125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis 2225c28e83SPiotr Jasiukajtis /* 2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2425c28e83SPiotr Jasiukajtis */ 2525c28e83SPiotr Jasiukajtis /* 2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 2725c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2825c28e83SPiotr Jasiukajtis */ 2925c28e83SPiotr Jasiukajtis 30*ddc0e0b5SRichard Lowe #pragma weak __ctanh = ctanh 3125c28e83SPiotr Jasiukajtis 3225c28e83SPiotr Jasiukajtis /* INDENT OFF */ 3325c28e83SPiotr Jasiukajtis /* 3425c28e83SPiotr Jasiukajtis * dcomplex ctanh(dcomplex z); 3525c28e83SPiotr Jasiukajtis * 3625c28e83SPiotr Jasiukajtis * tanh x + i tan y sinh 2x + i sin 2y 3725c28e83SPiotr Jasiukajtis * ctanh z = --------------------- = -------------------- 3825c28e83SPiotr Jasiukajtis * 1 + i tanh(x)tan(y) cosh 2x + cos 2y 3925c28e83SPiotr Jasiukajtis * 4025c28e83SPiotr Jasiukajtis * For |x| >= prec/2 (14,28,34,60 for single, double, double extended, quad), 4125c28e83SPiotr Jasiukajtis * we use 4225c28e83SPiotr Jasiukajtis * 4325c28e83SPiotr Jasiukajtis * 1 2x 2 sin 2y 4425c28e83SPiotr Jasiukajtis * cosh 2x = sinh 2x = --- e and hence ctanh z = 1 + i -----------; 4525c28e83SPiotr Jasiukajtis * 2 2x 4625c28e83SPiotr Jasiukajtis * e 4725c28e83SPiotr Jasiukajtis * 4825c28e83SPiotr Jasiukajtis * otherwise, to avoid cancellation, for |x| < prec/2, 4925c28e83SPiotr Jasiukajtis * 2x 2 5025c28e83SPiotr Jasiukajtis * (e - 1) 2 2 5125c28e83SPiotr Jasiukajtis * cosh 2x + cos 2y = 1 + ------------ + cos y - sin y 5225c28e83SPiotr Jasiukajtis * 2x 5325c28e83SPiotr Jasiukajtis * 2 e 5425c28e83SPiotr Jasiukajtis * 5525c28e83SPiotr Jasiukajtis * 1 2x 2 -2x 2 5625c28e83SPiotr Jasiukajtis * = --- (e - 1) e + 2 cos y 5725c28e83SPiotr Jasiukajtis * 2 5825c28e83SPiotr Jasiukajtis * and 5925c28e83SPiotr Jasiukajtis * 6025c28e83SPiotr Jasiukajtis * [ 2x ] 6125c28e83SPiotr Jasiukajtis * 1 [ 2x e - 1 ] 6225c28e83SPiotr Jasiukajtis * sinh 2x = --- [ e - 1 + --------- ] 6325c28e83SPiotr Jasiukajtis * 2 [ 2x ] 6425c28e83SPiotr Jasiukajtis * [ e ] 6525c28e83SPiotr Jasiukajtis * 2x 6625c28e83SPiotr Jasiukajtis * Implementation notes: let t = expm1(2x) = e - 1, then 6725c28e83SPiotr Jasiukajtis * 6825c28e83SPiotr Jasiukajtis * 1 [ t*t 2 ] 1 [ t ] 6925c28e83SPiotr Jasiukajtis * cosh 2x + cos 2y = --- * [ ----- + 4 cos y ]; sinh 2x = --- * [ t + --- ] 7025c28e83SPiotr Jasiukajtis * 2 [ t+1 ] 2 [ t+1 ] 7125c28e83SPiotr Jasiukajtis * 7225c28e83SPiotr Jasiukajtis * Hence, 7325c28e83SPiotr Jasiukajtis * 7425c28e83SPiotr Jasiukajtis * 7525c28e83SPiotr Jasiukajtis * t*t+2t [4(t+1)(cos y)]*(sin y) 7625c28e83SPiotr Jasiukajtis * ctanh z = --------------------------- + i -------------------------- 7725c28e83SPiotr Jasiukajtis * t*t+[4(t+1)(cos y)](cos y) t*t+[4(t+1)(cos y)](cos y) 7825c28e83SPiotr Jasiukajtis * 7925c28e83SPiotr Jasiukajtis * EXCEPTION (conform to ISO/IEC 9899:1999(E)): 8025c28e83SPiotr Jasiukajtis * ctanh(0,0)=(0,0) 8125c28e83SPiotr Jasiukajtis * ctanh(x,inf) = (NaN,NaN) for finite x 8225c28e83SPiotr Jasiukajtis * ctanh(x,NaN) = (NaN,NaN) for finite x 8325c28e83SPiotr Jasiukajtis * ctanh(inf,y) = 1+ i*0*sin(2y) for positive-signed finite y 8425c28e83SPiotr Jasiukajtis * ctanh(inf,inf) = (1, +-0) 8525c28e83SPiotr Jasiukajtis * ctanh(inf,NaN) = (1, +-0) 8625c28e83SPiotr Jasiukajtis * ctanh(NaN,0) = (NaN,0) 8725c28e83SPiotr Jasiukajtis * ctanh(NaN,y) = (NaN,NaN) for non-zero y 8825c28e83SPiotr Jasiukajtis * ctanh(NaN,NaN) = (NaN,NaN) 8925c28e83SPiotr Jasiukajtis */ 9025c28e83SPiotr Jasiukajtis /* INDENT ON */ 9125c28e83SPiotr Jasiukajtis 9225c28e83SPiotr Jasiukajtis #include "libm.h" /* exp/expm1/fabs/sin/tanh/sincos */ 9325c28e83SPiotr Jasiukajtis #include "complex_wrapper.h" 9425c28e83SPiotr Jasiukajtis 9525c28e83SPiotr Jasiukajtis static const double four = 4.0, two = 2.0, one = 1.0, zero = 0.0; 9625c28e83SPiotr Jasiukajtis 9725c28e83SPiotr Jasiukajtis dcomplex 9825c28e83SPiotr Jasiukajtis ctanh(dcomplex z) { 9925c28e83SPiotr Jasiukajtis double t, r, v, u, x, y, S, C; 10025c28e83SPiotr Jasiukajtis int hx, ix, lx, hy, iy, ly; 10125c28e83SPiotr Jasiukajtis dcomplex ans; 10225c28e83SPiotr Jasiukajtis 10325c28e83SPiotr Jasiukajtis x = D_RE(z); 10425c28e83SPiotr Jasiukajtis y = D_IM(z); 10525c28e83SPiotr Jasiukajtis hx = HI_WORD(x); 10625c28e83SPiotr Jasiukajtis lx = LO_WORD(x); 10725c28e83SPiotr Jasiukajtis ix = hx & 0x7fffffff; 10825c28e83SPiotr Jasiukajtis hy = HI_WORD(y); 10925c28e83SPiotr Jasiukajtis ly = LO_WORD(y); 11025c28e83SPiotr Jasiukajtis iy = hy & 0x7fffffff; 11125c28e83SPiotr Jasiukajtis x = fabs(x); 11225c28e83SPiotr Jasiukajtis y = fabs(y); 11325c28e83SPiotr Jasiukajtis 11425c28e83SPiotr Jasiukajtis if ((iy | ly) == 0) { /* ctanh(x,0) = (x,0) for x = 0 or NaN */ 11525c28e83SPiotr Jasiukajtis D_RE(ans) = tanh(x); 11625c28e83SPiotr Jasiukajtis D_IM(ans) = zero; 11725c28e83SPiotr Jasiukajtis } else if (iy >= 0x7ff00000) { /* y is inf or NaN */ 11825c28e83SPiotr Jasiukajtis if (ix < 0x7ff00000) /* catanh(finite x,inf/nan) is nan */ 11925c28e83SPiotr Jasiukajtis D_RE(ans) = D_IM(ans) = y - y; 12025c28e83SPiotr Jasiukajtis else if (((ix - 0x7ff00000) | lx) == 0) { /* x is inf */ 12125c28e83SPiotr Jasiukajtis D_RE(ans) = one; 12225c28e83SPiotr Jasiukajtis D_IM(ans) = zero; 12325c28e83SPiotr Jasiukajtis } else { 