125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis 2225c28e83SPiotr Jasiukajtis /* 2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2425c28e83SPiotr Jasiukajtis */ 2525c28e83SPiotr Jasiukajtis /* 2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 2725c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2825c28e83SPiotr Jasiukajtis */ 2925c28e83SPiotr Jasiukajtis 30*ddc0e0b5SRichard Lowe #pragma weak __jnl = jnl 31*ddc0e0b5SRichard Lowe #pragma weak __ynl = ynl 3225c28e83SPiotr Jasiukajtis 3325c28e83SPiotr Jasiukajtis /* 3425c28e83SPiotr Jasiukajtis * floating point Bessel's function of the 1st and 2nd kind 3525c28e83SPiotr Jasiukajtis * of order n: jn(n,x),yn(n,x); 3625c28e83SPiotr Jasiukajtis * 3725c28e83SPiotr Jasiukajtis * Special cases: 3825c28e83SPiotr Jasiukajtis * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; 3925c28e83SPiotr Jasiukajtis * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. 4025c28e83SPiotr Jasiukajtis * Note 2. About jn(n,x), yn(n,x) 4125c28e83SPiotr Jasiukajtis * For n=0, j0(x) is called, 4225c28e83SPiotr Jasiukajtis * for n=1, j1(x) is called, 4325c28e83SPiotr Jasiukajtis * for n<x, forward recursion us used starting 4425c28e83SPiotr Jasiukajtis * from values of j0(x) and j1(x). 4525c28e83SPiotr Jasiukajtis * for n>x, a continued fraction approximation to 4625c28e83SPiotr Jasiukajtis * j(n,x)/j(n-1,x) is evaluated and then backward 4725c28e83SPiotr Jasiukajtis * recursion is used starting from a supposed value 4825c28e83SPiotr Jasiukajtis * for j(n,x). The resulting value of j(0,x) is 4925c28e83SPiotr Jasiukajtis * compared with the actual value to correct the 5025c28e83SPiotr Jasiukajtis * supposed value of j(n,x). 5125c28e83SPiotr Jasiukajtis * 5225c28e83SPiotr Jasiukajtis * yn(n,x) is similar in all respects, except 5325c28e83SPiotr Jasiukajtis * that forward recursion is used for all 5425c28e83SPiotr Jasiukajtis * values of n>1. 5525c28e83SPiotr Jasiukajtis * 5625c28e83SPiotr Jasiukajtis */ 5725c28e83SPiotr Jasiukajtis 5825c28e83SPiotr Jasiukajtis #include "libm.h" 5925c28e83SPiotr Jasiukajtis #include "longdouble.h" 6025c28e83SPiotr Jasiukajtis #include <float.h> /* LDBL_MAX */ 6125c28e83SPiotr Jasiukajtis 6225c28e83SPiotr Jasiukajtis #define GENERIC long double 6325c28e83SPiotr Jasiukajtis 6425c28e83SPiotr Jasiukajtis static const GENERIC 6525c28e83SPiotr Jasiukajtis invsqrtpi = 5.641895835477562869480794515607725858441e-0001L, 6625c28e83SPiotr Jasiukajtis two = 2.0L, 6725c28e83SPiotr Jasiukajtis zero = 0.0L, 6825c28e83SPiotr Jasiukajtis one = 1.0L; 6925c28e83SPiotr Jasiukajtis 7025c28e83SPiotr Jasiukajtis GENERIC 7125c28e83SPiotr Jasiukajtis jnl(n, x) int n; GENERIC x; { 7225c28e83SPiotr Jasiukajtis int i, sgn; 7325c28e83SPiotr Jasiukajtis GENERIC a, b, temp, z, w; 7425c28e83SPiotr Jasiukajtis 7525c28e83SPiotr Jasiukajtis /* 7625c28e83SPiotr Jasiukajtis * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) 7725c28e83SPiotr Jasiukajtis * Thus, J(-n,x) = J(n,-x) 7825c28e83SPiotr Jasiukajtis */ 7925c28e83SPiotr Jasiukajtis if (n < 0) { 8025c28e83SPiotr Jasiukajtis n = -n; 8125c28e83SPiotr Jasiukajtis x = -x; 8225c28e83SPiotr Jasiukajtis } 8325c28e83SPiotr Jasiukajtis if (n == 0) 8425c28e83SPiotr Jasiukajtis return (j0l(x)); 8525c28e83SPiotr Jasiukajtis if (n == 1) 8625c28e83SPiotr