DI_JMPREL] = &dp[i];
1438 				continue;
1439 			case DT_PLTRELSZ:
1440 				d[DI_PLTRELSZ] = &dp[i];
1441 				continue;
1442 			case DT_PLTREL:
1443 				d[DI_PLTREL] = &dp[i];
1444 				continue;
1445 			default:
1446 				continue;
1447 
1448 			/*
1449 			 * For the .dynsym section.
1450 			 */
1451 			case DT_SYMTAB:
1452 				d[DI_SYMTAB] = &dp[i];
1453 				break;
1454 			case DT_HASH:
1455 				d[DI_HASH] = &dp[i];
1456 				break;
1457 			case DT_SYMENT:
1458 				d[DI_SYMENT] = &dp[i];
1459 				break;
1460 
1461 			/*
1462 			 * For the .dynstr section.
1463 			 */
1464 			case DT_STRTAB:
1465 				d[DI_STRTAB] = &dp[i];
1466 				break;
1467 			case DT_STRSZ:
1468 				d[DI_STRSZ] = &dp[i];
1469 				break;
1470 			}
1471 
1472 			dcount++;
1473 		}
1474 
1475 		/*
1476 		 * We need all of those dynamic entries in order to put
1477 		 * together a complete set of elf sections, but we'll
1478 		 * let the PLT section slide if need be. The dynsym- and
1479 		 * dynstr-related dynamic entries are mandatory in both
1480 		 * executables and shared objects so if one of those is
1481 		 * missing, we're in some trouble and should abort.
1482 		 */
1483 		if (dcount + 4 != DI_NENT) {
1484 			dprintf("text section missing required dynamic "
1485 			    "entries\n");
1486 			return (NULL);
1487 		}
1488 
1489 		if (ehdr.e_type == ET_DYN) {
1490 			if (d[DI_PLTGOT] != NULL)
1491 				d[DI_PLTGOT]->d_un.d_ptr += addr;
1492 			if (d[DI_JMPREL] != NULL)
1493 				d[DI_JMPREL]->d_un.d_ptr += addr;
1494 			d[DI_SYMTAB]->d_un.d_ptr += addr;
1495 			d[DI_HASH]->d_un.d_ptr += addr;
1496 			d[DI_STRTAB]->d_un.d_ptr += addr;
1497 		}
1498 
1499 		/* elf header */
1500 		size = sizeof (Elf32_Ehdr);
1501 
1502 		/* program headers from in-core elf fragment */
1503 		size += phnum * ehdr.e_phentsize;
1504 
1505 		/* unused shdr, and .shstrtab section */
1506 		size += sizeof (Elf32_Shdr);
1507 		size += sizeof (Elf32_Shdr);
1508 		size += roundup(sizeof (shstr), 4);
1509 
1510 		/* .dynsym section */
1511 		size += sizeof (Elf32_Shdr);
1512 		if (Pread(P, &nchain, sizeof (nchain),
1513 		    d[DI_HASH]->d_un.d_ptr + 4) != sizeof (nchain)) {
1514 			dprintf("Pread of .dynsym at %lx failed\n",
1515 			    (long)(d[DI_HASH]->d_un.d_val + 4));
1516 			goto bad32;
1517 		}
1518 		size += sizeof (Elf32_Sym) * nchain;
1519 
1520 		/* .dynstr section */
1521 		size += sizeof (Elf32_Shdr);
1522 		size += roundup(d[DI_STRSZ]->d_un.d_val, 4);
1523 
1524 		/* .dynamic section */
1525 		size += sizeof (Elf32_Shdr);
1526 		size += roundup(phdr.p_filesz, 4);
1527 
1528 		/* .plt section */
1529 		if (d[DI_PLTGOT] != NULL && d[DI_JMPREL] != NULL &&
1530 		    d[DI_PLTRELSZ] != NULL && d[DI_PLTREL] != NULL) {
1531 			uintptr_t penult, ult;
1532 			uintptr_t jmprel = d[DI_JMPREL]->d_un.d_ptr;
1533 			size_t pltrelsz = d[DI_PLTRELSZ]->d_un.d_val;
1534 
1535 			if (d[DI_PLTREL]->d_un.d_val == DT_RELA) {
1536 				uint_t ndx = pltrelsz / sizeof (Elf32_Rela) - 2;
1537 				Elf32_Rela r[2];
1538 
1539 				if (Pread(P, r, sizeof (r), jmprel +
1540 				    sizeof (r[0]) * ndx) != sizeof (r)) {
1541 					dprintf("Pread of DT_RELA failed\n");
1542 					goto bad32;
1543 				}
1544 
1545 				penult = r[0].r_offset;
1546 				ult = r[1].r_offset;
1547 
1548 			} else if (d[DI_PLTREL]->d_un.d_val == DT_REL) {
1549 				uint_t ndx = pltrelsz / sizeof (Elf32_Rel) - 2;
1550 				Elf32_Rel r[2];
1551 
1552 				if (Pread(P, r, sizeof (r), jmprel +
1553 				    sizeof (r[0]) * ndx) != sizeof (r)) {
1554 					dprintf("Pread of DT_REL failed\n");
1555 					goto bad32;
1556 				}
1557 
1558 				penult = r[0].r_offset;
1559 				ult = r[1].r_offset;
1560 			} else {
1561 				dprintf(".plt: unknown jmprel value\n");
1562 				goto bad32;
1563 			}
1564 
1565 			pltentsz = ult - penult;
1566 
1567 			if (ehdr.e_type == ET_DYN)
1568 				ult += addr;
1569 
1570 			pltsz = ult - d[DI_PLTGOT]->d_un.d_ptr + pltentsz;
1571 
1572 			size += sizeof (Elf32_Shdr);
1573 			size += roundup(pltsz, 4);
1574 		}
1575 
1576 		if ((elfdata = calloc(1, size)) == NULL)
1577 			goto bad32;
1578 
1579 		/* LINTED - alignment */
1580 		ep = (Elf32_Ehdr *)elfdata;
1581 		(void) memcpy(ep, &ehdr, offsetof(Elf32_Ehdr, e_phoff));
1582 
1583 		ep->e_ehsize = sizeof (Elf32_Ehdr);
1584 		ep->e_phoff = sizeof (Elf32_Ehdr);
1585 		ep->e_phentsize = ehdr.e_phentsize;
1586 		ep->e_phnum = phnum;
1587 		ep->e_shoff = ep->e_phoff + phnum * ep->e_phentsize;
1588 		ep->e_shentsize = sizeof (Elf32_Shdr);
1589 		ep->e_shnum = (pltsz == 0) ? 5 : 6;
1590 		ep->e_shstrndx = 1;
1591 
1592 		/* LINTED - alignment */
1593 		sp = (Elf32_Shdr *)(elfdata + ep->e_shoff);
1594 		off = ep->e_shoff + ep->e_shentsize * ep->e_shnum;
1595 
1596 		/*
1597 		 * Copying the program headers directly from the process's
1598 		 * address space is a little suspect, but since we only
1599 		 * use them for their address and size values, this is fine.
1600 		 */
1601 		if (Pread(P, &elfdata[ep->e_phoff], phnum * ep->e_phentsize,
1602 		    addr + ehdr.e_phoff) != phnum * ep->e_phentsize) {
1603 			free(elfdata);
1604 			dprintf("failed to read program headers\n");
1605 			goto bad32;
1606 		}
1607 
1608 		/*
1609 		 * The first elf section is always skipped.
