xref: /titanic_51/usr/src/lib/libm/common/complex/k_cexp.c (revision 25c28e83beb90e7c80452a7c818c5e6f73a07dc8)
1*25c28e83SPiotr Jasiukajtis /*
2*25c28e83SPiotr Jasiukajtis  * CDDL HEADER START
3*25c28e83SPiotr Jasiukajtis  *
4*25c28e83SPiotr Jasiukajtis  * The contents of this file are subject to the terms of the
5*25c28e83SPiotr Jasiukajtis  * Common Development and Distribution License (the "License").
6*25c28e83SPiotr Jasiukajtis  * You may not use this file except in compliance with the License.
7*25c28e83SPiotr Jasiukajtis  *
8*25c28e83SPiotr Jasiukajtis  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9*25c28e83SPiotr Jasiukajtis  * or http://www.opensolaris.org/os/licensing.
10*25c28e83SPiotr Jasiukajtis  * See the License for the specific language governing permissions
11*25c28e83SPiotr Jasiukajtis  * and limitations under the License.
12*25c28e83SPiotr Jasiukajtis  *
13*25c28e83SPiotr Jasiukajtis  * When distributing Covered Code, include this CDDL HEADER in each
14*25c28e83SPiotr Jasiukajtis  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15*25c28e83SPiotr Jasiukajtis  * If applicable, add the following below this CDDL HEADER, with the
16*25c28e83SPiotr Jasiukajtis  * fields enclosed by brackets "[]" replaced with your own identifying
17*25c28e83SPiotr Jasiukajtis  * information: Portions Copyright [yyyy] [name of copyright owner]
18*25c28e83SPiotr Jasiukajtis  *
19*25c28e83SPiotr Jasiukajtis  * CDDL HEADER END
20*25c28e83SPiotr Jasiukajtis  */
21*25c28e83SPiotr Jasiukajtis 
22*25c28e83SPiotr Jasiukajtis /*
23*25c28e83SPiotr Jasiukajtis  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24*25c28e83SPiotr Jasiukajtis  */
25*25c28e83SPiotr Jasiukajtis /*
26*25c28e83SPiotr Jasiukajtis  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27*25c28e83SPiotr Jasiukajtis  * Use is subject to license terms.
28*25c28e83SPiotr Jasiukajtis  */
29*25c28e83SPiotr Jasiukajtis 
30*25c28e83SPiotr Jasiukajtis /* INDENT OFF */
31*25c28e83SPiotr Jasiukajtis /*
32*25c28e83SPiotr Jasiukajtis  * double __k_cexp(double x, int *n);
33*25c28e83SPiotr Jasiukajtis  * Returns the exponential of x in the form of 2**n * y, y=__k_cexp(x,&n).
34*25c28e83SPiotr Jasiukajtis  *
35*25c28e83SPiotr Jasiukajtis  * Method
36*25c28e83SPiotr Jasiukajtis  *   1. Argument reduction:
37*25c28e83SPiotr Jasiukajtis  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
38*25c28e83SPiotr Jasiukajtis  *	Given x, find r and integer k such that
39*25c28e83SPiotr Jasiukajtis  *
40*25c28e83SPiotr Jasiukajtis  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
41*25c28e83SPiotr Jasiukajtis  *
42*25c28e83SPiotr Jasiukajtis  *      Here r will be represented as r = hi-lo for better
43*25c28e83SPiotr Jasiukajtis  *	accuracy.
