125c28e83SPiotr Jasiukajtis /* 225c28e83SPiotr Jasiukajtis * CDDL HEADER START 325c28e83SPiotr Jasiukajtis * 425c28e83SPiotr Jasiukajtis * The contents of this file are subject to the terms of the 525c28e83SPiotr Jasiukajtis * Common Development and Distribution License (the "License"). 625c28e83SPiotr Jasiukajtis * You may not use this file except in compliance with the License. 725c28e83SPiotr Jasiukajtis * 825c28e83SPiotr Jasiukajtis * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 925c28e83SPiotr Jasiukajtis * or http://www.opensolaris.org/os/licensing. 1025c28e83SPiotr Jasiukajtis * See the License for the specific language governing permissions 1125c28e83SPiotr Jasiukajtis * and limitations under the License. 1225c28e83SPiotr Jasiukajtis * 1325c28e83SPiotr Jasiukajtis * When distributing Covered Code, include this CDDL HEADER in each 1425c28e83SPiotr Jasiukajtis * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 1525c28e83SPiotr Jasiukajtis * If applicable, add the following below this CDDL HEADER, with the 1625c28e83SPiotr Jasiukajtis * fields enclosed by brackets "[]" replaced with your own identifying 1725c28e83SPiotr Jasiukajtis * information: Portions Copyright [yyyy] [name of copyright owner] 1825c28e83SPiotr Jasiukajtis * 1925c28e83SPiotr Jasiukajtis * CDDL HEADER END 2025c28e83SPiotr Jasiukajtis */ 2125c28e83SPiotr Jasiukajtis 2225c28e83SPiotr Jasiukajtis /* 2325c28e83SPiotr Jasiukajtis * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 2425c28e83SPiotr Jasiukajtis */ 2525c28e83SPiotr Jasiukajtis /* 2625c28e83SPiotr Jasiukajtis * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 2725c28e83SPiotr Jasiukajtis * Use is subject to license terms. 2825c28e83SPiotr Jasiukajtis */ 2925c28e83SPiotr Jasiukajtis 30*ddc0e0b5SRichard Lowe #pragma weak __erf = erf 31*ddc0e0b5SRichard Lowe #pragma weak __erfc = erfc 3225c28e83SPiotr Jasiukajtis 3325c28e83SPiotr Jasiukajtis /* INDENT OFF */ 3425c28e83SPiotr Jasiukajtis /* 3525c28e83SPiotr Jasiukajtis * double erf(double x) 3625c28e83SPiotr Jasiukajtis * double erfc(double x) 3725c28e83SPiotr Jasiukajtis * x 3825c28e83SPiotr Jasiukajtis * 2 |\ 3925c28e83SPiotr Jasiukajtis * erf(x) = --------- | exp(-t*t)dt 4025c28e83SPiotr Jasiukajtis * sqrt(pi) \| 4125c28e83SPiotr Jasiukajtis * 0 4225c28e83SPiotr Jasiukajtis * 4325c28e83SPiotr Jasiukajtis * erfc(x) = 1-erf(x) 4425c28e83SPiotr Jasiukajtis * Note that 4525c28e83SPiotr Jasiukajtis * erf(-x) = -erf(x) 4625c28e83SPiotr Jasiukajtis * erfc(-x) = 2 - erfc(x) 4725c28e83SPiotr Jasiukajtis * 4825c28e83SPiotr Jasiukajtis * Method: 4925c28e83SPiotr Jasiukajtis * 1. For |x| in [0, 0.84375] 5025c28e83SPiotr Jasiukajtis * erf(x) = x + x*R(x^2) 5125c28e83SPiotr Jasiukajtis * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] 5225c28e83SPiotr Jasiukajtis * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] 5325c28e83SPiotr Jasiukajtis * where R = P/Q where P is an odd poly of degree 8 and 5425c28e83SPiotr Jasiukajtis * Q is an odd poly of degree 10. 