xref: /titanic_51/usr/src/lib/libm/common/C/jn.c (revision ddc0e0b53c661f6e439e3b7072b3ef353eadb4af)
125c28e83SPiotr Jasiukajtis /*
225c28e83SPiotr Jasiukajtis  * CDDL HEADER START
325c28e83SPiotr Jasiukajtis  *
425c28e83SPiotr Jasiukajtis  * The contents of this file are subject to the terms of the
525c28e83SPiotr Jasiukajtis  * Common Development and Distribution License (the "License").
625c28e83SPiotr Jasiukajtis  * You may not use this file except in compliance with the License.
725c28e83SPiotr Jasiukajtis  *
825c28e83SPiotr Jasiukajtis  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
925c28e83SPiotr Jasiukajtis  * or http://www.opensolaris.org/os/licensing.
1025c28e83SPiotr Jasiukajtis  * See the License for the specific language governing permissions
1125c28e83SPiotr Jasiukajtis  * and limitations under the License.
1225c28e83SPiotr Jasiukajtis  *
1325c28e83SPiotr Jasiukajtis  * When distributing Covered Code, include this CDDL HEADER in each
1425c28e83SPiotr Jasiukajtis  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
1525c28e83SPiotr Jasiukajtis  * If applicable, add the following below this CDDL HEADER, with the
1625c28e83SPiotr Jasiukajtis  * fields enclosed by brackets "[]" replaced with your own identifying
1725c28e83SPiotr Jasiukajtis  * information: Portions Copyright [yyyy] [name of copyright owner]
1825c28e83SPiotr Jasiukajtis  *
1925c28e83SPiotr Jasiukajtis  * CDDL HEADER END
2025c28e83SPiotr Jasiukajtis  */
2125c28e83SPiotr Jasiukajtis 
2225c28e83SPiotr Jasiukajtis /*
2325c28e83SPiotr Jasiukajtis  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
2425c28e83SPiotr Jasiukajtis  */
2525c28e83SPiotr Jasiukajtis /*
2625c28e83SPiotr Jasiukajtis  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
2725c28e83SPiotr Jasiukajtis  * Use is subject to license terms.
2825c28e83SPiotr Jasiukajtis  */
2925c28e83SPiotr Jasiukajtis 
30*ddc0e0b5SRichard Lowe #pragma weak __jn = jn
31*ddc0e0b5SRichard Lowe #pragma weak __yn = yn
3225c28e83SPiotr Jasiukajtis 
3325c28e83SPiotr Jasiukajtis /*
3425c28e83SPiotr Jasiukajtis  * floating point Bessel's function of the 1st and 2nd kind
3525c28e83SPiotr Jasiukajtis  * of order n: jn(n,x),yn(n,x);
3625c28e83SPiotr Jasiukajtis  *
3725c28e83SPiotr Jasiukajtis  * Special cases:
3825c28e83SPiotr Jasiukajtis  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
3925c28e83SPiotr Jasiukajtis  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
4025c28e83SPiotr Jasiukajtis  * Note 2. About jn(n,x), yn(n,x)
4125c28e83SPiotr Jasiukajtis  *	For n=0, j0(x) is called,
4225c28e83SPiotr Jasiukajtis  *	for n=1, j1(x) is called,
4325c28e83SPiotr Jasiukajtis  *	for n<x, forward recursion us used starting
4425c28e83SPiotr Jasiukajtis  *	from values of j0(x) and j1(x).
4525c28e83SPiotr Jasiukajtis  *	for n>x, a continued fraction approximation to
4625c28e83SPiotr Jasiukajtis  *	j(n,x)/j(n-1,x) is evaluated and then backward
4725c28e83SPiotr Jasiukajtis  *	recursion is used starting from a supposed value
4825c28e83SPiotr Jasiukajtis  *	for j(n,x). The resulting value of j(0,x) is
4925c28e83SPiotr Jasiukajtis  *	compared with the actual value to correct the
5025c28e83SPiotr Jasiukajtis  *	supposed value of j(n,x).