44*25c28e83SPiotr Jasiukajtis  *
45*25c28e83SPiotr Jasiukajtis  *   2. Approximation of exp(r) by a special rational function on
46*25c28e83SPiotr Jasiukajtis  *	the interval [0,0.34658]:
47*25c28e83SPiotr Jasiukajtis  *	Write
48*25c28e83SPiotr Jasiukajtis  *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
49*25c28e83SPiotr Jasiukajtis  *      We use a special Remez algorithm on [0,0.34658] to generate
50*25c28e83SPiotr Jasiukajtis  * 	a polynomial of degree 5 to approximate R. The maximum error
51*25c28e83SPiotr Jasiukajtis  *	of this polynomial approximation is bounded by 2**-59. In
52*25c28e83SPiotr Jasiukajtis  *	other words,
53*25c28e83SPiotr Jasiukajtis  *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
54*25c28e83SPiotr Jasiukajtis  *  	(where z=r*r, and the values of P1 to P5 are listed below)
55*25c28e83SPiotr Jasiukajtis  *	and
56*25c28e83SPiotr Jasiukajtis  *	    |                  5          |     -59
57*25c28e83SPiotr Jasiukajtis  *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
58*25c28e83SPiotr Jasiukajtis  *	    |                             |
59*25c28e83SPiotr Jasiukajtis  *	The computation of exp(r) thus becomes
60*25c28e83SPiotr Jasiukajtis  *                             2*r
61*25c28e83SPiotr Jasiukajtis  *		exp(r) = 1 + -------
62*25c28e83SPiotr Jasiukajtis  *		              R - r
63*25c28e83SPiotr Jasiukajtis  *                                 r*R1(r)
64*25c28e83SPiotr Jasiukajtis  *		       = 1 + r + ----------- (for better accuracy)
65*25c28e83SPiotr Jasiukajtis  *		                  2 - R1(r)
66*25c28e83SPiotr Jasiukajtis  *	where
67*25c28e83SPiotr Jasiukajtis  *			         2       4             10
68*25c28e83SPiotr Jasiukajtis  *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
69*25c28e83SPiotr Jasiukajtis  *
70*25c28e83SPiotr Jasiukajtis  *   3. Return n = k and __k_cexp = exp(r).
71*25c28e83SPiotr Jasiukajtis  *
72*25c28e83SPiotr Jasiukajtis  * Special cases:
73*25c28e83SPiotr Jasiukajtis  *	exp(INF) is INF, exp(NaN) is NaN;
74*25c28e83SPiotr Jasiukajtis  *	exp(-INF) is 0, and
75*25c28e83SPiotr Jasiukajtis  *	for finite argument, only exp(0)=1 is exact.
76*25c28e83SPiotr Jasiukajtis  *
77*25c28e83SPiotr Jasiukajtis  * Range and Accuracy:
78*25c28e83SPiotr Jasiukajtis  *      When |x| is really big, say |x| > 50000, the accuracy
79*25c28e83SPiotr Jasiukajtis  *      is not important because the ultimate result will over or under
80*25c28e83SPiotr Jasiukajtis  *      flow. So we will simply replace n = 50000 and r = 0.0. For
81*25c28e83SPiotr Jasiukajtis  *      moderate size x, according to an error analysis, the error is
82*25c28e83SPiotr Jasiukajtis  *      always less than 1 ulp (unit in the last place).
83*25c28e83SPiotr Jasiukajtis  *
84*25c28e83SPiotr Jasiukajtis  * Constants:
85*25c28e83SPiotr Jasiukajtis  * The hexadecimal values are the intended ones for the following
86*25c28e83SPiotr Jasiukajtis  * constants. The decimal values may be used, provided that the
87*25c28e83SPiotr Jasiukajtis  * compiler will convert from decimal to binary accurately enough
88*25c28e83SPiotr Jasiukajtis  * to produce the hexadecimal values shown.
