125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis /* 2225c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2325c28e83SPiotr Jasiukajtis */ 2425c28e83SPiotr Jasiukajtis /* 2525c28e83SPiotr Jasiukajtis * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 2625c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2725c28e83SPiotr Jasiukajtis */ 2825c28e83SPiotr Jasiukajtis 29*ddc0e0b5SRichard Lowe #pragma weak __log = log 3025c28e83SPiotr Jasiukajtis 3125c28e83SPiotr Jasiukajtis /* INDENT OFF */ 3225c28e83SPiotr Jasiukajtis /* 3325c28e83SPiotr Jasiukajtis * log(x) 3425c28e83SPiotr Jasiukajtis * Table look-up algorithm with product polynomial approximation. 3525c28e83SPiotr Jasiukajtis * By K.C. Ng, Oct 23, 2004. Updated Oct 18, 2005. 3625c28e83SPiotr Jasiukajtis * 3725c28e83SPiotr Jasiukajtis * (a). For x in [1-0.125, 1+0.1328125], using a special approximation: 3825c28e83SPiotr Jasiukajtis * Let f = x - 1 and z = f*f. 3925c28e83SPiotr Jasiukajtis * return f + ((a1*z) * 4025c28e83SPiotr Jasiukajtis * ((a2 + (a3*f)*(a4+f)) + (f*z)*(a5+f))) * 4125c28e83SPiotr Jasiukajtis * (((a6 + f*(a7+f)) + (f*z)*(a8+f)) * 4225c28e83SPiotr Jasiukajtis * ((a9 + (a10*f)*(a11+f)) + (f*z)*(a12+f))) 4325c28e83SPiotr Jasiukajtis * a1 -6.88821452420390473170286327331268694251775741577e-0002, 4425c28e83SPiotr Jasiukajtis * a2 1.97493380704769294631262255279580131173133850098e+0000, 4525c28e83SPiotr Jasiukajtis * a3 2.24963218866067560242072431719861924648284912109e+0000, 4625c28e83SPiotr Jasiukajtis * a4 -9.02975906958474405783476868236903101205825805664e-0001, 4725c28e83SPiotr Jasiukajtis * a5 -1.47391630715542865104339398385491222143173217773e+0000, 4825c28e83SPiotr Jasiukajtis * a6 1.86846544648220058704168877738993614912033081055e+0000, 4925c28e83SPiotr Jasiukajtis * a7 1.82277370459347465292410106485476717352867126465e+0000, 5025c28e83SPiotr Jasiukajtis * a8 1.25295479915214102994980294170090928673744201660e+0000, 5125c28e83SPiotr Jasiukajtis * a9 1.96709676945198275177517643896862864494323730469e+0000, 5225c28e83SPiotr Jasiukajtis * a10 -4.00127989749189894030934055990655906498432159424e-0001, 5325c28e83SPiotr Jasiukajtis * a11 3.01675528558798333733648178167641162872314453125e+0000, 5425c28e83SPiotr Jasiukajtis * a12 -9.52325445049240770778453679668018594384193420410e-0001, 5525c28e83SPiotr Jasiukajtis * 5625c28e83SPiotr Jasiukajtis * with remez error |(log(1+f) - P(f))/f| <= 2**-56.81 and 5725c28e83SPiotr Jasiukajtis * 5825c28e83SPiotr Jasiukajtis * (b). For 0.09375 <= x < 24 5925c28e83SPiotr Jasiukajtis * Use an 8-bit table look-up (3-bit for exponent and 5 bit for 6025c28e83SPiotr Jasiukajtis * significand): 6125c28e83SPiotr Jasiukajtis * Let ix stands for the high part of x in IEEE double format. 6225c28e83SPiotr Jasiukajtis * Since 0.09375 <= x < 24, we have 6325c28e83SPiotr Jasiukajtis * 0x3fb80000 <= ix < 0x40380000. 6425c28e83SPiotr Jasiukajtis * Let j = (ix - 0x3fb80000) >> 15. Then 0 <= j < 256. Choose 6525c28e83SPiotr Jasiukajtis * a Y[j] such that HIWORD(Y[j]) ~ 0x3fb8400 + (j<<15) (the middle 6625c28e83SPiotr Jasiukajtis * number between 0x3fb80000 + (j<<15) and 3fb80000 + ((j+1)<<15)), 6725c28e83SPiotr Jasiukajtis * and at the same time 1/Y[j] as well as log(Y[j]) are very close 6825c28e83SPiotr Jasiukajtis * to 53-bits floating point numbers. 