5125c28e83SPiotr Jasiukajtis  *
5225c28e83SPiotr Jasiukajtis  *	yn(n,x) is similar in all respects, except
5325c28e83SPiotr Jasiukajtis  *	that forward recursion is used for all
5425c28e83SPiotr Jasiukajtis  *	values of n>1.
5525c28e83SPiotr Jasiukajtis  *
5625c28e83SPiotr Jasiukajtis  */
5725c28e83SPiotr Jasiukajtis 
5825c28e83SPiotr Jasiukajtis #include "libm.h"
5925c28e83SPiotr Jasiukajtis #include <float.h>	/* DBL_MIN */
6025c28e83SPiotr Jasiukajtis #include <values.h>	/* X_TLOSS */
6125c28e83SPiotr Jasiukajtis #include "xpg6.h"	/* __xpg6 */
6225c28e83SPiotr Jasiukajtis 
6325c28e83SPiotr Jasiukajtis #define	GENERIC double
6425c28e83SPiotr Jasiukajtis 
6525c28e83SPiotr Jasiukajtis static const GENERIC
6625c28e83SPiotr Jasiukajtis 	invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
6725c28e83SPiotr Jasiukajtis 	two	= 2.0,
6825c28e83SPiotr Jasiukajtis 	zero	= 0.0,
6925c28e83SPiotr Jasiukajtis 	one	= 1.0;
7025c28e83SPiotr Jasiukajtis 
7125c28e83SPiotr Jasiukajtis GENERIC
7225c28e83SPiotr Jasiukajtis jn(int n, GENERIC x) {
7325c28e83SPiotr Jasiukajtis 	int i, sgn;
7425c28e83SPiotr Jasiukajtis 	GENERIC a, b, temp = 0;
7525c28e83SPiotr Jasiukajtis 	GENERIC z, w, ox, on;
7625c28e83SPiotr Jasiukajtis 
7725c28e83SPiotr Jasiukajtis 	/*
7825c28e83SPiotr Jasiukajtis 	 * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
7925c28e83SPiotr Jasiukajtis 	 * Thus, J(-n,x) = J(n,-x)
8025c28e83SPiotr Jasiukajtis 	 */
8125c28e83SPiotr Jasiukajtis 	ox = x; on = (GENERIC)n;
8225c28e83SPiotr Jasiukajtis 	if (n < 0) {
8325c28e83SPiotr Jasiukajtis 		n = -n;
8425c28e83SPiotr Jasiukajtis 		x = -x;
8525c28e83SPiotr Jasiukajtis 	}
8625c28e83SPiotr Jasiukajtis 	if (isnan(x))
8725c28e83SPiotr Jasiukajtis 		return (x*x);	/* + -> * for Cheetah */
8825c28e83SPiotr Jasiukajtis 	if (!((int) _lib_version == libm_ieee ||
8925c28e83SPiotr Jasiukajtis 		(__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
9025c28e83SPiotr Jasiukajtis 	    if (fabs(x) > X_TLOSS)
9125c28e83SPiotr Jasiukajtis 			return (_SVID_libm_err(on, ox, 38));
9225c28e83SPiotr Jasiukajtis 	}
9325c28e83SPiotr Jasiukajtis 	if (n == 0)
9425c28e83SPiotr Jasiukajtis 		return (j0(x));
9525c28e83SPiotr Jasiukajtis 	if (n == 1)
9625c28e83SPiotr Jasiukajtis 		return (j1(x));
9725c28e83SPiotr Jasiukajtis 	if ((n&1) == 0)
9825c28e83SPiotr Jasiukajtis 		sgn = 0; 			/* even n */
9925c28e83SPiotr Jasiukajtis 	else
10025c28e83SPiotr Jasiukajtis 		sgn = signbit(x);	/* old n  */
10125c28e83SPiotr Jasiukajtis 	x = fabs(x);
10225c28e83SPiotr Jasiukajtis 	if (x == zero||!finite(x)) b = zero;
10325c28e83SPiotr Jasiukajtis 	else if ((GENERIC)n <= x) {
10425c28e83SPiotr Jasiukajtis 					/*
10525c28e83SPiotr Jasiukajtis 					 * Safe to use
10625c28e83SPiotr Jasiukajtis 					 *  J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