1610 		 */
1611 		sp++;
1612 
1613 		/*
1614 		 * Section Header[1]  sh_name: .shstrtab
1615 		 */
1616 		sp->sh_name = 0;
1617 		sp->sh_type = SHT_STRTAB;
1618 		sp->sh_flags = SHF_STRINGS;
1619 		sp->sh_addr = 0;
1620 		sp->sh_offset = off;
1621 		sp->sh_size = sizeof (shstr);
1622 		sp->sh_link = 0;
1623 		sp->sh_info = 0;
1624 		sp->sh_addralign = 1;
1625 		sp->sh_entsize = 0;
1626 
1627 		(void) memcpy(&elfdata[off], shstr, sizeof (shstr));
1628 		off += roundup(sp->sh_size, 4);
1629 		sp++;
1630 
1631 		/*
1632 		 * Section Header[2]  sh_name: .dynsym
1633 		 */
1634 		sp->sh_name = 10;
1635 		sp->sh_type = SHT_DYNSYM;
1636 		sp->sh_flags = SHF_ALLOC;
1637 		sp->sh_addr = d[DI_SYMTAB]->d_un.d_ptr;
1638 		if (ehdr.e_type == ET_DYN)
1639 			sp->sh_addr -= addr;
1640 		sp->sh_offset = off;
1641 		sp->sh_size = nchain * sizeof (Elf32_Sym);
1642 		sp->sh_link = 3;
1643 		sp->sh_info = 1;
1644 		sp->sh_addralign = 4;
1645 		sp->sh_entsize = sizeof (Elf32_Sym);
1646 
1647 		if (Pread(P, &elfdata[off], sp->sh_size,
1648 		    d[DI_SYMTAB]->d_un.d_ptr) != sp->sh_size) {
1649 			free(elfdata);
1650 			dprintf("failed to read .dynsym at %lx\n",
1651 			    (long)d[DI_SYMTAB]->d_un.d_ptr);
1652 			goto bad32;
1653 		}
1654 
1655 		off += roundup(sp->sh_size, 4);
1656 		sp++;
1657 
1658 		/*
1659 		 * Section Header[3]  sh_name: .dynstr
1660 		 */
1661 		sp->sh_name = 18;
1662 		sp->sh_type = SHT_STRTAB;
1663 		sp->sh_flags = SHF_ALLOC | SHF_STRINGS;
1664 		sp->sh_addr = d[DI_STRTAB]->d_un.d_ptr;
1665 		if (ehdr.e_type == ET_DYN)
1666 			sp->sh_addr -= addr;
1667 		sp->sh_offset = off;
1668 		sp->sh_size = d[DI_STRSZ]->d_un.d_val;
1669 		sp->sh_link = 0;
1670 		sp->sh_info = 0;
1671 		sp->sh_addralign = 1;
1672 		sp->sh_entsize = 0;
1673 
1674 		if (Pread(P, &elfdata[off], sp->sh_size,
1675 		    d[DI_STRTAB]->d_un.d_ptr) != sp->sh_size) {
1676 			free(elfdata);
1677 			dprintf("failed to read .dynstr\n");
1678 			goto bad32;
1679 		}
1680 		off += roundup(sp->sh_size, 4);
1681 		sp++;
1682 
1683 		/*
1684 		 * Section Header[4]  sh_name: .dynamic
1685 		 */
1686 		sp->sh_name = 26;
1687 		sp->sh_type = SHT_DYNAMIC;
1688 		sp->sh_flags = SHF_WRITE | SHF_ALLOC;
1689 		sp->sh_addr = phdr.p_vaddr;
1690 		if (ehdr.e_type == ET_DYN)
1691 			sp->sh_addr -= addr;
1692 		sp->sh_offset = off;
1693 		sp->sh_size = phdr.p_filesz;
1694 		sp->sh_link = 3;
1695 		sp->sh_info = 0;
1696 		sp->sh_addralign = 4;
1697 		sp->sh_entsize = sizeof (Elf32_Dyn);
1698 
1699 		(void) memcpy(&elfdata[off], dp, sp->sh_size);
1700 		off += roundup(sp->sh_size, 4);
1701 		sp++;
1702 
1703 		/*
1704 		 * Section Header[5]  sh_name: .plt
1705 		 */
1706 		if (pltsz != 0) {
1707 			sp->sh_name = 35;
1708 			sp->sh_type = SHT_PROGBITS;
1709 			sp->sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
1710 			sp->sh_addr = d[DI_PLTGOT]->d_un.d_ptr;
1711 			if (ehdr.e_type == ET_DYN)
1712 				sp->sh_addr -= addr;
1713 			sp->sh_offset = off;
1714 			sp->sh_size = pltsz;
1715 			sp->sh_link = 0;
1716 			sp->sh_info = 0;
1717 			sp->sh_addralign = 4;
1718 			sp->sh_entsize = pltentsz;
1719 
1720 			if (Pread(P, &elfdata[off], sp->sh_size,
1721 			    d[DI_PLTGOT]->d_un.d_ptr) != sp->sh_size) {
1722 				free(elfdata);
1723 				dprintf("failed to read .plt\n");
1724 				goto bad32;
1725 			}
1726 			off += roundup(sp->sh_size, 4);
1727 			sp++;
1728 		}
1729 
1730 		free(dp);
1731 		goto good;
1732 
1733 bad32:
1734 		free(dp);
1735 		return (NULL);
1736 #ifdef _LP64
1737 	} else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1738 		Elf64_Ehdr ehdr, *ep;
1739 		Elf64_Phdr phdr;
1740 		Elf64_Shdr *sp;
1741 		Elf64_Dyn *dp;
1742 		Elf64_Dyn *d[DI_NENT] = { 0 };
1743 		uint_t phnum, i, dcount = 0;
1744 		uint64_t off;
1745 		size_t pltsz = 0, pltentsz;
1746 
1747 		if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1748 		    read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1749 			return (NULL);
1750 
1751 		if (ehdr.e_type == ET_DYN)
1752 			phdr.p_vaddr += addr;
1753 
1754 		if ((dp = malloc(phdr.p_filesz)) == NULL)
1755 			return (NULL);
1756 
1757 		if (Pread(P, dp, phdr.p_filesz, phdr.p_vaddr) !=
1758 		    phdr.p_filesz) {
1759 			free(dp);
1760 			return (NULL);
1761 		}
1762 
1763 		for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1764 			switch (dp[i].d_tag) {
1765 			/*
1766 			 * For the .plt section.
1767 			 */
1768 			case DT_PLTGOT:
1769 				d[DI_PLTGOT] = &dp[i];
1770 				continue;
1771 			case DT_JMPREL:
1772 				d[DI_JMPREL] = &dp[i];
1773 				continue;
1774 			case DT_PLTRELSZ:
1775 				d[DI_PLTRELSZ] = &dp[i];
1776 				continue;
1777 			case DT_PLTREL:
1778 				d[DI_PLTREL] = &dp[i];
1779 				continue;
1780 			default:
1781 				continue;
1782 
1783 			/*
1784 			 * For the .dynsym section.
1785 			 */
1786 			case DT_SYMTAB:
1787 				d[DI_SYMTAB] = &dp[i];
1788 				break;
1789 			case DT_HASH:
1790 				d[DI_HASH] = &dp[i];
1791 				break;
1792 			case DT_SYMENT:
1793 				d[DI_SYMENT] = &dp[i];
1794 				break;
1795 
1796 			/*
1797 			 * For the .dynstr section.
1798 			 */
1799 			case DT_STRTAB:
1800 				d[DI_STRTAB] = &dp[i];
1801 				break;
1802 			case DT_STRSZ:
1803 				d[DI_STRSZ] = &dp[i];
1804 				break;
1805 			}
1806 
1807 			dcount++;
1808 		}
1809 
1810 		/*
1811 		 * We need all of those dynamic entries in order to put
1812 		 * together a complete set of elf sections, but we'll
1813 		 * let the PLT section slide if need be. The dynsym- and
1814 		 * dynstr-related dynamic entries are mandatory in both
1815 		 * executables and shared objects so if one of those is
1816 		 * missing, we're in some trouble and should abort.
1817 		 */
1818 		if (dcount + 4 != DI_NENT) {
1819 			dprintf("text section missing required dynamic "
1820 			    "entries\n");
1821 			return (NULL);
1822 		}
1823 
1824 		if (ehdr.e_type == ET_DYN) {
1825 			if (d[DI_PLTGOT] != NULL)
1826 				d[DI_PLTGOT]->d_un.d_ptr += addr;
1827 			if (d[DI_JMPREL] != NULL)
1828 				d[DI_JMPREL]->d_un.d_ptr += addr;
1829 			d[DI_SYMTAB]->d_un.d_ptr += addr;
1830 			d[DI_HASH]->d_un.d_ptr += addr;
1831 			d[DI_STRTAB]->d_un.d_ptr += addr;
1832 		}
1833 
1834 		/* elf header */
1835 		size = sizeof (Elf64_Ehdr);
1836 
1837 		/* program headers from in-core elf fragment */
1838 		size += phnum * ehdr.e_phentsize;
1839 
1840 		/* unused shdr, and .shstrtab section */
1841 		size += sizeof (Elf64_Shdr);
1842 		size += sizeof (Elf64_Shdr);
1843 		size += roundup(sizeof (shstr), 8);
1844 
1845 		/* .dynsym section */
1846 		size += sizeof (Elf64_Shdr);
1847 		if (Pread(P, &nchain, sizeof (nchain),
1848 		    d[DI_HASH]->d_un.d_ptr + 4) != sizeof (nchain))
1849 			goto bad64;
1850 		size += sizeof (Elf64_Sym) * nchain;
1851 
1852 		/* .dynstr section */
1853 		size += sizeof (Elf64_Shdr);
1854 		size += roundup(d[DI_STRSZ]->d_un.d_val, 8);
1855 
1856 		/* .dynamic section */
1857 		size += sizeof (Elf64_Shdr);
1858 		size += roundup(phdr.p_filesz, 8);
1859 
1860 		/* .plt section */
1861 		if (d[DI_PLTGOT] != NULL && d[DI_JMPREL] != NULL &&
1862 		    d[DI_PLTRELSZ] != NULL && d[DI_PLTREL] != NULL) {
1863 			uintptr_t penult, ult;
1864 			uintptr_t jmprel = d[DI_JMPREL]->d_un.d_ptr;
1865 			size_t pltrelsz = d[DI_PLTRELSZ]->d_un.d_val;
1866 
1867 			if (d[DI_PLTREL]->d_un.d_val == DT_RELA) {
1868 				uint_t ndx = pltrelsz / sizeof (Elf64_Rela) - 2;
1869 				Elf64_Rela r[2];
1870 
1871 				if (Pread(P, r, sizeof (r), jmprel +
1872 				    sizeof (r[0]) * ndx) != sizeof (r)) {
1873 					dprintf("Pread jmprel DT_RELA at %p "
1874 					    "failed\n",
1875 					    (void *)(jmprel +
1876 						sizeof (r[0]) * ndx));
1877 					goto bad64;
1878 				}
1879 
1880 				penult = r[0].r_offset;
1881 				ult = r[1].r_offset;
1882 
1883 			} else if (d[DI_PLTREL]->d_un.d_val == DT_REL) {
1884 				uint_t ndx = pltrelsz / sizeof (Elf64_Rel) - 2;
1885 				Elf64_Rel r[2];
1886 
1887 				if (Pread(P, r, sizeof (r), jmprel +
1888 				    sizeof (r[0]) * ndx) != sizeof (r)) {
1889 					dprintf("Pread jmprel DT_REL at %p "
1890 					    "failed\n",
1891 					    (void *)(jmprel +
1892 						sizeof (r[0]) * ndx));
1893 					goto bad64;
1894 				}
1895 
1896 				penult = r[0].r_offset;
1897 				ult = r[1].r_offset;
1898 			} else {
1899 				dprintf("DT_PLTREL value %p unknown\n",
1900 				    (void *)d[DI_PLTREL]->d_un.d_ptr);
1901 				goto bad64;
1902 			}
1903 
1904 			pltentsz = ult - penult;
1905 
1906 			if (ehdr.e_type == ET_DYN)
1907 				ult += addr;
1908 
1909 			pltsz = ult - d[DI_PLTGOT]->d_un.d_ptr + pltentsz;
1910 
1911 			size += sizeof (Elf64_Shdr);
1912 			size += roundup(pltsz, 8);
1913 		}
1914 
1915 		if ((elfdata = calloc(1, size)) == NULL)
1916 			goto bad64;
1917 
1918 		/* LINTED - alignment */
1919 		ep = (Elf64_Ehdr *)elfdata;
1920 		(void) memcpy(ep, &ehdr, offsetof(Elf64_Ehdr, e_phoff));
1921 
1922 		ep->e_ehsize = sizeof (Elf64_Ehdr);
1923 		ep->e_phoff = sizeof (Elf64_Ehdr);
1924 		ep->e_phentsize = ehdr.e_phentsize;
1925 		ep->e_phnum = phnum;
1926 		ep->e_shoff = ep->e_phoff + phnum * ep->e_phentsize;
1927 		ep->e_shentsize = sizeof (Elf64_Shdr);
1928 		ep->e_shnum = (pltsz == 0) ? 5 : 6;
1929 		ep->e_shstrndx = 1;
1930 
1931 		/* LINTED - alignment */
1932 		sp = (Elf64_Shdr *)(elfdata + ep->e_shoff);
1933 		off = ep->e_shoff + ep->e_shentsize * ep->e_shnum;
1934 
1935 		/*
1936 		 * Copying the program headers directly from the process's
1937 		 * address space is a little suspect, but since we only
1938 		 * use them for their address and size values, this is fine.