5525c28e83SPiotr Jasiukajtis * -57.90 5625c28e83SPiotr Jasiukajtis * | R - (erf(x)-x)/x | <= 2 5725c28e83SPiotr Jasiukajtis * 5825c28e83SPiotr Jasiukajtis * 5925c28e83SPiotr Jasiukajtis * Remark. The formula is derived by noting 6025c28e83SPiotr Jasiukajtis * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) 6125c28e83SPiotr Jasiukajtis * and that 6225c28e83SPiotr Jasiukajtis * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 6325c28e83SPiotr Jasiukajtis * is close to one. The interval is chosen because the fix 6425c28e83SPiotr Jasiukajtis * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is 6525c28e83SPiotr Jasiukajtis * near 0.6174), and by some experiment, 0.84375 is chosen to 6625c28e83SPiotr Jasiukajtis * guarantee the error is less than one ulp for erf. 6725c28e83SPiotr Jasiukajtis * 6825c28e83SPiotr Jasiukajtis * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and 6925c28e83SPiotr Jasiukajtis * c = 0.84506291151 rounded to single (24 bits) 7025c28e83SPiotr Jasiukajtis * erf(x) = sign(x) * (c + P1(s)/Q1(s)) 7125c28e83SPiotr Jasiukajtis * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 7225c28e83SPiotr Jasiukajtis * 1+(c+P1(s)/Q1(s)) if x < 0 7325c28e83SPiotr Jasiukajtis * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 7425c28e83SPiotr Jasiukajtis * Remark: here we use the taylor series expansion at x=1. 7525c28e83SPiotr Jasiukajtis * erf(1+s) = erf(1) + s*Poly(s) 7625c28e83SPiotr Jasiukajtis * = 0.845.. + P1(s)/Q1(s) 7725c28e83SPiotr Jasiukajtis * That is, we use rational approximation to approximate 7825c28e83SPiotr Jasiukajtis * erf(1+s) - (c = (single)0.84506291151) 7925c28e83SPiotr Jasiukajtis * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] 8025c28e83SPiotr Jasiukajtis * where 8125c28e83SPiotr Jasiukajtis * P1(s) = degree 6 poly in s 8225c28e83SPiotr Jasiukajtis * Q1(s) = degree 6 poly in s 8325c28e83SPiotr Jasiukajtis * 8425c28e83SPiotr Jasiukajtis * 3. For x in [1.25,1/0.35(~2.857143)], 8525c28e83SPiotr Jasiukajtis * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) 8625c28e83SPiotr Jasiukajtis * erf(x) = 1 - erfc(x) 8725c28e83SPiotr Jasiukajtis * where 8825c28e83SPiotr Jasiukajtis * R1(z) = degree 7 poly in z, (z=1/x^2) 8925c28e83SPiotr Jasiukajtis * S1(z) = degree 8 poly in z 9025c28e83SPiotr Jasiukajtis * 9125c28e83SPiotr Jasiukajtis * 4. For x in [1/0.35,28] 9225c28e83SPiotr Jasiukajtis * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 9325c28e83SPiotr Jasiukajtis * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 9425c28e83SPiotr Jasiukajtis * = 2.0 - tiny (if x <= -6) 9525c28e83SPiotr Jasiukajtis * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else 9625c28e83SPiotr Jasiukajtis * erf(x) = sign(x)*(1.0 - tiny) 9725c28e83SPiotr Jasiukajtis * where 9825c28e83SPiotr Jasiukajtis * R2(z) = degree 6 poly in z, (z=1/x^2) 9925c28e83SPiotr Jasiukajtis * S2(z) = degree 7 poly in z 10025c28e83SPiotr Jasiukajtis * 10125c28e83SPiotr Jasiukajtis * Note1: 10225c28e83SPiotr Jasiukajtis * To compute exp(-x*x-0.5625+R/S), let s be a single 10325c28e83SPiotr Jasiukajtis * precision number and s := x; then 10425c28e83SPiotr Jasiukajtis * -x*x = -s*s + (s-x)*(s+x) 10525c28e83SPiotr Jasiukajtis * exp(-x*x-0.5626+R/S) = 10625c28e83SPiotr Jasiukajtis * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); 10725c28e83SPiotr Jasiukajtis * Note2: 10825c28e83SPiotr Jasiukajtis * Here 4 and 5 make use of the asymptotic series 10925c28e83SPiotr