125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis 2225c28e83SPiotr Jasiukajtis /* 2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2425c28e83SPiotr Jasiukajtis */ 2525c28e83SPiotr Jasiukajtis /* 2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 2725c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2825c28e83SPiotr Jasiukajtis */ 2925c28e83SPiotr Jasiukajtis 30*ddc0e0b5SRichard Lowe #pragma weak __cacos = cacos 3125c28e83SPiotr Jasiukajtis 3225c28e83SPiotr Jasiukajtis /* INDENT OFF */ 3325c28e83SPiotr Jasiukajtis /* 3425c28e83SPiotr Jasiukajtis * dcomplex cacos(dcomplex z); 3525c28e83SPiotr Jasiukajtis * 3625c28e83SPiotr Jasiukajtis * Alogrithm 3725c28e83SPiotr Jasiukajtis * (based on T.E.Hull, Thomas F. Fairgrieve and Ping Tak Peter Tang's 3825c28e83SPiotr Jasiukajtis * paper "Implementing the Complex Arcsine and Arccosine Functins Using 3925c28e83SPiotr Jasiukajtis * Exception Handling", ACM TOMS, Vol 23, pp 299-335) 4025c28e83SPiotr Jasiukajtis * 4125c28e83SPiotr Jasiukajtis * The principal value of complex inverse cosine function cacos(z), 4225c28e83SPiotr Jasiukajtis * where z = x+iy, can be defined by 4325c28e83SPiotr Jasiukajtis * 4425c28e83SPiotr Jasiukajtis * cacos(z) = acos(B) - i sign(y) log (A + sqrt(A*A-1)), 4525c28e83SPiotr Jasiukajtis * 4625c28e83SPiotr Jasiukajtis * where the log function is the natural log, and 4725c28e83SPiotr Jasiukajtis * ____________ ____________ 4825c28e83SPiotr Jasiukajtis * 1 / 2 2 1 / 2 2 4925c28e83SPiotr Jasiukajtis * A = --- / (x+1) + y + --- / (x-1) + y 5025c28e83SPiotr Jasiukajtis * 2 \/ 2 \/ 5125c28e83SPiotr Jasiukajtis * ____________ ____________ 5225c28e83SPiotr Jasiukajtis * 1 / 2 2 1 / 2 2 5325c28e83SPiotr Jasiukajtis * B = --- / (x+1) + y - --- / (x-1) + y . 5425c28e83SPiotr Jasiukajtis * 2 \/ 2 \/ 5525c28e83SPiotr Jasiukajtis * 5625c28e83SPiotr Jasiukajtis * The Branch cuts are on the real line from -inf to -1 and from 1 to inf. 5725c28e83SPiotr Jasiukajtis * The real and imaginary parts are based on Abramowitz and Stegun 5825c28e83SPiotr Jasiukajtis * [Handbook of Mathematic Functions, 1972]. The sign of the imaginary 5925c28e83SPiotr Jasiukajtis * part is chosen to be the generally considered the principal value of 6025c28e83SPiotr Jasiukajtis * this function. 6125c28e83SPiotr Jasiukajtis * 6225c28e83SPiotr Jasiukajtis * Notes:1. A is the average of the distances from z to the points (1,0) 6325c28e83SPiotr Jasiukajtis * and (-1,0) in the complex z-plane, and in particular A>=1. 