1939 		 */
1940 		if (Pread(P, &elfdata[ep->e_phoff], phnum * ep->e_phentsize,
1941 		    addr + ehdr.e_phoff) != phnum * ep->e_phentsize) {
1942 			free(elfdata);
1943 			goto bad64;
1944 		}
1945 
1946 		/*
1947 		 * The first elf section is always skipped.
1948 		 */
1949 		sp++;
1950 
1951 		/*
1952 		 * Section Header[1]  sh_name: .shstrtab
1953 		 */
1954 		sp->sh_name = 0;
1955 		sp->sh_type = SHT_STRTAB;
1956 		sp->sh_flags = SHF_STRINGS;
1957 		sp->sh_addr = 0;
1958 		sp->sh_offset = off;
1959 		sp->sh_size = sizeof (shstr);
1960 		sp->sh_link = 0;
1961 		sp->sh_info = 0;
1962 		sp->sh_addralign = 1;
1963 		sp->sh_entsize = 0;
1964 
1965 		(void) memcpy(&elfdata[off], shstr, sizeof (shstr));
1966 		off += roundup(sp->sh_size, 8);
1967 		sp++;
1968 
1969 		/*
1970 		 * Section Header[2]  sh_name: .dynsym
1971 		 */
1972 		sp->sh_name = 10;
1973 		sp->sh_type = SHT_DYNSYM;
1974 		sp->sh_flags = SHF_ALLOC;
1975 		sp->sh_addr = d[DI_SYMTAB]->d_un.d_ptr;
1976 		if (ehdr.e_type == ET_DYN)
1977 			sp->sh_addr -= addr;
1978 		sp->sh_offset = off;
1979 		sp->sh_size = nchain * sizeof (Elf64_Sym);
1980 		sp->sh_link = 3;
1981 		sp->sh_info = 1;
1982 		sp->sh_addralign = 8;
1983 		sp->sh_entsize = sizeof (Elf64_Sym);
1984 
1985 		if (Pread(P, &elfdata[off], sp->sh_size,
1986 		    d[DI_SYMTAB]->d_un.d_ptr) != sp->sh_size) {
1987 			free(elfdata);
1988 			goto bad64;
1989 		}
1990 
1991 		off += roundup(sp->sh_size, 8);
1992 		sp++;
1993 
1994 		/*
1995 		 * Section Header[3]  sh_name: .dynstr
1996 		 */
1997 		sp->sh_name = 18;
1998 		sp->sh_type = SHT_STRTAB;
1999 		sp->sh_flags = SHF_ALLOC | SHF_STRINGS;
2000 		sp->sh_addr = d[DI_STRTAB]->d_un.d_ptr;
2001 		if (ehdr.e_type == ET_DYN)
2002 			sp->sh_addr -= addr;
2003 		sp->sh_offset = off;
2004 		sp->sh_size = d[DI_STRSZ]->d_un.d_val;
2005 		sp->sh_link = 0;
2006 		sp->sh_info = 0;
2007 		sp->sh_addralign = 1;
2008 		sp->sh_entsize = 0;
2009 
2010 		if (Pread(P, &elfdata[off], sp->sh_size,
2011 		    d[DI_STRTAB]->d_un.d_ptr) != sp->sh_size) {
2012 			free(elfdata);
2013 			goto bad64;
2014 		}
2015 		off += roundup(sp->sh_size, 8);
2016 		sp++;
2017 
2018 		/*
2019 		 * Section Header[4]  sh_name: .dynamic
2020 		 */
2021 		sp->sh_name = 26;
2022 		sp->sh_type = SHT_DYNAMIC;
2023 		sp->sh_flags = SHF_WRITE | SHF_ALLOC;
2024 		sp->sh_addr = phdr.p_vaddr;
2025 		if (ehdr.e_type == ET_DYN)
2026 			sp->sh_addr -= addr;
2027 		sp->sh_offset = off;
2028 		sp->sh_size = phdr.p_filesz;
2029 		sp->sh_link = 3;
2030 		sp->sh_info = 0;
2031 		sp->sh_addralign = 8;
2032 		sp->sh_entsize = sizeof (Elf64_Dyn);
2033 
2034 		(void) memcpy(&elfdata[off], dp, sp->sh_size);
2035 		off += roundup(sp->sh_size, 8);
2036 		sp++;
2037 
2038 		/*
2039 		 * Section Header[5]  sh_name: .plt
2040 		 */
2041 		if (pltsz != 0) {
2042 			sp->sh_name = 35;
2043 			sp->sh_type = SHT_PROGBITS;
2044 			sp->sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
2045 			sp->sh_addr = d[DI_PLTGOT]->d_un.d_ptr;
2046 			if (ehdr.e_type == ET_DYN)
2047 				sp->sh_addr -= addr;
2048 			sp->sh_offset = off;
2049 			sp->sh_size = pltsz;
2050 			sp->sh_link = 0;
2051 			sp->sh_info = 0;
2052 			sp->sh_addralign = 8;
2053 			sp->sh_entsize = pltentsz;
2054 
2055 			if (Pread(P, &elfdata[off], sp->sh_size,
2056 			    d[DI_PLTGOT]->d_un.d_ptr) != sp->sh_size) {
2057 				free(elfdata);
2058 				goto bad64;
2059 			}
2060 			off += roundup(sp->sh_size, 8);
2061 			sp++;
2062 		}
2063 
2064 		free(dp);
2065 		goto good;
2066 
2067 bad64:
2068 		free(dp);
2069 		return (NULL);
2070 #endif	/* _LP64 */
2071 	}
2072 good:
2073 	if ((elf = elf_memory(elfdata, size)) == NULL) {
2074 		free(elfdata);
2075 		return (NULL);
2076 	}
2077 
2078 	fptr->file_elfmem = elfdata;
2079 
2080 	return (elf);
2081 }
2082 
2083 /*
2084  * We wouldn't need these if qsort(3C) took an argument for the callback...
2085  */
2086 static mutex_t sort_mtx = DEFAULTMUTEX;
2087 static char *sort_strs;
2088 static GElf_Sym *sort_syms;
2089 
2090 int
2091 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
2092 {
2093 	if (a->st_value < b->st_value)
2094 		return (-1);
2095 	if (a->st_value > b->st_value)
2096 		return (1);
2097 
2098 	/*
2099 	 * Prefer the function to the non-function.
2100 	 */
2101 	if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
2102 		if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
2103 			return (-1);
2104 		if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
2105 			return (1);
2106 	}
2107 
2108 	/*
2109 	 * Prefer the weak or strong global symbol to the local symbol.
2110 	 */
2111 	if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
2112 		if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
2113 			return (-1);
2114 		if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
2115 			return (1);
2116 	}
2117 
2118 	/*
2119 	 * Prefer the symbol that doesn't begin with a '$' since compilers and
2120 	 * other symbol generators often use it as a prefix.
2121 	 */
2122 	if (*bname == '$')
2123 		return (-1);
2124 	if (*aname == '$')
2125 		return (1);
2126 
2127 	/*
2128 	 * Prefer the name with fewer leading underscores in the name.
2129 	 */
2130 	while (*aname == '_' && *bname == '_') {
2131 		aname++;
2132 		bname++;
2133 	}
2134 
2135 	if (*bname == '_')
2136 		return (-1);
2137 	if (*aname == '_')
2138 		return (1);
2139 
2140 	/*
2141 	 * Prefer the symbol with the smaller size.
2142 	 */
2143 	if (a->st_size < b->st_size)
2144 		return (-1);
2145 	if (a->st_size > b->st_size)
2146 		return (1);
2147 
2148 	/*
2149 	 * All other factors being equal, fall back to lexicographic order.