Jasiukajtis * exp(-x*x) 11025c28e83SPiotr Jasiukajtis * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) 11125c28e83SPiotr Jasiukajtis * x*sqrt(pi) 11225c28e83SPiotr Jasiukajtis * We use rational approximation to approximate 11325c28e83SPiotr Jasiukajtis * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 11425c28e83SPiotr Jasiukajtis * Here is the error bound for R1/S1 and R2/S2 11525c28e83SPiotr Jasiukajtis * |R1/S1 - f(x)| < 2**(-62.57) 11625c28e83SPiotr Jasiukajtis * |R2/S2 - f(x)| < 2**(-61.52) 11725c28e83SPiotr Jasiukajtis * 11825c28e83SPiotr Jasiukajtis * 5. For inf > x >= 28 11925c28e83SPiotr Jasiukajtis * erf(x) = sign(x) *(1 - tiny) (raise inexact) 12025c28e83SPiotr Jasiukajtis * erfc(x) = tiny*tiny (raise underflow) if x > 0 12125c28e83SPiotr Jasiukajtis * = 2 - tiny if x<0 12225c28e83SPiotr Jasiukajtis * 12325c28e83SPiotr Jasiukajtis * 7. Special case: 12425c28e83SPiotr Jasiukajtis * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, 12525c28e83SPiotr Jasiukajtis * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 12625c28e83SPiotr Jasiukajtis * erfc/erf(NaN) is NaN 12725c28e83SPiotr Jasiukajtis */ 12825c28e83SPiotr Jasiukajtis /* INDENT ON */ 12925c28e83SPiotr Jasiukajtis 13025c28e83SPiotr Jasiukajtis #include "libm_macros.h" 13125c28e83SPiotr Jasiukajtis #include <math.h> 13225c28e83SPiotr Jasiukajtis 13325c28e83SPiotr Jasiukajtis static const double xxx[] = { 13425c28e83SPiotr Jasiukajtis /* tiny */ 1e-300, 13525c28e83SPiotr Jasiukajtis /* half */ 5.00000000000000000000e-01, /* 3FE00000, 00000000 */ 13625c28e83SPiotr Jasiukajtis /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ 13725c28e83SPiotr Jasiukajtis /* two */ 2.00000000000000000000e+00, /* 40000000, 00000000 */ 13825c28e83SPiotr Jasiukajtis /* erx */ 8.45062911510467529297e-01, /* 3FEB0AC1, 60000000 */ 13925c28e83SPiotr Jasiukajtis /* 14025c28e83SPiotr Jasiukajtis * Coefficients for approximation to erf on [0,0.84375] 14125c28e83SPiotr Jasiukajtis */ 14225c28e83SPiotr Jasiukajtis /* efx */ 1.28379167095512586316e-01, /* 3FC06EBA, 8214DB69 */ 14325c28e83SPiotr Jasiukajtis /* efx8 */ 1.02703333676410069053e+00, /* 3FF06EBA, 8214DB69 */ 14425c28e83SPiotr Jasiukajtis /* pp0 */ 1.28379167095512558561e-01, /* 3FC06EBA, 8214DB68 */ 14525c28e83SPiotr Jasiukajtis /* pp1 */ -3.25042107247001499370e-01, /* BFD4CD7D, 691CB913 */ 14625c28e83SPiotr Jasiukajtis /* pp2 */ -2.84817495755985104766e-02, /* BF9D2A51, DBD7194F */ 14725c28e83SPiotr Jasiukajtis /* pp3 */ -5.77027029648944159157e-03, /* BF77A291, 236668E4 */ 14825c28e83SPiotr Jasiukajtis /* pp4 */ -2.37630166566501626084e-05, /* BEF8EAD6, 120016AC */ 14925c28e83SPiotr Jasiukajtis /* qq1 */ 3.97917223959155352819e-01, /* 3FD97779, CDDADC09 */ 15025c28e83SPiotr Jasiukajtis /* qq2 */ 6.50222499887672944485e-02, /* 3FB0A54C, 5536CEBA */ 15125c28e83SPiotr Jasiukajtis /* qq3 */ 5.08130628187576562776e-03, /* 3F74D022, C4D36B0F */ 15225c28e83SPiotr Jasiukajtis /* qq4 */ 1.32494738004321644526e-04, /* 3F215DC9, 221C1A10 */ 15325c28e83SPiotr Jasiukajtis /* qq5 */ -3.96022827877536812320e-06, /* BED09C43, 42A26120 */ 15425c28e83SPiotr Jasiukajtis /* 15525c28e83SPiotr Jasiukajtis * Coefficients for approximation to erf in [0.84375,1.25] 