125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis 2225c28e83SPiotr Jasiukajtis /* 2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2425c28e83SPiotr Jasiukajtis */ 2525c28e83SPiotr Jasiukajtis /* 2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 2725c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2825c28e83SPiotr Jasiukajtis */ 2925c28e83SPiotr Jasiukajtis 30*ddc0e0b5SRichard Lowe #pragma weak __expm1 = expm1 3125c28e83SPiotr Jasiukajtis 3225c28e83SPiotr Jasiukajtis /* INDENT OFF */ 3325c28e83SPiotr Jasiukajtis /* 3425c28e83SPiotr Jasiukajtis * expm1(x) 3525c28e83SPiotr Jasiukajtis * Returns exp(x)-1, the exponential of x minus 1. 3625c28e83SPiotr Jasiukajtis * 3725c28e83SPiotr Jasiukajtis * Method 3825c28e83SPiotr Jasiukajtis * 1. Arugment reduction: 3925c28e83SPiotr Jasiukajtis * Given x, find r and integer k such that 4025c28e83SPiotr Jasiukajtis * 4125c28e83SPiotr Jasiukajtis * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 4225c28e83SPiotr Jasiukajtis * 4325c28e83SPiotr Jasiukajtis * Here a correction term c will be computed to compensate 4425c28e83SPiotr Jasiukajtis * the error in r when rounded to a floating-point number. 4525c28e83SPiotr Jasiukajtis * 4625c28e83SPiotr Jasiukajtis * 2. Approximating expm1(r) by a special rational function on 4725c28e83SPiotr Jasiukajtis * the interval [0,0.34658]: 4825c28e83SPiotr Jasiukajtis * Since 4925c28e83SPiotr Jasiukajtis * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... 5025c28e83SPiotr Jasiukajtis * we define R1(r*r) by 5125c28e83SPiotr Jasiukajtis * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) 5225c28e83SPiotr Jasiukajtis * That is, 5325c28e83SPiotr Jasiukajtis * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) 5425c28e83SPiotr Jasiukajtis * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) 5525c28e83SPiotr Jasiukajtis * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... 5625c28e83SPiotr Jasiukajtis * We use a special Reme algorithm on [0,0.347] to generate 5725c28e83SPiotr Jasiukajtis * a polynomial of degree 5 in r*r to approximate R1. The 5825c28e83SPiotr Jasiukajtis * maximum error of this polynomial approximation is bounded 5925c28e83SPiotr Jasiukajtis * by 2**-61. In other words, 6025c28e83SPiotr Jasiukajtis * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 6125c28e83SPiotr Jasiukajtis * where Q1 = -1.6666666666666567384E-2, 6225c28e83SPiotr Jasiukajtis * Q2 = 3.9682539681370365873E-4, 6325c28e83SPiotr Jasiukajtis * Q3 = -9.9206344733435987357E-6, 6425c28e83SPiotr Jasiukajtis * Q4 = 2.5051361420808517002E-7, 6525c28e83SPiotr Jasiukajtis * Q5 = -6.2843505682382617102E-9; 6625c28e83SPiotr Jasiukajtis * (where z=r*r, and the values of Q1 to Q5 are listed below) 6725c28e83SPiotr Jasiukajtis * with error bounded by 6825c28e83SPiotr Jasiukajtis * | 5 | -61 6925c28e83SPiotr