6425c28e83SPiotr Jasiukajtis * 2. B is in [-1,1], and A*B = x 6525c28e83SPiotr Jasiukajtis * 6625c28e83SPiotr Jasiukajtis * Basic relations 6725c28e83SPiotr Jasiukajtis * cacos(conj(z)) = conj(cacos(z)) 6825c28e83SPiotr Jasiukajtis * cacos(-z) = pi - cacos(z) 6925c28e83SPiotr Jasiukajtis * cacos( z) = pi/2 - casin(z) 7025c28e83SPiotr Jasiukajtis * 7125c28e83SPiotr Jasiukajtis * Special cases (conform to ISO/IEC 9899:1999(E)): 7225c28e83SPiotr Jasiukajtis * cacos(+-0 + i y ) = pi/2 - i y for y is +-0, +-inf, NaN 7325c28e83SPiotr Jasiukajtis * cacos( x + i inf) = pi/2 - i inf for all x 7425c28e83SPiotr Jasiukajtis * cacos( x + i NaN) = NaN + i NaN with invalid for non-zero finite x 7525c28e83SPiotr Jasiukajtis * cacos(-inf + i y ) = pi - i inf for finite +y 7625c28e83SPiotr Jasiukajtis * cacos( inf + i y ) = 0 - i inf for finite +y 7725c28e83SPiotr Jasiukajtis * cacos(-inf + i inf) = 3pi/4- i inf 7825c28e83SPiotr Jasiukajtis * cacos( inf + i inf) = pi/4 - i inf 7925c28e83SPiotr Jasiukajtis * cacos(+-inf+ i NaN) = NaN - i inf (sign of imaginary is unspecified) 8025c28e83SPiotr Jasiukajtis * cacos(NaN + i y ) = NaN + i NaN with invalid for finite y 8125c28e83SPiotr Jasiukajtis * cacos(NaN + i inf) = NaN - i inf 8225c28e83SPiotr Jasiukajtis * cacos(NaN + i NaN) = NaN + i NaN 8325c28e83SPiotr Jasiukajtis * 8425c28e83SPiotr Jasiukajtis * Special Regions (better formula for accuracy and for avoiding spurious 8525c28e83SPiotr Jasiukajtis * overflow or underflow) (all x and y are assumed nonnegative): 8625c28e83SPiotr Jasiukajtis * case 1: y = 0 8725c28e83SPiotr Jasiukajtis * case 2: tiny y relative to x-1: y <= ulp(0.5)*|x-1| 8825c28e83SPiotr Jasiukajtis * case 3: tiny y: y < 4 sqrt(u), where u = minimum normal number 8925c28e83SPiotr Jasiukajtis * case 4: huge y relative to x+1: y >= (1+x)/ulp(0.5) 9025c28e83SPiotr Jasiukajtis * case 5: huge x and y: x and y >= sqrt(M)/8, where M = maximum normal number 9125c28e83SPiotr Jasiukajtis * case 6: tiny x: x < 4 sqrt(u) 9225c28e83SPiotr Jasiukajtis * -------- 9325c28e83SPiotr Jasiukajtis * case 1 & 2. y=0 or y/|x-1| is tiny. We have 9425c28e83SPiotr Jasiukajtis * ____________ _____________ 9525c28e83SPiotr Jasiukajtis * / 2 2 / y 2 9625c28e83SPiotr Jasiukajtis * / (x+-1) + y = |x+-1| / 1 + (------) 9725c28e83SPiotr Jasiukajtis * \/ \/ |x+-1| 9825c28e83SPiotr Jasiukajtis * 9925c28e83SPiotr Jasiukajtis * 1 y 2 10025c28e83SPiotr Jasiukajtis * ~ |x+-1| ( 1 + --- (------) ) 10125c28e83SPiotr Jasiukajtis * 2 |x+-1| 10225c28e83SPiotr Jasiukajtis * 10325c28e83SPiotr Jasiukajtis * 2 10425c28e83SPiotr Jasiukajtis * y 10525c28e83SPiotr Jasiukajtis * = |x+-1| + --------. 