2150 	 */
2151 	return (strcmp(aname, bname));
2152 }
2153 
2154 static int
2155 byaddr_cmp(const void *aa, const void *bb)
2156 {
2157 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
2158 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
2159 	char *aname = sort_strs + a->st_name;
2160 	char *bname = sort_strs + b->st_name;
2161 
2162 	return (byaddr_cmp_common(a, aname, b, bname));
2163 }
2164 
2165 static int
2166 byname_cmp(const void *aa, const void *bb)
2167 {
2168 	GElf_Sym *a = &sort_syms[*(uint_t *)aa];
2169 	GElf_Sym *b = &sort_syms[*(uint_t *)bb];
2170 	char *aname = sort_strs + a->st_name;
2171 	char *bname = sort_strs + b->st_name;
2172 
2173 	return (strcmp(aname, bname));
2174 }
2175 
2176 void
2177 optimize_symtab(sym_tbl_t *symtab)
2178 {
2179 	GElf_Sym *symp, *syms;
2180 	uint_t i, *indexa, *indexb;
2181 	Elf_Data *data;
2182 	size_t symn, strsz, count;
2183 
2184 	if (symtab == NULL || symtab->sym_data == NULL ||
2185 	    symtab->sym_byaddr != NULL)
2186 		return;
2187 
2188 	data = symtab->sym_data;
2189 	symn = symtab->sym_symn;
2190 	strsz = symtab->sym_strsz;
2191 
2192 	symp = syms = malloc(sizeof (GElf_Sym) * symn);
2193 
2194 	/*
2195 	 * First record all the symbols into a table and count up the ones
2196 	 * that we're interested in. We mark symbols as invalid by setting
2197 	 * the st_name to an illegal value.
2198 	 */
2199 	for (i = 0, count = 0; i < symn; i++, symp++) {
2200 		if (gelf_getsym(data, i, symp) != NULL &&
2201 		    symp->st_name < strsz &&
2202 		    IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
2203 			count++;
2204 		else
2205 			symp->st_name = strsz;
2206 	}
2207 
2208 	/*
2209 	 * Allocate sufficient space for both tables and populate them
2210 	 * with the same symbols we just counted.
2211 	 */
2212 	symtab->sym_count = count;
2213 	indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
2214 	indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
2215 
2216 	for (i = 0, symp = syms; i < symn; i++, symp++) {
2217 		if (symp->st_name < strsz)
2218 			*indexa++ = *indexb++ = i;
2219 	}
2220 
2221 	/*
2222 	 * Sort the two tables according to the appropriate criteria.
2223 	 */
2224 	(void) mutex_lock(&sort_mtx);
2225 	sort_strs = symtab->sym_strs;
2226 	sort_syms = syms;
2227 
2228 	qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
2229 	qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
2230 
2231 	sort_strs = NULL;
2232 	sort_syms = NULL;
2233 	(void) mutex_unlock(&sort_mtx);
2234 
2235 	free(syms);
2236 }
2237 
2238 /*
2239  * Build the symbol table for the given mapped file.
2240  */
2241 void
2242 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
2243 {
2244 	char objectfile[PATH_MAX];
2245 	uint_t i;
2246 
2247 	GElf_Ehdr ehdr;
2248 	GElf_Sym s;
2249 
2250 	Elf_Data *shdata;
2251 	Elf_Scn *scn;
2252 	Elf *elf;
2253 	size_t nshdrs, shstrndx;
2254 
2255 	struct {
2256 		GElf_Shdr c_shdr;
2257 		Elf_Data *c_data;
2258 		const char *c_name;
2259 	} *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
2260 
2261 	if (fptr->file_init)
2262 		return;	/* We've already processed this file */
2263 
2264 	/*
2265 	 * Mark the file_info struct as having the symbol table initialized
2266 	 * even if we fail below.  We tried once; we don't try again.
2267 	 */
2268 	fptr->file_init = 1;
2269 
2270 	if (elf_version(EV_CURRENT) == EV_NONE) {
2271 		dprintf("libproc ELF version is more recent than libelf\n");
2272 		return;
2273 	}
2274 
2275 	if (P->state == PS_DEAD || P->state == PS_IDLE) {
2276 		/*
2277 		 * If we're a not live, we can't open files from the /proc
2278 		 * object directory; we have only the mapping and file names
2279 		 * to guide us.  We prefer the file_lname, but need to handle
2280 		 * the case of it being NULL in order to bootstrap: we first
2281 		 * come here during rd_new() when the only information we have
2282 		 * is interpreter name associated with the AT_BASE mapping.
2283 		 */
2284 		(void) snprintf(objectfile, sizeof (objectfile), "%s",
2285 		    fptr->file_lname ? fptr->file_lname : fptr->file_pname);
2286 	} else {
2287 		(void) snprintf(objectfile, sizeof (objectfile),
2288 		    "%s/%d/object/%s",
2289 		    procfs_path, (int)P->pid, fptr->file_pname);
2290 	}
2291 
2292 	/*
2293 	 * Open the object file, create the elf file, and then get the elf
2294 	 * header and .shstrtab data buffer so we can process sections by
2295 	 * name. If anything goes wrong try to fake up an elf file from
2296 	 * the in-core elf image.
2297 	 */
2298 	if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
2299 		dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
2300 		    objectfile, strerror(errno));
2301 
2302 		if ((elf = fake_elf(P, fptr)) == NULL ||
2303 		    elf_kind(elf) != ELF_K_ELF ||
2304 		    gelf_getehdr(elf, &ehdr) == NULL ||
2305 		    elf_getshnum(elf, &nshdrs) == 0 ||
2306 		    elf_getshstrndx(elf, &shstrndx) == 0 ||
2307 		    (scn = elf_getscn(elf, shstrndx)) == NULL ||
2308 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2309 			dprintf("failed to fake up ELF file\n");
2310 			return;
2311 		}
2312 
2313 	} else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
2314 	    elf_kind(elf) != ELF_K_ELF ||
2315 	    gelf_getehdr(elf, &ehdr) == NULL ||
2316 	    elf_getshnum(elf, &nshdrs) == 0 ||
2317 	    elf_getshstrndx(elf, &shstrndx) == 0 ||
2318 	    (scn = elf_getscn(elf, shstrndx)) == NULL ||
2319 	    (shdata = elf_getdata(scn, NULL)) == NULL) {
2320 		int err = elf_errno();
2321 
2322 		dprintf("failed to process ELF file %s: %s\n",
2323 		    objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
2324 
2325 		if ((elf = fake_elf(P, fptr)) == NULL ||
2326 		    elf_kind(elf) != ELF_K_ELF ||
2327 		    gelf_getehdr(elf, &ehdr) == NULL ||
2328 		    elf_getshnum(elf, &nshdrs) == 0 ||
2329 		    elf_getshstrndx(elf, &shstrndx) == 0 ||
2330 		    (scn = elf_getscn(elf, shstrndx)) == NULL ||
2331 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2332 			dprintf("failed to fake up ELF file\n");
2333 			goto bad;
2334 		}
2335 
2336 	} else if (file_differs(P, elf, fptr)) {
2337 		Elf *newelf;
2338 
2339 		/*
2340 		 * Before we get too excited about this elf file, we'll check
2341 		 * its checksum value against the value we have in memory. If
2342 		 * they don't agree, we try to fake up a new elf file and
2343 		 * proceed with that instead.
2344 		 */
2345 
2346 		dprintf("ELF file %s (%lx) doesn't match in-core image\n",
2347 		    fptr->file_pname,
2348 		    (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
2349 
2350 		if ((newelf = fake_elf(P, fptr)) == NULL ||
2351 		    elf_kind(newelf) != ELF_K_ELF ||
2352 		    gelf_getehdr(newelf, &ehdr) == NULL ||
2353 		    elf_getshnum(newelf, &nshdrs) == 0 ||
2354 		    elf_getshstrndx(newelf, &shstrndx) == 0 ||
2355 		    (scn = elf_getscn(newelf, shstrndx)) == NULL ||
2356 		    (shdata = elf_getdata(scn, NULL)) == NULL) {
2357 			dprintf("failed to fake up ELF file\n");
2358 		} else {
2359 			(void) elf_end(elf);
2360 			elf = newelf;
2361 
2362 			dprintf("switched to faked up ELF file\n");
2363 		}
2364 	}
2365 
2366 	if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
2367 		dprintf("failed to malloc section cache for %s\n", objectfile);
2368 		goto bad;
2369 	}
2370 
2371 	dprintf("processing ELF file %s\n", objectfile);
2372 	fptr->file_class = ehdr.e_ident[EI_CLASS];
2373 	fptr->file_etype = ehdr.e_type;
2374 	fptr->file_elf = elf;
2375 	fptr->file_shstrs = shdata->d_buf;
2376 	fptr->file_shstrsz = shdata->d_size;
2377 
2378 	/*
2379 	 * Iterate through each section, caching its section header, data
2380 	 * pointer, and name.  We use this for handling sh_link values below.
2381 	 */
2382 	for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
2383 		if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
2384 			dprintf("Pbuild_file_symtab: Failed to get section "
2385 			    "header\n");
2386 			goto bad; /* Failed to get section header */
2387 		}
2388 
2389 		if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
2390 			dprintf("Pbuild_file_symtab: Failed to get section "
2391 			    "data\n");
2392 			goto bad; /* Failed to get section data */
2393 		}
2394 
2395 		if (cp->c_shdr.sh_name >= shdata->d_size) {
2396 			dprintf("Pbuild_file_symtab: corrupt section name");
2397 			goto bad; /* Corrupt section name */
2398 		}
2399 
2400 		cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
2401 	}
2402 
2403 	/*
2404 	 * Now iterate through the section cache in order to locate info
2405 	 * for the .symtab, .dynsym, .dynamic, .plt, and .SUNW_ctf sections:
2406 	 */
2407 	for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
2408 		GElf_Shdr *shp = &cp->c_shdr;
2409 
2410 		if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
2411 			sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
2412 			    &fptr->file_symtab : &fptr->file_dynsym;
2413 			/*
2414 			 * It's possible that the we already got the symbol
2415 			 * table from the core file itself. Either the file
2416 			 * differs in which case our faked up elf file will
2417 			 * only contain the dynsym (not the symtab) or the
2418 			 * file matches in which case we'll just be replacing
2419 			 * the symbol table we pulled out of the core file
2420 			 * with an equivalent one. In either case, this
2421 			 * check isn't essential, but it's a good idea.
