xref: /titanic_51/usr/src/lib/libm/common/complex/ctanh.c (revision ddc0e0b53c661f6e439e3b7072b3ef353eadb4af)
125c28e83SPiotr Jasiukajtis /*
225c28e83SPiotr Jasiukajtis  * CDDL HEADER START
325c28e83SPiotr Jasiukajtis  *
425c28e83SPiotr Jasiukajtis  * The contents of this file are subject to the terms of the
525c28e83SPiotr Jasiukajtis  * Common Development and Distribution License (the "License").
625c28e83SPiotr Jasiukajtis  * You may not use this file except in compliance with the License.
725c28e83SPiotr Jasiukajtis  *
825c28e83SPiotr Jasiukajtis  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925c28e83SPiotr Jasiukajtis  * or http://www.opensolaris.org/os/licensing.
1025c28e83SPiotr Jasiukajtis  * See the License for the specific language governing permissions
1125c28e83SPiotr Jasiukajtis  * and limitations under the License.
1225c28e83SPiotr Jasiukajtis  *
1325c28e83SPiotr Jasiukajtis  * When distributing Covered Code, include this CDDL HEADER in each
1425c28e83SPiotr Jasiukajtis  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525c28e83SPiotr Jasiukajtis  * If applicable, add the following below this CDDL HEADER, with the
1625c28e83SPiotr Jasiukajtis  * fields enclosed by brackets "[]" replaced with your own identifying
1725c28e83SPiotr Jasiukajtis  * information: Portions Copyright [yyyy] [name of copyright owner]
1825c28e83SPiotr Jasiukajtis  *
1925c28e83SPiotr Jasiukajtis  * CDDL HEADER END
2025c28e83SPiotr Jasiukajtis  */
2125c28e83SPiotr Jasiukajtis 
2225c28e83SPiotr Jasiukajtis /*
2325c28e83SPiotr Jasiukajtis  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
2425c28e83SPiotr Jasiukajtis  */
2525c28e83SPiotr Jasiukajtis /*
2625c28e83SPiotr Jasiukajtis  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
2725c28e83SPiotr Jasiukajtis  * Use is subject to license terms.
2825c28e83SPiotr Jasiukajtis  */
2925c28e83SPiotr Jasiukajtis 
30*ddc0e0b5SRichard Lowe #pragma weak __ctanh = ctanh
3125c28e83SPiotr Jasiukajtis 
3225c28e83SPiotr Jasiukajtis /* INDENT OFF */
3325c28e83SPiotr Jasiukajtis /*
3425c28e83SPiotr Jasiukajtis  * dcomplex ctanh(dcomplex z);
3525c28e83SPiotr Jasiukajtis  *
3625c28e83SPiotr Jasiukajtis  *            tanh x  + i tan y      sinh 2x  +  i sin 2y
3725c28e83SPiotr Jasiukajtis  * ctanh z = --------------------- = --------------------
3825c28e83SPiotr Jasiukajtis  *           1 + i tanh(x)tan(y)       cosh 2x + cos 2y
3925c28e83SPiotr Jasiukajtis  *
4025c28e83SPiotr Jasiukajtis  * For |x| >= prec/2 (14,28,34,60 for single, double, double extended, quad),
4125c28e83SPiotr Jasiukajtis  * we use
4225c28e83SPiotr Jasiukajtis  *
4325c28e83SPiotr Jasiukajtis  *                         1   2x                              2 sin 2y
4425c28e83SPiotr Jasiukajtis  *    cosh 2x = sinh 2x = --- e    and hence  ctanh z = 1 + i -----------;
4525c28e83SPiotr Jasiukajtis  *                         2                                       2x
4625c28e83SPiotr Jasiukajtis  *                                                                e
4725c28e83SPiotr Jasiukajtis  *
4825c28e83SPiotr Jasiukajtis  * otherwise, to avoid cancellation, for |x| < prec/2,
4925c28e83SPiotr Jasiukajtis  *                              2x     2
5025c28e83SPiotr Jasiukajtis  *                            (e   - 1)        2       2
5125c28e83SPiotr Jasiukajtis  *    cosh 2x + cos 2y = 1 + ------------ + cos y - sin y
5225c28e83SPiotr Jasiukajtis  *                                 2x
5325c28e83SPiotr Jasiukajtis  *                              2 e
5425c28e83SPiotr Jasiukajtis  *