10625c28e83SPiotr Jasiukajtis * 2|x+-1| 10725c28e83SPiotr Jasiukajtis * 10825c28e83SPiotr Jasiukajtis * Consequently, it is not difficult to see that 10925c28e83SPiotr Jasiukajtis * 2 11025c28e83SPiotr Jasiukajtis * y 11125c28e83SPiotr Jasiukajtis * [ 1 + ------------ , if x < 1, 11225c28e83SPiotr Jasiukajtis * [ 2(1+x)(1-x) 11325c28e83SPiotr Jasiukajtis * [ 11425c28e83SPiotr Jasiukajtis * [ 11525c28e83SPiotr Jasiukajtis * [ x, if x = 1 (y = 0), 11625c28e83SPiotr Jasiukajtis * [ 11725c28e83SPiotr Jasiukajtis * A ~= [ 2 11825c28e83SPiotr Jasiukajtis * [ x * y 11925c28e83SPiotr Jasiukajtis * [ x + ------------ ~ x, if x > 1 12025c28e83SPiotr Jasiukajtis * [ 2(x+1)(x-1) 12125c28e83SPiotr Jasiukajtis * 12225c28e83SPiotr Jasiukajtis * and hence 12325c28e83SPiotr Jasiukajtis * ______ 2 12425c28e83SPiotr Jasiukajtis * / 2 y y 12525c28e83SPiotr Jasiukajtis * A + \/ A - 1 ~ 1 + ---------------- + -----------, if x < 1, 12625c28e83SPiotr Jasiukajtis * sqrt((x+1)(1-x)) 2(x+1)(1-x) 12725c28e83SPiotr Jasiukajtis * 12825c28e83SPiotr Jasiukajtis * 12925c28e83SPiotr Jasiukajtis * ~ x + sqrt((x-1)*(x+1)), if x >= 1. 13025c28e83SPiotr Jasiukajtis * 13125c28e83SPiotr Jasiukajtis * 2 13225c28e83SPiotr Jasiukajtis * y 13325c28e83SPiotr Jasiukajtis * [ x(1 - -----------) ~ x, if x < 1, 13425c28e83SPiotr Jasiukajtis * [ 2(1+x)(1-x) 13525c28e83SPiotr Jasiukajtis * B = x/A ~ [ 13625c28e83SPiotr Jasiukajtis * [ 1, if x = 1, 13725c28e83SPiotr Jasiukajtis * [ 13825c28e83SPiotr Jasiukajtis * [ 2 13925c28e83SPiotr Jasiukajtis * [ y 14025c28e83SPiotr Jasiukajtis * [ 1 - ------------ , if x > 1, 14125c28e83SPiotr Jasiukajtis * [ 2(x+1)(x-1) 14225c28e83SPiotr Jasiukajtis * Thus 14325c28e83SPiotr Jasiukajtis * [ acos(x) - i y/sqrt((x-1)*(x+1)), if x < 1, 14425c28e83SPiotr Jasiukajtis * [ 14525c28e83SPiotr Jasiukajtis * cacos(x+i*y)~ [ 0 - i 0, if x = 1, 14625c28e83SPiotr Jasiukajtis * [ 14725c28e83SPiotr Jasiukajtis * [ y/sqrt(x*x-1) - i log(x+sqrt(x*x-1)), if x > 1. 14825c28e83SPiotr Jasiukajtis * 14925c28e83SPiotr Jasiukajtis * Note: y/sqrt(x*x-1) ~ y/x when x >= 2**26. 15025c28e83SPiotr Jasiukajtis * case 3. y < 4 sqrt(u), where u = minimum normal x. 15125c28e83SPiotr Jasiukajtis * After case 1 and 2, this will only occurs when x=1. When x=1, we have 15225c28e83SPiotr Jasiukajtis * A = (sqrt(4+y*y)+y)/2 ~ 1 + y/2 + y^2/8 + ... 15325c28e83SPiotr Jasiukajtis * and 15425c28e83SPiotr Jasiukajtis * B = 1/A = 1 - y/2 + y^2/8 + ... 15525c28e83SPiotr Jasiukajtis * Since 15625c28e83SPiotr Jasiukajtis * cos(sqrt(y)) ~ 1 - y/2 + ... 