xref: /titanic_51/usr/src/lib/libmvec/common/__vrsqrtf.c (revision 9ef283481583d677cd2cf5449ef49b90eacc97d4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include "libm_inlines.h"
31 
32 #ifdef __RESTRICT
33 #define restrict _Restrict
34 #else
35 #define restrict
36 #endif
37 
38 /* float rsqrtf(float x)
39  *
40  * Method :
41  *	1. Special cases:
42  *		for x = NaN				=> QNaN;
43  *		for x = +Inf				=> 0;
44  *		for x is negative, -Inf			=> QNaN + invalid;
45  *		for x = +0				=> +Inf + divide-by-zero;
46  *		for x = -0				=> -Inf + divide-by-zero.
47  *	2. Computes reciprocal square root from:
48  *		x = m * 2**n
49  *	Where:
50  *		m = [0.5, 2),
51  *		n = ((exponent + 1) & ~1).
52  *	Then:
53  *		rsqrtf(x) = 1/sqrt( m * 2**n ) = (2 ** (-n/2)) * (1/sqrt(m))
54  *	2. Computes 1/sqrt(m) from:
55  *		1/sqrt(m) = (1/sqrt(m0)) * (1/sqrt(1 + (1/m0)*dm))
56  *	Where:
57  *		m = m0 + dm,
58  *		m0 = 0.5 * (1 + k/64) for m = [0.5,         0.5+127/256), k = [0, 63];
59  *		m0 = 1.0 * (0 + k/64) for m = [0.5+127/256, 1.0+127/128), k = [64, 127];
60  *	Then:
61  *		1/sqrt(m0), 1/m0 are looked up in a table,
62  *		1/sqrt(1 + (1/m0)*dm) is computed using approximation:
63  *			1/sqrt(1 + z) = ((a3 * z + a2) * z + a1) * z + a0
64  *			where z = [-1/64, 1/64].
65  *
66  * Accuracy:
67  *	The maximum relative error for the approximating
68  *	polynomial is 2**(-27.87).
69  *	Maximum error observed: less than 0.534 ulp for the
70  *	whole float type range.
71  */
72 
73 extern float sqrtf(float);
74 
75 static const double __TBL_rsqrtf[] = {
76 /*
77 i = [0,63]
78  TBL[2*i  ] = 1 / (*(double*)&(0x3fe0000000000000ULL + (i << 46))) * 2**-24;
79  TBL[2*i+1] = 1 / sqrtl(*(double*)&(0x3fe0000000000000ULL + (i << 46)));
80 i = [64,127]
81  TBL[2*i  ] = 1 / (*(double*)&(0x3fe0000000000000ULL + (i << 46))) * 2**-23;
82  TBL[2*i+1] = 1 / sqrtl(*(double*)&(0x3fe0000000000000ULL + (i << 46)));
83 */
84  1.1920928955078125000e-07, 1.4142135623730951455e+00,
85  1.1737530048076923728e-07, 1.4032928308912466786e+00,
86  1.1559688683712121533e-07, 1.3926212476455828160e+00,
87  1.1387156016791044559e-07, 1.3821894809301762397e+00,
88  1.1219697840073529256e-07, 1.3719886811400707760e+00,
89  1.1057093523550724772e-07, 1.3620104492139977204e+00,
90  1.0899135044642856803e-07, 1.3522468075656264297e+00,
91  1.0745626100352112918e-07, 1.3426901732747025253e+00,
92  1.0596381293402777190e-07, 1.3333333333333332593e+00,
93  1.0451225385273972023e-07, 1.3241694217637887121e+00,
94  1.0309992609797297870e-07, 1.3151918984428583315e+00,
95  1.0172526041666667320e-07, 1.3063945294843617440e+00,
96  1.0038677014802631022e-07, 1.2977713690461003537e+00,
97  9.9083045860389616921e-08, 1.2893167424406084542e+00,
98  9.7812750400641022247e-08, 1.2810252304406970492e+00,
99  9.6574614319620251657e-08, 1.2728916546811681609e+00,
100  9.5367431640625005294e-08, 1.2649110640673517647e+00,
101  9.4190055941358019463e-08, 1.2570787221094177344e+00,
