xref: /titanic_51/usr/src/lib/libm/common/C/tan.c (revision 91d7f85e02991954d1e1bd44673df567ad8dcc87)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #pragma weak __tan = tan
31 
32 /* INDENT OFF */
33 /*
34  * tan(x)
35  * Table look-up algorithm by K.C. Ng, November, 1989.
36  *
37  * kernel function:
38  *	__k_tan		... tangent function on [-pi/4,pi/4]
39  *	__rem_pio2	... argument reduction routine
40  */
41 /* INDENT ON */
42 
43 #include "libm.h"
44 #include "libm_protos.h"
45 #include <math.h>
46 
47 double
48 tan(double x) {
49 	double y[2], z = 0.0;
50 	int n, ix;
51 
52 	/* high word of x */
53 	ix = ((int *) &x)[HIWORD];
54 
55 	/* |x| ~< pi/4 */
56 	ix &= 0x7fffffff;
57 	if (ix <= 0x3fe921fb)
58 		return (__k_tan(x, z, 0));
59 
60 	/* tan(Inf or NaN) is NaN */
61 	else if (ix >= 0x7ff00000) {
62 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
63 		return (ix >= 0x7ff80000 ? x : x - x);	/* NaN */
64 		/* assumes sparc-like QNaN */
65 #else
66 		return (x - x);				/* NaN */
67 #endif
68 	}
69 
70 	/* argument reduction needed */
71 	else {
72 		n = __rem_pio2(x, y);
73 		return (__k_tan(y[0], y[1], n & 1));
74 	}
75 }
76