xref: /titanic_51/usr/src/lib/libm/common/C/log2.c (revision ddc0e0b53c661f6e439e3b7072b3ef353eadb4af)
125c28e83SPiotr Jasiukajtis /*
225c28e83SPiotr Jasiukajtis  * CDDL HEADER START
325c28e83SPiotr Jasiukajtis  *
425c28e83SPiotr Jasiukajtis  * The contents of this file are subject to the terms of the
525c28e83SPiotr Jasiukajtis  * Common Development and Distribution License (the "License").
625c28e83SPiotr Jasiukajtis  * You may not use this file except in compliance with the License.
725c28e83SPiotr Jasiukajtis  *
825c28e83SPiotr Jasiukajtis  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925c28e83SPiotr Jasiukajtis  * or http://www.opensolaris.org/os/licensing.
1025c28e83SPiotr Jasiukajtis  * See the License for the specific language governing permissions
1125c28e83SPiotr Jasiukajtis  * and limitations under the License.
1225c28e83SPiotr Jasiukajtis  *
1325c28e83SPiotr Jasiukajtis  * When distributing Covered Code, include this CDDL HEADER in each
1425c28e83SPiotr Jasiukajtis  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525c28e83SPiotr Jasiukajtis  * If applicable, add the following below this CDDL HEADER, with the
1625c28e83SPiotr Jasiukajtis  * fields enclosed by brackets "[]" replaced with your own identifying
1725c28e83SPiotr Jasiukajtis  * information: Portions Copyright [yyyy] [name of copyright owner]
1825c28e83SPiotr Jasiukajtis  *
1925c28e83SPiotr Jasiukajtis  * CDDL HEADER END
2025c28e83SPiotr Jasiukajtis  */
2125c28e83SPiotr Jasiukajtis 
2225c28e83SPiotr Jasiukajtis /*
2325c28e83SPiotr Jasiukajtis  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
2425c28e83SPiotr Jasiukajtis  */
2525c28e83SPiotr Jasiukajtis /*
2625c28e83SPiotr Jasiukajtis  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
2725c28e83SPiotr Jasiukajtis  * Use is subject to license terms.
2825c28e83SPiotr Jasiukajtis  */
2925c28e83SPiotr Jasiukajtis 
30*ddc0e0b5SRichard Lowe #pragma weak __log2 = log2
3125c28e83SPiotr Jasiukajtis 
3225c28e83SPiotr Jasiukajtis /* INDENT OFF */
3325c28e83SPiotr Jasiukajtis /*
3425c28e83SPiotr Jasiukajtis  * log2(x) = log(x)/log2
3525c28e83SPiotr Jasiukajtis  *
3625c28e83SPiotr Jasiukajtis  * Base on Table look-up algorithm with product polynomial
3725c28e83SPiotr Jasiukajtis  * approximation for log(x).
3825c28e83SPiotr Jasiukajtis  *
3925c28e83SPiotr Jasiukajtis  * By K.C. Ng, Nov 29, 2004
4025c28e83SPiotr Jasiukajtis  *
4125c28e83SPiotr Jasiukajtis  * (a). For x in [1-0.125, 1+0.125], from log.c we have
4225c28e83SPiotr Jasiukajtis  *	log(x) =  f + ((a1*f^2) *
4325c28e83SPiotr Jasiukajtis  *		   ((a2 + (a3*f)*(a4+f)) + (f^3)*(a5+f))) *
4425c28e83SPiotr Jasiukajtis  *		   (((a6 + f*(a7+f)) + (f^3)*(a8+f)) *
4525c28e83SPiotr Jasiukajtis  *		   ((a9 + (a10*f)*(a11+f)) + (f^3)*(a12+f)))
4625c28e83SPiotr Jasiukajtis  *	where f = x - 1.
4725c28e83SPiotr Jasiukajtis  *	(i) modify a1 <- a1 / log2
4825c28e83SPiotr Jasiukajtis  *	(ii) 1/log2 = 1.4426950408889634...