Jasiukajtis * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 7025c28e83SPiotr Jasiukajtis * | | 7125c28e83SPiotr Jasiukajtis * 7225c28e83SPiotr Jasiukajtis * expm1(r) = exp(r)-1 is then computed by the following 7325c28e83SPiotr Jasiukajtis * specific way which minimize the accumulation rounding error: 7425c28e83SPiotr Jasiukajtis * 2 3 7525c28e83SPiotr Jasiukajtis * r r [ 3 - (R1 + R1*r/2) ] 7625c28e83SPiotr Jasiukajtis * expm1(r) = r + --- + --- * [--------------------] 7725c28e83SPiotr Jasiukajtis * 2 2 [ 6 - r*(3 - R1*r/2) ] 7825c28e83SPiotr Jasiukajtis * 7925c28e83SPiotr Jasiukajtis * To compensate the error in the argument reduction, we use 8025c28e83SPiotr Jasiukajtis * expm1(r+c) = expm1(r) + c + expm1(r)*c 8125c28e83SPiotr Jasiukajtis * ~ expm1(r) + c + r*c 8225c28e83SPiotr Jasiukajtis * Thus c+r*c will be added in as the correction terms for 8325c28e83SPiotr Jasiukajtis * expm1(r+c). Now rearrange the term to avoid optimization 8425c28e83SPiotr Jasiukajtis * screw up: 8525c28e83SPiotr Jasiukajtis * ( 2 2 ) 8625c28e83SPiotr Jasiukajtis * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) 8725c28e83SPiotr Jasiukajtis * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) 8825c28e83SPiotr Jasiukajtis * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) 8925c28e83SPiotr Jasiukajtis * ( ) 9025c28e83SPiotr Jasiukajtis * 9125c28e83SPiotr Jasiukajtis * = r - E 9225c28e83SPiotr Jasiukajtis * 3. Scale back to obtain expm1(x): 9325c28e83SPiotr Jasiukajtis * From step 1, we have 9425c28e83SPiotr Jasiukajtis * expm1(x) = either 2^k*[expm1(r)+1] - 1 9525c28e83SPiotr Jasiukajtis * = or 2^k*[expm1(r) + (1-2^-k)] 9625c28e83SPiotr Jasiukajtis * 4. Implementation notes: 9725c28e83SPiotr Jasiukajtis * (A). To save one multiplication, we scale the coefficient Qi 9825c28e83SPiotr Jasiukajtis * to Qi*2^i, and replace z by (x^2)/2. 9925c28e83SPiotr Jasiukajtis * (B). To achieve maximum accuracy, we compute expm1(x) by 10025c28e83SPiotr Jasiukajtis * (i) if x < -56*ln2, return -1.0, (raise inexact if x != inf) 10125c28e83SPiotr Jasiukajtis * (ii) if k=0, return r-E 10225c28e83SPiotr Jasiukajtis * (iii) if k=-1, return 0.5*(r-E)-0.5 10325c28e83SPiotr Jasiukajtis * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) 10425c28e83SPiotr Jasiukajtis * else return 1.0+2.0*(r-E); 10525c28e83SPiotr Jasiukajtis * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) 10625c28e83SPiotr Jasiukajtis * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else 10725c28e83SPiotr Jasiukajtis * (vii) return 2^k(1-((E+2^-k)-r)) 10825c28e83SPiotr Jasiukajtis * 10925c28e83SPiotr Jasiukajtis * Special cases: 11025c28e83SPiotr Jasiukajtis * expm1(INF) is INF, expm1(NaN) is NaN; 11125c28e83SPiotr Jasiukajtis * expm1(-INF) is -1, and 11225c28e83SPiotr Jasiukajtis * for finite argument, only expm1(0)=0 is exact. 