5525c28e83SPiotr Jasiukajtis  *                        1    2x     2  -2x         2
5625c28e83SPiotr Jasiukajtis  *                     = --- (e   - 1)  e     + 2 cos y
5725c28e83SPiotr Jasiukajtis  *                        2
5825c28e83SPiotr Jasiukajtis  * and
5925c28e83SPiotr Jasiukajtis  *
6025c28e83SPiotr Jasiukajtis  *                  [            2x      ]
6125c28e83SPiotr Jasiukajtis  *               1  [  2x       e   - 1  ]
6225c28e83SPiotr Jasiukajtis  *    sinh 2x = --- [ e  - 1 + --------- ]
6325c28e83SPiotr Jasiukajtis  *               2  [               2x   ]
6425c28e83SPiotr Jasiukajtis  *                  [              e     ]
6525c28e83SPiotr Jasiukajtis  *                                             2x
6625c28e83SPiotr Jasiukajtis  * Implementation notes:  let t = expm1(2x) = e   - 1, then
6725c28e83SPiotr Jasiukajtis  *
6825c28e83SPiotr Jasiukajtis  *                     1    [  t*t         2  ]              1    [      t  ]
6925c28e83SPiotr Jasiukajtis  * cosh 2x + cos 2y = --- * [ ----- + 4 cos y ];  sinh 2x = --- * [ t + --- ]
7025c28e83SPiotr Jasiukajtis  *                     2    [  t+1            ]              2    [     t+1 ]
7125c28e83SPiotr Jasiukajtis  *
7225c28e83SPiotr Jasiukajtis  * Hence,
7325c28e83SPiotr Jasiukajtis  *
7425c28e83SPiotr Jasiukajtis  *
7525c28e83SPiotr Jasiukajtis  *                        t*t+2t                  [4(t+1)(cos y)]*(sin y)
7625c28e83SPiotr Jasiukajtis  *    ctanh z = --------------------------- + i --------------------------
7725c28e83SPiotr Jasiukajtis  *               t*t+[4(t+1)(cos y)](cos y)     t*t+[4(t+1)(cos y)](cos y)
7825c28e83SPiotr Jasiukajtis  *
7925c28e83SPiotr Jasiukajtis  * EXCEPTION (conform to ISO/IEC 9899:1999(E)):
8025c28e83SPiotr Jasiukajtis  *      ctanh(0,0)=(0,0)
8125c28e83SPiotr Jasiukajtis  *      ctanh(x,inf) = (NaN,NaN) for finite x
8225c28e83SPiotr Jasiukajtis  *      ctanh(x,NaN) = (NaN,NaN) for finite x
8325c28e83SPiotr Jasiukajtis  *      ctanh(inf,y) = 1+ i*0*sin(2y) for positive-signed finite y
8425c28e83SPiotr Jasiukajtis  *      ctanh(inf,inf) = (1, +-0)
8525c28e83SPiotr Jasiukajtis  *      ctanh(inf,NaN) = (1, +-0)
8625c28e83SPiotr Jasiukajtis  *      ctanh(NaN,0) = (NaN,0)
8725c28e83SPiotr Jasiukajtis  *      ctanh(NaN,y) = (NaN,NaN) for non-zero y
8825c28e83SPiotr Jasiukajtis  *      ctanh(NaN,NaN) = (NaN,NaN)
8925c28e83SPiotr Jasiukajtis  */
9025c28e83SPiotr Jasiukajtis /* INDENT ON */
9125c28e83SPiotr Jasiukajtis 
9225c28e83SPiotr Jasiukajtis #include "libm.h"		/* exp/expm1/fabs/sin/tanh/sincos */
9325c28e83SPiotr Jasiukajtis #include "complex_wrapper.h"
9425c28e83SPiotr Jasiukajtis 
9525c28e83SPiotr Jasiukajtis static const double four = 4.0, two = 2.0, one = 1.0, zero = 0.0;
9625c28e83SPiotr Jasiukajtis 
9725c28e83SPiotr Jasiukajtis dcomplex
9825c28e83SPiotr Jasiukajtis ctanh(dcomplex z) {
9925c28e83SPiotr Jasiukajtis 	double t, r, v, u, x, y, S, C;
10025c28e83SPiotr Jasiukajtis 	int hx, ix, lx, hy, iy, ly;
10125c28e83SPiotr Jasiukajtis 	dcomplex ans;
10225c28e83SPiotr Jasiukajtis 
10325c28e83SPiotr Jasiukajtis 	x = D_RE(z);
10425c28e83SPiotr Jasiukajtis 	y = D_IM(z);
10525c28e83SPiotr Jasiukajtis 	hx = HI_WORD(x);
10625c28e83SPiotr Jasiukajtis 	lx = LO_WORD(x);
10725c28e83SPiotr Jasiukajtis 	ix = hx & 0x7fffffff;
10825c28e83SPiotr Jasiukajtis 	hy = HI_WORD(y);
10925c28e83SPiotr Jasiukajtis 	ly = LO_WORD(y);
11025c28e83SPiotr Jasiukajtis 	iy = hy & 0x7fffffff;
11125c28e83SPiotr Jasiukajtis 	x = fabs(x);
11225c28e83SPiotr Jasiukajtis 	y = fabs(y);
11325c28e83SPiotr Jasiukajtis 