102  9.3041396722560978838e-08, 1.2493900951088485751e+00,
103  9.1920416039156631290e-08, 1.2418408411301324890e+00,
104  9.0826125372023804482e-08, 1.2344267996967352996e+00,
105  8.9757582720588234048e-08, 1.2271439821557927896e+00,
106  8.8713889898255812722e-08, 1.2199885626608373279e+00,
107  8.7694190014367814875e-08, 1.2129568697262453902e+00,
108  8.6697665127840911497e-08, 1.2060453783110545167e+00,
109  8.5723534058988761666e-08, 1.1992507023933782762e+00,
110  8.4771050347222225457e-08, 1.1925695879998878812e+00,
111  8.3839500343406599951e-08, 1.1859989066577618644e+00,
112  8.2928201426630432481e-08, 1.1795356492391770864e+00,
113  8.2036500336021511923e-08, 1.1731769201708264205e+00,
114  8.1163771609042551220e-08, 1.1669199319831564665e+00,
115  8.0309416118421050820e-08, 1.1607620001760186046e+00,
116  7.9472859700520828922e-08, 1.1547005383792514621e+00,
117  7.8653551868556699530e-08, 1.1487330537883810866e+00,
118  7.7850964604591830522e-08, 1.1428571428571427937e+00,
119  7.7064591224747481298e-08, 1.1370704872299222110e+00,
120  7.6293945312500001588e-08, 1.1313708498984760276e+00,
121  7.5538559715346535571e-08, 1.1257560715684669095e+00,
122  7.4797985600490195040e-08, 1.1202240672224077489e+00,
123  7.4071791565533974158e-08, 1.1147728228665882977e+00,
124  7.3359562800480773303e-08, 1.1094003924504582947e+00,
125  7.2660900297619054173e-08, 1.1041048949477667573e+00,
126  7.1975420106132072725e-08, 1.0988845115895122806e+00,
127  7.1302752628504667579e-08, 1.0937374832394612945e+00,
128  7.0642541956018514597e-08, 1.0886621079036347126e+00,
129  6.9994445240825691959e-08, 1.0836567383657542685e+00,
130  6.9358132102272723904e-08, 1.0787197799411873955e+00,
131  6.8733284065315314719e-08, 1.0738496883424388795e+00,
132  6.8119594029017853361e-08, 1.0690449676496975862e+00,
133  6.7516765763274335346e-08, 1.0643041683803828867e+00,
134  6.6924513432017540145e-08, 1.0596258856520350822e+00,
135  6.6342561141304348632e-08, 1.0550087574332591700e+00,
136  6.5770642510775861156e-08, 1.0504514628777803509e+00,
137  6.5208500267094023655e-08, 1.0459527207369814228e+00,
138  6.4655885858050847233e-08, 1.0415112878465908608e+00,
139  6.4112559086134451001e-08, 1.0371259576834630511e+00,
140  6.3578287760416665784e-08, 1.0327955589886446131e+00,
141  6.3052847365702481089e-08, 1.0285189544531601058e+00,
142  6.2536020747950822927e-08, 1.0242950394631678002e+00,
143  6.2027597815040656970e-08, 1.0201227409013413627e+00,
144  6.1527375252016127325e-08, 1.0160010160015240377e+00,
145  6.1035156250000001271e-08, 1.0119288512538813229e+00,
146  6.0550750248015869655e-08, 1.0079052613579393416e+00,
147  6.0073972687007873182e-08, 1.0039292882210537616e+00,
148  1.1920928955078125000e-07, 1.0000000000000000000e+00,
149  1.1737530048076923728e-07, 9.9227787671366762812e-01,
150  1.1559688683712121533e-07, 9.8473192783466190203e-01,
151  1.1387156016791044559e-07, 9.7735555485044178781e-01,