12425c28e83SPiotr Jasiukajtis D_RE(ans) = x + y; 12525c28e83SPiotr Jasiukajtis D_IM(ans) = y - y; 12625c28e83SPiotr Jasiukajtis } 12725c28e83SPiotr Jasiukajtis } else if (ix >= 0x403c0000) { 12825c28e83SPiotr Jasiukajtis /* 12925c28e83SPiotr Jasiukajtis * |x| > 28 = prec/2 (14,28,34,60) 13025c28e83SPiotr Jasiukajtis * ctanh z ~ 1 + i (sin2y)/(exp(2x)) 13125c28e83SPiotr Jasiukajtis */ 13225c28e83SPiotr Jasiukajtis D_RE(ans) = one; 13325c28e83SPiotr Jasiukajtis if (iy < 0x7fe00000) /* t = sin(2y) */ 13425c28e83SPiotr Jasiukajtis S = sin(y + y); 13525c28e83SPiotr Jasiukajtis else { 13625c28e83SPiotr Jasiukajtis (void) sincos(y, &S, &C); 13725c28e83SPiotr Jasiukajtis S = (S + S) * C; 13825c28e83SPiotr Jasiukajtis } 13925c28e83SPiotr Jasiukajtis if (ix >= 0x7fe00000) { /* |x| > max/2 */ 14025c28e83SPiotr Jasiukajtis if (ix >= 0x7ff00000) { /* |x| is inf or NaN */ 14125c28e83SPiotr Jasiukajtis if (((ix - 0x7ff00000) | lx) != 0) 14225c28e83SPiotr Jasiukajtis D_RE(ans) = D_IM(ans) = x + y; 14325c28e83SPiotr Jasiukajtis /* x is NaN */ 14425c28e83SPiotr Jasiukajtis else 14525c28e83SPiotr Jasiukajtis D_IM(ans) = zero * S; /* x is inf */ 14625c28e83SPiotr Jasiukajtis } else 14725c28e83SPiotr Jasiukajtis D_IM(ans) = S * exp(-x); /* underflow */ 14825c28e83SPiotr Jasiukajtis } else 14925c28e83SPiotr Jasiukajtis D_IM(ans) = (S + S) * exp(-(x + x)); 15025c28e83SPiotr Jasiukajtis /* 2 sin 2y / exp(2x) */ 15125c28e83SPiotr Jasiukajtis } else { 15225c28e83SPiotr Jasiukajtis /* INDENT OFF */ 15325c28e83SPiotr Jasiukajtis /* 15425c28e83SPiotr Jasiukajtis * t*t+2t 15525c28e83SPiotr Jasiukajtis * ctanh z = --------------------------- + 15625c28e83SPiotr Jasiukajtis * t*t+[4(t+1)(cos y)](cos y) 15725c28e83SPiotr Jasiukajtis * 15825c28e83SPiotr Jasiukajtis * [4(t+1)(cos y)]*(sin y) 15925c28e83SPiotr Jasiukajtis * i -------------------------- 16025c28e83SPiotr Jasiukajtis * t*t+[4(t+1)(cos y)](cos y) 16125c28e83SPiotr Jasiukajtis */ 16225c28e83SPiotr Jasiukajtis /* INDENT ON */ 16325c28e83SPiotr Jasiukajtis (void) sincos(y, &S, &C); 16425c28e83SPiotr Jasiukajtis t = expm1(x + x); 16525c28e83SPiotr Jasiukajtis r = (four * C) * (t + one); 16625c28e83SPiotr Jasiukajtis u = t * t; 16725c28e83SPiotr Jasiukajtis v = one / (u + r * C); 16825c28e83SPiotr Jasiukajtis D_RE(ans) = (u + two * t) * v; 16925c28e83SPiotr Jasiukajtis D_IM(ans) = (r * S) * v; 17025c28e83SPiotr Jasiukajtis } 17125c28e83SPiotr Jasiukajtis if (hx < 0) 17225c28e83SPiotr Jasiukajtis D_RE(ans) = -D_RE(ans); 17325c28e83SPiotr Jasiukajtis if (hy < 0) 17425c28e83SPiotr Jasiukajtis D_IM(ans) = -D_IM(ans); 17525c28e83SPiotr Jasiukajtis return (ans); 17625c28e83SPiotr Jasiukajtis } 177