15725c28e83SPiotr Jasiukajtis * we have, for the real part, 15825c28e83SPiotr Jasiukajtis * acos(B) ~ acos(1 - y/2) ~ sqrt(y) 15925c28e83SPiotr Jasiukajtis * For the imaginary part, 16025c28e83SPiotr Jasiukajtis * log(A+sqrt(A*A-1)) ~ log(1+y/2+sqrt(2*y/2)) 16125c28e83SPiotr Jasiukajtis * = log(1+y/2+sqrt(y)) 16225c28e83SPiotr Jasiukajtis * = (y/2+sqrt(y)) - (y/2+sqrt(y))^2/2 + ... 16325c28e83SPiotr Jasiukajtis * ~ sqrt(y) - y*(sqrt(y)+y/2)/2 16425c28e83SPiotr Jasiukajtis * ~ sqrt(y) 16525c28e83SPiotr Jasiukajtis * 16625c28e83SPiotr Jasiukajtis * case 4. y >= (x+1)/ulp(0.5). In this case, A ~ y and B ~ x/y. Thus 16725c28e83SPiotr Jasiukajtis * real part = acos(B) ~ pi/2 16825c28e83SPiotr Jasiukajtis * and 16925c28e83SPiotr Jasiukajtis * imag part = log(y+sqrt(y*y-one)) 17025c28e83SPiotr Jasiukajtis * 17125c28e83SPiotr Jasiukajtis * case 5. Both x and y are large: x and y > sqrt(M)/8, where M = maximum x 17225c28e83SPiotr Jasiukajtis * In this case, 17325c28e83SPiotr Jasiukajtis * A ~ sqrt(x*x+y*y) 17425c28e83SPiotr Jasiukajtis * B ~ x/sqrt(x*x+y*y). 17525c28e83SPiotr Jasiukajtis * Thus 17625c28e83SPiotr Jasiukajtis * real part = acos(B) = atan(y/x), 17725c28e83SPiotr Jasiukajtis * imag part = log(A+sqrt(A*A-1)) ~ log(2A) 17825c28e83SPiotr Jasiukajtis * = log(2) + 0.5*log(x*x+y*y) 17925c28e83SPiotr Jasiukajtis * = log(2) + log(y) + 0.5*log(1+(x/y)^2) 18025c28e83SPiotr Jasiukajtis * 18125c28e83SPiotr Jasiukajtis * case 6. x < 4 sqrt(u). In this case, we have 18225c28e83SPiotr Jasiukajtis * A ~ sqrt(1+y*y), B = x/sqrt(1+y*y). 18325c28e83SPiotr Jasiukajtis * Since B is tiny, we have 18425c28e83SPiotr Jasiukajtis * real part = acos(B) ~ pi/2 18525c28e83SPiotr Jasiukajtis * imag part = log(A+sqrt(A*A-1)) = log (A+sqrt(y*y)) 18625c28e83SPiotr Jasiukajtis * = log(y+sqrt(1+y*y)) 18725c28e83SPiotr Jasiukajtis * = 0.5*log(y^2+2ysqrt(1+y^2)+1+y^2) 18825c28e83SPiotr Jasiukajtis * = 0.5*log(1+2y(y+sqrt(1+y^2))); 18925c28e83SPiotr Jasiukajtis * = 0.5*log1p(2y(y+A)); 19025c28e83SPiotr Jasiukajtis * 19125c28e83SPiotr Jasiukajtis * cacos(z) = acos(B) - i sign(y) log (A + sqrt(A*A-1)), 19225c28e83SPiotr Jasiukajtis */ 19325c28e83SPiotr Jasiukajtis /* INDENT ON */ 19425c28e83SPiotr Jasiukajtis 19525c28e83SPiotr Jasiukajtis #include "libm.h" 19625c28e83SPiotr Jasiukajtis #include "complex_wrapper.h" 19725c28e83SPiotr Jasiukajtis 19825c28e83SPiotr Jasiukajtis /* INDENT OFF */ 19925c28e83SPiotr Jasiukajtis static const double 20025c28e83SPiotr Jasiukajtis zero = 0.0, 20125c28e83SPiotr Jasiukajtis one = 1.0, 20225c28e83SPiotr Jasiukajtis E = 1.11022302462515654042e-16, /* 2**-53 */ 20325c28e83SPiotr Jasiukajtis ln2 = 6.93147180559945286227e-01, 20425c28e83SPiotr Jasiukajtis pi = 3.1415926535897931159979634685, 