Jasiukajtis return (j1l(x)); 8725c28e83SPiotr Jasiukajtis if (x != x) 8825c28e83SPiotr Jasiukajtis return (x+x); 8925c28e83SPiotr Jasiukajtis if ((n&1) == 0) 9025c28e83SPiotr Jasiukajtis sgn = 0; /* even n */ 9125c28e83SPiotr Jasiukajtis else 9225c28e83SPiotr Jasiukajtis sgn = signbitl(x); /* old n */ 9325c28e83SPiotr Jasiukajtis x = fabsl(x); 9425c28e83SPiotr Jasiukajtis if (x == zero || !finitel(x)) b = zero; 9525c28e83SPiotr Jasiukajtis else if ((GENERIC)n <= x) { 9625c28e83SPiotr Jasiukajtis /* 9725c28e83SPiotr Jasiukajtis * Safe to use 9825c28e83SPiotr Jasiukajtis * J(n+1,x)=2n/x *J(n,x)-J(n-1,x) 9925c28e83SPiotr Jasiukajtis */ 10025c28e83SPiotr Jasiukajtis if (x > 1.0e91L) { 10125c28e83SPiotr Jasiukajtis /* 10225c28e83SPiotr Jasiukajtis * x >> n**2 10325c28e83SPiotr Jasiukajtis * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 10425c28e83SPiotr Jasiukajtis * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 10525c28e83SPiotr Jasiukajtis * Let s=sin(x), c=cos(x), 10625c28e83SPiotr Jasiukajtis * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then 10725c28e83SPiotr Jasiukajtis * 10825c28e83SPiotr Jasiukajtis * n sin(xn)*sqt2 cos(xn)*sqt2 10925c28e83SPiotr Jasiukajtis * ---------------------------------- 11025c28e83SPiotr Jasiukajtis * 0 s-c c+s 11125c28e83SPiotr Jasiukajtis * 1 -s-c -c+s 11225c28e83SPiotr Jasiukajtis * 2 -s+c -c-s 11325c28e83SPiotr Jasiukajtis * 3 s+c c-s 11425c28e83SPiotr Jasiukajtis */ 11525c28e83SPiotr Jasiukajtis switch (n&3) { 11625c28e83SPiotr Jasiukajtis case 0: temp = cosl(x)+sinl(x); break; 11725c28e83SPiotr Jasiukajtis case 1: temp = -cosl(x)+sinl(x); break; 11825c28e83SPiotr Jasiukajtis case 2: temp = -cosl(x)-sinl(x); break; 11925c28e83SPiotr Jasiukajtis case 3: temp = cosl(x)-sinl(x); break; 12025c28e83SPiotr Jasiukajtis } 12125c28e83SPiotr Jasiukajtis b = invsqrtpi*temp/sqrtl(x); 12225c28e83SPiotr Jasiukajtis } else { 12325c28e83SPiotr Jasiukajtis a = j0l(x); 12425c28e83SPiotr Jasiukajtis b = j1l(x); 12525c28e83SPiotr Jasiukajtis for (i = 1; i < n; i++) { 12625c28e83SPiotr Jasiukajtis temp = b; 12725c28e83SPiotr Jasiukajtis b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */ 12825c28e83SPiotr Jasiukajtis a = temp; 12925c28e83SPiotr Jasiukajtis } 13025c28e83SPiotr Jasiukajtis } 13125c28e83SPiotr Jasiukajtis } else { 13225c28e83SPiotr Jasiukajtis if (x < 1e-17L) { /* use J(n,x) = 1/n!*(x/2)^n */ 13325c28e83SPiotr Jasiukajtis b = powl(0.5L*x, (GENERIC)n); 13425c28e83SPiotr Jasiukajtis if (b != zero) { 13525c28e83SPiotr Jasiukajtis for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i; 13625c28e83SPiotr Jasiukajtis b = b/a; 13725c28e83SPiotr Jasiukajtis } 13825c28e83SPiotr Jasiukajtis } else { 13925c28e83SPiotr Jasiukajtis /* use backward recurrence */ 14025c28e83SPiotr Jasiukajtis /* 14125c28e83SPiotr Jasiukajtis * x x^2 x^2 14225c28e83SPiotr Jasiukajtis * J(n,x)/J(n-1,x) = ---- ------ ------ ..... 14325c28e83SPiotr Jasiukajtis * 2n - 2(n+1) - 2(n+2) 14425c28e83SPiotr Jasiukajtis * 14525c28e83SPiotr Jasiukajtis * 1 1 1 14625c28e83SPiotr Jasiukajtis * (for large x) = ---- ------ ------ ..... 