89*25c28e83SPiotr Jasiukajtis  */
90*25c28e83SPiotr Jasiukajtis /* INDENT ON */
91*25c28e83SPiotr Jasiukajtis 
92*25c28e83SPiotr Jasiukajtis #include "libm.h"		/* __k_cexp */
93*25c28e83SPiotr Jasiukajtis #include "complex_wrapper.h"	/* HI_WORD/LO_WORD */
94*25c28e83SPiotr Jasiukajtis 
95*25c28e83SPiotr Jasiukajtis /* INDENT OFF */
96*25c28e83SPiotr Jasiukajtis static const double
97*25c28e83SPiotr Jasiukajtis one = 1.0,
98*25c28e83SPiotr Jasiukajtis two128 = 3.40282366920938463463e+38,
99*25c28e83SPiotr Jasiukajtis halF[2]	= {
100*25c28e83SPiotr Jasiukajtis 	0.5, -0.5,
101*25c28e83SPiotr Jasiukajtis },
102*25c28e83SPiotr Jasiukajtis ln2HI[2] = {
103*25c28e83SPiotr Jasiukajtis 	6.93147180369123816490e-01,	/* 0x3fe62e42, 0xfee00000 */
104*25c28e83SPiotr Jasiukajtis 	-6.93147180369123816490e-01,	/* 0xbfe62e42, 0xfee00000 */
105*25c28e83SPiotr Jasiukajtis },
106*25c28e83SPiotr Jasiukajtis ln2LO[2] = {
107*25c28e83SPiotr Jasiukajtis 	1.90821492927058770002e-10,	/* 0x3dea39ef, 0x35793c76 */
108*25c28e83SPiotr Jasiukajtis 	-1.90821492927058770002e-10,	/* 0xbdea39ef, 0x35793c76 */
109*25c28e83SPiotr Jasiukajtis },
110*25c28e83SPiotr Jasiukajtis invln2 = 1.44269504088896338700e+00,	/* 0x3ff71547, 0x652b82fe */
111*25c28e83SPiotr Jasiukajtis P1 = 1.66666666666666019037e-01,	/* 0x3FC55555, 0x5555553E */
112*25c28e83SPiotr Jasiukajtis P2 = -2.77777777770155933842e-03,	/* 0xBF66C16C, 0x16BEBD93 */
113*25c28e83SPiotr Jasiukajtis P3 = 6.61375632143793436117e-05,	/* 0x3F11566A, 0xAF25DE2C */
114*25c28e83SPiotr Jasiukajtis P4 = -1.65339022054652515390e-06,	/* 0xBEBBBD41, 0xC5D26BF1 */
115*25c28e83SPiotr Jasiukajtis P5 = 4.13813679705723846039e-08;	/* 0x3E663769, 0x72BEA4D0 */
116*25c28e83SPiotr Jasiukajtis /* INDENT ON */
117*25c28e83SPiotr Jasiukajtis 
118*25c28e83SPiotr Jasiukajtis double
119*25c28e83SPiotr Jasiukajtis __k_cexp(double x, int *n) {
120*25c28e83SPiotr Jasiukajtis 	double hi = 0.0L, lo = 0.0L, c, t;
121*25c28e83SPiotr Jasiukajtis 	int k, xsb;
122*25c28e83SPiotr Jasiukajtis 	unsigned hx, lx;
123*25c28e83SPiotr Jasiukajtis 
124*25c28e83SPiotr Jasiukajtis 	hx = HI_WORD(x);	/* high word of x */
125*25c28e83SPiotr Jasiukajtis 	lx = LO_WORD(x);	/* low word of x */
126*25c28e83SPiotr Jasiukajtis 	xsb = (hx >> 31) & 1;	/* sign bit of x */
127*25c28e83SPiotr Jasiukajtis 	hx &= 0x7fffffff;	/* high word of |x| */
128*25c28e83SPiotr Jasiukajtis 
129*25c28e83SPiotr Jasiukajtis 	/* filter out non-finite argument */
130*25c28e83SPiotr Jasiukajtis 	if (hx >= 0x40e86a00) {	/* if |x| > 50000 */
131*25c28e83SPiotr Jasiukajtis 		if (hx >= 0x7ff00000) {