2422 			 */
2423 			if (symp->sym_data == NULL) {
2424 				dprintf("Symbol table found for %s\n",
2425 				    objectfile);
2426 				symp->sym_data = cp->c_data;
2427 				symp->sym_symn = shp->sh_size / shp->sh_entsize;
2428 				symp->sym_strs =
2429 				    cache[shp->sh_link].c_data->d_buf;
2430 				symp->sym_strsz =
2431 				    cache[shp->sh_link].c_data->d_size;
2432 				symp->sym_hdr = cp->c_shdr;
2433 				symp->sym_strhdr = cache[shp->sh_link].c_shdr;
2434 			} else {
2435 				dprintf("Symbol table already there for %s\n",
2436 				    objectfile);
2437 			}
2438 
2439 		} else if (shp->sh_type == SHT_DYNAMIC) {
2440 			dyn = cp;
2441 		} else if (strcmp(cp->c_name, ".plt") == 0) {
2442 			plt = cp;
2443 		} else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
2444 			/*
2445 			 * Skip over bogus CTF sections so they don't come back
2446 			 * to haunt us later.
2447 			 */
2448 			if (shp->sh_link == 0 ||
2449 			    shp->sh_link >= nshdrs ||
2450 			    (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
2451 			    cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
2452 				dprintf("Bad sh_link %d for "
2453 				    "CTF\n", shp->sh_link);
2454 				continue;
2455 			}
2456 			ctf = cp;
2457 		}
2458 	}
2459 
2460 	/*
2461 	 * At this point, we've found all the symbol tables we're ever going
2462 	 * to find: the ones in the loop above and possibly the symtab that
2463 	 * was included in the core file. Before we perform any lookups, we
2464 	 * create sorted versions to optimize for lookups.
2465 	 */
2466 	optimize_symtab(&fptr->file_symtab);
2467 	optimize_symtab(&fptr->file_dynsym);
2468 
2469 	/*
2470 	 * Fill in the base address of the text mapping for shared libraries.
2471 	 * This allows us to translate symbols before librtld_db is ready.
2472 	 */
2473 	if (fptr->file_etype == ET_DYN) {
2474 		fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
2475 		    fptr->file_map->map_pmap.pr_offset;
2476 		dprintf("setting file_dyn_base for %s to %lx\n",
2477 		    objectfile, (long)fptr->file_dyn_base);
2478 	}
2479 
2480 	/*
2481 	 * Record the CTF section information in the file info structure.
2482 	 */
2483 	if (ctf != NULL) {
2484 		fptr->file_ctf_off = ctf->c_shdr.sh_offset;
2485 		fptr->file_ctf_size = ctf->c_shdr.sh_size;
2486 		if (ctf->c_shdr.sh_link != 0 &&
2487 		    cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
2488 			fptr->file_ctf_dyn = 1;
2489 	}
2490 
2491 	if (fptr->file_lo == NULL)
2492 		goto done; /* Nothing else to do if no load object info */
2493 
2494 	/*
2495 	 * If the object is a shared library and we have a different rl_base
2496 	 * value, reset file_dyn_base according to librtld_db's information.
2497 	 */
2498 	if (fptr->file_etype == ET_DYN &&
2499 	    fptr->file_lo->rl_base != fptr->file_dyn_base) {
2500 		dprintf("resetting file_dyn_base for %s to %lx\n",
2501 		    objectfile, (long)fptr->file_lo->rl_base);
2502 		fptr->file_dyn_base = fptr->file_lo->rl_base;
2503 	}
2504 
2505 	/*
2506 	 * Fill in the PLT information for this file if a PLT symbol is found.
2507 	 */
2508 	if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
2509 	    NULL) != NULL) {
2510 		fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
2511 		fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
2512 
2513 		/*
2514 		 * Bring the load object up to date; it is the only way the
2515 		 * user has to access the PLT data. The PLT information in the
2516 		 * rd_loadobj_t is not set in the call to map_iter() (the
2517 		 * callback for rd_loadobj_iter) where we set file_lo.
2518 		 */
2519 		fptr->file_lo->rl_plt_base = fptr->file_plt_base;
2520 		fptr->file_lo->rl_plt_size = fptr->file_plt_size;
2521 
2522 		dprintf("PLT found at %p, size = %lu\n",
2523 		    (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
2524 	}
2525 
2526 	/*
2527 	 * Fill in the PLT information.
2528 	 */
2529 	if (dyn != NULL) {
2530 		uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
2531 		size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
2532 		GElf_Dyn d;
2533 
2534 		for (i = 0; i < ndyn; i++) {
2535 			if (gelf_getdyn(dyn->c_data, i, &d) != NULL &&
2536 			    d.d_tag == DT_JMPREL) {
2537 				dprintf("DT_JMPREL is %p\n",
2538 				    (void *)(uintptr_t)d.d_un.d_ptr);
2539 				fptr->file_jmp_rel =
2540 				    d.d_un.d_ptr + fptr->file_dyn_base;
2541 				break;
2542 			}
2543 		}
2544 
2545 		dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
2546 		    (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
2547 	}
2548 
2549 done:
2550 	free(cache);
2551 	return;
2552 
2553 bad:
2554 	if (cache != NULL)
2555 		free(cache);
2556 
2557 	(void) elf_end(elf);
2558 	fptr->file_elf = NULL;
2559 	if (fptr->file_elfmem != NULL) {
2560 		free(fptr->file_elfmem);
2561 		fptr->file_elfmem = NULL;
2562 	}
2563 	(void) close(fptr->file_fd);
2564 	fptr->file_fd = -1;
2565 }
2566 
2567 /*
2568  * Given a process virtual address, return the map_info_t containing it.
2569  * If none found, return NULL.
2570  */
2571 map_info_t *
2572 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
2573 {
2574 	int lo = 0;
2575 	int hi = P->map_count - 1;
2576 	int mid;
2577 	map_info_t *mp;
2578 
2579 	while (lo <= hi) {
2580 
2581 		mid = (lo + hi) / 2;
2582 		mp = &P->mappings[mid];
2583 
2584 		/* check that addr is in [vaddr, vaddr + size) */
2585 		if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
2586 			return (mp);
2587 
2588 		if (addr < mp->map_pmap.pr_vaddr)
2589 			hi = mid - 1;
2590 		else
2591 			lo = mid + 1;
2592 	}
2593 
2594 	return (NULL);
2595 }
2596 
2597 /*
2598  * Return the map_info_t for the executable file.
2599  * If not found, return NULL.
2600  */
2601 static map_info_t *
2602 exec_map(struct ps_prochandle *P)
2603 {
2604 	uint_t i;
2605 	map_info_t *mptr;
2606 	map_info_t *mold = NULL;
2607 	file_info_t *fptr;
2608 	uintptr_t base;
2609 
2610 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2611 		if (mptr->map_pmap.pr_mapname[0] == '\0')
2612 			continue;
2613 		if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2614 			if ((fptr = mptr->map_file) != NULL &&
2615 			    fptr->file_lo != NULL) {
2616 				base = fptr->file_lo->rl_base;
2617 				if (base >= mptr->map_pmap.pr_vaddr &&
2618 				    base < mptr->map_pmap.pr_vaddr +
2619 				    mptr->map_pmap.pr_size)	/* text space */
2620 					return (mptr);
2621 				mold = mptr;	/* must be the data */
2622 				continue;
2623 			}
2624 			/* This is a poor way to test for text space */
2625 			if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2626 			    (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2627 				mold = mptr;
2628 				continue;
2629 			}
2630 			return (mptr);
2631 		}
2632 	}
2633 
2634 	return (mold);
2635 }
2636 
2637 /*
2638  * Given a shared object name, return the map_info_t for it.  If no matching
2639  * object is found, return NULL.  Normally, the link maps contain the full
2640  * object pathname, e.g. /usr/lib/libc.so.1.  We allow the object name to
2641  * take one of the following forms:
2642  *
2643  * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2644  * 2. An exact basename match: "libc.so.1"
2645  * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2646  * 4. The literal string "a.out" is an alias for the executable mapping
2647  *
2648  * The third case is a convenience for callers and may not be necessary.
2649  *
2650  * As the exact same object name may be loaded on different link maps (see
2651  * dlmopen(3DL)), we also allow the caller to resolve the object name by
2652  * specifying a particular link map id.  If lmid is PR_LMID_EVERY, the
2653  * first matching name will be returned, regardless of the link map id.
2654  */
2655 static map_info_t *
2656 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2657 {
2658 	map_info_t *mp;
2659 	file_info_t *fp;
2660 	size_t objlen;
2661 	uint_t i;
2662 
2663 	/*
2664 	 * If we have no rtld_db, then always treat a request as one for all
2665 	 * link maps.
2666 	 */
2667 	if (P->rap == NULL)
2668 		lmid = PR_LMID_EVERY;
2669 
2670 	/*
2671 	 * First pass: look for exact matches of the entire pathname or
2672 	 * basename (cases 1 and 2 above):
2673 	 */
2674 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2675 
2676 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2677 		    (fp = mp->map_file) == NULL || fp->file_lname == NULL)
2678 			continue;
2679 
2680 		if (lmid != PR_LMID_EVERY &&
2681 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2682 			continue;
2683 
2684 		/*
2685 		 * If we match, return the primary text mapping; otherwise
2686 		 * just return the mapping we matched.