14725c28e83SPiotr Jasiukajtis * 2n 2(n+1) 2(n+2) 14825c28e83SPiotr Jasiukajtis * -- - ------ - ------ - 14925c28e83SPiotr Jasiukajtis * x x x 15025c28e83SPiotr Jasiukajtis * 15125c28e83SPiotr Jasiukajtis * Let w = 2n/x and h=2/x, then the above quotient 15225c28e83SPiotr Jasiukajtis * is equal to the continued fraction: 15325c28e83SPiotr Jasiukajtis * 1 15425c28e83SPiotr Jasiukajtis * = ----------------------- 15525c28e83SPiotr Jasiukajtis * 1 15625c28e83SPiotr Jasiukajtis * w - ----------------- 15725c28e83SPiotr Jasiukajtis * 1 15825c28e83SPiotr Jasiukajtis * w+h - --------- 15925c28e83SPiotr Jasiukajtis * w+2h - ... 16025c28e83SPiotr Jasiukajtis * 16125c28e83SPiotr Jasiukajtis * To determine how many terms needed, let 16225c28e83SPiotr Jasiukajtis * Q(0) = w, Q(1) = w(w+h) - 1, 16325c28e83SPiotr Jasiukajtis * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), 16425c28e83SPiotr Jasiukajtis * When Q(k) > 1e4 good for single 16525c28e83SPiotr Jasiukajtis * When Q(k) > 1e9 good for double 16625c28e83SPiotr Jasiukajtis * When Q(k) > 1e17 good for quaduple 16725c28e83SPiotr Jasiukajtis */ 16825c28e83SPiotr Jasiukajtis /* determin k */ 16925c28e83SPiotr Jasiukajtis GENERIC t, v; 17025c28e83SPiotr Jasiukajtis double q0, q1, h, tmp; int k, m; 17125c28e83SPiotr Jasiukajtis w = (n+n)/(double)x; h = 2.0/(double)x; 17225c28e83SPiotr Jasiukajtis q0 = w; z = w+h; q1 = w*z - 1.0; k = 1; 17325c28e83SPiotr Jasiukajtis while (q1 < 1.0e17) { 17425c28e83SPiotr Jasiukajtis k += 1; z += h; 17525c28e83SPiotr Jasiukajtis tmp = z*q1 - q0; 17625c28e83SPiotr Jasiukajtis q0 = q1; 17725c28e83SPiotr Jasiukajtis q1 = tmp; 17825c28e83SPiotr Jasiukajtis } 17925c28e83SPiotr Jasiukajtis m = n+n; 18025c28e83SPiotr Jasiukajtis for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t); 18125c28e83SPiotr Jasiukajtis a = t; 18225c28e83SPiotr Jasiukajtis b = one; 18325c28e83SPiotr Jasiukajtis /* 18425c28e83SPiotr Jasiukajtis * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) 18525c28e83SPiotr Jasiukajtis * hence, if n*(log(2n/x)) > ... 18625c28e83SPiotr Jasiukajtis * single 8.8722839355e+01 18725c28e83SPiotr Jasiukajtis * double 7.09782712893383973096e+02 18825c28e83SPiotr Jasiukajtis * long double 1.1356523406294143949491931077970765006170e+04 18925c28e83SPiotr Jasiukajtis * then recurrent value may overflow and the result is 19025c28e83SPiotr Jasiukajtis * likely underflow to zero 19125c28e83SPiotr Jasiukajtis */ 19225c28e83SPiotr Jasiukajtis tmp = n; 19325c28e83SPiotr Jasiukajtis v = two/x; 19425c28e83SPiotr Jasiukajtis tmp = tmp*logl(fabsl(v*tmp)); 19525c28e83SPiotr Jasiukajtis if (tmp < 1.1356523406294143949491931077970765e+04L) { 19625c28e83SPiotr Jasiukajtis for (i = n-1; i > 0; i--) { 19725c28e83SPiotr Jasiukajtis temp = b; 19825c28e83SPiotr Jasiukajtis b = ((i+i)/x)*b - a; 19925c28e83SPiotr Jasiukajtis a = temp; 20025c28e83SPiotr Jasiukajtis } 20125c28e83SPiotr Jasiukajtis } else { 20225c28e83SPiotr Jasiukajtis for (i = n-1; i > 0; i--) { 20325c28e83SPiotr Jasiukajtis temp = b; 20425c28e83SPiotr Jasiukajtis b = ((i+i)/x)*b - a; 20525c28e83SPiotr Jasiukajtis a = temp; 20625c28e83SPiotr Jasiukajtis if (b > 1e1000L) { 20725c28e83SPiotr Jasiukajtis a /= b; 20825c28e83SPiotr Jasiukajtis t /= b; 20925c28e83SPiotr Jasiukajtis b = 1.0; 21025c28e83SPiotr Jasiukajtis } 21125c28e83SPiotr Jasiukajtis } 21225c28e83SPiotr Jasiukajtis } 21325c28e83SPiotr Jasiukajtis b = (t*j0l(x)/b); 21425c28e83SPiotr Jasiukajtis } 21525c28e83SPiotr Jasiukajtis } 21625c28e83SPiotr Jasiukajtis if (sgn == 1) 21725c28e83SPiotr Jasiukajtis return (-b); 21825c28e83SPiotr Jasiukajtis else 21925c28e83SPiotr Jasiukajtis return (b); 22025c28e83SPiotr Jasiukajtis } 22125c28e83SPiotr Jasiukajtis 22225c28e83SPiotr Jasiukajtis GENERIC ynl(n, x) 22325c28e83SPiotr Jasiukajtis int n; GENERIC x; { 22425c28e83SPiotr Jasiukajtis int i; 22525c28e83SPiotr Jasiukajtis int sign; 22625c28e83SPiotr Jasiukajtis GENERIC a, b, temp; 22725c28e83SPiotr Jasiukajtis 22825c28e83SPiotr Jasiukajtis if (x != x) 22925c28e83SPiotr Jasiukajtis return (x+x); 23025c28e83SPiotr Jasiukajtis if (x <= zero) { 23125c28e83SPiotr Jasiukajtis if (x == zero) 23225c28e83SPiotr Jasiukajtis return (-one/zero); 23325c28e83SPiotr Jasiukajtis else 23425c28e83SPiotr Jasiukajtis return (zero/zero); 23525c28e83SPiotr Jasiukajtis } 23625c28e83SPiotr Jasiukajtis sign = 1; 23725c28e83SPiotr Jasiukajtis if (n < 0) { 23825c28e83SPiotr Jasiukajtis n = -n; 23925c28e83SPiotr Jasiukajtis if ((n&1) == 1) sign = -1; 24025c28e83SPiotr Jasiukajtis } 24125c28e83SPiotr Jasiukajtis if (n == 0) 24225c28e83SPiotr Jasiukajtis return (y0l(x)); 24325c28e83SPiotr Jasiukajtis if (n == 1) 24425c28e83SPiotr Jasiukajtis return (sign*y1l(x)); 24525c28e83SPiotr Jasiukajtis if (!finitel(x)) 24625c28e83SPiotr Jasiukajtis return (zero); 24725c28e83SPiotr Jasiukajtis 24825c28e83SPiotr Jasiukajtis if (x > 1.0e91L) { /* x >> n**2 24925c28e83SPiotr Jasiukajtis Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) 25025c28e83SPiotr Jasiukajtis Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) 25125c28e83SPiotr Jasiukajtis Let s = sin(x), c = cos(x), 25225c28e83SPiotr Jasiukajtis xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then 25325c28e83SPiotr Jasiukajtis 25425c28e83SPiotr Jasiukajtis n sin(xn)*sqt2 cos(xn)*sqt2 25525c28e83SPiotr Jasiukajtis ---------------------------------- 25625c28e83SPiotr Jasiukajtis 0 s-c c+s 25725c28e83SPiotr Jasiukajtis 1 -s-c -c+s 25825c28e83SPiotr Jasiukajtis 2 -s+c -c-s 25925c28e83SPiotr Jasiukajtis 3 s+c c-s 26025c28e83SPiotr Jasiukajtis */ 26125c28e83SPiotr Jasiukajtis switch (n&3) { 26225c28e83SPiotr Jasiukajtis case 0: temp = sinl(x)-cosl(x); break; 26325c28e83SPiotr Jasiukajtis case 1: temp = -sinl(x)-cosl(x); break; 26425c28e83SPiotr Jasiukajtis case 2: temp = -sinl(x)+cosl(x); break; 26525c28e83SPiotr Jasiukajtis case 3: temp = sinl(x)+cosl(x); break; 26625c28e83SPiotr Jasiukajtis } 26725c28e83SPiotr Jasiukajtis b = invsqrtpi*temp/sqrtl(x); 26825c28e83SPiotr Jasiukajtis } else { 26925c28e83SPiotr Jasiukajtis a = y0l(x); 27025c28e83SPiotr Jasiukajtis b = y1l(x); 27125c28e83SPiotr Jasiukajtis /* 27225c28e83SPiotr Jasiukajtis * fix 1262058 and take care of non-default rounding 27325c28e83SPiotr Jasiukajtis */ 27425c28e83SPiotr Jasiukajtis for (i = 1; i < n; i++) { 27525c28e83SPiotr Jasiukajtis temp = b; 27625c28e83SPiotr Jasiukajtis b *= (GENERIC) (i + i) / x; 27725c28e83SPiotr Jasiukajtis if (b <= -LDBL_MAX) 27825c28e83SPiotr Jasiukajtis break; 27925c28e83SPiotr Jasiukajtis b -= a; 28025c28e83SPiotr Jasiukajtis a = temp; 28125c28e83SPiotr Jasiukajtis } 28225c28e83SPiotr Jasiukajtis } 28325c28e83SPiotr Jasiukajtis if (sign > 0) 28425c28e83SPiotr Jasiukajtis return (b); 28525c28e83SPiotr Jasiukajtis else 28625c28e83SPiotr Jasiukajtis return (-b); 28725c28e83SPiotr Jasiukajtis } 288