152  1.1219697840073529256e-07, 9.7014250014533187638e-01,
153  1.1057093523550724772e-07, 9.6308682468615358641e-01,
154  1.0899135044642856803e-07, 9.5618288746751489704e-01,
155  1.0745626100352112918e-07, 9.4942532655508271588e-01,
156  1.0596381293402777190e-07, 9.4280904158206335630e-01,
157  1.0451225385273972023e-07, 9.3632917756904454620e-01,
158  1.0309992609797297870e-07, 9.2998110995055427441e-01,
159  1.0172526041666667320e-07, 9.2376043070340119190e-01,
160  1.0038677014802631022e-07, 9.1766293548224708854e-01,
161  9.9083045860389616921e-08, 9.1168461167710357351e-01,
162  9.7812750400641022247e-08, 9.0582162731567661407e-01,
163  9.6574614319620251657e-08, 9.0007032074081916306e-01,
164  9.5367431640625005294e-08, 8.9442719099991585541e-01,
165  9.4190055941358019463e-08, 8.8888888888888883955e-01,
166  9.3041396722560978838e-08, 8.8345220859877238162e-01,
167  9.1920416039156631290e-08, 8.7811407991752277180e-01,
168  9.0826125372023804482e-08, 8.7287156094396955996e-01,
169  8.9757582720588234048e-08, 8.6772183127462465535e-01,
170  8.8713889898255812722e-08, 8.6266218562750729415e-01,
171  8.7694190014367814875e-08, 8.5769002787023584933e-01,
172  8.6697665127840911497e-08, 8.5280286542244176928e-01,
173  8.5723534058988761666e-08, 8.4799830400508802164e-01,
174  8.4771050347222225457e-08, 8.4327404271156780613e-01,
175  8.3839500343406599951e-08, 8.3862786937753464045e-01,
176  8.2928201426630432481e-08, 8.3405765622829908246e-01,
177  8.2036500336021511923e-08, 8.2956135578434020417e-01,
178  8.1163771609042551220e-08, 8.2513699700703468931e-01,
179  8.0309416118421050820e-08, 8.2078268166812329287e-01,
180  7.9472859700520828922e-08, 8.1649658092772603446e-01,
181  7.8653551868556699530e-08, 8.1227693210689522196e-01,
182  7.7850964604591830522e-08, 8.0812203564176865456e-01,
183  7.7064591224747481298e-08, 8.0403025220736967782e-01,
184  7.6293945312500001588e-08, 8.0000000000000004441e-01,
185  7.5538559715346535571e-08, 7.9602975216799132241e-01,
186  7.4797985600490195040e-08, 7.9211803438133943089e-01,
187  7.4071791565533974158e-08, 7.8826342253143455441e-01,
188  7.3359562800480773303e-08, 7.8446454055273617811e-01,
189  7.2660900297619054173e-08, 7.8072005835882651859e-01,
190  7.1975420106132072725e-08, 7.7702868988581130782e-01,
191  7.1302752628504667579e-08, 7.7338919123653082632e-01,
192  7.0642541956018514597e-08, 7.6980035891950104876e-01,
193  6.9994445240825691959e-08, 7.6626102817692109959e-01,
194  6.9358132102272723904e-08, 7.6277007139647390321e-01,
195  6.8733284065315314719e-08, 7.5932639660199918730e-01,
196  6.8119594029017853361e-08, 7.5592894601845450619e-01,
197  6.7516765763274335346e-08, 7.5257669470687782454e-01,
198  6.6924513432017540145e-08, 7.4926864926535519107e-01,
199  6.6342561141304348632e-08, 7.4600384659225105199e-01,
200  6.5770642510775861156e-08, 7.4278135270820744296e-01,
201  6.5208500267094023655e-08, 7.3960026163363878915e-01,