11325c28e83SPiotr Jasiukajtis * 11425c28e83SPiotr Jasiukajtis * Accuracy: 11525c28e83SPiotr Jasiukajtis * according to an error analysis, the error is always less than 11625c28e83SPiotr Jasiukajtis * 1 ulp (unit in the last place). 11725c28e83SPiotr Jasiukajtis * 11825c28e83SPiotr Jasiukajtis * Misc. info. 11925c28e83SPiotr Jasiukajtis * For IEEE double 12025c28e83SPiotr Jasiukajtis * if x > 7.09782712893383973096e+02 then expm1(x) overflow 12125c28e83SPiotr Jasiukajtis * 12225c28e83SPiotr Jasiukajtis * Constants: 12325c28e83SPiotr Jasiukajtis * The hexadecimal values are the intended ones for the following 12425c28e83SPiotr Jasiukajtis * constants. The decimal values may be used, provided that the 12525c28e83SPiotr Jasiukajtis * compiler will convert from decimal to binary accurately enough 12625c28e83SPiotr Jasiukajtis * to produce the hexadecimal values shown. 12725c28e83SPiotr Jasiukajtis */ 12825c28e83SPiotr Jasiukajtis /* INDENT ON */ 12925c28e83SPiotr Jasiukajtis 13025c28e83SPiotr Jasiukajtis #include "libm_macros.h" 13125c28e83SPiotr Jasiukajtis #include <math.h> 13225c28e83SPiotr Jasiukajtis 13325c28e83SPiotr Jasiukajtis static const double xxx[] = { 13425c28e83SPiotr Jasiukajtis /* one */ 1.0, 13525c28e83SPiotr Jasiukajtis /* huge */ 1.0e+300, 13625c28e83SPiotr Jasiukajtis /* tiny */ 1.0e-300, 13725c28e83SPiotr Jasiukajtis /* o_threshold */ 7.09782712893383973096e+02, /* 40862E42 FEFA39EF */ 13825c28e83SPiotr Jasiukajtis /* ln2_hi */ 6.93147180369123816490e-01, /* 3FE62E42 FEE00000 */ 13925c28e83SPiotr Jasiukajtis /* ln2_lo */ 1.90821492927058770002e-10, /* 3DEA39EF 35793C76 */ 14025c28e83SPiotr Jasiukajtis /* invln2 */ 1.44269504088896338700e+00, /* 3FF71547 652B82FE */ 14125c28e83SPiotr Jasiukajtis /* scaled coefficients related to expm1 */ 14225c28e83SPiotr Jasiukajtis /* Q1 */ -3.33333333333331316428e-02, /* BFA11111 111110F4 */ 14325c28e83SPiotr Jasiukajtis /* Q2 */ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ 14425c28e83SPiotr Jasiukajtis /* Q3 */ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ 14525c28e83SPiotr Jasiukajtis /* Q4 */ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ 14625c28e83SPiotr Jasiukajtis /* Q5 */ -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */ 14725c28e83SPiotr Jasiukajtis }; 14825c28e83SPiotr Jasiukajtis #define one xxx[0] 14925c28e83SPiotr Jasiukajtis #define huge xxx[1] 15025c28e83SPiotr Jasiukajtis #define tiny xxx[2] 15125c28e83SPiotr Jasiukajtis #define o_threshold xxx[3] 15225c28e83SPiotr Jasiukajtis #define ln2_hi xxx[4] 15325c28e83SPiotr Jasiukajtis #define ln2_lo xxx[5] 15425c28e83SPiotr Jasiukajtis #define invln2 xxx[6] 15525c28e83SPiotr Jasiukajtis #define Q1 xxx[7] 15625c28e83SPiotr Jasiukajtis #define Q2 xxx[8] 15725c28e83SPiotr Jasiukajtis #define Q3 xxx[9] 15825c28e83SPiotr Jasiukajtis #define Q4 