2687 		 */
2688 		if (strcmp(fp->file_lname, objname) == 0 ||
2689 		    strcmp(fp->file_lbase, objname) == 0)
2690 			return (fp->file_map ? fp->file_map : mp);
2691 	}
2692 
2693 	objlen = strlen(objname);
2694 
2695 	/*
2696 	 * Second pass: look for partial matches (case 3 above):
2697 	 */
2698 	for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2699 
2700 		if (mp->map_pmap.pr_mapname[0] == '\0' ||
2701 		    (fp = mp->map_file) == NULL || fp->file_lname == NULL)
2702 			continue;
2703 
2704 		if (lmid != PR_LMID_EVERY &&
2705 		    (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2706 			continue;
2707 
2708 		/*
2709 		 * If we match, return the primary text mapping; otherwise
2710 		 * just return the mapping we matched.
2711 		 */
2712 		if (strncmp(fp->file_lbase, objname, objlen) == 0 &&
2713 		    fp->file_lbase[objlen] == '.')
2714 			return (fp->file_map ? fp->file_map : mp);
2715 	}
2716 
2717 	/*
2718 	 * One last check: we allow "a.out" to always alias the executable,
2719 	 * assuming this name was not in use for something else.
2720 	 */
2721 	if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2722 	    (strcmp(objname, "a.out") == 0))
2723 		return (P->map_exec);
2724 
2725 	return (NULL);
2726 }
2727 
2728 static map_info_t *
2729 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2730 {
2731 	map_info_t *mptr;
2732 
2733 	if (!P->info_valid)
2734 		Pupdate_maps(P);
2735 
2736 	if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2737 	    Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2738 		P->map_exec = mptr;
2739 
2740 	if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2741 	    Pgetauxval(P, AT_BASE))) != NULL)
2742 		P->map_ldso = mptr;
2743 
2744 	if (name == PR_OBJ_EXEC)
2745 		mptr = P->map_exec;
2746 	else if (name == PR_OBJ_LDSO)
2747 		mptr = P->map_ldso;
2748 	else
2749 		mptr = object_to_map(P, lmid, name);
2750 
2751 	return (mptr);
2752 }
2753 
2754 /*
2755  * When two symbols are found by address, decide which one is to be preferred.
2756  */
2757 static GElf_Sym *
2758 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2759 {
2760 	/*
2761 	 * Prefer the non-NULL symbol.
2762 	 */
2763 	if (sym1 == NULL)
2764 		return (sym2);
2765 	if (sym2 == NULL)
2766 		return (sym1);
2767 
2768 	/*
2769 	 * Defer to the sort ordering...
2770 	 */
2771 	return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2772 }
2773 
2774 /*
2775  * Look up a symbol by address in the specified symbol table.
2776  * Adjustment to 'addr' must already have been made for the
2777  * offset of the symbol if this is a dynamic library symbol table.
2778  */
2779 static GElf_Sym *
2780 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2781 {
2782 	Elf_Data *data = symtab->sym_data;
2783 	GElf_Sym sym, osym;
2784 	uint_t i, oid, *byaddr = symtab->sym_byaddr;
2785 	int min, max, mid, omid, found = 0;
2786 
2787 	if (data == NULL)
2788 		return (NULL);
2789 
2790 	min = 0;
2791 	max = symtab->sym_count - 1;
2792 	osym.st_value = 0;
2793 
2794 	/*
2795 	 * We can't return when we've found a match, we have to continue
2796 	 * searching for the closest matching symbol.
2797 	 */
2798 	while (min <= max) {
2799 		mid = (max + min) / 2;
2800 
2801 		i = byaddr[mid];
2802 		(void) gelf_getsym(data, i, &sym);
2803 
2804 		if (addr >= sym.st_value &&
2805 		    addr < sym.st_value + sym.st_size &&
2806 		    (!found || sym.st_value > osym.st_value)) {
2807 			osym = sym;
2808 			omid = mid;
2809 			oid = i;
2810 			found = 1;
2811 		}
2812 
2813 		if (addr < sym.st_value)
2814 			max = mid - 1;
2815 		else
2816 			min = mid + 1;
2817 	}
2818 
2819 	if (!found)
2820 		return (NULL);
2821 
2822 	/*
2823 	 * There may be many symbols with identical values so we walk
2824 	 * backward in the byaddr table to find the best match.
2825 	 */
2826 	do {
2827 		sym = osym;
2828 		i = oid;
2829 
2830 		if (omid == 0)
2831 			break;
2832 
2833 		oid = byaddr[--omid];
2834 		(void) gelf_getsym(data, oid, &osym);
2835 	} while (addr >= osym.st_value &&
2836 	    addr < sym.st_value + osym.st_size &&
2837 	    osym.st_value == sym.st_value);
2838 
2839 	*symp = sym;
2840 	if (idp != NULL)
2841 		*idp = i;
2842 	return (symp);
2843 }
2844 
2845 /*
2846  * Look up a symbol by name in the specified symbol table.
2847  */
2848 static GElf_Sym *
2849 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2850 {
2851 	Elf_Data *data = symtab->sym_data;
2852 	char *strs = symtab->sym_strs;
2853 	uint_t i, *byname = symtab->sym_byname;
2854 	int min, mid, max, cmp;
2855 
2856 	if (data == NULL || strs == NULL)
2857 		return (NULL);
2858 
2859 	min = 0;
2860 	max = symtab->sym_count - 1;
2861 
2862 	while (min <= max) {
2863 		mid = (max + min) / 2;
2864 
2865 		i = byname[mid];
2866 		(void) gelf_getsym(data, i, symp);
2867 
2868 		if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2869 			if (idp != NULL)
2870 				*idp = i;
2871 			return (symp);
2872 		}
2873 
2874 		if (cmp < 0)
2875 			max = mid - 1;
2876 		else
2877 			min = mid + 1;
2878 	}
2879 
2880 	return (NULL);
2881 }
2882 
2883 /*
2884  * Search the process symbol tables looking for a symbol whose
2885  * value to value+size contain the address specified by addr.
2886  * Return values are:
2887  *	sym_name_buffer containing the symbol name
2888  *	GElf_Sym symbol table entry
2889  *	prsyminfo_t ancillary symbol information
2890  * Returns 0 on success, -1 on failure.
2891  */
2892 int
2893 Pxlookup_by_addr(
2894 	struct ps_prochandle *P,
2895 	uintptr_t addr,			/* process address being sought */
2896 	char *sym_name_buffer,		/* buffer for the symbol name */
2897 	size_t bufsize,			/* size of sym_name_buffer */
2898 	GElf_Sym *symbolp,		/* returned symbol table entry */
2899 	prsyminfo_t *sip)		/* returned symbol info */
2900 {
2901 	GElf_Sym	*symp;
2902 	char		*name;
2903 	GElf_Sym	sym1, *sym1p = NULL;
2904 	GElf_Sym	sym2, *sym2p = NULL;
2905 	char		*name1 = NULL;
2906 	char		*name2 = NULL;
2907 	uint_t		i1;
2908 	uint_t		i2;
2909 	map_info_t	*mptr;
2910 	file_info_t	*fptr;
2911 
2912 	(void) Prd_agent(P);
2913 
2914 	if ((mptr = Paddr2mptr(P, addr)) == NULL ||	/* no such address */
2915 	    (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2916 	    fptr->file_elf == NULL)			/* not an ELF file */
2917 		return (-1);
2918 
2919 	/*
2920 	 * Adjust the address by the load object base address in
2921 	 * case the address turns out to be in a shared library.
2922 	 */
2923 	addr -= fptr->file_dyn_base;
2924 
2925 	/*
2926 	 * Search both symbol tables, symtab first, then dynsym.
2927 	 */
2928 	if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2929 		name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2930 	if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2931 		name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2932 
2933 	if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2934 		return (-1);
2935 
2936 	name = (symp == sym1p) ? name1 : name2;
2937 	if (bufsize > 0) {
2938 		(void) strncpy(sym_name_buffer, name, bufsize);
2939 		sym_name_buffer[bufsize - 1] = '\0';
2940 	}
2941 
2942 	*symbolp = *symp;
2943 	if (sip != NULL) {
2944 		sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2945 		sip->prs_object = fptr->file_lbase;
2946 		sip->prs_id = (symp == sym1p) ? i1 : i2;
2947 		sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2948 		sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2949 		    fptr->file_lo->rl_lmident;
2950 	}
2951 
2952 	if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2953 		symbolp->st_value += fptr->file_dyn_base;
2954 
2955 	return (0);
2956 }
2957 
2958 int
2959 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf, size_t size,
2960     GElf_Sym *symp)
2961 {
2962 	return (Pxlookup_by_addr(P, addr, buf, size, symp, NULL));
2963 }
2964 
2965 /*
2966  * Search the process symbol tables looking for a symbol whose name matches the
2967  * specified name and whose object and link map optionally match the specified
2968  * parameters.  On success, the function returns 0 and fills in the GElf_Sym
2969  * symbol table entry.  On failure, -1 is returned.
2970  */
2971 int
2972 Pxlookup_by_name(
2973 	struct ps_prochandle *P,
2974 	Lmid_t lmid,			/* link map to match, or -1 for any */
2975 	const char *oname,		/* load object name */
2976 	const char *sname,		/* symbol name */
2977 	GElf_Sym *symp,			/* returned symbol table entry */
2978 	prsyminfo_t *sip)		/* returned symbol info */
2979 {
2980 	map_info_t *mptr;
2981 	file_info_t *fptr;
2982 	int cnt;
2983 
2984 	GElf_Sym sym;
2985 	prsyminfo_t si;
2986 	int rv = -1;
2987 	uint_t id;
2988 
2989 	if (oname == PR_OBJ_EVERY) {
2990 		/* create all the file_info_t's for all the mappings */
2991 		(void) Prd_agent(P);
2992 		cnt = P->num_files;
2993 		fptr = list_next(&P->file_head);
2994 	} else {
2995 		cnt = 1;
2996 		if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2997 		    (fptr = build_map_symtab(P, mptr)) == NULL)
2998 			return (-1);
2999 	}
3000 
3001 	/*
3002 	 * Iterate through the loaded object files and look for the symbol
3003 	 * name in the .symtab and .dynsym of each.  If we encounter a match
3004 	 * with SHN_UNDEF, keep looking in hopes of finding a better match.