132*25c28e83SPiotr Jasiukajtis 			*n = 1;
133*25c28e83SPiotr Jasiukajtis 			if (((hx & 0xfffff) | lx) != 0)
134*25c28e83SPiotr Jasiukajtis 				return (x + x);	/* NaN */
135*25c28e83SPiotr Jasiukajtis 			else
136*25c28e83SPiotr Jasiukajtis 				return ((xsb == 0) ? x : 0.0);
137*25c28e83SPiotr Jasiukajtis 							/* exp(+-inf)={inf,0} */
138*25c28e83SPiotr Jasiukajtis 		}
139*25c28e83SPiotr Jasiukajtis 		*n = (xsb == 0) ? 50000 : -50000;
140*25c28e83SPiotr Jasiukajtis 		return (one + ln2LO[1] * ln2LO[1]);	/* generate inexact */
141*25c28e83SPiotr Jasiukajtis 	}
142*25c28e83SPiotr Jasiukajtis 
143*25c28e83SPiotr Jasiukajtis 	*n = 0;
144*25c28e83SPiotr Jasiukajtis 	/* argument reduction */
145*25c28e83SPiotr Jasiukajtis 	if (hx > 0x3fd62e42) {	/* if  |x| > 0.5 ln2 */
146*25c28e83SPiotr Jasiukajtis 		if (hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
147*25c28e83SPiotr Jasiukajtis 			hi = x - ln2HI[xsb];
148*25c28e83SPiotr Jasiukajtis 			lo = ln2LO[xsb];
149*25c28e83SPiotr Jasiukajtis 			k = 1 - xsb - xsb;
150*25c28e83SPiotr Jasiukajtis 		} else {
151*25c28e83SPiotr Jasiukajtis 			k = (int) (invln2 * x + halF[xsb]);
152*25c28e83SPiotr Jasiukajtis 			t = k;
153*25c28e83SPiotr Jasiukajtis 			hi = x - t * ln2HI[0];
154*25c28e83SPiotr Jasiukajtis 					/* t*ln2HI is exact for t<2**20 */
155*25c28e83SPiotr Jasiukajtis 			lo = t * ln2LO[0];
156*25c28e83SPiotr Jasiukajtis 		}
157*25c28e83SPiotr Jasiukajtis 		x = hi - lo;
158*25c28e83SPiotr Jasiukajtis 		*n = k;
159*25c28e83SPiotr Jasiukajtis 	} else if (hx < 0x3e300000) {	/* when |x|<2**-28 */
160*25c28e83SPiotr Jasiukajtis 		return (one + x);
161*25c28e83SPiotr Jasiukajtis 	} else
162*25c28e83SPiotr Jasiukajtis 		k = 0;
163*25c28e83SPiotr Jasiukajtis 
164*25c28e83SPiotr Jasiukajtis 	/* x is now in primary range */
165*25c28e83SPiotr Jasiukajtis 	t = x * x;
166*25c28e83SPiotr Jasiukajtis 	c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
167*25c28e83SPiotr Jasiukajtis 	if (k == 0)
168*25c28e83SPiotr Jasiukajtis 		return (one - ((x * c) / (c - 2.0) - x));
169*25c28e83SPiotr Jasiukajtis 	else {
170*25c28e83SPiotr Jasiukajtis 		t = one - ((lo - (x * c) / (2.0 - c)) - hi);
171*25c28e83SPiotr Jasiukajtis 		if (k > 128) {
172*25c28e83SPiotr Jasiukajtis 			t *= two128;
173*25c28e83SPiotr Jasiukajtis 			*n = k - 128;
174*25c28e83SPiotr Jasiukajtis 		} else if (k > 0) {
175*25c28e83SPiotr Jasiukajtis 			HI_WORD(t) += (k << 20);
176*25c28e83SPiotr Jasiukajtis 			*n = 0;
177*25c28e83SPiotr Jasiukajtis 		}
178*25c28e83SPiotr Jasiukajtis 		return (t);
179*25c28e83SPiotr Jasiukajtis 	}
180*25c28e83SPiotr Jasiukajtis }
181