1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma weak csqrtl = __csqrtl 31 32 #include "libm.h" /* fabsl/isinfl/sqrtl */ 33 #include "complex_wrapper.h" 34 #include "longdouble.h" 35 36 /* INDENT OFF */ 37 static const long double 38 twom9001 = 2.6854002716003034957421765100615693043656e-2710L, 39 twom4500 = 2.3174987687592429423263242862381544149252e-1355L, 40 two8999 = 9.3095991180122343502582347372163290310934e+2708L, 41 two4500 = 4.3149968987270974283777803545571722250806e+1354L, 42 zero = 0.0L, 43 half = 0.5L, 44 two = 2.0L; 45 /* INDENT ON */ 46 47 ldcomplex 48 csqrtl(ldcomplex z) { 49 ldcomplex ans; 50 long double x, y, t, ax, ay; 51 int n, ix, iy, hx, hy; 52 53 x = LD_RE(z); 54 y = LD_IM(z); 55 hx = HI_XWORD(x); 56 hy = HI_XWORD(y); 57 ix = hx & 0x7fffffff; 58 iy = hy & 0x7fffffff; 59 ay = fabsl(y); 60 ax = fabsl(x); 61 if (ix >= 0x7fff0000 || iy >= 0x7fff0000) { 62 /* x or y is Inf or NaN */ 63 if (isinfl(y)) 64 LD_IM(ans) = LD_RE(ans) = ay; 65 else if (isinfl(x)) { 66 if (hx > 0) { 67 LD_RE(ans) = ax; 68 LD_IM(ans) = ay * zero; 69 } else { 70 LD_RE(ans) = ay * zero; 71 LD_IM(ans) = ax; 72 } 73 } else 74 LD_IM(ans) = LD_RE(ans) = ax + ay; 75 } else if (y == zero) { 76 if (hx >= 0) { 77 LD_RE(ans) = sqrtl(ax); 78 LD_IM(ans) = zero; 79 } else { 80 LD_IM(ans) = sqrtl(ax); 81 LD_RE(ans) = zero; 82 } 83 } else if (ix >= iy) { 84 n = (ix - iy) >> 16; 85 #if defined(__x86) /* 64 significant bits */ 86 if (n >= 35) 87 #else /* 113 significant bits */ 88 if (n >= 60) 89 #endif 90 t = sqrtl(ax); 91 else if (ix >= 0x5f3f0000) { /* x > 2**8000 */ 92 ax *= twom9001; 93 y *= twom9001; 94 t = two4500 * sqrtl(ax + sqrtl(ax * ax + y * y)); 95 } else if (iy <= 0x20bf0000) { /* y < 2**-8000 */ 96 ax *= two8999; 97 y *= two8999; 98 t = twom4500 * sqrtl(ax + sqrtl(ax * ax + y * y)); 99 } else 100 t = sqrtl(half * (ax + sqrtl(ax * ax + y * y))); 101 102 if (hx >= 0) { 103 LD_RE(ans) = t; 104 LD_IM(ans) = ay / (t + t); 105 } else { 106 LD_IM(ans) = t; 107 LD_RE(ans) = ay / (t + t); 108 } 109 } else { 110 n = (iy - ix) >> 16; 111 #if defined(__x86) /* 64 significant bits */ 112 if (n >= 35) { /* } */ 113 #else /* 113 significant bits */ 114 if (n >= 60) { 115 #endif 116 if (n >= 120) 117 t = sqrtl(half * ay); 118 else if (iy >= 0x7ffe0000) 119 t = sqrtl(half * ay + half * ax); 120 else if (ix <= 0x00010000) 121 t = half * (sqrtl(two * (ax + ay))); 122 else 123 t = sqrtl(half * (ax + ay)); 124 } else if (iy >= 0x5f3f0000) { /* y > 2**8000 */ 125 ax *= twom9001; 126 y *= twom9001; 127 t = two4500 * sqrtl(ax + sqrtl(ax * ax + y * y)); 128 } else if (ix <= 0x20bf0000) { 129 ax *= two8999; 130 y *= two8999; 131 t = twom4500 * sqrtl(ax + sqrtl(ax * ax + y * y)); 132 } else 133 t = sqrtl(half * (ax + sqrtl(ax * ax + y * y))); 134 135 if (hx >= 0) { 136 LD_RE(ans) = t; 137 LD_IM(ans) = ay / (t + t); 138 } else { 139 LD_IM(ans) = t; 140 LD_RE(ans) = ay / (t + t); 141 } 142 } 143 if (hy < 0) 144 LD_IM(ans) = -LD_IM(ans); 145 return (ans); 146 } 147