15625c28e83SPiotr Jasiukajtis */ 15725c28e83SPiotr Jasiukajtis /* pa0 */ -2.36211856075265944077e-03, /* BF6359B8, BEF77538 */ 15825c28e83SPiotr Jasiukajtis /* pa1 */ 4.14856118683748331666e-01, /* 3FDA8D00, AD92B34D */ 15925c28e83SPiotr Jasiukajtis /* pa2 */ -3.72207876035701323847e-01, /* BFD7D240, FBB8C3F1 */ 16025c28e83SPiotr Jasiukajtis /* pa3 */ 3.18346619901161753674e-01, /* 3FD45FCA, 805120E4 */ 16125c28e83SPiotr Jasiukajtis /* pa4 */ -1.10894694282396677476e-01, /* BFBC6398, 3D3E28EC */ 16225c28e83SPiotr Jasiukajtis /* pa5 */ 3.54783043256182359371e-02, /* 3FA22A36, 599795EB */ 16325c28e83SPiotr Jasiukajtis /* pa6 */ -2.16637559486879084300e-03, /* BF61BF38, 0A96073F */ 16425c28e83SPiotr Jasiukajtis /* qa1 */ 1.06420880400844228286e-01, /* 3FBB3E66, 18EEE323 */ 16525c28e83SPiotr Jasiukajtis /* qa2 */ 5.40397917702171048937e-01, /* 3FE14AF0, 92EB6F33 */ 16625c28e83SPiotr Jasiukajtis /* qa3 */ 7.18286544141962662868e-02, /* 3FB2635C, D99FE9A7 */ 16725c28e83SPiotr Jasiukajtis /* qa4 */ 1.26171219808761642112e-01, /* 3FC02660, E763351F */ 16825c28e83SPiotr Jasiukajtis /* qa5 */ 1.36370839120290507362e-02, /* 3F8BEDC2, 6B51DD1C */ 16925c28e83SPiotr Jasiukajtis /* qa6 */ 1.19844998467991074170e-02, /* 3F888B54, 5735151D */ 17025c28e83SPiotr Jasiukajtis /* 17125c28e83SPiotr Jasiukajtis * Coefficients for approximation to erfc in [1.25,1/0.35] 17225c28e83SPiotr Jasiukajtis */ 17325c28e83SPiotr Jasiukajtis /* ra0 */ -9.86494403484714822705e-03, /* BF843412, 600D6435 */ 17425c28e83SPiotr Jasiukajtis /* ra1 */ -6.93858572707181764372e-01, /* BFE63416, E4BA7360 */ 17525c28e83SPiotr Jasiukajtis /* ra2 */ -1.05586262253232909814e+01, /* C0251E04, 41B0E726 */ 17625c28e83SPiotr Jasiukajtis /* ra3 */ -6.23753324503260060396e+01, /* C04F300A, E4CBA38D */ 17725c28e83SPiotr Jasiukajtis /* ra4 */ -1.62396669462573470355e+02, /* C0644CB1, 84282266 */ 17825c28e83SPiotr Jasiukajtis /* ra5 */ -1.84605092906711035994e+02, /* C067135C, EBCCABB2 */ 17925c28e83SPiotr Jasiukajtis /* ra6 */ -8.12874355063065934246e+01, /* C0545265, 57E4D2F2 */ 18025c28e83SPiotr Jasiukajtis /* ra7 */ -9.81432934416914548592e+00, /* C023A0EF, C69AC25C */ 18125c28e83SPiotr Jasiukajtis /* sa1 */ 1.96512716674392571292e+01, /* 4033A6B9, BD707687 */ 18225c28e83SPiotr Jasiukajtis /* sa2 */ 1.37657754143519042600e+02, /* 4061350C, 526AE721 */ 18325c28e83SPiotr Jasiukajtis /* sa3 */ 4.34565877475229228821e+02, /* 407B290D, D58A1A71 */ 18425c28e83SPiotr Jasiukajtis /* sa4 */ 6.45387271733267880336e+02, /* 40842B19, 21EC2868 */ 18525c28e83SPiotr Jasiukajtis /* sa5 */ 4.29008140027567833386e+02, /* 407AD021, 57700314 */ 18625c28e83SPiotr Jasiukajtis /* sa6 */ 1.08635005541779435134e+02, /* 405B28A3, EE48AE2C */ 18725c28e83SPiotr Jasiukajtis /* sa7 */ 6.57024977031928170135e+00, /* 401A47EF, 8E484A93 */ 18825c28e83SPiotr Jasiukajtis /* sa8 */ -6.04244152148580987438e-02, /* BFAEEFF2, EE749A62 */ 18925c28e83SPiotr Jasiukajtis /* 19025c28e83SPiotr Jasiukajtis * Coefficients for approximation to erfc in [1/.35,28] 19125c28e83SPiotr Jasiukajtis */ 19225c28e83SPiotr Jasiukajtis /* rb0 */ -9.86494292470009928597e-03, /* BF843412, 39E86F4A */ 19325c28e83SPiotr Jasiukajtis /* rb1 */ -7.99283237680523006574e-01, /* BFE993BA, 70C285DE */ 19425c28e83SPiotr Jasiukajtis /* rb2 */ -1.77579549177547519889e+01, /* C031C209, 555F995A */ 19525c28e83SPiotr Jasiukajtis /* rb3 */ -1.60636384855821916062e+02, /* C064145D, 43C5ED98 */ 19625c28e83SPiotr Jasiukajtis /* rb4 */ -6.37566443368389627722e+02, /* C083EC88, 1375F228 */ 19725c28e83SPiotr Jasiukajtis /* rb5 */ -1.02509513161107724954e+03, /* C0900461, 6A2E5992 */ 19825c28e83SPiotr Jasiukajtis /* rb6 */ -4.83519191608651397019e+02, /* C07E384E, 9BDC383F */ 19925c28e83SPiotr Jasiukajtis /* sb1 */ 3.03380607434824582924e+01, /* 403E568B, 261D5190 */ 20025c28e83SPiotr Jasiukajtis /* sb2 */ 3.25792512996573918826e+02, /* 40745CAE, 221B9F0A */ 20125c28e83SPiotr Jasiukajtis /* sb3 */ 1.53672958608443695994e+03, /* 409802EB, 189D5118 */ 20225c28e83SPiotr Jasiukajtis /* sb4 */ 3.19985821950859553908e+03, /* 40A8FFB7, 688C246A */ 20325c28e83SPiotr Jasiukajtis /* sb5 */ 2.55305040643316442583e+03, /* 40A3F219, CEDF3BE6 */ 20425c28e83SPiotr Jasiukajtis /* sb6 */ 4.74528541206955367215e+02, /* 407DA874, E79FE763 */ 20525c28e83SPiotr Jasiukajtis /* sb7 */ -2.24409524465858183362e+01 /* C03670E2, 42712D62 */ 20625c28e83SPiotr Jasiukajtis }; 20725c28e83SPiotr Jasiukajtis 20825c28e83SPiotr Jasiukajtis #define tiny xxx[0] 20925c28e83SPiotr Jasiukajtis #define half xxx[1] 21025c28e83SPiotr Jasiukajtis #define one xxx[2] 21125c28e83SPiotr Jasiukajtis #define two xxx[3] 21225c28e83SPiotr Jasiukajtis #define erx xxx[4] 21325c28e83SPiotr Jasiukajtis /* 21425c28e83SPiotr Jasiukajtis * Coefficients for approximation to erf on [0,0.84375] 21525c28e83SPiotr Jasiukajtis */ 21625c28e83SPiotr Jasiukajtis #define efx xxx[5] 21725c28e83SPiotr Jasiukajtis #define efx8 xxx[6] 21825c28e83SPiotr Jasiukajtis #define pp0 xxx[7] 21925c28e83SPiotr Jasiukajtis #define pp1 xxx[8] 22025c28e83SPiotr Jasiukajtis #define pp2 xxx[9] 22125c28e83SPiotr Jasiukajtis #define pp3 xxx[10] 22225c28e83SPiotr Jasiukajtis #define pp4 xxx[11] 22325c28e83SPiotr Jasiukajtis #define qq1 xxx[12] 22425c28e83SPiotr Jasiukajtis #define qq2 xxx[13] 22525c28e83SPiotr Jasiukajtis #define qq3 xxx[14] 22625c28e83SPiotr Jasiukajtis #define qq4 xxx[15] 22725c28e83SPiotr Jasiukajtis #define qq5 xxx[16] 22825c28e83SPiotr Jasiukajtis /* 22925c28e83SPiotr Jasiukajtis * Coefficients for approximation to erf in [0.84375,1.25] 23025c28e83SPiotr Jasiukajtis */ 23125c28e83SPiotr Jasiukajtis #define pa0 xxx[17] 23225c28e83SPiotr Jasiukajtis #define pa1 xxx[18] 23325c28e83SPiotr Jasiukajtis #define pa2 xxx[19] 23425c28e83SPiotr Jasiukajtis #define pa3 xxx[20] 23525c28e83SPiotr Jasiukajtis #define pa4 xxx[21] 23625c28e83SPiotr Jasiukajtis #define pa5 xxx[22] 23725c28e83SPiotr Jasiukajtis #define pa6 xxx[23] 23825c28e83SPiotr Jasiukajtis #define qa1 xxx[24] 23925c28e83SPiotr Jasiukajtis #define qa2 xxx[25] 24025c28e83SPiotr Jasiukajtis #define qa3 xxx[26] 24125c28e83SPiotr Jasiukajtis #define qa4 xxx[27] 24225c28e83SPiotr Jasiukajtis #define qa5 xxx[28] 24325c28e83SPiotr Jasiukajtis #define qa6 xxx[29] 24425c28e83SPiotr Jasiukajtis /* 24525c28e83SPiotr Jasiukajtis * Coefficients for approximation to erfc in [1.25,1/0.35] 24625c28e83SPiotr Jasiukajtis */ 24725c28e83SPiotr Jasiukajtis #define ra0 xxx[30] 24825c28e83SPiotr Jasiukajtis #define