4925c28e83SPiotr Jasiukajtis  *		    = 1.5 - 0.057304959... (4 bit shift)
5025c28e83SPiotr Jasiukajtis  *	     Let lv = 1.5 - 1/log2, then
5125c28e83SPiotr Jasiukajtis  *	     lv = 0.057304959111036592640075318998107956665325,
5225c28e83SPiotr Jasiukajtis  *	(iii) f*1.5 is exact because f has 3 trailing zero.
5325c28e83SPiotr Jasiukajtis  *	(iv) Thus, log2(x) = f*1.5 - (lv*f - PPoly)
5425c28e83SPiotr Jasiukajtis  *
5525c28e83SPiotr Jasiukajtis  * (b). For 0.09375 <= x < 24
5625c28e83SPiotr Jasiukajtis  *	Let j = (ix - 0x3fb80000) >> 15. Look up Y[j], 1/Y[j], and log(Y[j])
5725c28e83SPiotr Jasiukajtis  *	from _TBL_log.c. Then
5825c28e83SPiotr Jasiukajtis  *		log2(x)  = log2(Y[j]) + log2(1 + (x-Y[j])*(1/Y[j]))
5925c28e83SPiotr Jasiukajtis  *			  = log(Y[j])(1/log2) + log2(1 + s)
6025c28e83SPiotr Jasiukajtis  *	where
6125c28e83SPiotr Jasiukajtis  *		s = (x-Y[j])*(1/Y[j])
6225c28e83SPiotr Jasiukajtis  *	From log.c, we have log(1+s) =
6325c28e83SPiotr Jasiukajtis  *				  2              2                     2
6425c28e83SPiotr Jasiukajtis  *		(b s) (b + b s + s ) [b + b s + s (b + s)] (b + b s + s )
6525c28e83SPiotr Jasiukajtis  *		  1     2   3          4   5        6        7   8
6625c28e83SPiotr Jasiukajtis  *
6725c28e83SPiotr Jasiukajtis  *	By setting b1 <- b1/log2, we have
6825c28e83SPiotr Jasiukajtis  *		log2(x) = 1.5 * T - (lv * T - POLY(s))
6925c28e83SPiotr Jasiukajtis  *
7025c28e83SPiotr Jasiukajtis  * (c). Otherwise, get "n", the exponent of x, and then normalize x to
7125c28e83SPiotr Jasiukajtis  *	z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5
7225c28e83SPiotr Jasiukajtis  *	significant bits. Then
7325c28e83SPiotr Jasiukajtis  *	    log2(x) = n + log2(z).
7425c28e83SPiotr Jasiukajtis  *
7525c28e83SPiotr Jasiukajtis  * Special cases:
7625c28e83SPiotr Jasiukajtis  *	log2(x) is NaN with signal if x < 0 (including -INF) ;
7725c28e83SPiotr Jasiukajtis  *	log2(+INF) is +INF; log2(0) is -INF with signal;
7825c28e83SPiotr Jasiukajtis  *	log2(NaN) is that NaN with no signal.
7925c28e83SPiotr Jasiukajtis  *
8025c28e83SPiotr Jasiukajtis  * Maximum error observed: less than 0.84 ulp
8125c28e83SPiotr Jasiukajtis  *
8225c28e83SPiotr Jasiukajtis  * Constants:
8325c28e83SPiotr Jasiukajtis  * The hexadecimal values are the intended ones for the following constants.
8425c28e83SPiotr Jasiukajtis  * The decimal values may be used, provided that the compiler will convert
8525c28e83SPiotr Jasiukajtis  * from decimal to binary accurately enough to produce the hexadecimal values
8625c28e83SPiotr Jasiukajtis  * shown.