10725c28e83SPiotr Jasiukajtis 					 */
10825c28e83SPiotr Jasiukajtis 	    if (x > 1.0e91) {
10925c28e83SPiotr Jasiukajtis 				/*
11025c28e83SPiotr Jasiukajtis 				 * x >> n**2
11125c28e83SPiotr Jasiukajtis 				 *    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
11225c28e83SPiotr Jasiukajtis 				 *   Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
11325c28e83SPiotr Jasiukajtis 				 *   Let s=sin(x), c=cos(x),
11425c28e83SPiotr Jasiukajtis 				 *	xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
11525c28e83SPiotr Jasiukajtis 				 *
11625c28e83SPiotr Jasiukajtis 				 *	   n	sin(xn)*sqt2	cos(xn)*sqt2
11725c28e83SPiotr Jasiukajtis 				 *	----------------------------------
11825c28e83SPiotr Jasiukajtis 				 *	   0	 s-c		 c+s
11925c28e83SPiotr Jasiukajtis 				 *	   1	-s-c 		-c+s
12025c28e83SPiotr Jasiukajtis 				 *	   2	-s+c		-c-s
12125c28e83SPiotr Jasiukajtis 				 *	   3	 s+c		 c-s
12225c28e83SPiotr Jasiukajtis 				 */
12325c28e83SPiotr Jasiukajtis 		switch (n&3) {
12425c28e83SPiotr Jasiukajtis 		    case 0: temp =  cos(x)+sin(x); break;
12525c28e83SPiotr Jasiukajtis 		    case 1: temp = -cos(x)+sin(x); break;
12625c28e83SPiotr Jasiukajtis 		    case 2: temp = -cos(x)-sin(x); break;
12725c28e83SPiotr Jasiukajtis 		    case 3: temp =  cos(x)-sin(x); break;
12825c28e83SPiotr Jasiukajtis 		}
12925c28e83SPiotr Jasiukajtis 		b = invsqrtpi*temp/sqrt(x);
13025c28e83SPiotr Jasiukajtis 	    } else {
13125c28e83SPiotr Jasiukajtis 			a = j0(x);
13225c28e83SPiotr Jasiukajtis 			b = j1(x);
13325c28e83SPiotr Jasiukajtis 			for (i = 1; i < n; i++) {
13425c28e83SPiotr Jasiukajtis 		    temp = b;
13525c28e83SPiotr Jasiukajtis 		    b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
13625c28e83SPiotr Jasiukajtis 		    a = temp;
13725c28e83SPiotr Jasiukajtis 			}
13825c28e83SPiotr Jasiukajtis 	    }
13925c28e83SPiotr Jasiukajtis 	} else {
14025c28e83SPiotr Jasiukajtis 	    if (x < 1e-9) {	/* use J(n,x) = 1/n!*(x/2)^n */
14125c28e83SPiotr Jasiukajtis 		b = pow(0.5*x, (GENERIC) n);
14225c28e83SPiotr Jasiukajtis 		if (b != zero) {
14325c28e83SPiotr Jasiukajtis 		    for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;
14425c28e83SPiotr Jasiukajtis 		    b = b/a;
14525c28e83SPiotr Jasiukajtis 		}
14625c28e83SPiotr Jasiukajtis 	    } else {
14725c28e83SPiotr Jasiukajtis 		/*
14825c28e83SPiotr Jasiukajtis 		 * use backward recurrence
14925c28e83SPiotr Jasiukajtis 		 * 			x	  x^2	  x^2
15025c28e83SPiotr Jasiukajtis 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
15125c28e83SPiotr Jasiukajtis 		 *			2n  - 2(n+1) - 2(n+2)
15225c28e83SPiotr Jasiukajtis 		 *
15325c28e83SPiotr Jasiukajtis 		 * 			1	  1	    1
15425c28e83SPiotr Jasiukajtis 		 *  (for large x)   =  ----  ------   ------   .....