20525c28e83SPiotr Jasiukajtis pi_l = 1.224646799147353177e-16, 20625c28e83SPiotr Jasiukajtis pi_2 = 1.570796326794896558e+00, 20725c28e83SPiotr Jasiukajtis pi_2_l = 6.123233995736765886e-17, 20825c28e83SPiotr Jasiukajtis pi_4 = 0.78539816339744827899949, 20925c28e83SPiotr Jasiukajtis pi_4_l = 3.061616997868382943e-17, 21025c28e83SPiotr Jasiukajtis pi3_4 = 2.356194490192344836998, 21125c28e83SPiotr Jasiukajtis pi3_4_l = 9.184850993605148829195e-17, 21225c28e83SPiotr Jasiukajtis Foursqrtu = 5.96667258496016539463e-154, /* 2**(-509) */ 21325c28e83SPiotr Jasiukajtis Acrossover = 1.5, 21425c28e83SPiotr Jasiukajtis Bcrossover = 0.6417, 21525c28e83SPiotr Jasiukajtis half = 0.5; 21625c28e83SPiotr Jasiukajtis /* INDENT ON */ 21725c28e83SPiotr Jasiukajtis 21825c28e83SPiotr Jasiukajtis dcomplex 21925c28e83SPiotr Jasiukajtis cacos(dcomplex z) { 22025c28e83SPiotr Jasiukajtis double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx; 22125c28e83SPiotr Jasiukajtis int ix, iy, hx, hy; 22225c28e83SPiotr Jasiukajtis unsigned lx, ly; 22325c28e83SPiotr Jasiukajtis dcomplex ans; 22425c28e83SPiotr Jasiukajtis 22525c28e83SPiotr Jasiukajtis x = D_RE(z); 22625c28e83SPiotr Jasiukajtis y = D_IM(z); 22725c28e83SPiotr Jasiukajtis hx = HI_WORD(x); 22825c28e83SPiotr Jasiukajtis lx = LO_WORD(x); 22925c28e83SPiotr Jasiukajtis hy = HI_WORD(y); 23025c28e83SPiotr Jasiukajtis ly = LO_WORD(y); 23125c28e83SPiotr Jasiukajtis ix = hx & 0x7fffffff; 23225c28e83SPiotr Jasiukajtis iy = hy & 0x7fffffff; 23325c28e83SPiotr Jasiukajtis 23425c28e83SPiotr Jasiukajtis /* x is 0 */ 23525c28e83SPiotr Jasiukajtis if ((ix | lx) == 0) { 23625c28e83SPiotr Jasiukajtis if (((iy | ly) == 0) || (iy >= 0x7ff00000)) { 23725c28e83SPiotr Jasiukajtis D_RE(ans) = pi_2; 23825c28e83SPiotr Jasiukajtis D_IM(ans) = -y; 23925c28e83SPiotr Jasiukajtis return (ans); 24025c28e83SPiotr Jasiukajtis } 24125c28e83SPiotr Jasiukajtis } 24225c28e83SPiotr Jasiukajtis 24325c28e83SPiotr Jasiukajtis /* |y| is inf or NaN */ 24425c28e83SPiotr Jasiukajtis if (iy >= 0x7ff00000) { 24525c28e83SPiotr Jasiukajtis if (ISINF(iy, ly)) { /* cacos(x + i inf) = pi/2 - i inf */ 24625c28e83SPiotr Jasiukajtis D_IM(ans) = -y; 24725c28e83SPiotr Jasiukajtis if (ix < 0x7ff00000) { 24825c28e83SPiotr Jasiukajtis D_RE(ans) = pi_2 + pi_2_l; 24925c28e83SPiotr Jasiukajtis } else if (ISINF(ix, lx)) { 25025c28e83SPiotr Jasiukajtis if (hx >= 0) 25125c28e83SPiotr Jasiukajtis D_RE(ans) = pi_4 + pi_4_l; 25225c28e83SPiotr Jasiukajtis else 25325c28e83SPiotr Jasiukajtis D_RE(ans) = pi3_4 + pi3_4_l; 25425c28e83SPiotr Jasiukajtis } else { 25525c28e83SPiotr Jasiukajtis D_RE(ans) = x; 