ra1 xxx[31] 24925c28e83SPiotr Jasiukajtis #define ra2 xxx[32] 25025c28e83SPiotr Jasiukajtis #define ra3 xxx[33] 25125c28e83SPiotr Jasiukajtis #define ra4 xxx[34] 25225c28e83SPiotr Jasiukajtis #define ra5 xxx[35] 25325c28e83SPiotr Jasiukajtis #define ra6 xxx[36] 25425c28e83SPiotr Jasiukajtis #define ra7 xxx[37] 25525c28e83SPiotr Jasiukajtis #define sa1 xxx[38] 25625c28e83SPiotr Jasiukajtis #define sa2 xxx[39] 25725c28e83SPiotr Jasiukajtis #define sa3 xxx[40] 25825c28e83SPiotr Jasiukajtis #define sa4 xxx[41] 25925c28e83SPiotr Jasiukajtis #define sa5 xxx[42] 26025c28e83SPiotr Jasiukajtis #define sa6 xxx[43] 26125c28e83SPiotr Jasiukajtis #define sa7 xxx[44] 26225c28e83SPiotr Jasiukajtis #define sa8 xxx[45] 26325c28e83SPiotr Jasiukajtis /* 26425c28e83SPiotr Jasiukajtis * Coefficients for approximation to erfc in [1/.35,28] 26525c28e83SPiotr Jasiukajtis */ 26625c28e83SPiotr Jasiukajtis #define rb0 xxx[46] 26725c28e83SPiotr Jasiukajtis #define rb1 xxx[47] 26825c28e83SPiotr Jasiukajtis #define rb2 xxx[48] 26925c28e83SPiotr Jasiukajtis #define rb3 xxx[49] 27025c28e83SPiotr Jasiukajtis #define rb4 xxx[50] 27125c28e83SPiotr Jasiukajtis #define rb5 xxx[51] 27225c28e83SPiotr Jasiukajtis #define rb6 xxx[52] 27325c28e83SPiotr Jasiukajtis #define sb1 xxx[53] 27425c28e83SPiotr Jasiukajtis #define sb2 xxx[54] 27525c28e83SPiotr Jasiukajtis #define sb3 xxx[55] 27625c28e83SPiotr Jasiukajtis #define sb4 xxx[56] 27725c28e83SPiotr Jasiukajtis #define sb5 xxx[57] 27825c28e83SPiotr Jasiukajtis #define sb6 xxx[58] 27925c28e83SPiotr Jasiukajtis #define sb7 xxx[59] 28025c28e83SPiotr Jasiukajtis 28125c28e83SPiotr Jasiukajtis double 28225c28e83SPiotr Jasiukajtis erf(double x) { 28325c28e83SPiotr Jasiukajtis int hx, ix, i; 28425c28e83SPiotr Jasiukajtis double R, S, P, Q, s, y, z, r; 28525c28e83SPiotr Jasiukajtis 28625c28e83SPiotr Jasiukajtis hx = ((int *) &x)[HIWORD]; 28725c28e83SPiotr Jasiukajtis ix = hx & 0x7fffffff; 28825c28e83SPiotr Jasiukajtis if (ix >= 0x7ff00000) { /* erf(nan)=nan */ 28925c28e83SPiotr Jasiukajtis #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN) 29025c28e83SPiotr Jasiukajtis if (ix >= 0x7ff80000) /* assumes sparc-like QNaN */ 29125c28e83SPiotr Jasiukajtis return (x); 29225c28e83SPiotr Jasiukajtis #endif 29325c28e83SPiotr Jasiukajtis i = ((unsigned) hx >> 31) << 1; 29425c28e83SPiotr Jasiukajtis return ((double) (1 - i) + one / x); /* erf(+-inf)=+-1 */ 29525c28e83SPiotr Jasiukajtis } 29625c28e83SPiotr Jasiukajtis 29725c28e83SPiotr Jasiukajtis if (ix < 0x3feb0000) { /* |x|<0.84375 */ 29825c28e83SPiotr Jasiukajtis if (ix < 0x3e300000) { /* |x|<2**-28 */ 29925c28e83SPiotr Jasiukajtis if (ix < 0x00800000) /* avoid underflow */ 30025c28e83SPiotr Jasiukajtis return (0.125 * (8.0 * x + efx8 * x)); 30125c28e83SPiotr Jasiukajtis return (x + efx * x); 30225c28e83SPiotr Jasiukajtis } 30325c28e83SPiotr Jasiukajtis z = x * x; 30425c28e83SPiotr Jasiukajtis r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4))); 30525c28e83SPiotr Jasiukajtis s = one + 30625c28e83SPiotr Jasiukajtis z *(qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); 30725c28e83SPiotr Jasiukajtis y = r / s; 30825c28e83SPiotr Jasiukajtis return (x + x * y); 30925c28e83SPiotr Jasiukajtis } 31025c28e83SPiotr