3005 	 * This means that a name such as "puts" will match the puts function
3006 	 * in libc instead of matching the puts PLT entry in the a.out file.
3007 	 */
3008 	for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
3009 		Pbuild_file_symtab(P, fptr);
3010 
3011 		if (fptr->file_elf == NULL)
3012 			continue;
3013 
3014 		if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
3015 		    lmid != fptr->file_lo->rl_lmident)
3016 			continue;
3017 
3018 		if (fptr->file_symtab.sym_data != NULL &&
3019 		    sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
3020 			if (sip != NULL) {
3021 				sip->prs_id = id;
3022 				sip->prs_table = PR_SYMTAB;
3023 				sip->prs_object = oname;
3024 				sip->prs_name = sname;
3025 				sip->prs_lmid = fptr->file_lo == NULL ?
3026 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
3027 			}
3028 		} else if (fptr->file_dynsym.sym_data != NULL &&
3029 		    sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
3030 			if (sip != NULL) {
3031 				sip->prs_id = id;
3032 				sip->prs_table = PR_DYNSYM;
3033 				sip->prs_object = oname;
3034 				sip->prs_name = sname;
3035 				sip->prs_lmid = fptr->file_lo == NULL ?
3036 				    LM_ID_BASE : fptr->file_lo->rl_lmident;
3037 			}
3038 		} else {
3039 			continue;
3040 		}
3041 
3042 		if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
3043 			symp->st_value += fptr->file_dyn_base;
3044 
3045 		if (symp->st_shndx != SHN_UNDEF)
3046 			return (0);
3047 
3048 		if (rv != 0) {
3049 			if (sip != NULL)
3050 				si = *sip;
3051 			sym = *symp;
3052 			rv = 0;
3053 		}
3054 	}
3055 
3056 	if (rv == 0) {
3057 		if (sip != NULL)
3058 			*sip = si;
3059 		*symp = sym;
3060 	}
3061 
3062 	return (rv);
3063 }
3064 
3065 /*
3066  * Search the process symbol tables looking for a symbol whose name matches the
3067  * specified name, but without any restriction on the link map id.
3068  */
3069 int
3070 Plookup_by_name(struct ps_prochandle *P, const char *object,
3071 	const char *symbol, GElf_Sym *symp)
3072 {
3073 	return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
3074 }
3075 
3076 /*
3077  * Iterate over the process's address space mappings.
3078  */
3079 int
3080 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3081 {
3082 	map_info_t *mptr;
3083 	file_info_t *fptr;
3084 	char *object_name;
3085 	int rc = 0;
3086 	int i;
3087 
3088 	/* create all the file_info_t's for all the mappings */
3089 	(void) Prd_agent(P);
3090 
3091 	for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
3092 		if ((fptr = mptr->map_file) == NULL)
3093 			object_name = NULL;
3094 		else
3095 			object_name = fptr->file_lname;
3096 		if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
3097 			return (rc);
3098 	}
3099 	return (0);
3100 }
3101 
3102 /*
3103  * Iterate over the process's mapped objects.
3104  */
3105 int
3106 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
3107 {
3108 	map_info_t *mptr;
3109 	file_info_t *fptr;
3110 	uint_t cnt;
3111 	int rc = 0;
3112 
3113 	(void) Prd_agent(P); /* create file_info_t's for all the mappings */
3114 	Pupdate_maps(P);
3115 
3116 	for (cnt = P->num_files, fptr = list_next(&P->file_head);
3117 	    cnt; cnt--, fptr = list_next(fptr)) {
3118 
3119 		const char *lname = fptr->file_lname ? fptr->file_lname : "";
3120 
3121 		if ((mptr = fptr->file_map) == NULL)
3122 			continue;
3123 
3124 		if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
3125 			return (rc);
3126 	}
3127 	return (0);
3128 }
3129 
3130 /*
3131  * Given a virtual address, return the name of the underlying
3132  * mapped object (file), as provided by the dynamic linker.
3133  * Return NULL on failure (no underlying shared library).
3134  */
3135 char *
3136 Pobjname(struct ps_prochandle *P, uintptr_t addr,
3137 	char *buffer, size_t bufsize)
3138 {
3139 	map_info_t *mptr;
3140 	file_info_t *fptr;
3141 
3142 	/* create all the file_info_t's for all the mappings */
3143 	(void) Prd_agent(P);
3144 
3145 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
3146 	    (fptr = mptr->map_file) != NULL &&
3147 	    fptr->file_lname != NULL) {
3148 		(void) strncpy(buffer, fptr->file_lname, bufsize);
3149 		if (strlen(fptr->file_lname) >= bufsize)
3150 			buffer[bufsize-1] = '\0';
3151 		return (buffer);
3152 	}
3153 	return (NULL);
3154 }
3155 
3156 /*
3157  * Given a virtual address, return the link map id of the underlying mapped
3158  * object (file), as provided by the dynamic linker.  Return -1 on failure.
3159  */
3160 int
3161 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
3162 {
3163 	map_info_t *mptr;
3164 	file_info_t *fptr;
3165 
3166 	/* create all the file_info_t's for all the mappings */
3167 	(void) Prd_agent(P);
3168 
3169 	if ((mptr = Paddr2mptr(P, addr)) != NULL &&
3170 	    (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
3171 		*lmidp = fptr->file_lo->rl_lmident;
3172 		return (0);
3173 	}
3174 
3175 	return (-1);
3176 }
3177 
3178 /*
3179  * Given an object name and optional lmid, iterate over the object's symbols.
3180  * If which == PR_SYMTAB, search the normal symbol table.
3181  * If which == PR_DYNSYM, search the dynamic symbol table.
3182  */
3183 static int
3184 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3185     int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
3186 {
3187 	GElf_Sym sym;
3188 	GElf_Shdr shdr;
3189 	map_info_t *mptr;
3190 	file_info_t *fptr;
3191 	sym_tbl_t *symtab;
3192 	Elf_Data *data;
3193 	size_t symn;
3194 	const char *strs;
3195 	size_t strsz;
3196 	prsyminfo_t si;
3197 	int rv;
3198 	uint_t *map, i, count, ndx;
3199 
3200 	if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
3201 		return (-1);
3202 
3203 	if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
3204 	    fptr->file_elf == NULL)			/* not an ELF file */
3205 		return (-1);
3206 
3207 	/*
3208 	 * Search the specified symbol table.
3209 	 */
3210 	switch (which) {
3211 	case PR_SYMTAB:
3212 		symtab = &fptr->file_symtab;
3213 		si.prs_table = PR_SYMTAB;
3214 		break;
3215 	case PR_DYNSYM:
3216 		symtab = &fptr->file_dynsym;
3217 		si.prs_table = PR_DYNSYM;
3218 		break;
3219 	default:
3220 		return (-1);
3221 	}
3222 
3223 	si.prs_object = object_name;
3224 	si.prs_lmid = fptr->file_lo == NULL ?
3225 	    LM_ID_BASE : fptr->file_lo->rl_lmident;
3226 
3227 	data = symtab->sym_data;
3228 	symn = symtab->sym_symn;
3229 	strs = symtab->sym_strs;
3230 	strsz = symtab->sym_strsz;
3231 
3232 	if (data == NULL || strs == NULL)
3233 		return (-1);
3234 
3235 	switch (order) {
3236 	case PRO_NATURAL:
3237 		map = NULL;
3238 		count = symn;
3239 		break;
3240 	case PRO_BYNAME:
3241 		map = symtab->sym_byname;
3242 		count = symtab->sym_count;
3243 		break;
3244 	case PRO_BYADDR:
3245 		map = symtab->sym_byaddr;
3246 		count = symtab->sym_count;
3247 		break;
3248 	default:
3249 		return (-1);
3250 	}
3251 
3252 	rv = 0;
3253 
3254 	for (i = 0; i < count; i++) {
3255 		ndx = map == NULL ? i : map[i];
3256 		if (gelf_getsym(data, ndx, &sym) != NULL) {
3257 			uint_t s_bind, s_type, type;
3258 
3259 			if (sym.st_name >= strsz)	/* invalid st_name */
3260 				continue;
3261 
3262 			s_bind = GELF_ST_BIND(sym.st_info);
3263 			s_type = GELF_ST_TYPE(sym.st_info);
3264 
3265 			/*
3266 			 * In case you haven't already guessed, this relies on
3267 			 * the bitmask used in <libproc.h> for encoding symbol
3268 			 * type and binding matching the order of STB and STT
3269 			 * constants in <sys/elf.h>.  ELF can't change without
3270 			 * breaking binary compatibility, so I think this is
3271 			 * reasonably fair game.
3272 			 */
3273 			if (s_bind < STB_NUM && s_type < STT_NUM) {
3274 				type = (1 << (s_type + 8)) | (1 << s_bind);
3275 				if ((type & ~mask) != 0)
3276 					continue;
3277 			} else
3278 				continue; /* Invalid type or binding */
3279 
3280 			if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
3281 				sym.st_value += fptr->file_dyn_base;
3282 
3283 			si.prs_name = strs + sym.st_name;
3284 
3285 			/*
3286 			 * If symbol's type is STT_SECTION, then try to lookup
3287 			 * the name of the corresponding section.