25625c28e83SPiotr Jasiukajtis } 25725c28e83SPiotr Jasiukajtis } else { /* cacos(x + i NaN) = NaN + i NaN */ 25825c28e83SPiotr Jasiukajtis D_RE(ans) = y + x; 25925c28e83SPiotr Jasiukajtis if (ISINF(ix, lx)) 26025c28e83SPiotr Jasiukajtis D_IM(ans) = -fabs(x); 26125c28e83SPiotr Jasiukajtis else 26225c28e83SPiotr Jasiukajtis D_IM(ans) = y; 26325c28e83SPiotr Jasiukajtis } 26425c28e83SPiotr Jasiukajtis return (ans); 26525c28e83SPiotr Jasiukajtis } 26625c28e83SPiotr Jasiukajtis 26725c28e83SPiotr Jasiukajtis x = fabs(x); 26825c28e83SPiotr Jasiukajtis y = fabs(y); 26925c28e83SPiotr Jasiukajtis 27025c28e83SPiotr Jasiukajtis /* x is inf or NaN */ 27125c28e83SPiotr Jasiukajtis if (ix >= 0x7ff00000) { /* x is inf or NaN */ 27225c28e83SPiotr Jasiukajtis if (ISINF(ix, lx)) { /* x is INF */ 27325c28e83SPiotr Jasiukajtis D_IM(ans) = -x; 27425c28e83SPiotr Jasiukajtis if (iy >= 0x7ff00000) { 27525c28e83SPiotr Jasiukajtis if (ISINF(iy, ly)) { 27625c28e83SPiotr Jasiukajtis /* INDENT OFF */ 27725c28e83SPiotr Jasiukajtis /* cacos(inf + i inf) = pi/4 - i inf */ 27825c28e83SPiotr Jasiukajtis /* cacos(-inf+ i inf) =3pi/4 - i inf */ 27925c28e83SPiotr Jasiukajtis /* INDENT ON */ 28025c28e83SPiotr Jasiukajtis if (hx >= 0) 28125c28e83SPiotr Jasiukajtis D_RE(ans) = pi_4 + pi_4_l; 28225c28e83SPiotr Jasiukajtis else 28325c28e83SPiotr Jasiukajtis D_RE(ans) = pi3_4 + pi3_4_l; 28425c28e83SPiotr Jasiukajtis } else 28525c28e83SPiotr Jasiukajtis /* INDENT OFF */ 28625c28e83SPiotr Jasiukajtis /* cacos(inf + i NaN) = NaN - i inf */ 28725c28e83SPiotr Jasiukajtis /* INDENT ON */ 28825c28e83SPiotr Jasiukajtis D_RE(ans) = y + y; 28925c28e83SPiotr Jasiukajtis } else 29025c28e83SPiotr Jasiukajtis /* INDENT OFF */ 29125c28e83SPiotr Jasiukajtis /* cacos(inf + iy ) = 0 - i inf */ 29225c28e83SPiotr Jasiukajtis /* cacos(-inf+ iy ) = pi - i inf */ 29325c28e83SPiotr Jasiukajtis /* INDENT ON */ 29425c28e83SPiotr Jasiukajtis if (hx >= 0) 29525c28e83SPiotr Jasiukajtis D_RE(ans) = zero; 29625c28e83SPiotr Jasiukajtis else 29725c28e83SPiotr Jasiukajtis D_RE(ans) = pi + pi_l; 29825c28e83SPiotr Jasiukajtis } else { /* x is NaN */ 29925c28e83SPiotr Jasiukajtis /* INDENT OFF */ 30025c28e83SPiotr Jasiukajtis /* 30125c28e83SPiotr Jasiukajtis * cacos(NaN + i inf) = NaN - i inf 30225c28e83SPiotr Jasiukajtis * cacos(NaN + i y ) = NaN + i NaN 30325c28e83SPiotr Jasiukajtis * cacos(NaN + i NaN) = NaN + i NaN 30425c28e83SPiotr Jasiukajtis */ 30525c28e83SPiotr Jasiukajtis /* INDENT ON */ 30625c28e83SPiotr Jasiukajtis D_RE(ans) = x + y; 30725c28e83SPiotr Jasiukajtis if (iy >= 0x7ff00000) { 30825c28e83SPiotr Jasiukajtis D_IM(ans) = -y; 