6925c28e83SPiotr Jasiukajtis * A table of Y[j], 1/Y[j], and log(Y[j]) are pre-computed and thus 7025c28e83SPiotr Jasiukajtis * log(x) = log(Y[j]) + log(1 + (x-Y[j])*(1/Y[j])) 7125c28e83SPiotr Jasiukajtis * = log(Y[j]) + log(1 + s) 7225c28e83SPiotr Jasiukajtis * where 7325c28e83SPiotr Jasiukajtis * s = (x-Y[j])*(1/Y[j]) 7425c28e83SPiotr Jasiukajtis * We compute max (x-Y[j])*(1/Y[j]) for the chosen Y[j] and obtain 7525c28e83SPiotr Jasiukajtis * |s| < 0.0154. By applying remez algorithm with Product Polynomial 7625c28e83SPiotr Jasiukajtis * Approximiation, we find the following approximated of log(1+s) 7725c28e83SPiotr Jasiukajtis * (b1*s)*(b2+s*(b3+s))*((b4+s*b5)+(s*s)*(b6+s))*(b7+s*(b8+s)) 7825c28e83SPiotr Jasiukajtis * with remez error |log(1+s) - P(s)| <= 2**-63.5 7925c28e83SPiotr Jasiukajtis * 8025c28e83SPiotr Jasiukajtis * (c). Otherwise, get "n", the exponent of x, and then normalize x to 8125c28e83SPiotr Jasiukajtis * z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5 8225c28e83SPiotr Jasiukajtis * significant bits. Then 8325c28e83SPiotr Jasiukajtis * log(x) = n*ln2 + log(Y[i]) + log(z/Y[i]). 8425c28e83SPiotr Jasiukajtis * 8525c28e83SPiotr Jasiukajtis * Special cases: 8625c28e83SPiotr Jasiukajtis * log(x) is NaN with signal if x < 0 (including -INF) ; 8725c28e83SPiotr Jasiukajtis * log(+INF) is +INF; log(0) is -INF with signal; 8825c28e83SPiotr Jasiukajtis * log(NaN) is that NaN with no signal. 8925c28e83SPiotr Jasiukajtis * 9025c28e83SPiotr Jasiukajtis * Maximum error observed: less than 0.90 ulp 9125c28e83SPiotr Jasiukajtis * 9225c28e83SPiotr Jasiukajtis * Constants: 9325c28e83SPiotr Jasiukajtis * The hexadecimal values are the intended ones for the following constants. 9425c28e83SPiotr Jasiukajtis * The decimal values may be used, provided that the compiler will convert 9525c28e83SPiotr Jasiukajtis * from decimal to binary accurately enough to produce the hexadecimal values 9625c28e83SPiotr Jasiukajtis * shown. 9725c28e83SPiotr Jasiukajtis */ 9825c28e83SPiotr Jasiukajtis /* INDENT ON */ 9925c28e83SPiotr Jasiukajtis 10025c28e83SPiotr Jasiukajtis #include "libm.h" 10125c28e83SPiotr Jasiukajtis 10225c28e83SPiotr Jasiukajtis extern const double _TBL_log[]; 10325c28e83SPiotr Jasiukajtis 10425c28e83SPiotr Jasiukajtis static const double P[] = { 10525c28e83SPiotr Jasiukajtis /* ONE */ 1.0, 10625c28e83SPiotr Jasiukajtis /* TWO52 */ 4503599627370496.0, 10725c28e83SPiotr Jasiukajtis /* LN2HI */ 6.93147180369123816490e-01, /* 3fe62e42, fee00000 */ 10825c28e83SPiotr Jasiukajtis /* LN2LO */ 1.90821492927058770002e-10, /* 3dea39ef, 35793c76 */ 10925c28e83SPiotr Jasiukajtis /* A1 */ -6.88821452420390473170286327331268694251775741577e-0002, 11025c28e83SPiotr Jasiukajtis /* A2 */ 1.97493380704769294631262255279580131173133850098e+0000, 11125c28e83SPiotr Jasiukajtis /* A3 */ 2.24963218866067560242072431719861924648284912109e+0000, 11225c28e83SPiotr Jasiukajtis /* A4 */ -9.02975906958474405783476868236903101205825805664e-0001, 11325c28e83SPiotr Jasiukajtis /* A5 */ -1.47391630715542865104339398385491222143173217773e+0000, 11425c28e83SPiotr Jasiukajtis /* A6 */ 1.86846544648220058704168877738993614912033081055e+0000, 11525c28e83SPiotr Jasiukajtis /* A7 */ 1.82277370459347465292410106485476717352867126465e+0000, 11625c28e83SPiotr Jasiukajtis /* A8 */ 1.25295479915214102994980294170090928673744201660e+0000, 11725c28e83SPiotr Jasiukajtis /* A9 */ 1.96709676945198275177517643896862864494323730469e+0000, 11825c28e83SPiotr Jasiukajtis /* A10 */ -4.00127989749189894030934055990655906498432159424e-0001, 11925c28e83SPiotr Jasiukajtis /* A11 */ 3.01675528558798333733648178167641162872314453125e+0000, 12025c28e83SPiotr Jasiukajtis /* A12 */ -9.52325445049240770778453679668018594384193420410e-0001, 12125c28e83SPiotr Jasiukajtis /* B1 */ -1.25041641589283658575482149899471551179885864258e-0001, 12225c28e83SPiotr Jasiukajtis /* B2 */ 1.87161713283355151891381127914642725337613123482e+0000, 12325c28e83SPiotr Jasiukajtis /* B3 */ -1.89082956295731507978530316904652863740921020508e+0000, 12425c28e83SPiotr Jasiukajtis /* B4 */ -2.50562891673640253387134180229622870683670043945e+0000, 12525c28e83SPiotr Jasiukajtis /* B5 */ 1.64822828085258366037635369139024987816810607910e+0000, 12625c28e83SPiotr Jasiukajtis /* B6 */ -1.24409107065868340669112512841820716857910156250e+0000, 12725c28e83SPiotr Jasiukajtis /* B7 */ 1.70534231658220414296067701798165217041969299316e+0000, 12825c28e83SPiotr Jasiukajtis /* B8 */ 1.99196833784655646937267192697618156671524047852e+0000, 12925c28e83SPiotr Jasiukajtis }; 13025c28e83SPiotr Jasiukajtis 13125c28e83SPiotr Jasiukajtis #define ONE P[0] 13225c28e83SPiotr Jasiukajtis #define TWO52 P[1] 13325c28e83SPiotr Jasiukajtis #define LN2HI P[2] 13425c28e83SPiotr Jasiukajtis #define LN2LO P[3] 13525c28e83SPiotr Jasiukajtis #define A1 P[4] 13625c28e83SPiotr Jasiukajtis #define A2 P[5] 13725c28e83SPiotr Jasiukajtis #define A3 P[6] 13825c28e83SPiotr Jasiukajtis #define A4 P[7] 13925c28e83SPiotr Jasiukajtis #define A5 P[8] 14025c28e83SPiotr Jasiukajtis #define A6 P[9] 14125c28e83SPiotr Jasiukajtis #define A7 P[10] 14225c28e83SPiotr Jasiukajtis #define A8 P[11] 14325c28e83SPiotr Jasiukajtis #define A9 P[12] 14425c28e83SPiotr Jasiukajtis #define A10 P[13] 14525c28e83SPiotr Jasiukajtis #define A11 P[14] 14625c28e83SPiotr Jasiukajtis #define A12 P[15] 14725c28e83SPiotr Jasiukajtis #define B1 P[16] 14825c28e83SPiotr Jasiukajtis #define B2 P[17] 14925c28e83SPiotr Jasiukajtis #define B3 P[18] 15025c28e83SPiotr Jasiukajtis #define B4 P[19] 15125c28e83SPiotr Jasiukajtis #define B5 P[20] 15225c28e83SPiotr Jasiukajtis #define B6 P[21] 15325c28e83SPiotr Jasiukajtis #define B7 P[22] 15425c28e83SPiotr Jasiukajtis #define B8 P[23] 15525c28e83SPiotr Jasiukajtis 15625c28e83SPiotr Jasiukajtis double 15725c28e83SPiotr Jasiukajtis log(double x) { 15825c28e83SPiotr Jasiukajtis double *tb, dn, dn1, s, z, r, w; 15925c28e83SPiotr Jasiukajtis int i, hx, ix, n, lx; 16025c28e83SPiotr Jasiukajtis 16125c28e83SPiotr Jasiukajtis n = 0; 16225c28e83SPiotr Jasiukajtis hx = ((int *)&x)[HIWORD]; 16325c28e83SPiotr Jasiukajtis ix = hx & 0x7fffffff; 16425c28e83SPiotr Jasiukajtis lx = ((int *)&x)[LOWORD]; 16525c28e83SPiotr