xxx[10] 15925c28e83SPiotr Jasiukajtis #define Q5 xxx[11] 16025c28e83SPiotr Jasiukajtis 16125c28e83SPiotr Jasiukajtis double 16225c28e83SPiotr Jasiukajtis expm1(double x) { 16325c28e83SPiotr Jasiukajtis double y, hi, lo, c = 0.0L, t, e, hxs, hfx, r1; 16425c28e83SPiotr Jasiukajtis int k, xsb; 16525c28e83SPiotr Jasiukajtis unsigned hx; 16625c28e83SPiotr Jasiukajtis 16725c28e83SPiotr Jasiukajtis hx = ((unsigned *) &x)[HIWORD]; /* high word of x */ 16825c28e83SPiotr Jasiukajtis xsb = hx & 0x80000000; /* sign bit of x */ 16925c28e83SPiotr Jasiukajtis if (xsb == 0) 17025c28e83SPiotr Jasiukajtis y = x; 17125c28e83SPiotr Jasiukajtis else 17225c28e83SPiotr Jasiukajtis y = -x; /* y = |x| */ 17325c28e83SPiotr Jasiukajtis hx &= 0x7fffffff; /* high word of |x| */ 17425c28e83SPiotr Jasiukajtis 17525c28e83SPiotr Jasiukajtis /* filter out huge and non-finite argument */ 17625c28e83SPiotr Jasiukajtis /* for example exp(38)-1 is approximately 3.1855932e+16 */ 17725c28e83SPiotr Jasiukajtis if (hx >= 0x4043687A) { 17825c28e83SPiotr Jasiukajtis /* if |x|>=56*ln2 (~38.8162...) */ 17925c28e83SPiotr Jasiukajtis if (hx >= 0x40862E42) { /* if |x|>=709.78... -> inf */ 18025c28e83SPiotr Jasiukajtis if (hx >= 0x7ff00000) { 18125c28e83SPiotr Jasiukajtis if (((hx & 0xfffff) | ((int *) &x)[LOWORD]) 18225c28e83SPiotr Jasiukajtis != 0) 18325c28e83SPiotr Jasiukajtis return (x * x); /* + -> * for Cheetah */ 18425c28e83SPiotr Jasiukajtis else 18525c28e83SPiotr Jasiukajtis /* exp(+-inf)={inf,-1} */ 18625c28e83SPiotr Jasiukajtis return (xsb == 0 ? x : -1.0); 18725c28e83SPiotr Jasiukajtis } 18825c28e83SPiotr Jasiukajtis if (x > o_threshold) 18925c28e83SPiotr Jasiukajtis return (huge * huge); /* overflow */ 19025c28e83SPiotr Jasiukajtis } 19125c28e83SPiotr Jasiukajtis if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */ 19225c28e83SPiotr Jasiukajtis if (x + tiny < 0.0) /* raise inexact */ 19325c28e83SPiotr Jasiukajtis return (tiny - one); /* return -1 */ 19425c28e83SPiotr Jasiukajtis } 19525c28e83SPiotr Jasiukajtis } 19625c28e83SPiotr Jasiukajtis 19725c28e83SPiotr Jasiukajtis /* argument reduction */ 19825c28e83SPiotr Jasiukajtis if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ 19925c28e83SPiotr Jasiukajtis if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ 20025c28e83SPiotr Jasiukajtis if (xsb == 0) { /* positive number */ 20125c28e83SPiotr Jasiukajtis hi = x - ln2_hi; 20225c28e83SPiotr Jasiukajtis lo = ln2_lo; 20325c28e83SPiotr Jasiukajtis k = 1; 20425c28e83SPiotr Jasiukajtis } else { 20525c28e83SPiotr Jasiukajtis /* negative number */ 20625c28e83SPiotr Jasiukajtis hi = x + ln2_hi; 20725c28e83SPiotr Jasiukajtis lo = -ln2_lo; 20825c28e83SPiotr Jasiukajtis k = -1; 20925c28e83SPiotr Jasiukajtis } 21025c28e83SPiotr Jasiukajtis } else { 21125c28e83SPiotr Jasiukajtis /* |x| > 1.5 ln2 */ 21225c28e83SPiotr Jasiukajtis k = (int) (invln2 * x + (xsb == 0 ? 