11425c28e83SPiotr Jasiukajtis 	if ((iy | ly) == 0) {	/* ctanh(x,0) = (x,0) for x = 0 or NaN */
11525c28e83SPiotr Jasiukajtis 		D_RE(ans) = tanh(x);
11625c28e83SPiotr Jasiukajtis 		D_IM(ans) = zero;
11725c28e83SPiotr Jasiukajtis 	} else if (iy >= 0x7ff00000) {	/* y is inf or NaN */
11825c28e83SPiotr Jasiukajtis 		if (ix < 0x7ff00000)	/* catanh(finite x,inf/nan) is nan */
11925c28e83SPiotr Jasiukajtis 			D_RE(ans) = D_IM(ans) = y - y;
12025c28e83SPiotr Jasiukajtis 		else if (((ix - 0x7ff00000) | lx) == 0) {	/* x is inf */
12125c28e83SPiotr Jasiukajtis 			D_RE(ans) = one;
12225c28e83SPiotr Jasiukajtis 			D_IM(ans) = zero;
12325c28e83SPiotr Jasiukajtis 		} else {
12425c28e83SPiotr Jasiukajtis 			D_RE(ans) = x + y;
12525c28e83SPiotr Jasiukajtis 			D_IM(ans) = y - y;
12625c28e83SPiotr Jasiukajtis 		}
12725c28e83SPiotr Jasiukajtis 	} else if (ix >= 0x403c0000) {
12825c28e83SPiotr Jasiukajtis 		/*
12925c28e83SPiotr Jasiukajtis 		 * |x| > 28 = prec/2 (14,28,34,60)
13025c28e83SPiotr Jasiukajtis 		 * ctanh z ~ 1 + i (sin2y)/(exp(2x))
13125c28e83SPiotr Jasiukajtis 		 */
13225c28e83SPiotr Jasiukajtis 		D_RE(ans) = one;
13325c28e83SPiotr Jasiukajtis 		if (iy < 0x7fe00000)	/* t = sin(2y) */
13425c28e83SPiotr Jasiukajtis 			S = sin(y + y);
13525c28e83SPiotr Jasiukajtis 		else {
13625c28e83SPiotr Jasiukajtis 			(void) sincos(y, &S, &C);
13725c28e83SPiotr Jasiukajtis 			S = (S + S) * C;
13825c28e83SPiotr Jasiukajtis 		}
13925c28e83SPiotr Jasiukajtis 		if (ix >= 0x7fe00000) {	/* |x| > max/2 */
14025c28e83SPiotr Jasiukajtis 			if (ix >= 0x7ff00000) {	/* |x| is inf or NaN */
14125c28e83SPiotr Jasiukajtis 				if (((ix - 0x7ff00000) | lx) != 0)
14225c28e83SPiotr Jasiukajtis 					D_RE(ans) = D_IM(ans) = x + y;
14325c28e83SPiotr Jasiukajtis 								/* x is NaN */
14425c28e83SPiotr Jasiukajtis 				else
14525c28e83SPiotr Jasiukajtis 					D_IM(ans) = zero * S;	/* x is inf */
14625c28e83SPiotr Jasiukajtis 			} else
14725c28e83SPiotr Jasiukajtis 				D_IM(ans) = S * exp(-x);	/* underflow */
14825c28e83SPiotr Jasiukajtis 		} else
14925c28e83SPiotr Jasiukajtis 			D_IM(ans) = (S + S) * exp(-(x + x));
15025c28e83SPiotr Jasiukajtis 							/* 2 sin 2y / exp(2x) */
15125c28e83SPiotr Jasiukajtis 	} else {
15225c28e83SPiotr Jasiukajtis 		/* INDENT OFF */
15325c28e83SPiotr Jasiukajtis 		/*
15425c28e83SPiotr Jasiukajtis 		 *                        t*t+2t
15525c28e83SPiotr Jasiukajtis 		 *    ctanh z = --------------------------- +
15625c28e83SPiotr Jasiukajtis 		 *               t*t+[4(t+1)(cos y)](cos y)
15725c28e83SPiotr Jasiukajtis 		 *
15825c28e83SPiotr Jasiukajtis 		 *                  [4(t+1)(cos y)]*(sin y)
15925c28e83SPiotr Jasiukajtis 		 *              i --------------------------
16025c28e83SPiotr Jasiukajtis 		 *                t*t+[4(t+1)(cos y)](cos y)
16125c28e83SPiotr Jasiukajtis 		 */
16225c28e83SPiotr Jasiukajtis 		/* INDENT ON */
16325c28e83SPiotr Jasiukajtis 		(void) sincos(y, &S, &C);
16425c28e83SPiotr Jasiukajtis 		t = expm1(x + x);
16525c28e83SPiotr Jasiukajtis 		r = (four * C) * (t + one);
16625c28e83SPiotr Jasiukajtis 		u = t * t;
16725c28e83SPiotr Jasiukajtis 		v = one / (u + r * C);
16825c28e83SPiotr Jasiukajtis 		D_RE(ans) = (u + two * t) * v;
16925c28e83SPiotr Jasiukajtis 		D_IM(ans) = (r * S) * v;
17025c28e83SPiotr Jasiukajtis 	}
17125c28e83SPiotr Jasiukajtis 	if (hx < 0)
17225c28e83SPiotr Jasiukajtis 		D_RE(ans) = -D_RE(ans);
17325c28e83SPiotr Jasiukajtis 	if (hy < 0)
17425c28e83SPiotr Jasiukajtis 		D_IM(ans) = -D_IM(ans);
17525c28e83SPiotr Jasiukajtis 	return (ans);
17625c28e83SPiotr Jasiukajtis }
177