15525c28e83SPiotr Jasiukajtis 		 *			2n   2(n+1)   2(n+2)
15625c28e83SPiotr Jasiukajtis 		 *			-- - ------ - ------ -
15725c28e83SPiotr Jasiukajtis 		 *			 x	 x		 x
15825c28e83SPiotr Jasiukajtis 		 *
15925c28e83SPiotr Jasiukajtis 		 * Let w = 2n/x and h = 2/x, then the above quotient
16025c28e83SPiotr Jasiukajtis 		 * is equal to the continued fraction:
16125c28e83SPiotr Jasiukajtis 		 *		    1
16225c28e83SPiotr Jasiukajtis 		 *	= -----------------------
16325c28e83SPiotr Jasiukajtis 		 *			   1
16425c28e83SPiotr Jasiukajtis 		 *	   w - -----------------
16525c28e83SPiotr Jasiukajtis 		 *			  1
16625c28e83SPiotr Jasiukajtis 		 * 			w+h - ---------
16725c28e83SPiotr Jasiukajtis 		 *			   w+2h - ...
16825c28e83SPiotr Jasiukajtis 		 *
16925c28e83SPiotr Jasiukajtis 		 * To determine how many terms needed, let
17025c28e83SPiotr Jasiukajtis 		 * Q(0) = w, Q(1) = w(w+h) - 1,
17125c28e83SPiotr Jasiukajtis 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
17225c28e83SPiotr Jasiukajtis 		 * When Q(k) > 1e4	good for single
17325c28e83SPiotr Jasiukajtis 		 * When Q(k) > 1e9	good for double
17425c28e83SPiotr Jasiukajtis 		 * When Q(k) > 1e17	good for quaduple
17525c28e83SPiotr Jasiukajtis 		 */
17625c28e83SPiotr Jasiukajtis 	    /* determin k */
17725c28e83SPiotr Jasiukajtis 		GENERIC t, v;
17825c28e83SPiotr Jasiukajtis 		double q0, q1, h, tmp; int k, m;
17925c28e83SPiotr Jasiukajtis 		w  = (n+n)/(double)x; h = 2.0/(double)x;
18025c28e83SPiotr Jasiukajtis 		q0 = w;  z = w + h; q1 = w*z - 1.0; k = 1;
18125c28e83SPiotr Jasiukajtis 		while (q1 < 1.0e9) {
18225c28e83SPiotr Jasiukajtis 			k += 1; z += h;
18325c28e83SPiotr Jasiukajtis 			tmp = z*q1 - q0;
18425c28e83SPiotr Jasiukajtis 			q0 = q1;
18525c28e83SPiotr Jasiukajtis 			q1 = tmp;
18625c28e83SPiotr Jasiukajtis 		}
18725c28e83SPiotr Jasiukajtis 		m = n+n;
18825c28e83SPiotr Jasiukajtis 		for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);
18925c28e83SPiotr Jasiukajtis 		a = t;
19025c28e83SPiotr Jasiukajtis 		b = one;
19125c28e83SPiotr Jasiukajtis 		/*
19225c28e83SPiotr Jasiukajtis 		 * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
19325c28e83SPiotr Jasiukajtis 		 *  hence, if n*(log(2n/x)) > ...