3288 			 */
3289 			if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
3290 			    fptr->file_shstrs != NULL &&
3291 			    gelf_getshdr(elf_getscn(fptr->file_elf,
3292 			    sym.st_shndx), &shdr) != NULL &&
3293 			    shdr.sh_name != 0 &&
3294 			    shdr.sh_name < fptr->file_shstrsz)
3295 				si.prs_name = fptr->file_shstrs + shdr.sh_name;
3296 
3297 			si.prs_id = ndx;
3298 			if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
3299 				break;
3300 		}
3301 	}
3302 
3303 	return (rv);
3304 }
3305 
3306 int
3307 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
3308     int which, int mask, proc_xsym_f *func, void *cd)
3309 {
3310 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3311 	    PRO_NATURAL, func, cd));
3312 }
3313 
3314 int
3315 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
3316     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3317 {
3318 	return (Psymbol_iter_com(P, lmid, object_name, which, mask,
3319 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
3320 }
3321 
3322 int
3323 Psymbol_iter(struct ps_prochandle *P,
3324     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3325 {
3326 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3327 	    PRO_NATURAL, (proc_xsym_f *)func, cd));
3328 }
3329 
3330 int
3331 Psymbol_iter_by_addr(struct ps_prochandle *P,
3332     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3333 {
3334 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3335 	    PRO_BYADDR, (proc_xsym_f *)func, cd));
3336 }
3337 
3338 int
3339 Psymbol_iter_by_name(struct ps_prochandle *P,
3340     const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
3341 {
3342 	return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
3343 	    PRO_BYNAME, (proc_xsym_f *)func, cd));
3344 }
3345 
3346 /*
3347  * Get the platform string from the core file if we have it;
3348  * just perform the system call for the caller if this is a live process.
3349  */
3350 char *
3351 Pplatform(struct ps_prochandle *P, char *s, size_t n)
3352 {
3353 	if (P->state == PS_IDLE) {
3354 		errno = ENODATA;
3355 		return (NULL);
3356 	}
3357 
3358 	if (P->state == PS_DEAD) {
3359 		if (P->core->core_platform == NULL) {
3360 			errno = ENODATA;
3361 			return (NULL);
3362 		}
3363 		(void) strncpy(s, P->core->core_platform, n - 1);
3364 		s[n - 1] = '\0';
3365 
3366 	} else if (sysinfo(SI_PLATFORM, s, n) == -1)
3367 		return (NULL);
3368 
3369 	return (s);
3370 }
3371 
3372 /*
3373  * Get the uname(2) information from the core file if we have it;
3374  * just perform the system call for the caller if this is a live process.
3375  */
3376 int
3377 Puname(struct ps_prochandle *P, struct utsname *u)
3378 {
3379 	if (P->state == PS_IDLE) {
3380 		errno = ENODATA;
3381 		return (-1);
3382 	}
3383 
3384 	if (P->state == PS_DEAD) {
3385 		if (P->core->core_uts == NULL) {
3386 			errno = ENODATA;
3387 			return (-1);
3388 		}
3389 		(void) memcpy(u, P->core->core_uts, sizeof (struct utsname));
3390 		return (0);
3391 	}
3392 	return (uname(u));
3393 }
3394 
3395 /*
3396  * Get the zone name from the core file if we have it; look up the
3397  * name based on the zone id if this is a live process.
3398  */
3399 char *
3400 Pzonename(struct ps_prochandle *P, char *s, size_t n)
3401 {
3402 	if (P->state == PS_IDLE) {
3403 		errno = ENODATA;
3404 		return (NULL);
3405 	}
3406 
3407 	if (P->state == PS_DEAD) {
3408 		if (P->core->core_zonename == NULL) {
3409 			errno = ENODATA;
3410 			return (NULL);
3411 		}
3412 		(void) strlcpy(s, P->core->core_zonename, n);
3413 	} else {
3414 		if (getzonenamebyid(P->status.pr_zoneid, s, n) < 0)
3415 			return (NULL);
3416 		s[n - 1] = '\0';
3417 	}
3418 	return (s);
3419 }
3420 
3421 /*
3422  * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3423  * the symbol table heads in the new ps_prochandle.
3424  */
3425 void
3426 Pinitsym(struct ps_prochandle *P)
3427 {
3428 	P->num_files = 0;
3429 	list_link(&P->file_head, NULL);
3430 }
3431 
3432 /*
3433  * Called from Prelease() to destroy the symbol tables.
3434  * Must be called by the client after an exec() in the victim process.
3435  */
3436 void
3437 Preset_maps(struct ps_prochandle *P)
3438 {
3439 	int i;
3440 
3441 	if (P->rap != NULL) {
3442 		rd_delete(P->rap);
3443 		P->rap = NULL;
3444 	}
3445 
3446 	if (P->execname != NULL) {
3447 		free(P->execname);
3448 		P->execname = NULL;
3449 	}
3450 
3451 	if (P->auxv != NULL) {
3452 		free(P->auxv);
3453 		P->auxv = NULL;
3454 		P->nauxv = 0;
3455 	}
3456 
3457 	for (i = 0; i < P->map_count; i++)
3458 		map_info_free(P, &P->mappings[i]);
3459 
3460 	if (P->mappings != NULL) {
3461 		free(P->mappings);
3462 		P->mappings = NULL;
3463 	}
3464 	P->map_count = P->map_alloc = 0;
3465 
3466 	P->info_valid = 0;
3467 }
3468 
3469 typedef struct getenv_data {
3470 	char *buf;
3471 	size_t bufsize;
3472 	const char *search;
3473 	size_t searchlen;
3474 } getenv_data_t;
3475 
3476 /*ARGSUSED*/
3477 static int
3478 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3479     const char *nameval)
3480 {
3481 	getenv_data_t *d = data;
3482 	size_t len;
3483 
3484 	if (nameval == NULL)
3485 		return (0);
3486 
3487 	if (d->searchlen < strlen(nameval) &&
3488 	    strncmp(nameval, d->search, d->searchlen) == 0 &&
3489 	    nameval[d->searchlen] == '=') {
3490 		len = MIN(strlen(nameval), d->bufsize - 1);
3491 		(void) strncpy(d->buf, nameval, len);
3492 		d->buf[len] = '\0';
3493 		return (1);
3494 	}
3495 
3496 	return (0);
3497 }
3498 
3499 char *
3500 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3501 {
3502 	getenv_data_t d;
3503 
3504 	d.buf = buf;
3505 	d.bufsize = buflen;
3506 	d.search = name;
3507 	d.searchlen = strlen(name);
3508 
3509 	if (Penv_iter(P, getenv_func, &d) == 1) {
3510 		char *equals = strchr(d.buf, '=');
3511 
3512 		if (equals != NULL) {
3513 			(void) memmove(d.buf, equals + 1,
3514 			    d.buf + buflen - equals - 1);
3515 			d.buf[d.buf + buflen - equals] = '\0';
3516 
3517 			return (buf);
3518 		}
3519 	}
3520 
3521 	return (NULL);
3522 }
3523 
3524 /* number of argument or environment pointers to read all at once */
3525 #define	NARG	100
3526 
3527 int
3528 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3529 {
3530 	const psinfo_t *psp;
3531 	uintptr_t envpoff;
3532 	GElf_Sym sym;
3533 	int ret;
3534 	char *buf, *nameval;
3535 	size_t buflen;
3536 
3537 	int nenv = NARG;
3538 	long envp[NARG];
3539 
3540 	/*
3541 	 * Attempt to find the "_environ" variable in the process.
3542 	 * Failing that, use the original value provided by Ppsinfo().
3543 	 */
3544 	if ((psp = Ppsinfo(P)) == NULL)
3545 		return (-1);
3546 
3547 	envpoff = psp->pr_envp; /* Default if no _environ found */
3548 
3549 	if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3550 		if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3551 			if (Pread(P, &envpoff, sizeof (envpoff),
3552 			    sym.st_value) != sizeof (envpoff))
3553 				envpoff = psp->pr_envp;
3554 		} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3555 			uint32_t envpoff32;
3556 
3557 			if (Pread(P, &envpoff32, sizeof (envpoff32),
3558 			    sym.st_value) != sizeof (envpoff32))
3559 				envpoff = psp->pr_envp;
3560 			else
3561 				envpoff = envpoff32;
3562 		}
3563 	}
3564 
3565 	buflen = 128;
3566 	buf = malloc(buflen);
3567 
3568 	ret = 0;
3569 	for (;;) {
3570 		uintptr_t envoff;
3571 
3572 		if (nenv == NARG) {
3573 			(void) memset(envp, 0, sizeof (envp));
3574 			if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3575 				if (Pread(P, envp,
3576 				    sizeof (envp), envpoff) <= 0) {
3577 					ret = -1;
3578 					break;
3579 				}
3580 			} else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3581 				uint32_t e32[NARG];
3582 				int i;
3583 
3584 				(void) memset(e32, 0, sizeof (e32));
3585 				if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3586 					ret = -1;
3587 					break;
3588 				}
3589 				for (i = 0; i < NARG; i++)
3590 					envp[i] = e32[i];
3591 			}
3592 			nenv = 0;
3593 		}
3594 
3595 		if ((envoff = envp[nenv++]) == NULL)
3596 			break;
3597 
3598 		/*
3599 		 * Attempt to read the string from the process.
3600 		 */
3601 again:
3602 		ret = Pread_string(P, buf, buflen, envoff);
3603 
3604 		if (ret <= 0) {
3605 			nameval = NULL;
3606 		} else if (ret == buflen - 1) {
3607 			free(buf);
3608 			/*
3609 			 * Bail if we have a corrupted environment
3610 			 */
3611 			if (buflen >= ARG_MAX)
3612 				return (-1);
3613 			buflen *= 2;
3614 			buf = malloc(buflen);
3615 			goto again;
3616 		} else {
3617 			nameval = buf;
3618 		}
3619 
3620 		if ((ret = func(data, P, envoff, nameval)) != 0)
3621 			break;
3622 
3623 		envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3624 	}
3625 
3626 	free(buf);
3627 
3628 	return (ret);
3629 }
3630