xref: /titanic_51/usr/src/lib/libm/common/C/sqrt.c (revision 25c28e83beb90e7c80452a7c818c5e6f73a07dc8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  */
24 /*
25  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #pragma weak sqrt = __sqrt
30 
31 #include "libm.h"
32 
33 #ifdef __INLINE
34 
35 extern double __inline_sqrt(double);
36 
37 double
38 sqrt(double x) {
39 	double	z = __inline_sqrt(x);
40 
41 	if (isnan(x))
42 		return (z);
43 	return ((x < 0.0)? _SVID_libm_err(x, x, 26) : z);
44 }
45 
46 #else	/* defined(__INLINE) */
47 
48 /*
49  * Warning: This correctly rounded sqrt is extremely slow because it computes
50  * the sqrt bit by bit using integer arithmetic.
51  */
52 
53 static const double big = 1.0e30, small = 1.0e-30;
54 
55 double
56 sqrt(double x)
57 {
58 	double		z;
59 	unsigned	r, t1, s1, ix1, q1;
60 	int		ix0, s0, j, q, m, n, t;
61 	int		 *px = (int *)&x, *pz = (int *)&z;
62 
63 	ix0 = px[HIWORD];
64 	ix1 = px[LOWORD];
65 	if ((ix0 & 0x7ff00000) == 0x7ff00000) { /* x is inf or NaN */
66 		if (ix0 == 0xfff00000 && ix1 == 0)
67 			return (_SVID_libm_err(x, x, 26));
68 		return (x + x);
69 	}
70 	if (((ix0 & 0x7fffffff) | ix1) == 0)	/* x is zero */
71 		return (x);
72 
73 	/* extract exponent and significand */
74 	m = ilogb(x);
75 	z = scalbn(x, -m);
76 	ix0 = (pz[HIWORD] & 0x000fffff) | 0x00100000;
77 	ix1 = pz[LOWORD];
78 	n = m >> 1;
79 	if (n + n != m) {
80 		ix0 = (ix0 << 1) | (ix1 >> 31);
81 		ix1 <<= 1;
82 		m -= 1;
83 	}
84 
85 	/* generate sqrt(x) bit by bit */
86 	ix0 = (ix0 << 1) | (ix1 >> 31);
87 	ix1 <<= 1;
88 	q = q1 = s0 = s1 = 0;
89 	r = 0x00200000;
90 
91 	for (j = 1; j <= 22; j++) {
92 		t = s0 + r;
93 		if (t <= ix0) {
94 			s0 = t + r;
95 			ix0 -= t;
96 			q += r;
97 		}
98 		ix0 = (ix0 << 1) | (ix1 >> 31);
99 		ix1 <<= 1;
100 		r >>= 1;
101 	}
102 
103 	r = 0x80000000;
104 	for (j = 1; j <= 32; j++) {
105 		t1 = s1 + r;
106 		t = s0;
107 		if (t < ix0 || (t == ix0 && t1 <= ix1)) {
108 			s1 = t1 + r;
109 			if ((t1 & 0x80000000) == 0x80000000 &&
110 			    (s1 & 0x80000000) == 0)
111 				s0 += 1;
112 			ix0 -= t;
113 			if (ix1 < t1)
114 				ix0 -= 1;
115 			ix1 -= t1;
116 			q1 += r;
117 		}
118 		ix0 = (ix0 << 1) | (ix1 >> 31);
119 		ix1 <<= 1;
120 		r >>= 1;
121 	}
122 
123 	/* round */
124 	if ((ix0 | ix1) == 0)
125 		goto done;
126 	z = big - small;	/* trigger inexact flag */
127 	if (z < big)
128 		goto done;
129 	if (q1 == 0xffffffff) {
130 		q1 = 0;
131 		q += 1;
132 		goto done;
133 	}
134 	z = big + small;
135 	if (z > big) {
136 		if (q1 == 0xfffffffe)
137 			q += 1;
138 		q1 += 2;
139 		goto done;
140 	}
141 	q1 += (q1 & 1);
142 done:
143 	pz[HIWORD] = (q >> 1) + 0x3fe00000;
144 	pz[LOWORD] = q1 >> 1;
145 	if ((q & 1) == 1)
146 		pz[LOWORD] |= 0x80000000;
147 	return (scalbn(z, n));
148 }
149 
150 #endif	/* defined(__INLINE) */
151