0.5 : -0.5)); 21325c28e83SPiotr Jasiukajtis t = k; 21425c28e83SPiotr Jasiukajtis hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ 21525c28e83SPiotr Jasiukajtis lo = t * ln2_lo; 21625c28e83SPiotr Jasiukajtis } 21725c28e83SPiotr Jasiukajtis x = hi - lo; 21825c28e83SPiotr Jasiukajtis c = (hi - x) - lo; /* still at |x| > 0.5 ln2 */ 21925c28e83SPiotr Jasiukajtis } else if (hx < 0x3c900000) { 22025c28e83SPiotr Jasiukajtis /* when |x|<2**-54, return x */ 22125c28e83SPiotr Jasiukajtis t = huge + x; /* return x w/inexact when x != 0 */ 22225c28e83SPiotr Jasiukajtis return (x - (t - (huge + x))); 22325c28e83SPiotr Jasiukajtis } else 22425c28e83SPiotr Jasiukajtis /* |x| <= 0.5 ln2 */ 22525c28e83SPiotr Jasiukajtis k = 0; 22625c28e83SPiotr Jasiukajtis 22725c28e83SPiotr Jasiukajtis /* x is now in primary range */ 22825c28e83SPiotr Jasiukajtis hfx = 0.5 * x; 22925c28e83SPiotr Jasiukajtis hxs = x * hfx; 23025c28e83SPiotr Jasiukajtis r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); 23125c28e83SPiotr Jasiukajtis t = 3.0 - r1 * hfx; 23225c28e83SPiotr Jasiukajtis e = hxs * ((r1 - t) / (6.0 - x * t)); 23325c28e83SPiotr Jasiukajtis if (k == 0) /* |x| <= 0.5 ln2 */ 23425c28e83SPiotr Jasiukajtis return (x - (x * e - hxs)); 23525c28e83SPiotr Jasiukajtis else { /* |x| > 0.5 ln2 */ 23625c28e83SPiotr Jasiukajtis e = (x * (e - c) - c); 23725c28e83SPiotr Jasiukajtis e -= hxs; 23825c28e83SPiotr Jasiukajtis if (k == -1) 23925c28e83SPiotr Jasiukajtis return (0.5 * (x - e) - 0.5); 24025c28e83SPiotr Jasiukajtis if (k == 1) { 24125c28e83SPiotr Jasiukajtis if (x < -0.25) 24225c28e83SPiotr Jasiukajtis return (-2.0 * (e - (x + 0.5))); 24325c28e83SPiotr Jasiukajtis else 24425c28e83SPiotr Jasiukajtis return (one + 2.0 * (x - e)); 24525c28e83SPiotr Jasiukajtis } 24625c28e83SPiotr Jasiukajtis if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ 24725c28e83SPiotr Jasiukajtis y = one - (e - x); 24825c28e83SPiotr Jasiukajtis ((int *) &y)[HIWORD] += k << 20; 24925c28e83SPiotr Jasiukajtis return (y - one); 25025c28e83SPiotr Jasiukajtis } 25125c28e83SPiotr Jasiukajtis t = one; 25225c28e83SPiotr Jasiukajtis if (k < 20) { 25325c28e83SPiotr Jasiukajtis ((int *) &t)[HIWORD] = 0x3ff00000 - (0x200000 >> k); 25425c28e83SPiotr Jasiukajtis /* t = 1 - 2^-k */ 25525c28e83SPiotr Jasiukajtis y = t - (e - x); 25625c28e83SPiotr Jasiukajtis ((int *) &y)[HIWORD] += k << 20; 25725c28e83SPiotr Jasiukajtis } else { 25825c28e83SPiotr Jasiukajtis ((int *) &t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */ 25925c28e83SPiotr Jasiukajtis y = x - (e + t); 26025c28e83SPiotr Jasiukajtis y += one; 26125c28e83SPiotr Jasiukajtis ((int *) &y)[HIWORD] += k << 20; 26225c28e83SPiotr Jasiukajtis } 26325c28e83SPiotr Jasiukajtis } 26425c28e83SPiotr Jasiukajtis return (y); 26525c28e83SPiotr Jasiukajtis } 266