8725c28e83SPiotr Jasiukajtis  */
8825c28e83SPiotr Jasiukajtis /* INDENT ON */
8925c28e83SPiotr Jasiukajtis 
9025c28e83SPiotr Jasiukajtis #include "libm.h"
9125c28e83SPiotr Jasiukajtis #include "libm_protos.h"
9225c28e83SPiotr Jasiukajtis 
9325c28e83SPiotr Jasiukajtis extern const double _TBL_log[];
9425c28e83SPiotr Jasiukajtis 
9525c28e83SPiotr Jasiukajtis static const double P[] = {
9625c28e83SPiotr Jasiukajtis /* ONE   */  1.0,
9725c28e83SPiotr Jasiukajtis /* TWO52 */  4503599627370496.0,
9825c28e83SPiotr Jasiukajtis /* LN10V */  1.4426950408889634073599246810018920433347,   /* 1/log10 */
9925c28e83SPiotr Jasiukajtis /* ZERO  */  0.0,
10025c28e83SPiotr Jasiukajtis /* A1    */ -9.6809362455249638217841932228967194640116e-02,
10125c28e83SPiotr Jasiukajtis /* A2    */  1.99628461483039965074226529395673424005508422852e+0000,
10225c28e83SPiotr Jasiukajtis /* A3    */  2.26812367662950720159642514772713184356689453125e+0000,
10325c28e83SPiotr Jasiukajtis /* A4    */ -9.05030639084976384900471657601883634924888610840e-0001,
10425c28e83SPiotr Jasiukajtis /* A5    */ -1.48275767132434044270894446526654064655303955078e+0000,
10525c28e83SPiotr Jasiukajtis /* A6    */  1.88158320939722756293122074566781520843505859375e+0000,
10625c28e83SPiotr Jasiukajtis /* A7    */  1.83309386046986411145098827546462416648864746094e+0000,
10725c28e83SPiotr Jasiukajtis /* A8    */  1.24847063988317086291601754055591300129890441895e+0000,
10825c28e83SPiotr Jasiukajtis /* A9    */  1.98372421445537705508854742220137268304824829102e+0000,
10925c28e83SPiotr Jasiukajtis /* A10   */ -3.94711735767898475035764249696512706577777862549e-0001,
11025c28e83SPiotr Jasiukajtis /* A11   */  3.07890395362954372160402272129431366920471191406e+0000,
11125c28e83SPiotr Jasiukajtis /* A12   */ -9.60099585275022149311041630426188930869102478027e-0001,
11225c28e83SPiotr Jasiukajtis /* B1    */ -1.8039695622547469514898963204616532885451e-01,
11325c28e83SPiotr Jasiukajtis /* B2    */  1.87161713283355151891381127914642725337613123482e+0000,
11425c28e83SPiotr Jasiukajtis /* B3    */ -1.89082956295731507978530316904652863740921020508e+0000,
11525c28e83SPiotr Jasiukajtis /* B4    */ -2.50562891673640253387134180229622870683670043945e+0000,
11625c28e83SPiotr Jasiukajtis /* B5    */  1.64822828085258366037635369139024987816810607910e+0000,
11725c28e83SPiotr Jasiukajtis /* B6    */ -1.24409107065868340669112512841820716857910156250e+0000,
11825c28e83SPiotr Jasiukajtis /* B7    */  1.70534231658220414296067701798165217041969299316e+0000,
11925c28e83SPiotr Jasiukajtis /* B8    */  1.99196833784655646937267192697618156671524047852e+0000,
12025c28e83SPiotr Jasiukajtis /* LGH   */  1.5,
12125c28e83SPiotr Jasiukajtis /* LGL   */  0.057304959111036592640075318998107956665325,
12225c28e83SPiotr Jasiukajtis };
12325c28e83SPiotr Jasiukajtis 
12425c28e83SPiotr Jasiukajtis #define	ONE   P[0]