30925c28e83SPiotr Jasiukajtis } else { 31025c28e83SPiotr Jasiukajtis D_IM(ans) = x; 31125c28e83SPiotr Jasiukajtis } 31225c28e83SPiotr Jasiukajtis } 31325c28e83SPiotr Jasiukajtis if (hy < 0) 31425c28e83SPiotr Jasiukajtis D_IM(ans) = -D_IM(ans); 31525c28e83SPiotr Jasiukajtis return (ans); 31625c28e83SPiotr Jasiukajtis } 31725c28e83SPiotr Jasiukajtis 31825c28e83SPiotr Jasiukajtis if ((iy | ly) == 0) { /* region 1: y=0 */ 31925c28e83SPiotr Jasiukajtis if (ix < 0x3ff00000) { /* |x| < 1 */ 32025c28e83SPiotr Jasiukajtis D_RE(ans) = acos(x); 32125c28e83SPiotr Jasiukajtis D_IM(ans) = zero; 32225c28e83SPiotr Jasiukajtis } else { 32325c28e83SPiotr Jasiukajtis D_RE(ans) = zero; 32425c28e83SPiotr Jasiukajtis if (ix >= 0x43500000) /* |x| >= 2**54 */ 32525c28e83SPiotr Jasiukajtis D_IM(ans) = ln2 + log(x); 32625c28e83SPiotr Jasiukajtis else if (ix >= 0x3ff80000) /* x > Acrossover */ 32725c28e83SPiotr Jasiukajtis D_IM(ans) = log(x + sqrt((x - one) * (x + 32825c28e83SPiotr Jasiukajtis one))); 32925c28e83SPiotr Jasiukajtis else { 33025c28e83SPiotr Jasiukajtis xm1 = x - one; 33125c28e83SPiotr Jasiukajtis D_IM(ans) = log1p(xm1 + sqrt(xm1 * (x + one))); 33225c28e83SPiotr Jasiukajtis } 33325c28e83SPiotr Jasiukajtis } 33425c28e83SPiotr Jasiukajtis } else if (y <= E * fabs(x - one)) { /* region 2: y < tiny*|x-1| */ 33525c28e83SPiotr Jasiukajtis if (ix < 0x3ff00000) { /* x < 1 */ 33625c28e83SPiotr Jasiukajtis D_RE(ans) = acos(x); 33725c28e83SPiotr Jasiukajtis D_IM(ans) = y / sqrt((one + x) * (one - x)); 33825c28e83SPiotr Jasiukajtis } else if (ix >= 0x43500000) { /* |x| >= 2**54 */ 33925c28e83SPiotr Jasiukajtis D_RE(ans) = y / x; 34025c28e83SPiotr Jasiukajtis D_IM(ans) = ln2 + log(x); 34125c28e83SPiotr Jasiukajtis } else { 34225c28e83SPiotr Jasiukajtis t = sqrt((x - one) * (x + one)); 34325c28e83SPiotr Jasiukajtis D_RE(ans) = y / t; 34425c28e83SPiotr Jasiukajtis if (ix >= 0x3ff80000) /* x > Acrossover */ 34525c28e83SPiotr Jasiukajtis D_IM(ans) = log(x + t); 34625c28e83SPiotr Jasiukajtis else 34725c28e83SPiotr Jasiukajtis D_IM(ans) = log1p((x - one) + t); 34825c28e83SPiotr Jasiukajtis } 34925c28e83SPiotr Jasiukajtis } else if (y < Foursqrtu) { /* region 3 */ 35025c28e83SPiotr Jasiukajtis t = sqrt(y); 35125c28e83SPiotr Jasiukajtis D_RE(ans) = t; 35225c28e83SPiotr Jasiukajtis D_IM(ans) = t; 35325c28e83SPiotr Jasiukajtis } else if (E * y - one >= x) { /* region 4 */ 35425c28e83SPiotr Jasiukajtis D_RE(ans) = pi_2; 35525c28e83SPiotr Jasiukajtis D_IM(ans) = ln2 + log(y); 35625c28e83SPiotr Jasiukajtis } else if (ix >= 0x5fc00000 || iy >= 0x5fc00000) { /* x,y>2**509 */ 35725c28e83SPiotr