202  6.4655885858050847233e-08, 7.3645969431865865307e-01,
203  6.4112559086134451001e-08, 7.3335879762256905856e-01,
204  6.3578287760416665784e-08, 7.3029674334022143256e-01,
205  6.3052847365702481089e-08, 7.2727272727272729291e-01,
206  6.2536020747950822927e-08, 7.2428596834014824513e-01,
207  6.2027597815040656970e-08, 7.2133570773394584119e-01,
208  6.1527375252016127325e-08, 7.1842120810709964029e-01,
209  6.1035156250000001271e-08, 7.1554175279993270653e-01,
210  6.0550750248015869655e-08, 7.1269664509979835376e-01,
211  6.0073972687007873182e-08, 7.0988520753289097165e-01,
212 };
213 
214 static const unsigned long long LCONST[] = {
215 0x3feffffffee7f18fULL,	/* A0 = 9.99999997962321453275e-01	*/
216 0xbfdffffffe07e52fULL,	/* A1 =-4.99999998166077580600e-01	*/
217 0x3fd801180ca296d9ULL,	/* A2 = 3.75066768969515586277e-01	*/
218 0xbfd400fc0bbb8e78ULL,	/* A3 =-3.12560092408808548438e-01	*/
219 };
220 
221 static void
222 __vrsqrtf_n(int n, float * restrict px, int stridex, float * restrict py, int stridey);
223 
224 #pragma no_inline(__vrsqrtf_n)
225 
226 #define RETURN(ret)						\
227 {								\
228 	*py = (ret);						\
229 	py += stridey;						\
230 	if (n_n == 0)						\
231 	{							\
232 		spx = px; spy = py;				\
233 		ax0 = *(int*)px;				\
234 		continue;					\
235 	}							\
236 	n--;							\
237 	break;							\
238 }
239 
240 void
241 __vrsqrtf(int n, float * restrict px, int stridex, float * restrict py, int stridey)
242 {
243 	float		*spx, *spy;
244 	int		ax0, n_n;
245 	float		res;
246 	float		FONE = 1.0f, FTWO = 2.0f;
247 
248 	while (n > 1)
249 	{
250 		n_n = 0;
251 		spx = px;
252 		spy = py;
253 		ax0 = *(int*)px;
254 		for (; n > 1 ; n--)
255 		{
256 			px += stridex;
257 			if (ax0 >= 0x7f800000)	/* X = NaN or Inf	*/
258 			{
259 				res = *(px - stridex);
260 				RETURN (FONE / res)
261 			}
262 
263 			py += stridey;
264 
265 			if (ax0 < 0x00800000)		/* X = denormal, zero or negative	*/
266 			{
267 				py -= stridey;
268 				res = *(px - stridex);
269 
270 				if ((ax0 & 0x7fffffff) == 0)	/* |X| = zero	*/
271 				{
272 					RETURN (FONE / res)
273 				}
274 				else if (ax0 >= 0)	/* X = denormal	*/
275 				{
276 					double		A0 = ((double*)LCONST)[0];	/*  9.99999997962321453275e-01	*/
277 					double		A1 = ((double*)LCONST)[1];	/* -4.99999998166077580600e-01	*/
278 					double		A2 = ((double*)LCONST)[2];	/*  3.75066768969515586277e-01	*/
279 					double		A3 = ((double*)LCONST)[3];	/* -3.12560092408808548438e-01	*/
280 
281 					double		res0, xx0, tbl_div0, tbl_sqrt0;
282 					float		fres0;
283 					int		iax0, si0, iexp0;
284 
285 					res = *(int*)&res;
286 					res *= FTWO;
287 					ax0 = *(int*)&res;
288 					iexp0 = ax0 >> 24;
289 					iexp0 = 0x3f + 0x4b - iexp0;
290 					iexp0 = iexp0 << 23;
291 
292 					si0 = (ax0 >> 13) & 0x7f0;
293 
294 					tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
295 					tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
296 					iax0 = ax0 & 0x7ffe0000;