12525c28e83SPiotr Jasiukajtis #define	TWO52 P[1]
12625c28e83SPiotr Jasiukajtis #define	LN10V P[2]
12725c28e83SPiotr Jasiukajtis #define	ZERO  P[3]
12825c28e83SPiotr Jasiukajtis #define	A1    P[4]
12925c28e83SPiotr Jasiukajtis #define	A2    P[5]
13025c28e83SPiotr Jasiukajtis #define	A3    P[6]
13125c28e83SPiotr Jasiukajtis #define	A4    P[7]
13225c28e83SPiotr Jasiukajtis #define	A5    P[8]
13325c28e83SPiotr Jasiukajtis #define	A6    P[9]
13425c28e83SPiotr Jasiukajtis #define	A7    P[10]
13525c28e83SPiotr Jasiukajtis #define	A8    P[11]
13625c28e83SPiotr Jasiukajtis #define	A9    P[12]
13725c28e83SPiotr Jasiukajtis #define	A10   P[13]
13825c28e83SPiotr Jasiukajtis #define	A11   P[14]
13925c28e83SPiotr Jasiukajtis #define	A12   P[15]
14025c28e83SPiotr Jasiukajtis #define	B1    P[16]
14125c28e83SPiotr Jasiukajtis #define	B2    P[17]
14225c28e83SPiotr Jasiukajtis #define	B3    P[18]
14325c28e83SPiotr Jasiukajtis #define	B4    P[19]
14425c28e83SPiotr Jasiukajtis #define	B5    P[20]
14525c28e83SPiotr Jasiukajtis #define	B6    P[21]
14625c28e83SPiotr Jasiukajtis #define	B7    P[22]
14725c28e83SPiotr Jasiukajtis #define	B8    P[23]
14825c28e83SPiotr Jasiukajtis #define	LGH   P[24]
14925c28e83SPiotr Jasiukajtis #define	LGL   P[25]
15025c28e83SPiotr Jasiukajtis 
15125c28e83SPiotr Jasiukajtis double
15225c28e83SPiotr Jasiukajtis log2(double x) {
15325c28e83SPiotr Jasiukajtis 	int i, hx, ix, n, lx;
15425c28e83SPiotr Jasiukajtis 
15525c28e83SPiotr Jasiukajtis 	n = 0;
15625c28e83SPiotr Jasiukajtis 	hx = ((int *) &x)[HIWORD]; ix = hx & 0x7fffffff;
15725c28e83SPiotr Jasiukajtis 	lx = ((int *) &x)[LOWORD];
15825c28e83SPiotr Jasiukajtis 
15925c28e83SPiotr Jasiukajtis 	/* subnormal,0,negative,inf,nan */
16025c28e83SPiotr Jasiukajtis 	if ((hx + 0x100000) < 0x200000) {
16125c28e83SPiotr Jasiukajtis #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
16225c28e83SPiotr Jasiukajtis 		if (ix >= 0x7ff80000)		/* assumes sparc-like QNaN */
16325c28e83SPiotr Jasiukajtis 			return (x);		/* for Cheetah when x is QNaN */
16425c28e83SPiotr Jasiukajtis #endif
16525c28e83SPiotr Jasiukajtis 		if (((hx << 1) | lx) == 0)	/* log(0.0) = -inf */
16625c28e83SPiotr Jasiukajtis 			return (A5 / fabs(x));
16725c28e83SPiotr Jasiukajtis 		if (hx < 0) {	/* x < 0 */
16825c28e83SPiotr Jasiukajtis 			if (ix >= 0x7ff00000)
16925c28e83SPiotr Jasiukajtis 				return (x - x);	/* x is -inf or NaN */
17025c28e83SPiotr Jasiukajtis 			else
17125c28e83SPiotr Jasiukajtis 				return (ZERO / (x - x));
17225c28e83SPiotr Jasiukajtis 		}
17325c28e83SPiotr Jasiukajtis 		if (((hx - 0x7ff00000) | lx) == 0)	/* log(inf) = inf */
17425c28e83SPiotr Jasiukajtis 			return (x);
17525c28e83SPiotr Jasiukajtis 		if (ix >= 0x7ff00000)		/* log(NaN) = NaN */
17625c28e83SPiotr Jasiukajtis 			return (x - x);
17725c28e83SPiotr Jasiukajtis 		x *= TWO52;
17825c28e83SPiotr Jasiukajtis 		n = -52;