Jasiukajtis /* region 5: x+1 or y is very large (>= sqrt(max)/8) */ 35825c28e83SPiotr Jasiukajtis t = x / y; 35925c28e83SPiotr Jasiukajtis D_RE(ans) = atan(y / x); 36025c28e83SPiotr Jasiukajtis D_IM(ans) = ln2 + log(y) + half * log1p(t * t); 36125c28e83SPiotr Jasiukajtis } else if (x < Foursqrtu) { 36225c28e83SPiotr Jasiukajtis /* region 6: x is very small, < 4sqrt(min) */ 36325c28e83SPiotr Jasiukajtis D_RE(ans) = pi_2; 36425c28e83SPiotr Jasiukajtis A = sqrt(one + y * y); 36525c28e83SPiotr Jasiukajtis if (iy >= 0x3ff80000) /* if y > Acrossover */ 36625c28e83SPiotr Jasiukajtis D_IM(ans) = log(y + A); 36725c28e83SPiotr Jasiukajtis else 36825c28e83SPiotr Jasiukajtis D_IM(ans) = half * log1p((y + y) * (y + A)); 36925c28e83SPiotr Jasiukajtis } else { /* safe region */ 37025c28e83SPiotr Jasiukajtis y2 = y * y; 37125c28e83SPiotr Jasiukajtis xp1 = x + one; 37225c28e83SPiotr Jasiukajtis xm1 = x - one; 37325c28e83SPiotr Jasiukajtis R = sqrt(xp1 * xp1 + y2); 37425c28e83SPiotr Jasiukajtis S = sqrt(xm1 * xm1 + y2); 37525c28e83SPiotr Jasiukajtis A = half * (R + S); 37625c28e83SPiotr Jasiukajtis B = x / A; 37725c28e83SPiotr Jasiukajtis if (B <= Bcrossover) 37825c28e83SPiotr Jasiukajtis D_RE(ans) = acos(B); 37925c28e83SPiotr Jasiukajtis else { /* use atan and an accurate approx to a-x */ 38025c28e83SPiotr Jasiukajtis Apx = A + x; 38125c28e83SPiotr Jasiukajtis if (x <= one) 38225c28e83SPiotr Jasiukajtis D_RE(ans) = atan(sqrt(half * Apx * (y2 / (R + 38325c28e83SPiotr Jasiukajtis xp1) + (S - xm1))) / x); 38425c28e83SPiotr Jasiukajtis else 38525c28e83SPiotr Jasiukajtis D_RE(ans) = atan((y * sqrt(half * (Apx / (R + 38625c28e83SPiotr Jasiukajtis xp1) + Apx / (S + xm1)))) / x); 38725c28e83SPiotr Jasiukajtis } 38825c28e83SPiotr Jasiukajtis if (A <= Acrossover) { 38925c28e83SPiotr Jasiukajtis /* use log1p and an accurate approx to A-1 */ 39025c28e83SPiotr Jasiukajtis if (x < one) 39125c28e83SPiotr Jasiukajtis Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1)); 39225c28e83SPiotr Jasiukajtis else 39325c28e83SPiotr Jasiukajtis Am1 = half * (y2 / (R + xp1) + (S + xm1)); 39425c28e83SPiotr Jasiukajtis D_IM(ans) = log1p(Am1 + sqrt(Am1 * (A + one))); 39525c28e83SPiotr Jasiukajtis } else { 39625c28e83SPiotr Jasiukajtis D_IM(ans) = log(A + sqrt(A * A - one)); 39725c28e83SPiotr Jasiukajtis } 39825c28e83SPiotr Jasiukajtis } 39925c28e83SPiotr Jasiukajtis if (hx < 0) 40025c28e83SPiotr Jasiukajtis D_RE(ans) = pi - D_RE(ans); 40125c28e83SPiotr Jasiukajtis if (hy >= 0) 40225c28e83SPiotr Jasiukajtis D_IM(ans) = -D_IM(ans); 40325c28e83SPiotr Jasiukajtis return (ans); 40425c28e83SPiotr Jasiukajtis } 405