297 					iax0 = ax0 - iax0;
298 					xx0 = iax0 * tbl_div0;
299 					res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
300 
301 					fres0 = res0;
302 					iexp0 += *(int*)&fres0;
303 					RETURN(*(float*)&iexp0)
304 				}
305 				else	/* X = negative	*/
306 				{
307 					RETURN (sqrtf(res))
308 				}
309 			}
310 			n_n++;
311 			ax0 = *(int*)px;
312 		}
313 		if (n_n > 0)
314 			__vrsqrtf_n(n_n, spx, stridex, spy, stridey);
315 	}
316 
317 	if (n > 0)
318 	{
319 		ax0 = *(int*)px;
320 
321 		if (ax0 >= 0x7f800000)	/* X = NaN or Inf	*/
322 		{
323 			res = *px;
324 			*py = FONE / res;
325 		}
326 		else if (ax0 < 0x00800000)	/* X = denormal, zero or negative	*/
327 		{
328 			res = *px;
329 
330 			if ((ax0 & 0x7fffffff) == 0)	/* |X| = zero	*/
331 			{
332 				*py = FONE / res;
333 			}
334 			else if (ax0 >= 0)	/* X = denormal	*/
335 			{
336 				double		A0 = ((double*)LCONST)[0];	/*  9.99999997962321453275e-01	*/
337 				double		A1 = ((double*)LCONST)[1];	/* -4.99999998166077580600e-01	*/
338 				double		A2 = ((double*)LCONST)[2];	/*  3.75066768969515586277e-01	*/
339 				double		A3 = ((double*)LCONST)[3];	/* -3.12560092408808548438e-01	*/
340 				double		res0, xx0, tbl_div0, tbl_sqrt0;
341 				float		fres0;
342 				int		iax0, si0, iexp0;
343 
344 				res = *(int*)&res;
345 				res *= FTWO;
346 				ax0 = *(int*)&res;
347 				iexp0 = ax0 >> 24;
348 				iexp0 = 0x3f + 0x4b - iexp0;
349 				iexp0 = iexp0 << 23;
350 
351 				si0 = (ax0 >> 13) & 0x7f0;
352 
353 				tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
354 				tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
355 				iax0 = ax0 & 0x7ffe0000;
356 				iax0 = ax0 - iax0;
357 				xx0 = iax0 * tbl_div0;
358 				res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
359 
360 				fres0 = res0;
361 				iexp0 += *(int*)&fres0;
362 
363 				*(int*)py = iexp0;
364 			}
365 			else	/* X = negative	*/
366 			{
367 				*py = sqrtf(res);
368 			}
369 		}
370 		else
371 		{
372 			double		A0 = ((double*)LCONST)[0];	/*  9.99999997962321453275e-01	*/
373 			double		A1 = ((double*)LCONST)[1];	/* -4.99999998166077580600e-01	*/
374 			double		A2 = ((double*)LCONST)[2];	/*  3.75066768969515586277e-01	*/
375 			double		A3 = ((double*)LCONST)[3];	/* -3.12560092408808548438e-01	*/
376 			double		res0, xx0, tbl_div0, tbl_sqrt0;
377 			float		fres0;
378 			int		iax0, si0, iexp0;
379 
380 			iexp0 = ax0 >> 24;
381 			iexp0 = 0x3f - iexp0;
382 			iexp0 = iexp0 << 23;
383 
384 			si0 = (ax0 >> 13) & 0x7f0;
385 
386 			tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
387 			tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
388 			iax0 = ax0 & 0x7ffe0000;
389 			iax0 = ax0 - iax0;
390 			xx0 = iax0 * tbl_div0;
391 			res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
392 
393 			fres0 = res0;
394 			iexp0 += *(int*)&fres0;
395 
396 			*(int*)py = iexp0;
397 		}
398 	}
399 }
400 
401 void