17925c28e83SPiotr Jasiukajtis 		hx = ((int *) &x)[HIWORD]; ix = hx & 0x7fffffff;
18025c28e83SPiotr Jasiukajtis 		lx = ((int *) &x)[LOWORD];
18125c28e83SPiotr Jasiukajtis 	}
18225c28e83SPiotr Jasiukajtis 
18325c28e83SPiotr Jasiukajtis 	/* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */
18425c28e83SPiotr Jasiukajtis 	i = ix >> 19;
18525c28e83SPiotr Jasiukajtis 	if (i >= 0x7f7 && i <= 0x806) {
18625c28e83SPiotr Jasiukajtis 		/* 0.875 <= x < 1.125 */
18725c28e83SPiotr Jasiukajtis 		if (ix >= 0x3fec0000 && ix < 0x3ff20000) {
18825c28e83SPiotr Jasiukajtis 			double s, z, r, w;
18925c28e83SPiotr Jasiukajtis 			s = x - ONE; z = s * s; r = (A10 * s) * (A11 + s);
19025c28e83SPiotr Jasiukajtis 			w = z * s;
19125c28e83SPiotr Jasiukajtis 			if (((ix << 12) | lx) == 0)
19225c28e83SPiotr Jasiukajtis 				return (z);
19325c28e83SPiotr Jasiukajtis 			else
19425c28e83SPiotr Jasiukajtis 				return (LGH * s - (LGL * s - ((A1 * z) *
19525c28e83SPiotr Jasiukajtis 				((A2 + (A3 * s) * (A4 + s)) + w * (A5 + s))) *
19625c28e83SPiotr Jasiukajtis 				(((A6 + s * (A7 + s)) + w * (A8 + s)) *
19725c28e83SPiotr Jasiukajtis 				((A9 + r) + w * (A12 + s)))));
19825c28e83SPiotr Jasiukajtis 		} else {
19925c28e83SPiotr Jasiukajtis 			double *tb, s;
20025c28e83SPiotr Jasiukajtis 			i = (ix - 0x3fb80000) >> 15;
20125c28e83SPiotr Jasiukajtis 			tb = (double *) _TBL_log + (i + i + i);
20225c28e83SPiotr Jasiukajtis 			if (((ix << 12) | lx) == 0)	/* 2's power */
20325c28e83SPiotr Jasiukajtis 				return ((double) ((ix >> 20) - 0x3ff));
20425c28e83SPiotr Jasiukajtis 			s = (x - tb[0]) * tb[1];
20525c28e83SPiotr Jasiukajtis 			return (LGH * tb[2] - (LGL * tb[2] - ((B1 * s) *
20625c28e83SPiotr Jasiukajtis 				(B2 + s * (B3 + s))) *
20725c28e83SPiotr Jasiukajtis 				(((B4 + s * B5) + (s * s) * (B6 + s)) *
20825c28e83SPiotr Jasiukajtis 				(B7 + s * (B8 + s)))));
20925c28e83SPiotr Jasiukajtis 		}
21025c28e83SPiotr Jasiukajtis 	} else {
21125c28e83SPiotr Jasiukajtis 		double *tb, dn, s;
21225c28e83SPiotr Jasiukajtis 		dn = (double) (n + ((ix >> 20) - 0x3ff));
21325c28e83SPiotr Jasiukajtis 		ix <<= 12;
21425c28e83SPiotr Jasiukajtis 		if ((ix | lx) == 0)
21525c28e83SPiotr Jasiukajtis 			return (dn);
21625c28e83SPiotr Jasiukajtis 		i = ((unsigned) ix >> 12) | 0x3ff00000;	/* scale x to [1,2) */
21725c28e83SPiotr Jasiukajtis 		((int *) &x)[HIWORD] = i;
21825c28e83SPiotr Jasiukajtis 		i = (i - 0x3fb80000) >> 15;
21925c28e83SPiotr Jasiukajtis 		tb = (double *) _TBL_log + (i + i + i);
22025c28e83SPiotr Jasiukajtis 		s = (x - tb[0]) * tb[1];
22125c28e83SPiotr Jasiukajtis 		return (dn + (tb[2] * LN10V + ((B1 * s) *
22225c28e83SPiotr Jasiukajtis 			(B2 + s * (B3 + s))) *
22325c28e83SPiotr Jasiukajtis 			(((B4 + s * B5) + (s * s) * (B6 + s)) *
22425c28e83SPiotr Jasiukajtis 			(B7 + s * (B8 + s)))));
22525c28e83SPiotr Jasiukajtis 	}
22625c28e83SPiotr Jasiukajtis }
227