19425c28e83SPiotr Jasiukajtis 		 *  single 8.8722839355e+01
19525c28e83SPiotr Jasiukajtis 		 *  double 7.09782712893383973096e+02
19625c28e83SPiotr Jasiukajtis 		 *  long double 1.1356523406294143949491931077970765006170e+04
19725c28e83SPiotr Jasiukajtis 		 *  then recurrent value may overflow and the result is
19825c28e83SPiotr Jasiukajtis 		 *  likely underflow to zero
19925c28e83SPiotr Jasiukajtis 		 */
20025c28e83SPiotr Jasiukajtis 		tmp = n;
20125c28e83SPiotr Jasiukajtis 		v = two/x;
20225c28e83SPiotr Jasiukajtis 		tmp = tmp*log(fabs(v*tmp));
20325c28e83SPiotr Jasiukajtis 		if (tmp < 7.09782712893383973096e+02) {
20425c28e83SPiotr Jasiukajtis 			    for (i = n-1; i > 0; i--) {
20525c28e83SPiotr Jasiukajtis 				temp = b;
20625c28e83SPiotr Jasiukajtis 				b = ((i+i)/x)*b - a;
20725c28e83SPiotr Jasiukajtis 			    a = temp;
20825c28e83SPiotr Jasiukajtis 				}
20925c28e83SPiotr Jasiukajtis 		} else {
21025c28e83SPiotr Jasiukajtis 				for (i = n-1; i > 0; i--) {
21125c28e83SPiotr Jasiukajtis 				    temp = b;
21225c28e83SPiotr Jasiukajtis 				    b = ((i+i)/x)*b - a;
21325c28e83SPiotr Jasiukajtis 				    a = temp;
21425c28e83SPiotr Jasiukajtis 					if (b > 1e100) {
21525c28e83SPiotr Jasiukajtis 						a /= b;
21625c28e83SPiotr Jasiukajtis 						t /= b;
21725c28e83SPiotr Jasiukajtis 						b  = 1.0;
21825c28e83SPiotr Jasiukajtis 					}
21925c28e83SPiotr Jasiukajtis 				}
22025c28e83SPiotr Jasiukajtis 		}
22125c28e83SPiotr Jasiukajtis 			b = (t*j0(x)/b);
22225c28e83SPiotr Jasiukajtis 	    }
22325c28e83SPiotr Jasiukajtis 	}
22425c28e83SPiotr Jasiukajtis 	if (sgn == 1)
22525c28e83SPiotr Jasiukajtis 		return (-b);
22625c28e83SPiotr Jasiukajtis 	else
22725c28e83SPiotr Jasiukajtis 		return (b);
22825c28e83SPiotr Jasiukajtis }
22925c28e83SPiotr Jasiukajtis 
23025c28e83SPiotr Jasiukajtis GENERIC
23125c28e83SPiotr Jasiukajtis yn(int n, GENERIC x) {
23225c28e83SPiotr Jasiukajtis 	int i;
23325c28e83SPiotr Jasiukajtis 	int sign;
23425c28e83SPiotr Jasiukajtis 	GENERIC a, b, temp = 0, ox, on;
23525c28e83SPiotr Jasiukajtis 
23625c28e83SPiotr Jasiukajtis 	ox = x; on = (GENERIC)n;
23725c28e83SPiotr Jasiukajtis 	if (isnan(x))
23825c28e83SPiotr Jasiukajtis 		return (x*x);	/* + -> * for Cheetah */
23925c28e83SPiotr Jasiukajtis 	if (x <= zero) {
24025c28e83SPiotr Jasiukajtis 		if (x == zero) {
24125c28e83SPiotr Jasiukajtis 			/* return -one/zero; */
24225c28e83SPiotr Jasiukajtis 			return (_SVID_libm_err((GENERIC)n, x, 12));
24325c28e83SPiotr Jasiukajtis 		} else {
24425c28e83SPiotr Jasiukajtis 			/* return zero/zero; */
24525c28e83SPiotr Jasiukajtis 			return (_SVID_libm_err((GENERIC)n, x, 13));
24625c28e83SPiotr Jasiukajtis 		}
24725c28e83SPiotr Jasiukajtis 	}
24825c28e83SPiotr Jasiukajtis 	if (!((int) _lib_version == libm_ieee ||
24925c28e83SPiotr Jasiukajtis 		(__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
25025c28e83SPiotr Jasiukajtis 	    if (x > X_TLOSS)