Jasiukajtis if (ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ 31125c28e83SPiotr Jasiukajtis s = fabs(x) - one; 31225c28e83SPiotr Jasiukajtis P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + 31325c28e83SPiotr Jasiukajtis s * (pa5 + s * pa6))))); 31425c28e83SPiotr Jasiukajtis Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + 31525c28e83SPiotr Jasiukajtis s * (qa5 + s * qa6))))); 31625c28e83SPiotr Jasiukajtis if (hx >= 0) 31725c28e83SPiotr Jasiukajtis return (erx + P / Q); 31825c28e83SPiotr Jasiukajtis else 31925c28e83SPiotr Jasiukajtis return (-erx - P / Q); 32025c28e83SPiotr Jasiukajtis } 32125c28e83SPiotr Jasiukajtis if (ix >= 0x40180000) { /* inf > |x| >= 6 */ 32225c28e83SPiotr Jasiukajtis if (hx >= 0) 32325c28e83SPiotr Jasiukajtis return (one - tiny); 32425c28e83SPiotr Jasiukajtis else 32525c28e83SPiotr Jasiukajtis return (tiny - one); 32625c28e83SPiotr Jasiukajtis } 32725c28e83SPiotr Jasiukajtis x = fabs(x); 32825c28e83SPiotr Jasiukajtis s = one / (x * x); 32925c28e83SPiotr Jasiukajtis if (ix < 0x4006DB6E) { /* |x| < 1/0.35 */ 33025c28e83SPiotr Jasiukajtis R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + 33125c28e83SPiotr Jasiukajtis s * (ra5 + s * (ra6 + s * ra7)))))); 33225c28e83SPiotr Jasiukajtis S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + 33325c28e83SPiotr Jasiukajtis s * (sa5 + s * (sa6 + s * (sa7 + s * sa8))))))); 33425c28e83SPiotr Jasiukajtis } else { /* |x| >= 1/0.35 */ 33525c28e83SPiotr Jasiukajtis R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + 33625c28e83SPiotr Jasiukajtis s * (rb5 + s * rb6))))); 33725c28e83SPiotr Jasiukajtis S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + 33825c28e83SPiotr Jasiukajtis s * (sb5 + s * (sb6 + s * sb7)))))); 33925c28e83SPiotr Jasiukajtis } 34025c28e83SPiotr Jasiukajtis z = x; 34125c28e83SPiotr Jasiukajtis ((int *) &z)[LOWORD] = 0; 34225c28e83SPiotr Jasiukajtis r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S); 34325c28e83SPiotr Jasiukajtis if (hx >= 0) 34425c28e83SPiotr Jasiukajtis return (one - r / x); 34525c28e83SPiotr Jasiukajtis else 34625c28e83SPiotr Jasiukajtis return (r / x - one); 34725c28e83SPiotr Jasiukajtis } 34825c28e83SPiotr Jasiukajtis 34925c28e83SPiotr Jasiukajtis double 35025c28e83SPiotr Jasiukajtis erfc(double x) { 35125c28e83SPiotr Jasiukajtis int hx, ix; 35225c28e83SPiotr Jasiukajtis double R, S, P, Q, s, y, z, r; 35325c28e83SPiotr Jasiukajtis 35425c28e83SPiotr Jasiukajtis hx = ((int *) &x)[HIWORD]; 35525c28e83SPiotr Jasiukajtis ix = hx & 0x7fffffff; 35625c28e83SPiotr Jasiukajtis if (ix >= 0x7ff00000) { /* erfc(nan)=nan */ 35725c28e83SPiotr Jasiukajtis #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN) 35825c28e83SPiotr Jasiukajtis if (ix >= 0x7ff80000) /* assumes sparc-like QNaN */ 35925c28e83SPiotr Jasiukajtis return (x); 36025c28e83SPiotr Jasiukajtis #endif 36125c28e83SPiotr Jasiukajtis /* erfc(+-inf)=0,2 */ 36225c28e83SPiotr Jasiukajtis return ((double) (((unsigned) hx >> 31) << 1) + one / x); 36325c28e83SPiotr Jasiukajtis } 36425c28e83SPiotr Jasiukajtis 36525c28e83SPiotr Jasiukajtis if (ix < 0x3feb0000) { /* |x| < 0.84375 */ 36625c28e83SPiotr Jasiukajtis if (ix < 0x3c700000) /* |x| < 2**-56 */ 36725c28e83SPiotr Jasiukajtis return (one - x); 36825c28e83SPiotr Jasiukajtis z = x * x; 36925c28e83SPiotr Jasiukajtis r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4))); 37025c28e83SPiotr Jasiukajtis s = one + 37125c28e83SPiotr Jasiukajtis z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); 37225c28e83SPiotr Jasiukajtis y = r / s; 37325c28e83SPiotr Jasiukajtis if (hx < 0x3fd00000) { /* x < 1/4 */ 37425c28e83SPiotr Jasiukajtis return (one - (x + x * y)); 37525c28e83SPiotr Jasiukajtis } else { 37625c28e83SPiotr Jasiukajtis r = x * y; 37725c28e83SPiotr Jasiukajtis r += (x - half); 37825c28e83SPiotr Jasiukajtis return (half - r); 37925c28e83SPiotr Jasiukajtis } 38025c28e83SPiotr Jasiukajtis } 38125c28e83SPiotr Jasiukajtis if (ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ 38225c28e83SPiotr Jasiukajtis s = fabs(x) - one; 38325c28e83SPiotr Jasiukajtis P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + 38425c28e83SPiotr Jasiukajtis s * (pa5 + s * pa6))))); 38525c28e83SPiotr Jasiukajtis Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + 38625c28e83SPiotr Jasiukajtis s * (qa5 + s * qa6))))); 38725c28e83SPiotr Jasiukajtis if (hx >= 0) { 38825c28e83SPiotr Jasiukajtis z = one - erx; 38925c28e83SPiotr Jasiukajtis return (z - P / Q); 39025c28e83SPiotr Jasiukajtis } else { 39125c28e83SPiotr Jasiukajtis z = erx + P / Q; 39225c28e83SPiotr Jasiukajtis return (one + z); 39325c28e83SPiotr Jasiukajtis } 39425c28e83SPiotr Jasiukajtis } 39525c28e83SPiotr Jasiukajtis if (ix < 0x403c0000) { /* |x|<28 */ 39625c28e83SPiotr Jasiukajtis x = fabs(x); 39725c28e83SPiotr Jasiukajtis s = one / (x * x); 39825c28e83SPiotr Jasiukajtis if (ix < 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143 */ 39925c28e83SPiotr Jasiukajtis R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + 40025c28e83SPiotr Jasiukajtis s * (ra5 + s * (ra6 + s * ra7)))))); 40125c28e83SPiotr Jasiukajtis S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + 40225c28e83SPiotr Jasiukajtis s * (sa5 + s * (sa6 + s * (sa7 + s * sa8))))))); 40325c28e83SPiotr Jasiukajtis } else { 40425c28e83SPiotr Jasiukajtis /* |x| >= 1/.35 ~ 2.857143 */ 40525c28e83SPiotr Jasiukajtis if (hx < 0 && ix >= 0x40180000) 40625c28e83SPiotr Jasiukajtis return (two - tiny); /* x < -6 */ 40725c28e83SPiotr Jasiukajtis 40825c28e83SPiotr Jasiukajtis R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + 40925c28e83SPiotr Jasiukajtis s * (rb5 + s * rb6))))); 41025c28e83SPiotr Jasiukajtis S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + 41125c28e83SPiotr Jasiukajtis s * (sb5 + s * (sb6 + s * sb7)))))); 41225c28e83SPiotr Jasiukajtis } 41325c28e83SPiotr Jasiukajtis z = x; 41425c28e83SPiotr Jasiukajtis ((int *) &z)[LOWORD] = 0; 41525c28e83SPiotr Jasiukajtis r = exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S); 41625c28e83SPiotr Jasiukajtis if (hx > 0) 41725c28e83SPiotr Jasiukajtis return (r / x); 41825c28e83SPiotr Jasiukajtis else 41925c28e83SPiotr Jasiukajtis return (two - r / x); 42025c28e83SPiotr Jasiukajtis } else { 42125c28e83SPiotr Jasiukajtis if (hx > 0) 42225c28e83SPiotr Jasiukajtis return (tiny * tiny); 42325c28e83SPiotr Jasiukajtis else 42425c28e83SPiotr Jasiukajtis return (two - tiny); 42525c28e83SPiotr Jasiukajtis } 42625c28e83SPiotr Jasiukajtis } 427