402 __vrsqrtf_n(int n, float * restrict px, int stridex, float * restrict py, int stridey)
403 {
404 	double		A0 = ((double*)LCONST)[0];	/*  9.99999997962321453275e-01	*/
405 	double		A1 = ((double*)LCONST)[1];	/* -4.99999998166077580600e-01	*/
406 	double		A2 = ((double*)LCONST)[2];	/*  3.75066768969515586277e-01	*/
407 	double		A3 = ((double*)LCONST)[3];	/* -3.12560092408808548438e-01	*/
408 	double		res0, xx0, tbl_div0, tbl_sqrt0;
409 	float		fres0;
410 	int		iax0, ax0, si0, iexp0;
411 
412 #if defined(ARCH_v7) || defined(ARCH_v8)
413 	double		res1, xx1, tbl_div1, tbl_sqrt1;
414 	double		res2, xx2, tbl_div2, tbl_sqrt2;
415 	float		fres1, fres2;
416 	int		iax1, ax1, si1, iexp1;
417 	int		iax2, ax2, si2, iexp2;
418 
419 	for(; n > 2 ; n -= 3)
420 	{
421 		ax0 = *(int*)px;
422 		px += stridex;
423 
424 		ax1 = *(int*)px;
425 		px += stridex;
426 
427 		ax2 = *(int*)px;
428 		px += stridex;
429 
430 		iexp0 = ax0 >> 24;
431 		iexp1 = ax1 >> 24;
432 		iexp2 = ax2 >> 24;
433 		iexp0 = 0x3f - iexp0;
434 		iexp1 = 0x3f - iexp1;
435 		iexp2 = 0x3f - iexp2;
436 
437 		iexp0 = iexp0 << 23;
438 		iexp1 = iexp1 << 23;
439 		iexp2 = iexp2 << 23;
440 
441 		si0 = (ax0 >> 13) & 0x7f0;
442 		si1 = (ax1 >> 13) & 0x7f0;
443 		si2 = (ax2 >> 13) & 0x7f0;
444 
445 		tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
446 		tbl_div1 = ((double*)((char*)__TBL_rsqrtf + si1))[0];
447 		tbl_div2 = ((double*)((char*)__TBL_rsqrtf + si2))[0];
448 		tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
449 		tbl_sqrt1 = ((double*)((char*)__TBL_rsqrtf + si1))[1];
450 		tbl_sqrt2 = ((double*)((char*)__TBL_rsqrtf + si2))[1];
451 		iax0 = ax0 & 0x7ffe0000;
452 		iax1 = ax1 & 0x7ffe0000;
453 		iax2 = ax2 & 0x7ffe0000;
454 		iax0 = ax0 - iax0;
455 		iax1 = ax1 - iax1;
456 		iax2 = ax2 - iax2;
457 		xx0 = iax0 * tbl_div0;
458 		xx1 = iax1 * tbl_div1;
459 		xx2 = iax2 * tbl_div2;
460 		res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
461 		res1 = tbl_sqrt1 * (((A3 * xx1 + A2) * xx1 + A1) * xx1 + A0);
462 		res2 = tbl_sqrt2 * (((A3 * xx2 + A2) * xx2 + A1) * xx2 + A0);
463 
464 		fres0 = res0;
465 		fres1 = res1;
466 		fres2 = res2;
467 
468 		iexp0 += *(int*)&fres0;
469 		iexp1 += *(int*)&fres1;
470 		iexp2 += *(int*)&fres2;
471 		*(int*)py = iexp0;
472 		py += stridey;
473 		*(int*)py = iexp1;
474 		py += stridey;
475 		*(int*)py = iexp2;
476 		py += stridey;
477 	}
478 #endif
479 	for(; n > 0 ; n--)
480 	{
481 		ax0 = *(int*)px;
482 		px += stridex;
483 
484 		iexp0 = ax0 >> 24;
485 		iexp0 = 0x3f - iexp0;
486 		iexp0 = iexp0 << 23;
487 
488 		si0 = (ax0 >> 13) & 0x7f0;
489 
490 		tbl_div0 = ((double*)((char*)__TBL_rsqrtf + si0))[0];
491 		tbl_sqrt0 = ((double*)((char*)__TBL_rsqrtf + si0))[1];
492 		iax0 = ax0 & 0x7ffe0000;
493 		iax0 = ax0 - iax0;
494 		xx0 = iax0 * tbl_div0;
495 		res0 = tbl_sqrt0 * (((A3 * xx0 + A2) * xx0 + A1) * xx0 + A0);
496 
497 		fres0 = res0;
498 		iexp0 += *(int*)&fres0;
499 		*(int*)py = iexp0;
500 		py += stridey;
501 	}
502 }
503