25125c28e83SPiotr Jasiukajtis 			return (_SVID_libm_err(on, ox, 39));
25225c28e83SPiotr Jasiukajtis 	}
25325c28e83SPiotr Jasiukajtis 	sign = 1;
25425c28e83SPiotr Jasiukajtis 	if (n < 0) {
25525c28e83SPiotr Jasiukajtis 		n = -n;
25625c28e83SPiotr Jasiukajtis 		if ((n&1) == 1) sign = -1;
25725c28e83SPiotr Jasiukajtis 	}
25825c28e83SPiotr Jasiukajtis 	if (n == 0)
25925c28e83SPiotr Jasiukajtis 		return (y0(x));
26025c28e83SPiotr Jasiukajtis 	if (n == 1)
26125c28e83SPiotr Jasiukajtis 		return (sign*y1(x));
26225c28e83SPiotr Jasiukajtis 	if (!finite(x))
26325c28e83SPiotr Jasiukajtis 		return (zero);
26425c28e83SPiotr Jasiukajtis 
26525c28e83SPiotr Jasiukajtis 	if (x > 1.0e91) {
26625c28e83SPiotr Jasiukajtis 				/*
26725c28e83SPiotr Jasiukajtis 				 * x >> n**2
26825c28e83SPiotr Jasiukajtis 				 *  Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
26925c28e83SPiotr Jasiukajtis 				 *  Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
27025c28e83SPiotr Jasiukajtis 				 *  Let s = sin(x), c = cos(x),
27125c28e83SPiotr Jasiukajtis 				 *  xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
27225c28e83SPiotr Jasiukajtis 				 *
27325c28e83SPiotr Jasiukajtis 				 *    n	sin(xn)*sqt2	cos(xn)*sqt2
27425c28e83SPiotr Jasiukajtis 				 *	----------------------------------
27525c28e83SPiotr Jasiukajtis 				 *	 0	 s-c		 c+s
27625c28e83SPiotr Jasiukajtis 				 *	 1	-s-c 		-c+s
27725c28e83SPiotr Jasiukajtis 				 *	 2	-s+c		-c-s
27825c28e83SPiotr Jasiukajtis 				 *	 3	 s+c		 c-s
27925c28e83SPiotr Jasiukajtis 				 */
28025c28e83SPiotr Jasiukajtis 		switch (n&3) {
28125c28e83SPiotr Jasiukajtis 		    case 0: temp =  sin(x)-cos(x); break;
28225c28e83SPiotr Jasiukajtis 		    case 1: temp = -sin(x)-cos(x); break;
28325c28e83SPiotr Jasiukajtis 		    case 2: temp = -sin(x)+cos(x); break;
28425c28e83SPiotr Jasiukajtis 		    case 3: temp =  sin(x)+cos(x); break;
28525c28e83SPiotr Jasiukajtis 		}
28625c28e83SPiotr Jasiukajtis 		b = invsqrtpi*temp/sqrt(x);
28725c28e83SPiotr Jasiukajtis 	} else {
28825c28e83SPiotr Jasiukajtis 		a = y0(x);
28925c28e83SPiotr Jasiukajtis 		b = y1(x);
29025c28e83SPiotr Jasiukajtis 		/*
29125c28e83SPiotr Jasiukajtis 		 * fix 1262058 and take care of non-default rounding
29225c28e83SPiotr Jasiukajtis 		 */
29325c28e83SPiotr Jasiukajtis 		for (i = 1; i < n; i++) {
29425c28e83SPiotr Jasiukajtis 			temp = b;
29525c28e83SPiotr Jasiukajtis 			b *= (GENERIC) (i + i) / x;
29625c28e83SPiotr Jasiukajtis 			if (b <= -DBL_MAX)
29725c28e83SPiotr Jasiukajtis 				break;
29825c28e83SPiotr Jasiukajtis 			b -= a;
29925c28e83SPiotr Jasiukajtis 			a = temp;
30025c28e83SPiotr Jasiukajtis 		}
30125c28e83SPiotr Jasiukajtis 	}
30225c28e83SPiotr Jasiukajtis 	if (sign > 0)
30325c28e83SPiotr Jasiukajtis 		return (b);
30425c28e83SPiotr Jasiukajtis 	else
30525c28e83SPiotr Jasiukajtis 		return (-b);
30625c28e83SPiotr Jasiukajtis }
307