Jasiukajtis 16625c28e83SPiotr Jasiukajtis /* subnormal,0,negative,inf,nan */ 16725c28e83SPiotr Jasiukajtis if ((hx + 0x100000) < 0x200000) { 16825c28e83SPiotr Jasiukajtis if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0)) /* nan */ 16925c28e83SPiotr Jasiukajtis return (x * x); 17025c28e83SPiotr Jasiukajtis if (((hx << 1) | lx) == 0) /* zero */ 17125c28e83SPiotr Jasiukajtis return (_SVID_libm_err(x, x, 16)); 17225c28e83SPiotr Jasiukajtis if (hx < 0) /* negative */ 17325c28e83SPiotr Jasiukajtis return (_SVID_libm_err(x, x, 17)); 17425c28e83SPiotr Jasiukajtis if (((hx - 0x7ff00000) | lx) == 0) /* +inf */ 17525c28e83SPiotr Jasiukajtis return (x); 17625c28e83SPiotr Jasiukajtis 17725c28e83SPiotr Jasiukajtis /* x must be positive and subnormal */ 17825c28e83SPiotr Jasiukajtis x *= TWO52; 17925c28e83SPiotr Jasiukajtis n = -52; 18025c28e83SPiotr Jasiukajtis ix = ((int *)&x)[HIWORD]; 18125c28e83SPiotr Jasiukajtis lx = ((int *)&x)[LOWORD]; 18225c28e83SPiotr Jasiukajtis } 18325c28e83SPiotr Jasiukajtis 18425c28e83SPiotr Jasiukajtis i = ix >> 19; 18525c28e83SPiotr Jasiukajtis if (i >= 0x7f7 && i <= 0x806) { 18625c28e83SPiotr Jasiukajtis /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */ 18725c28e83SPiotr Jasiukajtis if (ix >= 0x3fec0000 && ix < 0x3ff22000) { 18825c28e83SPiotr Jasiukajtis /* 0.875 <= x < 1.125 */ 18925c28e83SPiotr Jasiukajtis s = x - ONE; 19025c28e83SPiotr Jasiukajtis z = s * s; 19125c28e83SPiotr Jasiukajtis if (((ix - 0x3ff00000) | lx) == 0) /* x = 1 */ 19225c28e83SPiotr Jasiukajtis return (z); 19325c28e83SPiotr Jasiukajtis r = (A10 * s) * (A11 + s); 19425c28e83SPiotr Jasiukajtis w = z * s; 19525c28e83SPiotr Jasiukajtis return (s + ((A1 * z) * 19625c28e83SPiotr Jasiukajtis (A2 + ((A3 * s) * (A4 + s) + w * (A5 + s)))) * 19725c28e83SPiotr Jasiukajtis ((A6 + (s * (A7 + s) + w * (A8 + s))) * 19825c28e83SPiotr Jasiukajtis (A9 + (r + w * (A12 + s))))); 19925c28e83SPiotr Jasiukajtis } else { 20025c28e83SPiotr Jasiukajtis i = (ix - 0x3fb80000) >> 15; 20125c28e83SPiotr Jasiukajtis tb = (double *)_TBL_log + (i + i + i); 20225c28e83SPiotr Jasiukajtis s = (x - tb[0]) * tb[1]; 20325c28e83SPiotr Jasiukajtis return (tb[2] + ((B1 * s) * (B2 + s * (B3 + s))) * 20425c28e83SPiotr Jasiukajtis (((B4 + s * B5) + (s * s) * (B6 + s)) * 20525c28e83SPiotr Jasiukajtis (B7 + s * (B8 + s)))); 20625c28e83SPiotr Jasiukajtis } 20725c28e83SPiotr Jasiukajtis } else { 20825c28e83SPiotr Jasiukajtis dn = (double)(n + ((ix >> 20) - 0x3ff)); 20925c28e83SPiotr Jasiukajtis dn1 = dn * LN2HI; 21025c28e83SPiotr Jasiukajtis i = (ix & 0x000fffff) | 0x3ff00000; /* scale x to [1,2] */ 21125c28e83SPiotr Jasiukajtis ((int *)&x)[HIWORD] = i; 21225c28e83SPiotr Jasiukajtis i = (i - 0x3fb80000) >> 15; 21325c28e83SPiotr Jasiukajtis tb = (double *)_TBL_log + (i + i + i); 21425c28e83SPiotr Jasiukajtis s = (x - tb[0]) * tb[1]; 21525c28e83SPiotr Jasiukajtis dn = dn * LN2LO + tb[2]; 21625c28e83SPiotr Jasiukajtis return (dn1 + (dn + ((B1 * s) * (B2 + s * (B3 + s))) * 21725c28e83SPiotr Jasiukajtis (((B4 + s * B5) + (s * s) * (B6 + s)) * 21825c28e83SPiotr Jasiukajtis (B7 + s * (B8 + s))))); 21925c28e83SPiotr Jasiukajtis } 22025c28e83SPiotr Jasiukajtis } 221